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(57) Abstract

A dedicated context-cycling microprocessor which features a plurality of input/output circuits for receiving and transmitting
information and an individual set of dedicated on-board resources for each plurality of processing contexts. A distinct processing context
is provided for each of a plurality of the input/output circuits, and a timed context is also provided for concurrently scheduling multiple
processing contexts and enforcing time constraints associated with this schedule. The timed context has a pseudo—queue list which represents
an ordered set of data parameters and program memory addresses for scheduling each of the processing contexts. The dedicated on—board
resources include a plurality of registers for each of the processing contexts, such as at least one general purpose register and a program
counter. A multiplexer circuit is also provided for moving data between the input/output circuits, the dedicated registers of the processing
contexts and the computational unit. The input/output circuits include at least one serial and shared memory management unit, a plurality
of embedded SCSI interfaces and a plurality of memory mapped registers. The dedicated context cycling microprocessor is also adapted
to work in conjunction with, and effectively control another microprocessor, as well as control the access to an external memory system
which is shared between these two microprocessors.
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A DEDICATED CONTEXT-CYCLING COMPUTER

The present invention relates to computer architectures and particularly to a
dedicated context-cycling microprocessor which is capable of functioning as either a stand-
alone processor or as an intelligent interface between one or more external devices and the

shared data memory of another computer, such as a Harvard architecture computer.

To achieve high speed, some multiprocessor computers employ specialized
dedicated processors for handling specific tasks. For example, it is common to supplement
the main central processing unit with a separate math coprocessor, the math coprocessor
being specifically designed to perform arithmetic computations at high speed. Although the
math coprocessor may perform different computational functions (add, subtract, multiply,
divide) these functions are all of the same type or class. A math coprocessor would not be
suitable to handle asynchronous data communication in addition to its other arithmetic
functions. The math coprocessor is an example of a special purpose processor for a

multiprocessor architecture that is dedicated to performing only one task.

As multiprocessor computer systems become more sophisticated, single
purpose coprocessors begin to have drawbacks. It would be desirable if multiprocessor
systems could be designed to support different classes of tasks by the coprocessor. For
example, The Dow Chemical Company has developed a common core computer that
employs a Harvard architecture computer as its main central processing unit. The
Applicants' assignee has found the Harvard architecture to be highly desirable in process
control applications where high speed performance is of utmost importance. The context-
cycling microprocessor of the present invention works as an asynchronous data

communication handler for this Harvard architecture common core computer.

A computer which includes the following characteristics is generally referred to
as having a "Harvard" architecture. Namely, the computer will be designed with separate
instruction and data stores and independent buses will be provided to enable the central
processing unit (CPU) of the computer to communicate separately with each of these stores.
Contrast this architectu“re with the "von Neumann“ or "Princeton" based computer
architecture, which generally employs the same physical store for both instructions and data,

and a single bus structure for communication with the CPU.
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Various approaches have been taken to designing a microcomputer or
microprocessor with a Harvard architecture, as represented by the following patents: Yasui
etal., U.S. Patent No. 5,034,887, issued on July 23, 1991, entitled "Microprocessor With
Harvard Architecture”; Portanova et al., U.S. Patent No. 4,992,934, issued on February 12,
1991, entitled "Reduced Instruction Set Computing Apparatus And Methods"; Mehrgardt et
al., U.S. Patent No. 4,964,046, issued on October 16, 1990, entitled "Harvard Architecture
Microprocessor With Arithmetic Operations And Control Tasks for Data Transfer Handled
Simultaneously"; and Simpson, U.S. Patent No. 4,494,187, issued on January 15, 1985,
entitted "Microcomputer With High Speed Program Memory." Additionally, it should be noted
that the Intel i860 64-bit microcomputer has been described as having an on-board Harvard
architecture due to the provision of separate instruction and data cache paths. In this

regard, a description of the Intel i860 chip design may be found in i860 Microprocessor

Architecture, by Neal Margulis, Osborne McGraw-Hill 1990.

The use of separate instruction and data communication paths in a Harvard
architecture machine effectively increases the overall speed of the computer by enabling an
instruction to be accessed at the same time that data for this or another instruction is
accessed. In the context of programmed operations, the instruction is usually referred to as
the "opcode" (the operation code), and the data is referred to the "operand.” While the
benefit in speed of using the Harvard architecture is significant, a significant advance in this
design has also been described in commonly assigned Sederlund et al., international
Application No. PCT/US95/13423, filed on October 5, 1995, published as International
Publication No. WO 96/11443 on April 18, 1996, and entitled "An Extended Harvard
Architecture Memory System." This extended memory system employs an address store for
containing an ordered sequence of program memory addresses. The address store
(referred to as "queue memory") determines the sequence of operations to be implemented
through its list of program memory addresses. In this regard each of these program memory
addresses identifies the location of the first instruction of a particular subroutine which is
contained in the program memory. The address store may also contain the addresses of
one or more subroutine arguments which are, in turn, contained in either a value store or in a
data memory. Thus, the address store may be utilized as a location server for both the
program memory and the data memory of a computer which is based upon the Harvard

architecture.
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As the preceding suggests, The Dow Chemical Company is committed to the
use of highly advanced computer systems that are uniquely suited to process control
applications. In this regard, whereas the massively muitiplexed CPU design, based on a
Harvard architecture, is highly efficient at performing process control instructions at very high
speed, another computer architecture is needed to best handle numerous asynchronous
events that occur in process control applications. In this regard, although The Dow Chemical
Company envisions its massively multiplexed CPU design and the dedicated context-cycling
computer of the present invention to be well suited to chemical and manufacturing process
applications, the foregoing innovations are equally suited to all other types of process control

applications, ranging from power plant to spacecraft.

The present invention provides a dedicated context-cycling microprocessor or
computer for handling the input and output tasks on behalf of its associated Harvard
architecture central processing unit. As it turns out, providing this functionality is not as easy
as it might appear. In a complex process control system there are many widely varying
input/output functions and asynchronous events that must be handied. Inasmuch as the
main process control computer has been designed to operate at extremely high speeds, the
input/output functions must aiso be handled at comparable high speeds, otherwise the
input/output becomes a bottleneck in the system. One approach, consistent with
conventional practice, would be to provide a separate coprocessor for each input/output
function. However, this would dramatically increase the cost of the system and would unduly

complicate the interface between the main processor and the input/output processors.

Another approach would be to employ a single coprocessor that may be
programmatically cycled through different functional states. However, such an approach has
not heretofore been feasible because of the computational overhead required to save one

context state before operating the next.

The present invention solves the problem by providing a dedicated context-
cycling microprocessor that has dedicated registers and program counters for each different
functional context. As used herein the term “context” (within a processor) refers to a
specialized physical circuit having a dedicated program counter to identify the current
location in a program instance for fetching an op code for execution in a computational
unit—such as the computational unit of a general purpose computer processor. The
specialized physical circuit is useful for exchanging data between external entities and the
configuration and computational assets of the processor (including the computational unit)
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according to a predefined protocol, or for performing predefined data manipulation functions.
The context may also include an embedded state machine that may operate independently

of the computational unit to aid in the exchange of data.

In the preferred configuration, a plurality of contexts share common assets,
such as by time division multiple access, each context cycling through active and inactive
states according to a context priority scheme. Common assets are assets actively used by
only one context at a time (such as, without limitation, external data memory, computational
unit, comparator, program counter calculator and local memory). Each context assumes one
of a plurality of functional states, including at least one active state and at ieast one inactive
state. In the active state the context may communicate with the computational unit and may
also use other common assets. In the inactive state, the embedded state machine of a
context may continue to function although the program counter of its context is not being
used to identify an op code for the manipulation of configuration and computational assets.
Each context has a data store, such as a memory or register, for retaining the process and
configuration state of pertinent resources, attributes, or aspects associated with either the
interface or the function while another context is active. In the preferred embodiment, each
context is configured as an embedded microcontroller associated with a processor for

performing mathematical computations.

The context-cycling microprocessor rapidly cycles from context to context
without the usual overhead of saving state; the dedicated registers and program counters

automatically save state without wasting processor cycles as in the conventional practice.

Accordingly, it is a principal objective of the present invention to provide a
microprocessor design which has special capabilities for handling input/output and

asynchronous events.

It is a more specific objective of the present invention to provide a
microprocessor design which is capable of dynamically cycling between a number of both

device and time handling contexts.

It is another objective of the present invention to provide a context-cycling
microprocessor design which may be utilized in either a stand-alone processor or as an

intelligent communication interface for another processor which operates as the source and
destination of data.
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It is a further objective of the present invention to provide a context-cycling

microprocessor design which is capable of acting as a time-line enforcer.

It is an additional objective of the present invention to provide a context-
cycling microprocessor design which is also capable of acting as a plurality of distinct, but

coordinated controliers for processing communication requests with external devices.

It is also an objective of the present invention to provide a context-cycling
microprocessor design which is capable of not only rapidly handling external communication
requests, but also capable of managing a shared memory system in conjunction with
another microprocessor.

To achieve the foregoing objectives, the present invention provides a
dedicated context-cycling microprocessor which has at least one computational unit for
performing mathematical or logical functions (or a combination thereof), a plurality of circuits
for receiving and transmitting information, and a bus structure for transferring instructions
and data with external memory devices, characterized by: a plurality of processing contexts
each having an individual set of dedicated registers in which a distinct processing context is
provided for each of the plurality of the circuits, the processing contexts including a timed
context for concurrently scheduling multiple processing contexts into a schedule and for
enforcing time constraints associated with the schedule; and a multiplexer circuit for moving
data between the circuits, the dedicated registers, and the computational unit - the

multiplexer circuit having a move bus coupled to the bus structure.

The overall features of the context-cycling microprocessor can, therefore, be
summarized as: a plurality of input/output circuits for receiving and transmitting information;
a plurality of processing contexts each having an individual set of dedicated registers in
which a distinct processing context is provided for each of the plurality of the input/output
circuits, the processing contexts including a timed context for concurrently scheduling
multiple processing contexts into a schedule and for enforcing time constraints associated
with the schedule; at least one computational unit for performing mathematical performing
mathematical or logical functions or a combination thereof; a bus structure for transferring
instructions and data with external memory devices; and a multiplexer circuit for moving data
between the input/output circuits, the dedicated registers, and the computational unit, the
multiplexer circuit having a move bus coupled to the bus structure. In further detail, the

above may include a local RAM, a program memory, and a pseudo-queue list (for at least
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the timed context) representing an ordered set of pointers (in the local RAM) to data and
program memory words used for scheduling the processing contexts. Alternatively, the
input/output circuits can also include at least one serial and shared memory management
unit (incorporating a parallel-to-serial converter and a transmitter circuit which is capable of

transmitting a plurality of serial word frames without any spaces between them) having its

own processing context.

In its use within a computer, the invention provides for a multi-protocol data
processing computer for communicating with multiple processes comprising: an input/output
(1/0) processor (for communicating with multiple processes using different protocols) having
a context cycling system for defining a plurality of independent operating-state contexts
(each context devoted to one of the protocols); the context cycling system having (A) a
plurality of program counter registers and a plurality of general purpose registers where each
register is dedicated to the contexts in such a manner that each context has its own program
counter register and its own general purpose registers and (B) a priority encoder for
selecting one of the contexts as the operative context, such that (a) the program counter
register and general purpose registers of the operative context are identified to the 1/0O
processor as (1) the operative program counter register and (2) the operative general
purpose registers, and (b) the remaining program counter registers and general purpose
registers are treated by the 1/O processor as inoperative; the I/O processor (A)
communicating with one of the multiple processes by accessing the operative program
counter register and the operative general purpose registers, such that communication is
effected in accordance with the operative context, and (B) saving the state of the contexts
not selected as operative by leaving the contents of the inoperative program counters and
general purpose registers unchanged while communication is effected in accordance with

the operative context.

The invention is also useful as a high-performance common core computer
which features: a first microprocessor; a first private memory system connected to the first
microprocessor; a second microprocessor; a second private memory system connected to
the second microprocessor (including a plurality of input/output circuits for receiving and
transmitting information with external communication devices and timing means for
controlling the operation of the first microprocessor and access to the shared memory
system); and a shared memory system connected to both the first and second

microprocessors. The first microprocessor may have a Harvard architecture and the second
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microprocessor may have an opcode width corresponding to a data word width of the first
microprocessor. Additionally, the second microprocessor may include: an individual set of
dedicated registers for each of a piurality of processing contexts in which a distinct
processing context is provided for each of a piurality of the input/output circuits; a timed
context (type of processing context) for concurrently scheduling multiple processing contexts
and enforcing time constraints associated with the schedule; at least one computational unit
for performing mathematical and/or logical functions (the computation unit being coupled to
at least one of the input/output circuits); multiplexer circuit means for moving data between
the input/output circuits, the dedicated registers, and the computational unit; a bus structure
for transferring instructions and data with the shared memory system and the second private
memory system; and a multiplexer circuit (having a move bus coupled to the bus structure)
for moving data between the input/output circuits, the dedicated registers, and the
computational unit. Additionally, some of the processing contexts can have their own

plurality of interrupt signal inputs.

The invention is also useful in the form of a multi-protocol multiprocessor data
processing system for communicating with and controlling multiple processes which has: an
input/output (I/0) processor, for communicating with multiple processes using different
protocols, with a first private memory for access in communicating with the muitiple
processes; a second processor, for executing process control instructions to control the
multiple processes, with a second private memory for access in executing process control
instructions; a shared memory separate from the first and second private memories for
access by both the 1/O processor and the second processor for establishing communication
between the 1/O processor and the second processor; and a context cycling system in the
I/O processor for defining a plurality of independent operating-state contexts, each context
being devoted to one of the protocols. The context cycling system has (a) a plurality of
program counter registers and a plurality of general purpose registers each dedicated to the
contexts such that each context has its own program counter register and its own general
purpose registers and (b) a priority encoder for selecting one of the contexts as the operative
context such that (1) the program counter register and general purpose registers of the
operative context are identified to the /O processor as the operative program counter
register and the operative general purpose registers, and (2) the remaining program counter
registers and general purpose registers are treated by the I/0O processor as inoperative. The
I/O processor (a) communicates with one of the multiple processes by accessing the

operative program counter register and the operative general purpose registers, such that
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communication is effected in accordance with the operative context, and (b) saves the state
of the contexts not selected as operative by leaving the contents of the inoperative program
counters and general purpose registers unchanged while communication is effected in

accordance with the operative context.

Each of the sets of dedicated registers in the present invention includes at
least one general purpose register and a program counter, and the timed context has access
to at least the program counter of the dedicated registers in all of the other of the processing
contexts. The processing contexts in the present invention each include an idle state in
which the context is waiting to be scheduled, an inactive state in which a scheduled context
is waiting for an event to occur, a bidding state in which a scheduled context is competing for
service, and an active state in which the scheduled context has been granted the highest
priority and is executing a fetched instruction; furthermore, a scheduler latch is provided for
each of the processing contexts except for the timed context, and a context purpose register
is provided for the timed context (with each of the scheduier latches being mapped into the
context purpose register for the timed context in order to schedule one or more of the
processing contexts for service). The processing contexts have preassigned priority levels,
and at least some high priority processing contexts are capable of lowering their own priority.
The multi-context microprocessor further includes a priority encoding circuit which ensures
that one instruction of an active processing context must be executed before the active
processing context is permitted to bid again for service. In the described embodiment, the
multi-context processor accesses a local RAM and a program memory, and the timed
context of the processor has a pseudo-queue list stored in local RAM which represents an
ordered set of pointers to data and program memory words used for scheduling the
processing contexts. The input/output circuits can include at least one serial and shared
memory management unit comprising a parallel-to-serial transmitter circuit capable of
transmitting a plurality of serial word frames without deadtime, and the serial and shared
memory management unit has its own processing context. Some of the input/output circuits
also can include a plurality of SCSI interfaces, with each of the SCSI interfaces having its

own programming context.

The present invention can also be described as a method of processing
input/output signals of different types by a process control computer by: defining a plurality of
functional contexts corresponding to the different types of input/output signals; configuring

an input/output processor to have a dedicated program counter and at least one dedicated
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general purpose register for each of the functional contexts; and operating the input/output
processor to cycle from one context to another such that the processing state of a first
context is saved in the dedicated program counter and dedicated general purpose register of

that first context while switching to process a second context by accessing the program
counter of that second context.

