FREESTANDING PUNCHING BAG

Inventors: Sarah Fields, Oklahoma City, OK (US); Jeffrey Woodson, Oklahoma City, OK (US); Kurt Hafeken, Edmond, OK (US)

Assignee: Century, LLC, Midwest City, OK (US)

Appl. No.: 13/994,046
PCT Filed: Dec. 16, 2011
PCT No.: PCT/US11/65577
§ 371 (c)(1), (2), (4) Date: Aug. 29, 2013

Publication Classification
Int. Cl.
A63B 69/20 (2006.01)

U.S. Cl.
CPC .. A63B 69/203 (2013.01)
USPC .. 482/83

ABSTRACT
The present disclosure concerns an improved freestanding punching bag system. The present disclosure provides for compact packaging, reduced storage, and improved display of the device. Additionally, the present disclosure provides for decreased leaks of media that may be used inside the device. Finally, the present disclosure provides improved safety for an operator by positively securing a target to a post associated with the system, thereby preventing or minimizing any unexpected movement or rotation of the target about the post.
FREESTANDING PUNCHING BAG

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No. 61/423,668, filed on Dec. 16, 2010.

BACKGROUND

[0002] Freestanding punching bags are typically filled with a medium such as a liquid that provides added mass to stabilize the punching bag during use. The medium in these punching bags is prone to leaking. Accordingly, these types of punching bags are usually delivered fully-assembled to minimize the possibility of leakage, thereby making them problematic to ship, store, and/or display.

[0003] Another issue related to media-filled, freestanding punching bags is keeping the target positioned at the desired height. For current systems, the target typically moves along a pre-formed channel in a post that is formed as part of a base portion, or the target is compressively secured by being slightly smaller than the post. Some existing media-filled, freestanding punching bags use a side channel locking system that requires twisting of the target at set intervals to adjust the height. However, all current media-filled, freestanding punching bags fail to incorporate a positive locking mechanism for securing the target in a desired position.

[0004] During use, the media-filled, freestanding punching bags receive multiple forces from numerous angles. Instability typically sets in with continued use of the known punching bags, and the target begins to rattle, rotate, and otherwise move on the post. This is especially prevalent when athletes having greater skill and/or power use the punching bag. Any instability in the punching bag creates the opportunity for the athlete to sustain serious injury. Thus, some form of positive locking mechanism for the target is desirable.

[0005] A need exists for a freestanding punching bag system that reduces leakage of media, improves target adjustability, increases the safety to the user, and that minimizes shipping and storage volume.

SUMMARY

[0006] The present disclosure provides an improved freestanding punching bag system.

[0007] In one embodiment, the improved punching bag system includes a base, a post, and a target. The base has a hollow cavity and has mounting points defined thereon. The post has mounting points defined thereon that are compatible with the mounting points defined on the base. The target is capable of being adjustably positioned on the post.

[0008] In another embodiment, the improved punching bag system includes a base, a post, a carrier assembly, and a target. The base has a hollow cavity defined by its interior walls and it has mounting points defined thereon. The hollow cavity is accessible through an opening defined in the base.

[0009] The post has a first end and a second end. The first end of the post has mounting points defined thereon that are compatible with the mounting points defined on the base.

[0010] The carrier assembly includes a vertical support having a first end, a second end, and an internal cavity configured to receive the post therein. The internal cavity of the vertical support is keyed by at least one surface to the post to preclude rotation of the vertical support relative to the post.

The carrier assembly is capable of being adjustably positioned along a length of the post.

[0011] The target has an internal cavity configured to receive the carrier assembly therein.

[0012] Numerous objects and advantages of the disclosure will become apparent as the following detailed description of the preferred embodiments is read in conjunction with the drawings which illustrate such embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 depicts a perspective view of an embodiment of the inventive freestanding punching bag system.

[0014] FIG. 2 depicts a perspective cut-out view of an embodiment of the inventive freestanding punching bag system taken along line 2-2 from FIG. 1.

[0015] FIG. 3 depicts an exploded perspective view of an embodiment of the inventive freestanding punching bag system.

