

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2017277222 B2

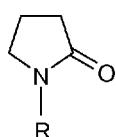
- (54) Title
Use of N-substituted pyrrolidones to promote the penetration of agrochemical active agents
- (51) International Patent Classification(s)
A01N 25/02 (2006.01) **A01N 43/36** (2006.01)
- (21) Application No: **2017277222** (22) Date of Filing: **2017.05.19**
- (87) WIPO No: **WO17/211572**
- (30) Priority Data
- (31) Number
10 2016 210 164.1 (32) Date
2016.06.08 (33) Country
DE
- (43) Publication Date: **2017.12.14**
(44) Accepted Journal Date: **2022.03.31**
- (71) Applicant(s)
Clariant International Ltd
- (72) Inventor(s)
Aponte, John; Baur, Peter; Schweinitzer, Gerd; Milbradt, Robert; Arnold, Roland; Bodelon, Luciana; Weick, Tanja
- (74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU
- (56) Related Art
WO 2010/023198 A1

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
14. Dezember 2017 (14.12.2017)

(10) Internationale Veröffentlichungsnummer
WO 2017/211572 A1


- (51) Internationale Patentklassifikation:
A01N 25/02 (2006.01) *A01N 43/36* (2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (21) Internationales Aktenzeichen: PCT/EP2017/062180
- (22) Internationales Anmeldedatum: 19. Mai 2017 (19.05.2017)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
10 2016 210 164.1 08. Juni 2016 (08.06.2016) DE
- (71) Anmelder: **CLARIANT INTERNATIONAL LTD**
[CH/CH]; Rothausstr. 61, 4132 Muttenz (CH).
- (72) Erfinder: **APONTE, John**; Erlenweg 2, 79639 Grenzach-Wyhlen (DE). **BAUR, Peter**; Schulstrasse 5, 86938 Schondorf (DE). **SCHWEINITZER, Gerd**; Mumm-von-Schwarzensteinstrasse 43, 65934 Frankfurt am Main (DE). **MILBRADT, Robert**; Gerhardt-Katsch-Strasse 5, 65191 Wiesbaden (DE). **ARNOLD, Roland**; Lindenstrasse 3, 65627 Elbtal (DE). **BODELON, Luciana**; Josef-Brenner-Weg 19, 65934 Frankfurt am Main (DE). **WEICK, Tanja**; Frankfurter Strasse 101a, 65779 Kelkheim (DE).
- (74) Anwalt: **PACZKOWSKI, Marcus**; Industriepark Höchst / G 860, 65926 Frankfurt (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

Veröffentlicht:

- mit internationalem Recherchenbericht (Artikel 21 Absatz 3)

(54) **Title:** USE OF N-SUBSTITUTED PYRROLIDONES TO PROMOTE THE PENETRATION OF AGROCHEMICAL ACTIVE AGENTS

(54) **Bezeichnung:** VERWENDUNG VON N-SUBSTITUIERTEN PYRROLIDONEN ZUR FÖRDERUNG DER PENETRATION VON AGROCHEMISCHEN WIRKSTOFFEN

(57) **Abstract:** Use of N-substituted pyrrolidones to promote the penetration of agrochemical active agents. The use of one or more N-substituted pyrrolidones of the formula (I), (I) wherein R signifies (I) a linear or branched, saturated alkyl group with 3 to 6 carbon atoms, wherein in the alkyl group, hydrogen -H can be substituted by a methoxy group -OCH₃, and wherein 1 to 6 hydrogens -H of the pyrrolidone ring can be substituted by methyl -CH₃, to promote the penetration of agrochemical active agents in plants or in non-plant-based harmful organisms is described.

(57) **Zusammenfassung:** Verwendung von N-substituierten Pyrrolidonen zur Förderung der Penetration von agrochemischen Wirkstoffen. Es wird die Verwendung eines oder mehrerer N-substituierter Pyrrolidone der Formel (I), (I) worin R eine lineare oder verzweigte, gesättigte Alkylgruppe mit 3 bis 6 Kohlenstoffatomen bedeutet, wobei in der Alkylgruppe ein Wasserstoff -H durch eine Methoxygruppe -OCH₃ ersetzt sein kann, und wobei 1 bis 6 Wasserstoffe -H des Pyrrolidonrings durch Methyl -CH₃ ersetzt sein können, zur Förderung der Penetration von agrochemischen Wirkstoffen in Pflanzen oder in nicht-pflanzliche Schadorganismen beschrieben.

Use of N-substituted pyrrolidones to promote the penetration of agrochemical active agents

The invention relates to the use of particular N-substituted pyrrolidones to promote

5 the penetration of active agrochemical ingredients into plants or into non-plant harmful organisms and to a corresponding method of promoting the penetration of active agrochemical ingredients into plants or into non-plant harmful organisms, and to crop protection compositions comprising particular N-substituted pyrrolidones.

10

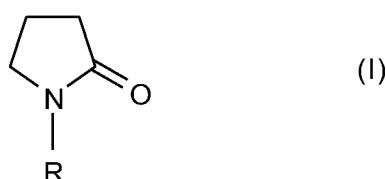
A general problem affecting the application of active agrochemical ingredients is that only a fraction of the active ingredients develops the desired activity. The greater portion is often lost unutilized, in that the active ingredient does not reach the leaves or roots of the plant on deployment, for example, of a spray liquor, but seeps away unutilized in the soil, is not well assimilated at the target plant, is washed away by rain or is simply not properly absorbed by the plant. But another problem may also be that the active agrochemical ingredient does not penetrate in a sufficient amount, if at all, into non-plant harmful organisms that are to be controlled and hence does not display its full efficacy.

15

For better absorption of active agrochemical ingredients into plants, an important role is played, for example, by substances that promote the penetration of active agrochemical ingredients into the plants. Typical representatives are esterified vegetable oils which increase the penetration rate through the leaf surface, or

20 surfactants and mineral oils which increase the contact area. However, agents with these mechanisms of action are often in need of improvement for reasons such as inadequate plant compatibility, problems with use or stability in formulations or application liquids, inadequate action, excessive application rates or costs. Furthermore, it would be desirable also to provide substances that 25 promote the penetration of active agrochemical ingredients into non-plant harmful organisms.

30

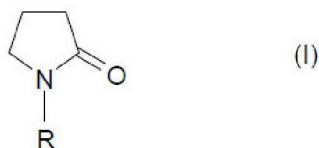

The problem addressed was thus that of providing substances that are advantageously suitable for promotion of penetration of active agrochemical ingredients into plants or into non-plant harmful organisms.

SUMMARY OF THE INVENTION

In a first aspect there is provided a method for improving the penetration of one or more active agrochemical ingredients into a plant, or a non-plant harmful organism, said method comprising applying a penetrating composition to said plant or non-plant harmful organism, wherein said penetrating composition comprises:

the one or more active agrochemical ingredients; and

at least about 0.2 wt% of an N-substituted pyrrolidone of formula (I)

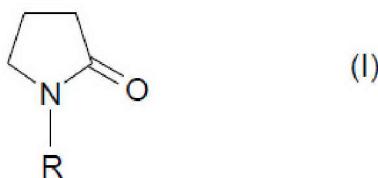

wherein

R is a linear or branched, saturated alkyl group having 3 to 6 carbon atoms, which is optionally substituted with a methoxy group $-\text{OCH}_3$, and

the pyrrolidone ring of formula (I) is optionally substituted with from 1 to 6 methyl $-\text{CH}_3$ groups;

such that 6 hours after said application, the weight concentration of the one or more active agrochemical ingredients in said plant, or said non-plant harmful organism is at least about 1.1 times the weight concentration of said one or more active agrochemical ingredients in a substantially identical plant or non-plant harmful organism 6 hours after it has been treated with a control composition, said control composition not comprising the N-substituted pyrrolidone, but otherwise being identical to said penetrating composition.

It has now been found that, surprisingly, N-substituted pyrrolidones of the formula (I)



in which

R is a linear or branched, saturated alkyl group having 3 to 6, preferably 3 to 5 and more preferably 4 carbon atoms, where one hydrogen –H in the alkyl group may be replaced by a methoxy group –OCH₃,

and where 1 to 6 hydrogens –H in the pyrrolidone ring may be replaced by methyl –CH₃, may be advantageously suitable for promotion of the penetration of one or more active agrochemical ingredients into plants or into non-plant harmful organisms.

Disclosed herein is the use of one or more N-substituted pyrrolidones of the formula (I)

in which

R is a linear or branched, saturated alkyl group having 3 to 6, preferably 3 to 5 and more preferably 4 carbon atoms, where one hydrogen –H in the alkyl group may be replaced by a methoxy group –OCH₃,

and where 1 to 6 hydrogens –H in the pyrrolidone ring may be replaced by methyl –CH₃,

for promotion of the penetration of one or more active agrochemical ingredients into plants or into non-plant harmful organisms.

5

The one or more N-substituted pyrrolidones of the formula (I) are correspondingly N-substituted 2-pyrrolidones, meaning that the carbonyl group CO of the pyrrolidone ring is adjacent to the ring nitrogen N.

- 10 The effect of the N-substituted pyrrolidones of the formula (I) as penetrant increases the biological efficacy of active agrochemical ingredients by enhanced penetration thereof into the plants, for example into the cuticle, or into the non-plant harmful organisms. More particularly, in the presence of one or more N-substituted pyrrolidones of the formula (I), more active agrochemical ingredient is
- 15 absorbed into the plant or into the non-plant harmful organism compared to the situation where no N-substituted pyrrolidones of the formula (I) are present on employment of the active agrochemical ingredient.

- 20 The N-substituted pyrrolidones of the formula (I) feature a very advantageous toxicological and ecological profile. With the aid of the N-substituted pyrrolidones of the formula (I), it is possible to produce crop protection composition formulations without any reproduction-endangering effect and with high biological efficacy.

- 25 The N-substituted pyrrolidones of the formula (I) have good dissolving properties and enable a high loading of crop protection compositions with active agrochemical ingredient. It is possible here for the N-substituted pyrrolidones to serve as polar aprotic solvents in particular.

- For example, it is possible to use N-(n-butyl)-2-pyrrolidone to prepare solutions of azoxystrobin in an amount of greater than 20% by weight, solutions of tebuconazole in an amount of greater than 50% by weight, solutions of prothioconazole in an amount of greater than 35% by weight, solutions of imidacloprid in an amount of greater than 15% by weight, solutions of metribuzin in an amount of greater than 50% by weight, solutions of saflufenacil in an amount of

greater than 20% by weight and solutions of thiacloprid in an amount of greater than 15% by weight, where the amount of active ingredient specified is based in each case on the total weight of the solution.

- 5 Owing to the high water solubility of the N-substituted pyrrolidones of the formula (I), these can be used, for example, as the sole liquid phase in crop protection compositions or else combined with water, for example, in water-soluble concentrates (SL).
- 10 In addition, the N-substituted pyrrolidones of the formula (I) can also be combined advantageously with various water-immiscible solvents and may serve as cosolvents in solvent-containing formulations, for example in emulsion concentrates (EC), oil dispersions (OD), suspoemulsions (SE) and microemulsions (ME). N-(n-Butyl)-2-pyrrolidone in particular is miscible in all ratios with many solvents, for example with water, propylene glycol, polyethylene glycol, dimethylamide, Solvesso® 200 ND, alkylated vegetable oil or mineral oils.
- 15

- 20 With the aid of the N-substituted pyrrolidones of the formula (I), it is possible to produce storage-stable crop protection compositions and preferably storage-stable liquid crop protection compositions.

- 25 WO 2013/107822 discloses the use of N-substituted pyrrolidones as “non-reprotoxic” solvents, i.e. solvents with no reproduction-endangering effect. WO 2013/107822 also states that the solvents can be used in agrochemical formulations as solvents, diluents or dispersants.

- 30 WO 2005/104844 describes the use of carboxamides of the formula $R^1-CO-NR^2R^3$ in which R^1 is C_3-C_{19} -alkyl, R^2 is C_1-C_6 alkyl and R^3 is H or C_1-C_6 -alkyl for promoting the penetration of active agrochemical ingredients into plants. These carboxamides are acyclic compounds.

EP 0 453 915 A1 discloses the use of N-alkyllactams substituted on the nitrogen N of the ring by an alkyl group having 6 to 18 carbon atoms for prevention of

crystallization especially of particular azole derivative active ingredients on deployment of aqueous spray liquors. The N-alkyllactams may, for example, be the corresponding N-alkylpyrrolidones.

- 5 In a particularly preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I) are used to promote the penetration of one or more active agrochemical ingredients into plants.

10 In a further particularly preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I) are used to promote the penetration of one or more active agrochemical ingredients into non-plant harmful organisms.

15 In a further particularly preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I) are used both to promote the penetration of one or more active agrochemical ingredients into plants and to promote the penetration of one or more active agrochemical ingredients into non-plant harmful organisms. This may be the case particularly when the non-plant harmful organisms have colonized the plant which has been treated with the one or more N-substituted pyrrolidone(s) of the formula (I) and the one or more active 20 agrochemical ingredients, and hence likewise come into contact with these substances. The promotion of penetration into the plant on the one hand and into the non-plant harmful organism on the other hand can take place either simultaneously or successively, for example depending on whether the non-plant harmful organism had already colonized the plant when it was treated with the one 25 or more N-substituted pyrrolidones of the formula (I) and the one or more active agrochemical ingredients or colonized the plant only thereafter.

30 Preferably, the one or more N-substituted pyrrolidones of the formula (I) are selected from the group consisting of N-(n-butyl)-2-pyrrolidone, N-(isobutyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-(methyl-substituted butyl)-2-pyrrolidone, ring methyl-substituted N-(propyl)-2-pyrrolidone, ring methyl-substituted N-(butyl)-2-pyrrolidone and N-(methoxypropyl)-2-pyrrolidone.

- The N-substituted pyrrolidones of the formula (I) used in accordance with the invention include compounds in which 1 to 6 hydrogens –H in the pyrrolidone ring may be replaced by methyl –CH₃. In the context of the present application, these 5 compounds are also referred to as "ring methyl-substituted N-substituted pyrrolidones" of the formula (I). The ring methyl substitution may be present at position 3, 4 or 5 of the pyrrolidone ring. The ring methyl substitution may be a substitution of the ring by a methyl group. But it also includes, for example, ring 10 dimethyl substitutions, preferably at two different positions in the pyrrolidone ring, for example at positions 3 and 4, 3 and 5 or 4 and 5 of the pyrrolidone ring. Ring methyl substitution additionally includes ring trimethyl substitutions, preferably trimethyl substitution at positions 3, 4 and 5 of the pyrrolidone ring of the ring 15 methyl-substituted N-substituted pyrrolidones of the formula (I).
- 15 Among the ring methyl-substituted N-substituted pyrrolidones of the formula (I), the various ring methyl-substituted N-(propyl)-2-pyrrolidones and ring methyl-substituted N-(butyl)-2-pyrrolidones of the formula (I) are preferred, the ring 20 methyl-substituted N-(n-propyl)-, N-(isopropyl)-, N-(n-butyl)-, N-(isobutyl)-, N-(tert-butyl)-, N-(sec-butyl)- and N-(1-methylpropyl)-2-pyrrolidones of the formula (I) are particularly preferred, and the ring methyl-substituted N-(n-butyl)-2-pyrrolidones of the formula (I) are especially preferred.
- 25 Preferably, in the one or more N-substituted pyrrolidones of the formula (I), no hydrogen –H in the pyrrolidone ring is replaced by methyl –CH₃.
- Further preferably, in the alkyl group of the R radical of the one or more N-substituted pyrrolidones of the formula (I), no hydrogen –H is replaced by a methoxy group –OCH₃.
- 30 More preferably, the N-substituted pyrrolidone of the formula (I) is N-(n-butyl)-2-pyrrolidone.

The N-substituted pyrrolidones of the formula (I) are used in accordance with the invention individually or in the form of mixtures.

5 The N-substituted pyrrolidones of the formula (I) are either commercially available or synthesizable by methods familiar to the person skilled in the art.

In a preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I), in the use of the invention, are used in a crop protection composition comprising

- 10 a) 1% to 90% by weight and preferably 5% to 70% by weight of one or more N-substituted pyrrolidones of the formula (I) and
b) 1% to 90% by weight and preferably 2.5% to 70% by weight of one or more active agrochemical ingredients.

15

The crop protection compositions just mentioned and those used in the case of use of the invention may contain one or more additives. They contain preferably 0% to 98% by weight and more preferably 1% to 60% by weight of one or more additives.

20

In a further preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I), in the use of the invention, are used in a crop protection composition comprising

- 25 a) 1% to 50% by weight, preferably 5% to 40% by weight and more preferably 5% to 30% by weight of one or more N-substituted pyrrolidones of the formula (I) and
b) 1% to 90% by weight, preferably 5% to 60% by weight and more preferably 2.5% to 50% by weight of one or more active agrochemical ingredients.

30

The crop protection compositions just mentioned and those used in the case of use of the invention may contain one or more additives. They contain preferably

0% to 98% by weight and more preferably 1% to 50% by weight of one or more additives.

In a preferred embodiment of the invention, the crop protection compositions used

5 in the case of use of the invention contain water.

The one or more N-substituted pyrrolidones of the formula (I) may, in the use of the invention, also be employed in a tankmix additive, meaning that they are not an integrated constituent of the crop protection composition. Instead, *inter alia*,

10 one or more active agrochemical ingredients on the one hand and the N-substituted pyrrolidones of the formula (I) on the other hand are in separate form.

The two components are mixed with one another prior to the deployment, generally shortly beforehand. Prior to the deployment, it is also possible to add further components, for example optionally one or more additives and/or water. In principle, this gives rise to a crop protection composition comprising one or more active agrochemical ingredients, one or more N-substituted pyrrolidones of the formula (I), and optionally one or more additives and/or water, albeit only briefly.

20 In a further preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I), in the use of the invention, are used in a tankmix additive containing 1% to 90% by weight, preferably 5% to 50% by weight and more preferably 5% to 20% by weight of one or more N-substituted pyrrolidones of the formula (I), and additionally one or more additives and optionally water. The amount of the one or more additives in the tankmix additive is preferably 5% to 25 95% by weight, more preferably 10% to 90% by weight and especially preferably 20% to 80% by weight.

30 The respective area- and/or object-based application rate of the crop protection compositions of a wide variety of different formulation types for use for the use of the invention is subject to very significant variation. In general, for this purpose, the application media known to the person skilled in the art to be standard for the respective field of use are used in the standard amounts, for example from fifty to several hundred liters of water per hectare in standard spraying methods through

a few liters of oil per hectare in "ultralow volume" aircraft application up to a few milliliters of a physiological solution in injection methods. The concentrations of the crop protection compositions in the respective application media therefore vary within a wide range and are dependent on the respective field of use. In general,

- 5 concentrations that are known to the person skilled in the art to be standard for the respective field of use are used.