The input/output processor operates in synchronism with a system clock that
defines a fundamental clock interval; accordingly, the step of operating the input/output
processor is performed such that one context is active during a given fundamental clock
interval. The fundamental clock interval is subdivided into a first component and a second
component (that follows the first component); the processing state of the first context is
saved in the dedicated general purpose register of the first context during the first
component of a first fundamental clock interval, and the program counter of the second
context is accessed in preparation to process the second context during the second

component of the first fundamental clock interval.

A second processor can be configured to have a memory space that is shared
with the input/output processor and uses the input/output processor to communicate
information about the input/output signals to the second processor by storing the information
as data in the shared memory space. The second processor can also have a memory space
that is shared with the input/output processor and uses the input/output processor to supply
timing information to the second processor; the plurality of contexts can include a timed
context that oversees the order in which context switching is performed; and the functional
contexts can have different priorities assigned so that the step of operating the input/output

processor is performed by selecting the second context through a priority bidding process.

Additional features and advantages of the present invention will become more

fully apparent from a reading of the detailed description of the preferred embodiment and the

accompanying drawings in which:

Figure 1 is a block diagram of a Harvard architecture-based common core

computer which employs a context-cycling microprocessor according to the present

invention.

Figure 2 is a simplified block diagram of the context-cycling microprocessor
shown in Figure 1.
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Figure 3 (Figures 3A and 3B, collectively) is a detailed block diagram of the
context-cycling microprocessor shown in Figure 1.

Figure 4A is a detailed block diagram of the timer circuit associated with the
timed context. Figure 4B is a detailed block diagram of a portion of the context purpose
register for the timed-context, which is contained in the context management circuit (1132)

generally shown in Figure 3.

Figures 5A and 5B provide diagrammatic views of typical pseudo-queue
entries according to the present invention.

Figure 6 is a detailed block diagram of an interrupt priority encoder circuit as
generally shown in Figure 3.

Figure 7 is a detailed block diagram of the interrupt selection circuit for the
timed context.

Figures 8A-8F are a set of detailed biock diagrams which illustrate examples

of the dedicated registers for the processing contexts.

Figure 9 is a timing diagram of the clock signals used by the context-cycling
microprocessor,

Figure 10A is a detailed block diagram of the multiplexed program/data bus
structure shown in Figure 3. Figure 10B is a detailed block diagram of the bank switch circuit

of the preferred embodiment.

Figure 11 is a detailed block diagram of the move multiplexer circuit contained

in mux module circuit 1146 of Figure 3 and of the external RAM and program data memory
RAM.

Figures 12A-12D represent a general schematic diagram of the move

multiplexer and other multiplexing and data manipulation circuits contained in mux module
circuit 1146 of Figure 3.

Figure 13 is a block diagram of the opcode decoder shown in Figure 3 and

memory protect functionality.

10
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Figures 14A and 14B are charts illustrating the instruction types utilized by the
context-cycling microprocessor.

Figures 15A-15E provide a set of detailed block diagrams for the serial and

shared memory management units shown in Figure 3.

Figure 16 is a detailed block diagram for the arbitration circuit shown in
Figure 3.

Figure 17 is a timing diagram of the clock signals used in connection with the

shared memory interface and coprocessing Harvard architecture ASIC.

Figure 18 is a diagram of the software reference model of the common core

computer.

Figure 19 is a data flow diagram illustrating how the HI/O processor saves
state.

Referring to Figure 1, a block diagram of a common core computer 1000 is
shown. In particular, the common core computer 1000 features a dedicated context-cycling
microprocessor 1012 according to the present invention. The common core computer 1000
further includes a Harvard architecture microprocessor 1014 and a shared memory
system 1016. For sake of simplicity, the Harvard architecture microprocessor 1014 is
generally referred to herein as the "H2" microprocessor. Similarly, the dedicated context-
cycling microprocessor 1012 is also generally referred to herein as the "HI/O." However, it
should be noted that the HI/O microprocessor 1012 is sometimes referred to as the

"Harvl/O" microprocessor in the drawings.

While the HI/O microprocessor 1012 is designed for use as a stand-alone
processor, Figure 1 specifically serves to illustrate how the HI/O microprocessor 1012 may
advantageously be used to work with another microprocessor. In this particular
embodiment, the HI/O microprocessor 1012 is used to provide an intelligent interface
between the shared memory system 1016 of the H2 microprocessor 1014 and external
devices. For example, the H2 microprocessor 1014 may be used in a process control
computer which receives input signals from a number of field sensors and determines the
output signals needed to drive the physical equipment that governs the process, such as

pumps and valves. In such a case, the H2 microprocessor 1014 is the eventual destination
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of all field input data and source of all field output data. Accordingly, the design of the H2
microprocessor 1014 should focus on rapidly executing the instructions needed to process
the various input signais received. Nevertheless, the need exists to transmit both input and
output data from the H2 microprocessor 1014 to other external devices, such as a computer
network which includes one or more operator stations for supervising the process being
controlled. Thus, the HI/O microprocessor 1012 has been designed with exceptional
capabilities for rapidly managing asynchronous events, such as communication requests for
data from the H2 microprocessor 1014 and other external computer communication and
computation entities. The design of the common core computer 1000 capitalizes on the

signal transfer capabilities of the HI/O microprocessor 1012 as will be more fully appreciated

below.

In the embodiment of the common core computer 1000 illustrated in Figure 1,
the H2 microprocessor 1014 is shown to be of a Harvard architecture design which utilizes
an expanded memory system. As generally provided in a Harvard architecture-based
design, the H2 microprocessor 1014 includes separate data and program bus structures.
Specifically, the H2 microprocessor 1014 includes data bus 1018 (DDATA), a data address
bus 1020 (DADDR), a program data bus 1022 (PDATA) and a program address bus 1024
(PADDR). The data bus 1018 and the data address bus 1020 are used to provide read/write
communication with an external data memory system 1026 while the program data bus 1022
and the program address bus 1024 are used to provide read/write communication with an
external program memory system 1028. The data memory system 1026 includes a private
data memory circuit 1030, while the program memory system provides a physically separate
program memory circuit 1032.

Preferably, the H2 microprocessor 1014 also includes a queue data bus 1034
(QDATA) and a queue address bus 1036 (QADDR) for communicating with an external
queue memory system 1038. The queue memory system 1038 includes a queue memory
circuit 1040 which is used to store an ordered list of program memory addresses (as well as
subroutine arguments). Each of these program memory addresses generally represents the
initial address of a distinct subroutine which has been stored in the program memory
circuit 1032. In other words, the H2 microprocessor 1014 is preferably programmed to
proceed sequentially down through the "queue list" found in the queue memory circuit 1040
in order to execute the instructions which are contained in the subroutines stored in the

program memory circuit 1032. This approach has several advantages, such as significant
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decrease in the amount of memory required to store an application program for the
computer. Additionally, execution speed may be enhanced because normal subroutine
overhead is avoided, such as pushing one or more addresses onto a stack. Additional
subroutine arguments may be readily changed by a programmer without having to recompile
the program. Rather, the argument value may be changed directly in the memory location

referenced in queue memory circuit 1040.

The H2 microprocessor 1014 is preferably constructed of a central processing
unit design such as that described in the Dupree et al., International Application
No. PCT/US95/00341, filed on January 10, 1995, published as International Publication No.
WO 95/19006 on July 13, 1995, and entitled "A Massive Multiplexed Super Scalar Harvard
Architecture Computer." However, the common core computer 1000 may also employ other
types of microprocessor designs in the appropriate application, such as those based upon
the Harvard architecture. In this regard, the use of separate data/program bus structures in
a Harvard architecture facilitates the use of a data memory that may be shared with at least
one other computer entity without unduly complicating the operational constraints on the

microprocessor or adversely affecting its processing throughput.

A fundamental departure in Harvard architecture design is described in "A
Massive Multiplexed Super Scalar Harvard Architecture Computer" (commonly assigned
Dupree et al., International Application No. PCT/US95/00341, filed on January 10, 1995,
published as International Publication No. WO 95/19006 on July 13, 1995) as noted above.
This massively muitiplexed CPU employs a very wide instruction word format which
eliminates the need for microcode decoding or even an instruction register and paraliel
processing to achieve compound superscalar operations. More specifically, this CPU
employs a plurality of independent computational circuits, a separate internal result bus for
transmitting the resultant output from each of these computational circuits, and a plurality of
general purpose registers coupled to each of the computational circuits. Each of the general
purpose registers has multiplexed input ports which are connected to each of the result
buses. Each of the general purpose registers also has an output port which is connected to
a multiplexed input port of at least one of the computational circuits. Each of the
computational circuits is dedicated to at least one unique mathematical function and at least
one of the computational circuits includes at least one logical function. At least one of the
computational circuits includes a plurality of concurrently operable mathematical and logical

processing circuits and an output multiplexer for selecting one of the resultant outputs for
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transmission on its result bus. The very long instruction word format uses a series of
assigned bit locations to represent the selection and operation codes for each of the CPU
components. These selection codes are directly transmitted to each of the CPU
components by a program control circuit. A separate data control circuit and data bus are

further provided to achieve a Harvard architecture design for the CPU.

As illustrated in Figure 1, the shared memory system 1016 includes a shared
data memory circuit 1042 which has the same 40-bit word width as the private data memory
circuit 1030 of the H2 microprocessor 1014. In some of the Figures, word width is indicated
by brackets [ ]. The H2 microprocessor 1014 may either write to or read from the shared
data memory circuit 1042 or the private data memory circuit 1030 depending upon the
appropriate control signals, such as a memory enable signal and a write/read opcode bit. In
the present embodiment, the H2 microprocessor 1014 transmits these memory control
signals (for example, the shared active opcode bit) to the HI/O microprocessor 1012, which
is responsible for deciding which device will actually be given access to the shared data
memory circuit 1042. However, with such a configuration, it is preferred that the H2

microprocessor be given priority to the shared data memory circuit 1042 over the HI/O

microprocessor 1012.

The data memory circuit 1030 is characterized as private; it is considered
private by the H2 microprocessor 1014. However, other entities may access this memory as
well. In other words, as long as access to the data memory circuit 1030 is transparent to the

H2 microprocessor 1014, other external computer entities may also have access to this
memory.

As with the other memory systems discussed thus far, the shared memory
system 1016 includes an address decoder/buffer circuit 1044. Similarly, the shared memory
system 1016 also includes a transceiver circuit 1046. The address decoder/buffer
circuit 1044 is used to extract an 18-bit address from the 24-but wide data address bus 1020
and store this address in a latch. The transceiver circuit 1046 is used to control the
direction, destination and source of data transfer to or from the shared data memory
circuit 1042 in response to the write/read control signal controlied by the HI/O
microprocessor 1012 (namely the H2SharedR/W signal shown in Figure 2). In one
embodiment according to the present invention, the address decodetr/buffer circuit 1044 is
comprised of three FCT157 muxes and an FCT157 3-to-8 decoder circuit and FCT244
buffers, all from Integrated Device Technology, Santa Clara, California. Similarly, the
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transceiver circuit 1046 may be comprised of five FCT245 transceiver circuits from
Integrated Device Technologies. However, as with the other components specifically
referenced herein, it should be appreciated that other suitable circuit devices could be

employed in the appropriate application.

The HI/O microprocessor 1012 is also shown in Figure 1 to include its own
private memory system 1048 employing private program and data memory circuits 1049.
While the HI/O microprocessor 1012 could be constructed to have a Harvard architecture
like that of the H2 microprocessor 1014, the presently preferred HI/O microprocessor utilizes
a multiplexed program/data bus structure. In this regard, the multiplexed program/data bus
structure is comprised of the 40-bit wide program and data bus 1050 and the 20-bit wide
program and data address bus 1052. Such a multiplexed bus structure was employed in
order to reduce the number of input/output pins needed by the HI/O microprocessor 1012 in

light of the significant number of input/output circuits designed into the HI/O microprocessor,

as will be discussed more fully below.

The HI/O microprocessor 1012 also includes a separate 24-bit wide H2_HI/O
address bus 1054 for use in accessing either the shared memory system 1016 or the
program memory system 1028 of the H2 microprocessor 1014. The separate address bus is
used in the HI/O microprocessor 1012 to enable the HI/O microprocessor to complete a
shared memory operation (delayed due to instruction skew and possible access by the H2
microprocessor 1014), and still allow the HI/O microprocessor to execute other instructions.
This works as follows. Once the H2 microprocessor 1014 has completed its access to the
shared data memory circuit 1042, an H2 opcode bit is cleared, informing the HI/O
microprocessor that H2 will not be doing a shared memory operation during the next
instruction period, and HI/O is clear to initiate a shared access of its own. The HI/O
microprocessor 1012 preferably employs a 40-bit opcode which corresponds to the data
word width of the H2 microprocessor 1014, as well as a one-third segment of the 120-bit
instruction word format employed in the H2 microprocessor 1014. It should be understood
that the design of a context-cycling microprocessor according to the present invention is not
limited to any particular data/address bit width combination. While the HI/O
microprocessor 1012 could also be provided with a Queue memory system like the Queue
memory system 1038 for the H2 microprocessor 1014, a Queue memory system is more
advantageous for the H2 microprocessor, due to the regularity in which the H2

microprocessor calls routines on a repeated basis.
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In order for the HI/O microprocessor 1012 to access either the shared
memory system 1016 or the program memory system 1028 of the H2 microprocessor 1014,
a registered transceiver 1056 is also connected to the program and data bus 1050. In one
embodiment according to the present invention, the registered transceiver is comprised of
five 29FCT52 devices from Integrated Device Technology. This particular transceiver has a
pair of internal latches which are interconnected front-to-back for storing and controliing the
bidirectional flow of data. The HI/O microprocessor 1012 is capable of loading the program
memory circuit 1032 of the H2 microprocessor 1014 with a programmed set of instructions
through the circuit created by program and data bus 1050, the registered transceiver 1056,
the H2_HI/O data bus 1058, the data transceiver 1060 and the program data bus 1022, with
the addresses being transmitted on the H2_HI/O address bus 1054. Similarly, the HI/O
microprocessor 1012 is capable of reading input and output signal data stored in the shared
data memory circuit 1042 through the circuit created by program and data bus 1050, the
registered transceiver 1056, the H2_HI/O data bus 1058, the transceiver circuit 1046 and the
shared data bus 1062 with the addresses being transmitted on the H2_HI/O address
bus 1054 (through address decoder/buffer circuit 1044 to shared address bus 1061).

Figure 1 also shows that another data transceiver 1064 may be connected to
the HI/O program and data bus 1050. The transceiver 1064 is used to facilitate external
access to the HI/O's program and data bus 1050, such as through the HI/O external memory
mapped data bus 1066. For example, such external access may be used for memory
mapped devices, such as a debug panel (for reading a key depressed on the panel or writing
to an LCD display).

Before proceeding with a further description of the context-cycling processor,
a deeper understanding of the bus structure and memory architecture may be helpful. In
Figure 10A a detailed block diagram of the multiplexed program/data bus structure is shown:
and in Figure 10B, a detailed block diagram is shown of the bank switching functionality
whereby memory may be rapidly bank switched by changing the value of bits 23 through 20
of internal memory mapped register at local RAM address FA.

Referring to Figure 10A, the GP1 register and the program counter are
multiplexed to supply the data and PC addresses, respectively, to external RAM. Note how
the program counters of different contexts 220 and the GP1 registers 222 are ultimately
multiplexed through multiplexer 224. The data read from RAM memory 226 is distributed to
the opcode latch 228 and the data read latch 230. In this embodiment when the processor is
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accessing memory in the internal ROM range of program memory (above FFFEQ) a value
from onboard ROM 232 is substituted as the opcode. Bank switching is implemented in the
presently preferred embodiment. Referring to Figure 10B the circuitry to accomplish this is
illustrated. The bank switching information is supplied as the output of multiplexer 224.

Bank switching is used to allow quick switching to a different block of memory within the HI/O
processor. This allows parallel programs to be available concurrently inside the HI/O
processor. To toggle between these two programs all that must change is the 4 bits (bits 20-
23) and these bits are added to the upper 4 bits of the program counter of every instruction
that runs. By writing to these 4 bits, the system automatically bank switches, allowing the

other parallel program to operate. This enhances the speed of the system in a program load

situation.

A program and data memory control circuit 1122 is provided for controlling the
HI/O private memory system 1048 (shown in phantom in Figure 2). Similarly, a shared data
and H2 program memory control circuit 1124 is provided for controlling both the shared
memory system 1016 and the program memory system 1028 of the H2 microprocessor 1014
(shown together in phantom in Figure 2). In this regard, each of the memory system control
signals generated by the HI/O microprocessor 1012 are identified in Figure 2. The HI/O
microprocessor 1012 also includes several other circuits, which are illustrated in Figure 2,

but are best seen in Figure 3.

