PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/32978
GOGF 12/02 Al _ o

(43) International Publication Date: 1 July 1999 (01.07.99)

(21) International Application Number: PCT/US98/26769 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,

(22) International Filing Date: 17 December 1998 (17.12.98)

(30) Priority Data:

08/994,098 19 December 1997 (19.12.97) US

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 980526399 (US).

(72) Inventors: SAUNTRY, David, M.; 2008 223rd Place N.E.,
Redmond, WA 98053 (US). MARKLEY, Michael, E.; 3014
273rd Avenue N.E., Redmond, WA 98053 (US). GILBERT,
Mark; 2704 Tybee Pass, Mount Pleasant, SC 29464 (US).

(74) Agent: VIKSNINS, Ann, S.; Schwegman, Lundberg, Woessner
& Kluth, P.O. Box 2938, Minneapolis, MN 55402 (US).

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: INCREMENTAL GARBAGE COLLECTION

(57) Abstract

An incremental garbage collector is disclosed. Upon termination
of a function or program, the incremental garbage collector scans the
object heap for objects allocated by the function or program that are not
referenced outside the function or program that allocated the objects.
Memory occupied by such objects is immediately reclaimed without

having to wait for the garbage collector.

INCREMENTAL GARBAGE
COLLECTION

FETCH OBJECT

414

RECLAIM SPACE
OCCUPIED BY OBJECT

POINT
TO NEXT
OBJECT

7
418

AL
AM
AT
AU
AZ
BA
BB

BE
BF

BG
BJ

BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KpP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S1
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

" WO 99/32978 PCT/US98/26769

10

15

20

25

30

INCREMENTAL GARBAGE COLLECTION

Field of the Invention

The present invention relates generally to computer systems and

more specifically to managing the memory portions of such systems.
Background of the Invention
Many computer systems manage information by the use of objects.
An object is data that share a particular attribute and occupy a region of random

access memory (RAM). Objects are not permitted to overlap in memory. Live
objects are those needed in the computational process currently being performed by
a computer system. If all objects in a system are live at all times, then there is no
concern about memory management. The space assigned to each object at system
startup need never be reclaimed. In most systems, however, live objects have
varying lifetimes that cannot be predicted in advance. In such systems, some
method of recognizing expired or dead objects and evicting them from memory is
necessary if memory resources are to be conserved.

Garbage refers to data stored in computer system memory that is no
longer being used in the performance of a program, method, function, or subroutine
that allocated such data. For purposes of convenience, a program, method, function,
or subroutine that allocates data will be referred to simply as a program or function.

Garbage collection is the process of locating data in dynamically-allocated memory
that is no longer being used and reclaiming the memory to satisfy future memory
allocation requests. Garbage collection offers the potential of significant
programmer productivity gains because with garbage collection, programmers need
not worry about removing data from memory when no longer needed when the
program is ended. Hence, garbage collection encourages programmers and system
designers to dedicate their efforts to higher-level pursuits, such as the design of
fundamental algorithms, user interfaces, and general program functionality. Also,
by eliminating many low-level programming concerns, garbage collection reduces

the likelihood of programming errors. These benefits of garbage collection combine

© WO 99/32978 PCT/US98/26769

10

15

20

25

30

together to offer improved software functionality and reliability for lower
development costs.

Garbage collection can occur in a number of situations. For
example, when the amount of memory remaining in available memory falls below
some pre-defined level, garbage collection is performed to regain whatever memory
is recoverable. Also, a program or function can force garbage collection by calling
the garbage collector. Finally, the garbage collector may run as a background task
that searches for objects to be reclaimed. But however they may be invoked,
traditional garbage collectors work by periodically halting execution of system
programs in order to traverse all of memory in search of memory regions that are
no longer in use. Traditional garbage collectors have a number of major
shortcomings. One such shortcoming is that, in terms of rates of allocation and
deallocation of objects, storage throughput is generally much lower than, for
example, stack allocation. Also, the times required to allocate memory are only
very loosely bounded — the bounds on allocation times are not tight enough to
allow reliable programming of highly-interactive or real-time systems such as
mouse tracking, interactive multimedia device control, and virtual reality systems.
Finally, in some garbage collectors, the performance penalties associated with
memory reads and writes are so high that overall system performance may be
unacceptably slow.