The crop protection compositions may be deployed, for example, in the formulation forms customary for liquid preparations either as they are or after prior 10 dilution with water, i.e., for example, as emulsions, suspensions or solutions. Application is effected by customary methods, i.e., for example, by spraying, pouring or injecting.

The application rate of the crop protection compositions can be varied within a 15 relatively wide range. It is guided by the respective active agrochemical ingredients and by the content thereof in the formulations.

In a further preferred embodiment of the invention, the one or more N-substituted pyrrolidones of the formula (I), in the use of the invention, are used in a crop

- 20 protection composition in the form of an aqueous spray liquor. These aqueous spray liquors preferably contain

- a) 0.001% to 99% by weight, more preferably 0.01% to 50% by weight and especially preferably 0.02% to 1% by weight of one or more N-substituted pyrrolidones of the formula (I) and
- 25 b) 0.001% to 10% by weight, more preferably 0.002% to 5% by weight and especially preferably 0.0025% to 3% by weight of one or more active agrochemical ingredients.

The aqueous spray liquors just mentioned and those used in the case of use of the 30 invention may contain one or more additives. They contain preferably 0% to 99% by weight and more preferably 0.01% to 80% by weight of one or more additives.

The stated amounts relating to the N-substituted pyrrolidones of the formula (I), the active agrochemical ingredients and the additives are based on the total weight of the crop protection compositions used in the case of use of the invention and, in the case of active agrochemical ingredients that are acids in protonated

- 5 form but are used in the form of their water-soluble salts, on the amount of free acid, called the acid equivalent (a.e.).

In the context of the present description, active agrochemical ingredients are understood to mean all active ingredients having biological efficacy that can be

- 10 increased by enhanced penetration into a crop plant or harmful plant or into a non-plant harmful organism.

Preferred active agrochemical ingredients are selected from pesticides. Pesticides, the majority of which are herbicides, are chemical substances, synthetically

- 15 produced or of natural origin, that penetrate into plant cells or plant tissue or into parasitic organisms or non-plant harmful organisms in or on the plant and damage and/or destroy them. Preferred pesticides are selected from the group consisting of fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, plant growth regulators, plant nutrients, repellents, molluscicides and rodenticides.

- 20 Particularly preferred pesticides are selected from the group consisting of herbicides, fungicides and insecticides.

Examples of herbicides include:

- 25 Active ingredients based on inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoenesaturase, photosystem I, photosystem II, protoporphyrinogen oxidase, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide
- 30 Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and literature cited therein. Examples of known herbicides or plant growth regulators include the active ingredients which follow (the compounds are designated by the "common name" according to the International Organization

for Standardization (ISO) or by the chemical name or by the code number) and always encompass all use forms, such as acids, salts, esters and isomers, such as stereoisomers and optical isomers. This list includes, by way of example, one use form and in some cases also a plurality of use forms:

5

acetochlor, acibenzolar, acibenzolar-S-methyl, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, aloxydim, aloxydim-sodium, ametryne,

amicarbazone, amidochlor, amidosulfuron, aminocyclopyrachlor,

aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid,

10 amitrole, ammonium sulfamate, ancymidol, anilofos, asulam, atrazine, aviglycine, azafenidin, azimsulfuron, aziprotryne, beflubutamid, benazolin, benazolin-ethyl,

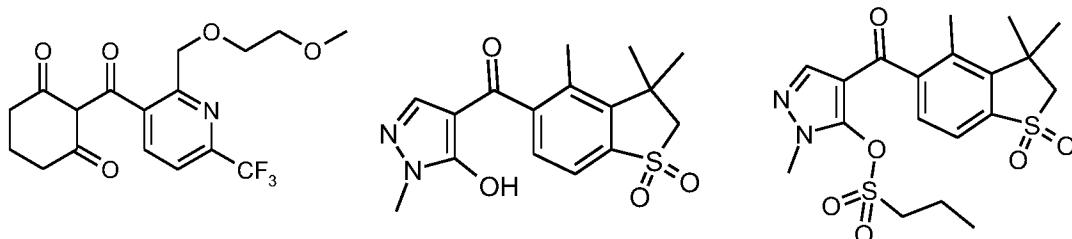
bencarbazone, benfluralin, benfuresate, bensulide, bensulfuron, bensulfuron-methyl, bentazone, benzfendizone, benzobicyclon, benzofenap, benzofluor,

benzoylprop, benzyladenine, bicyclopyrone, bifenoxy, bilanafos, bilanafos-sodium,

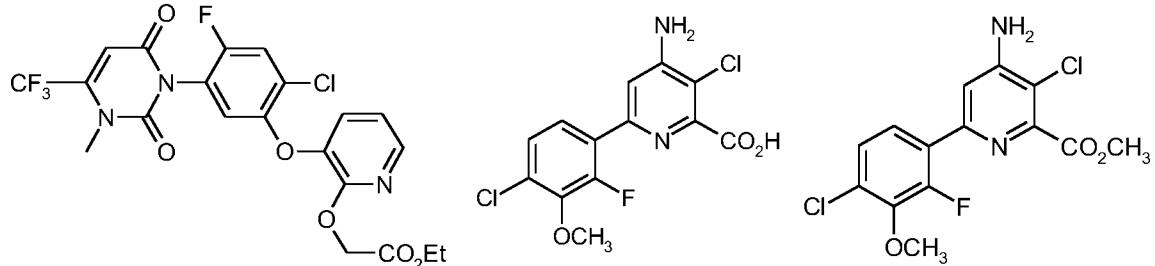
15 bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxyim, bromoxynil, bromuron, buminafos, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butoxydim, butylate, cafenstrole, carbaryl, carbetamide, carfentrazone, carfentrazone-ethyl, carvone, chlorocholine chloride, chlomethoxyfen, chloramben, chlorazifop, chlorazifop-butyl, chlorbromuron, chlorbufam, chlortenac, chlorfenac-

20 sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlormequat-chloride, chlornitrofen, 4-chlorophenoxyacetic acid, chlorophthalim, chlorpropham, chlorthal-dimethyl, chlortoluron, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clodinafop-propargyl, clofencet, clomazone, clomeprop, cloprop, clopyralid, cloransulam,

25 cloransulam-methyl, cloxyfonac, cumyluron, cyanamide, cyanazine, cyclanilide, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop, cyhalofop-butyl, cyperquat, cyprazine, cyprazole, cytokinins, 2,4-D, 2,4-DB, daimuron/dymron, dalapon, daminozide, dazomet, n-decanol, desmedipham, desmetryn, detosyl-pyrazolate (DTP), diallate, daminozide, dicamba, dichlobenil, dichlorprop,


30 dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, diethatyl, diethatyl-ethyl, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dikegulac-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimetrasulfuron,

dinitramine, dinoseb, dinoterb, diphenamid, diisopropylnaphthalene, dipropetryn, diquat, diquat-dibromide, dithiopyr, diuron, DNOC, eglinazine-ethyl, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethyl naphthylacetate, ethephon, ethidimuron, ethiozin, ethofumesate, ethoxyfen, 5 ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-5331, i.e. N-[2-chloro-4-fluoro-5-[4-(3-fluoropropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]phenyl]ethanesulfonamide, F-7967, i.e. 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione, fenoprop, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fentrazamide, fenuron, 10 flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet (thiafluamide), flufenpyr, flufenpyr-ethyl, flumetralin, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluoroglycofen, fluoroglycofen- 15 ethyl, flupoxam, flupropacil, flupropanate, fluprysulfuron, fluprysulfuron-methyl-sodium, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyrr, fluroxypyrr-meptyl, flurprimidol, flurtamone, fluthiacet, fluthiacet-methyl, fluthiamide, fomesafen, foramsulfuron, forchlorfenuron, fosamine, furyloxyfen, gibberellic acid, glufosinate, glufosinate-ammonium, glufosinate-P, glufosinate-P-ammonium, 20 glufosinate-P-sodium, glyphosate, glyphosate-isopropylammonium, H-9201, i.e. O-(2,4-dimethyl-6-nitrophenyl) O-ethyl isopropylphosphoramidothioate, halosafen, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. 1-(dimethoxyphosphoryl)ethyl (2,4-dichlorophenoxy)acetate, 25 imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, inabenfide, indanofan, indaziflam, indoleacetic acid (IAA), 4-indol-3-ylbutyric acid (IBA), iodosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, 30 ioxynil, ipfencarbazone, isocarbamid, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapryifop, KUH-043, i.e. 3-({[5-(difluoromethyl)-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole, karbutilate, ketospiradox, lactofen, lenacil, linuron, maleic


hydrazide, MCPA, MCPB, MCPB-methyl, -ethyl and -sodium, mecoprop, mecoprop-sodium, mecoprop-butotyl, mecoprop-P-butotyl, mecoprop-P-dimethylammonium, mecoprop-P-2-ethylhexyl, mecoprop-P-potassium, mefenacet, mefluidide, mepiquat-chloride, mesosulfuron, mesosulfuron-methyl, 5 mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazasulfuron, methazole, methiopyrsulfuron, methiozolin, methoxyphenone, methyldymron, 1-methylcyclopropene, methyl isothiocyanate, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monalide, monocarbamide, 10 monocarbamide dihydrogensulfate, monolinuron, monosulfuron, monosulfuron ester, monuron, MT-128, i.e. 6-chloro-N-[(2E)-3-chloroprop-2-en-1-yl]-5-methyl-N-phenylpyridazin-3-amine, MT-5950, i.e. N-[3-chloro-4-(1-methylethyl)phenyl]-2-methylpentanamide, NGGC-011, 1-naphthylacetic acid (NAA), naphthylacetamide (NAAm), 2-naphthoxyacetic acid, naproanilide, napropamide, naptalam, NC-310, 15 i.e. 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, neburon, nicosulfuron, nipyraclofen, nitralin, nitrofen, nitroguaiacolate, nitrophenolate-sodium (isomer mixture), nitrofluorfen, nonanoic acid, norflurazon, orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paclobutrazole, paraquat, paraquat dichloride, pelargonic acid (nonanoic acid), 20 pendimethalin, pendralin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxamid, phenisopham, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, pirifenop, pirifenop-butyl, pretilachlor, primisulfuron, primisulfuron-methyl, probenazole, profluazole, procyzazine, prodiamine, prifluraline, profoxydim, prohexadione, prohexadione-calcium, 25 prohydrojasmone, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfalin, prosulfocarb, prosulfuron, prynachlor, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-30 isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl,

- rimisulfuron, saflufenacil, secbumeton, sethoxydim, siduron, simazine, simetryn, SN-106279, i.e. methyl (2R)-2-({7-[2-chloro-4-(trifluoromethyl)phenoxy]-2-naphthyl}oxy)propanoate, sulcotrione, sulfallate (CDEC), sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate (glyphosate-trimesium),
- 5 sulfosulfuron, SW-065, SYN-523, SYP-249, i.e. 1-ethoxy-3-methyl-1-oxobut-3-en-2-yl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, SYP-300, i.e. 1-[7-fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidine-4,5-dione, tebutam, tebuthiuron, tecnazene, tefuryltrione, tembotrione, tepraloxymid, terbacil, terbucarb, terbuchlor, terbumeton,
- 10 terbutylazine, terbutryne, thenylchlor, thiafluamide, thiazafluron, thiazopyr, thidiazimin, thidiazuron, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, triafamone, triallate, triasulfuron, triaziflam, triazofenamide, tribenuron, tribenuron-methyl, tribufos, trichloroacetic acid (TCA), triclopyr, tridiphane, trietazine,
- 15 trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trimeturon, trinexapac, trinexapac-ethyl, tritosulfuron, tsitodef, uniconazole, uniconazole-P, vernolate, ZJ-0862, i.e. 3,4-dichloro-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}aniline, and the following compounds:

20

25

30

Examples of plant growth regulators include the following: abscisic acid, amidochlor, ancytidol, 6-benzylaminopurine, brassinolide, brassinosteroids, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpyridine, ethephon, flumetralin, 5 flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfid, indole-3-acetic acid, jasmonic acid, kinetin, maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), 1-naphthylacetic acid, N-6-benzyladenine, paclobutrazole, prohexadione (prohexadione-calcium), prohydrojasmon, salicylic acid and its esters, thidiazuron, triapenthenol, tributyl phosphorotriethioate, 2,3,5-triiodobenzoic acid, trinexapac-10 ethyl and uniconazole.

Further substances that should be mentioned are those which can act as plant growth regulators and/or plant fortifiers, in order to reduce the effect of stress factors such as heat, cold, drought, salt, oxygen deficiency or flooding on plant 15 growth. Examples of these include glycine betaine (betaine), choline, potassium phosphate or other phosphate salts, and silicates.

Examples of plant nutrients include customary inorganic or organic fertilizers for supplying plants with macro- and/or micronutrients.

20

Examples of fungicides include:

(1) Ergosterol biosynthesis inhibitors, for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, 25 diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifin, nuarimol, oxpoconazole, paclobutrazole, pefurazoate, 30 penconazole, piperalin, prochloraz, propiconazole, prothioconazole, pyributicarb, pyrifenox, quinconazole, simeconazole, spiroxamine, tebuconazole, terbinafine, tetriconazole, triadimefon, triadimenol, tridemorph, triflumizole, triforine, triticonazole, uniconazole, uniconazole-p, viniconazole, voriconazole, 1-(4-

chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptanol, methyl 1-(2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)-1H-imidazole-5-carboxylate, N'-{5-(difluoromethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N-methylimidoformamide, N-ethyl-N-methyl-N'-{2-methyl-5-(trifluoromethyl)-4-[3-

5 (trimethylsilyl)propoxy]phenyl}imidoformamide and O-[1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl] 1H-imidazole-1-carbothioate.

(2) Respiration inhibitors (respiratory chain inhibitors), for example bixafen, boscalid, carboxin, diflumetorim, fenfuram, fluopyram, flutolanil, fenpicoxamid,

10 fluxapyroxad, furametpyr, furmecyclo, isopyrazam mixture of the syn-epimeric racemate 1RS,4SR,9RS and of the anti-epimeric racemate 1RS,4SR,9SR, isopyrazam (anti-epimeric racemate), isopyrazam (anti-epimeric enantiomer 1R,4S,9S), isopyrazam (anti-epimeric enantiomer 1S,4R,9R), isopyrazam (syn-epimeric racemate 1RS,4SR,9RS), isopyrazam (syn-epimeric enantiomer 1R,4S,9R), isopyrazam (syn-epimeric enantiomer 1S,4R,9S), mepronil,

15 oxycarboxin, penflufen, penthiopyrad, sedaxane, thifluzamid, 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3,3-

20 hexafluoropropoxy)phenyl]-1-methyl-1H-pyrazole-4-carboxamide, N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, 5,8-difluoro-N-[2-(2-fluoro-4-[(4-(trifluoromethyl)pyridin-2-yl]oxy)phenyl]ethyl]quinazolin-4-amine, N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide and N-[(1R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide.

30 (3) Respiration inhibitors (respiratory chain inhibitors) acting on complex III of the respiratory chain, for example ametoctradin, amisulbrom, azoxystrobin, cyazofamid, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, famoxadone, fenamidone, fenoxyystrobin, fluoxastrobin, kresoxim-methyl,

- metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyribencarb, triclopyricarb, trifloxystrobin, (2E)-2-(2-{{6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl}oxy}phenyl)-2-(methoxyimino)-N-methylethanamide, (2E)-2-(methoxyimino)-N-methyl-2-(2-{{(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino}oxy)methyl]phenyl)ethanamide, (2E)-2-(methoxyimino)-N-methyl-2-{2-[(E)-{1-[3-(trifluoromethyl)phenyl]ethoxy}imino)methyl]phenyl}ethanamide, (2E)-2-{2-{{(1E)-1-(3-[(E)-1-fluoro-2-phenylethenyl]oxy)phenyl}ethylidene}amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, (2E)-2-{2-{{(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2-ylidene}amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, 2-chloro-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)pyridine-3-carboxamide, 5-methoxy-2-methyl-4-{2-{{(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino}oxy)methyl]phenyl}-2,4-dihydro-3H-1,2,4-triazol-3-one, methyl (2E)-2-{2-{{cyclopropyl[(4-methoxyphenyl)imino]methyl}sulfanyl)methyl]phenyl}-3-methoxyprop-2-enoate, N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-(formylamino)-2-hydroxybenzamide, 2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide and (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide.
- (4) Mitosis and cell division inhibitors, for example benomyl, carbendazim, chlорfenazole, diethofencarb, ethaboxam, fluopicolide, fuberidazole, pencycuron, thiabendazole, thiophanate-methyl, thiophanate, zoxamide, 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine and 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine.
- (5) Compounds with multisite activity, for example Bordeaux mixture, captafol, captan, chlorothalonil, copper preparations such as copper hydroxide, copper naphthenate, copper oxide, copper oxychloride, copper sulfate, dichlofluanid, dithianon, dodine, dodine free base, ferbam, fluorofolpet, folpet, guazatine, guazatine acetate, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, metiram zinc, oxine-copper,

propamidine, propineb, sulfur and sulfur preparations, for example calcium polysulfide, thiram, tolylfluanid, zineb and ziram.

(6) Resistance inductors, for example acibenzolar-S-methyl, isotianil,

5 probenazole and tiadinil.

(7) Amino acid and protein biosynthesis inhibitors, for example andoprim,

blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate,

mepanipyrim, pyrimethanil and 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-

10 dihydroisoquinolin-1-yl)quinoline.

(8) Inhibitors of ATP production, for example fentin acetate, fentin chloride,

fentin hydroxide and silthiofam.

15 (9) Cell wall synthesis inhibitors, for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, validamycin A and valifenalate.

(10) Lipid and membrane synthesis inhibitors, for example biphenyl, chloroneb,

20 dicloran, edifenphos, etridiazole, iodocarb, iprobenfos, isoprothiolane, propamocarb, propamocarb hydrochloride, prothiocarb, pyrazophos, quintozene, tecnazene and tolclofos-methyl.

(11) Melanin biosynthesis inhibitors, for example carpropamid, diclocymet, fenoxanil, fthalide, pyroquilon, tricyclazole and 2,2,2-trifluoroethyl {3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl}carbamate.

(12) Nucleic acid synthesis inhibitors, for example benalaxyl, benalaxyl-M (kiralaxy), bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, 30 metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl and oxolinic acid.

(13) Signal transduction inhibitors, for example chlozolinate, fenpiclonil,

fludioxonil, iprodione, procymidone, quinoxyfen and vinclozolin.