Referring to Figure 2, a simplified block diagram of the HI/O
microprocessor 1012 is shown. In this regard, the HI/O microprocessor 1012 includes a
substantial number and variety of input and output circuits which are embedded into this
single chip central processing unit. While the principles of the present invention are not
limited to a single chip implementation, the ability to include all of the I/O functionality of the
HI/O microprocessor 1012 into a single integrated circuit chip is considered to be
advantageous. In one embodiment according to the present invention, the HI/O
microprocessor 1012 may be constructed through the use of a large scale Application
Specific Integrated Circuit (ASIC). An ASIC is a type of integrated circuit which includes a
significant number of logic gates that may be connected together to perform specific circuit
functions. For example, the HI/O microprocessor 1012 may be embodied in a 391 pin
package, 100K ASIC device by LS Logic Corp., Milpitas, California. This particular ASIC
device contains well over 100,000 gates that may be combined together to form a variety of

different circuits. However, it should be appreciated that other suitable integrated circuit

17



10

20

25

30

WO 98/36355 PCT/US98/02016

technologies may be employed to construct HI/O microprocessor 1012 in the appropriate

application, including a fully custom integration.

With respect to its input/output circuit capabilities, the HI/O
microprocessor 1012 includes a set of four "small computer system interface" SCSI
circuits 1100-1106. A SCSiI circuit is a high speed parallel interface that generally conforms
to the X3T9.2 standard promulgated by the Committee of the American National Standards
Institute (ANSI). Each of these SCSI circuits may be used to connect the HI/O
microprocessor 1012 to a number of external peripheral devices, such as magnetic disk
drives, optical disk drives and printers. The HI/O microprocessor 1012 also includes a set of
ten serial input/output circuits 1108 for 8-bit serial communication with such devices as
modems, a mouse, keyboards, printers and even other computers. These serial circuits may
also be used to gather input signals from and distribute output signals to a network of remote
field computer units, such as the type of multitiered network described in the Glaser et al.,
International Application No. PCT/US93/02253, filed on March 15, 1993, published as
International Publication No. WO 93/20488 on October 14, 1993, and entitied "Process
Control interface System Having Triply Redundant Remote Field Units."

The HI/O microprocessor 1012 further includes a set of six serial and shared
memory management unit (SASMMU) circuits 1110. The SASMMU circuits 1110 are
parallel-to-serial and serial-to-parallel converters for transmitting and receiving information at
a serial baud rate of 28.782 mega baud. At this extremely high baud rate, a 40-bit word will
be received every 1.4 microseconds. Separate SASMMU circuits 1110 are used for
transmitting and receiving in order to maximize the information transfer capabilities of the

HI/O microprocessor 1012. Details of these circuits are shown in Figures 15A-15E.

Referring to Figures 15A-15E, the SASMMU circuits are seen in more detail.
Figure 15A shows a SASMMU input register 112 and a SASMMU output register 114. The
interrupt multiplexers for a SASMMU receiver are shown in Figure 15B at 116. The interrupt
multiplexer for a SASMMU transmitter is shown at 118 in Figure 15C. Note that program
data bits 37 and 38 of a COMBO instruction type are used (for both transmitter and receiver)
to select what the interrupt source will be until changed again. (A COMBO instruction is one

of several different types of opcode instructions described below.)

The context cycling processor assigns priorities to different contexts to

determine which context should be run next. The different priorities ensure that no data are
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lost. The SASMMU contexts are ordinarily assigned a very high priority because of the very
high serial baud rate. However, the SASMMU contexts can programmatically reduce their

effective priority to allow other lower priority contexts to utilize processor cycles.

Figure 15D shows how SASMMU contexts can effectively lower their priority
by choosing an interrupt source referred to as "no high priority." Normally, SASMMUs are
considered very high priority (due to the very high data transfer rates). By running SASMMU
contexts, other contexts of lower priority can be effectively blocked from performing any
operations. To handle this, the SASMMU circuits are capable of selecting a lower priority
operation when low data rate operations are being performed. The logic circuitry of
Figure 15D shows how this no high priority signal is generated. Figure 15E shows how one
of the CP bits (context purpose bits) of the SASMMU context is generated. In this case CP
bit 19 is illustrated. This is the end-of-message bit. Two successive stop bits generates this
EOM signal. The end-of-message signal can be used as an interrupt, or as a CP bit. The

CP bits of a context are generally used for configuration of hardware assets associated with
that particular context.

When the common core computer 1000 is used in a process control
computer, it is preferred that the process control computer actually comprises a set of three
actively redundant common core computers, which make independent process control
decisions on mutually exchanged input information from the field. In such process control
computers, the SASMMU circuits 1110 may advantageously be used to provide
communication between each of the redundant common core computers. To support
redundancy, a substantial number of input signals may need to be mutually exchanged
between the redundant common core computers in a very limited amount of time during a
precise time interval in an overall process control cycle. For example, in one preferred
method of process control, a 1 second cycle is provided, during which all of the following
must occur: receiving and mutually exchanging over 1,000 input signals, arbitrating between
these input signals, making process control decisions based upon the arbitrated input signal
values, mutually exchanging the output signal values which represent these process control
decisions and transmitting all of the necessary output signals to the field. While the H2
microprocessor 1014 is preferably used to make the needed process control decisions, the
HI/O microprocessor 1012 is also capable of being programmed to execute the instructions
for these types of decisions. For example, while the H2 microprocessor could be

programmed to arbitrate between input signals received from sensors in the field, it is
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preferred that the HI/O microprocessor 1012 be utilized for this purpose, as its hardware-

based arbitration is capable of faster execution. The arbitration circuitry to accomplish this is
shown in Figure 16.

Referring to Figure 16, the arbitration circuitry arbitrates data from triply
redundant computers, each supplying a separate data word. In Figure 16 these are depicted
as word 1, word 2 and word 3, as shown at 120. Ideally, all three word values should be the
same, if all three computers and data sources are performing properly. If all three word
values are not the same, then the arbitration selector circuitry 122 determines which
computer or data source or a combination thereof is out of tolerance. A process control
system will generally operate on both analog and digital signals. The analog signals are first
converted to digital signals through appropriate analog to digital conversion circuitry.
Nevertheless, the converted values still represent analog values. In Figure 16 there is a
separate analog path 124 and digital path 126. Analog values (digitally represented) are fed
to processor block 128 whereas digital values are fed to processor block 130. Processor
block 128 compares each of the word 1, word 2 and word 3 values with one another.
Processor block 130 performs a similar function using AND gates and OR gates to
determine the lowest signal of each bit position on line 132 and the digitally triple arbitrated
value of each bit position on line 134. A bit by bit compare is performed by the arbitration
circuitry and the selector circuitry 122 arbitrates based on 2 out of 3 wins. Selector
circuitry 122 can also be set to arbitrate to take the lowest digital or analog value. In some
cases the lowest digital value is considered the best default value to select (as it typically will
represent a valve in either the open or closed state that is a preferred state when there has
been a system malfunction). The analog/digital mode of the incoming data is set on
line 136. Because analog values can be expressed as either 40 bit words or 16 bit words, a

bit compensation circuit 138 is provided to fill out 16 bit words into their 40 bit equivalent.

The data in Table I lists the result for each different possible input combination
to selector circuit 122. The result is used by the system to indicate when the arbitration

circuitry has detected a disagreement.
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Table |
3/2- Word1 Word2 | Word3 | Word1 | Word2 | Word3 | Own/- | Answer
/1/10 & & & > > > Lowest-
In- Word2 | Word3 | Word1 Word2 | Word3 | Word1l | Highest
Service | Agree Agree Agree ? ? ?
? ? ?

0 X X X X X X X word 1
1 X X X X X X X word 1
2 0 X X 0 X X own word 1
2 0 X X 0 X X lowest | word 1
2 0 X X 0 X X high word 2
2 0 X X 1 X X own word 1
2 0 X X 1 X X lowest | word 2
2 0 X X 1 X X high word 1
2 1 X X X X X X word 1
3 0 0 0 X X X own word 1
3 0 0 0 0 0 1 lowest | word 1
3 0 0 0 0 0 1 highest | word 3
3 0 0 0 0 1 0 lowest | word 3
3 0 0 0 0 1 0 highest | word 2
3 0 0 0 0 1 1 lowest | word 1
3 0 0 0 0 1 1 highest | word 2
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3/2- Word1 Word?2 Word3 Word1 Word2 Word3 Own/- | Answer
/110 & & & > > > Lowest-
In- Word2 | Word3 | Word1 | Word2 | Word3 | Word1 | Highest
Service | Agree Agree Agree ? ? ?
? ? ?
3 0 0 0 1 0 0 lowest word 2
3 0 0 0 1 0 0 highest | word 1
3 0 0 0 1 0 1 lowest word 2
3 0 0 0 1 0 1 highest | word 3
3 0 0 0 1 1 0 lowest word 3
3 0 0 0 1 1 0 highest | word 1
3 0 0 1 X X X X word 1
3 0 1 X X X X X word 2
3 1 X X X X X X word 1

With reference again to Figures 1 and 2, the HI/O microprocessor 1012

further includes a clock circuit 1114, which is responsive to a 144 MHZ oscillator and an

external synchronizing signal, such as the "universal time clock" (UTC) pulse signal 1116. In

this regard, the UTC pulse signal operates as an interrupt signal for the timed context of the
HI/O microprocessor 1012. The UTC pulse signal 1116 is beamed from a satellite in the

U.S. government's "global positioning system" (GPS) every second, and the clock

circuit 1114 preferably is synchronized within 1 microsecond to the UTC pulse signal. The

clock circuit 1114 is used to generate a set of internal clock signals (Mst, Eit, Dst and Dat),

as well as to produce a number of timing-dependent signals which are used by external

devices (such as the memory systems). In the common core computer 1000, the H2
microprocessor 1014 receives its clock signals from the HI/O microprocessor 1012, such as
the fundamental 72 MHZ clock signal 1118. The HI/O microprocessor 1012 also includes a
separate 24-bit timer circuit 1120 which is used to set timeout values for the processing
contexts to be discussed below. The HI/O microprocessor 1012 is aiso capable of
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temporarily suspending the operation of the H2 microprocessor 1014 by applying an
Immobilize signal, without necessarily affecting the operation of the H2 microprocessor after
the Immobilize signal has been restored to its normally inactive state. In this regard, the
Immobilize signal may be used to prevent a clock-enabling CLEAR signal on one of the H2
microprocessor clock signals. Referring to Figure 9, a timing diagram of some of the clock

signals used by the HI/O microprocessor 1012 is shown.

Figure 9 shows the manner in which processor cycles are utilized in the
presently preferred embodiment. As noted above, the clock circuit 1114 generates the
internal clock signals Mst, Eit, Dst and Dat. These are shown in Figure 9. The presently
preferred embodiment subdivides the fundamental 112 ns (nanosecond) clock period into
two components, designated as cycle 1 and cycle 2, each being of equal duration. The
fundamental clock period is broken into two periods to provide timing for (a) the active
context and (b) the new context. As will be more fully explained, the system makes a
distinction between the "active” context and the "new" context. The “new” context becomes
the “active” context during the next cycle. The “active” context is the context which is
currently running (executing) and the “new” context is the context that will run (execute) next.
As illustrated at 68 the value in register GP1 of the “active” context is used as an address to
access data memory (for data memory operations). This value is allocated to cycle 1. As
depicted at 70, the value in the program counter of the “new” context may serve as an
address to access program memory (to fetch the op code to be executed during the next
instruction period). This value is allocated to cycie 2. Although not fully illustrated in
Figure 9, the next cycle 1 would immediately follow the illustrated cycle 2. Thus, as depicted
at 72, the GP1 register would again be used to address data memory. The instruction
performed on that data memory would be the one fetched at 70. When used as an
input/output coprocessor for the H2 microprocessor, it is desirable to skew the respective
clocks of the HI/O and H2 processors by several nanoseconds. This skew between the
clocks makes it easier to access shared memory. Figure 17 shows how this is accomplished
in the preferred embodiment. Figure 17 is similar to Figure 9. It illustrates cycle 1 and cycle
2 of the HI/O processor at 74 and the corresponding timing of the H2 processor at 76. Note
the H2 processor does not perform context switching nor does it have a shared
program/data memory, and therefore it does not require having its clock period broken into

two cycles.
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Turning now to Figure 3 (Figures 3A and 3B, collectively), a detailed block
diagram of the HI/O microprocessor 1012 is shown. Figure 3 illustrates the circuits which
have already been introduced including arbitration circuit 1126. As previously noted, the
arbitration circuit is used to arbitrate between corresponding signals from up to three sources
(digital and digitally-represented analog data). For example, these sources could represent
the input signals received from sensors in the field and the corresponding input signals
received from the sibling microprocessors of the other two common core computers in a
process control node.

A bootstrap ROM circuit 1128 is provided to store a basic operating system
routine needed to boot up the HI/O microprocessor 1012 on start-up. An opcode decode
and control circuit 1130 is provided for decoding the 40-bit opcode word used by the HI/O
microprocessor 1012. The HI/O microprocessor 1012 electrically enables the circuits
specified in the opcode instruction. A block diagram of a portion of the opcode decoder is
shown in Figure 13. Note that the memory protect range value is compared with the value
on the GP1 register bus by comparator 236. The output of this comparator controls the input
to the decode modifier 238 to control whether memory protection is enabled or disabled for a
particular location. The presently preferred embodiment handles several different instruction
types designated LIM (Long Immediate Math), LIC (Long Immediate Compare) and COMBO.
These are decoded from the op code and selected as inputs to the decoder modifier 238.

An example of the instruction types utilized by the HI/O microprocessor 1012 is shown in
Figures 14A and 14B. Figure 14A shows the COMBO instruction at 38 and the Long
Immediate Math instruction at 40. Figure 14B shows the Long Immediate Compare
instruction at 42. In Figures 14A and 14B the numbers 39...0 at the top of each chart
represent the bit field widths. These charts show how the presently preferred embodiment
decodes bits in the respective bit fields. By way of example (referring to the Long Immediate
Math instruction set at 40) under the main math unit operation category (bits 33...31), a 0
value would specify the AND operation, a 1 value would specify the OR operation, a 2 value

would specify the exclusive OR operation, and so forth.

When referring to Figures 14A and 14B, 40 bit operands are configured as
follows. Bit 39 represents the sign, where 1 denotes a negative number; bits 38-15
represent 24 bits of the integer value; and bits 14-0 represent 15 bits of the fraction. All data
source values of less than 40 bits are automatically padded with zeros. Further, 20 bit

source values (used in 40 bit operations) are treated as positive integers and are aligned
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with the least significant bit (LSB) of all the 20 bit values at the bit 15 position of the 40 bit
operand. Deviations from this practice are specifically noted in the Table below. When
referring to the Table below, note that the PIMMED/GP1 field acts as an address for local
RAM and memory mapped registers. There is no interrupt source modification in the LIM or
LIC instruction types. Thus the interrupt source (chosen during the last COMBO instruction
executed) is maintained while executing either Long Immediate instruction type. Interrupt
source selection is forced to the "00" (binary) selection (representing "Always") when the
context is descheduled or the processor goes through a hardware reset. The Table below

explains the abbreviations used in Figures 14A and 14B.

TABLE
COMBO instruction type:
b39 INST TYPE  Instruction Type. "0" indicates the instruction type is COMBO
b38..37 INT CND Interrupt Condition. Selects, via context's interrupt mux, the 1

(of 4) interrupt condition requisite for context to execute next
instruction. Number of conditions (up to 4) along with type of

conditions, vary with context type. Selections are:
CDO (condition0 of interrupt mux = "Always" for all 24 contexts)

CD1 (condition1 of interrupt mux; condition varies based on

context)

CD2 (condition2 of interrupt mux; condition varies based on

context)

CD3 (condition3 of interrupt mux; condition varies based on

context)

b36..35 JMP TGT Jump Target. Value with which context's PC will be updated at
end of instruction period in which this opcode is executed.