These concerns are further exacerbated in systems with inherent
limitations and particularities. For example, Microsoft Windows CE is a compact,
efficient and scalable operating system that may be used in a wide variety of
embedded products, from hand-held PCS to specialized industrial controllers and
consumer electronic devices. Many devices that utilize Microsoft Windows CE are
intended to have a relatively low amount of random-access memory (RAM), such
as one megabyte, to ensure that the devices remain low in cost, compact in size, and
efficient in the usage of power. Moreover, devices designed to utilize Microsoft
Windows CE typically have less powerful processors than what is typically found
on computers designed to run more powerful operating systems like Microsoft

Windows NT. For systems with such inherent limitations and particularities, it is

WO 99/32978 PCT/US98/26769

10

15

20

25

30

essential to maximize the amount of memory available. There is a need to
effectively and efficiently maximize the amount of memory available in such
systems.

Summary of the Invention

The present invention is directed to a method for removing as many
temporary objects as possible during the execution of a program or function so that -
a main garbage collector is not triggered.

Certain commands in the program allocate objects, whereas other
commands do not. Typically, such objects are allocated from a heap. In one aspect
of the present invention, if a program command does allocate an object, information
is stored on such object that will facilitate its identification at a later time after the
program terminates. Such information comprises, for example, thread
identification, stack number, and a mark bit.

The present invention allows for the reclamation of such space
without waiting for the main garbage collector. During the execution of a program,
if an allocated object is never stored into another object such object can be
discarded and the space that it occupied can be reclaimed. In other words, if the
main garbage collector is activated, the space occupied by such object would be
reclaimed. Hence, one of the advantages of the present invention is the freeing up
of memory at a time sooner than when the garbage collector performs its task,
because as noted above the present invention allows for the reclaiming of space as
soon as the program that allocated such space is terminated. Furthermore, instead
of scanning the whole heap, as the garbage collector would, the incremental garbage
collector of the present invention allows for the scanning of only the allocated
portion of the heap, instead of the entire heap.

Brief Description of the Drawings
Figure 1 is a block diagram of the hardware and operating environment in
conjunction with which embodiments of the invention may be
practiced.
Figure 2(a) is a block diagram of the system level overview of a technique for

removing temporary objects.

~ WO 99/32978 PCT/US98/26769

10

15

20

25

30

Figure 2(b) is a block diagram showing incremental garbage collection module

as an embodiment of the present invention.

Figure 3 is a flowchart of the process of allocating objects off the heap.

Figure 4 shows the additional information stored in an object being allocated
in the object heap.

Figure 5 shows the steps taken by the incremental garbage collector module

as it scans through the heap and reads the additional information
stored in the objects.

Detailed Description of the Embodiments
In the following detailed description, reference is made to the

accompanying drawings which form a part hereof, and in which is shown by way

-of illustration specific embodiments in which the invention may be practiced.

These embodiments are described in sufficient detail to enable those skilled in the
art to practice the invention, and it is to be understood that other embodiments may
be utilized and that structural changes may be made without departing from the
spirit and scope of the present invention. Therefore, the following detailed
description is not to be taken in a limiting sense, and the scope of the present
invention is defined by the appended claims.

There are three sections in the detailed description. The first section
describes the hardware and operating environment with which embodiments of the
invention may be practiced. The second section presents a system level description
of one embodiment of the invention. Finally, the third section provides methods for
an embodiment of the invention.

Hardware and Operating Environment

Figure 1 is a diagram of the hardware and operating environment in
conjunction with which embodiments of the invention may be practiced. The
description of Figure 1 is intended to provide a brief, general description of suitable
computer hardware and a suitable computing environment in conjunction with
which the invention may be implemented. Although not required, the invention is
described in the general context of computer-executable instructions, such as

program modules, being executed by a computer, such as a personal computer.

" WO 99/32978 PCT/US98/26769

10

15

20

25

30

Generally, program modules include routines, programs, objects, components, data
structures, etc., that perform particular tasks or implement particular abstract data
types.