[0016] FIG. 4 depicts a detail view of an embodiment of a post extension and post base connection taken from FIG. 3.

[0017] FIG. 5 depicts a perspective view of an embodiment of anti-rotation channel system.

[0018] FIG. 6 depicts a detail view of an embodiment of an anti-rotation channel system.

[0019] FIG. 7 depicts a detail view of an embodiment of an anti-rotation portion of a target.

[0020] FIG. 8 depicts a silhouette perspective view of an embodiment of the target and anti-rotation portion of the target.

[0021] FIG. 9 depicts an upside down perspective view of an embodiment of a positive securing device.

[0022] FIG. 10 depicts a section view of an embodiment of a positive securing device.

[0023] FIG. 11 depicts a detail section view of an embodiment of the base and post taken from FIG. 2.

[0024] FIG. 12 depicts a detailed perspective view of an embodiment of the packaged system.

[0025] FIG. 13 depicts a section view of an embodiment of the packaged system taken along line 13-13 from FIG. 12.

[0026] FIG. 14 depicts a perspective view of an alternative embodiment of the inventive freestanding punching bag system.

[0027] FIG. 15 depicts a section view of an alternative embodiment of the inventive freestanding punching bag taken from FIG. 14.

[0028] FIG. 16 depicts an exploded perspective view of an alternative embodiment of the inventive freestanding punching bag system.

[0029] FIG. 17 depicts a detail view of an alternative embodiment of a positive securing device.

[0030] FIG. 18 depicts a detail view of an alternative embodiment for anchoring points for a target.

DETAILED DESCRIPTION

[0031] Referring to the drawings, the improved freestanding punching bag system is illustrated and generally designated by the numeral 10, referred to hereinafter as punching bag system 10. As shown by the drawings and understood by those skilled in the art, punching bag system 10 and components thereof are associated with freestanding athletic training systems.

[0032] In the embodiments shown in FIGS. 1-13, punching bag system 10 has base 12, post 14, optional bladder 16, and
target 18. As illustrated in FIGS. 2 and 11, base 12 has a substantially hollow cavity. Further, base 12 has opening 20 defined thereon. The FIGS. illustrate base 12 as being round. However, any geometric shape for base 12 capable of receiving optional bladde 16 and securing post 14 as described below is sufficient.

[0033] Optional bladde 16 is capable of being removable positioned within base 12, and is shaped to fit within the hollow cavity of base 12. In one embodiment, bladde 16 is made from an elastic material capable of retaining liquids, such as water, wherein the material conforms to the hollow cavity of base 12. In another embodiment, bladde 16 has a shape complementary to the hollow cavity of base 12. In yet another embodiment, bladde 16 is pliable to fill-in the hollow cavity of base 12. Bladde 16 has filling point 22 for filling bladde 16 with media. As illustrated, one embodiment shows filling point 22 centrally positioned in opening 20.

[0034] FIGS. 2-5 and 11 illustrate post section 24 connected to base 12. Base 12 includes base section 26 and top section 28. FIG. 11 illustrates a non-limiting example of securing top section 28 to base section 26 at securing points 30 by using acorn cap nuts 32 and bolts 34. The embodiment illustrated employs eight combinations of acorn cap nuts 32 and bolts 34. However, top section 28 may be secured to base section 26 in many different ways known to those skilled in the art.

[0035] Continuing with FIGS. 2-5 and 11, top section 28 has mounting points 36 defined thereon. Mounting points 36 of top section 28 are compatible with mounting points 38 of post section 24. Mounting fixtures 40 illustrated in FIG. 11 are nuts and bolts disposed through mounting points 36 and 38, thereby securing post section 24 to top section 28. However, post section 24 may be secured to top section 28 in many different ways known to those skilled in the art.

[0036] Referring to FIGS. 3 and 4, post section 24 and post extension 42 defines post 14. Post section 24 has nestable threaded segment 46, which secures post extension 42 to post section 24. Nestable threaded segment 46 has receiving threads 48 internally disposed therein. In one embodiment, nestable threaded segment 46 is welded in opening 50 of post section 24 using known welding techniques. In one embodiment, the welding is accomplished using radio frequency (RF) welding in order to fuse the parts together at contact points 52. In another embodiment, nestable threaded segment 46 is secured within opening 50 by an epoxy-based cement or adhesive.