Selections are:

PC+ 1 (PC of current instruction + 1)
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b34..33

b32..30

COMP S2

COMP OP

PCT/US98/02016

PC+ 1+ IM (same as previous + PIMMED value, located at
b7..0 of the opcode, PIMMED to be interpreted as 1 bit sign, 7

bits magnitude)

GP3 (bits 34..15 of value in context's GP3 register RAM

location )

0 (Zero)

Comparitor Source2 operand. Selections are:

GP2 (value in context's GP2 register RAM location)

IMG1 (value of PIMMED/GP1 bus - the value on this 20-bit bus
is equal to the right-justified value of the PIMMED field, as 8
bits integer, unless PIMMED = FFh, where the bus assumes
the value of GP1)

GP3 (value in context's GP3 register RAM location)
0 (Zero)

Comparitor Operation, in form (COMP S1.COMP OP.COMP
S2, like GP2.GTE.LRR). Selections are:

EQ (equal)

NEQ (not equal)

GT (greater than)

GTE (greater than or equal)
LT (less than)

LTE (less than or equal)

S1@S2T (bit of comparitor source1 operand, at bit position

equivalent to comparitor source2 operand integer value, is
TRUE)
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S1@S2F (bit of comparitor source1 operand, at bit position
equivalent to comparitor source2 operand integer value, is
FALSE)

Comparitor Source1 operand. Selections are:

GP2 (value in context's GP2 register RAM location)

LRR (value on multiplexed Local RAM/(mmed) Registers bus)
MVB (value on Move Bus)

MMO (value on Main Math Output bus)

Main Math Unit Source2 operand. Selections are:

GP1 (value in context's GP1 register RAM location)

GP2 (value in context's GP2 register RAM location)

GP3 (value in context's GP3 register RAM location)

LRR (value on multipiexed Local RAM/(mmed) Registers bus)
+1 (integer value of +1)

1's (all 40 bits of operand forced to 1's)

PIMMED (8-bit Program Immediate field of the present opcode,

used as integer)
0 (Zero)

Main Math Unit Operation, in form (MMU S1.MMU OP.MMU
S2, like GP1.EXOR.1's). Selections are:

AND (logical AND)
OR (logical OR)

EXOR (logical EXOR)

27



10

15

20

25

WO 98/36355

PCT/US98/02016

+ (addition)
- (subtraction)

* (integer 20-bit by 20-bit multiply; result MSB -> LSB will be in
bit positions 14..0, 39..15.)

/ (software assisted, successive approximation divide - 40-bit
numerator, 20-bit denominator, 20 bit quotient; numerator
operand selected as COMP S2, denominator operand as MMU
82, and interim quotient as MMU S1. The PIMMED value ,
interpreted as an 8-bit, positive integer, will be used to point to
each bit position of the temporary quotient to be

calculated)

S1IF CO ELSE S2 (MMU Sourcet operand will be the MMU
output IF the output of the comparitor is TRUE, else the value

of the MMU Source2 operand will be the output)

S1 BSET@S2 (value of MMU Source1 operand with bit set at
position pointed to by integer value of MMU Source2 operand

value)

S1 BCLR@S2 (value of MMU Source1 operand with bit
cleared at position pointed to by integer value of MMU Source2

operand value)

S1 BSUB@S2 (value of MMU Source1 operand with bit
substituted with at position pointed to by integer value of MMU

Source2 operand value)

ROTATE/MERGE 8 (value of rotated Source1 operand merged
with Source2 operand on byte boundaries. Bits 7..5 of the
PIMMED field furnish the code for 1 of 8 discrete rotation
amounts. Bits 4..0 of the PIMMED field are the byte select
bits, a "1" translated as "from rotated Sourcel operand", a "0"

as "from Source2 operand")
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CHKSUM (new checksum calculation with the Source1
operand as the input data value and the Source2 operand as

the previous checksum value)

ENCR/DECR (encrypt/decrypt data with the Source1 operand
as the data to be encrypted/decrypted, and the Source2
operand as the encryption/decryption dynamic key to use, with

the static key provided by a Local RAM/(mmed) register)

DYNAMIC KEY (hardware permute the Dynamic Key value,

provided as the Sourcel1 operand)

PARITY (using Source1 operand only, exor bits 8..0, and
substitute this 1 bit value for bit 7 of the Source1 operand,

passing all other 39 bits of the Source1 operand unaltered)
Main Math Unit Source1 operand. Selections are:

GP1 (value in context's GP1 register RAM location)

GP2 (value in context's GP2 register RAM location)

GP3 (value in context's GP3 register RAM location)

LRR (value on multiplexed Local RAM/(mmed) Registers bus)
CP (value in context's "Context Purpose"”, CP, register)
MVBUS (value on the Move Bus)

PC+ 1 (PC of current instruction + 1)

RAWIN (raw, un-autodecrypted data from context's input

register)

GP3 update value. Selections are:

NOZA (no change to context's GP3 value)

MMO (update context's GP3 vaiue to that on Main Math Output

bus)
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GP2 update value. Selections are:
NOZA (no change to context's GP2 value)

MMO (update context's GP2 value with bits 34..15 of the value
on the Main Math Output bus)

- 1 (decrement context's current GP2 value by 1)

MVB (update context's GP2 value with bits 34..15 of the value

on the Move Bus)
GP1 update value. Seiections are:
NOZ (no change to context's GP1 value)

MMO (update context's GP1 value with bits 34..15 of the value
on the Main Math Output bus)

+ 1 (increment context's current GP1 value by 1)

LRR (update context's GP1 value with bits 34..15 of the value
on the multiplexed Local RAM/(mmed) Registers bus)

Move Bus Option. This portion of the opcode handles 4
functions simultaneously, in the form W.X.Y.Z, where W is the
source operand to be placed on the Move Bus, X is the
destination of the Move Bus value, Y is the Local RAM/(mmed)
Register update source, and Z is the CP register update
source. Abbreviations are: DM - Data Memory, DI - Context's
Default Input Register, DO - Context's Default Output Register,
LR - multiplexed Local RAM/(mmed) Registers bus, G3 -
Context's GP3 value, MB - Move Bus, NC - No Change, and

MM - Main Math Output bus. The 32 selections are as follows:
0. DM.MB.NC.NC

1. DM.MB.MM.NC
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

DM.MB.MB.NC

DM.DO.NC.NC

DM.DO.MM.NC

DM.DO.MB.NC

DM.MB.NC.MM

DM.DO.NC.MM

DI.DM.NC.MM

DI.LMB.NC.NC

DIL.LMB.MM.NC

DI.MB.MB.NC

DI.DM.NC.NC

DI.DM.MM.NC

DI.DM.MB.NC

LR.MB.NC.NC

LR.MB.MM.NC

LR.DM.NC.NC

LR.DM.MM.NC

LR.DO.NC.NC

LR.DO.MM.NC

MM.DO.NC.NC

MM.DO.MM.NC

DI.MB.NC.MM
31
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24. G3.DM.NC.MM
25. G3.DM.NC.NC
26. G3.DM.MM.NC
27. G3.MB.MB.NC
28. G3.DO.NC.NC
29. G3.DO.MM.NC
30. G3.DO.MB.NC
31. G3.DO.NC.MM

Program Immediate field. 8 bits used in a variety of ways, as

explained above.

Long Immediate Math (LIM) instruction type:

b7..0
10
b39..38
b37
15
b36..34
20

INST TYPE

JMP TGT

MMU S2

Instruction Type. "10" (binary) indicates the instruction type is

Long Immediate Math

Jump Target. Value with which context's PC will be updated at
end of instruction period in which this opcode is executed.

Selections are:

PC+ 1 (PC of current instruction + 1)

MMO (bits 34..15 of the value on the Main Math Output bus)
Main Math Unit Source2 operand. Selections are:

GP1 (value in context's GP1 register RAM location)

GP2 (value in context's GP2 register RAM location)

GP3 (value in context's GP3 register RAM location)

LINTO (20 bits of Long Immediate field placed into bit positions

34..15, and padded with zeros)
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LINT1 (20 bits of Long Immediate field placed into bit positions
34..15, and padded with ones)

LFRCO (20 bits of Long Immediate field placed into bit
positions 39..35 and 14..0, and padded with zeros)

LFRC1 (20 bits of Long Immediate field placed into bit
positions 39..35 and 14..0, and padded with ones)

0 (Zero)

Main Math Unit Operation, in form (MMU S1.MMU OP.MMU
S2, like GP1.0R.LFRCO0). Selections are:

AND (logical AND)
OR (logical OR)
EXOR (logical EXOR)
+ (addition)

- (subtraction)

* (integer 20-bit by 20-bit multiply; result MSB -> LSB will be in
bit positions 14..0, 39..15.)

ROTATE/MERGE 40 (value of rotated Source1 operand
merged with Source2 operand on 4-bit, nibble boundaries, with
LS nibble defined as bit positions 2..0 including bit 39 as the LS
bit. Bits 15..10 of the Long Immediate field, LIMMED, furnish
the continuous, right-rotation amount (rotated right 0 to 63
times). Bits 9..0 of the LIMMED field are the nibble select
bits, a "1" translated as "from rotated Source1 operand", a "0"

as "from Source2 operand")
S2 (the value of the Source2 operand is output)

Main Math Unit Sourcel operand. Selections are:
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GP1 (value in context's GP1 register RAM location)
GP2 (value in context's GP2 register RAM location)
GP3 (value in context's GP3 register RAM location)

LINTO (20 bits of Long Immediate field placed into bit positions
34..15, and padded with zeros)

CP (value in context's "Context Purpose", CP, register)
MVBUS (value on the Move Bus)
PC+1 (PC of current instruction + 1)

RAWIN (raw, un-autodecrypted data from context's input

register)
GP3 update value. Selections are:
NOZE (no change to context's GP3 value)

MMO (update context's GP3 value to that on Main Math Output
bus)

PC+ 1 (PC of current instruction + 1)
MVBUS (value on the Move Bus)

GP2 update value. Selections are:

NOZ (no change to context's GP2 value)

MMO (update context's GP2 value with bits 34..15 of the value
on the Main Math Output bus)

GP1 update value. Selections are:
NOZE (no change to context's GP1 value)

MMO (update context's GP1 value with bits 34..15 of the value

on the Main Math Output bus)
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Move Bus Option. This portion of the opcode handles 3
functions simultaneously, in the form P.Q.R, where P is the
source operand to be placed on the Move Bus, Q is the
destination of the Move Bus value, and R is the CP register
update source. Abbreviations are: DM - Data Memory, DI -
Context's Default Input Register, DO - Context's Default Output
Register, G3 - Context's GP3 value, MB - Move Bus, NC -

No Change, and MM - Main Math Output bus. The 16

selections are as follows:

0. DM.MB.NC
1. DM.DO.NC
2. DILMB.NC
3. DIL.DM.NC
4. DI.DO.NC
5. MM.DO.NC
6. G3.DM.NC
7. G3.DO.NC
8. DM.MB.MM
9. DM.DO.MM
10. DIL.MB.MM
11. DI.DM.MM
12. DI.DO.MM
13. MM.DO.MM
14. G3.DM.MM
15. G3.DO.MM
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Long Immediate field. 20 bits used in a variety of ways, as

explained above.

Long Immediate Compare (LIC) instruction type:

b39..38

5
b37..36

10

15
b35..34

20
b33..31

25

INST TYPE

JMP TGT

COMP S2

COMP OP

Instruction Type. "11" (binary) indicates the instruction type is

Long Immediate Compare

Jump Target. Value with which context's PC will be updated at
end of instruction period in which this opcode is executed.

Selections are:
PC+ 1 (PC of current instruction + 1)

PC+ 1+ IM (same as previous + PIMMED value, located at
b27..20 of the opcode, PIMMED to be interpreted as 1 bit sign,
7 bits magnitude)

GP3 (bits 34..15 of value in context's GP3 register RAM

location )

LI (value of 20-bit Long Immediate field)
Comparitor Source2 operand. Selections are:

GP2 (value in context's GP2 register RAM location)

IMG1 (value of PIMMED/GP1 bus - the value on this 20-bit bus
is equal to the value of the PIMMED field, as 8 bits integer,
uniess PIMMED = FFh, where the bus assumes the value of
GP1)

GP3 (value in context's GP3 register RAM location)
0 (Zero)

Comparitor Operation, in form (COMP S1.COMP OP.COMP
S2, like GP2.GTE.LRR). Selections are:

EQ (equal)
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NEQ (not equal)

GT (greater than)

GTE (greater than or equal)
LT (less than)

LTE (less than or equal)

S1@8S2T (bit of comparitor source1 operand, at bit position
equivalent to comparitor source2 operand integer value, is
TRUE)

S1@ S2F (bit of comparitor source1 operand, at bit position
equivalent to comparitor source2 operand integer value, is
FALSE)

Comparitor Source1 operand. Selections are:

GP2 (value in context's GP2 register RAM location)

LRR (value on multiplexed Local RAM/(mmed) Registers bus)
CP (value in context's "Context Purpose”, CP, register)

LINTO (20 bits of Long Immediate field placed into bit positions
34..15, and padded with zeros)

Local RAM/(mmed) Registers update value. Selections are:

NOZ (no change to addressed Local RAM/(mmed) Register's

value)

LINTO (20 bits of Long Immediate field placed into bit positions
34..15, and padded with zeros)

Program Immediate field. 8 bits used in a variety of ways, as

explained above.
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b19..0 LIMMED Long Immediate field. 20 bits used in a variety of ways, as

explained above.

In reference to Figure 3B, the HI/O microprocessor 1012 also includes a
context management circuit 1132 for controlling each of the 24 contexts which are arranged
within the HI/O microprocessor. In this regard, a separate processing context is assigned for
each of the input/output circuits discussed above. For example, six processing contexts are
dedicated for the six SASMMU circuits 1110 (Figure 3A), while ten processing contexts are
dedicated for the ten serial circuits 1108 and so forth. At the heart of the context

management circuit is an interrupt priority encoder.

Referring to Figure 6, a detailed block diagram of an interrupt priority encoder
circuit 1210 is shown. The interrupt priority encoder circuit 1210 forms part of the context
management circuits 1132, which are shown as a block in Figure 3. Each context has at
least one interrupt source and circuitry to select of multiple sources (if it has multiple
sources). If no context is active, the processor executes a NOP so that no stored values are
altered. The priority encoder receives the interrupts from all different contexts. The priority
encoder interprets these, determines which job has the highest priority and then generates
the new context code. As previously noted and as will be more fully explained, the system
makes a distinction between the "active" context and the "new" context. The “new” context
becomes the “active” context during the next instruction period. Demultiplexer 44
demultiplexes the “new” context code into one of 24 decoded lines that can be used for state
machine control elsewhere in the system. Similarly, demultiplexer 46 demultiplexes the

“active” context’s code into one of 24 decoded lines for a similar purpose.

A detailed block diagram of the interrupt selection circuit for the timed context
is shown in Figure 7. The timed context serves a special purpose within the system of
coordinating operation of the HI/O processor and the H2 processor. In Figure 7, note that
the source of the timed context interrupts can come from a UTC (universal time constant)
pulse or a pulse from a global positioning satellite (GPS), for example. Note the UTC pulse

input to latch 48. This is used to generate both CP-bit 30 at 50 , and the UTC leading edge
interrupt.

The timed context must also generate an interrupt when other contexts
deschedule themselves. This descheduling is how the timed context knows when the other

contexts are finished with a given task. This eliminates the need to wait for a timeout based
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on a time-clocked event, although time-clocked events can be used and are preferred when
using the pseudo-queue. The "activity change" interrupt is generated for this purpose at 52.
It is generated by monitoring the falling edge on any of the scheduler bits for any of the
contexts. The falling edges on all 23 of the bits corresponding to the other contexts are
ORed together at OR gate 54.

Returning again to Figure 3A, the input/output circuits of the HI/O
microprocessor 1012 also include a set of memory mapped register control circuits,
generally designated by reference numeral 1112. As with all of the various input/output
circuits disclosed herein, the number of such memory mapped control circuits may be varied
as required. However, in the present embodiment, a total of 32 external memory mapped
locations are provided, even though all of these locations may not necessarily be decoded.
These control circuits perform address decoding in order to minimize the amount of external
logic required for devices that are attached to the HI/O microprocessor 1012 through the
external memory mapped data bus 1066 (Figure 1). These external devices are memory
mapped within the data memory space of the HI/O microprocessor itself. Such external

devices, for example, may include a debug panel.

Figures 8A-8F comprise detailed block diagrams which illustrate each of the
dedicated registers for the processing contexts. Figure 8A illustrates how the GP1 register
RAM is configured. In the preferred embodiment there are 24 locations of GP1 registers that
are addressed by the context code (“active” context or “new” context). The update data is
input through a multiplexer 56 that is switched according to the type of opcode instruction
(e.g., Long Immediate Compare, COMBO). Figures 8B and 8C are similar to Figure 8A but
illustrate the general purpose registers GP2 and GP3, respectively. Note that the GP3
register is addressed only by the “active” context’s code, since the GP3 value is not
prefetched as are the GP1 and GP2 values. Thus there is no need for an address
multiplexer. Although the preferred embodiment does not require register GP3 to be
addressed by both the “active” context and the “new” context, it would be feasible to
implement register GP3 similar to register GP2, if desired. Generally, registers GP1 and
GP2 are used as address generators and counters, respectively. These registers are 20 bits
wide because that is the width of the address bus in the presently preferred embodiment.

