0 Al

=2

079

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

1 February 2001 (01.02.2001) PCT WO 01/07990 A1l

(51) International Patent Classification: GO6F 1/00 (81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,

(21) International Application Number: PCT/US00/18142 DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR, LS, LT, LU,

(22) International Filing Date: 30 June 2000 (30.06.2000) LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO,RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA,

(25) Filing Language: English UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data:
60/145,450
09/444,137

23 July 1999 (23.07.1999)
16 November 1999 (16.11.1999)

Us
us

(71) Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventor: BARLOW, Douglas, C.; 308 217th Avenue NE,
Redmond, WA 98053 (US).

(74) Agents: JOLLY, Thomas, A. et al.; Suite 500, 421 W.
Riverside Avenue, Spokane, WA 99201 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND ARRANGEMENTS FOR MAPPING WIDELY DISPARATE PORTABLE TOKENS TO A STATIC
MACHINE CONCENTRIC CRYPTOGRAPHIC ENVIRONMENT

Application(s) ' '

158
\ 160
X
Operating System
—
Certicificate
Store CryptoAPI SCCP
_ 280 N 240 =248
Assistant
C-CSP
CSP(s) e) s J sc
k [244 L 246
242 (O
L 202

(57) Abstract: Various methods and arrangements are provided to form an interface that allows portable token devices to be used
within static machine concentric cryptographic environments. One example of a portable token device is a smart card that can be
read or other accessed by a computer through a smart card reader. A cryptographic API, associated with the operating system of the
~~ computer, is configured to separate the applications from the cryptographic functions that require the portable tokens. The crypto-
graphic API accesses a smart card cryptographic server provider (SC-CSP) that is configured to work with a smart card cryptographic
provider (SCCP) program as part of the interface. This SC-CSP/SCCP interface determines that the requested cryptographic function
requires a specific smart card and requests that the user provide the appropriate smart card. The SC-CSP and SCCP are object-ori-
ented and utilize method invocation to provide an efficient and reliable interface that can support a variety of different portable tokens

and cryptographic needs.

WO 01/07990 PCT/US00/18142

10

15

20

25

Methods And Arrangements For Mapping Widely Disparate Portable Tokens
To A Static Machine Concentric Cryptographic Environment

RELATED APPLICATION

This application claims priority from U.S. Provisional Application Serial No.
60/145,450, filed July 23, 1999, the disclosure of which is incorporated by

reference herein.

TECHNICAL FIELD

This invention relates generally to cryptography and, more particularly, to
methods and arrangements that allow widely disparate portable tokens to be

employed within a static machine concentric cryptographic environment.

BACKGROUND OF THE INVENTION

Cryptography is commonly employed to authenticate data, encode data, or
encrypt/decrypt data in a manner that allows the data to be stored and/or transmitted
securely. Cryptography is becoming more and more popular as computers and
networks increase in number, size and complexity.

By way of example, public/private key pairs are commonly used in personal
computers (PCs) to provide asymmetric encryption of data that is exchanged
between communicating parties. Asymmetric encryption uses public-key
encryption algorithms. Public-key algorithms use two different keys (known as a
key pair), namely, a public key and a private key. These two keys are typically
derived from extremely large prime numbers making them mathematically related.
However, it is practically impossible to derive one key from the other. As

suggested by their names, the public key is made public, while the private key is

WO 01/07990 PCT/US00/18142

10

15

20

25

2

kept private. In a typical static machine concentric PC environment, the private key
may never leave the PC on which it was generated.

Information (i.e., data) that is encrypted with either one of the keys can only
be decrypted with the other one of the keys. Thus, for example, data encrypted with
the private key can only be decrypted with the public key, and vice versa.

Since, public-key algorithms can be somewhat slow, particularly when
encrypting large amounts of data, a digital signature can be used instead to sign the
data. A digital signature can be produced by passing the data through a specific
one-way hashing algorithm. The hashing algorithm produces a much smaller
message digest. As aresult of the hashing algorithm, the message digest is a unique
value that can essentially act as a “fingerprint” for the larger data file. Once a
message digest is created, it can be encrypted, for example, using the private key
and attached to the larger data file when it is sent or otherwise provided.

As an additional safety measure, a session key may also be used during a
communication session. A session key is essentially a temporary private key or
secret that is shared between the communicating parties. Upon decrypting the
session key the receiving party can further decrypt the encrypted data by running
the hash to produce the message digest, and process it as described above.

One problem associated with such cryptography techniques is that a third
party might attempt to masquerade as one of the communicating parties, for
example, by fraudulently holding out a public key that is represented to be one of
the communicating parties public keys. Any messages or hashes that are intended
for the communicating party and encrypted with the fraudulent public key could
conceivably be decrypted with the accompanying private key by the third party.

To address this problem and others, a digital cerﬁﬁcate can be employed by

the communicating parties. A digital certificate is a credential issued by a trusted

WO 01/07990 PCT/US00/18142

10

15

20

25

3

organization or entity called a certification authority (CA), such as, for example,
VeriSign, Inc. This credential typically contains a public key and data that
identifies the certificate’s subject (i.e., the applicable communicating party). A
certificate is usually issued by a CA only after the CA has verified the certificate’s
subject’s identity and has confirmed that the public key included with the certificate
belongs to that subject. The certificate may also include a digest of the certificate’s
contents that is signed with the private key of the CA to ensure that the certificate
has not been altered or forged.

A CA may also provide self-signed certificates, or root certificates, that are
to be inherently trusted. A CA may itself be certified by a hierarchy of other CAs;
such information is usually included within the certificate. When a digital
certificate is used to sign documents and software, this information is stored with
the signed item in a secure and verifiable form that can be displayed to a user to
establish a trust relationship.

Over a period of time, digital certificates will tend to accumulate on a PC.
These digital certificates are usually collected in a certificate store. Tools are
provided, typically as application programming interface (API) functions, that allow
the user to store, retrieve, delete, enumerate, verify, or otherwise maintain the
digital certificates within the certificate store.

With this in mind, Microsoft Corp. of Redmond, WA, develops software,
operating systems and other applications for use with a variety of “machines”,
including general and special purpose computers, PCs, portable devices, and the
like. Microsoft Corp. has developed a Cryptographic API (hereinafter, generically
referred to as “CryptoAPI”) that provides a controlled/expandable interface
between applications seeking cryptographic services and programs/devices that can

provide such cryptographic services. Within CryptoAPI tools (e.g., functions) are

WO 01/07990 PCT/US00/18142

10

15

20

25

4

provided that can be used to manage the digital certificates in the digital store and
attach the digital certificates to data files. For example, CryptoAPI maintains a
certificate revocation list (CRL) that is typically issued by the CA and lists digital
certificates that are no longer valid. CryptoAPI also supports a certificate trust list
(CTL) that identifies items that have been signed by a trusted entity. The various
digital certificates, CRLs and CTLs within the certificate store are normally kept in
non-volatile memory within the machine, such as, for example, a disk file or the
system registry.

The cryptographic programs/devices that can provide the requested
cryptographic services may include general purpose and/or special purpose
hardware/software that is added to the machine and provides the necessary unique
cryptographic token. Thus, for example, CryptoAPI allows new/additional
cryptography devices/tokens to be added to the machine and acts as an interface
between the requesting application(s) and the added cryptographic device/tokens.
This type of API functionality/interface is well known and described in greater
detail in United States Patent No. 5,689,565, issued November 18, 1997 to Spies et
al.

The above-described API functionality/interface tends to work well with
static machine concentric tokens, since it basically assumes that the cryptographic
device(s) is fixed in place, always available, and used only by the local machine.
However, if some of the tokens are portable, then the API functionality/interface
will not alway; be able to locate the needed token(s).

Consequently, with the recent introduction of smart cards (SCs) and other
similar portable token carrying devices, there is a need for improved methods and
arrangements that allow widely disparate portable tokéns to be used within static

machine concentric cryptographic environments. Preferably, these methods and

WO 01/07990 PCT/US00/18142

10

15

20

25

5

arrangements will provide a generic interface between existing static cryptographic
functions and portable cryptographic functions that reduces development

efforts/expenditures and increases processing efficiency.

SUMMARY OF THE INVENTION

The present invention provides improved methods and arrangements that can
be incorporated into existing static machine concentric machines and/or newly
developed appliances to allow a plurality of different portable tokens to be used in
support of, or as otherwise necessary for completion of cryptographic functions.

In accordance with certain aspects of the present invention, the methods and
arrangements essentially provide a clean and powerful generic interface between
the computing machine and the portable token device. Thus, for example, a variety
of different portable token vendors may invoke or otherwise access features
associated with the present invention in a manner that reduces their development
efforts/expenditures while potentially increasing the processing
efficiency/capability of their respective products.

Thus, for example, in accordance with certain implementations of the present
invention, an arrangement is provided for use with a machine having the capability
to operatively couple with at least one removable portable token device. The
arrangement includes an operating system having at least one application
programming interface (API) that is configured to provide an interface between
application programs and a plurality of cryptographic server provider functions.
The arrangement further includes at least one portable token cryptographic server
provider that is operatively configured to provide an interface between the API and
the portable token. At least one portable token service provider is also included in

the arrangement. The portable token service provider is operatively configured to

10

15

20

25

WO 01/07990 PCT/US00/18142

6
use the portable token cryptographic server provider to create an object-based
information interface to the cryptographic information maintained within the
portable token.

Using this arrangement, for example, portable token vendors are able to
develop portable token service providers that rely on the interface and features
provided by the developer of the portable token cryptographic server provider.
Thus, each portable token and its associated software can interface with the
computer through a generic interface.

Thus, in accordance with one exemplary interface method for each portable
token, a single card control object is provided that is operatively configured to
manage the portable token. From this card control object, at least one container
control object is then provided and configured to manage a specific key container.
Within a container control object, at least one key pair control object is provided
and configured to manage at least one individual key pair maintained within the
portable token.

In still another exemplary implementation, an object-based interface
arrangement is provided for use within a portable token device. Here, the object-
based interface arrangement includes a card control object and at least one
container object enumerated under the card control object that includes evidentiary
data and associated key data. The evidentiary data can include, for example, digital
certificates, certificate lists, etc.

By way of still further example, a portable token apparatus is also provided
for use with one or more computers, in accordance with certain aspects of the
present invention. Here, the portable token apparatus includes at least one
controller, an interface coupled to the controller, and memory coupled to the

controller. The memory includes instructions that cause the controller to present the

10

15

20

25

WO 01/07990 PCT/US00/18142

7

computer with a control object and at least one subordinate container object, when
the portable token apparatus is operatively coupled to the computer. Here, the

container object includes at least one digital certificate and associated key data.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the various methods and arrangements of
the present invention may be had by reference to the following detailed description
when taken in conjunction with the accompanying drawings wherein:

Fig. 1 is a block diagram depicting a computer (machine) suitable for use
with the present invention.