[0037] Post extension 42 defines an additional height segment for post section 24, and provides a mounting area for target 18. Post extension 42 has threaded segment 54 located on a lower end. Threaded segment 54 corresponds to receiving threads 48 of nestable threaded segment 46 for threadedly securing post extension 42 on post section 24. Although post extension 42 is threadedly secured to post section 24 at nestable threaded segment 46, other known methods for securing post extension 42 on post section 24 may be employed.

[0038] In the embodiment of FIGS. 3-5, post extension 42 has channel 56 defined thereon. Channel 56 provides a surface engageable with target 18 that precludes rotation of target 18 about post 14, but allows target 18 to be adjustably positioned lengthwise along post 14. In this manner, target 18 is keyed to post 14 by channel 56. Herein, a first component is keyed to a second component by at least one surface if the surface precludes rotation, but allows axial movement of the components relative to one another. A surface capable of providing a keyed arrangement between two components may be any obstruction having a substantially longitudinal orientation between the components. Such a surface may be, for example, a channel, slot, spline, or flat. In this embodiment, channel 56 forms an integral portion of the surface of post extension 42 and keys target 18 to post 14. In a typical embodiment, post extension 42 will have at least two channels 56. However, the embodiment depicted in the FIGS. is not limited to any particular number of channels 56.

[0039] FIGS. 3 and 5 illustrate channel 56 having a series of post locator holes 58 disposed therein. However, post locator holes 58 may be disposed outside of channel 56 anywhere along post 14 in vertical alignment with one another. Post locator holes 58 may also be referred to as securing points.

[0040] For the non-limiting example illustrated in FIGS. 3 and 5, each post locator hole 58 is about three (3) inches (about 7.6 centimeters) from at least one additional post locator hole 58 as positioned within channel 56, or along post 14 outside of channel 56. In the non-limiting example, five (5) post locator holes 58 are utilized, having about 12 inches (about 30.5 centimeters) total separation between the first and last post locator hole 58. Preferably, each post locator hole 58 is an integral portion of the surface of post 14. Additional inserts (not shown) for post locator hole 58 may also be utilized.

[0041] As shown in FIGS. 3-11 and 13, base 12 and post 14 are made from injection molded plastic or blow molded plastic. However, base 12 and post 14 may be manufactured out of any material enabling the construction of a punching bag 10 as disclosed herein.

[0042] The embodiment of FIGS. 5 and 6 depicts carrier assembly 60 slidably positioned about post 14, and in particular, post extension 42. In this embodiment, foam and fabric secured about carrier assembly 60 forms target 18. Carrier assembly 60 includes channel locator 62, positive locking device 64, vertical support 66, and anchor points 68.

[0043] As shown in FIGS. 2, 5, 6, and 8, channel locator 62 is longitudinally positioned along carrier assembly 60. In this embodiment, channel 56 provides a surface engageable with carrier assembly 60 that precludes rotation of carrier assembly 60 and target 18 secured thereto about post 14. In this manner, carrier assembly 60 and target 18 are keyed to post 14 by cooperation of channel 56 and channel locator 62. The cooperation of channel 56 and channel locator 62 provide an adjustable guide for positioning target 18 along post 14 while precluding rotation therewith.

[0044] FIGS. 5-10 illustrate an embodiment of positive locking device 64 positioned proximate to channel locator 62. However, positive locking device 64 can alternately be positioned away from channel locator 62. Further, a plurality of positive locking devices 64 may be employed. Positive locking device 64 may also be referred to as a positive securing device.

[0045] FIGS. 9 and 10 illustrate positive locking device 64 as being secured to carrier assembly 60, and having pin 74 and bushing 76. As illustrated, an exemplary sized pin 74 is about 0.25 inches (about 0.64 centimeters) in diameter and is manufactured out of steel. Pin 74 is sized to frictionally fit in post locator hole 58 to retain pin 74 therein. Alternatively, a bias spring (not shown) is utilized to bias pin 74 into post locator hole 58. As illustrated, pin 74 is a push-pin that is frictionally secured within post locator hole 58. Although positive locking device 64 is illustrated as having pin 74, other types of
locking devices may be used. By way of a non-limiting example, positive locking device 64 may be a spring loaded ball pin type or other locking pin.