Moreover, those skilled in the art will appreciate that the invention
may be practiced with other computer system configurations, including hand-held
devices, multiprocessor systems, microprocessor-based or programmable consumer
electronics, network PCS, minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

The exemplary hardware and operating environment of Figure 1 for
implementing the invention includes a general purpose computing device in the
form of a computer 20, including a processing unit 21, a system memory 22, and a
system bus 23 that operatively couples various system components include the
system memory to the processing unit 21. There may be only one or there may be
more than one processing unit 21, such that the processor of computer 20 comprises
a single central processing unit (CPU), or a plurality of processing units, commonly
referred to as a parallel processing environment. The computer 20 may be a
conventional computer, a distributed computer, or any other type of computer; the
invention is not so limited.

The system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. The system memory may also be
referred to as simply the memory, and includes read only memory (ROM) 24 and
random access memory (RAM) 25. A basic input/output system (BIOS) 26,
containing the basic routines that help to transfer information between elements
within the computer 20, such as during start-up, is stored in ROM 24. The
computer 20 further includes a hard disk drive 27 for reading from and writing to

a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a

- WO 99/32978 PCT/US98/26769

10

15

20

25

30

removable magnetic disk 29, and an optical disk drive 30 for reading from or
writing to a removable optical disk 31 such as a CD ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and optical disk
drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a
magnetic disk drive interface 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media provide nonvolatile -
storage of computer-readable instructions, data structures, program modules and
other data for the computer 20. It should be appreciated by those skilled in the art
that any type of computer-readable media which can store data that is accessible by
a computer, such as magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs), read only memories
(ROMs), and the like, may be used in the exemplary operating environment.

A number of program modules may be stored on the hard disk,
magnetic disk 29, optical disk 31, ROM 24, or RAM 25, including an operating
system 35, one or more application programs 36, other program modules 37, and
program data 38. A user may enter commands and information into the personal
computer 20 through input devices such as a keyboard 40 and pointing device 42.

Other input devices (not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is coupled
to the system bus, but may be connected by other interfaces, such as a parallel port,
game port, or a universal serial bus (USB). A monitor 47 or other type of display
device is also connected to the system bus 23 via an interface, such as a video
adapter 48. In addition to the monitor, computers typically include other peripheral
output devices (not shown), such as speakers and printers.

The computer 20 may operate in a networked environment using
logical connections to one or more remote computers, such as remote computer 49.

These logical connections are achieved by a communication device coupled to or
a part of the computer 20; the invention is not limited to a particular type of
communications device. The remote computer 49 may be another computer, a

server, a router, a network PC, a client, a peer device or other common network

© WO 99/32978 PCT/US98/26769

10

15

20

25

30

node, and typically includes many or all of the elements described above relative
to the computer 20, although only a memory storage device 50 has been illustrated
in Figure 1. The logical connections depicted in Figure 1 include a local-area
network (LAN) 51 and a wide-area network (WAN) 52. Such networking
environments are commonplace in office networks, enterprise-wide computer
networks, intranets and the Internet, which are all types of networks.

When used in a LAN-networking environment, the computer 20 is
connected to the local network 51 through a network interface or adapter 53, which
1s one type of communications device. When used in a WAN-networking
environment, the computer 20 typically includes a modem 54, a type of
communications device, or any other type of communications device for
establishing communications over the wide area network 52, such as the Internet.
The modem 54, which may be internal or external, is connected to the system bus
23 via the serial port interface 46. In a networked environment, program modules
depicted relative to the personal computer 20, or portions thereof, may be stored in
the remote memory storage device. It is appreciated that the network connections
shown are exemplary and other means of and communications devices for
establishing a communications link between the computers may be used.

The hardware and operating environment in conjunction with which
embodiments of the invention may be practiced has been described. The computer
in conjunction with which embodiments of the invention may be practiced may be
a conventional computer, a distributed computer, or any other type of computer; the
invention is not so limited. Such a computer typically includes one or more
processing units as its processor, and a computer-readable medium such as a
memory. The computer may also include a communications device such as a
network adapter or a modem, so that it is able to communicatively couple other
computers.