- (14) Decouplers, for example binapacryl, dinocap, ferimzone, fluazinam and meptyldinocap.
- 5 (15) Further compounds, for example benthiazole, bethoxazin, capsimycin, carvone, chinomethionat, pyriofenone (chlazafenone), cufraneb, cyflufenamid, cymoxanil, cyprosulfamide, dazomet, debacarb, dichlorophen, diclomezine, difenzoquat, difenzoquat methylsulfate, diphenylamine, ecomat, fenpyrazamine, flumetover, fluoromide, flusulfamide, flutianil, fosetyl-aluminum, fosetyl-calcium, 10 fosetyl-sodium, hexachlorobenzene, irumamycin, methasulfocarb, methyl isothiocyanate, metrafenon, mildiomycin, natamycin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, octhilinone, oxamocarb, oxyfenthiin, pentachlorophenol and salts thereof, phenothrin, phosphoric acid and salts thereof, propamocarb-fosetylate, propanosine-sodium, proquinazid, pyrimorph, 15 (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, pyrrolnitrin, tebufloquin, tecloftalam, tolifanid, triazoxide, trichlamide, zarilamide, (3S,6S,7R,8R)-8-benzyl-3-[{(3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl 2-methylpropanoate, 1-(4-{4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 20 1-(4-{4-[(5-2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 1-(4-[(5-2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 25 1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl 1H-imidazole-1-carboxylate, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one, 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetrone, 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5R)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 30 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5S)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-{4-[4-(5-phenyl-4,5-dihydro-1,2-oxazol-3-yl)-1,3-thiazol-2-

- yl]piperidin-1-yl}ethanone, 2-butoxy-6-iodo-3-propyl-4H-chromen-4-one, 2-chloro-5-[2-chloro-1-(2,6-difluoro-4-methoxyphenyl)-4-methyl-1H-imidazol-5-yl]pyridine, 2-phenylphenol and salts thereof, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3,4,5-trichloropyridine-2,6-dicarbonitrile, 3-[5-(4-chlorophenyl)-2,3-dimethyl-1,2-oxazolidin-3-yl]pyridine, 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, 5-amino-1,3,4-thiadiazole-2-thiol, 5-chloro-N'-phenyl-N'-(prop-2-yn-1-yl)thiophene-2-sulfonohydrazide, 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine, 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine, 5-methyl-6-octyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, ethyl (2Z)-3-amino-2-cyano-3-phenylprop-2-enoate, N'-(4-{{3-(4-chlorobenzyl)-1,2,4-thiadiazol-5-yl}oxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, N-[(4-chlorophenyl)(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4-dichloropyridine-3-carboxamide, N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloropyridine-3-carboxamide, N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodopyridine-3-carboxamide, N-{{(E)}-[(cyclopropylmethoxy)imino]}[6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide, N-{{(Z)}-[(cyclopropylmethoxy)imino]}[6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide, N'-{4-[(3-tert-butyl-4-cyano-1,2-thiazol-5-yl)oxy]-2-chloro-5-methylphenyl}-N-ethyl-N-methylimidoformamide, N-methyl-2-(1-{{5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl}acetyl}piperidin-4-yl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-thiazole-4-carboxamide, N-methyl-2-(1-{{5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl}acetyl}piperidin-4-yl)-N-[(1R)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide, N-methyl-2-(1-{{5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl}acetyl}piperidin-4-yl)-N-[(1S)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide, pentyl {6-[[{{(1-methyl-1H-tetrazol-5-yl)(phenyl)methylidene}amino}oxy]methyl}pyridin-2-yl}carbamate, phenazine-1-carboxylic acid, quinolin-8-ol, quinolin-8-ol sulfate (2:1) and tert-butyl {6-[[{{(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene}amino}oxy]methyl}pyridin-2-yl}carbamate.

- (16) Further compounds, for example 1-methyl-3-(trifluoromethyl)-N-[2'-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, N-(4'-chlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-(2',4'-dichlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-[4'-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, N-(2',5'-difluorobiphenyl-2-yl)-1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, 5-fluoro-1,3-dimethyl-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, 2-chloro-N-[4'-(prop-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide, 3-(difluoromethyl)-N-[4'-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide, N-[4'-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-(4'-ethynylbiphenyl-2-yl)-1-methyl-1H-pyrazole-4-carboxamide, N-(4'-ethynylbiphenyl-2-yl)-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide, 2-chloro-N-(4'-ethynylbiphenyl-2-yl)pyridine-3-carboxamide, 2-chloro-N-[4'-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide, 4-(difluoromethyl)-2-methyl-N-[4'-(trifluoromethyl)biphenyl-2-yl]-1,3-thiazole-5-carboxamide, 5-fluoro-N-[4'-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide, 2-chloro-N-[4'-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide, 3-(difluoromethyl)-N-[4'-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide, 5-fluoro-N-[4'-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide, 2-chloro-N-[4'-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide, (5-bromo-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanone, N-[2-(4-{[3-(4-chlorophenyl)prop-2-yn-1-yl]oxy}-3-methoxyphenyl)ethyl]-N2-(methylsulfonyl)valinamide, 4-oxo-4-[(2-phenylethyl)amino]butanoic acid and but-3-yn-1-yl {6-[([(Z)-(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino]oxy)methyl}pyridin-2-yl}carbamate.
- 30 All pesticides (1) to (16) mentioned may, when they are capable on account of their functional groups, optionally form salts with suitable bases or acids.

Examples of bactericides include the following:

bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulfate and other copper preparations.

5

Examples of insecticides, acaricides and nematicides include the following:

- 10 (1) Acetylcholinesterase (AChE) inhibitors, such as, for example, carbamates, for example alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isopropcarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thifanox, triazamate, 15 trimethacarb, XMC and xylylcarb; or organophosphates, for example acephate, azamethiphos, azinphos (methyl, ethyl), cadusafos, chlorethoxyfos, chlorgenvinphos, chlormephos, chlorpyrifos (methyl), coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, 20 famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothiophosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion (methyl), phentoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos- 25 methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon and vamidothion.
- (2) GABA-gated chloride channel antagonists, for example cyclodiene- 30 organochlorines, e.g. chlordane and endosulfan; or phenylpyrazoles (fiproles), e.g. ethiprole and fipronil.

- (3) Sodium channel modulators/voltage-gated sodium channel blockers, for example pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1R)-trans isomers], deltamethrin, empenthrin [(EZ)-(1R) isomers], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, permethrin, phenothrin [(1R)-trans isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1R) isomers]], tralomethrin and transfluthrin; or DDT; or methoxychlor.
- (4) Nicotinergic acetylcholine receptor (nAChR) agonists, for example neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or nicotine.
- (5) Allosteric activators of the nicotinergic acetylcholine receptor (nAChR), for example spinosyns, e.g. spinetoram and spinosad.
- (6) Chloride channel activators, for example avermectins/milbemycins, e.g. abamectin, emamectin benzoate, lepimectin and milbemectin.
- (7) Juvenile hormone imitators, for example juvenile hormone analogs, e.g. hydroprene, kinoprene and methoprene; or fenoxy carb; or pyriproxyfen.
- (8) Active ingredients with unknown or nonspecific mechanisms of action, for example alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrin; or sulfuryl fluoride; or borax; or tartar emetic.
- (9) Selective antifeedants, for example pymetrozine; or flonicamid.
- (10) Mite growth inhibitors, for example clofentezine, hexythiazox and diflovidazin; or etoxazole.

- (11) Microbial disruptors of the insect gut membrane, for example *Bacillus thuringiensis* subspecies *israelensis*, *Bacillus sphaericus*, *Bacillus thuringiensis* subspecies *aizawai*, *Bacillus thuringiensis* subspecies *kurstaki*, *Bacillus thuringiensis* subspecies *tenebrionis*, and BT plant proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1.
- (12) Oxidative phosphorylation inhibitors, ATP disruptors, for example diafenthiuron; or organotin compounds, e.g. azocyclotin, cyhexatin and fenbutatin oxide; or propargite; or tetradifon.
- (13) Oxidative phosphorylation decouplers that interrupt the H proton gradient, for example chlorfenapyr, DNOC and sulfluramid.
- (14) Nicotinergic acetylcholine receptor antagonists, for example bensultap, cartap hydrochloride, thiocyclam, and thiosultap-sodium.
- (15) Chitin biosynthesis inhibitors, type 0, for example bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
- (16) Chitin biosynthesis inhibitors, type 1, for example buprofezin.
- (17) Molting disruptors, dipteron, for example cyromazine.
- (18) Ecdysone receptor agonists, for example chromafenozone, halofenozone, methoxyfenozone and tebufenozone.
- (19) Octopaminergic agonists, for example amitraz.
- (20) Complex-III electron transport inhibitors, for example hydramethylnon; or acequinocyl; or fluacrypyrim.

- (21) Complex-I electron transport inhibitors, for example METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad; or rotenone (Derris).
- 5 (22) Voltage-dependent sodium channel blockers, for example indoxacarb; or metaflumizone.
- (23) Inhibitors of acetyl-CoA carboxylase, for example tetronec and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat.
- 10 (24) Complex-IV electron transport inhibitors, for example phosphines, e.g. aluminum phosphide, calcium phosphide, phosphine and zinc phosphide; or cyanide.
- 15 (25) Complex-II electron transport inhibitors, for example cyenopyrafen.
- (26) Ryanodine receptor effectors, for example diamides, e.g. chlorantraniliprole and flubendiamide.
- 20 Further active ingredients with an unknown mechanism of action, for example amidoflumet, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, cyantraniliprole (Cyazypyr), cyflumetofen, dicofol, diflovidazin, fluensulfone, flufenirim, flufiprole, fluopyram, fufenozone, imidaclothiz, iprodione, pyridalyl, pyrifluquinazon and iodomethane; and additionally
- 25 preparations based on *Bacillus firmus* (I-1582, BioNeem, Votivo) and the following known active compounds:

3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide, 4-{[(6-bromopyrid-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one, 4-{[(6-fluoropyrid-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one, 4-{[(2-chloro-1,3-thiazol-5-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one, 4-{[(6-chloropyrid-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one, 4-{[(6-chloropyrid-3-yl)methyl](2,2-

difluoroethyl)amino}furan-2(5H)-one, 4-{{(6-chloro-5-fluoropyrid-3-yl)methyl}(methyl)amino}furan-2(5H)-one, 4-{{(5,6-dichloropyrid-3-yl)methyl}(2-fluoroethyl)amino}furan-2(5H)-one, 4-{{(6-chloro-5-fluoropyrid-3-yl)methyl}(cyclopropyl)amino}furan-2(5H)-one, 4-{{(6-chloropyrid-3-yl)methyl}(cyclopropyl)amino}furan-2(5H)-one, 4-{{(6-chloropyrid-3-yl)methyl}(methyl)amino}furan-2(5H)-one, {[1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide and its diastereomers {[*(1R)*-1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (A) and {[*(1S)*-1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (B)

5 and also sulfoxaflor and its diastereomers [(R)-methyl(oxido){(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A1) and [(S)-methyl(oxido){(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A2), identified as diastereomer group A, [(R)-methyl(oxido){(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B1) and [(S)-methyl(oxido){(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B2), identified as diastereomer group B, and 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]tetradec-11-en-10-one, 3-(4'-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one, 1-{2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl}-3-(trifluoromethyl)-1*H*-1,2,4-triazol-5-amine, [(3*S*,4*aR*,12*R*,12*aS*,12*bS*)-3-[(cyclopropylcarbonyl)oxy]-6,12-dihydroxy-4,12*b*-dimethyl-11-oxo-9-(pyridin-3-yl)-1,3,4,4*a*,5,6,6*a*,12,12*a*,12*b*-decahydro-2*H*,11*H*-benzo[f]pyrano[4,3-*b*]chromen-4-yl]methyl cyclopropanecarboxylate, 2-cyano-3-(difluoromethoxy)-N,N-dimethylbenzenesulfonamide, 2-cyano-3-(difluoromethoxy)-N-methylbenzenesulfonamide, 2-cyano-3-(difluoromethoxy)-N-ethylbenzenesulfonamide, 4-(difluoromethoxy)-N-ethyl-N-methyl-1,2-benzothiazol-3-amine 1,1-dioxide, N-[1-(2,3-dimethylphenyl)-2-(3,5-dimethylphenyl)ethyl]-4,5-dihydro-1,3-thiazol-2-amine, {1'-[*(2E*)-3-(4-chlorophenyl)prop-2-en-1-yl]-5-fluorospiro[indole-3,4'-piperidin]-1(2*H*)-yl}(2-chloropyridin-4-yl)methanone, 3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1,8-diazaspiro[4.5]dec-3-en-2-one, 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1,8-diazaspiro[4.5]dec-3-en-4-yl ethyl carbonate, 4-(but-2-yn-1-yloxy)-6-(3,5-dimethylpiperidin-1-yl)-5-fluoropyrimidine, (2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,3-trifluoropropyl)malononitrile,

(2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,4,4,4-pentafluorobutyl)malononitrile, 8-[2-(cyclopropylmethoxy)-4-(trifluoromethyl)phenoxy]-3-[6-(trifluoromethyl)pyridazin-3-yl]-3-azabicyclo[3.2.1]octane, 2-ethyl-7-methoxy-3-methyl-6-[(2,2,3,3-tetrafluoro-2,3-dihydro-1,4-benzodioxin-6-yl)oxy]quinolin-4-yl methyl carbonate, 2-ethyl-7-methoxy-3-methyl-6-[(2,2,3,3-tetrafluoro-2,3-dihydro-1,4-benzodioxin-6-yl)oxy]quinolin-4-yl acetate, PF1364 (CAS Reg. No. 1204776-60-2), 5-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile, 5-[5-(2-chloropyridin-4-yl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile, 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-methyl-N-{2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl}benzamide, 4-{{[(6-chloropyridin-3-yl)methyl](cyclopropyl)amino}-1,3-oxazol-2(5H)-one, 4-{{[(6-chloropyridin-3-yl)methyl](2,2-difluoroethyl)amino}-1,3-oxazol-2(5H)-one, 4-{{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1,3-oxazol-2(5H)-one, 4-{{[(6-chloropyridin-3-yl)methyl](methyl)amino}-1,3-oxazol-2(5H)-one, NNI-0711, 1-acetyl-N-[4-(1,1,1,3,3,3-hexafluoro-2-methoxypropan-2-yl)-3-isobutylphenyl]-N-isobutyryl-3,5-dimethyl-1H-pyrazole-4-carboxamide, methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-chloro-3-methylbenzoyl]-2-methylhydrazinecarboxylate, methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-ethylhydrazinecarboxylate, methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-methylhydrazinecarboxylate, methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-1,2-diethylhydrazinecarboxylate, methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethylhydrazinecarboxylate, (5RS,7RS;5RS,7SR)-1-(6-chloro-3-pyridylmethyl)-1,2,3,5,6,7-hexahydro-7-methyl-8-nitro-5-propoxyimidazo[1,2-a]pyridine, 2-{6-[2-(5-fluoropyridin-3-yl)-1,3-thiazol-5-yl]pyridin-2-yl}pyrimidine, 2-{6-[2-(pyridin-3-yl)-1,3-thiazol-5-yl]pyridin-2-yl}pyrimidine, 1-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{{[5-(trifluoromethyl)-1H-tetrazol-1-yl]methyl}-1H-pyrazole-5-carboxamide, 1-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-

- pyrazole-5-carboxamide, N-[2-(tert-butylcarbamoyl)-4-cyano-6-methylphenyl]-1-(3-chloropyridin-2-yl)-3-{{[5-(trifluoromethyl)-1H-tetrazol-1-yl]methyl}-1H-pyrazole-5-carboxamide, N-[2-(tert-butylcarbamoyl)-4-cyano-6-methylphenyl]-1-(3-chloropyridin-2-yl)-3-{{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide, and (1E)-N-[(6-chloropyridin-3-yl)methyl]-N'-cyano-N-(2,2-difluoroethyl)ethanimidamide.

10 The active ingredients identified here by their common name are known and are described, for example, in the pesticide handbook ("The Pesticide Manual" 16th Ed., British Crop Protection Council 2012) or can be searched for on the Internet (e.g. <http://www.alanwood.net/pesticides>).

15 In a preferred embodiment of the invention, namely especially when the one or more N-substituted pyrrolidones of the formula (I) are used to promote the penetration of one or more active agrochemical ingredients into plants, the one or more active agrochemical ingredients, in the use of the invention, are selected from systemic active agrochemical ingredients, i.e. active agrochemical ingredients that are absorbed by the plant through the leaves or via the roots and 20 are passed onward in the sap stream, the transport system of the plant.

Among these, the one or more active agrochemical ingredients, particularly in the case of the use of the invention for promotion of penetration into plants, are preferably selected from active agrochemical ingredients having a $\log P \leq 4.5$ 25 (determined to EEC Directive 79/831 Annex V. A8 by HPLC, gradient method, acetonitrile/0.1% by weight aqueous phosphoric acid). More preferably, the one or more active agrochemical ingredients, in the use of the invention, are used for promotion of penetration into plants selected from active agrochemical ingredients having a $\log P \leq 4.5$ and ≥ -2.0 , exceptionally preferably having a $\log P \leq 4.5$ and 30 ≥ 0.1 , exceptionally preferably having a $\log P \leq 4.5$ and ≥ 0.5 and most preferably having a $\log P \leq 3.0$ and ≥ 0.5 .

- In a particularly preferred embodiment, the one or more active agrochemical ingredients, in the use of the invention, and especially in the use of the invention for promotion of penetration into plants, are selected from the group consisting of strobilurin fungicides, preferably azoxystrobin, pyraclostrobin, pycoxystrobin,
- 5 fluoxastrobin, oryzastrobin, picoxystrobin, trifloxystrobin, azole fungicides, preferably prothioconazole, tebuconazole, cyproconazole, difenoconazole, metconazole, propiconazole, tetriconazole, tricyclazole and further active ingredients, preferably fluxapyroxad, boscalid, bitertanol, prochloraz, thiophanate, chlorothalonil, dimethomorph, fenpropimorph, spiroxamine, trifluralin,
- 10 metribuzin, saflufenacil, fenoxaprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid, emamectin benzoate, lambda-cyhalothrin, pymetrozine, chloantraniliprole, gibberellic acid, benzylaminopyrin, trinexapac-ethyl, etephon, thidiazuron.
- 15 Among the active agrochemical ingredients just mentioned, preferably in turn, the one or more active agrochemical ingredients, in the use of the invention, and especially in the use of the invention for promotion of penetration into plants, are selected from the group consisting of
- 20 strobilurin fungicides, preferably azoxystrobin, pyraclostrobin, fluoxastrobin, picoxystrobin, trifloxystrobin, azole fungicides, preferably prothioconazole, tebuconazole, cyproconazole, propiconazole, and further active ingredients, preferably fluxapyroxad, bitertanol, prochloraz,
- 25 chlorothalonil, fenpropimorph, trifluralin, metribuzin, saflufenacil, fenoxaprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid, gibberellic acid, benzylaminopyrin.
- 30 Among these, preferably in turn, the one or more active agrochemical ingredients, in the use of the invention, and especially in the use of the invention for promotion of penetration into plants, are selected from the group consisting of azoxystrobin, pyraclostrobin, fluoxastrobin, trifloxystrobin, prothioconazole, tebuconazole,

fluxapyroxad, bitertanol, prochloraz, chlorothalonil, fenpropimorph, trifluralin, metribuzin, saflufenacil, pendimethalin, fenoxaprop-ethyl, imidacloprid, thiacloprid, thiamethoxam, acetamiprid, gibberellic acid, benzylaminopyrin.