Register GP3 is a 40 bit wide random access memory to support the full data width (40 bits)
of the current embodiment.
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Figure 8D depicts the logic of the program counter. Note that the program
counter, implemented by RAM 58, can be loaded from various sources. Multiplexer 60 loads
the program counter register RAM 58. The timed context may map the program counters of
other contexts into the local RAM space via the addressing circuitry shown generally at 62,
thus controlling context program counter initialization. To help in accomplishing this, the
timed context uses a register for its PC (rather than a location in the PC RAM) so that it can
update the PC RAM location of another context while still updating its own PC (register). This
eliminates the need for a double update of the PC RAM in one instruction period. in
Figure 8D the short PIMMED (Program Immediate) value of the COMBO instruction (8 bits)
is evaluated as a signed displacement (sign/magnitude) when used to modify a PC value.

This allows relative jumping 127 locations backward and forward.

Figure 8E illustrates an output register. The illustrated register is 40 bits wide.
The register is written-to when gated by the signals supplied to AND gate 64. The signal
designated as “Mst” is the main store clock. This signal appears in numerous places
throughout the circuitry. It is one of the principal timing signals that controls operation of the
HI/O processor. This timing signal and the other principal timing signals will be more fully

described in connection with Figure 9.

Figure 8F illustrates a generic CP register configuration. There is a CP
register for each context. This register is 40 bits wide, though size varies based on context
need. It is updated by using the main math out (MMO) value. The CP register uses the "this
context active" signal to ensure that the register is updated at the proper time relative to the
context that is “active”. The multiplexer 66 supplies a signal on the CP-bus when a context's
CP value is used in the main math unit. The active context code is used to select which CP
register value is actually used in the main math unit. For instance, if another context is
running a routine where it is required to AND out bit 26 of its CP register, the “active” context
code (of this running context) will select its own CP value to be fed to the main math unit for
ANDing. Thus, (a) its bit 26 gets ANDed out, and then (b) its CP register will be rewritten at
the end of the current instruction.

Substantial on-board RAM capacity is also provided for the HI/O
microprocessor 1012 through a set of RAM circuits 1138 (Figure 3A) which function as a
collection of registers. These RAM circuits 1138 include a local RAM circuit 1140, which
may be employed to store up to 128 40-bit words in this embodiment. The RAM
circuits 1138 also include a set of registers which are dedicated to the 24 processing
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contexts of the HI/O microprocessor 1012. Each of these sets of dedicated registers
includes a general purpose register GP1, a general purpose register GP2, a general purpose
register GP3 and a program counter PC, each addressed by the active context code in a 24
location RAM. A checksum circuit 1142 (Figure 3B) also provides error checking on external
data transmissions for 10 of the contexts (namely the SCSI and SASMMU contexts). A
dynamic key RAM 1180 is also used to provide a dynamic key for an encryption algorithm to

enhance the security of external data transmissions of some contexts.

Figure 11 shows a more detailed schematic on how the external RAM and
program data memory RAM is constructed. The RAM is configured into different banks and
there are two pre-decoded chip enable signals (CE) to select which bank is being used. The
chip enable signals are supplied at 108 in Figure 11. The presently preferred embodiment
implements multiple 64K banks of RAM. The presently preferred embodiment employs a 1
megabyte memory space for the HI/O processor. The chip enables can be selectively
decoded to switch on banks of different sizes (64K, 128K, 512K and 1 meg). When
operating in the 1 meg mode, (a) the 0-OFFFF chip enable signal will be active and (b) the
other chip enable signal will never be active. Figure 11 also illustrates a portion of the move

bus discussed below.

The HI/O microprocessor 1012 further includes a main math unit 1134 (Figure
3A) for performing a number of mathematical and logical operations. As shown in Figure 3,
the output bus 1135 from the main math unit 1134 is connected to several on-board circuits,
including the input/output circuits, such as the SASMMU circuits 1110 and the SCSI
circuits 1100-1106. A separate comparator circuit 1136 is provided for performing a number
of alternative compare operations. It should be noted that the comparator circuit 1136 is
capable of operating concurrently-with and independently-from the main math unit 1134. As
a consequence, a éingle compound instruction may be used to cause the main math
unit 1134 to perform an addition operation on one set of input source values, while the
comparator 1136 is being commanded to perform one of a number of possible compare
operations on its own separate input source values, one of which may be the output of the
math unit. Indeed, as shown in Figure 3, the output from the comparator provides one of the
selectable input sources for the main math unit 1134 during the same clock cycle. The
output from the comparator 1136 could also be used to choose the source signals for the
main math unit 1134 during the same clock cycle in which the main math unit conducts a

desired computational or logical operation or a combination thereof.
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Centrally disposed in Figure 3 is a mux module 1146 (move multiplexer) which
represents the combination of a number of circuits used to rapidly move data between the
input/output circuits and the main math unit 1134, the comparator circuit 1136, the dedicated
registers of the processing contexts, and the other circuits of the HI/O microprocessor 1012
as shown. The mux module 1146 is shown more fully at 90 in the schematic diagram of
Figures 12A-12D. The mux module 1146 includes a move bus 109 (Fig 11) which is tristate
buffered onto the program and data bus 1050 (Figure 1) of the HI/O microprocessor 1012.

Figures 12A-12D are high level block diagrams showing, among other things,
the circuitry found in the mux module. The mux module is also depicted at 1146 in
Figures 3A-3B. This circuitry provides a collection of multiplexers for different purposes. For
example, the CP multiplexer 78 selects the appropriate CP register based on the active
context code. The input multiplexer 80 selects raw data from the context's input registers,
also based on the “active” context's code. Also included is the encryption/decryption control
module 82 that may be used to perform hardware encryption and decryption of data. The
checksum control circuitry 84 generates checksums for data integrity control. Figures 12B-
12D show high level block diagrams of the following additional circuitry: local RAM control
86, GP1 control 88, mux module 90, output mux 92, MMU source muxes 94, comparitor
source muxes 96, logic analyzer mux 98, GP3 control 100, GP2 control 102, program

counter control 104, and shared context control 106.

Referring back to Figure 11, a portion of the move bus 109 is depicted in
further detail. The circuitry shows how the output of the move bus can be used as a source
of data when writing to external data memory. The output of the move bus is always written
to data memory. The processor selects what the source of the data is going to be. The
source of data can be general purpose register GP3, main math unit MMU, local
RAM/registers or default input. This selection is controlled by the mux module 90 based on

the Move Source Selection input.

Before proceeding to discuss the specific circuits which are associated with
the processing contexts (illustrated in Figures 4A-8F), an overall discussion of the operation
and interaction between the timed and device processing contexts is in order. Each of the
external devices (coupled to the HI/O microprocessor 1012) are handied by separate
subroutines running on the HI/O microprocessor. Each of these subroutines will run in its
own environment (referred to herein as a processing context) and, therefore, does not need
to “know of” the existence of other software running on the HI/O microprocessor 1012
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(except for the existence of the timed context which acts as a "scheduler routine"). Because
several resources are shared between different contexts (such as the computational
functions of the main math unit 1134), only one context will be “active” at one time (with
“active” meaning that the software instruction of that context is currently being executed). Of
course, it could be reasonable for more than one context to be “active” at one time, provided

that more than one set of shared resources is also provided.

All processing contexts are preferably controlled by a scheduling mechanism.
This mechanism schedules the different processing contexts so that they are coordinated in
time (some tasks should run only after other tasks have been completed, while some tasks
should be coordinated with tasks in other computer systems), so that over-allocation of
resources is avoided. It is recognized that much of this scheduling can be orchestrated at
compile time since many of the tasks are done repetitively each second and at the same
(relative) time within each second. Scheduling of those tasks would then be done through
the "timed context" (the context enforcing a "timeline"). However there will also be some

spontaneous tasks (nonrecurring) which have to be scheduled between the recurring ones.

Processing contexts are assigned different priorities and a priority encoder is
used to activate the highest "bidding" context. Bidding requires (a) being scheduled,
(b) having an interrupt present and (c) having a respective interrupt selected on the interrupt
MUX. For a processing context to be scheduled, the timed context must set that processing
context’s scheduler bit, in order to enable the muxed interrupts of the processing context to
be forwarded to the priority encoder. Each scheduler bit of a processing context is co-
mapped in that processing context’'s CP register as well as in the timed context's CP
register. A processing context will be bidding when (a) it has been scheduled and (b) it
needs some software action. For instance, the processing context dealing with human input
devices will normally only be bidding when either the mouse or keyboard has been touched.
Atfter this event has been processed (meaning that this processing context has had the
highest priority at least once and has executed at least one instruction), this processing
context will not ask for service until the next human interaction. Until then, this processing

context is said to be "inactive."

Most interrupts from external sources will be handled in a single instruction, so
it should be appreciated that rapid context cycling will be enabled. To make this context
cycling highly efficient, each processing context is provided with its own set of registers. In
the present embodiment these registers preferably include a program counter, three general
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purpose registers, a context purpose register (for miscellaneous context hardware
configuration) as well as input and output registers. However, it should be understood that a
different set of hardware assets may be employed without departing from the principles of
the present invention. For example, certain processing contexts may not need input or
output registers and a greater or lesser number of general purpose registers could be
provided in the appropriate application. The present embodiment uses the same number of
general purpose registers for all contexts. When a processing context becomes "active," its
program counter and other registers will be available to access or control the shared
resources, such as the private program and data memory circuits 1049 shown in Figure 1
and the main math units and comparator (and all other singly provided common use

resources).

A processing context can only be "active" when the context has been
scheduled, it had the highest priority when priority encoding took place, its op code has been
fetched, and it is now executing that op code. An interrupt can be an external event, but
some may also be generated through software. Accordingly, it is preferred that each
processing context have a set of different interrupt sources, with only one interrupt source
selected at a given time. In the present embodiment, one to eight different interrupt sources
are provided for each processing context. However, it should be appreciated that a greater
or lesser number of interrupt sources may be provided in the appropriate application. As a
result, the execution of each instruction effectively sets the condition to execute the next
instruction (the interrupt source triggering the execution of the next instruction). The default
for this condition would be "always," meaning that the next instruction should be executed
regardless of external events, provided that (a) this context is scheduled and (b) it wins

priority encoding.

As an example of this process, assume a reception on Serial 5. The timed
context schedules Serial 5 several instruction cycles prior to the scheduled transmission of
the data from an external source. Serial 5 runs an instruction to set interrupt source to
"receive word" and becomes inactive, though still scheduled. When the autonomous state
machine of Serial 5 clocks-in a full 8-bit word, (a) the received word interrupt is generated,
(b) Serial 5 bids for service, and (c) when it wins, Serial 5 awakens and runs an instruction to
empty its input register. Then Serial 5 becomes inactive until the next word comes in. This

method processes one 8-bit word in one instruction.
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Each processing context may be in one of a plurality of different states. In the
present embodiment, each processing context may be in one of 4 possible states, which are
summarized below. However it should be appreciated that other arrangements of
processing context states may be employed without departing from the principles of the
present invention. In the "idle" state, the context is waiting for the scheduler routine to set its
scheduler latch. In the "inactive" state, the context has been scheduled, but it has no
interrupt pending (that is, it is waiting for some event to occur). In the "bidding" state, the
context has been scheduled, it also has an interrupt pending (the event has happened), and

it is now competing for service based on the priority of its interrupt.

Priority encoding for the next instruction takes place two instruction periods
before the bidding contest winner’s op code is executed. When the interrupt selected by a
context becomes true, and it eventually wins priority encoding, its opcode (the function of
which is usually to service the interrupt) is fetched during the next instruction period. Since
the instruction will not be executed until the instruction period after this, the interrupt will still
be present when the subsequent priority encoding takes place. This could cause this
context to be “active” twice for the same interrupt. To assure that a single "event" (such as
receiving a word) does not make that device context “active” for two consecutive instruction
periods, a processing context is excluded from priority encoding when it is "new” (that is,
when its instruction is being fetched). This guarantees that one instruction of the processing
context is executed before that context can bid again. This also means that each processing
context will get no more than 50 percent of the instruction periods. This mechanism aiso
avoids the need for a jump pipeline. When a jump is performed within the HI/O

microprocessor 1012, the next instruction is the first at the "jumped to" location.

In the present embodiment, processing contexts have preassigned priority
levels. For example, those processing contexts requiring the shortest interrupt response
time could be assigned the highest priority. However, depending on what a processing
context is doing, it might need a less immediate interrupt response than it normally does. So
a mechanism is implemented that certain contexts (with preassigned high priorities) can
lower their priority level in favor of contexts which are normally lower in priority. Accordingly,
it should be appreciated that the HI/O microprocessor 1012 does provide a unique form of
dynamic priority reassignment as warranted. A situation can also occur where no processing
context is active. In this case, a "NOP" (meaning "no operation") is fetched out of internal

bootstrap ROM 1128, so that all registers and memory remain unaffected.
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All of the timed functions within HI/O microprocessor 1012 are controlled from
the timed context. Based on time, other processing contexts will be scheduled,
configurations will be changed, control signals to the H2 microprocessor 1014 generated and
so forth. The timed context also governs the control of external devices, such as the debug
panel or a crossbar signal communication switch. Indeed, when the HI/O
microprocessor 1012 is "reset," all processing context are "descheduled," so that the timed
context is the only context running. At RESET, the timed context's program counter "PC" is
preset to a predetermined value, which is the first address of the internal bootstrap
ROM 1128 program. This bootstrap program is a mini program that loads a slightly more
complex program at address zero of the external program and data memory, and then jumps
to address zero and begins execution. It should also be noted that the timed context can
schedule multiple contexts at the same time up to the maximum number of processing
contexts for the HI/O microprocessor 1012. In this regard, the HI/O microprocessor 1012 is
provided with a total of 23 processing contexts, not including the timed context. However, it
should be understood that the number of processing contexts will depend upon the particular

implementation for a context cycling microprocessor according to the present invention.

It should also be appreciated that, in some applications, it would be preferable
to create the general schedule for the timed context in advance. Within this general
schedule, slots in time should be left to provide for "spontaneous" needs (such as, for
example, sporadic communication, and disk transfers). Since the HI/O microprocessor 1012
does the time keeping for the common core computer, it is preferred that this schedule
should be enforced by the HI/O microprocessor. This schedule would provide a pseudo-
queue list, which should be both application and system dependent. For example, this
schedule could contain the times to start transfers from the shared memory system to the
private memory system to do both sibling communication and arbitration. As such, this
schedule should be coordinated with tasks to be performed by the H2 microprocessor 1014
and coordinated with other computers that communicate with the system. Besides providing
the "start time" for a specific context, the timed context pseudo-queue schedule should also
be able to control the specific task that a context is going to accomplish. This is achieved by

giving the timed context access to all program counters of other processing contexts.

If tasks are to be started at specific times, the context running that task should
complete its previous task before it is scheduled again. Every scheduled context will need a

certain amount of time to accomplish a specific task. Once this time has elapsed, (a) its task
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should be finished and (b) the context should have de-scheduied itself. Various reasons
could cause the task not to be completed in the assigned time period (for example, a broken
data link or a SCSI problem). In such an event, the task should be interrupted and the
processing context should be "reset," so that it can resume proper operation. The timed
context will set the timeout periods for each context by a scheduled "timeout" interrupt when
the task should be completed. When the interrupt occurs, the timed context will determine
whether the task was completed by reading the message status or scheduler latch (latch
should have been cleared by that context if finished in time). If the task is unfinished, the
timed context will first "deschedule" that context, then preset the PC of that context to an
error service routine if appropriate, and then again schedule the context to run the error
service routine. After this, this processing context's task should be ready to be rescheduled
again. Note that the timed context may schedule or deschedule other contexts, since it has
access to the scheduler bits of the 23 other processing contexts (timed context is perpetually
scheduled, thus has no need for its own scheduler bit). Each of the 23 other processing
contexts, however, may not schedule itself, but only deschedule itself, since these each of

these contexts must already be scheduled and “active” to update its scheduler bit.