[0046] In one embodiment, bushing 76 is a hard rubber bushing secured in notch 78 of carrier assembly 60. In another embodiment, bushing 76 is synthetic material having sufficient rigidity to be secured in notch 78 of carrier assembly 60, accepting pin 74 therethrough. Bushing 76 retains pin 74 in carrier assembly 60, and guides pin 74 towards post locator hole 58. When engaged, pin 74 prevents movement of target 18 on post 14.

[0047] As illustrated in the drawings, vertical support 66 is an integrally formed part of carrier assembly 60. Alternately, vertical support 66 may be omitted from carrier assembly 60, or may be a separate structure secured to carrier assembly 60.

[0048] Referring to FIGS. 5 and 6, vertical support 66 has at least one window 80 therein. Windows 80 permit contact between target 18 and post 14, which improves the engagement of target 18 with vertical support 66 and post extension 42. The improved engagement provided by windows 80 enhances the ability of target 18 to resist rotation and axial movement about post 14, thereby improving the overall structural integrity of the assembly.

[0049] Referring to FIGS. 7 and 9, vertical support 66 is shown with channel locator 62 disposed along a substantial length of inner wall 82. Channel locator 62 may be positioned along the entire length of inner wall 82, or it may be a series of channel locators 62 positioned along intervals of the length of inner wall 82.

[0050] In one exemplary embodiment, target 18 has a foam interior (not shown) and a fabric exterior. The foam and fabric are known to those skilled in the art and will not be described herein. However, alternative materials capable of being adhered to carrier assembly 60 and/or post 14 are suitable for target 18. A non-limiting example of such an alternative includes an inflatable air bladder, where the inflatable air bladder would replace some or all of the foam.

[0051] Referring to FIGS. 5-8, anchor points 68 and anchors 84 illustrate the connectivity of target 18 to carrier assembly 60. In one embodiment, target 18 comprises fabric and foam that is secured to carrier assembly 60 by anchors 84 at anchor points 68. Accordingly, anchor points 68 define a connecting point for the foam and fabric of target 18, which is carried by carrier assembly 60. In one embodiment, anchors 84 are a “Christmas tree” type of fastener that is typically pressed into place by hand, but requires a specialty tool for removal.

[0052] To facilitate retention, anchor points 68 are slightly undersized. In this manner, pressing anchors 84 through holes in the fabric of target 18 and into anchor points 68 will permanently secure target 18 to carrier assembly 60. Carrier assembly 60, having the foam and fabric secured thereon, defines an exemplary embodiment of target 18.

[0053] Windows 80 enhance the engagement of target 18 with carrier assembly 60 and post 14 to further preclude movement of target 18 upon post 14. Thus, windows 80 provide additional frictional engagement between components.

[0054] Referring to FIGS. 12 and 13, base 12, post 14, optional bladder 16 (not shown), and target 18 are nested together in an unassembled state for packaging, shipping, and storage. Utilizing hole 20, optional bladder 16 (not shown), post section 24, post extension 42, and target 18 including carrier assembly 60 are all nestably inserted in the hollow cavity of base 12. This significantly reduces the volume of punching bag 10 in its unassembled state.

[0055] After the purchaser removes all of the parts from the shipping container 86, they must assemble the device. To do so, the purchaser inserts optional bladder 16 in base 12 with filling point 22 oriented immediately below opening 20. Post section 24 is secured to base 12 using mounting fixtures 40. Bladder 16 is filled prior to the securing of post extension 42. Post extension 42 is secured post section 24 as described above. Carrier assembly 60 of target 18 is positioned over post 14 and secured at the desired height thereon. Punching bag 10 is ready for use.