Fig. 2 is a block diagram of a smart card embodiment of a portable token
device suitable for use with the computer as depicted in Fig. 1, for example.

Fig. 3 is an illustrative block diagram of a computer software architecture
suitable for use in the computer as depicted in Fig. 1 and the smart card of Fig. 2,
for example.

Fig. 4 is an illustrative block diagram of an exemplary object-oriented
arrangement suitable for use by the computer software architecture of Fig. 3 to
provide an interface between the portable token of Fig. 2 and the computer of Fig.

1, in accordance with certain implementations of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Overview
The following sections describe an improved interface for use in a computer
or like machine. The interface is based on an object-oriented/method invocation

methodology that allows the computer operating system and/or sub-components to

WO 01/07990 PCT/US00/18142

10

15

20

25

8

build reliable interfaces that can locate and activate the necessary removable
portable token.

While much of the description builds upon existing features of Microsoft’s
CryptoAPI based operating system sub-components and related modules, the scope
of the invention is much greater and should not be so limited. For example, the
interface methods and arrangements define novel demarcation lines for
responsibilities and associated abilities of the various developers/vendors and/or
their products in an environment that supports both static and portable tokens. As
such, these methods and arrangements are portable or otherwise adaptable to other
environments, machines, and operating systems.

The description that follows assumes the following general operational
environment. The computer operating system is initialized. At some stage during
computer operations, the user is prompted or otherwise directed to provide a
portable token device, such as, for example, a smart card. The smart card is
initialized and the interface presented herein determines which, if any, tokens are
present within the smart card. A certificate store within the computer is updated, as
needed, to keep track of the tokens on the various static and portable token devices.

As long as the smart card remains available to the computer system,
applications can access the cryptographic information/functionality associated with
it. If the smart card is removed, then there is a need to locate it again.

Let us assume that the user activates or otherwise selects an application
program, such as, for example, an electronic-mail program requiring a portable
token located on a smart card that has been removed from a reader attached to the
computer. Here, the application requests the cryptographic function from a
cryptographic application programming interface (API). The cryptographic API

contacts a smart card cryptographic server provider (SC-CSP) that is configured to

WO 01/07990 PCT/US00/18142

10

15

20

25

9
work with a smart card cryptographic provider (SCCP) program as part of the
interface. The SC-CSP/SCCP interface determines that the requested cryptographic
function requires the smart card, and requests that the user provide the appropriate
smart card. As a result, once the token is verified, then the requested cryptographic
function, for example, message encryption, can be provided to the calling

electronic-mail application.

Exemplarv Computer System

Fig. 1 is an illustrative block diagram depicting a general example of a
computer 130 that can be used in accordance with the present invention. Various
numbers of computers such as that shown can be used in the context of a distributed
computing environment. In this document, computers are also referred to as
“machines”.

Computer 130 includes one or more processors or processing units 132, a
system memory 134, and a bus 136 that couples various system components
including the system memory 134 to processors 132. The bus 136 represents one or
more of any of several types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures. The system memory 134 includes
read only memory (ROM) 138 and random access memory (RAM) 140. A basic
input/output system (BIOS) 142, containing the basic routines that help to transfer
information between elements within computer 130, such as during start-up, is
stored in ROM 138.

Computer 130 further includes a hard disk drive 144 for reading from and
writing to a hard disk (not shown), a magnetic disk drivé 146 for reading from and

writing to a removable magnetic disk 148, and an optical disk drive 150 for reading

WO 01/07990 PCT/US00/18142

10

15

20

25

10

from or writing to a removable optical disk 152 such as a CD ROM or other optical
media. The hard disk drive 144, magnetic disk drive 146, and optical disk drive
150 are connected to the bus 136 by an SCSI interface 154 or some other
appropriate interface. The drives and their associated computer-readable media
provide nonvolatile storage of computer-readable instructions, data structures,
program modules and other data for computer 130. Although the exemplary
environment described herein employs a hard disk, a removable magnetic disk 148
and a removable optical disk 152, it should be appreciated by those skilled in the art
that other types of computer-readable media which can store data that is accessible
by a computer, such as magnetic cassettes, flash memory cards, digital video disks,
random access memories (RAMs), read only memories (ROMs), and the like, may
also be used in the exemplary operating environment.

A number of program modules may be stored on the hard disk 144, magnetic
disk 148, optical disk 152, ROM 138, or RAM 140, including an operating system
158, one or more application programs 160, other program modules 162, and
program data 164. A user may enter commands and information into computer 130
through input devices such as a keyboard 166 and a pointing device 168. Other
input devices (not shown) may include a microphone, joystick, game pad, satellite
dish, scanner, or the like. These and other input devices are connected to the
processing unit 132 through an interface 170 that is coupled to the bus 136. A
monitor 172 or other type of display device is also connected to the bus 136 via an
interface, such as a video adapter 174. In addition to the monitor, personal
computers typically include other peripheral output devices (not shown) such as
speakers and printers.

Computer 130 commonly operates in a networked environment using logical

connections to one or more remote computers, such as a remote computer 176. The

10

15

20

25

WO 01/07990 PCT/US00/18142

11

remote computer 176 may be another personal computer, a server, a router, a
network PC, a peer device or other common network node, and typically includes
many or all of the elements described above relative to computer 130, although only
a memory storage device 178 has been illustrated in Fig. 8. The logical connections
depicted in Fig. 8 include a local area network (LAN) 180 and a wide area network
(WAN) 182. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Internet.

When used in a LAN networking environment, computer 130 is connected to
the local network 180 through a network interface or adapter 184. When used in a
WAN networking environment, computer 130 typically includes a modem 186 or
other means for establishing communications over the wide area network 182, such
as the Internet. The modem 186, which may be internal or external, is connected to
the bus 136 via a serial port interface 156. In a networked environment, program
modules depicted relative to the personal computer 130, or portions thereof, may be
stored in the remote memory storage device. It will be appreciated that the network
connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

Generally, the data processors of computer 130 are programmed by means of
instructions stored at different times in the various computer-readable storage media
of the computer. Programs and operating systems are typically distributed, for
example, on floppy disks or CD-ROMs. From there, they are installed or loaded
into the secondary memory of a computer. At execution, they are loaded at least
partially into the computer’s primary electronic memory. The invention described
herein includes these and other various types of computer-readable storage media
when such media contain instructions or programs for implementing the steps

described below in conjunction with a microprocessor or other data processor. The

WO 01/07990 PCT/US00/18142

10

15

20

25

12

invention also includes the computer itself when programmed according to the
methods and techniques described below.

For purposes of illustration, programs and other executable program
components such as the operating system are illustrated herein as discrete blocks,
although it is recognized that such programs and components reside at various times
in different storage components of the computer, and are executed by the data
processor(s) of the computer.

To support the portability of tokens and the associated cryptographic
functions that support application programs 160, computer 130 further includes at
least one portable token interface. For example, magnetic disk 148 or optical disk
152 may be considered a token carrier or device when encoded with applicable
token data/instructions. More likely, however, in the future, the portable token
interface will include the coupling of additional hardware to computer 130. Thus,
for example, a smart card reader 200 may be connected to bus 136 through a port
such as serial port 156, as depicted. Smart card reader 200 is supported by
application programs and/or other modules similar to other input/output devices.
Smart card reader 200 is configured to receive a smart card 202 and to provide the
operative coupling of smart card 202 to processing unit 132. Smart card reader 200
can support a plurality of smart cards.

By way of still further example, a universal serial bus (USB) port 204 may
also be coupled to bus 136, as applicable, to support smart card readers and/or other
types of portable token devices 206. The basic notion of the portable token device
is that it can be provided by the user to one or more computer systems when

required to support cryptographic functions.

Exemplary Portable Token Device (A Smart Card)

WO 01/07990 PCT/US00/18142

10

15

20

25

13

Fig. 2 is a block diagram depicting an exemplary smart card 202. As shown,
smart card 202 includes a connector 204 coupled to an onboard controller or
processor 206. Processor 206 is further coupled to an onboard memory 208.
Memory 208 is typically a non-volatile memory that allows smart card 202 to be
moved around from machine to machine without loss of data. Processor 206 is
responsive to instructions provided via memory 208 and/or computer 130 when
smart card 202 is powered on.

Given this configuration, smart cards can be configured to provide
significant security for cryptographic keys. Additional security can be provided by
requiring the user to enter additional security or identifying data (e.g., a personal
identification number (PIN) or string, personal and/or other biometric
information/data) in computer 130 when attempting to activate or otherwise access
the services provided for by smart card 202. For example, the card holder may be
required to enter a PIN to activate the private key, or have their fingerprint scanned.
As token carriers, smart card 202 preferably holds at least one asymmetric key pair.
Symmetric keys are preferably processed by the more powerful processing unit 132
of computer 130.

Problems may occur in the interface to these smart cards, since smart card
developers are usually free to develop/program for their smart cards as they wish.
Currently, there are few standards beyond the physical interface level for smart
cards. A Public-Key Cryptography Standard #11: Cryptographic Token Interface
Standard, available from RSA Laboratories of Redwood City, California, is
currently in the drafting stage to provide for the use of portable tokens. However,
the proposed solutions/interface in the current draft fail to provide a clean/generic
interface through the use of various objects and method invocation techniques, as

described herein.

WO 01/07990 PCT/US00/18142

10

15

20

25

14

Furthermore, there appears to be a general consensus that any specified
standard that goes beyond an interface level would be counter-productive to the
smart card vendors, each of whom may have their own requirements, standards and
practices.

The present invention keeps this in mind by presenting a novel, easy to
implement object-oriented approach/interface that allows static machines to operate
with portable token devices. In accordance with certain further aspects of the
present invention, the burden of developing significant code to support the requisite
interface has essentially been shifted to the developer of the operating system

and/or subcomponents thereof.

Exemplarv Software Architecture

Fig. 3 is a block diagram depicting an exemplary portion of a software
architecture suitable for implementing the present invention. As shown, operating
system 158 includes an API 240 that operatively and selectively separates
applications 160 from various software modules associated with cryptographic
functions. By way of example, API 240 can include CryptoAPI available from
Microsoft Corp.