- 5 In a further particularly preferred embodiment, the one or more active agrochemical ingredients, in the use of the invention, and especially in the use of the invention for promotion of penetration into non-plant harmful organisms, are selected from the group consisting of insecticides from the pyrethroid family, preferably cypermethrin, deltamethrin, permethrin, cyfluthrin, bifenthrin, lambda-cyhalothrin, gamma-cyhalothrin; 10 organophosphate insecticides, preferably chlorpyrifos; benzoylurea insecticides, preferably diflubenzuron, lufenuron; other insecticides, preferably abamectin, emamectin benzoate, flubendiamide, fipronil, rynaxypyr, spiromesifen, spirodiclofen, fipronil, indoxacarb; and/or 15 amide fungicides, preferably prochloraz; other fungicides, preferably trifloxystrobin, mancozeb, chlorothalonil; herbicides, preferably acetochlor, propanil, glufosinate.

Among the active agrochemical ingredients just mentioned, preferably in turn, the 20 one or more active agrochemical ingredients, in the use of the invention, and especially in the use of the invention for promotion of penetration into non-plant harmful organisms, are selected from the group consisting of insecticides from the pyrethroid family, preferably cypermethrin, deltamethrin, cyfluthrin, bifenthrin, lambda-cyhalothrin, gamma-cyhalothrin; 25 organophosphate insecticides, preferably chlorpyrifos; benzoylurea insecticides, preferably diflubenzuron, lufenuron; other insecticides, preferably abamectin, emamectin benzoate, flubendiamide, fipronil, rynaxypyr, spiromesifen, spirodiclofen, fipronil; amide fungicides, preferably prochloraz; 30 other fungicides, preferably trifloxystrobin, mancozeb, chlorothalonil; herbicides, preferably acetochlor, propanil, glufosinate.

Further particularly preferred active agrochemical ingredients, in the use of the invention, include fenpicoxamid, bixafen, isopyrazam, fluopyram, penthiopyrad and abamectin.

- 5 The crop protection compositions used in the case of use of the invention may contain one or more additives.

Preferred additives are surfactants, nonpolar or polar solvents, cosolvents, stickers, wetters, dispersants, emulsifiers, further penetrants, preservatives, drift retardants, fillers, carriers, dyes, evaporation inhibitors, pH-influencing agents (buffers, acids and bases), viscosity-influencing agents (e.g. thickeners), functional polymers, adjuvants and/or defoamers.

- 15 In a preferred embodiment, the crop protection compositions used in the case of use of the invention contain one or more of the aforementioned additives.

A preferred group of additives is that of surfactants. These are anion-active, nonionogenic, cation-active and/or zwitterionic surfactants. Examples of such surfactants are listed below (where, in each case, EO = ethylene oxide units, PO = 20 propylene oxide units and BO = butylene oxide units from the preparation point of view, or corresponding alkyleneoxy units in the surfactant molecules):

It is possible to use anion-active surfactants, for example:

- 1) anionic derivatives of fatty alcohols having 10-24 carbon atoms with 0-60 EO and/or 0-20 PO and/or 0-15 BO in any sequence in the form of ether carboxylates, sulfonates, sulfates and phosphates and the inorganic (e.g. alkali metal and alkaline earth metal) and organic salts (for example based on amine or alkanolamine) thereof, such as Genapol® LRO, Sandopan® products, Hostaphat/Hordaphos® products from Clariant;
- 25 2) anionic derivatives of copolymers consisting of EO, PO and/or BO units with a molecular weight of 400 to 10^8 in the form of ether carboxylates, sulfonates, sulfates and phosphates and the inorganic (e.g. alkali metal and

- alkaline earth metal) and organic salts (for example based on amine or alkanolamine) thereof;
- 3) anionic derivatives of alkylene oxide adducts of C₁-C₉ alcohols in the form of ether carboxylates, sulfonates, sulfates and phosphates and the inorganic (e.g. alkali metal and alkaline earth metal) and organic salts (for example based on amine or alkanolamine) thereof, anionic derivatives of fatty acid alkoxylates in the form of ether carboxylates, sulfonates, sulfates and phosphates and the inorganic (e.g. alkali metal and alkaline earth metal) and organic salts (for example based on amine or alkanolamine) thereof;
- 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

It is also possible to use nonionogenic surfactants, for example:

- 1) endgroup-capped and non-endgroup-capped fatty alcohols having 8-24 carbon atoms with 0-60 EO and/or 0-20 PO and/or 0-15 BO in any sequence. Examples of such compounds are Genapol® C, L, O, T, UD, UDD, X, XM products, Plurafac® and Lutensol® A, AT, ON, TO products, Marlipal®24 and 013 products, Dehypon® products, Ethylan® products, such as Ethylan CD 120;
- 2) fatty acid alkoxylates and triglyceride alkoxylates such as the Serdox®NOG products or the Emulsogen® products;
- 3) fatty acid amide alkoxylates such as the Comperlan® products;
- 4) alkylene oxide adducts of alkynediols such as the Surfynol® products; sugar derivatives such as amino and amido sugars;

- 5) glucitols;
- 6) silicone- or silane-based surface-active compounds such as the Tegopren® products and the SE® products, and the Bevaloid®, Rhodorsil® and Silcolapse® products;
- 5 7) interface-active sulfonamides;
- 8) interface-active polyacryloyl and polymethacryloyl derivatives such as the Sokalan® products;
- 9) surface-active polyamides such as modified gelatin or derivatized polyaspartic acid and derivatives thereof;
- 10 10) surfactant polyvinyl compounds such as modified PVP, such as the Luviskol® products and the Agrimer® products, or the derivatized polyvinyl acetates such as the Mowilith® products or the polyvinyl butyrates such as the Lutonal® products, the Vinnapas® and the Pioloform® products or modified polyvinyl alcohols such as the Mowiol® products;
- 15 11) surface-active polymers based on maleic anhydride and/or reaction products of maleic anhydride and maleic anhydride and/or reaction products of maleic anhydride-containing copolymers such as the Agrimer®-VEMA products;
- 12) surface-active derivatives of montan waxes, polyethylene waxes and polypropylene waxes, such as the Hoechst® waxes or the Licowet® and Licowax® products;
- 20 13) polyol-based alkylene oxide adducts such as Polyglykol® products;
- 14) interface-active polyglycerides and derivatives thereof;
- 15) alkyl polysaccharides and mixtures thereof, for example from the Atplus® series, preferably Atplus® 435;
- 25 16) alkyl polyglucosides in the form of the Agnique®-PG products, for example Agnique®-PG 8107 (fatty alcohol C₈-C₁₀-glucoside);
- 17) sorbitan esters in the form of the Span® or Tween® products;
- 18) cyclodextrin esters or ethers;
- 30 19) surface-active cellulose and algin, pectin and guar derivatives such as the Tylose® products, the Manutex® products and guar derivatives;
- 20 20) alkyl polyglycoside/alkyl polysaccharide mixtures based on C₈-C₁₀ fatty alcohol, such as Glucopon® 225 DK and Glucopon® 215 CSUP;

- 21) alkoxylated polyarylphenol compounds such as tristyryl-substituted phenols, for example in the form of the Emulsogen® TS products;
- 22) alkylated copolymers of ethylene oxide and propylene oxide, for example Emulsogen® 3510;
- 5 23) di- and triblock copolymers of alkylene oxides formed on the basis of ethylene oxide and propylene oxide and having average molar masses between 200 and 10 000, preferably 1000 to 4000 g/mol, where the proportion by mass of the polyethoxylated block varies between 10% and 80%, for example from the Synperonic® PE series (Uniqema), Pluronic® PE
- 10 series (BASF), VOP® 32 or Genapol® PF series (Clariant), particular preference being given, for example, to products such as Genapol® 10500.

Preferred nonionogenic surfactants are also alkylglucamides and preferably N-methylglucamides made from fatty acids having 12 to 22 carbon atoms.

- 15 Nonpolar solvents used may be nonpolar organic solvents and/or nonpolar inorganic solvents or mixtures thereof.

Examples of nonpolar solvents in the context of the invention are

- 20 - aliphatic or aromatic hydrocarbons, for example mineral oils or toluene, xylenes and naphthalene derivatives,
- halogenated aliphatic or aromatic hydrocarbons, such as methylene chloride or chlorobenzene,
- oils, for example vegetable-based oils such as corn kernel oil and rapeseed
- 25 oil, or oil derivatives such as rapeseed oil methyl ester.

The cosolvents may be a single solvent or a mixture of two or more solvents. Suitable solvents for this purpose are all polar solvents that are compatible with the aqueous pesticide composition and form a homogeneous phase. Suitable cosolvents are, for example, monohydric alcohols such as methanol, ethanol, propanols, butanols, tetrahydrofurfuryl alcohol, benzyl alcohol or further polyhydric alcohols such as ethylene glycol, diethylene glycol or glycerol, or polyglycols such as polyethylene glycols, polypropylene glycols or mixed polyalkylene glycols

(PAGs). Further suitable solvents are ethers, for example diethylene glycol diethyl ether (ethyl diglyme), tetraethylene glycol dimethyl ether (tetraglyme), propylene glycol monomethyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether or dipropylene glycol dimethyl ether, amides, for example

- 5 dimethylformamide, dimethylacetamide, N-methylpyrrolidone or N-ethylpyrrolidone, dimethylactamide, dimethylcaprylamide, dimethylpelargonamide or dimethyldecanamide, dimethylactamide, carbonates, for example ethylene carbonate, propylene carbonate, butylene carbonate or glycerol carbonate, or other cosolvents such as methyl caprylate caprate, methyl 5-(dimethylamino)-2-
- 10 methyl-5-oxopentanoate (e.g. Rhodiasolv Polarclean), 1,3-dioxolane, γ -butyrolactone, cyclohexanone.

In a preferred embodiment, the crop protection composition used in the case of use of the invention does not contain any cosolvent.

15

The crop protection compositions used in the case of use of the invention may optionally contain preservatives as additives. The preservatives may be a single preservative or a mixture of two or more preservatives. Preservatives used may be organic acids and esters thereof, for example ascorbic acid, ascorbyl palmitate, sorbate, benzoic acid, methyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, propionates, phenol, 2-phenylphenate, 1,2-benzisothiazolin-3-one, formaldehyde, sulfuric acid and salts thereof. Examples include Mergal® K9N (Riedel) or Cobate® C.

25

The crop protection compositions used in the case of use of the invention may optionally contain drift retardants as additives. The drift retardants may be a single drift retardant or a mixture of two or more drift retardants. Drift retardants used may be water-soluble polymers, for example polyglycerol esters, polyacrylamides, acrylamide/acrylic acid polymers, sodium polyacrylate, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, polysaccharides, natural and synthetic guar gum. In addition, it is also possible to use particular emulsions or self-

emulsifying systems as drift retardants. Examples here include Synergen® OS from Clariant or InterLock® (Winfield).

The functional polymers which may be present as additive in the crop protection

5 composition used in the case of use of the invention are high molecular weight compounds of synthetic or natural origin having a molar mass of greater than 10 000. The functional polymers may act, for example, as anti-drift agents or increase rain resistance.

10 In a further preferred embodiment of the invention, the crop protection compositions used in the case of use of the invention contain, as additive, one or more adjuvants as may be used in a commonly known manner in aqueous active ingredient compositions.

15 These are preferably fatty amine ethoxylates, etheramine ethoxylates, alkyl betaines or amidoalkyl betaines, amine oxides or amidoalkylamine oxides, alkyl polyglycosides or copolymers of glycerol, coconut fatty acid and phthalic acid.

20 These adjuvants are known from the literature as adjuvants in aqueous pesticide compositions and are described, for example, in WO 2009/029561.

The crop protection compositions used in the case of use of the invention may optionally contain defoamers as additives. The defoamers may be a single defoamer or a mixture of two or more defoamers. Suitable defoamers are fatty

25 acid alkyl ester alkoxylates, organopolysiloxanes such as polydimethylsiloxanes and mixtures thereof with microfine, optionally silanized silica, perfluoroalkylphosphonates, perfluoroalkylphosphinates, paraffins, waxes and microcrystalline waxes, and mixtures thereof with silanized silica. Also advantageous are mixtures of various foam inhibitors, for example those of

30 silicone oil, paraffin oil and/or waxes.

As already mentioned, the one or more N-substituted pyrrolidones of the formula (I), in the use of the invention, may be used in a crop protection composition.

This can take place, for example, in the form of liquid or solid concentrated crop protection compositions (for example "ready-to-use", "in-can" or "built-in" formulations), where the concentrate formulations are typically diluted prior to use, 5 especially with water, and are subsequently deployed to the fields by spray application as spray liquors.

Water-soluble concentrates (soluble liquids, abbreviated to SL) are an important form of crop protection compositions. They play a major role particularly for 10 herbicides, these often being used in the form of water-soluble salts which are converted to their alkali metal salts or ammonium salts by neutralization of the acid form of the herbicides with suitable bases. Under some circumstances, a second, water-insoluble active agrochemical ingredient is also present in the crop protection composition. In that case, the preparation is a suspension concentrate 15 (SC), even when an active agrochemical ingredient is dissolved in the aqueous phase.

Useful formulation types include all formulations that are deployed to plants or the 20 propagation material thereof. The processes used for production thereof are generally familiar to the person skilled in the art and are described, for example, in Winnacker-Küchler, "Chemische Technologie" [Chemical Technology] volume 7, C. Hanser Verlag Munich, 4th ed., 1986 ; J.W. van Valkenburg, "Pesticide Formulations", Marcel Dekker N. Y., 1973, K. Martens, "Spray Drying Handbook", 25 3rd Ed. 1979, G. Goodwin Ltd., London, or Mollet, Grubenmann, "Formulierungstechnik" [Formulation Technology], Wiley-VCH-Verlag, Weinheim, 2000.

Examples of formulation types are all of those mentioned in the "Manual on 30 development and use of FAO and WHO specifications for pesticides" (FAO and WHO, 2002, appendix E) (using the GCPF formulation codes each with English abbreviation and designation): AB Grain bait; AE Aerosol dispenser; AL Any other liquid; AP Any other powder; CF Capsule Suspension for Seed Treatment; CG

Encapsulated granule; CL Contact liquid or gel; CP Contact powder; CS Capsule suspension; DC Dispersible concentrate; DP Dustable powder; DS Powder for dry seed treatment; DT Tablet for direct application; EC Emulsifiable concentrate; ED Electrochargeable liquid; EG Emulsifiable Granule; EO Emulsion, water in oil; EP emulsifiable powder, ES Emulsion for seed treatment; EW Emulsion, oil in water; FG Fine granule; FS Flowable concentrate for seed treatment; GF Gel for Seed Treatment; GC Macrogranule; GL Emulsifiable gel; GP Flo-dust; GR Granule; GS Grease; GW Water soluble gel; HN Hot fogging concentrate; KK Combi-pack solid/liquid; KL Combi-pack liquid/liquid; KN Cold fogging concentrate; KP Combi-pack solid/solid; LA Lacquer; LS Solution for seed treatment; ME Microemulsion; MG Microgranule; OD oil dispersion; OF Oil miscible flowable concentrate/oil miscible suspension; OL Oil miscible liquid; OP Oil dispersible powder; PA Paste; PC Gel or paste concentrate; PO Pour-on; PR Plant rodlet; PS Seed coated with a pesticide; PT Pellet; RB Bait (ready for use); SA Spot-on; SC suspension concentrate, SD suspension concentrate for direct application, SE Suspo-emulsion; SG Water soluble granule; SL Soluble concentrate; SO Spreading oil; SP Water soluble powder; SS Water soluble powder for seed treatment; ST Water soluble tablet; SU Ultra-low volume (ULV) suspension; TB Tablet; TC Technical material; TK Technical concentrate; UL Ultra-low volume (ULV) liquid; VP Vapour releasing product; WG Water dispersible granules; WP Wettable powder; WS Water dispersible powder for slurry seed treatment; WT Water dispersible tablet; XX Others.

Preference is given to liquid formulation types. These include the following formulation types: DC (GCPF formulation code for dispersible concentrate); EC (GCPF formulation code for emulsion concentrate); EW (GCPF formulation code for oil-in-water emulsion); ES (GCPF formulation code for emulsion for seed treatment); FS (GCPF formulation code for flowable concentrate for seed treatment); EO (GCPF formulation code for water-in-oil emulsion); ME (GCPF formulation code for microemulsion); OD (GCPF formulation code for oil dispersion); SE (GCPF formulation code for suspoemulsion); SL (GCPF formulation code for water-soluble concentrate); CS (GCPF formulation code for

capsule suspension) and AL (GCPF formulation code for ready-to-use liquid formulation, any other liquids for undiluted use).

Particular preference is given to emulsion concentrates (EC formulation type),

- 5 water-soluble concentrates (SL formulation type), oil dispersions (OD formulation type), suspoemulsions (SE formulation type), microemulsions (ME formulation type) and oil-in-water emulsions (EW formulation type).

As likewise already mentioned, the inventive use of the one or more N-substituted

- 10 pyrrolidones of the formula (I) may alternatively take place by what is called the tankmix method.

In the inventive use of the one or more N-substituted pyrrolidones of the formula (I) to promote the penetration of active agrochemical ingredients into plants or into

- 15 non-plant harmful organisms, the one or more active agrochemical ingredients are simultaneously preferably used for monitoring and/or for control of unwanted plant growth, fungal diseases or insect infestation in plants, and more preferably for monitoring and/or for control of unwanted plant growth.