[0056] Although access to optional bladder 16 is not a common requirement, post extension 42 is removable, thereby providing access to filling point 22. In an alternative embodiment, it is contemplated that an access port (not shown) on post section 24 or base 12 may be provided for access to filling point 22 to facilitate filling, draining, and re-filling of bladder 16.

[0057] In an alternative embodiment shown in FIGS. 14-18, punching bag system 10 includes base 112, post 114, carrier assembly 160, and target 118.

[0058] The interior walls of base 112 define a hollow cavity accessible through opening 120 located on the top of base 112. Any location that provides access to the hollow cavity in base 112 is a suitable location for opening 120. The hollow cavity in base 112 is capable of receiving an optional bladder (not shown) filled with liquid or other media through opening 120. Optional lid 121 fits in opening 120 of base 112. In the embodiment shown, base 112 has a plurality of mounting points 136 on its top around opening 120.

[0059] Post 114 has first end 115 and second end 117. First end 115 of post 114 has a plurality of mounting points 138 carried by flange 139 that correspond to mounting points 136 on base 112. Flange 139 secures optional lid 121 in opening 120 in base 112 when post 114 is positioned on base 112. A plurality of fixtures 140 such as, for example, screws, or nuts and bolts pass through mounting points 136 to fasten post 114 to base 112. However, any convenient method for securing post 114 to the top of base 112 may be employed.

[0060] Post 114 has a plurality of post locator ribs 158 and a plurality of post locator detents 159 positioned in sequence along the length of post 114. Post locator ribs 158 may also be referred to as securing points for a positive securing device, described below. In the embodiment shown, post locator ribs 158 and post locator detents 159 are an integral portion of the surface of post 114.

[0061] Carrier assembly 160 includes vertical support 166 and vertical extension 142. Vertical support 166 has first end 169, second end 171, and an internal cavity configured to slidably receive post 114 therein. The internal cavity of vertical support 166 is accessible through first end 169. A plurality of flats 156b on vertical support 166 provide surfaces that engage flats 156a of post 114 to preclude rotation of vertical support 166 about post 114. However, this configuration allows vertical support 166 to be at least partially positioned lengthwise along post 114. In this manner, vertical support 166 is keyed to post 114 by flats 156a and 156b. The discussion and examples above regarding the relationship between keyed components as defined herein are applicable to this embodiment and incorporated herein. Accordingly, the internal cavity of vertical support 166 is keyed by flats 156a and 156b to post 114 thereby precluding rotation of vertical support 166 relative to post 114. Although the drawings illustrate
a plurality of flats 156, a single flat 156a engaged with a corresponding flat 156b is sufficient to preclude rotation of vertical support 166 relative to post 114. [0062] Vertical support 166 carries gripping arm 164, which is configured to engage at least one post locator rib 158 along the length of post 114 to secure vertical support 166 to post 114. Vertical support 166 may carry gripping arm 164 in any convenient manner that allows gripping arm 164 to engage vertical support 166 and at least one post locator rib 158. For example, gripping arm 164 may be a flexible cantilever extending from vertical support 166. Gripping arm 164 may also be referred to as a positive securing device.

[0063] As shown in the embodiment of FIGS. 16-18, gripping arm 164 is pivotally secured to vertical support 166. In this embodiment, gripping arm 164 may be pivotally secured to vertical support 166 in any convenient manner, such as, for example, with a pin and eyetlet. As depicted, gripping arm 164 has upper and lower contact points 164a and 164b. Post locator ribs 158 define upper and lower engagement surfaces 158a and 158b that have a design suitable for engagement by upper and lower contact points 164a, 164b of gripping arm 164. In this embodiment, gripping arm 164 pivots into engagement with at least one post locater rib 158 along the length of post 114 to positively secure vertical support 166 to post 114 in a desired position. Thus, upper and lower contact points 164a, 164b of gripping arm 164 respectively engage upper and lower engagement surfaces 158a, 158b of post locator ribs 158 thereby securing vertical support 166 at the desired height on post 114.