When a cryptographic function is required, applications 160 access API 240.
API 240 accesses, as applicable, the various software modules associated with the
requested cryptographic function. For example, API 240 can be operatively
arranged to activate or otherwise access the cryptographic and/or related non-
cryptographic functions provided through various cryptographic server providers
(CSPs) 242, assistant CSP 244 and smart card CSP (SC-CSP) 246. CSPs 242 may
include particular cryptographic functions that support aﬁthentication, encoding and

encryption/decryption, for example. In this example, it is assumed that CSPs 242

WO 01/07990 PCT/US00/18142

10

15

20

25

15

are operatively arranged to support functions provided by one or more static
hardware/software token devices. As described in more detail below, assistant CSP
244 and SC-CSP 246 are arranged to support at least one portable token device, in
this example, smart card 202. In certain exemplary implementations, assistant CSP
244 and SC-CSP 246 may be combined to form a single module.

API 240 is also configured to maintain at least one certificate store 250, for
example, as described in the preceding background section. Digital certificates
associated with various smart cards (or other portable token devices) will also be
maintained in certificate store 250 through API 240.

A smart card cryptographic provider (SCCP) 248 is also shown as being
associated with smart card 202. SCCP 248 and SC-CSP 246 are designed to provide
an interface that permits the use and requisite mapping of widely disparate portable
tokens to a static machine concentric environment. This interface is described in

greater detail below.

Exemplary Object Model

Reference is now made to Fig. 4, which depicts an illustrative block diagram
of an object-based model that can be used to provide an interface 300 that permits
the use of widely disparate portable tokens in a static machine concentric
environment, in accordance with certain aspects of the present invention.

Interface 300 provides an object-based arrangement that allows SC-CSP 246
to locate and activate the applicable portable token.

As shown 1n Fig. 4, within interface 300, for each smart card 202, SC-SCP
246 instantiates a single card control object 302 to manage the target smart card 202
when SCCP 248 is loaded. A certificate list object 304 and/or one or more digital

certificate objects 306 can be associated with card control object 302. The

WO 01/07990 PCT/US00/18142

10

15

20

25

16

certificate list object, which is instantiated by SC-SCP 246, is configured to
enumerate over the certificate objects.

From card control object 302, SC-CSP 246 preferably instantiates one or
more container control objects 308, for example, by a name or like identifier. Each
container control object 308 is configured to manage a specific key container. One
or more certificate list objects 310 and/or one or more digital certificate objects 312
can also be associated with each container control object 308.

From each container control object 308, SC-CSP 246 may further instantiate
one or more key pair control objects 314, for example, by an integral identifier.
Each key pair control object 314 is configured to manage at least one individual key
pair that is stored or otherwise maintained within smart card 202. One or more
certificate list objects 310 and/or one or more digital certificate objects 312 can also
be associated with each container control object 308.

The following sections provide additional details for an exemplary
embodiment of interface 300 as implemented for smart card 202, for example, in
the arrangement as depicted in Figs. 1-4, for use with Microsoft’s CryptoAPIL. It
should, however, be kept in mind that the various aspects of the present invention
are fully applicable and adaptable to other non-smart card implementations,
including those that operate with machines that have other operating system
mechanisms/programs that are functionally equivalent to the API 240, SC-CSP 246,
and/or SCCP 248.

One of the features of the present invention is that each compliant token
carrier, smart card or otherwise, will be arranged to present what appears from the
machine to be the same internal structure. Consequently, API 240 can efficiently
interact with the token carrier to determine what tokens are available for the

applications 160, and maintain certificate stores 250, as needed, to recognize the

WO 01/07990 PCT/US00/18142

10

15

20

25

17

proper SC-CSP 246 and smart card 202 required to meet subsequent requests for
cryptographic functions. Once the necessary smart card has been provided by the
user to the computer 130, then cryptographic functions can be provided via one or

more CSPs 242, assistant CSP 244, and/or smart card 202.

Exemplary Smart Card Interface Embodiment

SC-CSP Implementation

This section describes certain features associated with the interfaces of the
SC-CSP 246 object. In accordance with certain aspects of the present invention,
SC-CSP 246 utilizes at least one SCCP 248 to interact with smart card 202.
Therefore, it is preferred that SCCP 248 is developed/supplied by the smart card
vendor in conjunction with smart card 202.

In order to ensure exportability from the United States, SC-CSP 246 will not
perform any cryptographic functions on its own. Instead, it will defer cryptographic
service requests to SCCP 248 and/or to at least one other CSP, such as the assistant
CSP 244. For example, an existing Microsoft base cryptographic server provider
may be used as assistant CSP 244.

SCCP 248 is preferably an in-process component object model (COM)
server (e.g., a data link library (DLL)). Preferably, SCCP 248 should be signed and
registered within the operating system in order for it to be available for use.

If SC-CSP 246 needs to access or otherwise use a given smart card 202
(portable token) for crypto operations, it will look up the card’s SCCP and its
signature in a database, such as, for example, the Calais Database. SC-CSP 246
will validate the signature of SCCP 248, and if all is acceptable, perform a

CoLoadLibrary call to load SCCP 248 and then instantiate the SCCP interface. SC-

WO 01/07990

10

15

20

25

PCT/US00/18142

18

CSP 246 may also provide the loaded SCCP 248 with a pointer to an interface

supplying methods that provide common services to SCCP developers.

The SCCP interfaces described herein are intentionally designed to not

include Type-Library information, or to be trivially called from Basic or Java. This

is an exportability feature that encourages applications to use API 240, rather than

calling the SCCP interface directly.

SC-CSP 246 is essentially responsible for providing all CSP-related services

to the host operating system 158. To accomplish this, SC-CSP 246 relies on SCCP

248 for the following services:

(D
)
3
4
®)
(6)

asymmetric key pair generation (helper functions may be supplied);
secure private key storage;

certificate storage and retrieval;

signing and encrypting operations using the stored private keys;
container naming storage; and

certificate fingerprint storage.

In addition, SCCP 248 support administrative services that may be called by

SC-CSP 246, or by a related administration utility. Thus the following additional

administrative services may be supplied by the SCCP 248:

()
®
)

card initialization;
PIN changing; and

PIN reactivation (if supported).

The following support services are provided to SCCP 248 by SC-CSP 246:

(1)
2
€)
(4)

card location and premature removal support;
PIN prompting support, for example, via a common dialog;
key pair generation services;

message digest services;

WO 01/07990 PCT/US00/18142

10

15

20

25

19

(5) random number generation,;

(6) auxiliary image signature checking; and

(7) data compression.

In addition to various standard CSP-like services offered to applications 160,
SC-CSP 246 may also provide other specialized services to SCCP 248. For
example, SC-CSP 246 may take on the responsibility of locating the correct smart
card 202 to be used for a cryptographic operation, including interacting with the
user, if necessary. SC-CSP 246 can also deal with smart card 202 removal
warnings from the smart card reader 200, prompting the user to either re-insert
smart card 202 or cancel the operation.

One important design feature is that SC-CSP 246 makes requests to SCCP
248 via method invocation. In certain implementations, therefore, SCCP 248 may
need authorization to perform some of these tasks. If authorization is required, then
it can be requested as a part of the invoked method.

One typical authorization technique is the PIN. Thus, SC-CSP 246
preferably provides a common dialog for PIN prompting. This dialog may offer a
“Remember this PIN for the life of the application” checkbox, for example. If the
user checks this box, then SC-CSP 246 will store the PIN in memory and will return
it to future prompt requests from SCCP 248 without actually putting up a user
dialog. PINs, which can be any string, may also be preloaded into a cache by
applications using standard API 240 calls. PINs are automatically forgotten if the
associated smart card 202 is removed from reader 200. PINs may also be cached
per container. Multiple PINs can be distinguished by PIN ID numbers, for
example. The PIN prompting dialog may also offer a “Change PIN” option, to

allow users to change their PINs, if desired.

WO 01/07990 PCT/US00/18142

10

15

20

25

20
SC-CSP 246 provides key pair generation services, should an SCCP 248

require them. SC-CSP 246 may use its assistant CSP 244 to generate a key pair and
pass it along to the SCCP 248, for example. SC-CSP 246 can then scrub any
memory used to hold the private key.

SC-CSP 246 can also provide a message digest service via its assistant CSP
244. One purpose of this service is to assist SCCP 248 in generating certificate
fingerprints. However, SCCP 248 is free to use this service for other purposes too,
such as, for example, PIN verification.

SC-CSP 246 can also be configured to provide random number generation
services via its assistant CSP 244. Additionally, SC-CSP 246 can provide image
validation services, should SCCP 248 need to load additional DLLs.

As mentioned, SC-CSP 246 utilizes the various SCCPs 248 of smart cards
202 to provide services. SC-CSP 246 also utilizes assistant CSP 244 to perform
certain further cryptographic functions not provided by the SCCPs.

Since the tokens associated with the smart cards 202 are portable, there are a
few special cases of how SC-CSP 246 deals with the standard, well-known,
Microsoft CryptoAPI Service Provider interfaces that need to be pointed out. These

are noted in the sections below.

CryptAcquireContext

Several special actions, when compared to conventional CSPs, are taken by
SC-CSP 246 during context acquisition. They are documented here.

The Flags Parameter:

SC-CSP 246 supports all defined flags for CryptAcquireContext. Of special

note are the following:

WO 01/07990 PCT/US00/18142

10

15

20

25

21
CRYPT_SILENT - This flag is taken literally, so that absolutely no UI will

be placed in front of the user when this flag is in effect. If Ul is necessary to
continue an operation, the operation fails.

CRYPT_MACHINE_KEYSET — This flag is taken to mean that no cached
information should be used, that all information must come from the card itself.
This provides the same functionality as the typical meaning of the flag, but makes it
more meaningful in the context of removable hardware tokens.

Fully Qualified Container Names:

In some instances, the calling application is already aware of which smart
card 202 it wishes to talk to, based on the reader 200 it is in. SC-CSP 246 will
recognize fully qualified container names, whereby the specific reader 200
containing smart card 202 can be specified in addition to the container name. For
example, a fully qualified container name may have the following format:

\.\<readerName>[\<containerName>]

Where <readerName> represents the friendly name of the smart card reader
200, and <containerName> represents the name of the desired container. If the
container name is not specified, or has zero length, the default container for smart
card 202 is implied. This also implies that backslashes are not allowed in reader
names or container names.

Examples of container names supported by SC-CSP 246 are:

Blank or NULL - Use the default container from smart card 202 supporting
cryptographic services chosen by the user through the common smart card dialog.
If the CRYPT_SILENT flag is in effect, this name fails.

“MyLogin” — Search for a smart card 202 supporting cryptographic services
with a container name of MyLogin. If a certificate for this container is cached, then

the card search will be restricted to cards with the same ATR as smart card 202

WO 01/07990 PCT/US00/18142

10

15

20

25

22

from which the certificate was contained. If such a smart card 202 is found
immediately, then no user interface (UI) is displayed. If no such smart card 202 is
available, or if multiple smart cards are available, and the CRYPT_SILENT flag is
not in effect, then the common smart card dialog is displayed.

