wO 2007/127248 A2 |10 0 0 000 0 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO

International Bureau

(43) International Publication Date
8 November 2007 (08.11.2007)

(10) International Publication Number

WO 2007/127248 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2007/010015

(22) International Filing Date: 25 April 2007 (25.04.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/411,467 25 April 2006 (25.04.2006) US
(71) Applicant (for all designated States except US):
HEWLETT-PACKARD DEVELOPMENT COM-
PANY, L.P. [US/US]; 20555 S.H. 249, Houston, TX

77070 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FINEBERG,
Samuel A [US/US]; 3875 Hopyard Road Suite 250,
Pleasanton, CA 94588 (US). ESHGHI, Kave [GB/US];
1501 Page Mill Rd., Palo Alto, CA 94304-1100 (US).
MEHRA, Pankaj [US/US]; 1501 Page Mill Rd., Palo
Alto, CA 94304-1100 (US). LILLIBRIDGE, Mark
[US/US]; 1501 Page Mill Rd., Palo Alto, CA 94304-1100
Us).

(74) Agent: STOKEY, Richard J.; Hewlett-Packard Com-

pany, Intellectual Property Administration, P.O. Box

272400, Mail Stop 35, Fort Collins, Colorado 80527-2400

Us).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title:
ELECTRONIC-DATA STORAGE SYSTEMS

CONTENT-BASED, COMPRESSION-ENHANCING ROUTING IN DISTRIBUTED, DIFFERENTIAL

(57) Abstract: One embodiment of the present invention includes a method for routing a data object (502), comprising a sequence
of data units (404), to a particular component data-storage system (104-110), or particular group of component data-storage systems,
within a distributed, differential electronic-data storage system (104-110, 112, 114, 116) by selecting one or more subsequences of
data units (402) from the data object, computing a characteristic value from the selected subsequences, computing an index (420)
from the characteristic value; and directing the data object (502) to the particular component data-storage system, or to the particular
group component data-storage systems, identified by the computed index.

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

CONTENT-BASED, COMPRESSION-ENHANCING ROUTING IN
DISTRIBUTED, DIFFERENTIAL ELECTRONIC-DATA STORAGE SYSTEMS

TECHNICAL FIELD
. The present invention is related to systems for differentially storing data
objects and, in particular, to a routing method and routing system for routing a particular

data object to one of a number of differential-store component systems for storage.

BACKGROUND OF THE INVENTION

As computer systems and computer-enabled technologies have rapidly
evolved during the past 60 years, storage and management of electronic data have
become increasingly important for both individuals and organizations. Ever increasing
processor speeds, memory capacities, mass-storage-device capacities, and networking
bandwidths have provided an ever expanding platform for increasingly complex
computer applications that generate ever increasing amounts of electronic data that need
to be reliably stored and managed. Recent legislation specifying that certain types of
electronic data, including emails and transactional data, need to be reliably stored by
certain types of commercial organizations for specified periods of time may further

increase electronic-data storage and management needs and requirements.
_ Initially, electronic data was stored on magnetic tapes or magnetic disks
directly controlled by, and accessible to, individual computers. Reliability in data

storage was achieved by storing multiple copies of critical electronic data on multiple

tapes and/or multiple disks. Electronic data was transferred between computer systems

by manually carrying a magnetic tape or magnetic disk pack from one computer system
to another. As the importance of high availability data storage systems was recognized,
and as computer networking technologies evolved, sophisticated database management
systems and independent, network-accessible, multi-port mass-storage devices were
developed to allow distributed, interconnected computer systems to manage and share
access to highly available and robustly stored electronic data. The ever-increasing

volume of electronic data generated by modern computer systems and applications, and

10

15

20

25

WO 2007/127248 PCT/US2007/010015

2

increasing automation of office, manufacturing, research, and home environments
continue to spur research directed to development of new, more capablé electronic-data-
storage and electronic-data-management systems.

Recent research and development efforts have been directed to
distributed, differential electronic-data storage systems comprising multiple fault-
tolerant, relatively autonomous, but highly coordinated and interconnected data-storage-
system components that cooperate to efficiently store and manage large volumes of
electronic data on behalf of remote host computer systems. The level of data
compression achieved in these systems may depend on how data objects distributed
across the multiple component data-storage systems, and the throughput of these
systems may depend on how quickly and efficiently data-objects can be directed to the
one or more component data-storage systems on which they are stored. Developers,
manufacturers, and users of distributed, differential electronic-data-storage systems have
all recognized the need for improved methods for directing data objects to component

data-storage systems within a distributed, differential electronic-data storage system.

SUMMARY OF THE INVENTION

One embodiment of the present invention includes a method for routing a
data object, comprising a sequence of data units, to a particular component data-storage
system, or particular group of component data-storage systems, within a distributed,
differential electronic-data storage system by selecting one or more subsequences of data
units from the data object, computing one or more characteristic values from the
selected subsequences, computing one or more indexes from the one or more
characteristic values; and directing the data object to the particular component data-
storage system, or to the particular group of component data-storage systems, identified

by the one or more computed indexes.

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a ‘distributed, differential electronic-data storage
system in which routing method and system embodiments of the present invention may
be employed.