[0064] Vertical support 166 carries inwardly projecting protrusion 173. Inwardly projecting protrusion 173 cooperates with at least one post locator detent 159 along the length of post 114. The cooperation of inwardly projecting protrusion 173 with at least one post locator detent 159 provides a frictional engagement between vertical support 166 and post 114 that enhances adjustment of vertical support 166 about post 114. Inwardly projecting protrusion 173 and post locator detent 159 also increase the stability of vertical support 166 about post 114. The embodiment shown illustrates inwardly projecting protrusion 173 as an integral portion of the surface of vertical support 166.

[0065] Vertical extension 142 provides additional height for vertical support 166. Vertical extension 142 has first end 143, second end 145, and an internal cavity configured to receive vertical support 166 therein. The internal cavity of vertical extension 142 is accessible through first end 143. Similar to the discussion above, the internal cavity of vertical extension 142 is keyed by a plurality of flats 156c corresponding to vertical surfaces of vertical support 166 thereby precluding rotation of vertical extension 142 relative to vertical support 166. Although the drawings illustrate a plurality of flats 156c, a single flat 156c on each corresponding surface is sufficient to preclude rotation of each component 114, 142, and 166 relative to one another.

[0066] In the embodiment shown, vertical extension 142 is keyed to vertical support 166 and also frictionally engaged with vertical support 166 to preclude movement of vertical extension 142 relative to vertical support 166 when punching bag system 10 is in use. However, target 18 secured about vertical extension 142 and vertical support 166 as described below is sufficient to retain vertical extension 142 on vertical support 166 during use of punching bag system 10.

[0067] Vertical extension 142 can include coupling 154 on first end 143 for receiving a portion of vertical support 166. Similar to the discussion above, the internal cavity of coupling 154 is keyed by a plurality of flats 156 to vertical support 166 thereby precluding rotation of vertical extension 142 relative to vertical support 166. A single flat 156 is sufficient to preclude rotation of vertical extension 142 relative to vertical support 166. In the embodiment shown, coupling 154 is an integral part of vertical extension 142. However, coupling 154 can be adapted to vertical extension 142 as a separate component in any convenient manner known in the art.

[0068] Coupling 154 can optionally include an inwardly projecting protrusion 155 that is engageable with an optional notch 157 positioned on second end 171 of vertical support 166 to interlockingly retain vertical extension 142 on vertical support 166 when in use.

[0069] Carrier assembly 160 carries target 118 thereabout. In the embodiment shown, anchors 184 secure target 118 to carrier assembly 160 at anchor points 168 carried by a lower portion of vertical support 166. Target 118 secured by anchor points 168 is capable of retaining vertical extension 142 and vertical support 166 of carrier assembly 160 together during use of punching bag system 10. Anchors 184 and anchor points 168 preclude rotation of target 118 about carrier assembly 160. Target 118 can be, for example, foam and fabric secured to carrier assembly 160.

[0070] In the embodiment of FIGS. 14-18, flats 156 positioned on carrier assembly 160 enhance the engagement of target 118 with carrier assembly 160 to preclude rotation thereabout.

[0071] In the embodiment of FIGS. 14-18, base 112, post 114, and carrier assembly 160 are made from injection molded plastic or blow molded plastic. However, base 112, post 114, and carrier assembly 160 may be manufactured out of any material enabling the construction of punching bag system 10 as disclosed herein.

[0072] Post 114, carrier assembly 160, target 118, and the optional bladder are nestable in the hollow cavity of base 112 through opening 120. This configuration allows punching bag system 10 to be efficiently stored and transported.

[0073] Other embodiments of the current disclosure will be apparent to those skilled in the art from a consideration of the specification or practice of the present disclosure. Thus, the foregoing specification is considered merely exemplary of the current disclosure with the true scope thereof being defined by the following claims.

What is claimed is:

1. An improved punching bag system comprising:
 a base having a hollow cavity and having mounting points defined thereon;
 a post having mounting points defined thereon, wherein the mounting points defined on the post are compatible with the mounting points defined on the base; and
 a target capable of being adjustably positioned on the post.

2. The improved punching bag system of claim 1, further comprising a carrier assembly associated with the target to adjustably position the target along the post.

3. The improved punching bag system of claim 2, wherein the carrier assembly is keyed by at least one surface to the post thereby precluding rotation of the carrier assembly relative to the post.