“N.\Keyboard Reader” or “\\.\Keyboard Reader\” — Use the default container
from smart card 202 in reader 200 with the friendly name of Keyboard Reader. If
no smart card 202 is there, if it does not support cryptographic services, or if it does
not have a default container, an error is returned. As such, no UI will be displayed.

“W.\Keyboard Reader\MyLogin” — Uses the container named, MyLogin from
smart card 202 in reader 200 with the friendly name of Keyboard Reader. If no
smart card 202 is there, if it does not support cryptographic services, or if it does
not have a container named, MyLogin, then an error is returned and no UI is
displayed.

If SC-CSP 246 is asked to return the container name via the
CryptGetProvParam service, either through the PP_CONTAINER or
PP_ENUMCONTAINERS parameter identifiers, only the container name will be
returned, not the Fully Qualified Container Name.

CryptGenKey:

The following flag values of the CryptGenKey service are of special note:

CRYPT_EXPORTABLE - Since this flag exists to allow portability of the
private key, and by definition, keys created within smart cards 202 are portable, this
flag is simply ignored. Note that requests to export the private key out of smart
card 202 will be rejected.

CryptExportKey:

A blob type of PRIVATEKEYBLOB is not suppdrted.

CryptGetProvParam:

WO 01/07990 PCT/US00/18142

10

15

20

25

23

The following parameter values of the CryptGetProvParam service are of
special note:

PP_ENUMCONTAINERS only returns container names, not Fully Qualified
Container Names.

PP_CONTAINER only returns the container name, not the Fully Qualified
Container Name.

CryptSetProvParam:

The following parameter values of the CryptSetProvParam are of special
note:

PP_ADMIN_PIN - This allows the administrator PIN of smart card 202 to
be preset by application 160, to avoid having UI requesting the PIN being
displayed.

PP_ KEYEXCHANGE_PIN - This allows the access PIN for the Key
Exchange Key of the container to be preset by application 160, to avoid having Ul
requesting the PIN being displayed.

PP_SIGNATURE_PIN — This allows the access PIN for the Signature Key
of the container to be preset by application 160, to avoid having Ul requesting the
PIN being displayed.

The following parameter values of the CryptGetKeyParam service are of

special note:

KP_CERTIFICATE returns the certificate associated with the key.

The following parameter values of the CryptSetProvParam are of special

note:
KP_ CERTIFICATE sets the certificate associated with the key. The public

key of the digital certificate must match the public key of the key.

WO 01/07990 PCT/US00/18142

10

15

20

25

24
KP_ADMIN_PIN — This allows the administrator PIN of smart card 202 to

be preset by application 160, to avoid having Ul requesting the PIN being
displayed.

KP_KEYEXCHANGE PIN - This allows the access PIN for this key to be
preset by application 160, to avoid having UI requesting the PIN being displayed.
The referenced key must be the Key Exchange Key.

KP_SIGNATURE_PIN — This allows the access PIN for this key to be
preset by application 160, to avoid having UI requesting the PIN being displayed.

The referenced key must be the Signature Key.

SCCP Implementation:

This section describes an exemplary SCCP design. SCCP 248 is
implemented using COM Objects as graphically depicted in Fig. 4. SC-CSP 246
instantiates a single card control object 302 to manage the target smart card when
SCCP 248 is loaded. From that card control object 302, SC-CSP 246 may
instantiate one or more container control objects 308, e.g., by name. A container
control object 308 manages a specific key container (also known as a keyset). From
a container control object 308, SC-CSP 246 may instantiate one or more key pair
control objects 314, e.g.,‘by an integral identifier. Key pair control objects 314
manage the individual key pairs stored on smart card 202.

From any of the control objects (i.e., 302, 308 and 314), SC-CSP 246 may
instantiate a certificate list object (i.e., 304, 310 and 316, respectively). A
certificate list object provides a means to enumerate over a set of certificate objects
(306, 312 and 318, as applicable) associated with the control object.

The following interface definition sections define certain attributes,

properties and methods, as applicable, which are assigned to the various objects

10

15

20

25

WO 01/07990 PCT/US00/18142

25

depicted in the interface 300 of Fig. 4. Those skilled in the art will recognize that
further attributes, properties and methods may be included to meet certain particular
needs of a system, machine, programming environment/language, and/or portable

token device(s).

ISccpBase
This section describes the SCCP Base Object, ISccpBase. ISccpBase

inherits from IUnknown. It is the interface upon which all SCCP objects are based.
This object is never instantiated by itself, but provides the definitions for attribute
management services among the other SCCP Interfaces.

Attributes are characteristics of objects that may vary from object to object
within a class (unlike properties, which are characteristics of every object from that
class). This base class provides a mechanism for getting and setting of these object
attributes. As such, there are no attributes or properties defined for the ISccpBase

interface, but does include the following methods:

GetAttrib

HRESULT
GetAttrib(
[in] DWORD dwParamType,
[in] DWORD dwFlags,
[out] PBYTE pbBuffer,
[in, out] LPDWORD pcbBufLen);

This method is used to obtain (get) attributes of the object. Attributes are
identified by numeric Id, and are returned as a byte array. Wherein, dwParamType
supplies the numeric identifier for the attribute to be obtained; dwFlags supplies any
modifier flags; pbBuffer receives the requested attribute value (this parameter may

be NULL if only the length of the attribute is required); and pcbBuffer supplies the

WO 01/07990 PCT/US00/18142

10

15

20

25

26

length of pbBuffer in bytes, and receives the actual number of bytes in the value of
the attribute (this value is returned even if insufficient space is available in the

pbBuffer array).

SetAttrib

HRESULT

SetAttrib(
[in] DWORD dwParamType,
[in] DWORD dwFlags,
[in] PCBYTE pbParam),

This method is used to modify (set) the value of attributes of the object.
Attributes are identified by numeric Id, and are supplied as a byte array whose
length can be determined from the value. Here, dwParamType supplies the numeric
identifier for the attribute to be modified; dwFlags supplies any modifier flags; and
pbParam supplies the new value of the attribute (the length of this buffer is

determined by the parameter type and the supplied value).

ISccpControl
This section describes the SCCP Control Object, ISccpControl. It inherits

from ISccpBase. It is the interface upon which all SCCP Control Objects are based.
This object is never instantiated by itself, but provides the definitions for common
services among the other SCCP Control Interfaces.

Specifically, it provides the following features:

(1) Certificate Storage is a mechanism whereby certificates can be associated
with a control object. This base class provides a mechanism for enumerating

certificates associated with an object.

WO 01/07990 PCT/US00/18142

10

15

20

25

30

27
(2) PIN Management provides the SCCP with PIN dialog and caching

services. It also allows the application to preset the PIN, alleviating the need for
SC-CSP 246 to display UL
There are no attributes or properties defined for this interface, however, the

following methods are defined:

GetCertifiateList

HRESULT
GetCertifiateList(
[out] PSCCPCERTLIST *ppCertList);

This method obtains an interface pointer for the single certificate list object

associated with the current object. Here, ppCertList receives a pointer to the

Interface.

ChangePin

HRESULT

ChangePin(
[in] LPCTSTR szCurrentPin,
[in] LPCTSTR szNewPin);

This method allows the caller to change an access PIN associated with the
object. PINs are strings, and should not be assumed to be only numeric. Here,
szCurrentPin supplies the current PIN, to be used for validation (the SCCP should
validate this PIN, and not use any cached PIN for validation to ensure that the

request originates from the actual user); and szZNewPin supplies the new PIN to be

used to validate access to this object.

DeactivatePin

HRESULT
DeactivatePin(
void);

WO 01/07990 PCT/US00/18142

10

15

20

25

30

28

This method allows the caller to deactivate an access PIN associated with the

object. This action may require entry of an administrator-level PIN.

ReactivatePin
HRESULT

ReactivatePin(
void);
This method allows the caller to reactivate an access PIN associated with the
object. The PIN may have been deactivated via the DeactivatePin method, or by

security features of smart card 202, such as exceeding a PIN entry retry threshold.

It is likely that this action would also require entry of an administrator-level PIN.

ISccpCard
This section describes the Card Control Object Interface, ISccpCard. It

inherits from ISccpControl. It is instantiated by a call to CoLoadLibrary. One
ISccpCard object is created for each smart card 202 believed to be of the type
associated with SCCP 248. SC-CSP 246 will use the Attach and VerifyCard
methods prior to performing any other action against smart card 202. After that,
Container and/or Certificate management may be performed. No attributes or

properties are defined for this interface, however, the following methods are:

Attach

HRESULT

Attach(
[in] SCARDHANDLE hCard,
[in] PSCCPASSISTANT pAssist,
[in] DWORD dwFlags);

This method causes the object to take over management of smart card 202
found at the supplied reader handle. This method may be called at most once per

ISccpCard object. The intent of this method is to associate the Card Control Object

WO 01/07990 PCT/US00/18142

10

15

20

25

29
with a card. This method will be called exactly once by SC-CSP 246, prior to

calling any other method. In this example, hCard supplies a handle to smart card
202 and reader 200 against which operations are to be performed; pAssist supplies
the address of an ISccpAssistant object, supplying helper routines; and dwFlags
supplies any operational modifiers to apply to the control of smart card 202, as a bit
mask.

For example, possible bit values include:

CRYPT MACHINE KEYSET - Indicates that smart card 202 is not being
activated within the context of any user, but of the system itself.

CRYPT SILENT - Indicates that SCCP 248 may not perform any
interaction with the user, such as prompting for PINSs, etc. If any following method
for this object or any object derived from it finds that user interaction is necessary
to continue the operation, then the operation should simply fail, returning a suitable
error code. This flag could be used by unattended operations, or by system
processes that do not have a graphical user context. Note that this implies that the
ISccpCard Interface should not attempt communication with the user prior to the

invocation of this method.

VerifyCard
HRESULT

VerifyCard(
void);
This method ensures that the attached card is appropriate for use by SCCP
248. The technique used to determine this is SCCP-dependent. This method will be
called exactly once by SC-CSP 246, immediately following a call to the Attach

method. If this method returns an error, no other operation will be performed by

WO 01/07990 PCT/US00/18142

10

15

20

25

30

30
SC-CSP 246 except Release. Smart card 202 will have been accessed with the

following characteristics:
Share Mode - SCARD_SHARE SHARED

Preferred Protocols - SCARD_PROTOCOL_TO |
SCARD_PROTOCOL_T1

Upon acceptance of smart card 202, the SCCP's VerifyCard service may

wish to use the SCardReconnect service to modify these defaults.