Figure 2 illustrates several desired properties for routing data objects to
individual electronic-data-storage components within a distributed, differential
electronic-data storage system that represent embodiments of the present invention.

Figure 3 illustrates a generalized data object routed by method and
system embodiments of the present invention.

Figures 4A-D illustrate a general routing-method embodiment of the
present invention.

Figure 5 abstractly illustrates data-object routing by methods of the
present invention.

Figures 6A-B illustrate two different routing methods of the present
invention that represent special cases of the general routing method discussed above

with reference to Figures 4A-D.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are directed to routing data objects
to individual component data-storage systems within distributed, differential electronic-
data storage systems. In these embodiments of the present invention, a data object is
routed to a particular component data-storage system based on the data contained in the
data object. The routing methods and systems of the present invention attempt to direct
similar data objects, collocation of which leads to increased levels of data compression
within distributed, differential electronic-data storage systems, to a single component
data-storage system, while attempting to relatively evenly distribute dissimilar data
objects, or groups of data objects, across all of the component data-storage systems.
Certain embodiments of the routing methods and systems of the present invention
generate digitally-encoded values from selected portions of the data within a data object,
and then select one of the generated digitally-encoded values, or compute a single
digitally-encoded value from one or more of the generated digitally-encoded values, to

characterize the data object. The selected or computed characteristic value is then used

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

4

to generate a component-data-storage-system index or address in order to route the data
object to a particular component-data-storage-system, or group of component data-
storage systems, within a distributed, differential electronic-data storage system.

Figure 1 illustrates a distributed, differential electronic-data storage
system in which routing method and system embodiments of the present invention may
be employed. The exemplary distributed, differential electronic-data storage system 102
includes a number of component data-storage systems 104-110 that are interconnected
with one another and with a number of portal computer systems 112 and 114 via a first
communications medium 116. The portal computer systems 112 and 114 are, in turn,
interconnected with a large number of host computer systems, such as host computer
system 116, through a second communications medium 118. The portal computer
systems 112 and 114 may be directly interconnected by a communications medium 120
and/or by the first or second communications media 116 and 118. The host computer
systems, such as host computer system 116, transmit data objects to a portal computer
(112 and 114) for storage within the distributed, differential electronic-data storage
system. The host computers can subsequently retrieve stored data objects from the
distributed, differential electronic-data storage system by transmitting retrieval requests
to a portal computer (112 and 114). The portal computers (112 and 114) are responsible
for directing data objects and retrieval requests to the appropriate component data-
storage systems.

An essentially limitless number of different implementations of
distributed, differential electronic-data storage systems can be devised. In certain of
these implementations, the component data-storage systems may directly communicate
with host-computer ' systems, obviating the need for portal computers. In other
implementations, portal computers and component data-storage systems may be
hierarchically interconnected. Component data-storage systems may be implemented on
any number of different hardware and software platforms, and may include multiple
processing components and two-way mirroring or higher degrees of physical data
redundancy in order to store data with high reliability and high availability. The data-

object routing method and systems of the present invention are applicable to any of the

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

5

essentially limitless number of different distributed, differential electrdnic—data storage
systems that may be implemented.

A data-storage system may be classified as a differential data-storage
system when the total volume of data stored within the data-storage system is less than
the total volume of data submitted to the storage system for storage. For example, if an
original document of length 500 kilobytes and a revised version of the original
document of length 600 kilobytes, in which the first 500 kilobytes are identical to the
500 kilobytes of the original document, are both submitted to a differential storage
system, the differential storage system may store only the 500 kilobytes of the original
document and the 100 kilobytes appended to the original document, or difference, to
generate the revised document, along with a very small amount of additional
information needed to reconstruct the revised document from the stored original
document and stored difference. Thus, rather than storing 1.1 megabytes, the sum of the
sizes of the original document and revised document, the differential storage system may
store only 600 kilobytes along with some small additional data overhead. Difterential
electronic-data storage systems may employ any of a wide variety of different types of
redundancy-detecting and redundancy-eliminating methods and systems, including a
wide variety of compression methods, in order to efficiently store data objects.

In one class of distributed, differential electronic-data storage systems,
each data object submitted to the system for storage is directed to, and stored within, a
single component data-storage system of the distributed, differential electronic-data
storage system. In alternative system, the data object may be directed to a single,
hierarchically arranged group of component data-storage systems. This class of systems
exhibits certain advantages, including minimal impact of failed component electronic-
data-storage systems and efficient deletion of data objects from the distributed,
differential electronic-data storage system. In this class of distributed, differential
electronic-data storage systems, routing of data objects to particular electronic-data-
storage-system components can determine the level of data compression achieved by the
distributed, differential electronic-data storage system and can also impact the overall

data-storage efficiency of the distributed, differential electronic-data storage system.