System Level Qverview

Figure 2(a) shows a system level overview of a technique for
removing temporary objects during the operation of a program or function 204

within the environment of a Java Virtual Machine (JVM) 208. JVM is a native

~ WO 99/32978 PCT/US98/26769

program running within an operating system to interpret and execute program or
function 204. Program or function 204 in this implementation is Java code.

During execution of program or function 204, certain commands can
cause the allocation of objects off a heap 212, for example by the referencing by a

5 variable to an object. Heap manager 216 keeps track of an address in heap 212 from
where objects can be allocated. As more and more objects get allocated off heap -
212, it is possible for a heap manager 216 to request the operating system for
additional memory space. When an object is allocated off heap 212, said object also
has a reference count associated with it. Whenever a reference goes out of scope,
10 the reference count of the object that the variable referenced is decremented. Any
object with a reference count of 0 is a candidate for garbage collection.

Garbage collector 220, when activated, scans heap 212 for objects
with reference count of 0 and makes available the memory occupied by the object
for future use. The operation of garbage collector 220 is known in the art, but

15 essentially Java performs garbage collection under the following circumstances: (1)
whenever it is needed — when the amount of memory remaining in heap 212 falls
below some pre-defined level, garbage collection is performed to regain whatever
memory is recoverable; (2) whenever garbage collection is requested — garbage
collection can be forced in Java by calling System.gc, which is the Java garbage

20 collector; or (3) whenever Java executes a background task that searches for objects
to be reclaimed.

Figure 2(b) shows incremental garbage collector 270 as an
embodiment of the present invention. The incremental garbage collector 270 is an
integral part of the JVM. As in the prior art, heap manager 266 keeps track of an

25 address in heap 262 from where objects can be allocated. Once function 254 is
activated or executed, the incremental garbage collector 270 saves the address from
the heap manager 266 indicating the next memory from which objects can be
allocated. Once function 254 exits, the incremental garbage collector 270 saves the
address of the last object allocated off heap 262. During execution of function 254

30 within the environment of JVM 258, when objects are allocated off heap 262,

~ WO 99/32978 PCT/US98/26769

additional information is stored in the object that will facilitate the identification at
a later time of such object by incremental garbage collector module 270.

Moreover, as previously noted, the incremental garbage collector

270 has information concerning the area of the heap allocated by function 254 —
5 essentially the beginning address and ending address of the objects allocated off the
heap 262. As soon as program or function 254 terminates or exits, incremental
garbage collector module 270, starting from the beginning address to the ending
address of the objects allocated off the heap, scans through the heap and reads the
additional information stored in the objects. If the incremental garbage collector
10 270 identifies an object as garbage, it immediately reclaims space occupied by such
object and makes it available for use. Hence, the incremental garbage collector 270
reclaims the space occupied by the object without waiting for garbage collector 274
to operate. Additionally, the incremental garbage collector 270 need not scan
through the whole heap but only from the beginning address to the ending address

15 ofthe allocated area of the heap, instead of the entire heap.

Although the garbage collector 220 and 270 were described above
in terms of reference counting technique, other techniques for garbage collection are
known in the art. These other techniques include, for example, deferred reference
counting, mark-sweep collection, mark-compact collection, and copying garbage

20 collection.

Methods of an Embodiment of the Invention

The previous section described on a system level the operation of an
embodiment of the invention. This section describes methods performed by a
computer of such an embodiment.

25 In Step 300, in the flowchart of Figure 3, a program or function
command or code is executed. Step 302 determines whether the code being
executed requires the allocation of objects off the heap. If Step 302 determines that
the code does not allocate objects off the heap, control is transferred to Step 306.
Otherwise, if Step 302 determines that the code allocates objects off the heap,

30 control is transferred to Step 304.