CanCreateContainer

HRESULT
CanCreateContainer(
void);

This method is called by SC-CSP 246 to determine whether the attached
smart card 202 is viable for creating a new container. Typically, if no containers
have yet been created on smart card 202, this method would return success.
Alternatively, if smart card 202 can support multiple containers, this method would
return success provided there was adequate space in memory 208 for an additional
container. Implementations of this method should err on the side of optimism - if

there might be room for another container, this method should succeed.

InitializeCard

HRESULT
InitializeCard(
void),

This method sets the attached smart card 202 to an initial state, containing no

keys, containers, or certificates.

ResetContainerEnumeration
HRESULT

ResetContainerEnumeration(
void);

WO 01/07990 PCT/US00/18142

31

This method prepares the NextContainer method to enumerate over all
Container names currently stored in smart card 202. If containers are added to
smart card 202, there is no guarantee that they will be in the enumeration unless

ResetContainerEnumeration is called after they have been added.

5 NextContainer

HRESULT
NextContainer(
[out] LPTSTR szContainer,

0 [in, out] LPDWORD pcchContainerLength);

The NextContainer method returns a name of a container that is stored in
smart card 202. If called repeatedly, this method will return all containers that exist
in smart card 202 exactly once. The enumeration may be reset using the
ResetContainerEnumeration method. There is no guarantee that a container added

15 to smart card 202 after a call to ResetContainerEnumeration will be enumerated by
this service. No particular return order is guaranteed by this service. In this
example, szContainer receives the name of a container on smart card 202, and
pcchContainerLength supplies the length of the szContainer buffer, in characters,
and receives the length of the container name string, in characters, including the

20 trailing null character. This value is returned even if the szContainer buffer is not

large enough to receive the container name.

CreateContainer

HRESULT
CreateContainer(
25 [in] LPCTSTR szContainer,
[out] PSCCPCONTAINER *ppContainer);

This method is used to create a new named container on the attached smart
card 202. A pointer to an ISccpContainer object in charge of managing the newly

30 created container is returned. Here, szContainer supplies the name to be assigned to

WO 01/07990 PCT/US00/18142

(9]

10

15

20

25

30

32

the new container, and ppContainer receives a pointer to a newly created container

object in charge of the new container.

OpenContainer

HRESULT
OpenContainer(
[in] LPCTSTR szContainer,
[out] PSCCPCONTAINER *ppContainer);

This method is used to access an existing container on the attached smart
card 202. A pointer to an ISccpContainer object in charge of managing the existing
named container is returned. In this example, szContainer supplies the name of the
container to be opened, and ppContainer receives a pointer to a newly created

container object in charge of the existing container.

DeleteContainer

HRESULT
DeleteContainer(
[in] LPCTSTR szContainer);

This method is used to delete an existing container and all of its associated
keys on the attached smart card 202. Here, szContainer supplies the name of the

container to be deleted.

ISccpContainer

This section describes the Container Control Object Interface,
ISccpContainer. It inherits from ISccpControl. It is responsible for providing
access to individual key pairs within the container, identified by integral identifier.
There are no attributes defined for this interface. There is at least one property
defined for this interface, namely, a read-only szContainerName property that
defines a string containing the name of this container.

The following methods are also defined for ISccpControl:

WO 01/07990 PCT/US00/18142

10

15

20

25

30

33
ResetKeyPairEnumeration

HRESULT
ResetKeyPairEnumeration(
void); '
This method prepares the NextKeyPair method to enumerate over all the Key
Pairs currently in the Container. If key pairs are added to the container, there is no

guarantee that they will be in the enumeration unless ResetKeyPairEnumeration is

called after they have been added.

NextKeyPair

HRESULT
NextKeyPair(
[out] LPDWORD pdwKeyPair);

The NextKeyPair method returns the integral identifier of a Key Pair that is
stored in the Container. If called repeatedly, this method will return all Key Pairs
that exist in the Container exactly once. The enumeration may be reset using the
ResetCertificateList method. There is no guarantee that a key pair added to the
container after a call to ResetKeyPairEnumeration will be enumerated by this
service. No particular return order is guaranteed by this service. In this example,
pdwKeyPair receives the integral identifier of a Key Pair representing the next key

pair in the enumeration.

CreateKeyPair
HRESULT

CreateKeyPair(
[in] DWORD dwKeySpec,
[out] PSCCPKEYPAIR *ppKeyPair);
This method creates a new key pair within the container on smart card 202.

Examples of typical values for dwKeySpec are KEY EXCHANGEKEY and
KEY_SIGNATURE. Here, dwKeySpec supplies the integral identifier of the key

WO 01/07990 PCT/US00/18142

(9.}

10

15

20

25

34

pair to be created, and ppKeyPair receives a pointer to a newly created Key Pair

Control Object in charge of the new key pair.

OpenKeyPair
HRESULT
OpenKeyPair(
[in] DWORD dwKeySpec,
[out] PSCCPKEY *ppKeyPair);
This method accesses an existing key pair within the container on smart card
202. Examples of typical values for dwKeySpec are KEY _EXCHANGEKEY and
KEY SIGNATURE. In this example, dwKeySpec supplies the integral identifier

of the existing key pair to be accessed, and ppKeyPair receives a pointer to a newly

created Key Pair Control Object in charge of the existing key pair.

DeleteKeyPair

HRESULT
DeleteKeyPair(
[in] DWORD dwKeySpec);

This method removes an existing key pair from within the container on smart
card 202. Examples of typical values for dwKeySpec are KEY EXCHANGEKEY
and KEY SIGNATURE. If a key pair is removed, any associated certificates must
also be removed. In this example, dwKeySpec supplies the integral identifier of the

existing key pair to be deleted.

ISccpKeyPair
This section describes the Key Pair Control Object Interface, ISccpKeyPair.

It inherits from ISccpControl. This interface provides access to the services of the

stored key pair.

WO 01/07990

35

PCT/US00/18142

The following attributes are defined for ISccpKeyPair, based on the key pair

algorithm:
a) RSA
Attribute Description Type
KP KEYVAL RSA Public Key Value Read Only
KP_PUB_EX _LEN |RSA Public Key Exponent | Read Only
Length
KP_PUB_EX_VAL | RSA Public Key Exponent | Read Only
KP KEYLEN Length of key in bits Read Only
b) DSS
Attribute Description Type
KP KEYLEN Length of key in bits Read Only
KP_P DSS/Diffie-Hellman Read Only
value
KP G DSS/Diffie-Hellman Read Only
value
KP Q DSS Q value Read Only
c) Diffie-Hellman
Attribute Description Type
KP_KEYLEN Length of key in bits Read Only
KP P DSS/Diffie-Hellman Read Only
value
1KP_G DSS/Diffie-Hellman Read Only
value
KP X Diffie-Hellman X value Read Only
KP_Y Y value Read Only
d) Fortezza
Attribute Description Type
KP KEYLEN Length of key in bits Read Only
KP RA Fortezza RA value Read Only
KP RB Fortezza RB value Read Only

WO 01/07990 PCT/US00/18142

36

The following properties are defined for ISccpKeyPair:

Property Description Type

dwAlgld Key algorithm identifier, returned as an unsigned long | Read
integer. Possible values include: Only

e CALG_RSA_SIGN
e CALG DSS_SIGN
e CALG_RSA KEYX
e CALG DH SF

e CALG DH_EPHEM

e CALG KEA KEYX
e CALG_SKIPJACK

cbSignSize | An unsigned long integer representing the number of | Read
bytes of data that the key pair can process in Sign | Only
operations.

cbDecryptS | An unsigned long integer representing the number of | Read
ize bytes of data that the key pair can process in Decrypt | Only
operations.

The following methods are defined for ISccpKeyPair:

Sign
HRESULT
Sign(
10 [in] PCBYTE pbClear,
[in] DWORD cbClearLen,
fout] PBYTE pbCypher,
[in, out] LPDWORD pcbCypherLen);

15 This method performs a signing operation using the private key from the
identified key pair. Data to be signed will typically be in the form of PKCS-1

Block Type 1, and will be sized appropriately for the represented key pair, where

WO 01/07990 PCT/US00/18142

10

15

20

25

37

appropriate. Note: Signing and Decrypting are identical services when using RSA.
In this example, pbClear supplies a buffer containing the hash value to be signed
(represented in PKCS-1 Block Type 1 format); cbClearLen supplies the length of
the hash value (in bytes); pbCypher receives the signed version of this hash (where
appropriate, e.g., the value shall be returned in little-endian format); and
pcbCypherLen supplies the size of the pbCypher buffer (in bytes) and receives the

actual number of bytes in the signature.

Decrypt
HRESULT
Decrypt(
[in] PCBYTE pbCypher,
[in] DWORD cbCypherLen,
[out] PBYTE pbClear,
[in, out] LPDWORD pcbClearLen);

This method performs a decryption operation using the private key from the
identified key pair. Data to be decrypted will typically result in the form of PKCS-1
Block Type 2, and will be sized appropriately for the represented key pair, where
appropriate. Note: Signing and Decrypting are identical services when using RSA.
Here, pbCypher supplies a buffer containing the data to be decrypted, represented in
an encrypted PKCS-1 Block Type 2 format (where appropriate, the value shall be
supplied in little-endian format); cbCypherLen supplies the length of the encrypted
data (in bytes); pbClear receives the decrypted data (still in its PKCS-1 Block Type
2 format), and pcbClearLen supplies the size of the pbClear buffer (in bytes) and

receives the actual number of bytes in the decrypted data.

WO 01/07990

PCT/US00/18142

38

IScepCertificateList

This
ISccpCertificateList. It inherits from ISccpBase. A Certificate List Object provides
enumeration services over a set of Certificate Objects. No ordering is imposed on

5 this enumeration. Typical usage is to call the ResetCertificateEnumeration method
to prepare to enumerate the Certificates, then to call NextCertificate repeatedly until

an error is returned indicating that all Certificate Objects have been returned. There

section describes the Certificate List Object

are no attributes defined for this interface.

The following property, is defined for ISccpCertificateList:

Interface,

include:

e SCCP_CRTL_FLAG READONLY - The certificate
list does not permit modifications.