- 20 The plants treated in accordance with the invention may be crop plants, i.e. useful plants and ornamentals, or harmful plants. The harmful plants include, for example, all kinds of weeds. Among the crop plants, preference is given to economically important crops of useful plants, for example of fruit, such as apples or pears, of cereal, such as wheat, barley, rye, oats, millet/sorghum, rice, manioc

- 25 and corn, or else crops of peanuts, sugarcane, cotton, soya, rape, potatoes, tomatoes, peas or other types of vegetable, and crops of ornamentals, such as cut flowers or ornamental trees. The crops of useful plants and ornamentals may, for example, also be transgenic crops, for example transgenic corn or transgenic soybeans.

30

The non-plant harmful organisms treated in accordance with the invention are insects, nematodes, phytoplasmas, bacteria such as Pseudomonadaceae,

Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae, phytopathogens, fungi, viruses and viroids.

The temperature has a great effect on absorption into the plant, and an increase in 5 temperature leads to an increase in mobility in the cuticle. Especially in the case of absorption into plants, mobility within the cuticle is a highly temperature-dependent process, but temperature also plays a role in the case of absorption into non-plant harmful organisms in diffusion through the skin of insects or the cell wall of fungi and generally in the usually "passive" diffusion through biomembranes. Solvents 10 such as carboxamides or alkyl esters of fatty acids such as methyl oleate can act like an increase in temperature because they can penetrate very rapidly into and hence swell the cuticle. This means that they act particularly in the cuticle of the plant and often leave a majority of the active ingredient behind on the surface of the plant. The active ingredient is then frequently in crystalline form, encrusted 15 with minerals from the water used or fixed in some other way, and is no longer available for transport to the target site in the plant or the non-plant harmful organism. Generally, penetration is at its highest immediately after application owing to the higher active ingredient concentrations or concentration gradient, and is often inadequate at low temperatures owing to temperature-dependent diffusion 20 through the skin structures of plants or non-plant harmful organisms. Thus, penetration of active agrochemical ingredients into plants or into non-plant harmful organisms, particularly at cold temperatures, is significantly lower compared to higher temperatures. Since, in general, owing to loss processes, for instance degradation under light or volatility or rain resistance, but also for minimization of 25 the input necessary, accelerated absorption is usually desirable for reasons of cost and environmental reasons, there is a search for means of promoting absorption particularly at low temperatures.

In the context of the present invention, it has additionally been found that, 30 surprisingly, the one or more N-substituted pyrrolidones of the formula (I) are advantageously suitable, even at low temperatures, for promotion of penetration of one or more active agrochemical ingredients into plants or into non-plant harmful organisms and preferably into plants.

This is advantageous, for example, in the case of long-lasting cold weather conditions, but also, for example, when the temperatures, given the diurnal variations that prevail except in the tropics, in agriculture are at times within a cold range, i.e. when it is comparatively warm during the day but temperatures drop significantly at night.

The invention therefore also especially enables the use of one or more N-substituted pyrrolidones of the formula (I) for promotion of penetration of one or 10 more active agrochemical ingredients into plants or into non-plant harmful organisms, preferably for promotion of penetration into plants, when penetration takes place at least at times at a temperature of not more than 25°C, particularly preferably at least at times at a temperature of not more than 20°C, especially preferably at least at times at a temperature of not more than 15°C and 15 exceptionally preferably at least at times at a temperature of not more than 10°C.

In a preferred embodiment of the invention, therefore, in the use of the invention, penetration of the one or more N-substituted pyrrolidones of the formula (I) for promotion of penetration of one or more active agrochemical ingredients into 20 plants or into non-plant harmful organisms, and preferably for promotion of penetration of one or more active agrochemical ingredients into plants, takes place at least at times at a temperature of not more than 25°C, preferably at least at times at a temperature of not more than 20°C, more preferably at least at times at a temperature of not more than 15°C and especially preferably at least at times at 25 a temperature of not more than 10°C.

The invention also further provides a method of promoting the penetration of active agrochemical ingredients into plants or into non-plant harmful organisms, wherein one or more active agrochemical ingredients are applied to the plants 30 simultaneously or sequentially together with one or more N-substituted pyrrolidones of the formula (I). In this method of the invention, in turn, preference is given to those N-substituted pyrrolidones of the formula (I), active agrochemical ingredients, use forms (e.g. crop protection compositions or tankmix applications

and spray liquors), additives, plants and non-plant harmful organisms that are also preferred in the use of the invention of the one or more N-substituted pyrrolidones of the formula (I) for promotion of penetration of active agrochemical ingredients into plants or non-plant harmful organisms.

5

As in the case of use of the invention, penetration in the method of the invention for promotion of penetration of active agrochemical ingredients into plants or into non-plant harmful organisms, and preferably for promotion of penetration of active agrochemical ingredients into plants, in a preferred embodiment of the invention,

10 also takes place at least at times at a temperature of not more than 25°C, preferably at least at times at a temperature of not more than 20°C, more preferably at least at times at a temperature of not more than 15°C and especially preferably at least at times at a temperature of not more than 10°C.

15 The present invention also further provides the above-described crop protection compositions that can be used in the case of the inventive use of the one or more N-substituted pyrrolidones of the formula (I) for promoting the penetration of active agrochemical ingredients into plants or into non-plant harmful organisms.

20 Among these crop protection compositions of the invention, preference is given in turn to those that are also preferred in the case of the inventive use of the one or more N-substituted pyrrolidones of the formula (I) for promoting the penetration of active agrochemical ingredients into plants or into non-plant harmful organisms.

25 In a preferred embodiment of the invention, the crop protection compositions of the invention contain

- a) 1% to 90% by weight and preferably 5% to 70% by weight of one or more N-substituted pyrrolidones of the formula (I) and
- b) 1% to 90% by weight and preferably 2.5% to 70% by weight of one or more active agrochemical ingredients.

30

The crop protection compositions of the invention just mentioned may contain one or more additives. They contain preferably 0% to 98% by weight and more preferably 1% to 60% by weight of one or more additives.

5

In a further preferred embodiment of the invention, the crop protection compositions of the invention contain

- a) 1% to 50% by weight, preferably 5% to 40% by weight and more preferably 5% to 30% by weight of one or more N-substituted pyrrolidones of the formula (I) and
 - b) 1% to 90% by weight, preferably 5% to 60% by weight and more preferably 2.5% to 50% by weight of one or more active agrochemical ingredients.
- 15 The crop protection compositions of the invention just mentioned may contain one or more additives. They contain preferably 0% to 98% by weight and more preferably 1% to 50% by weight of one or more additives.

20 In a further preferred embodiment of the invention, the crop protection compositions of the invention contain water.

In a further preferred embodiment of the invention, the crop protection compositions of the invention are in the form of an aqueous spray liquor and contain

- 25 a) 0.001% to 99% by weight, preferably 0.01% to 50% by weight and more preferably 0.02% to 1% by weight of one or more N-substituted pyrrolidones of the formula (I) and
- b) 0.001% to 10% by weight, preferably 0.002% to 5% by weight and more preferably 0.0025% to 3% by weight of one or more active agrochemical
- 30 ingredients.

It has been found that, surprisingly, the crop protection compositions of the invention are suitable for production of high-efficacy spray liquors with a very low

active ingredient content. The invention therefore also relates to aqueous spray liquors comprising the above-described components a) and b), where the content of component b) is less than 0.05 g/L, preferably 0.01 to 0.03 g/L.

- 5 In a particularly preferred embodiment of this spray liquor with a low active ingredient content, the content of component a) is less than 0.1% by weight, more preferably 0.015% to 0.05% by weight, based on the total amount of the spray liquor.
- 10 The crop protection compositions of the invention in the form of an aqueous spray liquor that have just been mentioned may contain one or more additives. They contain preferably 0% to 99% by weight and more preferably 0.01% to 80% by weight of one or more additives.
- 15 In the crop protection compositions of the invention, preference is given, *inter alia*, to the N-substituted pyrrolidones of the formula (I), the active agrochemical ingredients and the additives optionally present that are also preferred in the use of the invention of the one or more N-substituted pyrrolidones of the formula (I) for promotion of penetration of active agrochemical ingredients into plants or into non-20 plant harmful organisms.

As in the case of use of the invention, the stated amounts relating to the N-substituted pyrrolidones of the formula (I), the active agrochemical ingredients and the additives are based on the total weight of the crop protection compositions of the invention and, in the case of active agrochemical ingredients that are acids in protonated form but are used in the form of their water-soluble salts, on the amount of free acid, called the acid equivalent (a.e.).

The active agrochemical ingredients described as preferred in the uses of the invention are also used with preference as component b) in the crop protection compositions of the invention.

Preferred components b) are selected from the group consisting of fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, plant growth regulators, plant nutrients, repellents, molluscicides and rodenticides. Particularly preferred components b) are selected from the group consisting of herbicides,

5 fungicides, insecticides, nematicides and/or plant growth regulators.

The invention more preferably relates to crop protection compositions comprising, as well as component a), one or more active agrochemical ingredients as component b) that are selected from the group consisting of

10 strobilurin fungicides, preferably azoxystrobin, pyraclostrobin, pycoxystrobin, fluoxastrobin, oryzastrobin, picoxystrobin, trifloxystrobin, and/or azole fungicides, preferably prothioconazole, tebuconazole, cyproconazole, difeconazole, metconazole, propiconazole, tetriconazole, tricyclazole and/or further active ingredients, preferably fenpicoxamid, fluxapyroxad, boscalid, 15 bitertanol, prochloraz, thiophanate, chlorothalonil, bixafen, isopyrazam, fluopyram, penthiopyrad, dimethomorph, fenpropimorph, spiroxamine, trifluralin, metribuzin, saflufenacil, fenoxyprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, abamectin, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid, emamectin benzoate, lambda-cyhalothrin, pymetrozine, 20 chloantraniliprole, gibberellic acid, benzylaminopyrin, trinexapac-ethyl, etephon, thidiazuron.

Active agrochemical ingredients used with particular preference as component b) are selected from the group consisting of

25 strobilurin fungicides, preferably azoxystrobin, pyraclostrobin, fluoxastrobin, picoxystrobin, trifloxystrobin, and/or azole fungicides, preferably prothioconazole, tebuconazole, cyproconazole, propiconazole, metconazole and/or further active ingredients, preferably fenpicoxamid, fluxapyroxad, bitertanol, 30 prochloraz, chlorothalonil, bixafen, isopyrazam, fluopyram, penthiopyrad, fenpropimorph, trifluralin, metribuzin, saflufenacil, fenoxyprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, abamectin, imidacloprid,

thiacloprid, thiamethoxam, clothianidin, acetamiprid, gibberellic acid, trinexapac-ethyl, benzylaminopyrin.

Active agrochemical ingredients used with especial preference as component b)

- 5 are selected from the group consisting of azoxystrobin, pyraclostrobin, fluoxastrobin, trifloxystrobin, prothioconazole, tebuconazole, fluxapyroxad, bitertanol, metconazole, prochloraz, chlorothalonil, fenpropimorph, trifluralin, metribuzin, saflufenacil, pendimethalin, fenoxaprop-ethyl, imidacloprid, thiacloprid, thiamethoxam, acetamiprid, benzylaminopyrin; and/or are selected from the group
10 consisting of
insecticides from the pyrethroid family, preferably cypermethrin, deltamethrin, permethrin, cyfluthrin, bifenthrin, lambda-cyhalothrin, gamma-cyhalothrin; and/or organophosphate insecticides, preferably chlorpyrifos; and/or benzoylurea insecticides, preferably diflubenzuron, lufenuron; and/or
15 other insecticides, preferably abamectin, emamectin benzoate, flubendiamide, fipronil, rynaxypyr, spiromesifen, spirodiclofen, fipronil, indoxacarb; and/or amide fungicides, preferably prochloraz; and/or other fungicides, preferably trifloxystrobin, mancozeb, chlorothalonil; bixafen, isopyrazam, fluopyram, penthiopyrad; and/or
20 herbicides, preferably acetochlor, propanil, glufosinate; and/or plant growth regulators, especially trinexapac-ethyl or gibberellic acid.

The invention is elucidated in detail by examples hereinafter, without restricting it thereto.

25

Percentages relating to amounts of material or substance should be regarded as percent by weight (% by weight), unless explicitly stated otherwise.

Examples

Penetration test (penetration into plants)

- 5 In this test, the penetration of active ingredients through enzymatically isolated cuticles of apple or pear tree leaves was measured.

Leaves that had been cut in the fully developed state off apple trees of the Golden Delicious variety or pear trees were used. The cuticles were isolated by

10

- first filling leaf disks labeled on the underside with dye and formed by punching by means of vacuum infiltration with a pectinase solution (0.2% to 2% strength) buffered to a pH of between 3 and 4,

15

- then adding sodium azide and
- leaving the leaf disks thus treated to stand until dissolution of the original leaf structure and until detachment of the noncellular cuticles.

20

- All that were used thereafter were the cuticles of the top sides of the leaves that were free of stomata and hairs. They were repeatedly washed alternately with water and a buffer solution of pH 7. The clean cuticles obtained were finally applied to Teflon platelets, and smoothed and dried with a gentle air stream.

25

- In the next step, the cuticle membranes thus obtained were placed into stainless steel diffusion cells (= transport chambers) for membrane transport studies. For this purpose, the cuticles were placed with tweezers at the midpoint onto the edges of the diffusion cells that had been coated with silicone grease and closed with a likewise greased ring. The arrangement had been chosen such that the morphological outer face of the cuticles faced the outside, i.e. the air, while the original inner face faced the interior of the diffusion cell. The diffusion cells were filled with water or with a mixture of water and solvent.

30

To determine penetration, 9 µL in each case of a spray liquor of the composition specified in the examples was applied to the outer face of a cuticle.

CIPAC water was used in each of the spray liquors.

5

After the spray liquors had been applied, the water was allowed to evaporate in each case, then the chambers were each turned around and they were placed into thermostated baths, while air at a defined temperature and air humidity was blown onto the outer face of the cuticle. The penetration that set in took place at a 10 relative air humidity of 60% and a set temperature as specified. The active ingredient penetration was measured by means of high-performance liquid chromatography (HPLC).

As apparent from the examples adduced in tables 1 to 20, the presence of N-(n-butyl)-2-pyrrolidone leads to a considerable increase in uptake compared to the 15 formulations where N-(n-butyl)-2-pyrrolidone is absent. The alternatives to N-(n-butyl)-2-pyrrolidone used are examples of commercial feedstocks for formulations.

The values for "% penetration" reported in the tables which follow report what 20 percentage of the amount of substance applied to the plant penetrates into the plant. The values reported are averages.

25

The abbreviations used in the tables have the following meaning:

20 SG: short form of "Mospilan® 20 SG"

Calypso® SC 480: commercial formulation of thiacloprid

30 Custodia® SC 320: commercial formulation of azoxystrobin and tebuconazole

DAT: days after treatment

DF75: short form of "Dimetric® DF75"

Dimetric® DF75: commercial formulation of metribuzin

- DMSO: dimethyl sulfoxide
- EC 540: commercial formulation of trifluralin
- Galaster® BL97: butyl lactate
- Genagen® NBP: NBP (neat)
- 5 Mospilan® 20 SG: commercial formulation of acetamiprid
- n: number of treatments and accompanying measurements
- NBP: N-(n-butyl)-2-pyrrolidone
- NMP: N-methylpyrrolidone
- Orkestra® SC 500: commercial formulation of fluxapyroxad and pyraclostrobin
- 10 RT: room temperature (23 to 25°C)
- SC320: short form of "Custodia® SC 320"
- SC480: short form of "Calypso® SC 480"
- SC500: short form of "Orkestra® SC 500"
- EC 18: commercial formulation of abamectin (emulsion concentrate)
- 15 SC 200: commercial formulation of rynaxypy (suspension concentrate)
- Acceptor medium: solution of forchlorfenuron in a water/diethylene glycol medium
- Prothioconazole x % RW: prothioconazole powder with active ingredient content
- x% by weight
- Genagen® PA: dimethylpelargonamide
- 20 Genagen® 4296: dimethyldecanamide
- Agsolex® 08: N-octylpyrrolidone
- Solvesso® 200 ND: mixture of aromatic hydrocarbons
- Emulsogen® 3510: alkylated copolymers of ethylene oxide and propylene oxide
- Synergen® 848: alkylated copolymers of ethylene oxide and propylene oxide
- 25 Synergen® W03: alkylsulfosuccinate, Na salt in hydrocarbons
- Synergen® W09: alkylsulfosuccinate, Na salt in white oil
- Genapol® X 090: isotridecyl alcohol with 9 ethylene oxide units
- Emulsogen® MTP 070: alkylated copolymers of ethylene oxide and propylene oxide
- 30 Emulsogen® EL 300: castor oil with 30 ethylene oxide units
- Emulsogen® EL 360: castor oil with 36 ethylene oxide units
- Momentive® SAG 1571: polydimethylsiloxane emulsion

Trinexapac Ethyl x % RW: trinexapac-ethyl powder with active ingredient content x% by weight

Hostaphat® 1306: isotridecyl phosphate with 6 ethylene oxide units

Emulsogen® ELO 200: modified castor oil ethoxylates

5 Synergen® SOC: tankmix adjuvant

MSO: sunflower oil methyl ester

Example 1: Penetration tests with metribuzin at 10°C in pear

Table 1: Penetration results after 6 hours and after 2 days of example 1

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient	Metribuzin concentration (g/L) in the aqueous spray liquor	% metribuzin penetration at 10°C in pear after 6 h // n = 5 – 7	% metribuzin penetration at 10°C in pear after 2 DAT // n = 5 – 7
1-1	Dimetric® DF75	metribuzin	2.25	0.57	1.28
1-2	DF75 / NMP (0.1)	metribuzin	2.25	0.48	1.25
1-3	DF75 / NMP (0.5)	metribuzin	2.25	0.83	3.51
1-4	DF75 / DMSO (0.1)	metribuzin	2.25	0.28	1
1-5	DF75 / DMSO (0.5)	metribuzin	2.25	0.64	2.02
1-6	DF75 / NBP (0.1)	metribuzin	2.25	1.88	3.54
1-7	DF75 / NBP (0.3)	metribuzin	2.25	8.93	11.64
1-8	DF75 / NBP (0.5)	metribuzin	2.25	16.88	21.05

Procedure for examples 1-1 to 1-8:

The formulation (Dimetric® DF75 or DF75) was diluted with water, such that the dilution contained a metribuzin concentration of 4.50 g/L. By mixing this diluted formulation with

- 5 the appropriate amount of test substance (NMP, DMSO or NBP) in water, the desired concentration of test substance (0.1% by weight, 0.3% by weight or 0.5% by weight) and the active agrochemical ingredient metribuzin (2.25 g/L) in the aqueous spray liquor was established. Penetration through isolated pear cuticles was measured at a temperature of 10°C after 6 h and after 2 days after application (2 DAT).

10

The tests of examples 2 to 17 and 20 to 22 were conducted analogously to example 1, but taking account of the data and conditions specified in tables 2 to 20.