~ WO 99/32978 PCT/US98/26769

10

In Step 304, information about the object is stored in the object
being allocated. The information stored in the object is discussed more fully below.
Control then proceeds with Step 306, which determines whether the end of the
program or function has been reached. If the end of the program or function has not
5 been reached, the next command is fetched in step 308 and control is then
transferred to step 300. However, if step 306 determines that the end of the program
or function has been reached, incremental garbage collection is performed in step
310.
Figure 4 shows the information added to the object, as discussed
10 above. This information comprises (1) thread identification 315 for the function or
program allocating the object, (2) a function or stack number 320, and (3) a mark
bit 325, which, if set, indicates that the object is stored outside of the function in any
way. The thread identification 315 is retrieved from either the operating system or
the JVM, and is known in the art. The function or stack number 320 is a way of
15 indicating which function allocated the object. When a function (“function1”) calls
another function (“function2”), both will have the same thread identification. It is
important that when function2 exits and the incremental garbage collector is
activated that objects allocated by function] are still available to functionl.
The mark bit 325 is set, as previously noted, if the object is stored
20 outside of the function in any way. An object that is not stored outside of the
function that allocated the object is referred to as local to the function. For
example, the mark bit 325 is set when the object is stored into a global variable,
returned, or thrown as an exception.
Ordinarily, the mark bit 325 is also set for an object (“object1”) if
25 objectl is stored into another object (“object2”). However, if object2 (into which
objectl is stored) was allocated in the same function that allocated objectl and
object? is not referenced outside of the same function, then the mark bit 325 is not
set for either objectl or object2. However, if the mark bit 325 of object2 is later set,
then the incremental garbage collector examines all of objects stored in object2. If
30 an object stored in object2 does not have its mark bit set, the incremental garbage

collector sets the mark bit at such time. Additionally, the mark bit 325 for the

- WO 99/32978 PCT/US98/26769

11

object being used is also set whenever any of the following commands is executed:

AASTORE, ARETURN, ATHROW, PUTFIELD, PUTFIELD FAST,

PUTSTATIC, or PUTSTATIC_FAST. This list is not exhaustive — as a general

rule, the mark bit 325 is set for objects used by commands (such as the ones listed)
5 that may or do store the objects outside the function.

Figure 5 shows the steps taken by the incremental garbage collector °
module as it scans through the heap and reads the additional information stored in
the objects. The incremental garbage collector fetches an object off the heap in Step
400, and then in Step 402 determines whether the thread identification stored in the

10 object corresponds to the thread identification of the function or program that called
the incremental garbage collecter. If the thread identification of the object does not
correspond, control is transferred to Step 410. If the thread identification
corresponds, control is transferred to Step 404, which determines whether the stack
number corresponds to the number assigned by the calling function. If the stack

15 number does not correspond, control is transferred to Step 410. If the stack number
corresponds, control is transferred to Step 406, which determines whether the mark
bit stored in the object is set. If the mark bit is set, control is transferred to Step
410. If the mark bit is not set, the space occupied by the object is reclaimed in Step
408, and control is transferred to Step 410. Step 410 determines whether the end

20 of the object heap has been reached. If the end of the object heap has not been
reached, the incremental garbage collector points to the next object as shown in Step
412 and control is transferred to Step 400. Otherwise, if the end of the object heap
has been reached, the incremental garbage collector terminates.

Conclusion

25 It is to be understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments will be apparent to those
of skill in the art upon reviewing the above description. The scope of the invention
should, therefore, be determined with reference to the appended claims, along with

the full scope of equivalents to which such claims are entitled.

-~ WO 99/32978 PCT/US98/26769

12
What is claimed is:
1. A method for identifying an object, the method comprising the steps of
indicating on the object:
5 a thread identification;

a stack number; and

whether the object is local.
2. The method of claim 1, wherein the object was allocated by code in a

10 function.

3. A method for reclaiming a memory area occupied by an object in a heap, the

object having indicated thereon a thread identification, a stack number, and whether
the object is local, the method comprising the steps of:
15 identifying a reclaimable object; and
indicating on the memory area occupied by the object that the memory area

occupied by the object is available for future allocation.

4. The method of claim 3, wherein the object was allocated by code in a

20 function.

5. The method of claim 4, wherein reclaiming the memory occupied by the

object is activated by termination of the function that allocated the object.

25 6. The method of claim 3, wherein the step of identifying a reclaimable object
comprises the steps of:
examining the thread identification,
examining the stack number, and

determining whether the object is local.

~ WO 99/32978

10

15

20 8.

PCT/US98/26769

13

A computerized device comprising:
a virtual machine;
a computer readable medium having stored thereon:
a computer program executed within the environment of the virtual
machine; and
an incremental garbage collector executed within the environment
of the virtual machine; and
memory having an object heap;
wherein the computer program calls at least one function;
wherein the at least one function allocates at least one object from the
memory having an object heap;
wherein upon termination of the at least one function that allocated the at
least one object, the incremental garbage collector determines
whether the at least one object is local to the at least one function;
and
wherein, upon determining that the at least one object is local to the at least
one function, the incremental garbage collector reclaims such at

least one object.

The computerized device of claim 7, wherein the device is compatible with

the Windows CE Operating System.

9.

The computerized device of claim 7, wherein the incremental garbage

collector scans through only an area of the memory having an object heap from

25 which the at least one function allocated the at least one object.

10.

A computer readable medium having a computer program stored thereon to

cause a suitably equipped computer to perform a method for identifying an object,

the method comprising the steps of indicating on the object:

30

a thread identification;

a stack number; and

WO 99/32978 PCT/US98/26769

14
whether the object is local.
11. The computer readable medium of claim 10, wherein the object was
allocated by code in a function.
5
12. A computer readable medium having a computer program stored thereon to °

cause a suitably equipped computer to perform a method for reclaiming a memory
area occupied by an object in a heap, the object having indicated thereon a thread
identification, a stack number, and whether the object is local, the method
10 comprising the steps of:
identifying a reclaimable cbject; and
indicating on the memory area occupied by the object that the memory area

occupied by the object is available for future allocation.

15 13. The computer readable medium of claim 12, wherein the object was
allocated by code in a function and wherein reclaiming the memory occupied by the

object is activated by termination of the function that allocated the object.

14. The computer readable medium of claim 12, wherein the step of identifying
20 areclaimable object comprises the steps of:
examining the thread identification,
examining the stack number, and

determining whether the object is local.

0S SV490Yd I "Old

llllll _ - NOWYONddy | 9%

PCT/US98/26769

¢
oon SIINAONW
I (0] 4 VIVG | AVHO08d | SKVHO0Md | W3LISAS
: IA 4 AVHO08d | ¥3HIO | NOLLYIINddY | ONIIVY3IdO

d31NdN0D

" _ _n 3% ; g ; g >
31003y | 6V a . g¢e s 9¢ g& .-

" WO 99/32978

oz ——— P (D e

300N ' 7
YSOMLIN V3UV 30 > V y S .-
r-—-——=—>7=—7—7<% D I e e et T
| — I
og~l=] sz ~_0od
LS ' 1 3yvauany | | FOVAREINI| [30VANIINE| [FOVAMIINI | [30VANEINI | | gl [WVEO0¥d |
s e tryert 180d NG INNG NG !
HOMIEN V34V W01, W¥3S WOILO | | ¥SIQ DLLINOVA | | ¥SIa Q¥VH STINGON | |
I3 g TN g J WV4904d _
| eg ﬂ o i ¥ c¢ ﬁ e i (€] WIHIO _
| o7 SNa W3LSAS A_F ’ ["Swveo0dd | | |
oz 1l of' | NOUYOMddY| | |
" w_wwnh__,_\h,_,\ 1IN | nsks |
! : ONISSI00¥d gg [NIVEdO |
! = 2 [S |
| § 1
HOLINOW | |—! 24 T —— |
i ¢¢ | __vT __ (noy)| !
9
A | AONIN WIISAS | |
L o o o o o e e e e e e e e e e e e e — 4

" WO 99/32978 PCT/US98/26769

2 /6 _
208 216
_ _| HEAP
- W ™| MANAGER
220 y
GARBAGE
COLLECTOR
A | 212

!