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

6

Figure 2 illustrates several desired properties for routing data objects to
individual component data-storage systems or particular groups of component data-
storage systems within a distributed, differential electronic-data storage system that
represent embodiments of the present invention. In Figure 2, five groups 202-206 of
related, or similar, data objects are shown within dashed rectangles. For exaraple, the
first data-object group 202 includes the three data objects A7 208, 42 210, and 43 212.
The data objects within each group are likely to be similar, or, in other words, likely to
share a certain amount of data, and are therefore compressible when stored together or
successively stored on a particular component data-storage system, while the data
objects within one group are likely to be dissimilar with respect to the data objects in the
other groups, and unlikely to offer significant opportunities for data compression by
virtue of being stored together. For example, a component data-storage system can
generally store similar data objects 41, 42, and A3 in less data-storage space than the
sum of the data-storage spaces needed to individually store data objects 41, 42, and A43.
However, a component data-storage system generally stores dissimilar data objects A1
and Bl using a data-storage space approximately equal to the data-storage spaces needed
to individually store data objects Al and BI. Therefore, in the class of distributed,
differential electronic-data storage systems in which entire data objects are stored within
individual component data-storage systems or groups of component data-storage
systems, the greatest level of compression, or removal of data redundancy, can be
achieved when similar data objects are collocated within individual component data-
storage systems or particular groups of component data-storage systems.

In Figure 2, the arrow 210 represents routing of data objects to individual
component data-storage systems 104-110. For greatest overall data compression, as
shown in Figure 2, the routing method 210 directs each data object within a group of
similar data objects to a single component data-storage system. For example, all of the
data objects A1, A2, and A3 in the first group of similar data objects 202 are routed to
component data-storage system 106.

While routing of similar data objects to the same component data-storage
system is desirable for maximizing the data compression of a distributed, differential

electronic-data storage system, overall data-storage efficiency is increased by relatively

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

7

uniformly distributing data objects across all of the component data-storage systems. In
other words, when each component data-storage system stores an approximately equal
volume of data, the overall storage capacity of the distributed, differential electronic-
data storage system can be most efficiently used. Otherwise, certain of the component
data-storage systems may be filled to maximum capacity while other of the component
data-storage systems may remain idle, requiring expensive data redistribution operations
or equally expensive and inefficient addition of additional component data-storage
systems in order to increase capacity of the distributed, differential electronic-data
storage system, even though certain of the component data-storage systems are not
storing data. Thus, as shown in Figure 2, a desirable routin.g method and system 210
spreads the different, dissimilar groups of data objects 202-206 relatively uniformly
across the component data-storage systems 104-110.

In many distributed, differential electronic-data storage systems, it is not
necessary that all similar data objects are successfully routed to a single component data-
sforage systemn, and it is also not necessary that data be stored in a way that guarantees
absolute, uniform distribution of data across all the component data-storage systems.
Instead, quality of routing may range from random assignment of data objects to
component data-storage systems, regardless of similarity between data objects to ideal
collocation of all similar data objects, and may range from non-uniform distribution of
data within a distributed data-storage system to an ideal, uniform distribution in which
each component data-storage system stores the same volume of data, within the
granularity of a minimum data object size. In general, as with most computational
systems, there are processing-overhead, communications-overhead, and memory-usage
tradeoffs among various approaches to routing, and the closer a routing system
approaches ideal uniform data distribution and ideal similar-data-object collocation, the
greater amount of processing, memory, and communications resources that may be
needed to execute the routing system. In many cases, it is desirable to somewhat relax
distribution and collocation requirements in order to increase the speed and efficiency by
which data objects are routed. The various embodiments of the present invention

represent a favorable balance between routing speed and computational efficiency versus

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

uniformity of data distribution and the degree to which similar data objects are
collocated.

It should be noted that, in general, data objects are supplied to a
distributed, differential electronic-data storage system serially, one-by-one, so that the
distributed, differential electronic-data storage system needs to route data objects to
component data-storage systems without the benefit of global information with respect
to the data objects that are eventually stored within the distributed, differential
electronic-data storage system. Moreover, as additional data objects are stored, and
already stored data objects are deleted, the data state of a distributed, differential
electronic-data storage system varies dynamically, often in a relatively unpredictable
fashion. Therefore, strategies for routing data to achieve uniformity of data distribution
and collocation of similar data objects are often unavoidably non-optimal. Furthermore,
because routing may represent a significant bottleneck with respect to data-object
exchange between a distributed, differential electronic-data storage system and accessing
host computer systems, router efficiency and routing speed may be limiting factors in
overall system performance. It should also be noted that data-object similarity may be
measured in many different ways, subgroups of which are relevant to different
compression techniques and differential-store strategies employed by different
distributed, differential electronic-data storage systems. The method and system

embodiments of the present invention assume the similarity between two data-objects to

. be correlated with the number of identical, shared subsequences of data units contained

within the two data objects.

Figure 3 illustrates a generalized data object routed by method and
system embodiments of the present invention. As shown in Figure 3, a data object 302
is often considered to be a two-dimensional array of data units. Types of data objects
that fit this conceptualization include text documents, digitally encoded photographs,
various types of computer-generated data, digitally encoded software programs and
executable files, ‘and many other types of data objects. Such data objects can be
alternatively viewed as a single, very long, linear array 304 of ordered data units, with
the order of data units in the array 304 determined by a deterministic mapping function

that maps the two-dimensional array of data units to a single, linear array of data units,

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

9

and, in fact, are normally stored and manipulated in this fashion by computer hardware
and software. For example, as shown in Figure 3, the lines of a text file may be
successively stored in the linear array, line-by-line, to generate a single sequential array
of text symbols. In general, regardless of the logical topology of a data object, a data
object can be mapped to a single, sequentially ordered, linear array of data units. Data
units may include bytes, 16-bit characters; 32-bit integers, or any other convenient
primitive data unit into which a data object can be decomposed.