Example 2: Penetration tests with metribuzin at room temperature in pear

Table 2: Penetration results after 6 hours and after 2 days of example 2

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient	Metribuzin concentration (g/L) in the aqueous spray liquor	% metribuzin penetration at RT in pear after 6 h // n = 5 – 7	% metribuzin penetration at RT in pear after 2 DAT // n = 5 – 7
2-1	Dimetric® DF75	metribuzin	2.25	2.93	26.81
2-2	DF75 / NMP (0.1)	metribuzin	2.25	1.82	7.61
2-3	DF75 / NMP (0.5)	metribuzin	2.25	5	15.84
2-4	DF75 / DMSO (0.1)	metribuzin	2.25	1.82	6.9
2-5	DF75 / DMSO (0.5)	metribuzin	2.25	0.94	5.47
2-6	DF75 / NBP (0.1)	metribuzin	2.25	3.43	13.46
2-7	DF75 / NBP (0.3)	metribuzin	2.25	8.78	18.14
2-8	DF75 / NBP (0.5)	metribuzin	2.25	18.6	32.41

Example 3: Penetration tests with metribuzin at 10°C in pear

Table 3: Penetration results after 6 hours and after 2 days of example 3

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient	Metribuzin concentration (g/L) in the aqueous spray liquor	% metribuzin penetration at 10°C in pear after 6 h // n = 5 – 7	% metribuzin penetration at 10°C in pear after 2 DAT // n = 5 – 7
3-1	Dimetric® DF75	metribuzin	2.25	0.1	1.14
3-2	DF75 / isophorone (0.1)	metribuzin	2.25	0.27	1.87
3-3	DF75 / isophorone (0.3)	metribuzin	2.25	0.24	1.54
3-4	DF75 / isophorone (0.5)	metribuzin	2.25	0.45	4.13
3-5	DF75 / NBP (0.1)	metribuzin	2.25	0.86	1.86
3-6	DF75 / NBP (0.3)	metribuzin	2.25	6.63	11.45
3-7	DF75 / NBP (0.5)	metribuzin	2.25	14.7	20.79

Example 4: Penetration tests with azoxystrobin at 10°C in apple

Table 4: Penetration results after 6 hours and after 3 days of example 4

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients in the aqueous spray liquor	Azoxystrobin concentration (g/L) in the aqueous spray liquor	% azoxystrobin penetration at 10°C in apple after 6 h // n = 5 – 7	% azoxystrobin penetration at 10°C in apple after 3 DAT // n = 5 – 7
4-1	Custodia® SC 320	azoxystrobin and tebuconazole	0.45	0.21	0.88
4-2	SC320 / NMP (0.1)	azoxystrobin and tebuconazole	0.45	0 (= undetectable)	0.72
4-3	SC320 / NMP (0.5)	azoxystrobin and tebuconazole	0.45	0	0.61
4-4	SC320 / NBP (0.1)	azoxystrobin and tebuconazole	0.45	0	0.46
4-5	SC320 / NBP (0.5)	azoxystrobin and tebuconazole	0.45	0.32	3.04

For penetration tests on tebuconazole at 10°C in apple see example 6

Example 5: Penetration tests with azoxystrobin at room temperature in apple

Table 5: Penetration results after 6 hours and after 3 days of example 5

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients in the aqueous spray liquor	Azoxystrobin concentration (g/L) in the aqueous spray liquor	% azoxystrobin penetration at RT in apple after 6 h // n = 5 - 7	% azoxystrobin penetration at RT in apple after 3 DAT // n = 5 - 7
5-1	Custodia® SC 320	azoxystrobin and tebuconazole	0.45	0.54	3.61
5-2	SC320 / NMP (0.1)	azoxystrobin and tebuconazole	0.45	0.47	2.47
5-3	SC320 / NMP (0.5)	azoxystrobin and tebuconazole	0.45	1.28	8.76
5-4	SC320 / NBP (0.1)	azoxystrobin and tebuconazole	0.45	0.33	1.43
5-5	SC320 / NBP (0.5)	azoxystrobin and tebuconazole	0.45	5.06	13.85

For penetration tests on tebuconazole at room temperature in apple see example 7

Example 6: Penetration tests with tebuconazole at 10°C in apple

Table 6: Penetration results after 6 hours and after 3 days of example 6

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients in the aqueous spray liquor	Tebuconazole concentration (g/L) in the aqueous spray liquor	% tebuconazole penetration at 10°C in apple after 6 h // n = 5 – 7	% tebuconazole penetration at 10°C in apple after 3 DAT // n = 5 – 7
6-1	Custodia® SC 320	azoxystrobin and tebuconazole	0.75	0.37	0.91
6-2	SC320 / NMP (0.1)	azoxystrobin and tebuconazole	0.75	0.12	1.55
6-3	SC320 / NMP (0.5)	azoxystrobin and tebuconazole	0.75	0.12	3.85
6-4	SC320 / NBP (0.1)	azoxystrobin and tebuconazole	0.75	0.06	2.14
6-5	SC320 / NBP (0.5)	azoxystrobin and tebuconazole	0.75	7.01	18.17

For penetration tests on azoxystrobin at 10°C in apple see example 4

Example 7: Penetration tests with tebuconazole at room temperature in apple

Table 7: Penetration results after 6 hours and after 3 days of example 7

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients in the aqueous spray liquor	Tebuconazole concentration (g/L) in the aqueous spray liquor	% tebuconazole penetration at RT in apple after 6 h // n = 5 - 7	% tebuconazole penetration at RT in apple after 3 DAT // n = 5 - 7
7-1	Custodia® SC 320	azoxystrobin and tebuconazole	0.75	2.54	22.72
7-2	SC320 / NMP (0.1)	azoxystrobin and tebuconazole	0.75	3.67	20.73
7-3	SC320 / NMP (0.5)	azoxystrobin and tebuconazole	0.75	9.2	71.3
7-4	SC320 / NBP (0.1)	azoxystrobin and tebuconazole	0.75	4.27	12.41
7-5	SC320 / NBP (0.5)	azoxystrobin and tebuconazole	0.75	30.4	79.6

For penetration tests on azoxystrobin at room temperature in apple see example 5

Example 8: Penetration tests with fluxapyroxad at 10°C in apple

Table 8: Penetration results after 1 day and after 3 days of example 8

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients	Fluxapyroxad concentration (g/L) in the aqueous spray liquor	% fluxapyroxad penetration at 10°C in apple after 1 DAT // n = 5 - 7	% fluxapyroxad penetration at 10°C in apple after 3 DAT // n = 5 - 7
8-1	Orkestra® SC 500	fluxapyroxad and pyraclostrobin	0.285	0.12	0.25
8-2	SC500 / isophorone (0.3)	fluxapyroxad and pyraclostrobin	0.285	0	0.23
8-3	SC500 / NBP (0.3)	fluxapyroxad and pyraclostrobin	0.285	1.45	3.0

Example 9: Penetration tests with fluxapyroxad at room temperature in apple

Table 9: Penetration results after 1 day and after 3 days of example 9

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients	Fluxapyroxad concentration (g/L) in the aqueous spray liquor	% fluxapyroxad penetration at RT in apple after 1 DAT // n = 5 - 7	% fluxapyroxad penetration at RT in apple after 3 DAT // n = 5 - 7
9-1	Orkestra [®] SC 500	fluxapyroxad and pyraclostrobin	0.285	1.99	3.84
9-2	SC500 / isophorone (0.3)	fluxapyroxad and pyraclostrobin	0.285	1.01	3.16
9-3	SC500 / NBP (0.3)	fluxapyroxad and pyraclostrobin	0.285	10.14	21.39

Example 10: Penetration tests with pyraclostrobin at 10°C in pear

Table 10: Penetration results after 1 day and after 3 days of example 10

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients	Pyraclostrobin concentration (g/L) in the aqueous spray liquor	% pyraclostrobin penetration at 10°C in pear after 1 DAT // n = 5 - 7	% pyraclostrobin penetration at 10°C in pear after 3 DAT // n = 5 - 7
10-1	Orkestra® SC 500	fluxapyroxad and pyraclostrobin	0.566	0.04	0.12
10-2	SC500 / NMP (0.3)	fluxapyroxad and pyraclostrobin	0.566	0.05	0.29
10-3	SC500 / DMSO (0.3)	fluxapyroxad and pyraclostrobin	0.566	0.02	0.06
10-4	SC500 / NBP (0.3)	fluxapyroxad and pyraclostrobin	0.566	3.77	5.45

Example 11: Penetration tests with pyraclostrobin at room temperature in pear

Table 11: Penetration results after 1 day and after 3 days of example 11

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredients	Pyraclostrobin concentration (g/L) in the aqueous spray liquor	% pyraclostrobin penetration at RT in pear after 1 DAT // n = 5 - 7	% pyraclostrobin penetration at RT in pear after 3 DAT // n = 5 - 7
11-1	Orkestra [®] SC 500	fluxapyroxad and pyraclostrobin	0.566	0.56	2.18
11-2	SC500 / NMP (0.3)	fluxapyroxad and pyraclostrobin	0.566	2.51	9.65
11-3	SC500 / DMSO (0.3)	fluxapyroxad and pyraclostrobin	0.566	0.72	2.62
11-4	SC500 / NBP (0.3)	fluxapyroxad and pyraclostrobin	0.566	13.43	29.44

Example 12: Penetration tests with thiacloprid at 10°C in pear

Table 12: Penetration results after 6 hours and after 2 days of example 12

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient in the aqueous spray liquor	Thiacloprid concentration (g/L) in the aqueous spray liquor	% thiacloprid penetration at 10°C in pear after 6 h // n = 5 - 7	% thiacloprid penetration at 10°C in pear after 2 DAT // n = 5 - 7
12-1	Calypso® SC 480	thiacloprid	0.3	0.2	0.2
12-2	SC480 / NMP (0.1)	thiacloprid	0.3	0.16	0.24
12-3	SC480 / NMP (0.3)	thiacloprid	0.3	0.13	0.4
12-4	SC480 / NMP (0.5)	thiacloprid	0.3	0.36	0.68
12-5	SC480 / DMSO (0.1)	thiacloprid	0.3	0	0.2
12-6	SC480 / DMSO (0.3)	thiacloprid	0.3	0	0.11
12-7	SC480 / DMSO (0.5)	thiacloprid	0.3	0.06	0.17
12-8	SC480 / NBP (0.1)	thiacloprid	0.3	2.16	2.78
12-9	SC480 / NBP (0.3)	thiacloprid	0.3	18.25	20.96
12-10	SC480 / NBP (0.5)	thiacloprid	0.3	27.29	31.53

Example 13: Penetration tests with thiacloprid at room temperature in pear

Table 13: Penetration results after 6 hours and after 2 days of example 13

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient in the aqueous spray liquor	Thiacloprid concentration (g/L) in the aqueous spray liquor	% thiacloprid penetration at RT in pear after 6 h // n = 5 - 7	% thiacloprid penetration at RT in pear after 2 DAT // n = 5 - 7
13-1	Calypso [®] SC 480	thiacloprid	0.3	0.04	0.59
13-2	SC480 / NMP (0.1)	thiacloprid	0.3	0.08	0.54
13-3	SC480 / NMP (0.3)	thiacloprid	0.3	0.51	1.25
13-4	SC480 / NMP (0.5)	thiacloprid	0.3	1.02	2.69
13-5	SC480 / DMSO (0.1)	thiacloprid	0.3	0.14	1.33
13-6	SC480 / DMSO (0.3)	thiacloprid	0.3	0.01	0.54
13-7	SC480 / DMSO (0.5)	thiacloprid	0.3	0	0.44
13-8	SC480 / NBP (0.1)	thiacloprid	0.3	2.16	3.52
13-9	SC480 / NBP (0.3)	thiacloprid	0.3	23.37	29.85
13-10	SC480 / NBP (0.5)	thiacloprid	0.3	34.8	44.33

Example 14: Penetration tests with thiacloprid at 10°C in apple

Table 14: Penetration results after 1 day and after 3 days of example 14

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient in the aqueous spray liquor	Thiacloprid concentration (g/L) in the aqueous spray liquor	% thiacloprid penetration at 10°C in apple after 1 DAT // n = 5 - 7	% thiacloprid penetration at 10°C in apple after 3 DAT // n = 5 - 7
14-1	Calypso® SC 480	thiacloprid	0.3	0.31	0.77
14-2	SC480 / isophorone (0.1)	thiacloprid	0.3	0.31	0.76
14-3	SC480 / isophorone (0.3)	thiacloprid	0.3	0.14	0.44
14-4	SC480 / isophorone (0.5)	thiacloprid	0.3	0.31	0.85
14-5	SC480 / NBP (0.1)	thiacloprid	0.3	0.83	1.34
14-6	SC480 / NBP (0.3)	thiacloprid	0.3	6.89	8.57
14-7	SC480 / NBP (0.5)	thiacloprid	0.3	18.57	20.77

Example 15: Penetration tests with thiacloprid at room temperature in apple

Table 15: Penetration results after 1 day and after 3 days of example 15

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient in the aqueous spray liquor	Thiacloprid concentration (g/L) in the aqueous spray liquor	% thiacloprid penetration at RT in apple after 1 DAT // n = 5 - 7	% thiacloprid penetration at RT in apple after 3 DAT // n = 5 - 7
15-1	Calypso® SC 480	thiacloprid	0.3	0.46	1.48
15-2	SC480 / isophorone (0.1)	thiacloprid	0.3	0.6	1.62
15-3	SC480 / isophorone (0.3)	thiacloprid	0.3	0.62	1.71
15-4	SC480 / isophorone (0.5)	thiacloprid	0.3	0.33	0.87
15-5	SC480 / NBP (0.1)	thiacloprid	0.3	2.68	4.69
15-6	SC480 / NBP (0.3)	thiacloprid	0.3	8.86	11.62
15-7	SC480 / NBP (0.5)	thiacloprid	0.3	31.27	42.15

Example 16: Penetration tests with acetamiprid at 10°C in apple

Table 16: Penetration results after 8 hours and after 1 day of example 16

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient	Acetamiprid concentration (g/L) in the aqueous spray liquor	% acetamiprid penetration at 10°C in apple after 8 h // n = 5 - 7	% acetamiprid penetration at 10°C in apple after 1 DAT // n = 5 - 7
16-1	Mospilan® 20 SG	acetamiprid	0.3	0.6	13.7
16-2	20 SG / NMP (0.1)	acetamiprid	0.3	0.6	14.4
16-3	20 SG / NMP (0.3)	acetamiprid	0.3	1.4	18.8
16-4	20 SG / NMP (0.5)	acetamiprid	0.3	3.6	24.2
16-5	20 SG / DMSO (0.1)	acetamiprid	0.3	1.6	15.9
16-6	20 SG / DMSO (0.3)	acetamiprid	0.3	1.5	13.4
16-7	20 SG / DMSO (0.5)	acetamiprid	0.3	2.8	22.2
16-8	20 SG / isophorone (0.1)	acetamiprid	0.3	4.2	18.1
16-9	20 SG / isophorone (0.3)	acetamiprid	0.3	4.1	24.1
16-10	20 SG / isophorone (0.5)	acetamiprid	0.3	4.5	16.2
16-11	20 SG / Galaster® BL97 (0,1)	acetamiprid	0.3	5.4	23

Table 16 continued: Penetration results after 8 hours and after 1 day of example 16

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient in the aqueous spray	Acetamiprid concentration (g/L) liquor	% acetamiprid penetration at 10°C in apple	% acetamiprid penetration at 10°C in apple
16-12	20 SG / Galaster [®] BL97 (0.3)	acetamiprid	0.3	5.5	19.3
16-13	20 SG / Galaster [®] BL97 (0.5)	acetamiprid	0.3	6.6	22.8
16-14	20 SG / NBP (0.1)	acetamiprid	0.3	6.9	22.8
16-15	20 SG / NBP (0.3)	acetamiprid	0.3	23.9	48.1
16-16	20 SG / NBP (0.5)	acetamiprid	0.3	46.1	57.7

Example 17: Penetration tests with trifluralin at 10°C in pear

Table 17: Penetration results after 1 day and after 3 days of example 17

Example	Formulation / test substance in the aqueous spray liquor (%) by wt.)	Active ingredient	Trifluralin concentration (g/L) in the aqueous spray liquor	% trifluralin penetration at 10°C in pear after 1 DAT // n = 5 - 7	% trifluralin penetration at 10°C in pear after 3 DAT // n = 5 - 7
17-1	EC 540	trifluralin	3.5	0.53	1.31
17-2	EC 540 / NMP (0.1)	trifluralin	3.5	0.64	1.67
17-3	EC 540 / NMP (0.3)	trifluralin	3.5	0.56	1.33
17-4	EC 540 / NMP (0.5)	trifluralin	3.5	0.81	2.06
17-5	EC 540 / isophorone (0.1)	trifluralin	3.5	0.76	1.97
17-6	EC 540 / isophorone (0.3)	trifluralin	3.5	0.9	2.29
17-7	EC 540 / isophorone (0.5)	trifluralin	3.5	0.79	2.13
17-8	EC 540 / NBP (0.1)	trifluralin	3.5	0.8	1.74
17-9	EC 540 / NBP (0.3)	trifluralin	3.5	2.43	4.49
17-10	EC 540 / NBP (0.5)	trifluralin	3.5	3.66	6.19

Example 18: Penetration tests with prothioconazole at 10°C and 20°C in pear

Experiments were conducted with the active ingredient prothioconazole with either Genagen® NBP (N-(n-butyl)-2-pyrrolidone) or Emulsogen® EL 360 (castor oil

5 ethoxylate).

The active ingredient was dissolved in acetone/water mixture with a concentration of 2 or 0.75 g/L. The penetration of prothioconazole was measured for pear leaf cuticles.

Experiments were conducted with additive systems, firstly with the emulsifier

10 Emulsogen® EL 360 as comparison and secondly with Genagen® NBP as inventive test with an excess of active ingredient (ratio of active ingredient to additive about 2:1).

The results of the penetration tests from example 18 are shown in the figure "FIG. 1".

The results reported are averages from the test results from 5-7 treatments.

15

In FIG. 1:

- a prothioconazole (0.75 g/L) + Genagen® NBP (0.4 g/L)
- b prothioconazole (2 g/L) + Genagen® NBP (1 g/L)
- c prothioconazole (0.75 g/L) + Emulsogen® EL 360 (0.4 g/L)
- 20 d prothioconazole (2 g/L) + Emulsogen® EL 360 (1 g/L)

On the x axis of FIG. 1 is plotted the time after application in hours (h).

On the y axis of FIG. 1 is plotted the proportion of active ingredient that has penetrated

25 through the cuticle of the plant, based on the total amount of active ingredient applied to the plant, in percent (%).