PROGRAM
OR -
FUNCTION

7
204

FIG. 2(a)

© W0 99/32978 PCT/US98/26769

3 / 6 _
258 266
_ | HEAP
- W= ~| MANAGER
I
270 | 274 |
INCREMENTAL] [carBacE
r— GARBAGE COLLECTOR
COLLECTOR
y 262

Y

|
|
|
|
|
|
|
|
:
|
R
PROGRAM

OR
FUNCTION

?
254

Y

FIG. 2(b)

© WO 99/32978 PCT/US98/26769

(START)

|

\

EXECUTE
3001 COMMAND

COMMAND
ALLOCATES (MEMORY

302
BLOCK) OBJECT
?

YES

PUT INFORMATION
304, ON OBJECT BEING
ALLOCATED

—
il

Y

END NO GO TO
306~ OF FUNCTION NEXT
? COMMAND
¢
308

310/ PERFORM INCREMENTAL
GARBAGE COLLECTION

END

FIG. 3

© WO 99/32978

THREAD 1D

~315

STACK NUMBER

~320

MARK BIT (0 OR 1)

~325

FIG. 4

PCT/US98/26769

© WO 99/32978

6 /

INCREMENTAL GARBAGE
COLLECTION

400~ Y

FETCH OBJECT

POINT
TO NEXT |
OBJECT

g
418

FIG. 5

402

404

CORRECT NO

PCT/US98/26769

6 -

THREAD ID
?

YES

CORRECT

Y

STACK NUMBER
?

RECLAIM SPACE
OCCUPIED BY OBUECT

|

408
WAS OBJECT
STORED INTO ANOTHER
OBJECT (OBJECT2) HAVING SAME
NO JHREAD ID AND STACK
NUMBER?

YES IS MARK

OF THE HEAP
REACHED
?

BIT SET FOR
OBJECT2
?

412

IS OBJECT

REFERENCED

ANYWHERE ELSE
?

YES

Y

INTERNATIONAL SEARCH REPORT

Inte onal Appiication No

PCT/US 98/26769 -

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F12/02

According to intemational Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search {(name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

9 July 1996
62; figure 9

PROTOCOL"

XP000266719

line

see column 11, line 1 - column 13, line

30 September 1991 , PROCEEDINGS OF THE
SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS,
PISA, SEPT. 30 - OCT. 2, 1991, NR. SYMP.
10, PAGE(S) 208 - 217 , INSTITUTE OF

- ELECTRICAL AND ELECTRONICS ENGINEERS

see page 211, right-hand column, paragraph
4.4 - page 212, right-hand column, last

-/

A US 5 535 390 A (HILDEBRANDT THOMAS H) 1,3,7

A SHAPIRO M: "A FAULT-TOLERANT, SCALABLE, 1,3,7
LOW-OVERHEAD DISTRIBUTED GARBAGE DETECTION

m Further documents are listed in the continuation of box C.

E Patent tamily members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which ig cited to establish the publication date of another
citation or other speciai reason (as spacified)

"O" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the intemational filing date but
later than the priority date ciaimed

"T" fater document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underiying the
invention

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considerad to
involve an inventive step when the document is taken alone

"Y" document of particuiar relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
me:;’:ts. ?tUCh combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actuai completion of the international search

9 April 1999

Date of mailing of the international search report

19/04/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo n!,

Fax: (+31-70) 340-3016

Authorizad officer

Ledrut, P

Fom PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

inte onal Application No

PCT/US 98/26769 -

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to ctaim No.

KATZBERG J D ET AL: "GARBAGE COLLECTION
SOFTWARE INTEGRATED WITH THE SYSTEM
SWAPPER IN AVIRTUAL MEMORY SYSTEM"

17 May 1993 , COMMUNICATIONS, COMPUTERS
AND POWER IN THE MODERN ENVIRONMENT,
SASKATOON, MAY 17 - 18, 1993, PAGE(S) 184
- 191 , INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS XP000419817

see page 187, right-hand column, line 50 -
page 188, right-hand column, line 7

1,3,7

Fom PCT/ISA/21

0 (continuation of second sheat) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inte: >nal Application No

PCT/US 98/26769

information on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5535390 A 09-07-1996 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