Assuming data objects to be sequentially ordered, linear arrays of data
units, method and system embodiments of the present invention process the data objects
in order to first generate a digitally-encoded value, such as a large integer, that is
generally much smaller than fhe data object, in order to represent or characterize the data
object. Then, in a second step, method and system embodiments of the present
invention, typically using modulo arithmetic, generate a component data-system index
or address for directing the data object represented or characterized by the digitally
encoded value to a particular. component data-storage system or group of data-storage
systems. Figures 4A-D illustrate a general routing-method embodiment of the present
invention. As shown in Figure 4A, a relatively small window 402 of successive-data
units within the linear array representing the data object 404, generally left-justified with
the first data unit in the array 404, is first considered. The window has, in many
embodiments, a fixed width. For example, in Figure.4A, the window 402 has a width of
seven data units. A procedure or function is used to generate a digitally-encoded value
based on the data-unit contents of the window. In general, such functions are referred to
as hash functions 406. Hash functions generate the same, unique numbeér for each
instance of a window containing identical data- unit values or is, in other words,
repeatably deterministic. The hash values generated for two data windows containing
one or more different data-unit values are generally different. However, viewing the
contents of the data window as encoding a large binary number, since the larger number
of possible data-window values are mapped to a smaller number of possible hash values,
hash functions unavoidably produce collisions in which two windows containing
differently valued data units generate the same hash value. There are many different

types of hash functions with different distribution characteristics. These classes of hash

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

10

functions may be more or less useful for data-object routing within distributed,
differential electronic-data storage systems depending on expected distributions of, and
types of, data objects stored within the systems. Selection of hash functions appropriate
for particular data-object-routing problems is beyond the scope of the present
application. Opce a hash value has been generated 406 from the data-unit contents of
the data window 402, the hash value is stored in a first entry 408 of an array of hash
values 410.

Next, as shown in Figure 4B, the window 402 is displaced from the
initial position of the window, shown in Figure 4A, by some number of data units
referred to as an offset 412. The new data-unit contents of the data window, following
displacement of the data unit by the offset, are provided to the hash function to generate
a second hash value which is stored in the second entry 414 of the array of hash values
410. The process of displacing the window by the offset and computing a next hash
value continues until a number of hash values, referred to as the "length," have been
generated, as shown in Figure 4C. The length may be measured either in terms of the
number of hash values generated, or in terms of the number of data units traversed in the
window-displacement and hash-value-computation method illustrated in Figures 4A-C.
The length may be equal to the total possible number of hash-value-generation steps
over the linear-array representation of the data object, or may be a smaller number. It
should be noted that the specific offset and width shown in Figure 4B wouid not be used
in many embodiments of the present invention. The width and offset shown in Figure
4B are used for clarity of illustration only. However, a wide variety of different widths
and offsets may be suitable for various applications of the present invention to specific
problems, including the offset and width used in Figure 4B. In certain embodiments, the
data contained within a window, such as window 402 in Figure 4B, is referred to as a
chunk, particularly when the offset is equal to, or larger than, the width, so that windows
do not overlap with one another.

Next, as shown in Figure 4D, a function 416 is used to select a number &
of the hash values from the hash-value array 410, and the selected & hash values are then
used In an arithmetié operation 418 to generate the index or address of a component

data-storage system 420. In the example shown in Figure 4D, the function used to select

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

11

k hash values from the array of hash values is the max() function, which selects k hash
values with largest numerical values. Alternatively, the k smallest valued hash values
may be selected in alternative embodiments, or a function that arithmetically computes a
single characteristic value based on two or more hash values stored in the hash-value

array and selected by a deterministic process may also be used in alternative

‘implementations. In the example shown in Figure 4D, the k hash values are combined to

form a siﬁgle integer, or characteristic value, and the remainder of integer division of the
characteristic value by the number of component data-storage systems is used to
generate a component data-storage-system index. In alternative embodiments, any of an
almost limitless number of different deterministic mappings between computed values
or hash values to component data-storage-system addresses or indexes may be
employed. In certain embodiments, for example, multiple characteristic values may
each be computed from between 1 and & hash values, and the characteristic values may
then be used in a subsequent calculation of a component data-storage system address. In
other embodiments, two or more component data-storage systems addresses may be
generated, to allow a data object to be stored on multiple component data-storage
systems.

Figure 5 abstractly illustrates data-object routing by methods of the
present invention. A data object 502 is processed by the routing method of the present
invention 504, as discussed above with reference to Figures 4A-B, to generate a
component data-storage system address or index in order to direct the data object 502 to
a particular component data-storage system 508 from among all of the component data-
storage systems 507-513 that together compose a distributed, differential electronic-data
storage system. Alternatively, the index or address may be used to direct the data object
to a particular group of hierarchically arranged component dafa—storage systems. The
data object 502 is then transmitted to the selected component data-storage system 508
for storage 516.