The H2 and HI/O processors of the common core computer 1000 interact with
one another through shared memory and by means of interrupts and other control signals.
Figure 18 iliustrates this relationship. As previously described, the H2 processor is primarily
involved in performing process control applications developed by the process control
engineer to accomplish different process control tasks. The HI/O processor is principally
involved in handling asynchronous events, such as communication with external devices.
Both processors are capable of operating independently of one another, although, in the
common core computer configuration, these two processors have a symbictic relationship,
the H2 processor performing most of the mathematical and logical computation functions
and the HI/O processor handling communication with the outside world. Although both
processors have their own internal clocks, the HI/O processor controls the overall timing of

the system. The HI/O processor supplies the H2 processor with its base 72 MHz clock.

Referring to Figure 18, the timed context of the HI/O processor sends timing
signals via interrupts to the H2 processor. These interrupts are responded-to by the
Dispatcher software routine of the H2 processor. In this way the H2 processor is able to be
synchronized with the GPS system. This architecture allows all common core computers to

be synchronized to a common time base (via GPS satellite, for example). Such
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synchronization is extremely valuable in a process control application, as many processes
running concurrently will need to be coordinated possibly on a geographically large,
worldwide scale. Note that the HI/O and H2 processors are able to share data through the
shared memory that is accessible to both processors. In the presently preferred
embodiment, the shared memory comprises a mutual data memory system of both
processors. Although the presently preferred embodiment employs Harvard architecture for
the H2 processor, this is not a requirement. The invention can be implemented using the
Princeton or Von Neumann architecture. As noted above, the Harvard architecture is

presently preferred because the illustrated Harvard implementation is able to execute

instructions more quickly.

As illustrated in Figure 18, the program memory (PMem) is dedicated
principally to the handling of the different functional contexts. Essentially, these functional
contexts break down commonly performed input/output, arbitration, and timing tasks into
separate functional modules that may be rapidly cycled-through without undue computational
overhead to save state. In a conventional processor arrangement, the machine state is
saved by pushing the values of all registers onto a stack, before a jump operation is
executed to begin processing a different context. When the “new” context procedure is
completed, the conventional system restores the state of the processor by popping from the
stack all of the previously stored register values. This takes a great deal of time, particularly
when the processor has a large number of registers that must be saved. The present
invention is able to cycle through a plurality of contexts at high speed, without this
computational overhead. Because the states are always saved automatically, context

switching can occur in an instant.

The H2 processor of the preferred embodiment has program memory (PMem)
that is dedicated to coordinating the schedule of process control tasks based on the timing
information received by the Dispatcher from the timed context routines of the HI/O
processor. This timing info is only one of the factors which influence the tasks to be
scheduled. There are also dynamic inputs which influence this scheduling. Like the HI/O
processor, the H2 processor has its own data memory. A portion of this data memory may

be shared with the HI/O processor, as illustrated.

The presently preferred embodiment employs a particular improvement in the
Harvard architecture whereby a third queue (QMem) memory system exists in which
subroutines are called and executed. Unigue to this system, all process control programs
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are, by design, required to run once every second and to fully execute all required steps
within one second. To accomplish this, a very rigorously enforced software architecture is
employed in which all possible data constant and variable memory locations are allocated as
part of the system design. This ensures that all memory locations are accessible by direct
addressing to gain speed. In addition, each operating period is subdivided into different time
segments, to ensure that all time critical applications are run every second, leaving any
remaining unused cycle time available for less critical applications. In the preferred
embodiment, three different time segments are employed. These are labeled Hz1, Hz25
and Hzewo. The Hz1 time segment is used for all process control applications. This is where
all time critical routines are run. The Hz25 segment is optional. It may be used for non-time-
critical tasks. The Hzeo segment is used for any back burner or housekeeping operations

that only need infrequent attention.

Referring to Figure 19, the HI/O processor's function is further illustrated. In
one respect, the HI/O processor may be considered a multi-protocol data router. It supplies
data to the H2 processor through shared memory. Thus, the H2 processor is able to
concentrate on performing all time critical tasks without concern for coordination with
external devices that may require asynchronous communication capability. Thus, as shown
in Figure 19, the H2 processor entity 10 communicates with the HI/O processor entity 12.

External data is input and output through the HI/O processor as illustrated at 14.

The HI/O processor supports a plurality of functional contexts 16. These
functional contexts may represent different protocol types (such as SCSI protocol or serial
protocol) or they may represent different instances of a single protocol. (Multiple contexts,
like the serial context, can execute the same routines.) Each of the functional contexts has
associated with it its own dedicated program counter, depicted at 18. These individual
program counters each support an individual processing program indicated at 20. Although
programs 20 can be for any function, the principal function of these programs within the
preferred embodiment is to handle communication and system timing, as previously
discussed. The functional contexts 16 also each include dedicated general purpose (GP)
registers 22. These registers are used to store the individual data 23 used by each of the

functional contexts.

By providing an architecture to support functional contexts that have multiple
program counters and dedicated multiple general purpose registers, the system is able to
save state automatically when switching from context to context. Unlike conventional
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systems which push and pop register values on and off of a stack, the present system allows
all important state variables, such as the program counter value and all register values, to be
stored automatically in their respective dedicated program counters and GP registers. As
the HI/O processor cycles from context to context, the operation of a given context may be

suspended, but the state is fully preserved until that context is next given CPU attention.

The context cycling architecture of the HI/O processor allows for very rapid
cycling between contexts. In fact, in the presently preferred embodiment, every successive
instruction executed by the HI/O processor is within a different functional context. All of this
is performed without the need to save state in the conventional fashion using a stack data
structure. Recognizing that different functional contexts may have different priorities, the
presently preferred architecture also includes a priority encoder 24 as part of the HI/O

processor. The priority encoder tells the HI/O processor which of the active contexts to

operate next.

Referring now specifically to Figure 4A, a detailed block diagram of a timer
circuit 1200 for the timed context is shown. This 24-bit timer is presettable and should be
synchronized to whatever synchronizing source of time is used for the HI/O
microprocessor 1012 (such as the UTC or GPS pulse). The timer circuit 1200 increments at
the 112 ns instruction period shown in Figure 9 and its value is compared against a timeout
value, which is also set by the timed context (or any other suitable context). The Mst and Eit
clock signals are also illustrated in Figure 9. The timer circuit 1200 includes a
comparator 1202 for comparing an incrementing timer value with a preassigned timeout
value. Once the timer exceeds this timeout value and timeout was selected as an interrupt
source by the timed context, it will begin bidding and will immediately win priority encoding
(because the timed context has the highest priority of all 24 contexts). In this particular
embodiment the maximum period attainable with this 24-bit timer is 1.8 seconds. However,

other suitable timer periods could be provided in the appropriate application.

Once active, the timed context goes through a list of items to do for that
moment. While this list may initially be built by the compiler, it may also be updated
dynamically, such as by the H2 microprocessor 1014. ltems on the list could include the
configuring of the sibling ports, scheduling of the other processing contexts, descheduling of
any processing contexts (if they have "timed out"), the generation of an interrupt to the H2
microprocessor 1014, and the running of specific subroutines. As mentioned above,
processing contexts are scheduled by setting the "scheduler” latch bit of the corresponding
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context. This latch is mapped into the timed context's CP register (that is the context
purpose register). When the timeout period defined for that context is reached, the timed
context will diagnose whether a particular context finished its task; and, if it did not finish,
then the timed context will "deschedule” it by resetting the same scheduler latch.
Descheduling a processing context or resetting the microprocessor will automatically change
the interrupt source selected by that context to the "always" selection. It should also be
noted that the timed context can always deschedule another context, whether or not the

other context has finished its task.

Referring to Figure 4B, a detailed block diagram of a scheduler latch
mechanism is shown. In this regard, the CP register 1204 includes a separate scheduler
latch 1206 for each of the processing contexts of the HI/O microprocessor 1012. In this
regard, the CP register 1204 includes a multiplexer 1208 which is connected to a different bit
of the main math output bus 1135 (shown in Figure 3). For example, in terms of the present
embodiment, the list set forth below identifies one of the many possible connection schemes
that could be employed. The preferred embodiment has 23 processing contexts

corresponding to the context scheduler bits enumerated below as bits 0 through 22, and
shown in Fig 4B at 1204:

bit 0: (Sasmmu-)Receiver1 context scheduler bit
bit 1: (Sasmmu-)Receiver2 context scheduler bit
bit 2: (Sasmmu-)Receiver3 context scheduier bit
bit 3: (Sasmmu-)Receiver4 context scheduler bit
bit 4: (Sasmmu-)Transmitter1 context scheduler bit
bit 5: (Sasmmu-)Transmitter2 context scheduler bit
bit 6: Serial 1 context scheduler bit

bit 7: Serial 2 context scheduler bit

bit 8: Serial 3 context scheduler bit

bit 9: Serial 4 context scheduler bit
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bit 10: Serial 5 context scheduler bit
bit 11: Serial 6 context scheduler bit
bit 12: Serial 7 context scheduler bit
bit 13: Serial 8 context scheduler bit
5 bit 14: Serial 9 context scheduler bit

bit 15: Serial 10 context scheduler bit
bit 16: Shared Context context scheduler bit
bit 17: SCSI1 context scheduler bit
bit 18: SCSI2 context scheduler bit

10 bit 19: SCSI3 context scheduler bit
bit 20: SCSI4 context scheduler bit
bit 21: Arbitration context scheduler bit
bit 22: Hzewo context scheduler bit

Other bits within the CP register 1204 have been assigned the following functions:

15 bit 23: H2-interrupt
bit 24: Interrupt-vector ("0" is highspeed)
bit 25: "Unprotect" PC-registerRam

When this bit is set, the timed context sees the PCs of other context mapped into the LRAM
space of Local RAM 1140 (this feature could be utilized during reset, scheduling or error

20  recovery routines). This bit is automatically cleared at RESET
bit 26: HI/OWatchdog

bit 27: Immobilize
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bit 28: Timeout

bit 29: activity-change

bit 30: Received UTC-puis
bit 31: H2-reset

bit 32: Enable Sibling1 Reset
bit 33: Enable Sibling2 Reset

It should be noted that the timed context has no scheduler-latch since it runs the scheduling
program. It is always scheduled, though possibly not active at any one moment. After a

RESET, the timed context will be the only context running.

As previously noted, the H2 processor is preferably a Harvard architecture
processor having separate program and data memories. In its presently preferred form, the
H2 processor also has an additional memory, calied the queue memory, for storing the
master program that calls other subroutines from program memory. This has been found to
be a particularly desirable configuration for process control applications, as it segregates the
prewritten, well-tested, standard subroutines from the more application-specific programs
written by the control engineer. Although the presently preferred embodiment of the HI/O
processor is not a true Harvard architecture (it does not require physically separate program
and data memories) the benefits afforded by a queue memory are nevertheless present.

Accordingly, the present invention implements a software pseudo-queue.

Figures 5A and 5B give some examples of how this pseudo-queue memory
works. The pseudo-queue memory is implemented as part of the HI/O data memory.
Pseudo-queue pointers for each of the contexts are stored in local RAM. Figure 5A depicts
the memory space within local RAM circuit 1140. Figure 5B depicts a portion of the memory
space within the private program and data memory circuits 1049. Every context has its own
pseudo-queue. In Figure 5B, a portion of the pseudo-queue of the timed context, the
SASMMU context and the shared memory context have been illustrated. There are similar
pseudo-queues for each of the remaining contexts. The entries in the pseudo-queue
comprise groups of 40-bit values stored in data memory. These values function as
subroutine calls and as parameters necessary for those calls. The pseudo-queue for the
timed context functions more like an event queue, triggering various events within the
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remaining contexts. The remaining pseudo-queues contain the parameters necessary for a
particular context to complete its required function. These parameters may include (a)
where to read data, (b) where to write data, (c) how to set up context specific resources, and
(d) where in PMem to continue execution. In one respect, the remaining pseudo-queues

behave more like job queues directing which subroutines to call next.

Reterring to Figure 5B, at the portion designated as "timed context," each
scheduled event in the timed context pseudo-queue requires several 40-bit values. Note
that the contents at addresses 01057, 0105B, and 0105F each correspond to a timeout
value used to start one of the other contexts. In this example, the value stored at 01057 is a
timeout value at which time the timed context will start the SASMMU receive context by
values at 0105C-0105E. The value at 0105B will start the shared transfer context.
Following each timeout event, (a) three additional 40-bit values are used to toggle CP

register bits, and (b) PC values are used to deschedule and schedule events.

Referring in Figure 5B to that portion of the pseudo-queue that corresponds to
the SASMMU context, note that each entry is a parameter used in the subroutine that the
timed context told the SASMMU context to jump to. Each context’s pseudo-queue has a
queue pointer stored in local RAM (shown in Figure 5A). The timed context has the ability to
update (a) its queue pointer and (b) those pointers of the other contexts. Thus, when a
routine within a certain context starts, its pointer is used to locate the correct parameters to
use in running that routine. By writing to the other context’s program counters and queue
pointers, the timed context is, therefore, abie (a) to revector where the other contexts run
and (b) to acquire their run parameters. In this way the timed context can change the
subroutines and the parameters that are used by the other contexts in executing these

subroutines.

The timed context is used to enforce a desired task schedule for the various
tasks that are to be executed by the HI/O microprocessor 1012 during the normal timeline.
This software function is referred-to as “Time Enforcer”. More specifically, the goal for the
timed context is to look for timeline timeout events and then respond to these timeouts
quickly. The number of consecutive instructions executed by the timed context should be
kept to a minimum because the timed context has the highest priority in the HI/O
microprocessor 1012 and running software in this context (with "Always" selected as the

interrupt condition) will consume 50 percent of the available instruction cycles.
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In the current pseudo-queue embodiment, there are two conditions which
necessitate the execution of software in the timed context. The first condition for which the
timed context must become involved is for each event which requires the initialization of a
PC value for a context. Coincident with the initialization of a PC value for a context, the
timed context may also deschedule that or other contexts. In conjunction with the
scheduling and descheduling of contexts, the timed context can manipulate the bits in its CP
register 1204 for such tasks as immobilizing the H2 microprocessor 1014 or resetting a
sibling microprocessor. The second condition for which the timed context must become
involved is when one or more bits in the CP register 1204 must be manipulated in order to
have the events properly execute. For example, the timed context must clear the Immobilize
bit in order to allow H2 microprocessor 1014 to begin its program execution. In this second
case, there are no contexts which must have their PC values initialized — the requirement is
that there is a manipulation of the timed context CP register, which involves setting and

clearing of bits in that register.

The Time Enforcer function should not place restrictions on the number of
contexts which can be scheduled or descheduled at a given time. In this way, the total
number of instructions executed in the timed context can be minimized, and the desired task
scheduler software will be given the authority on how to most efficiently arrange the
schedule. The number of contexts that may be scheduled or descheduled is the maximum
number of HI/O contexts, not including the timed context, which is 23 in this particular
embodiment. In this regard, it should be noted that the timed context does not have a

scheduler bit.

A context may both be descheduled and then rescheduled as part of the same
pseudo-queue event. An example of this situation occurs when the SASMMU-RCV
reception routine is to be scheduled for one or more of the SASMMU circuits 1110. The
timed context should deschedule the appropriate SASMMU-RCV context (ensuring that it
was not still executing or waiting to execute), then set the SASMMU-RCV context's PC value
to the initial location of the reception routine, and finally the timed context would schedule

this same SASMMU-RCYV context for the receiving of data.

In order to reduce the number of instructions run in the timed context, the
resources that are initialized by this context should be kept to a minimum. Therefore the
timed context only manipulates scheduler bits and other CP bits as well as PCs. The timed
context is the only context that has access to the Program Counters (PCs) of the other
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contexts and the scheduler bits for the other contexts. Therefore, the timed context has the
responsibility (a) to initialize another context's PC and (b) to set (or clear) the scheduler bits
in order to have other contexts begin (or terminate) program execution. The timed context
must also set or clear the other bits in its CP register 1204 (for example, H2 Immobilize and
UTC Pulse Received) as appropriate. A further discussion of the manipulation of the bits
which are a part of the CP register 1204 will be provided below. All required parameters that
are accessible by the context which will be carrying out the actual task are to be initialized by
that context. If the SASMMU-RCYV context is to be scheduled to receive a message, then,
except for pointers to parameters, the SASMMU-RCV context will be the one who initializes

all necessary resources it has access-to in order for the task to successfully complete.