Penetration was effected first at 10°C for about one day, then the temperature was increased to 20°C with relative air humidity constant at about 60%. The concentration of 30 prothioconazole corresponded to values typical in practice (0.75 g/L or 2 g/L prothioconazole). The water from the application droplets had evaporated completely off the leaf cuticle on the macroscopic scale after no later than one hour. With the emulsifier additive Emulsogen® EL 360, which remains on the cuticle or leaf surface, there is a significant increase in the amount of the active ingredient that penetrates into

the plant or a significant increase in the penetration rate by several times when the temperature is increased from 10°C to 20°C. Genagen® NBP was even more effective with equal use concentrations. This shows that N-(n-butyl)-2-pyrrolidone, even at low use concentrations, can promote penetration sustainably and independently of 5 dissolution properties. This is very favorable for long-term effect or long-term availability, called the "residual efficacy", of fungicides and insecticides in particular.

Example 19: Microscopy studies

10 Test procedure:

The following solutions 1) to 6) were produced:

Solution 1)

15 Solution of 1 g of rynaxypyrr in one liter of a mixture of acetone and distilled water at a weight ratio of acetone:distilled water of 30:70.

Solution 2)

20 Solution of 1 g of rynaxypyrr in one liter of a mixture of N-(n-butyl)-2-pyrrolidone and distilled water at a weight ratio of N-(n-butyl)-2-pyrrolidone:distilled water of 30:70.

Solution 3)

Solution of 1 g of emamectin benzoate in one liter of a mixture of acetone and distilled water at a weight ratio of acetone:distilled water of 30:70.

25

Solution 4)

Solution of 1 g of emamectin benzoate in one liter of a mixture of N-(n-butyl)-2-pyrrolidone and distilled water at a weight ratio of N-(n-butyl)-2-pyrrolidone:distilled water of 30:70.

30

Solution 5)

Solution of 1 g of abamectin in one liter of a mixture of acetone and distilled water at a weight ratio of acetone:distilled water of 30:70.

Solution 6)

Solution of 1 g of abamectin in one liter of a mixture of N-(n-butyl)-2-pyrrolidone and distilled water at a weight ratio of N-(n-butyl)-2-pyrrolidone:distilled water of 30:70.

5 The procedure as described hereinafter was followed with solutions 1) to 6) (see steps A) to C)):

A) 1 μ L of the above-described solutions 1) to 6) in each case was applied to silanized glass microscope slides.

10

B) The solutions were left to stand on the microscope slides at a temperature of 25°C and 53% relative air humidity over 18 hours, in the course of which drying took place.

15

C) Thereafter, the microscope slides were assessed and photos were taken at the original edge of the droplets with 400-fold magnification.

The photos for the active agrochemical ingredient abamectin are shown in FIG. 2A and FIG. 2B, those for the active agrochemical ingredient rynaxapyr in FIG. 3A and FIG. 3B, 20 and those for the active agrochemical ingredient emamectin benzoate in FIG. 4A and FIG. 4B.

It was found that the respective active agrochemical ingredient had crystallized out of the mixture of acetone and distilled water (see FIG. 2A, FIG. 3A and FIG. 4A) and was 25 thus no longer in a biologically available form. In this crystalline form, the respective active agrochemical ingredient cannot penetrate into non-plant harmful organisms.

By contrast, it was found that the respective active agrochemical ingredient, even after 30 18 hours, had not crystallized out of the mixture of N-(n-butyl)-2-pyrrolidone and distilled water, but was still in dissolved form in N-(n-butyl)-2-pyrrolidone (see FIG. 2B, FIG. 3B and FIG. 4B). In this dissolved form, the respective active agrochemical ingredient can penetrate into non-plant harmful organisms.

Example 20: Penetration tests with abamectin at 10°C in pear

Table 18: Penetration results after 1 day and after 2 days of example 20

Example	Formulation / test substance in the aqueous spray liquor (% by wt.) at 10°C	Active ingredient	Abamectin concentration (g/L) in the aqueous spray liquor	% abamectin penetration (+/-SE) at 10°C in pear after 1 DAT // n = 5 - 7	% abamectin penetration (+/-SE) at 10°C in pear after 2 DAT // n = 5 - 7
20-1	EC 18	abamectin	0.05	0	0.18
20-2	EC 18 / NMP (0.1)	abamectin	0.05	0	1.26
20-3	EC 18 / NMP (0.3)	abamectin	0.05	0	0.79
20-4	EC 18 / NMP (0.5)	abamectin	0.05	0	1.21
20-5	EC 18 / NBP (0.1)	abamectin	0.05	1.4	1.52
20-6	EC 18 / NBP (0.3)	abamectin	0.05	1.2	1.64
20-7	EC 18 / NBP (0.5)	abamectin	0.05	1.3	2.32

Example 21: Penetration tests with rynaxypyrr at 10°C in pear

Table 19: Penetration results after 1 day and after 2 days of example 21

Example	Formulation / test substance in the aqueous spray liquor (% by wt.) at 10°C	Active ingredient	Rynaxypyrr concentration (g/L) in the aqueous spray liquor	% rynaxypyrr penetration (+/-SE) at 10°C in pear after 6 h // n = 5 - 7	% rynaxypyrr penetration (+/-SE) at 10°C in pear after 2 DAT // n = 5 - 7
21-1	SC 200	ryntaxypyrr	0.1	1.17	1.36
21-2	SC 200 / NMP (0.1)	ryntaxypyrr	0.1	0.98	1.1
21-3	SC 200 / NMP (0.5)	ryntaxypyrr	0.1	1.06	1.25
21-4	SC 200 / DMSO (0.1)	ryntaxypyrr	0.1	0.98	1.11
21-5	SC 200 / DMSO (0.5)	ryntaxypyrr	0.1	1.05	1.14
21-6	SC 200 / Galaster BL 97 (0.1)	ryntaxypyrr	0.1	1.42	1.47
21-7	SC 200 / Galaster BL 97 (0.5)	ryntaxypyrr	0.1	1.33	1.26
21-8	SC 200 / isophorone (0.1)	ryntaxypyrr	0.1	1.1	1.15
21-9	SC 200 / isophorone (0.5)	ryntaxypyrr	0.1	1.14	1.53
21-10	SC 200 / NBP (0.1)	ryntaxypyrr	0.1	1.34, 2.35	
21-11	SC 200 / NBP (0.3)	ryntaxypyrr	0.1	6.71	11.53
21-12	SC 200 / NBP (0.5)	ryntaxypyrr	0.1	6.04	10.41

Example 22: Penetration tests with forchlorfenuron at 10°C in pear

Table 20: Penetration results after 6 h, 1 day and after 3 days of example 22

Example	Formulation / test substance in the aqueous spray liquor (% by wt.) at 10°C	Active ingredient	Forchlorfenuron concentration (g/L) in the aqueous spray liquor	% forchlorfenuron penetration (+/- SE) at 10°C in pear	% forchlorfenuron penetration (+/- SE) at 10°C in pear	% forchlorfenuron penetration (+/- SE) at 10°C in pear
22-1	Acceptor medium	forchlorfenuron	0.03	2.98	8.22	12.77
22-2	Acceptor medium / NBP (0.01)	forchlorfenuron	0.03	9.67	23.2	33.79
22-3	Acceptor medium / NBP (0.05)	forchlorfenuron	0.03	21	40.88	53.39

The results in table 20 demonstrate that the production of high-efficacy spray liquors with a very low active ingredient content (here 0.03 g/L forchlorfenuron) and a very low content of NBP is possible.

Example 23: Formulations with prothioconazole

Formulations with the active ingredient prothioconazole in combination with different additives were produced. The compositions of the individual formulations are apparent from table 21 below. It is found that the active ingredient is in dissolved form in high concentration in all formulations.

Table 21

Constituent	Example 23-1	Example 23-2	Example 23-3	Example 23-4	Example 23-5	Example 23-6	Example 23-7	Example 23-8
Prothioconazole (98.5% RW) [g]							28.88	28.88
Prothioconazole (98% RW) [g]				25.26	25.26	25.26		
Prothioconazole (96% RW) [g]	20.19						30.9	
Genagen NBP (tel-quel) [g]	65.51	15	21	44.74	27.49	34.07	32.17	32.11
Genagen PA (tel-quel) [g]		7.5			14.7		1.5	
MSO (tel-quel) [g]								15
Genagen 4296 (tel-quel) [g]								1.5
Agsolex 08 (tel-quel) [g]				26.24		20		
Solvesso 200 ND (tel-quel) [g]			31.56					
Rapeseed oil methyl and ethyl ester (tel-quel) [g]				12.5		15		
Rapeseed oil ethyl ester [g]							15	
Emulsogen 3510 (tel-quel) [g]	5							5
Synergen 848 (tel-quel) [g]				10	5		5	

Synergen W03 (tel-quel) [g]		5						
Synergen W09 (tel-quel) [g]		6.8						
Genapol X 090 (tel-quel) [g]		2.5	4.5					
Emulsogen MTP 070 (tel-quel) [g]				20				
Emulsogen EL 300 (tel-quel) [g]			10.5					
Emulsogen EL 360 (tel-quel) [g]			15		12.5	15	17.5	17.5
Momentive SAG 1571 (tel-quel) [g]					0.05	0.03	0.01	0.01
Total [g]		100	100	100	100	100	100	100
Type ¹⁾		200 EC	250 EC	250 EC	250 EC	300 EC	300 DC	300 DC

1) X EC = emulsion concentrate with active ingredient concentration x g/L; X DC = dispersion concentrate with active ingredient concentration x g/L

Table 21 shows that the use of N-substituted pyrrolidones of the formula I enables the production of highly concentrated active ingredient formulations. The formulations produced were stable and passed the standard FAO tests in respect of emulsifiability and dispersibility. The formulations produced were stable, for example, when stored at 0°C and 54°C for two weeks, were redispersible and could be mixed with other substances in the spray liquid without difficulty.

High active ingredient loadings of 300 g/L were achievable in emulsion concentrates and dispersion concentrates.

Table 21 also shows that the N-substituted pyrrolidones of the formula I can be used on their own as solvent (example 23-1) or in combination with other solvents.

The formulations described in table 21 showed a high uptake rate (penetration) that was higher than the standard products on the market.

In standard products on the market, N,N-dimethyldecanamide is frequently used as penetrant. Table 21 shows that this compound can be used in comparatively low concentration as solvent and/or as crystallization inhibitor in combination with the N-substituted pyrrolidones of the formula I used in accordance with the invention as penetrant to give active ingredient formulations having very high penetration.

Example 24: Formulations with trinexapac or abamectin and acetamiprid

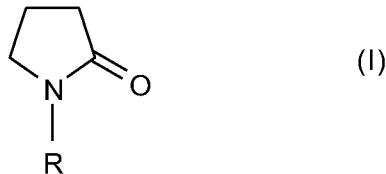
Formulations with the active ingredient trinexapac-ethyl or with abamectin and acetamiprid were produced in combination with different additives. The compositions of the individual formulations are apparent from table 22 below. It is found that the active ingredients are in dissolved form in high concentration in all formulations.

Table 22

Constituent	Example 24-1	Example 24-2	Example 24-3	Example 24-4
Trinexapac-ethyl (97.1% RW) [g]	19.44	19.51	25.84	
Abamectin (95% RW) [g]				2.1
Acetamiprid (95% RW) [g]				10.5
Genagen NBP (tel-quel) [g]	9.69	12.49	12.94	50.4
Hostaphat 1306 (tel-quel) [g]	24.42	26.55		
Synergen 848 (tel-quel) [g]	5	5		
Synergen W03 (tel-quel) [g]				10
Emulsogen MTP 070 (tel-quel) [g]	29.02	31.5		
Emulsogen ELO 200 (tel-quel) [g]			10	7
Synergen SOC (tel-quel) [g]			51.22	
Triethanolamine (tel-quel) [g]	7.43	4.95		
MSO (tel-quel) [g]				10
Water (tel-quel) [g]	5			
Total [g]	100	100	100	100
Type ¹⁾	200 EW	200 DC	250 EC	120 EC

- 1) X EC = emulsion concentrate with active ingredient concentration x g/L; X
 DC = dispersion concentrate with active ingredient concentration x g/L; X
 EW = oil-in-water emulsion with active ingredient concentration x g/L

Table 22 shows that the use of N-substituted pyrrolidones of the formula I enables the production of further highly concentrated active ingredient formulations. The formulations produced were stable and passed the standard FAO tests in respect of emulsifiability and dispersibility. The formulations produced were stable, for example, when stored at 0°C and 54°C for two weeks, were redispersible and could be mixed with other substances in the spray liquid without difficulty.


The formulations described in table 22 showed a high uptake rate (penetration).

Claims:

1. A method for improving the penetration of one or more active agrochemical ingredients into a plant, or a non-plant harmful organism, said method comprising applying a penetrating composition to said plant or non-plant harmful organism, wherein said penetrating composition comprises:

the one or more active agrochemical ingredients; and

at least about 0.2 wt% of an N-substituted pyrrolidone of formula (I)

wherein

R is a linear or branched, saturated alkyl group having 3 to 6 carbon atoms, which is optionally substituted with a methoxy group $-\text{OCH}_3$, and

the pyrrolidone ring of formula (I) is optionally substituted with from 1 to 6 methyl $-\text{CH}_3$ groups;

such that 6 hours after said application, the weight concentration of the one or more active agrochemical ingredients in said plant, or said non-plant harmful organism is at least about 1.1 times the weight concentration of said one or more active agrochemical ingredients in a substantially identical plant or non-plant harmful organism 6 hours after it has been treated with a control composition, said control composition not comprising the N-substituted pyrrolidone, but otherwise being identical to said penetrating composition.

2. The method of claim 1, wherein R has from 3 to 5 carbon atoms.

3. The method of claim 1 or 2, wherein R has 4 carbon atoms.

4. The method of claim 1, wherein the N-substituted pyrrolidone of formula (I) is selected from the group consisting of N-(n-butyl)-2-pyrrolidone, N-(isobutyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-(methyl-substituted butyl)-2-pyrrolidone, ring methyl-substituted N-(propyl)-2-pyrrolidone, ring methyl-substituted N-(butyl)-2-pyrrolidone and N-(methoxypropyl)-2-pyrrolidone.

5. The method of any one of claims 1 to 4, wherein the N-substituted pyrrolidone of formula (I) is N-(n-butyl)-2-pyrrolidone.

6. The method of any one of claims 1 to 5, wherein the penetrating composition is a crop protection composition comprising:

- a) 1% to 90% by weight and preferably 5% to 70% by weight of one or more N-substituted pyrrolidones of the formula (I) as defined in any one of claims 1 to 5, and
- b) 1% to 90% by weight and preferably 2.5% to 70% by weight of one or more active agrochemical ingredients.

7. The method of any one of claims 1 to 5, wherein the penetrating composition is a crop protection composition comprising:

- a) 1% to 50% by weight, preferably 5% to 40% by weight and more preferably 5% to 30% by weight of one or more N-substituted pyrrolidones of the formula (I) as defined in any one of claims 1 to 5; and
- b) 1% to 90% by weight, preferably 5% to 60% by weight and more preferably 2.5% to 50% by weight of one or more active agrochemical ingredients.

8. The method of any one of claims 1 to 5, wherein the penetrating composition is a tankmix additive containing 1% to 90% by weight, preferably 5% to 50% by weight and more preferably 5% to 20% by weight of one or more N-substituted pyrrolidones of the formula (I) as defined in any one of claims 1 to 5, and additionally one or more additives and optionally water.

9. The method of any one of claims 1 to 5, wherein the penetrating composition is a crop protection composition in the form of an aqueous spray liquor.

10. The method of any one of claims 1 to 5, wherein the one or more active agrochemical ingredients are applied to the plant or non-plant harmful organism simultaneously or sequentially together with one or more N-substituted pyrrolidones of the formula (I) as defined according to any one of claims 1 to 5.

11. The method of any one of claims 1 to 10, wherein the one or more active agrochemical ingredients are selected from systemic active agrochemical ingredients.

12. The method of any one of claims 1 to 11, wherein the one or more active agrochemical ingredients are selected from active agrochemical ingredients having a log P value ≤ 4.5 .

13. The method of any one of claims 1 to 12, wherein the one or more active agrochemical ingredients are selected from the group consisting of: strobilurin fungicides; azole fungicides; and further active ingredients selected from the group consisting of: fluxapyroxad, boscalid, bitertanol, prochloraz, thiophanate, chlorothalonil, dimethomorph, fenpropimorph, spiroxamine, trifluralin, metribuzin, saflufenacil, fenoxaprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid, emamectin benzoate, lambda-cyhalothrin, pymetrozine, chloantraniliprole, gibberellic acid, benzylaminopyrin, trinexapac-ethyl, etephon, and thidiazuron.
14. The method of claim 13, wherein said strobilurin fungicides are selected from the group consisting of azoxystrobin, pyraclostrobin, pycoxystrobin, fluoxastrobin, oryzastrobin, picoxystrobin, and trifloxystrobin; and said azole fungicides are selected from the group consisting of prothioconazole, tebuconazole, cyproconazole, difeconazole, metconazole, propiconazole, tetriconazole, and tricyclazole.
15. The method of claim 13 or 14, wherein said strobilurin fungicides are selected from the group consisting of azoxystrobin, pyraclostrobin, fluoxastrobin, picoxystrobin, and trifloxystrobin; said azole fungicides are selected from the group consisting of prothioconazole, tebuconazole, cyproconazole, and propiconazole; and said further active ingredients are selected from the group consisting of fluxapyroxad, bitertanol, prochloraz, chlorothalonil, fenpropimorph, trifluralin, metribuzin, saflufenacil, fenoxaprop-ethyl, acetolachlor, S-metolachlor, pendimethalin, pinoxaden, fluroxypyr, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid, gibberellic acid, and benzylaminopyrin.
16. The method of any one of claims 13 to 15, wherein the one or more active agrochemical ingredients are selected from the group consisting of azoxystrobin, pyraclostrobin, fluoxastrobin, trifloxystrobin, prothioconazole, tebuconazole, fluxapyroxad, bitertanol, prochloraz, chlorothalonil, fenpropimorph, trifluralin, metribuzin, saflufenacil, fenoxaprop-ethyl, pendimethalin, imidacloprid, thiacloprid, thiamethoxam, acetamiprid, gibberellic acid, and benzylaminopyrin.
17. The method of any one of claims 13 to 16, which is for improving the penetration of one or more active agrochemical ingredients into a plant.