The generalized ronting method discussed above with reference to
Figures 4A-D is characterized by three different parameters: (1) width, the width of the
window of data units used to generate each hash value; (2) offset, the number of data

units by which successive window placements are displaced from one another within the

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

12

linear array of data units that represent the data object for successive hash-value
computations; and (3) length, the number of hash values generated from which a

characteristic value is selected or computed. In many embodiments of the present

_invention, these three characteristics, or parameters, have fixed values. However, in

alternative embodiments and implementations, any one or more of the parameters may
have regularly varying values. For example, the offset could be increased by a fixed
amount after generation of each hash value. In another example, the length may vary
with the size of the data object, so thatup to a length number of hash values is generated
for each data object. In yet another example, the window size may regularly vary as
hash values are generated.

Two particular routing schemes, representing particular fixed parameter
values, are of particular interest. Figures 6A-B illustrate two different routing methods
of the present invention that represent special cases of the general routing method-
discussed above with reference to Figures 4A-D. Figure 6A shows the max-chunk
method. In the max-chunk method, offset is equal in value to width, so that the
successive windows form a series of consecutive chunks along the linear-array
representation of the data object. In this method, the maximum hash value generated
from any particular chunk may be selected as the value characteristic of the data object,
and a component data-storage address may be computed based on this maximum hash
value. Alternatively, the minimum hash value may be selected, or some other value may
be computed from the hash values generated from the chunks.

Figure 6B illustrates the n-gram routing method. In the n-gram routing
method, offset is equal to "1." Thus, hash values are generated for each successive
window displaced from the preceding window by one data unit. The 7 data-units within
each window, where n is equal to the width of the window, are considered to be an 7
gram, and the n-gram hash therefore computes a characteristic value based on examining
all possible N grams within the data object.

Next, a simple C++-like pseudocode implementation of the general
routing method discussed above with reference to Figures 4A-D is provided. First,

several type definitions and constant values are declared:

10

15

20

25

30

35

WO 2007/127248 PCT/US2007/010015

13

1 typedef X hashValue;

2 const hashValue MAX_HASH = Z;

3 typedef unsigned char byte;

4 const int MaxWidth;
The type definition "hashValue" defines a data type for storing computed hash values.
This data type may be, for example, a 32-bit integer, an array of bytes representing a
longer digitally-encoded integer, or some other convenient language-supplied data unit.
The chosen language-supplied data type is inserted in place of the letter X in the above
type definition. The constant value "MAX HASH." de;;lared above on line 2, represents
the maximum valued integer that can be stored in n instance of the data type
"hashValue." An integer appropriate for the data type hashValue would be inserted in
place of the letter Z in the above constant declaration. The type "byte," declared above
on line 3, represents the assumed data unit for data objects. Any convenient data unit
can be chosen in alternative implementations. The constant "MaxWidth," declared
above on line 4, is the maximum number of data units that may occur in a window, the
maximum value for the above—discussed parameter width, or, in other words, the
maximum window size.

Next, a declaration for the abstract class "object"” is provided:

1 class object

2

3 public:

4 virtual bool open() = 0;

5 . virtual bool getNextSubSeq(byte* subSeq, int skip, int len) = 0;
6 virtual void close() = 0;

AR

An instance of the class "object” is a data object that is routed by the routing method
that represents one embodiment of the present invention. The class "object” includes
three virtual function members: (1) "open,” which prepares the object for access; (2)
"getNextSubSeq,” which skips over a number of data units specified by the argument
"skip" before successively accessing a number of data units specified by the argument
"len," placing the accessed data units into the data-unit array referenced by the argument
"subSeq"”; and (3) "close," which closes the data object. The function member

"getNextSubSeq"” pads the contents of the data-unit array "subSeq" with zeros, or

. another arbitrary data-unit value in alternative embodiments, if there are insufficient

10

15

20

25

30

35

40

WO 2007/127248 PCT/US2007/010015

14

data units in the data object to access and store the number of data units specified by the
argument "len” into the data-unit array "subSeq.” This padding only occurs for the first
call to the function member "getNextSubSeq" following a call to the function member
"open.” For all additional calls, if there are not a number of data units specified by the
argument "len" remaining in the data object, the call fails and the Boolean value FALSE
is returned. If "len" data units remain in the data object and are successfully accessed, or
function member "getNextSubSeq" is being called for the first time following a call to
the function member "open,"” then the Boolean value TRUE is returned, unless some
other error condition specific to a certain type of data object occurs.

Different data-object classes that inherit from the class "object,”
discussed above, can be developed for different types of data objects. For example, a

class for file objects is declared below:

1 class fileObject : public virtual object

2 {
3 private:
4 FILE *fl;
5 char* flName;
6 int numSubSequencesFetched;
7
8 public
9 bool open();
10 int getNumBytes();
11 bool getNextSubSeq(byte* subSeq, int skip, int len);
12 void close();
13 fileObject(char* name);
14 };

Finally, the class "router" is declared, below, each instance of which
represents a routing object that routes data objects according to the general method
discussed above with reference to Figures 4A-D.