Property | Description Type
dwFlags | An unsigned long integer representing a bit mask of | Read
capabilities for this certificate list. Possible bit settings | Only

10
The following methods are defined for ISccpCertificateList:
ResetCertificateEnumeration
HRESULT
ResetCertificateEnumeration(
15 void);

This method prepares the NextCertificate method to enumerate over all
Certificate Objects currently in the Certificate List. If certificates are added to the

Certificate List, there is no guarantee that they will be in the enumeration unless

20 ResetCertificateEnumeration is called after they have been added.

NextCertificate

HRESULT
NextCertificate(

WO 01/07990 PCT/US00/18142

10

15

20

25

39
[out] PSCCPCERT *ppCertificate);

The NextCertificate method returns a pointer to a Certificate Object that is
stored in the Certificate List. If called repeatedly, this method will return all
Certificate Objects that exist in the Certificate List exactly once. The enumeration
may be reset using the ResetCertificateEnumeration method. There is no guarantee
that a certificate added to the list after a call to ResetCertificateEnumeration will be
enumerated by this service. In this example, ppCertificate receives a pointer to a
newly created Certificate Object representing the next certificate in the

enumeration.

AddCertificate

HRESULT

AddCertificate(
[in] PCBYTE pbCertificate,
[in] DWORD cbCertLength);

This method adds a certificate to the certificate list. The certificate must
meet any criteria associated with the list. For example, a certificate list associated
with a key pair will typically only contain certificates vouching for the public key of
that key pair. It is possible that the added certificate might not be returned by a call
to NextCertificate until after a ResetCertificateEnumeration call has been

performed. Here, pbCertificate supplies the certificate to be added to the list, and

cbCertLength supplies the length of the certificate, in bytes.

ISccepCertificate

This section describes the Certificate Object Interface, ISccpCertificate. It
inherits from ISccpBase. It provides a means to refer to a specific certificate within
the certificate list. There are attributes or properties defined for this interface.

The following methods are defined for IsccpCertificate:

WO 01/07990 PCT/US00/18142

wn

10

15

20

25

30

40
GetCertificate

HRESULT
GetCertificate(
[out] PBYTE pbCertificate,
[out] LPDWORD pcbCertLength);

This method extracts the certificate from smart card 202. In this example,
pbCertificate receives the certificate (if this value is NULL, then only the length of
the certificate is to be returned), and pcbCertLength supplies the length of the
pbCertificate buffer in bytes, and receives the actual length of the certificate. The
length value is returned even if there is insufficient space in the pbCertificate

parameter to contain the certificate.

RemoveCertificate

HRESULT
RemoveCertificate(
void);

This method causes the referenced certificate to be removed from the list.

ReplaceCertificate
HRESULT

ReplaceCertificate(
[in] PCBYTE pbCertificate,
[in] DWORD cbCertLength);
This method updates the certificate on smart card 202 with a new certificate.
The old certificate is forgotten or otherwise removed. Here, pbCertificate supplies

the new value for the certificate in the list, and cbCertLength supplies the length of

the certificate, in bytes.

Services Available to SCCPs

SC-CSP 246 may also provide certain services to SCCP 248. For example,

when card control object 302 is activated, SC-CSP 246 may supply a pointer to a

WO 01/07990 PCT/US00/18142

10

15

20

25

30

41

helper interface or like function that provides a few common support services, some
of which may be used to activate any number of other miscellaneous support
interfaces which may be used to simplify the implementation of SCCP 248. Data

compression is one potential service.

ISccpAssistant
This section describes the SCCP Assistant Interface, ISccpAssistant. It

inherits from IClassFactory, in order to provide access to other Interfaces. It
provides a few common services, and provides access to a collection of utility
interfaces, which may make developing SCCP 248 easier. Some interfaces may not
be available through regular IClassFactory interfaces due to export restrictions. No

properties are defined for this interface, however, the following methods are:

Createlnstance
HRESULT
Createlnstance(
[in, unique] [Unknown *pUnkOuter,
[in] REFIID riid,
[out, iid_is(riid)] void **ppvObject);

This method activates the identified interface. For example, see the

[ClassFactory interface definition for the description of the individual parameters.

VerifyImage

HRESULT

Verifylmage(
[in] LPTSTR szImage,
[in] PCBYTE pvReserved,
[in] PCBYTE rgbSignature,
fin] DWORD cbSigLen);

The Verifylmage method is used to verify the'signature of images prior to

loading them into the address space. In this example, szImage supplies the path

WO 01/07990 PCT/US00/18142

10

15

20

25

30

42

name of the image to validate, pvReserved is reserved for future use, rgbSignature
supplies the signature of the image, and cbSigLen supplies the length of the

signature.

GetPin

HRESULT
GetPin(
[in] DWORD dwPinld,
[in] LPCTSTR szMessage,
[in] DWORD dwMessageld,
[in] LPCTSTR rgszParams{],
[in] DWORD Flags,
[out] LPTSTR szPin,
[in, out] LPDWORD pcchPinLen);

The GetPin method invokes any necessary Ul to prompt the user for a PIN
necessary to complete the requested action. An application 160 may request that
SC-CSP-related and SCCP Ul be disabled. If this is in effect, then this method will
return an error, indicating that the action should not Be allowed to proceed. If Ul is
presented to the user, they are given the option to have SC-CSP 246 remember this
PIN until the application exits or until the associated smart card 202 is removed,
whichever comes first. When the user chooses this option, the next time this PIN Id
is requested, no Ul will be presented to the user, and the PIN will be fetched from
an internal cache. Here, the dwPinld value identifies the PIN being requested.

For example, the following values may be predefined:

PIN_EXCHANGEKEY: The PIN being requested is used to activate
the Exchange Key Pair.

PIN_SIGNATURE: The PIN being requested is used to activate the
Signature Key Pair.

PIN_SECOFFICER: The PIN being requested is used to enable
management of smart card 202.

WO 01/07990 PCT/US00/18142

10

15

20

25

43

In the GetPin method, szMessage is a parameter that may be NULL, in
which case it is ignored. If it is not NULL, then szMessage supplies a message to
be displayed to the user should UI be necessary to obtain the PIN. If the Messageld
parameter is zero, or if szMessage in non-NULL, then Messageld is ignored.
Otherwise, it specifies a string identifier contained in the SCCP image to be loaded
and used as a message to be displayed to the user should Ul be necessary to obtain
the PIN.

The rgszParams parameter may be NULL, in which case it is ignored. It is
also ignored if both szMessage is NULL and dwMessageld is zero. Otherwise, it is
taken as the address of a null-terminated array of null-terminated strings to be used
in substitutions of the supplied message string or Id.

With regard to the dwFlags parameter, it supplies flags used for controlling
the operation of the service. Thus, for example, the following flags may be
supported:

UIFLAG _DONTCACHE - This flag prevents any PIN obtained from the
user to not be cached for later use. This flag is ignored if the PIN is already in the
cache.

UIFLAG_CLEARCACHE: This flag clears any previous PIN stored in the
cache for this key pair, and re-prompts the user for the PIN. If Ul is blocked, either
from the application via the PP _DISABLE Ul attribute or via the
UIFLAG _DISABLE _UI flag, an error indicating that UI could not be performed
will be returned, but the cache will still be cleared. If the UIFLAG_DONTCACHE
flag is also set, the PIN will not be placed into the cache, even if it was there prior
to clearing the cache.

UIFLAG_DISABLE_UI: This flag forces the call to not put up UL If the

PIN is not in the SC-CSP PIN Cache, the method returns an error. Using this flag

WO 01/07990 PCT/US00/18142

10

15

20

25

30

44
in conjunction with UIFLAG_CLEARCACHE results in the PIN being removed

from the cache with no further action.

Finally, in the GetPin method above, szPin receives the requested PIN as a
NULL-terminated string, and pcchPinLen supplies the length of the szPin buffer in
characters, and receives the retummed length of the PIN, excluding the trailing

NULL character.

GenerateKeyPair

HRESULT
GenerateKeyPair(
[in] DWORD dwAlgid,
[in] DWORD dwFlags,
[in] PCBYTE pvParams,
[out] PBYTE pvNewKeyPair,
[in, out] LPDWORD pcbKeyPairLen);

This method generates a key pair for SCCP 248. Here, dwAlgld supplies an
identifier for the type of key pair to be generated. For example, the following
algorithm Ids may be supported:

CALG_RSA_SIGN: Generate an RSA Signature key pair.

CALG_RSA_KEYX: Generate an RSA Key Exchange key pair.

In the GenerateKeyPair method, dwFlags is reserved for future use, and must
be zero, and pvParams supplies a structure controlling generation parameters for the
new key pair. The actual required structure is dependent on the algorithm specified
in dwAlgld. The pvNewKeyPair parameter receives the newly generated key pair.
The structure of this returned value is dependent on the algorithm specified in
dwAlgld. The pcbKeyPairLen parameter supplies the size of the pvNewKeyPair

buffer in bytes, and receives the length of the actual returned structure, in bytes.

MessageDigest

HRESULT
MessageDigest(

WO 01/07990 PCT/US00/18142

10

15

20

25

30

45

[in] DWORD dwAlgld,

[in] PCBYTE pbDataBlob,

[in] DWORD cbBlobLength,

[out] PBYTE pbDigest,

[in, out] LPDWORD pcbDigestLen);

This method provides simple message digest services, suitable for certificate
fingerprinting. In this example, dwAlgld supplies the identifier of the hash
algorithm to be used, pbDataBlob supplies the data to be hashed, cbBlobLength
supplies the length of the data to be hashed (in bytes), pbDigest: receives the
resulting digest, and pcbDigestLen supplies the length of the pbDigest buffer, and

receives the actual length of the resulting digest.

GenRandom

HRESULT
GenRandom(
[out] PBYTE pbBuffer,
[in] DWORD cbBufferLen);

This method supplies a stream of random bytes. Here, pbBuffer receives the
randomly generated bytes, and cbBufferLen supplies the length of the pbBuffer, in
bytes.

Those skilled in the art will appreciate that the various methods and
arrangement described herein provide an efficient method for integrating portable
token devices into static machine concentric cryptographic environments. Although
some preferred embodiments of the various methods and arrangements of the
present invention have been illustrated in the accompanying Drawings and
described in the foregoing Detailed Description, it will be understood that the
invention is not limited to the exemplary embodiments disclosed, but is capable of
numerous rearrangements, modifications and substitutions without departing from

the spirit of the invention as set forth and defined by the following claims.

WO 01/07990 PCT/US00/18142

10

15

20

25

46
CLAIMS

1. An arrangement for use with a machine having the capability to
operatively couple with at least one removable portable token device, the
arrangement comprising:

an operating system including at least one application programming
interface (API) that is configured to provide an interface between application
programs and a plurality of cryptographic server provider functions;

at least one portable token cryptographic server provider (CSP)
operatively configured to provide an interface between the API and the portable
token; and

at least one portable token service provider that is operatively
configured to use the portable token cryptographic server provider to create an
object-based information interface to unique cryptographic information maintained

within the portable token.

2. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide
portable token location and premature removal services support through the

operating system to the portable token service program.

3. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide
personal identification information prompting support services through the

operating system to the portable token service program.

WO 01/07990 PCT/US00/18142

10

15

20

25

47

4, The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide

key pair generation support services to the portable token service program.

5. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide

message digest support services to the portable token service program.

6. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide

random number generation support services to the portable token service program.

7. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide
auxiliary image signature checking support services to the portable token service

program.

8. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further operatively configured to provide

data compression support services to the portable token service program.

9. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide asymmetric key pair

generation support services to the portable token cryptographic server provider.

WO 01/07990 PCT/US00/18142

10

15

20

48

10. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide secure private key

storage support services to the portable token cryptographic server provider.

11. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide certificate storage and

retrieval support services to the portable token cryptographic server provider.

12. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide signing and encrypting

operations support services to the portable token cryptographic server provider.

13. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide container naming

storage support services to the portable token cryptographic server provider.

14. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide certificate fingerprint

storage support services to the portable token cryptographic server provider.

15. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide portable token

initialization support services to the portable token cryptographic server provider.

WO 01/07990 PCT/US00/18142

10

15

20

25

49

16. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide personal identification
information changing support services to the portable token cryptographic server

provider.

17. The arrangement as recited in Claim 1 wherein the portable token
service provider is further operatively configured to provide personal identification
information reactivation support services to the portable token cryptographic server

provider.

18. The arrangement as recited in Claim 1 wherein the portable token

service provider is an in-process component object model (COM) server.

19. The arrangement as recited in Claim 1 wherein the portable token
service provider is initially signed and registered within the operating system in

order for it to be available for use.

20. The arrangement as recited in Claim 1 wherein, if the portable token
cryptographic server provider (CSP) needs to access the portable token service
program, the portable token cryptographic server provider (CSP) will first validate a

portable token signature associated with the portable token service program.

21. The arrangement as recited in Claim 1 wherein the portable token
service provider makes requests to the portable token cryptographic server provider

(CSP) via method invocation.

WO 01/07990 PCT/US00/18142

10

15

20

25

50

22. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further configured to generate a key pair and

provide the key pair to the portable token service program.

23. The arrangement as recited in Claim 22 wherein after the portable
token cryptographic server provider (CSP) provides the key pair to the portable
token service program, the portable token cryptographic server provider (CSP)

scrubs any memory used to hold a private key data portion of the key pair.

24, The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further configured to recognize fully
qualified container names associated with a particular portable token reader and a

removable portable token.

25. The arrangement as recited in Claim 1 wherein the portable token
cryptographic server provider (CSP) is further configured to selectively provide

user interface through the operating system.

26. The arrangement as recited in Claim 1 wherein the portable token
service provider further includes a base object that is never instantiated by itself, but
defines attribute management services among a plurality of other portable token

service provider interfaces.

27. The arrangement as recited in Claim 26 wherein the portable token
service provider further includes a get attribute function that is configured to obtain

certain attributes associated with an identified object.

WO 01/07990 PCT/US00/18142

10

15

20

25

51

28. The arrangement as recited in Claim 26 wherein the portable token
service provider further includes a set attribute function that is configured to modify

at least one attribute associated with an identified object.

29. The arrangement as recited in Claim 26 wherein the portable token
service provider further includes a control object that inherits from the base object
is never instantiated by itself, but defines a plurality of common services that can be
used among differing control interfaces associated with the portable token service

program.

30. The arrangement as recited in Claim 29 wherein the control object is
further configured to provide a digital certificate storage capability for digital

certificates associated with an identified control object.

31. The arrangement as recited in Claim 29 wherein the control object is
further configured to enumerate digital certificates associated with an identified

control object.

32. The arrangement as recited in Claim 29 wherein the control object is
further configured to provide personal identification information management

services.

33. The arrangement as recited in Claim 29 wherein the control object
further includes a get certificate list function that obtains an interface pointer for a

single certificate list object associated with an identified object.

WO 01/07990 PCT/US00/18142

10

15

20

25

52

34. The arrangement as recited in Claim 29 wherein the control object
further includes a change personal identification information function that allows a
calling application to change personal identification information associated with an

identified object.

35. The arrangement as recited in Claim 29 wherein the control object
further includes a deactivate personal identification information function that
allows a calling application to deactivate personal identification information

associated with an identified object.

36. The arrangement as recited in Claim 29 wherein the control object
further includes a reactivate personal identification information function that
allows a calling application to reactivate personal identification information

associated with an identified object.

37. The arrangement as recited in Claim 29 wherein the portable token
service provider further includes a card control object interface that inherits from

the control object.

38. The arrangement as recited in Claim 37 wherein the card control
object interface further includes an attach function that causes the control object to
take over management of the portable token as identified by a reader handle

associated with the portable token.

WO 01/07990 PCT/US00/18142

10

15

20

25

53

39. The arrangement as recited in Claim 37 wherein the card control
object interface further includes a verify portable token function that ensures an
available portable token is appropriate for use by the portable token service

program.

40. The arrangement as recited in Claim 37 wherein the card control
object interface further includes a can create container function that is configured to
allow the portable token cryptographic server provider (CSP) to determine if an
available portable token is capable of accepting the creation of a new container

therein.

41. The arrangement as recited in Claim 37 wherein the card control
object interface further includes an initialize portable token function that is
configured to initialize an available portable token by setting at least one parameter
selected from a set of parameters comprising an initial state, at least one key, at

least one container, and at least one certificate

42. The arrangement as recited in Claim 37 wherein the card control
object interface further includes at least one container enumeration function that
selectively enumerates one or more container names within the identified portable

token.

43. The arrangement as recited in Claim 37 wherein the card control
object interface further includes at least one container creation function that

selectively creates containers within the identified portable token.

WO 01/07990 PCT/US00/18142

10

15

20

25

54

44, The arrangement as recited in Claim 43 wherein the container
creation supplies the name to be assigned to a new container, and receives a pointer
to a newly created container object in charge of the new container within the

portable token.

45. The arrangement as recited in Claim 37 wherein the card control
object interface further includes at least one container opening function that

selectively opens containers within the identified portable token.

46. The arrangement as recited in Claim 37 wherein the card control
object interface further includes at least one container deletion function that

selectively deletes containers within the identified portable token.

47. The arrangement as recited in Claim 29 wherein the portable token
service provider further includes a container control object interface that inherits
from the control object and provides access to individual key pairs within an

identified container within the portable token.

48. The arrangement as recited in Claim 47 wherein the container control
object interface further includes at least one key pair management function that

enumerates over all identified key pairs currently within the identified container.

49. The arrangement as recited in Claim 47 wherein the container control
object interface further includes at least one key create function that allows for

selective creation of key pairs within the identified container.

WO 01/07990 PCT/US00/18142

10

15

20

25

55

50. The arrangement as recited in Claim 47 wherein the container control
object interface further includes at least one key open function that allows for

selective opening of key pairs within the identified container.

51. The arrangement as recited in Claim 47 wherein the container control
object interface further includes at least one key delete function that allows for

selective deletion of key pairs within the identified container.

52. The arrangement as recited in Claim 51 wherein the key delete
function is further configured to delete any associated digital certificates associated

with a key pair that is to be deleted.

53. The arrangement as recited in Claim 29 wherein the portable token
service provider further includes a key pair control object interface that inherits
from the control object and is configured to provide selective access to the services

of an identified key pair within the portable token.

54. The arrangement as recited in Claim 53 wherein the key pair control
object interface is operatively configured to support at least one key pair algorithm
selected from a group comprising an RSA key pair algorithm, a DSS key pair

algorithm, a Diffie-Hellman key pair algorithm, and a Fortezza key pair algorithm.

55. The arrangement as recited in Claim 53 wherein the key pair control
object interface further includes at least one signing function that uses the private

key from the identified key pair to sign data.

WO 01/07990 PCT/US00/18142

10

15

20

25

56

56. The arrangement as recited in Claim 53 wherein the key pair control
object interface further includes at least one decryption function that uses the

private key from the identified key pair to decrypt.

57. The arrangement as recited in Claim 53 wherein the key pair control
object interface further includes at least one decryption function that uses the

private key from the identified key pair to decrypt.

58. The arrangement as recited in Claim 29 wherein the portable token
service provider further includes a certificate list object interface that inherits from
the control object and is configured to provide enumeration services over a set of

digital certificate objects within the portable token.

59. The arrangement as recited in Claim 58 wherein the certificate list
object interface further includes at least one digital certificate management function

that is configured to add new digital certificate objects within the portable token.

60. The arrangement as recited in Claim 26 wherein the portable token
service provider further includes a certificate object interface that inherits from the
base object and is configured to identify a specific digital certificate within a

certificate list.

61. The arrangement as recited in Claim 60 wherein the certificate object
interface further includes at least one certificate management function that is

configured to modify digital certificates identified within a certificate list.

10

15

20

25

WO 01/07990 PCT/US00/18142

57

62. The arrangement as recited in Claim 1 further comprising a portable
token service provider assistant interface operatively configured to support the

portable token service provider by verifying a signature of images.

63. The arrangement as recited in Claim 1 further comprising a portable
token service provider assistant interface operatively configured to support the
portable token service provider by invoking user interface functions within the
operating system to prompt a user for personal identification information necessary

to complete a requested action.

64. The arrangement as recited in Claim 1 further comprising a portable
token service provider assistant interface operatively configured to generate a key

pair in support of the portable token service program.

65. The arrangement as recited in Claim 1 further comprising a portable
token service provider assistant interface operatively configured to provide message
digest services, suitable for digital certificate fingerprinting, in support of the

portable token service program.
66. The arrangement as recited in Claim 1 wherein the portable token
device includes a smart card reader and at least one smart card having a portable

token.

67. The arrangement as recited in Claim 1, wherein the arrangement

includes computer-readable instructions suitable for use in a machine.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 01/07990 PCT/US00/18142

58

68. The arrangement as recited in Claim 1, wherein the arrangement
includes a computer-readable apparatus having instructions suitable for use in a

machine.

69. The arrangement as recited in Claim 1, wherein the arrangement
further comprises:
a machine having:
at least one processor configured to be responsive to the operating
system, the portable token cryptographic server provider (CSP) and the
portable token service program, and

a memory.