The following information is required for the Time Enforcer function to
successfully complete its task:

A. The Timeout Value for the Next Event
B. The CP Bits Which are to be Cleared for this Event

C. If Context are to be Scheduled for this Event, The Context IDs and the
Initial PC Values for the Contexts Which are to be Scheduled

D. The CP Register Bits Which are to be Set

If the writing of at least one PC value of a context is required, then this
information is stored in a minimum of 4 words in the timed context pseudo-queue. If only the
timed context's CP register manipulation is required, then only 3 words are required. The

specific parameters which are a part of the timed context pseudo-queue are discussed in
detail below:

A. Timed Out Value Entry

1. Timeout Value (24 Bits) — the time (in HI/O 112 ns clock
cycles) at which the next event is to occur. An event is
defined as the scheduling of one or more contexts to carry
out a given task or the bit manipulation of the timed context
CP register 1204, This information requires one berth each

instance the Time Enforcer routine is executed.
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B. CP Redgister AND Mask Entry

1. CP Manipulation Only (1 Bit) — this bit is included in this

word in order to support the case when only a timed context
CP register manipulation is required. If this bit is true, then
the CP register 1204 is only to be updated (no contexts
require their PC values to be written). If this bit is false, then
there are contexts which require their PC values to be

written.

. CP Register AND Mask (CP Bits to Clear) (34 Bits) — the

mask for the timed context CP register 1204 is provided for
the contexts that are to be descheduled and other bits which
may concurrently need to be cleared (for example, the
Activity Change flag). For the bits in the CP register 1204
which are to be cleared, the corresponding bits in this word
should be false. Any bits that are true indicate that those
bits are to be kept in the same state they are currently in. It
is preferred to clear the scheduler bit for the context which is
to have its PC register initialized to ensure that the context is
not running when timed writes its PC value or to be
descheduled until at least the next event. Therefore any
context which will have its PC register written to by the Time
Enforcer routine should have a zero in the bit position for
this context's scheduler bit. This word is required each time

the Time Enforcer routine is executed.

C. PC Value Entry

1. Final PC Value word (1 Bit) — this indicates there are more

PC Value words which are required in the specification of

the contexts that are to be scheduled at this time. If this bit
is true, then this word is the final word in the specification of
PC Values. If this bit is false, then there are more PC Value

words in the pseudo-queue for this time. Each context that
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requires initialization to a separate PC Value will require a

separate word in the timed context pseudo-queue.

. PC Value for Context(s) (20 Bits) — the initial PC value for

program execution of the consecutive context(s) that are to
be scheduled at this PC value.

. Number of Consecutive Contexts to Schedule (5 Bits) — the -

number of consecutive contexts that are to be scheduled at
this PC value. Consecutive is defined as being in sequence
in the PC Register RAM. If the contexts that are to be
scheduled at the same PC value are not consecutive, then
another word(s) is required in order to specify them
appropriately. This field is included as a means to more
efficiently schedule SASMMU-RCV contexts which run
common routines such as receipt of data from a sibling, for

example.

. First PC Register RAM Address (5 Bits) — the address in

PC Register RAM that corresponds to the first context that is
to be scheduled at this PC address. The first context is
defined as the context with the lowest PC Register RAM
address to be scheduled at the PC value identified in C.2
above. Note that the PC Register RAM address is done
according to active context code number and not the context

priority.

D. CP Redgister OR Mask Entry

1. Jump to Internal ROM (1 Bit) — this bit is a flag which

determines whether or not a jump to internal ROM is to be
executed. This bit will be cleared in normal operation and
will be set when the processor is to execute a reload. In
this way, a software reset can be performed. The timed
context will jump to FFFEOH and begin executing the

internal ROM code, which will in turn load in the external
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ROM software, performing any necessary QC tests and the

loading procedure.

2. CP Register OR Mask (CP Bits to Set) (34 Bits) — the mask
for the timed context CP register 1024 that is provided for
the contexts that are to be scheduled and other bits which
may concurrently need to be set (for example, when loading
a H2 Program, the Immobilize Bit). For contexts that are to
be scheduled and for other bits in the CP register which are
to be set, the bits corresponding to the position in the timed
context CP register should be true. Any bits that are false
indicate that those bits are to be kept in the same state they
are currently in. This information requires one word each

time the Time Enforcer routine is executed.

At this point, it might be helpful to illustrate a further example of the pseudo-
queue method of operation according to one form of the present invention. In this regard,
each of the 24 contexts of HI/O microprocessor 1012 preferably has its own "Pseudo-
Queue" (PQ) pointer contained in Local RAM (LRAM) memory 1140 at the address
corresponding to that context's active context code. This concept is illustrated in Figure 5A,
which diagrammatically shows a series of addresses in LRAM 1140 and a label

corresponding to the contents at each of these addresses.

Figure 5B diagrammatically shows 3 sets of memory addresses in a portion of
the private program and data memory circuits 1049 for the HI/O microprocessor 1012. As
will be seen in the example below, a portion of the time context (Time Enforcer) pseudo-
queue data is stored at address locations 01057 through 01062. Similarly, a portion of the
SASMMU context receive pseudo-queue data is stored at address locations 02F57 through
02F5C and a one word portion of the shared context transfer pseudo-queue data is stored at
address location 05BB6. These small pseudo-queue sections are illustrated to provide an
execution example of how a data block might be received and stored into the private
program and data memory circuits 1049 by SASMMU Receiver 1 at t=285.594274 ms, and
then transferred to shared data memory circuit 1042 by the shared context at t=285.761045

ms, all under the control of the timed context.
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Assume that the timed context has just timed out at t=285.594274 ms and its

PQ (pseudo-queue) pointer (at @1 hex in LRAM 1140) has the value 0105Bh. The

comparator 1202 of timer circuit 1200 in Figure 4A has just generated a HIGH timeout

signal, which is directed to the priority encoder circuit shown in Figure 6. Since the timed

context has the highest priority of all the contexts, it will win the bidding process, become the

“new” context during the next instruction period and then become the “active” context on the

next fundamental instruction period of the HI/O microprocessor 1012. While not all

operations listed below are necessarily performed on one instruction, the execution

sequence is illustrative of the pseudo-queue method of operation according to the present

invention.

The timed context reads the word stored in the private program and data
memory circuits 1049 (DMem) at PQ pointer value (0105Bh), then
increments its pseudo-queue pointer to 0105Ch, and writes the data
memory value read to a MMED register FD hex (timeout register mapped
into one of the upper 128 locations of the local RAM address space thus
updating the next timeout value). The pointer stored at address "01" in
LRAM 1140 will be changed from 0105B to 0105C. The data value,
written to FD hex, will be the hex equivalent of t=285.761045 ms in the 1

second timeline of a repeating process control cycle.

Timed context reads the next PQ value from DMem (0105Ch), increments
its PQ pointer, ANDs the PQ value read with its CP register 1204, turning
off SASMMU1 and writing out the new CP (all in one instruction period). It
should be noted here that these timed context operations will not be
absolutely time sequential in terms of instruction-to-instruction execution
within the HI/O microprocessor 1012, as the timed context is not permitted
to monopolize all of the microprocessor execution time. (Only 50 percent

maximum is permitted).

Timed context reads DMem at PQ pointer value (0105Dh), increments its

PQ pointer and uses 20 bits of the PQ value data to set the PC of

SASMMU1 to a "receive” routine address. Only SASMMU1 will be

scheduled at this time at this PC (bits 9:5 of the data word read=00001b,

indicating that only one context should be scheduled at this PC).

SASMMU1's active context code (00001b) is also contained in this data
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word. Finally, the most significant bit in this data word is set to indicate
that this is the last PC value word corresponding to this PQ time segment.
As will be seen in a subsequent example, more than one processing
context can be concurrently operating and even use the same software

routine in the process.

Timed context reads DMem at its PQ pointer (0105Eh), increments its PQ
pointer, and ORs the PQ value with its CP register in order to schedule
SASMMU1 (CP bit 1). The timed context then switches its interrupt
source to "Timeout" and is inactive until the timeout at t=285.761045.
Accordingly, it should be appreciated that the timed context effectively sets
an alarm clock, issues marching orders to one or more processing
contexts, and simply goes to sleep until the alarm goes off. Each of the
other 23 processing contexts are going about their tasks, if so ordered, on

an independent basis.

The SASMMU1 context reads DMem at PQ pointer (02F57h), increments
its PQ pointer and uses the PQ value as an AND mask for the SASMMU
configuration MMed register in the LRAM address space. Thus, as shown
in Figure 5B, a pseudo-queue may be provided for both the timed and
device processing contexts.

The SASMMU1 context reads DMem at PQ pointer (02F58h), increments
its PQ pointer, and uses the PQ value as an OR mask for the SASMMU
configuration MMed register in the LRAM address space. This mask
combined with the AND mask will generate a new input/output mux
configuration for the physical SASMMU1 circuit. (Generally, a SASMMU
context should only modify the bits of this configuration register pertaining
to its own multiplexer settings as bits of other SASMMU contexts are

maintained in this register as well).

The SASMMU1 context reads DMem at PQ pointer (02F59h), increments
its PQ pointer and uses 20 bits of the PQ value as the iength of the
message it is to receive, with another bit indicating whether or not to

decrypt the incoming data.
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SASMMU1 reads DMem at PQ pointer (02F5Ah), increments its PQ
pointer and uses 20 bits of the PQ value as the destination address of the
received data block and the other 20 bits as the PC value of the routine
where the SASMMU1 context will jump to do the actual receiving. The
SASMMU1 context then jumps to the receive routine and receives the
data.

After receiving the block of data of the length specified, the SASMMU1
context reads DMem at PQ pointer (02F5Bh), increments its PQ pointer

and uses the PQ value as the "Expected Message Header."

SASMMU1 reads DMem at PQ pointer (02F5Ch), increments its PQ
pointer and uses the PQ value as the destination address for the message
reception diagnostic bits. Some of the message reception diagnostic bits
are generated by comparison of the expected message header to the
actual message header and these bits are then written out to data memory
at the address value stored at 02F5Ch.

The SASMMU reception task provides two outputs as a result of its
execution. These two outputs are: “reception diagnostics” and “received
data”. The message diagnostics are provided in two separate places.
One is intended to be short-term and the other is intended to be longer
term. The short-term diagnostics are stored just preceding the received
data and are utilized by the arbitration processing context in order to
determine the validity of the data. The longer term diagnostics are stored
at the HI/O DMem location specified in the pseudo-queue for this task.
Both locations contain identical information. This information and their
relative bit positions are as follows: Checksum Error Detected (MSB); Bad
Message Header; Context Not Descheduled; No Data Received (LSB).
The short-term diagnostics store this information in the lower 4 bit
positions in the word. The longer term diagnostics store this information
based on receiver number (it is not configurable via pseudo-queue). The
bit positions which are occupied are as follows: Me (Receiver 3 or 4) —
Bits 3-0; Sib1 (Receiver 1) — Bits 7-4; Sib2 (Receiver 2) — Bits 11-8.
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After the timeout at t=285.761045 ms, the timed context reads DMem at
PQ pointer (0105Fh), writes the PQ value read to the LRAM MMed
register (timeout register) at FDh (updating next timeout value and then

incrementing its PQ pointer to 01060h).

The timed context reads DMem at PQ pointer (01060h), increments its PQ
pointer, ANDs the PQ value read with its CP register, turning-off the
shared context (and also turning-off SASMMU/1 if not already off). The
Most Significant Bit (MSB) is equal to zero in the mask data word (NOT

CP register manipulation only).

The timed context reads DMem at PQ pointer (01061h), increments its PQ
pointer, and uses 20 bits of the PQ value to set the PC of the shared
context to a "write transfer" routine address. Only one context (the shared
context) will be scheduled at this time at this PC (bits 9:5 of the data word
read=00001b). The shared context's active context code (01011b) is also
contained in this data word in bits 4-0. Finally, the MSB is set in this data
word to indicate that this is the last PC value word corresponding to this

PQ time segment.

The timed context reads DMem at PQ pointer (01062h), increments its PQ
pointer, and ORs the PQ value with its CP register in order to schedule
shared (CP register bit 16). The timed context then switches its interrupt

source to "Timeout" and is inactive until the next timeout.

The shared context reads its first PQ pointer from LRAM, uses this value
to read DMem at PQ pointer (05BB6h), increments its PQ pointer, and
uses 20 bits of the PQ value as the source address of HI/O DMem from
where the data block is to be read. Some of the other bits are used as the
length of the data block. (it should be noted that the shared context
maintains two separate PQ pointers in LRAM, one to point to items in HI/O

program and data memory, the other to point to items in shared memory).

The shared context reads its second PQ pointer from LRAM and uses this
value to read a transfer parameter stored in shared memory at the PQ
pointer. It then increments its PQ pointer and uses 24 bits of the PQ value

(transfer parameter) as the shared memory destination address of the
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data block to be transferred, with 1 more bit to indicate whether this block
is to go to the shared data memory circuit 1042 or to H2's program
memory circuit 1032 (both of which are preferably mapped into the shared
memory space). The shared context then transfers the data block and
deschedules itself (clears its CP bit 15).

More than one context can be scheduled at any PQ time segment (turning on
all SASMMU Receive contexts, for example) and, if desired, each can run the same code.
Contexts running the same code can determine their "context specific" parameters by first
reading their active context ID from an LRAM MMed (memory mapped) register and then
using this information to generate, for example, data memory address locations, LRAM
address locations, and offsets. While running several contexts in parallel, care should be
taken to not over-schedule the processor, as asynchronous data (SASMMU, Serial) may be

lost if contexts related to asynchronous data do not win priority to run when they need to.

There are a number of variables which will affect the execution timing required
by a time enforcement routine. Note that a task scheduler must be aware of the duration
required for the time enforcement routine, as this time will limit the times at which a context
may be scheduled. The task scheduler cannot choose to schedule contexts at every 112 ns

boundary.

The following factors will influence the execution timing of the time

enforcement routine:

A. Whether CP register manipulation is the only function which is needed, or

if PC values are also required to be written to specific contexts.

B. The number of consecutive contexts which are to be scheduled at the
same PC value. (The number of consecutive contexts that will be
scheduled at a given PC value will be referred to as n. This value is equal

to the number which is stored in the PC value word).

C. The number of groups of contexts. (A single group is a number of
consecutive contexts which are to be scheduled at a given PC value and
will be referenced as m. One group corresponds to a single word in the

pseudo-queue).
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Additionally, in this particular embodiment, the number of execution cycles
required if only CP manipulation is required is 11. Accordingly, in this embodiment, the

number of execution cycles required if PC values are to be written to contexts is:

m

1247 m+2(n(m-1)

m=1
The conclusions that can be drawn about this equation are:
(1) Scheduling a single context requires 19 instructions.

(2) Each context which requires a different PC value (or is not consecutive

with the first) requires 7 additional instructions.

(38) Each consecutive context which is scheduled at the same PC value

requires 1 additional instruction.

The following provides two examples which further illustrate the concept of
concurrently running more than one processing context using the same software routines for
at least some of these contexts. In the first of these two examples, the SASMMU-RCV 1
and SASMMU-RCYV 2 circuits will be employed to receive corresponding data from sibling
microprocessors, while the SASMMU-RCV 3 circuit will be employed to receive data from a
network level microprocessor. Then, in the second example, the process of arbitrating

between the data received by the SASMMU-RCV 1 and SASMMU-RCV 2 circuits will be
initiated.

Commencing then with the first of these examples, it will be assumed that the
timeout for the next event is 145Ah. No contexts are to be descheduled at this time and no
other bits in the CP register 1204 need to be cleared. The contexts that are currently to be
scheduled are SASMMU-RCV 1 (to receive data from Sibling 1), SASMMU-RCV 2 (to
receive corresponding data from Sibling 2), and SASMMU-RCV 3 (to receive data from the
network), while no other bits in the timed context CP register need to be set. All 3
SASMMU-RCYV contexts will be running the common SASMMU-RCYV software, which has an
initial PC address of 0586h. It should be noted that each of the addresses provided herein
are fictitious and are given simply to facilitate understanding of the methods of operation for

the present invention. The pseudo-queue entries for this event are as follows:
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A. Timeout Value Entry

1. The timeout for the next event is 145Ah, therefore the initial

word in the pseudo-queue for this event contains this value.

B. CP Register AND MASK Entry

1. There are (3) contexts which are going to be scheduled,

therefore the CP register Manipulation Only bit is false.

2. Since the SASMMU-RCV 1, SASMMU-RCV 2 and
SASMMU-RCV 3 contexts will have their PCS written-to,
they will have their scheduler bits cleared prior to the writing
to their PCS. This clearing prior to the writing of the CPs is
the preferred practice. However, it should be understood
that this and other similarly situated steps may be modified

in the appropriate application.