1 class router

2 {

3 private:

4 int wid;

5 byte nextSubSeq[MaxWidth];

6 hashValue hashNextSubSeq();

7

8 public:

9 int bin(object*-obj, int width, int length, int offset, int numBins);

10

15

20

25

30

35

WO 2007/127248 PCT/US2007/010015

15
10 };

The class "router” includes the following private members: (1) the data member "wid,"

" which stores the width of the window, or the parameter widrh discussed above; (2) the

data member "nextSubSeq," an array of data units storing the data units of the next
window from which a hash value is to be generaied; and (3) the function member
"hashNextSubSeq," which generates a hash value from the current contents of the
above-described array "nextSubSeq." The class "router" includes a single public;
function member "bin," to which is supplied, as arguments, the width, length, and offset
parameters discussed above with reference to Figures 4A-D, the number of bins, of
component data-storage systems to which an object can be routed, "numBins," and a
pointer to a data object, "obj," that is to be routed according to a method embodiment of
the present invention. The public function member "bin" computes the index of a
component data-storage system, or bin, to which the object referenced by the pointer
argument “obj" is directed according to embodiments of the present invention.

As discussed above, any of an almost limitless number of different hash
functions can be selected and implemented for use in embodiments of the present
invention. A specific implementation of the private function member
"hashNextSubSeq" is therefore not provided. Hash functions are well studied and well
known to those skilled in the art of computer programming and computer science. Next,
an implementation of the function member "bin" of the class "router,"” which implements

the general routing method discussed above with reference to Fi gures 4A-D, is provided:

I int router::bin(object* obj, int width, int length, int offset, int numBins)
2{
3 int subSeqOverlap;

hashValue max = 0;

hashValue tmp;

int i, j, fetch, skip;

5
6
7
8 if ((Yobj->open()) ||
9
10

(length < 1) |}
(width< 1) ||
11 (width > MaxWidth) ||
12 (offset < 1) ||
13 (numBins < 1))

10

15

20

25

30

35

40

WO 2007/127248 PCT/US2007/010015

16
15 obj->close();
16 return -1;
17 }
18

19 wid = width;

20 subSeqOverlap = width - offset;

21 if (subSeqOverlap < 0) subSeqOverlap = 0;
22 fetch = width - subSeqOverlap;

23 if (offset > fetch) skip = offset - fetch;

24 else skip = 0;

25

26 if (lobj->getNextSubSeq(nextSubSeq, 0, width))

27 {

28 obj->close();

29 return -1;

30 }

31

32 while (--length)

33 {

34 tmp = hashNextSubSeq();

35 if (tmp > max) max = tmp;

36 for (i = 0, j = offset; i < subSeqOverlap; i++, j++)
37 nextSubSeq[i] = nextSubSeq[jl;

38 if (lobj->getNextSubSeq(&(nextSubSeq[i]), skip, fetch)) break;
39 }

40

41 obj->close();

42 return (max % numBins);

43}

First, on lines 3-6, a number of local variables are declared. The variable
"subSeqOverlap," declared above on line 3, stores the amount of overlap, in data units,
between successive windows. The variable "max," declared above on line 4, stores the
maximum hash value so far computed for the data object. The variable "tmp," declared
above on line 5, stores the most recently computed hash value. The variables "i" and "j,"
declared on line 6, are loop control variables. The variable "fetch," also declared on line'
6, stores the number of data units to next fetch from the data object in order to generate
the next window from which a hash is computed. The variable "skip," also declared on
line 6, stores the number of data units to pass over before retrieving data units for the

next window.

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

17

On lines 8-17, the supplied data object is opened, and various error
conditions related to the supplied arguments are tested. If the open fails, or any of the
supplied arguments have incorrect values, then the object is closed, on line 15, and an
error return value of -1 is returned on line 16. Next, on lines 19-24, the supplied
window width is stored in the data member "wid," and the overlap, fetch, and skip
values are computed. Then, on lines 26-30, the first window is generated by fetching a
number of data units equal to the parameter width from the data object and stores the
data units in the data member array "nextSubSeq." In the first window, no data uﬁits are
skipped before data units are retrieved from the data object and, as discussed above, if
there are an insufficient number of data units within the data object to generate the first
window, the first window is padded with zero characters or some other arbitrary
character or data-unit value. Next, in the while-loop of lines 32-39, a hash value is
generated from the current contents of the data member "nextSubSeq," on line 34, and if
this hash value is greater than any hash value yet computed, the hash value is stored in
local variable "max," on line 35. Then, in the for-loop of lines 36-37, those characters
that are overlapped by the next window are moved within the current window to left
justify the 'overlapped characters in the current window and, on line 38, a sufficient
number of data units is fetched from the data object to complete the next window. The
while-loop of lines 32-39 iterates until either a number of hash values equal to the
parameter "length" are generated, or until a call to "getNextSubSeq" fails. The data
object is then closed, on line 41, and a component data-storage system index, or bin, is
generated as the remainder of integer division, on line 42.