4. The improved punching bag system of claim 1, wherein the target is keyed by at least one surface to the post thereby precluding rotation of the target relative to the post.

5. The improved punching bag system of claim 1, further comprising a positive securing device associated with the
target, wherein the positive securing device is engageable with the post to prevent movement of the target thereon.

6. The improved punching bag system of claim 5, wherein the positive securing device is engageable with at least one of a plurality of securing points positioned along a length of the post.

7. The improved punching bag system of claim 2, wherein the carrier assembly has a positive securing device engageable with at least one of a plurality of securing points positioned along a length of the post to prevent movement of the carrier assembly thereon.

8. The improved punching bag system of claim 3, wherein the target has an internal cavity configured to receive the carrier assembly therein.

9. The improved punching bag system of claim 2, wherein the carrier assembly defines a plurality of anchor points, each of the anchor points being capable of receiving an anchor, wherein the anchor defines a connecting point for the target.

10. The improved punching bag system of claim 9, wherein the target is foam and fabric positioned about the carrier assembly and secured thereto by the anchor points.

11. The improved punching bag system of claim 1, further comprising a bladder removably positioned in the hollow cavity of the base, the bladder accessible through an opening defined in the base.

12. The improved punching bag system of claim 1, wherein the post and the target are nestable in the hollow cavity of the base through an opening defined in the base.

13. The improved punching bag system of claim 1, wherein the post, the target, a carrier assembly, and a bladder are nestable in the base through an opening defined in the base.

14. A punching bag system, comprising:
 a base having a hollow cavity and having mounting points defined thereon, the hollow cavity defined by interior walls of the base, the hollow cavity accessible through an opening defined in the base;
 a post having a first end and a second end, the first end of the post having mounting points defined thereon that are compatible with the mounting points defined on the base;
 a carrier assembly including a vertical support having a first end and a second end and having an internal cavity configured to receive the post therein, wherein the internal cavity of the vertical support is keyed by at least one surface to the post thereby precluding rotation of the vertical support relative to the post, and wherein the carrier assembly is capable of being adjustably positioned along a length of the post; and
 a target having an internal cavity configured to receive the carrier assembly therein.

15. The punching bag system of claim 14, wherein the first end of the post carries a flange, the flange having mounting points defined thereon that are compatible with the mounting points defined on the base.

16. The punching bag system of claim 14, wherein the post has a plurality of post locator ribs positioned along the length of the post.

17. The punching bag system of claim 14, wherein the post has a plurality of post locator detents positioned along the length of the post.

18. The punching bag system of claim 17, wherein the vertical support carries an inwardly projecting protrusion that cooperates with at least one of the post locator detents along the length of the post for adjustably positioning the carrier assembly along the length of the post.

19. The punching bag system of claim 16, wherein the vertical support carries a gripping arm engageable with at least one of the post locator ribs along the length of the post to secure the carrier assembly to the post.

20. The punching bag system of claim 14, wherein the carrier assembly includes a vertical extension, the vertical extension having a first end and a second end and having an internal cavity configured to receive a portion of the vertical support therein, wherein the vertical extension is keyed by at least one surface to the vertical support thereby precluding rotation of the vertical extension relative to the vertical support.

21. The punching bag system of claim 20, wherein the first end of the vertical extension carries a coupling capable of receiving a portion of the vertical support therein, wherein the coupling is keyed by at least one surface to the vertical support thereby precluding rotation of the vertical extension relative to the vertical support.

22. The punching bag system of claim 21, wherein the coupling has an inwardly projecting protrusion that is engageable with a notch positioned on the second end of the vertical support to retain the vertical extension on the vertical support.

23. The punching bag system of claim 14, wherein the target is secured to the carrier assembly at anchor points carried by the vertical support.

24. The punching bag system of claim 20, wherein the post, the carrier assembly, and the target are nestable in the hollow cavity in the base through the opening defined in the base.

25. The punching bag system of claim 19, wherein the gripping arm has an upper contact point and a lower contact point engageable respectively with a corresponding upper engagement surface and a lower engagement surface defined on each of the post locator ribs.

* * * * *