18. The method any one of claims 1 to 12, wherein the one or more active agrochemical ingredients are selected from the group consisting of:

insecticides from the pyrethroid family, preferably selected from the group consisting of cypermethrin, deltamethrin, permethrin, cyfluthrin, bifenthrin, lambda-cyhalothrin, and gamma-cyhalothrin;

organophosphate insecticides, preferably chlorpyrifos;

benzoylurea insecticides, preferably selected from the group consisting of diflubenzuron, and lufenuron;

other insecticides selected from the group consisting of abamectin, emamectin benzoate, flubendiamide, fipronil, rynaxypyr, spiromesifen, spirodiclofen, fipronil, and indoxacarb;

amide fungicides, preferably prochloraz;

other fungicides selected from the group consisting of trifloxystrobin, mancozeb, and chlorothalonil; and

herbicides, preferably selected from the group consisting of acetochlor, propanil, and glufosinate.

19. The method of any one of claims 1 to 12, wherein the one or more active agrochemical ingredients are selected from the group consisting of fenpicoxamid, bixafen, isopyrazam, fluopyram, penthiopyrad and abamectin.

20. The method of claim 18 or 19, which is for improving the penetration of one or more active agrochemical ingredients into a non-plant harmful organism.

21. The method of any one of claims 1 to 20, wherein said penetration takes place at least for some time at a temperature of not more than 25°C, preferably at least for some time at a temperature of not more than 20°C, more preferably at least for some time at a temperature of not more than 15°C and especially preferably at least for some time at a temperature of not more than 10°C.

Clariant International Ltd

Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

FIG. 1

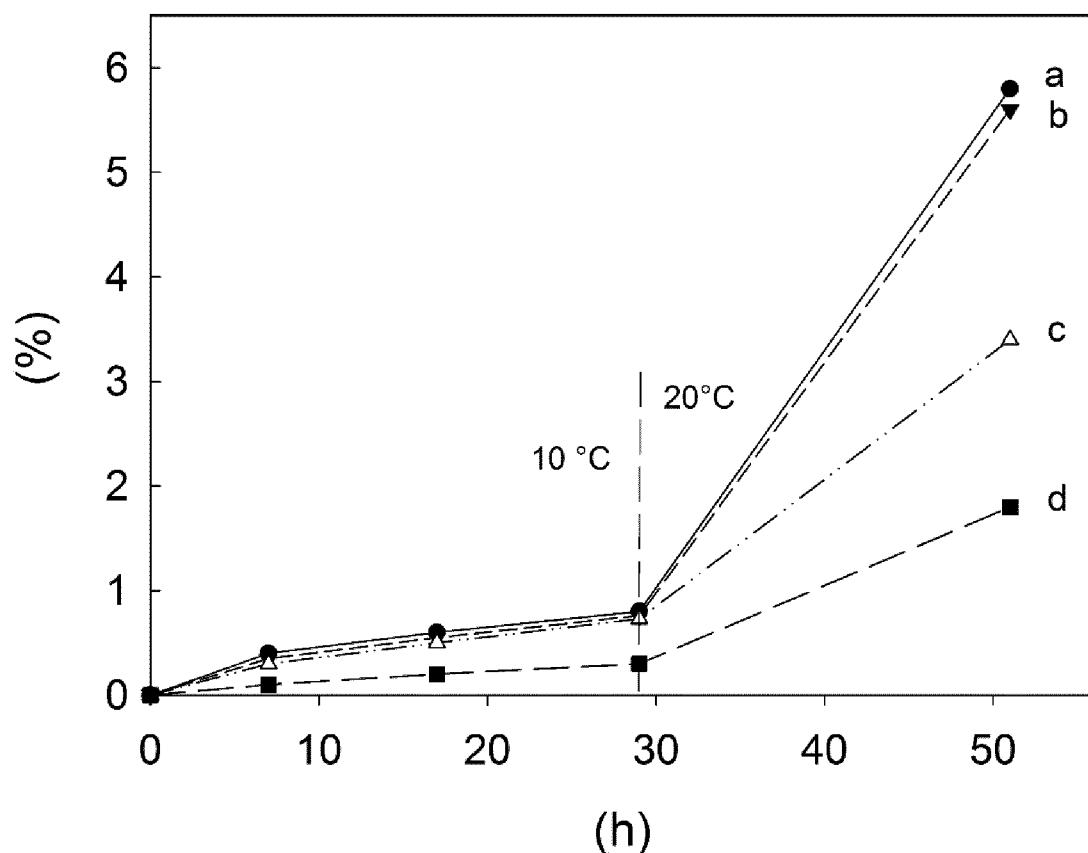


FIG. 2A

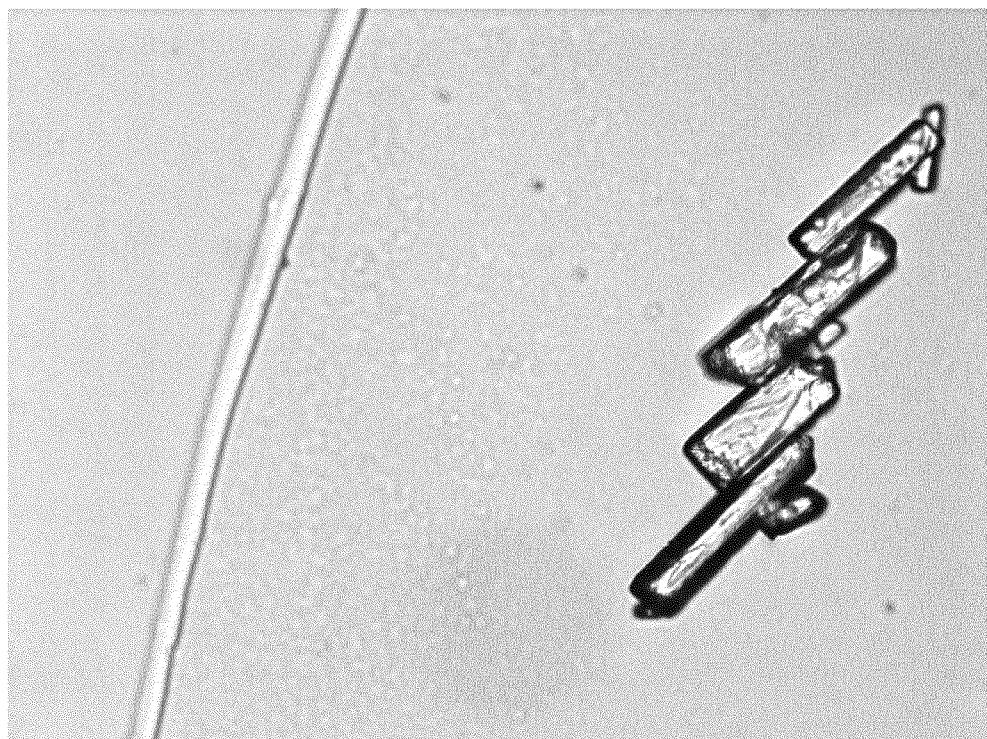


FIG. 2B

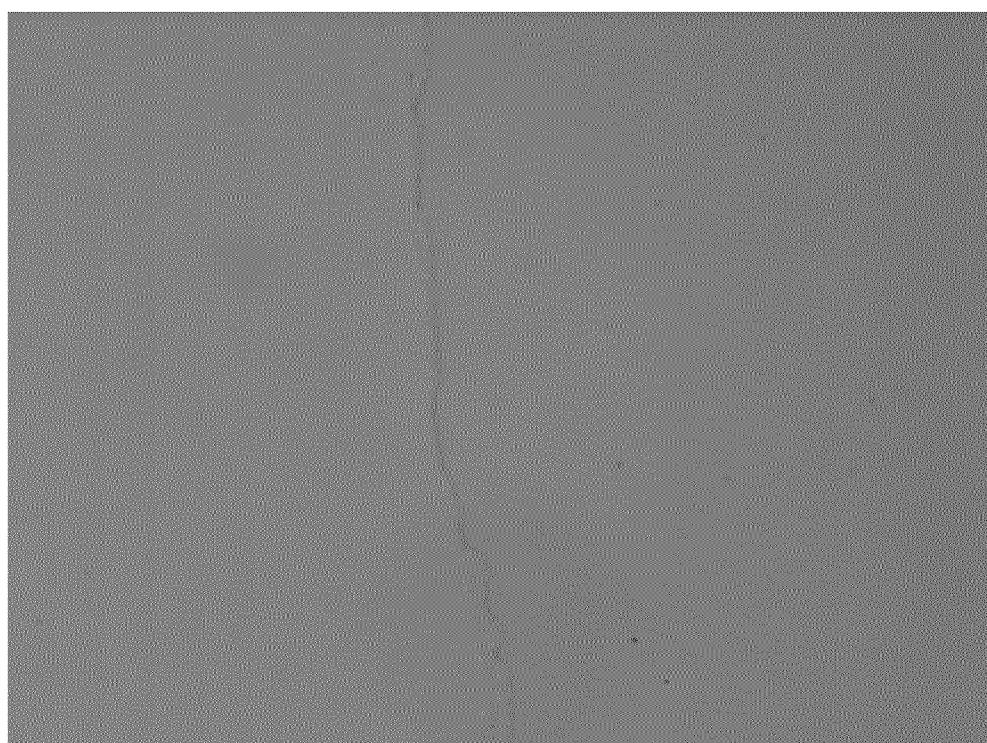


FIG. 3A

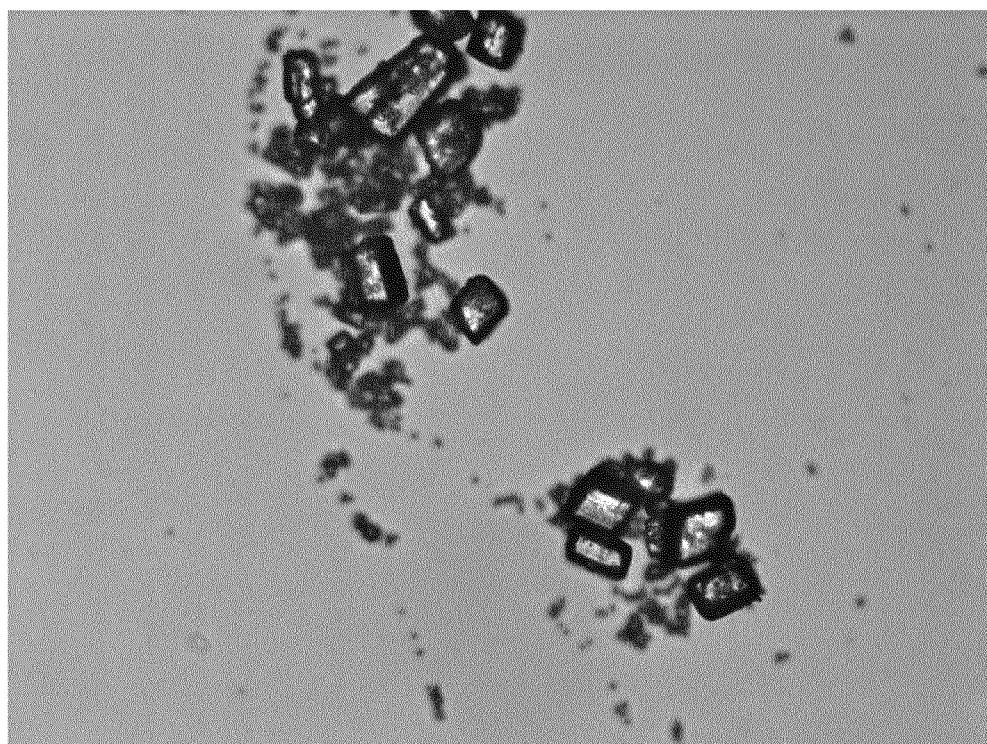


FIG. 3B

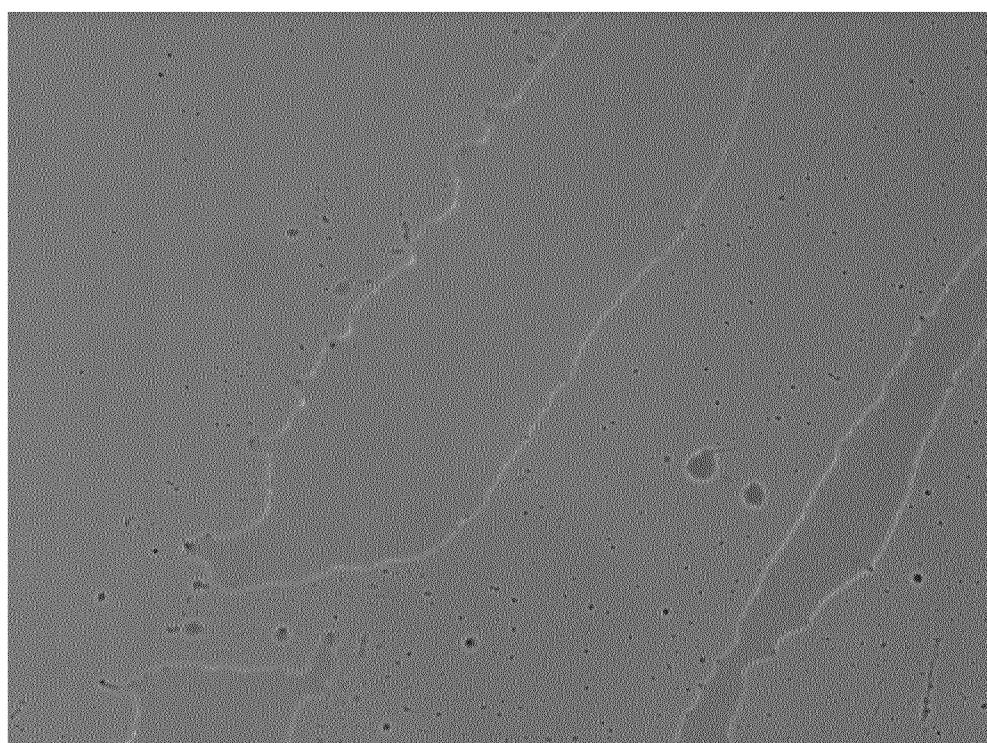


FIG. 4A

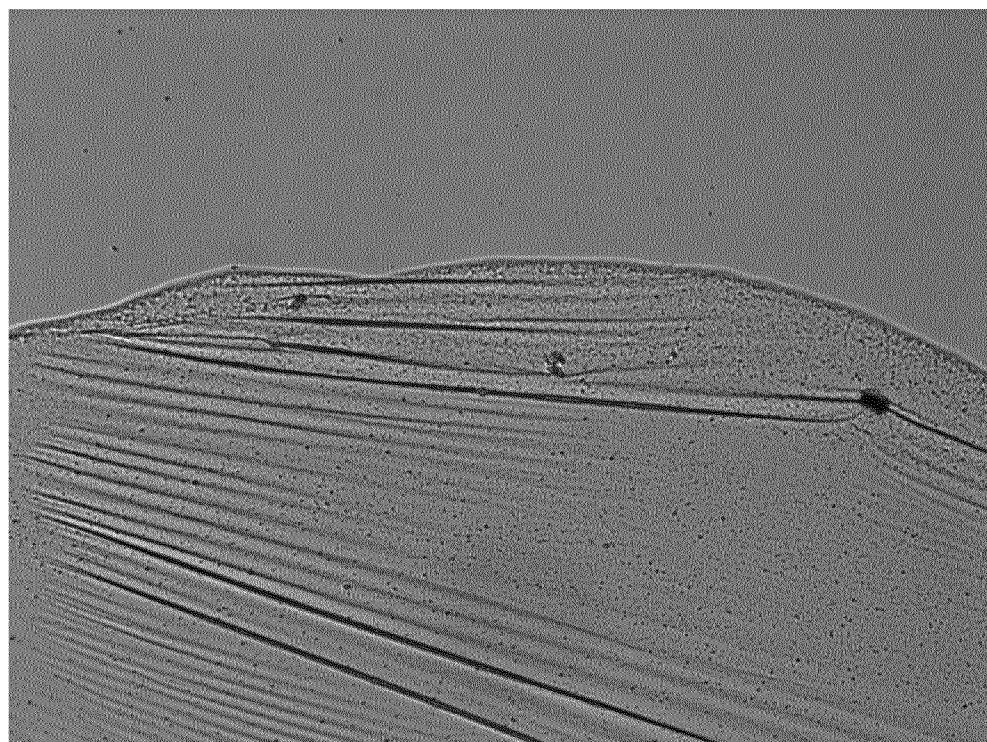
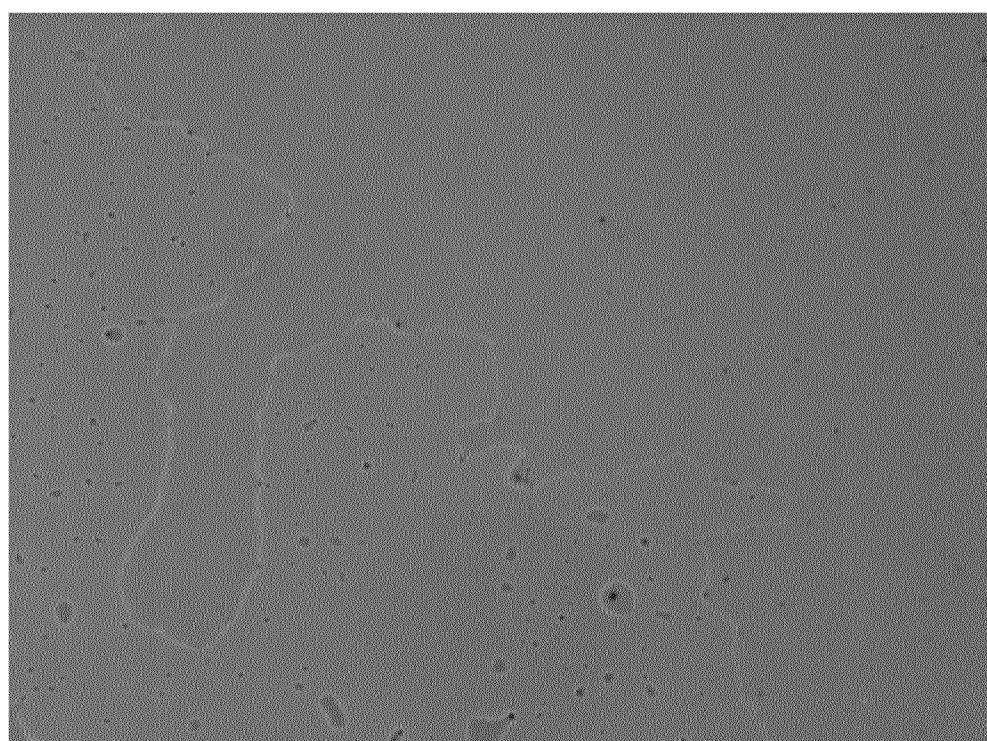



FIG. 4B