The above C++-like pseudocode implements a fixed-parameter-value,
general routing method as discussed above with reference to Figures 4A-D. As also
discussed above, an almost limitless number of alternative implementations may be
devised, using different control structures, programming languages, data structures,
modular organizations, and other programming characteristics. Moreover, a routing
method may be implemented in software, in logic circuits, or in some combination of
software of logic circuits of various different systems.

The family of specific routing methods included in the general routing

method discussed with reference to Figures 4A-D can be argued to probabilistically

10

15

20

25

WO 2007/127248 PCT/US2007/010015

18

direct similar data objects to the same component data-storage system or group of
component data-storage systems. For example, consider the n-gram routing method
discussed with reference to Figure 6B. Let Gy be the set of all n grams in a first data
object DOy, and G; be the set of all » grams in a first data object DO,. A similarity

metric can be defined as:
sim(G,,G,) = ———21

The similarity metric defines similarity to be the ratio of shared subsequences to total
subsequences for the two data objects. Let S; be the set of hash values generated from
the n grams G, and S, be the set of has values generated from the set of »n grams G.
When the hash function used to generate the n» grams does not produce too many
collisions, the value of the similarity metric can be estimated from the generated hash
values S and S, as follows:
sim(G”Gz)=|GlmG2| _ISins)|

|G, UG,| |S, US|

It can then be shown that:

|S, S,

Prob(max () =max(S,))= s, s,

= sim(G,,G,)

Moreover, the probability that the two similar objects DO, and DO, will be directed to
the same bin by the above-described routing method of the present invention is greater
than the probability that the maximum hash values generated for the two objects are
identical. However, the probability that the two dissimilar objects DO3 and DO, will be

directed to the same bin by the above-described routing method can be estimated as:

S, S, 1
ISluSz|~ n

Therefore, the n-gram routing method has a high probability of routing similar data
objects to the same bin, or component data-storage system, and a relatively low
probability of routing dissimilar data objects to the same bin, instead relatively
uniformly distributing dissimilar data objects across the component data-storage systems

that together compose a distributed, differential electronic-data storage system. The

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

19

family of routing methods discussed with reference to Figures 4A-D, representing
various embodiments of the present invention, thus provides the desired properties
discussed with reference to Figure 3, and are also computationally efficient. Finally, the
family of routing methods discussed with reference to Figures 4A-D, representing .
various embodiments of the present invention, use only the data content of data objects
for routing, providing a deterministic routing of data objects that is not dependent on
additional data, rules, and considerations stored within components of the distributed,
differential electronic-data storage system.

Although the present invention has been described in terms of a particular
embodiment, it is not intended that the invention be limited to this embodiment.
Modifications within the spirit of the invention will be apparent to those skilled in the
art. For example, as discussed above, one or more of the parameters width, offset, and
Iengih may vary regularly during sliding-window computation of a characteristic value
for a data object. The values for the parameters may be varied, in alternative
implementations. In certain distributed, differential electronic-data storage systems,
multiple levels of routing may occur, with a data object first directed, by an initial
routing step, to a particular group of component data-storage systems, and then
subsequently routed to subgroups and finally to a particular component data-storage
system.

The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough understanding of the invention. However, it will be
apparent to one skilled in the art that the specific details are not required in order to
practice the invention. The foregoing descriptions of specific embodiments of the
present invention are presented for purpose of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise forms disclosed.
Obviously many modifications and variations are possible in view of the above
teachings. The embodiments are shown and described in order to best explain the
principles of the invention and its practical applications, to thereby enable others skilled
in the art to best utilize the invention and various embodiments with various
modifications as are suited to the particular use contemplated. It is intended that the

scope of the invention be defined by the following claims and their equivalents:

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

20

CLAIMS

1. A method for routing a data object (502), comprising a sequence of data units (404),
to a particular component data-storage system (104-110), or particular group of component of
data-storage systems, within a distributed, differential electronic-data storage system (104-
110, 112, 114, 116), the method comprising:
selecting one or more subsequences of data units (402) from the data object;
computing one or more characteristic values (410) from the selected subsequences;
computing one or more indexes (420) from the one or more characteristic values; and
directing the data object (502) to the particular component data-storage system (508),
or to the particular group of component data-storage systems, identified by the one or more

computed indexes,

2. The method of claim 1 wherein selecting one or more subsequences of data units from
the data object further includes:
selecting a window size;
selecting an offset (412), the offset one of
equal to the window size, resulting in selection of a consecutive sequence of
contiguous, but non-overlapping data-unit subsequences from the data object (Figure 6A),
and
equal to 1, resulting in selection of a consecutive sequence of n grams from the
data object, where n is equal to the window size (Figure 6B; and
selecting window-size subsequences of data-units from the data object offset from one

another by a number of data units equal to the selected offset.

3. The method of claim 2 further including:
selecting a length; and
selecting up to a number of subsequences of data units from the data object equal to

the selected length.

4, The method of claim 1

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

21

wherein computing one or more characteristic values (410) from the selected
subsequences further includes
generating one or more values for each selected subsequence of data units, and
computing one or more characteristic values from one or more of the one or
more generated values;

.. wherein generating one or more values for each selected subsequence of data units
further includes employing a hash function to generate a hash value from each of the selected
subsequences; and

wherein computing one or more characteristic values from one or more of the one or
more generated values further includes one of
computing one or more characteristic values by a numerical function that takes
one or more generated values as arguments, and
selecting one or more of the generated values as the one or more characteristic

values.