70. A method for use with a machine having the capability to operatively

couple with at least one removable portable token device, the method comprising:

providing an operating system that includes at least one application
programming interface (API) configured to provide an interface between
application programs and a plurality of cryptographic server provider (CSP)
functions;

providing at least one portable token cryptographic server provider
(CSP) operatively configured to provide an interface between the API and the
portable token; and

providing at least one portable token service provider that is
operatively configured to use the portable token cryptographic server provider
(CSP) to create an object-based information interface to unique cryptographic

information maintained within the portable token.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 01/07990 PCT/US00/18142

59
71. The method as recited in Claim 70, wherein providing the portable

token cryptographic server provider (CSP) further includes providing portable
token location and premature removal services support through the operating

system to the portable token service program.

72. The method as recited in Claim 70, wherein providing the portable
token cryptographic server provider (CSP) further includes providing at least one
additional service to the portable token services program selected from a group
comprising: personal identification information prompting support services, key
pair generation support services, message digest support services, random number
generation support services, auxiliary image signature checking support services,

and data compression support services.

73. The method as recited in Claim 70, wherein providing the portable
token service provider further includes providing at least one additional service to
the portable token ci'yptographic server provider (CSP) selected from a group
comprising: asymmetric key pair generation support services, secure private key
storage support services, digital certificate storage and retrieval support services,
signing and encrypting operations support services, container naming storage

support services, and digital certificate fingerprint storage support services.

74. The method as recited in Claim 70, wherein providing the portable
token service provider further includes initially signing and registering the portable
token service provider within the operating system in order for it to be available for

use.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 01/07990 PCT/US00/18142

60

75. The method as recited in Claim 70, wherein, if the portable token
cryptographic server provider (CSP) needs to access the portable token service
program, the portable token cryptographic server provider (CSP) validates a

portable token signature associated with the portable token service program.

76. The method as recited in Claim 70, wherein the portable token service
provider makes requests to the portable token cryptographic server provider (CSP)

via method invocation.

77. The method as recited in Claim 70, wherein the portable token
cryptographic server provider (CSP) generates a key pair and provides the key pair

to the portable token service program.

78. The method as recited in Claim 77, wherein after the portable token
cryptographic server provider (CSP) provides the key pair to the portable token
service program, the portable token cryptographic server provider (CSP) scrubs any

memory used to hold a private key data portion of the key pair.

79. The method as recited in Claim 70, wherein the portable token
cryptographic server provider (CSP) further recognizes fully qualified container
names associated with a particular portable token reader and a removable portable

token.

80. The method as recited in Claim 70, wherein the portable token
cryptographic server provider (CSP) is further selectively provides user interface

through the operating system.

SUBSTITUTE SHEET (RULE 26)

WO 01/07990 PCT/US00/18142

61

81. An interface method that permits the use of widely disparate portable
tokens in a static machine concentric environment, the interface method
comprising:

5 for each portable token, instantiating a single card control object that is
operatively configured to manage the portable token;

from the card control object, instantiating at least one container control
object that is configured to manage a specific key container; and

from the container control object, instantiating at least one key pair control

10 object that is configured to manage at least one individual key pair maintained on

the portable token;

82. The interface method as recited in Claim 81 further comprising:
instantiating at least one certificate list object and/or one or more digital
15 certificate objects that are associated with the card control object, wherein the

certificate list object is configured to enumerate over the certificate objects;

83. The interface method as recited in Claim 81 further comprising:
instantiating at least one certificate list object and/or one or more digital

20 certificate objects associated with the container control object;

84. The interface method as recited in Claim 81 further comprising:
instantiating at least one certificate list object and/or one or more digital

25 certificate objects associated with the container control object.

SUBSTITUTE SHEET (RULE 26)

WO 01/07990 PCT/US00/18142

62

85. Aninterface method for use with portable-token devices, the interface
method comprising:
providing a portable-token device control object configured to manage the
target portable-token device;
5 providing one or more container control objects configured to manage a
specific key container;
providing one or more key pair control objects configured to manage
individual key pairs provided by the portable-token device; and
providing a certificate list object configured to enumerate over a set of
10 certificate objects associated with at least one control object selected from a set
comprising the portable-token device control object, the one or more container

control objects, and the one or more key pair control objects.

86. The interface method as recited in Claim 85, wherein providing the
15 portable-token device control object further includes instantiating a single portable-

token device control object.

87. The interface method as recited in Claim 86, wherein providing the
one or more container control objects further includes instantiating the one or more

20 container control objects from the single portable-token device control object.

88. The interface method as recited in Claim 87, wherein providing the
one or more key pair control objects further includes instantiating the one or more
key pair control objects from the container control object.

25

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 01/07990 PCT/US00/18142

63

89. The interface method as recited in Claim 88, wherein providing the
certificate list object further includes instantiating the certificate list object from at
least one control object selected from a set comprising the single portable-tokén
device control object, the one or more container control objects, and the one or

more key pair control objects.

90. The interface method as recited in Claim 85, wherein providing the
set of certificate objects includes providing at least evidentiary data and associated

key data.

91. The interface method as recited in Claim 90, wherein the evidentiary

data includes digital certificate data.

92. The interface method as recited in Claim 90, wherein the evidentiary

data includes biometric data associated with a user.
93. The interface method as recited in Claim 85, wherein the portable-

token device control object is configured to manage a smart card as the target

portable-token device.

SUBSTITUTE SHEET (RULE 26)

WO 01/07990 PCT/US00/18142

64

94. The interface method as recited in Claim 85, wherein providing the
portable-token device control object, providing the one or more container control
objects, providing the one or more key pair control objects, and providing the
certificate list object are each further associated with providing a portable-token

5 device cryptographic server provider (CSP) capability that is configured to pass
cryptographic data to one or more applications operating within a computer when

operatively coupled to the target portable-token device.

95. An object-based interface arrangement for use within a portable token
10 device, the object-based interface arrangement comprising:
a card control object; and
at least one container object enumerated under the card control object

that includes evidentiary data and associated key data.

15 96. A portable token apparatus for use with one or more computers, the
portable token apparatus comprising:
at least one controller;
an interface coupled to the controller; and
memory coupled to the controller, the memory comprising instructions that
20 cause the controller to present the computer with a control object and at least one
subordinate container object, when the portable token apparatus is operatively
coupled to the computer, wherein the container object includes at least one digital

certificate and associated key data.

25

SUBSTITUTE SHEET (RULE 26)

PCT/US00/18142

WO 01/07990

13

N wm-\/

,Emo%o.v_.. $OL= . C9r— 09

es

001
gyl
202 }
.ﬂ 8ol

T ejeg - | seinpon.

‘sweibord | - weshg:
| uoneoyddy | Bugesedo

wesBord | 9UI0

.
.
.
.
.
.
.
.
. -)
. 2.
T o®
.
.

.
QQO
o
.

®
.
.
-
-
.

o
0
.
.
®
.

08} -

./ L~
121 5mY

DS} gyl e
91
= ejeq weiboig
ﬂ_ L _ W,
6 A
u 29} seon
eoepsu SoByislu| IEﬂm.mn_zun.._w_SO
119) _ asnopy/ eoepauY| ISOS A —
—{ HOMeN. Emoiov_ ‘ [~)
: -~ 0L |
|\ L—v
mm— 09Fswesbosg
L uopesyddy y
i V| s,
Jeydepy bugeledQ
. 0oPIA . y,
y02 . 6 ovt [(T725)]
viL Wun bujsseaoid (257)
solg
L . y,
/ _J el -~ {novw)
Z61 4 5T , KOS Wiaishs
rA

SUBSTITUTE SHEET (RULE 26)

WO 01/07990
2/3
[— 204)
Connector
202 —]
— 206
{)
Processor
— 208
.)
Memory
N\

[Application(s)

))

PCT/US00/18142

158
\ N— 160
\
Operating System
Certicificate
Store | CryptoAPI SCCP
250 _ 540 248
r Assistant
L CSP(s)]_] L CSP [sc-csp sC
L L244 L246
242
' 202

Fig. 3

WO 01/07990

302
\

Card
Control

Y

Certificate
List

O—

Certificate

PCT/US00/18142

oO—

~— 314

3/3
/— 300
— __—1308
Container
Control
l¢
Lertificate r
~ Lertificate I '
Certificate Key Pair
List °~1 Control
- 1 316 |
- A
I Certificate
(e R
; v List
5 i
. —
Certificat ﬂ
Certificate o— '.'Cae
List
g wertificate
318 —_ ,°
o
o— Certificate

INTERNATIONAL SEARCH REPORT

Int tional Application No

PCT/US 00/18142

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F1/00

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F GO7F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, PAJ

Electronic data base consulted during the intemnational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 740 248 A (FIERES HELMUT ET AL) 1,69
14 April 1998 (1998-04-14)
Y 80,84,
94,95
the whole document
A 2-68,
70-79,
81-83,
85-93
Y US 5 781 723 A (BENALOH JOSH ET AL) 80,84,
14 July 1998 (1998-07-14) 94,95
abstract; figure 2
column 5, line 61 —column 6, line 27
column 9, line 37 - line 59
A 1-79,
81-83,
85-93
-/

m Further documents are listed in the continuation of box C.

[g Patent family members are listed in annex.

° Special categories of cited documents :

A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

"1* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or

T later document published after the intemationali filing date
or priority date and not in conflict with the application but
;:lted :i% understand the principle or theory underiying the
nvention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—

other means ments, such combination being obvious to a person skilled
P document published prior to the intemational filing date but in the art. .
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the international search report
11 October 2000 18/10/2000
Name and mailing address of the ISA Authorized officer
Euro Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 H)V Rijswijk
Tel. (+31-70) 3402040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Powell, D

Fom PCTASA210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

I tional Application No

PCT/US 00/18142

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

FOR DISTRIBUTED SYSTEMS"

COMPUTER COMMUNICATIONS,NL,ELSEVIER
SCIENCE PUBLISHERS BV, AMSTERDAM,

vol. 17, no. 7, 1 July 1994 (1994-07-01),
pages 492-500, XP000447007

ISSN: 0140-3664

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A US 5 689 565 A (SPELMAN JEFFREY F ET AL) 1-95
18 November 1997 (1997-11-18)
cited in the application
the whole document
A US 5 721 781 A (DEO VINAY ET AL)
24 February 1998 (1998-02-24)
A MUFTIC S ET AL: "SECURITY ARCHITECTURE

Form PCT/ASA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent tamily members

Int tional Application No

PCT/US 00/18142

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5740248 A 14-04-1998 us 5841870 A 24-11-1998
EP 0843249 A 20-05-1998
JP 10313309 A 24-11-1998

Us 5781723 A 14-07-1998 NONE

US 5689565 A 18-11-1997 NONE

Us 5721781 A 24-02-1998 NONE

Formm PCTASA/210 (patent family annex) (July 1892)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