C. PC Value Entry

1. The PC for the contexts that are to be scheduled is the initial
address at which the SASMMU-RCV common routine is
stored in the program and data memory 1049 (PMem).

2. The PC Register RAM address for the first context (which is
SASMMU-RCYV 1’s active context code) is 00h.

3. The number of contexts to schedule is 3, therefore, the

number specified in the (Number of Contexts to Schedule)
field must be 03h.

4. This is the final PC address word, therefore the Final PC
Address Word bit must be true.

D. CP Register OR Mask Entry

1. The contexts that are to be scheduled are SASMMU-RCV 1
(whose scheduler bit is in bit position 0), SASMMU-RCV 2
(whose scheduler bit is in bit position 1) and SASMMU-
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RCV 3 (whose scheduler bit is in bit position 2). Therefore,

the lower 3 bits in the word will be true and all the others will
be false.

In the second of these two examples, it will be assumed that the timeout value
for the next event is 2495h. As indicated above, data has been exchanged with the siblings
and arbitration is now to occur. Also, this example will include the task of moving a
previously arbitrated message to the shared DMem 1042. Accordingly, the SASMMU-

RCV 1, SASMMU-RCV 2 and SASMMU-RCYV 3 contexts are to be descheduled and the
Activity Change bit is also to be cleared at this time. The initial PC for the arbitration
common routine is 0642h and the initial PC for transferal of data to shared memory is 0824h.
The pseudo-queue entries for this event are as follows:

A. Timeout Value Entry

1. The timeout for the next event is 2495H, therefore the initial

word in the pseudo-queue for this event contains this value.

B. CP Reqister AND Mask Entry

1. There are contexts which require that their PC Register be

written, therefore the CP Manipulation Only bit is false.

2. SASMMU-RCV 1, SASMMU-RCV 2 and SASMMU-RCV 3
contexts are to be descheduled, as well as the Arbitration
and Shared&Host context. The Activity Change bit is to be

cleared, therefore bit 29 will also be false.

C1. PC Value Entry (Word 1)

1. The PC for the contexts that are to be scheduled is the initial

address at which the Arbitration common routine is stored in
PMem: 0642h.

2. The PC Register RAM address for the first context (which is

arbitration context’s active context code) is 16h.
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3. The number of contexts to schedule at this PC Address is 1,

therefore, the number specified in the (Number of Contexts
to Schedule) field must be 01h.

4. This is not the final PC Address Word, therefore the Final
PC Address Word bit must be false.

C2. PC Value Entry (Word 2)

1. The PC for the contexts that are to be scheduled is the initial
address at which the Shared&Host common routine is
stored in PMem: 0825h.

2. The PC Register RAM address for the first context (which is
the Shared&Host Context) is 0Bh.

3. The number of contexts to schedule at this PC Address is

one, therefore, the number specified in the field must 01h.

4. This is the final PC Address word, therefore, the Final PC
Address word bit must be true. Accordingly, it should be
clear by this point that a series of PC Value Entry Words
may be sequentially stored in the program and data memory
(DMem) 1049, in contrast to the example of only one such
word in Figure 5B.

D. CP Register OR Mask Entry

1. The arbitration (bit 21) and the shared memory (bit 16)
contexts are to be scheduled, therefore, the CP register OR

Mask will contain those two bits true, while all other bits will

be false.

Some special consideration is required in the handling of the nonscheduler

bits in the timed context CP register 1204. These considerations are handled on a bit-by-bit
basis as described below.

H2 Interrupt (Bit 23) — The H2 Interrupt line is preferably handled in the time

enforcer routine. This bit will be set, when required by the CP Register OR Mask, which has
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been described above. The clearing of this interrupt line is done one instruction after the CP
register bits are set in order to assure that the generation of the interrupt is not interpreted by
the H2 microprocessor 1014 as “multiple interrupts”. The clearing of this line is preferably

done every time the timed context executes this routine.

Interrupt Vector (Bit 24) — This line is handled by the time enforcer routine. It
will be initialized to its proper state either during the writing of the CP Register AND Mask
(for clearing the interrupt vector so that it is in the zero state) or during the writing of the CP
Register OR Mask (for setting the interrupt vector to a 1 state). This Interrupt Vector need
only be altered when a H2 interrupt is to be generated. It should be left in the state of the

last interrupt until it is rewritten.

Unprotect PC Register RAM (Bit 25) — This bit is set when the timed context
is required to write to the PCs of the other contexts. This bit is an integral part of the time
enforcer routine, so that the timed context can initialize contexts which are required to
perform particular tasks. The setting and clearing of this bit is done independently from the

AND mask and the OR mask which is provided in the timed context pseudo-queue.

HI/O Watchdog (Bit 26) — The HI/O Watchdog bit is ANDed with the H2
Watchdog bit and this result is an output signal from the HI/O Microprocessor 1012. The bit
can be cleared by the CP Register AND Mask or set by the CP Register OR Mask. The
determination of the conditions for the setting and clearing of the HI/O Watchdog bit is not

the prerogative of the time enforcer.

Immobilize (Bit 27) — This bit is set when HI/O microprocessor 1012 is to load
a program into PMem (program memory circuit 1032) of the H2 microprocessor 1014. The
setting of the Immobilize bit will be handled concurrently with the setting of the other bits in

the CP register by the CP register OR Mask. It will be cleared by the CP Register AND
Mask.

Timeout (Bit 28) — This bit reflects the state of a timeout and is true if a
timeout has occurred and false if a timeout has not occurred. This bit is read-only and

therefore does not allow any software manipulation.

Activity Change (Bit 29) — As discussed above, the time enforcer routine

bases its operation on timeouts and not on the asynchronous nature of an activity change
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(which indicates that a context has descheduled itself). Consequently, the manipulation of

this bit is not necessary.

Received UTC Pulse (Bit 30) — The time enforcer software handles this bit
the same as any of the other bits in the CP register (that is, it can be set or cleared with the
CP register masks provided in the pseudo-queue). In the preferred embodiment the bit is set

by a leading edge detected on an input pin of the HI/O processor.

H2 Reset (Bit 31) — This bit will be set, when required, by the CP Register
OR Mask, which is described above. The setting of this bit will cause the H2
microprocessor 1014 to be reset (that is, the H2 microprocessor will have its PC set to zero).
The clearing of this reset line is done one instruction after the CP bits are set since this will
cause the H2 microprocessor to reset. The clearing of this line is preferably done every time
the timed context executes this routine. The H2 microprocessor should be Reset for a

minimum of two instruction cycles.

Enable Sibling 1 Reset (Bit 32) and Enable Sibling 2 Reset (Bit 33) — These
bits are set via the PC Register OR Mask when it is the intent to enable the reset of one or

both of the sibling microprocessors.

The present invention has been described in an illustrative manner. In this
regard, it is evident that those skilled in the art once given the benefit of the foregoing
disclosure, may now make modifications to the specific embodiments described herein
without department from the spirit of the present invention. Such modifications are to be
considered within the scope of the present invention which is limited solely by the scope and

spirit of the appended claims.
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What Is Claimed Is:

1. A dedicated context-cycling microprocessor (1012) having at least one
computational unit (1134) for performing mathematical or logical functions or a combination
thereof, a plurality of circuits (1100-11086, 1108, 1110) for receiving and transmitting

information, and a bus structure for transferring instructions and data with external memory
devices, characterized by:

a plurality of processing contexts (16) each having an individual set of
dedicated registers (22) in which a distinct processing context is provided for each of said
plurality of said circuits, said processing contexts including a timed context for concurrently

scheduling multiple processing contexts into a schedule and for enforcing time constraints

associated with said schedule; and

a multiplexer circuit (1146) for moving data between said circuits, said
dedicated registers, and said computational unit, said multiplexer circuit having a move bus
(109) coupled to said bus structure.

2. A dedicated context-cycling microprocessor (1012) comprising:

a plurality of input/output circuits (1100-1106, 1108, 1110) for receiving and
transmitting information;

a plurality of processing contexts (16) each having an individual set of
dedicated registers (22) in which a distinct processing context is provided for each of said
plurality of said input/output circuits, said processing contexts including a timed context for
concurrently scheduling multiple processing contexts into a schedule and for enforcing time

constraints associated with said schedule;

at least one computational unit (1134) for performing mathematical performing

mathematical or logical functions or a combination thereof;

a bus structure for transferring instructions and data with external memory
devices; and

a multiplexer circuit (1146) for moving data between said input/output circuits,
said dedicated registers, and said computational unit, said multiplexer circuit having a move

bus (109) coupled to said bus structure.
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3. The invention according to Claim 2 further comprising a local RAM (1140)
and a program memory and wherein at least said timed context has a pseudo-queue list
whose pointers are stored in said local RAM, said pseudo-queue list representing an ordered
set of pointers to data and program memory words to be used for scheduling said

processing contexts.

4. The invention according to Claim 2 wherein said input/output circuits
include at least one serial and shared memory management unit (1110) comprised of a
parallel-to-serial converter and a transmitter circuit which is capable of transmitting a piurality
of serial word frames without any spaces between them, said serial and shared memory

management unit having its own processing context.
5. A common core computer (1000) comprising:
a first microprocessor (1014);
a first private memory system (1026) connected to said first microprocessor;
a second microprocessor (1012);

a second private memory system (1048) connected to said second

microprocessor; and

a shared memory system (1016) connected to both said first and second

microprocessors;

said second microprocessor including a plurality of input/output circuits (1100-
1106, 1108, 1110) for receiving and transmitting information with external communication
devices and timing means for controlling the operation of said first microprocessor and

access to said shared memory system.

6. The invention according to Claim 5 wherein said first microprocessor has a
Harvard architecture and said second microprocessor has an opcode width corresponding to

a data word width of said first microprocessor.

7. The invention according to Claim 5 wherein said second microprocessor
includes:
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an individual set of dedicated registers (22) for each of a plurality of
processing contexts (16) in which a distinct processing context is provided for each of a
piurality of said input/output circuits, said processing contexts also including a timed context
for concurrently scheduling multiple processing contexts and enforcing time constraints
associated with said schedule;

at least one computational unit (1134) for performing mathematical or logical
functions or a combination thereof, said computation unit being coupled to at least one of

said input/output circuits;

a bus structure for transferring instructions and data with said shared memory

system and said second private memory system; and

multiplexer circuit means for moving data between said input/output circuits,
said dedicated registers, and said computational unit, said multiplexer circuit means having a
move bus (109) coupled to said bus structure.

8. The invention according to Claim 7 wherein at least some of said

processing contexts have their own plurality of interrupt signal inputs.

9. The invention according to Claim 1 or Claim 2 or Claim 7 wherein each of
said sets of dedicated registers includes at least one general purpose register and a

program counter.

10. The invention according to Claim 9 wherein said timed context has
access to at least the program counter (18) of said dedicated registers (22) in all of the other

of said processing contexts.

11. The invention according to Claim 1 or Claim 2 or Claim 7 wherein said
processing contexts include an idle state in which the context is waiting to be scheduled, an
inactive state in which a scheduled context is waiting for an event to occur, a bidding state in
which a scheduled context is competing for service, and an active state in which the
scheduled context has been granted the highest priority and is now executing a fetched

instruction.

12. The invention according to Claim 11 wherein a scheduler latch (1206) is
provided for each of said processing contexts except for said timed context and a context
purpose register is provided for said timed context, with each of said scheduler latches being
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mapped into said context purpose register for said timed context in order to schedule one or

more of said processing contexts for service.

13. The invention according to Claim 11 wherein said processing contexts
have preassigned priority levels and at least some high priority processing contexts are

capable of lowering their own priority.

14. The invention according to Claim 11, wherein said microprocessor having
said processing contexts further includes a priority encoding circuit which ensures that one
instruction of an active processing context must be executed before the active processing

context is permitted to bid again for service.

15. The invention according to Claim 7 further comprising a local RAM (1140)
and a program memory, and wherein at least said timed context has a pseudo-queue list
stored in said local RAM which represents an ordered set of pointers to data and program

memory words to be used for scheduling said processing contexts.

16. The invention according to Claim 7 wherein said input/output circuits
include at least one serial and shared memory management unit (1110) comprising a
parallel-to-serial transmitter circuit which is capable of transmitting a plurality of serial word
frames without deadtime, said serial and shared memory management unit having its own
processing context.

17. The invention according to Claim 4 or Claim 16 wherein said input/output
circuits also include a plurality of SCSI interfaces (1100-1106) with each of said SCSI

interfaces having its own programming context.

18. A method of processing input/output signals of different types by a

process control computer, comprising:

defining a plurality of functional contexts corresponding to said different types
of input/output signals;

configuring an input/output processor to have a dedicated program counter

and at least one dedicated general purpose register for each of said functional contexts; and

operating said input/output processor to cycle from one context to another

such that the processing state of a first context is saved in the dedicated program counter
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and dedicated general purpose register of that first context while switching to process a

second context by accessing the program counter of that second context.

19. The method of Claim 18 wherein said input/output processor operates in

synchronism with system clock that defines a fundamental clock interval, and

wherein said step of operating said input/output processor is performed such

that one context is active during a given fundamental clock interval.

20. The method of Claim 19 further comprising subdividing said fundamental
clock interval into a first component and a second component that follows said first

component, and

wherein the processing state of said first context is saved in the dedicated

general purpose register of the first context during the first component of a first fundamental
clock interval, and

wherein the program counter of the second context is accessed in preparation

to process the second context during the second component of the said first fundamental

clock interval.

21. The method of Claim 18 further comprising configuring a second
processor to have a memory space that is shared with said input/output processor and using
said input/output processor to communicate information about said input/output signals to

said second processor by storing said information as data in said shared memory space.

22. The method of Claim 18 further comprising configuring a second
processor to have a memory space that is shared with said input/output processor and using

said input/output processor to supply timing information to said second processor.

23. The method of Claim 18 wherein said plurality of contexts includes a

timed context that oversees the order in which context switching is performed.

24. The method of Claim 18 wherein said functional contexts are assigned
different priorities and wherein said step of operating said input/output processor is

performed by selecting said second context based on priority bidding.

25. A multi-protocol data processing computer for communicating with

multiple processes comprising:
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an input/output (I1/0) processor (1012) for communicating with multiple

processes using different protocols;

said I/O processor having context cycling system for defining a plurality of

independent operating-state contexts, each context devoted to one of said protocols;

said context cycling system having a plurality of program counter registers
and a plurality of general purpose registers each dedicated to said contexts such that each

context has its own program counter register and its own general purpose registers;

said context cycling system having priority encoder for selecting one of said
contexts as the operative context, such that the program counter register and general
purpose registers of the operative context are identified to said I/O processor as the
operative program counter register and the operative general purpose registers, and the

remaining program counter registers and general purpose registers are treated by said /O

processor as inoperative;

said I/O processor communicating with one of said multiple processes by
accessing the operative program counter register and the operative general purpose

registers, such that communication is effected in accordance with the operative context;

said I/O processor saving the state of the contexts not selected as operative
by leaving the contents of the inoperative program counters and general purpose registers

unchanged while communication is effected in accordance with the operative context.

26. A multi-protocol multiprocessor data processing system for

communicating with and controlling multiple processes comprising:

an input/output (I/0O) processor (1012) for communicating with muitiple
processes using different protocols, said 1/0 processor having first private memory (1048)

accessed by said /O processor in communicating with said multiple processes;

a second processor (1014) for executing process control instructions to
control said multiple processes, said second processor having second private memory

(1026) accessed by said second processor in executing process control instructions;
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a shared memory separate from said first and second private memories and
accessed by both said I/O processor and said second processor for establishing

communication between said 1/O processor and said second processor;

said I/0 processor having context cycling system for defining a plurality of

independent operating-state contexts, each context devoted to one of said protocols;

said context cycling system having a plurality of program counter registers
and a plurality of general purpose registers each dedicated to said contexts such that each

context has its own program counter register and its own general purpose registers;

said context cycling system having priority encoder for selecting one of said
contexts as the operative context, such that the program counter register and general
purpose registers of the operative context are identified to said I/0O processor as the
operative program counter register and the operative general purpose registers, and the

remaining program counter registers and general purpose registers are treated by said /O

processor as inoperative;

said 1/O processor communicating with one of said muitiple processes by
accessing the operative program counter register and the operative general purpose

registers, such that communication is effected in accordance with the operative context;

said I/0 processor saving the state of the contexts not selected as operative
by leaving the contents of the inoperative program counters and general purpose registers

unchanged while communication is effected in accordance with the operative context.
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