5. The method of claim 4 wherein selecting one of the one or more generated values as
the one or more characteristic values includes one of:

selecting one or more of the maximum-valued generated value (416);

selecting one or more of the minimum-values generated value;

selecting an average value of the generated values; and

selecting a median value of the generated values.

6. The method of claim 1 wherein computing an index (420) from the one or more
characteristic values further includes combining, when there are multiple characteristic
values, the two or more characteristic values to produce an integer, dividing the integer by the
number of component data-storage systems, or groups of component data-storage systems,

and selecting the remainder following integer division as the index.

7. A routing component of a distributed, differential electronic-data storage system (104-
110, 112, 114, 116) that routes a data object (502), comprising a sequence of data units (404),
to a particular component data-storage system (104-110), or particular group component data-

storage systems, of the distributed, differential electronic-data storage system by:

10

15

20

25

30

WO 2007/127248 PCT/US2007/010015

22

selecting one or more subsequences of data units (402) from the data object;
computing one or more characteristic values (420) from the selected subsequences;
computing one or more indexes (420) from the one or more characteristic values; and
directing the data object (502) to the particular component of the data-storage system,
or to the particular group of component data-storage systems, identified by the one or more

computed indexes.

8. The routing component of claim 7 wherein selecting one or more subsequences of
data units from the data object further includes:
selecting a window size;
selecting an offset (412), the offset one of
equal to the window size, resulting in selection of a consecutive sequence of
contiguous, but non-overlapping data-unit subsequences from the data object (Figure 6A),
and '
equal to 1, resulting in selection of a consecutive sequence of n grams from the -
data object, where n is equal to the window size (Figure 6B); and
selecting window-size subsequences of data-units from the data object offset from one

another by a number of data units equal to the selected offset.

9. The routing component of claim 8 further including:
selecting a length; and
selecting up to a number of subsequences of data units from the data object equal to

the selected length.

10. The routing component of claim 12 wherein computing one or more characteristic
values from the one or more selected subsequences further includes:
generating one or more values (420) for each selected subsequence of data units; and
computing one or more characteristic values (420) from one or more of the one or

more generated values.

WO 2007/127248

[S

)

\\\X

M7 ~—

\118

114

110

/‘116

112

102

PCT/US2007/010015

110J

™~

109J

\

1

-

108J

107-/

106J

105./

104-/

Figurel

PCT/US2007/010015

WO 2007/127248

2/10

oLl

g dunbyy

601 801

L0}

a0}

GOl

0l

¥2 ‘€D ey |
1a 2010 rA A 13 rA: K:
0z —~
|||||||| P o e i = _.I.ll.lnl..lll.ll.llll.l.ll.l.l.llll.|-|.I.||..I|-|I|_
o m | "
13 m | v | Ll #0 €0 20 o | !
| | |
| | 1 —_
[I v0C |
“ \A B ! !
| SOT | ! _ “ 802
|||||||| T U e e 2
zie 0l2
- _ s SR
| _ RN N X
| zd g | ! | oY A A
_ I _
802 ! sm)\“_
_ " _
“. ! |

WO 2007/127248

PCT/US2007/010015

3/10

ﬁ

[™
®
S
D

< <

EEENEEEEEEEEEEEEEENEANNEEENEENEEEENENEEEEREE

4

302

WO 2007/127248

4/10

408

404

410

PCT/US2007/010015

f 402
J

Y
width

Figure 4.4

PCT/US2007/010015

WO 2007/127248

5/10

oLy \ﬂ

aF senbegy

USEY .2

USeq .|

1437 .\

/%2

uipim

T

A4

N

)

434

19510

PCT/US2007/010015

WO 2007/127248

6/10

DF anlit,y

yseq U

ysey (1)

~ Usey ,(Z0)

USEq .9

Usey S

ysey ,v

S0, £

0S8 .2

ysey ysey .1

UipIm
A

yibus

N

(eouanbasgns ui) yibus)

PCT/US2007/010015

WO 2007/127248

7/10

oLy H

ayr senbiyy

Useq u

ysey ,(}-u)

Usey ,(z-U)

USeU .9

USE G

USeq .8

USEY .2

r_mmr_ um_‘

ozy

[

ssaippe Jo xapul
oLy
N sulq # pow

> ()xew)

8l¥

PCT/US2007/010015

WO 2007/127248

8/10

\ms \NB \:m \Sm
p0G —~

205 — 109lgo

elep

WO 2007/127248 PCT/US2007/010015

9/10

Figure 64

width

offset

WO 2007/127248

1

offset

10/10
/
/
”
/!
"
/
A
/
/
n
/
P8
I4
/\
4
A
/
___._7<-._>—--——-——--—-—’—
—_——— P LN
/7‘ V;
=t | Y
/! /
Ny
— o ==} 4
’
Ay W T S b
£ %
Y
/
b4
/
N
/
I
/
P S (D .
/
O N
/
S .
/
N

PCT/US2007/010015

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings

