

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 August 2009 (20.08.2009)

(10) International Publication Number
WO 2009/100555 A1

(51) International Patent Classification:
C07C 33/12 (2006.01) C07C 31/135 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/CH2009/000054

(22) International Filing Date:
10 February 2009 (10.02.2009)

(25) Filing Language: English

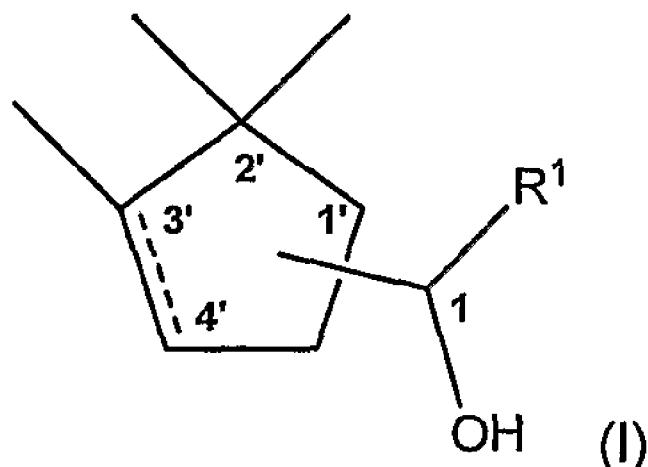
(26) Publication Language: English

(30) Priority Data:
0802556.1 12 February 2008 (12.02.2008) GB

(71) Applicant (for all designated States except US): **GIVAUDAN SA** [CH/CH]; Chemin de la Parfumerie 5, CH-1214 Vernier (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MARCH, Sébastien** [CH/CH]; 6bis rue des Moraines, CH-1227 Carouge (CH). **BAJGROWICZ, Jerzy, A.** [FR/CH]; Wiesliacher 45, CH-8053 Zürich (CH). **DERRER, Samuel** [CH/CH]; Langärristrasse 120, CH-8117 Fällanden (CH). **KRAFT, Philip** [DE/CH]; Kirchbachstrasse 4, CH-8600 Dübendorf (CH). **MUELLER, Urs** [CH/CH]; Hermikonstrasse 31, CH-8600 Duebendorf (CH).


(74) Agent: **SIEVERT, Claudia**; Ueberlandstrasse 138, CH-8600 Duebendorf (CH).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

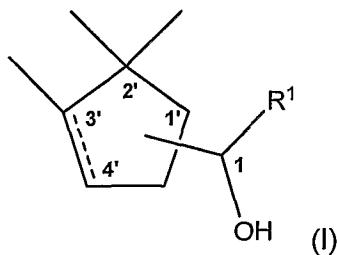
- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: ORGANIC COMPOUNDS

(57) Abstract: The present invention refers to compound of formula (I) wherein R¹ is methyl, ethyl or vinyl; the bond between C-3' and C-4' is a single bond or the dotted line together with the bond between C-3' and C-4' represents a double bond; and the side chain -CR¹OH is at position 1' or 4' of the ring. The invention furthermore refers to their preparation and to fragrance applications comprising them.

ORGANIC COMPOUNDS

This invention refers to novel compounds having patchouli-like odour notes. This invention relates furthermore to a method of their production and to fragrance 5 applications containing them.


Compounds having patchouli-like odour notes are described in the literature, for example, the class of sesquiterpenes that occur naturally in essential oils and which can be isolated by water-steam distillation of a plant or parts of a plant. This process is 10 very cost-intensive, and the quality and the odour as well as the flavour characteristics of the isolated compounds may vary with the climate and the origin of the plant. In addition, patchoulol, which makes up around 35–40 weight % of the essential patchouli oil, is structurally too complex to allow a synthetic approach that could compete with the price of the natural material.

15

Thus, there is an ongoing demand in the fragrance and flavour industry for new compounds imparting, enhancing, or improving patchouli-like odour notes.

We have now found a novel class of compounds having much sought-after patchouli-20 like odour notes.

Accordingly, the present invention refers in one of its aspects to the use as flavour or fragrance of a compound of formula (I)

25 wherein

R¹ is methyl, ethyl or vinyl;

the bond between C-3' and C-4' is a single bond or the dotted line together with the bond between C-3' and C-4' represents a double bond; and
the side chain –CR¹OH is at position 1' or 4' of the ring.

30

The compounds of formula (I) may comprise several chiral centres and as such may exist as a mixture of stereoisomers, or they may be resolved as isomerically pure forms. Resolving stereoisomers adds to the complexity of manufacture and purification of these compounds and so it is preferred to use the compounds as mixtures of their 5 stereoisomers simply for economic reasons. However, if it is desired to prepare individual stereoisomers, this may be achieved according to methods known in the art, e.g. preparative HPLC and GC, crystallization or by departing from chiral starting materials, e.g. starting from enantiomerically pure or enriched raw materials such as terpenoids, and/or by applying stereoselective synthesis.

10

Particularly preferred is the use as flavour or fragrance of a compound of formula (I), or a mixture thereof selected from
(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)ethanol,
(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-enyl)prop-2-en-1-ol,
15 1-(2',3',3'-trimethylcyclopent-1'-enyl)ethanol,
(+)-(1*RS*,1'*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)ethanol,
(+)-(1*RS*,1'*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)prop-2-en-1-ol, and
1-(2,2,3-trimethylcyclopent-3-enyl)propan-1-ol.

20

The compounds according to the present invention may be used alone or in combination with known fragrances selected from the extensive range of natural and synthetic molecules currently available, such as essential oils and extracts, alcohols, aldehydes and ketones, ethers and acetals, esters and lactones, macrocycles and heterocycles.

25

In a further embodiment the compounds of formula (I) may be admixed with one or more ingredients or excipients conventionally used in conjunction with fragrances in fragrance applications, for example, carrier materials, and other auxiliary agents, such as solvents (e.g. dipropylene glycol (DPG), isopropylmyristate (IPM), triethylcitrate (TEC) 30 and alcohol (e.g. ethanol)), commonly used in the art.

The following list comprises examples of known fragrances, which may be combined with the compounds of the present invention:

- essential oils and extracts, e.g. oak moss absolute, basil oil, tropical fruit oils, such as bergamot oil and mandarin oil, mastic absolute, myrtle oil, palmarosa oil, patchouli oil, petitgrain oil, wormwood oil, lavender oil, rose oil, jasmin oil, ylang-ylang oil and sandalwood oil.

5

- alcohols, e.g. cis-3-hexenol, cinnamic alcohol, citronellol, Ebanol® (3-methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)-4-penten-2-ol), eugenol, farnesol, geraniol, menthol, nerol, rhodinol, Super Muguet™ (6-ethyl-3-methyl-6-octen-1-ol), linalool, phenylethyl alcohol, Sandalore® (5-(2,2,3-trimethyl-3-cyclopentenyl)-3-methylpentan-2-ol), terpineol or Timberol® (1-(2,2,6-trimethylcyclohexyl)hexan-3-ol).

10

- aldehydes and ketones, e.g. citral, hydroxycitronellal, Lilial® (3-(4-tert-butylphenyl)-2-methylpropanal), methylnonylacetaldehyde, anisaldehyde, allylisonone, verbenone, nootkatone, geranylacetone, α -amylcinnamic aldehyde, Georgywood™ (1-(1,2,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)ethanone), hydroxycitronellal, Iso E Super® (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)ethanone), Isoraldeine® (4-(2,6,6-trimethyl-2-cyclohexenyl)-3-methyl-3-buten-2-one), Hedione® (methyl (3-oxo-2-pentylcyclopentyl)acetate), maltol, methyl cedryl ketone, and vanillin.

15

- ethers and acetals, e.g. Ambrox® (3a,6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan), geranyl methyl ether, rose oxide or Spirambrene (2,2,3',7',7'-pentamethylspiro(1,3-dioxan-5,2'-norcarane)).

20

- esters and lactones, e.g. benzyl acetate, cedryl acetate, γ -decalactone, Helvetolide® (2-[1-(3,3-dimethylcyclohexyl)ethoxy]-2-methylpropan-1-ol propanoate), γ -undecalactone, vetivenyl acetate, cinnamyl propionate, citronellyl acetate, decyl acetate, dimethylbenzylcarbinyl acetate, ethyl acetoacetate, ethyl acetylacetate, cis-3-hexenyl isobutyrate, linalyl acetate and geranyl acetate.

25

- macrocycles, e.g. Ambrettolide, Ethylene brassylate or Exaltolide® (oxacyclohexadecan-2-one).

- heterocycles, e.g. isobutylchinoline.

30

35

The compounds of the present invention may be used in a broad range of fragranced applications, e.g. in any field of fine and functional perfumery, such as perfumes, household products, laundry products, body care products and cosmetics.

5 The compounds of formula (I) can be employed in widely varying amounts, depending upon the specific application and on the nature of the composition or application one intends to fragrance, for example the nature and quantity of co-ingredients, and the particular effect that the perfumer seeks. In general, the proportion is typically from 0.001 to 20 weight percent of the application. In one embodiment, compounds of the
10 present invention may be employed in a fabric softener in an amount of from 0.001 to 0.05 weight percent. In another embodiment, compounds of the present invention may be used in an alcoholic solution in amounts of from 0.1 to 30 weight percent, more preferably between 1 and 20 weight percent. However, these values are given only by way of example, since the experienced perfumer may also achieve effects or may
15 create novel accords with lower or higher concentrations, e.g. up to about 50 weight percent based on the composition.

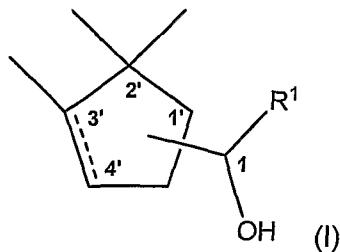
The compounds of the present invention may be employed into a consumer product base by mixing a compound of formula (I), a mixture thereof or fragrance composition
20 comprising it, with the consumer product base, and/or they may, in an earlier step, be entrapped with an entrapment material such as polymers, capsules, microcapsules and nanocapsules, liposomes, film formers, absorbents such as carbon or zeolites, cyclic oligosaccharides and mixtures thereof, and/or they may be chemically bonded to substrates, which together with the substrate forms a precursor, which are adapted to
25 release the compound of formula (I) upon application of an external stimulus such as light, enzyme, or the like, and then mixed with the consumer product base.

The invention additionally provides a method of manufacturing a fragrance application comprising the incorporation of a compound of formula (I) as fragrance ingredient,
30 either by admixing the compound to the consumer product base or by admixing a composition comprising a compound of formula (I) or a precursor thereof, which may then be mixed to the consumer product base, using conventional techniques and methods. Through the addition of an organoleptically acceptable amount of a compound of formula (I) or a mixture thereof, the organoleptic properties of the
35 consumer product base will be improved, enhanced or modified.

The invention furthermore provides a method for improving, enhancing or modifying a consumer product base through the addition thereto of an olfactory acceptable amount of a compound of formula (I), or a mixture thereof.

5

The invention also provides a fragrance application comprising:


- a) as fragrance a compound of formula (I) or a mixture thereof; and
- b) a consumer product base.

10 As used herein, by "consumer product base" is meant a formulation for use as a consumer product to fulfill specific actions, such as cleaning, softening, and caring or the like. Examples of such products include fine perfumery, e.g. perfume and eau de toilette; fabric care, household products and personal care products such as laundry care detergents, rinse conditioner, personal cleansing products, detergent for

15 dishwasher, surface cleaner; laundry products, e.g. softener, bleach, detergent; body care products, e.g. shampoo, shower gel; air care products and cosmetics, e.g. deodorant, and vanishing crème. This list of products is given by way of illustration and is not to be regarded as being in any way limiting.

20 According to our best knowledge most of the compounds falling within the definition of formula (I) are not described in the literature and are thus novel in its own right.

Accordingly, the present invention refers in a further aspect to compounds of formula (I)

25 wherein

R¹ is methyl, ethyl or vinyl;

the bond between C-3' and C-4' is a single bond or the dotted line together with the bond between C-3' and C-4' represents a double bond; and
 the side chain $-\text{CR}^1\text{OH}$ is at position 1' or 4' of the ring;

30 provided that 1-(2,2,3-trimethylcyclopent-3-enyl)ethanol is excluded.

1-(2,2,3-Trimethylcyclopent-3-enyl)ethanol is disclosed in WO2008/046239 as intermediate product for the production of 2,2,3-trimethylcyclopent-3-enecarbaldehyde derivatives.

5

The compounds of the present invention may be prepared starting from campholytic aldehyde ((S)-(+)-campholytic aldehyde or (R)-(-)-campholytic aldehyde). In case of substitution at position 1', they may be directly prepared by Grignard-reaction with methyl-, ethyl-, or vinylmagnesium halides. The corresponding products with

10 substitution at position 4' are accessible from campholytic aldehyde by acid-mediated rearrangement to afford 2,3,3-trimethylcyclopent-1-enecarbaldehyde and subsequent Grignard-reaction with methyl-, ethyl-, or vinylmagnesium halides. In order to obtain saturated analogues, the C-3'=C-4'-double bond is hydrogenated, for example, under palladium on carbon catalysis, as is well known to the person skilled in the art.

15

The compositions and methods are now further described with reference to the following non-limiting examples.

These examples are for the purpose of illustration only and it is understood that 20 variations and modifications can be made by one skilled in the art without departing from the scope of the invention. It should be understood that the embodiments described are not only in the alternative, but can be combined. The NMR data are given relative to internal SiMe₄ standard.

25

Example 1: (+)-(1*RS*,1'S)-1-(2',2',3'-Trimethylcyclopent-3'-en-1'-yl)ethanol (ca. 20%ee)
At room temperature, a 3 M solution of methyl magnesium chloride (66.0 mL, 198 mmol) in THF was added dropwise during 45 min to a stirred solution of (S)-campholytic aldehyde [(S)-2,2,3-trimethylcyclopent-3-enecarbaldehyde, ca. 20%ee] in THF (260 mL), upon which the temperature of the reaction mixture rose to 50°C. After refluxing for 3 h, the heating source was removed and the reaction mixture allowed to cool down. Between 0–11°C, by cooling with an ice–water bath, saturated aqueous ammonium chloride solution (55 mL) was added dropwise with stirring, followed by water (200 mL). The product was extracted with ether (2 × 500 mL), and the combined ethereal extracts 35 were washed with water (500 mL) and brine (250 mL). After drying with sodium sulfate

and removal of the solvent on a rotary evaporator, the crude product (18.8 g) was purified by flash chromatography (560 g; silica gel, pentane/ether, 4:1, R_f = 0.40) to provide the (+)-(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)ethanol with ca. 20%ee as a colorless odoriferous liquid.

5

Odour description: typical clean patchouli scent, woody-camphoraceous-earthy, with slightly spicy accents and fruity-green facets, and some reminiscence to borneol.

IR (neat): ν = 3359 (br. s, ν O-H), 1465/1443 (m, δ_{as} CH₃), 1373/1359 (s, δ_s CH₃),

10 1143/1126/1010 (s, ν C-O).

¹H NMR (CDCl₃): δ = 0.93/0.97/1.04/1.17 (4s, 6 H, 2'-Me₂), 1.19/1.25 (2d, J = 6.0 Hz, 3 H, 2-H₃), 1.48 (br. s, 1 H, O-H), 1.59 (br. s, 3 H, 3'-Me), 1.79 (m_c, 1 H, 1'-H), 1.81–2.39 (m, 2 H, 5'-H₂), 3.90/3.93 (2quint, J = 6.0 Hz, 1 H, 1-H), 5.17/5.27 (2t, J = 1.5 Hz, 1 H, 4'-H).

15 ¹³C NMR (CDCl₃): δ = 12.3/12.3 (2q, 3'-Me), 19.6/20.0 (2q, C-2), 23.3/23.8/26.9/27.6 (4q, 2'-Me₂), 31.4/33.2 (2t, C-5'), 46.5/47.0 (2s, C-2'), 56.7/57.5 (2d, C-1'), 68.6/69.8 (2d, C-1), 120.6/121.6 (2d, C-4'), 148.2/149.0 (2s, C-3').

MS (EI): *m/z* (%) = 41 (9) [C₃H₅⁺], 45 (12) [C₂H₄OH⁺], 55 (8) [C₄H₇⁺], 67 (17) [C₅H₇⁺], 79 (9) [C₆H₇⁺], 91 (6) [C₇H₇⁺], 95 (100) [C₇H₁₁⁺], 105 (3) [C₈H₉⁺], 109 (4) [C₈H₁₃⁺], 121 (37)

20 [M⁺ – CH₃ – H₂O], 136 (13) [M⁺ – H₂O], 139 (1) [M⁺ – CH₃], 154 (4) [M⁺].

Polarimetry (*c* 0.96 in EtOH): $[\alpha]_D^{22}$ = +6.8°, $[\alpha]_{578}^{22}$ = +7.1°, $[\alpha]_{546}^{22}$ = +8.2°, $[\alpha]_{436}^{22}$ = +14.7°, $[\alpha]_{365}^{22}$ = +23.3°.

25 Example 2: (+)-(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-enyl)prop-2-en-1-ol

A solution of vinyl bromide (110 g, 1 mol) in 1 L THF is added within 0.5 h into a suspension of magnesium turnings (24.6 g, 1 mol) in 300 mL THF (initiation of the reaction is eased by the addition of ca 0.1 g iodine and heating). The resulting mixture is heated to 60 °C for 1 h then cooled to 0 °C. Another solution of campholytic aldehyde (100 g, 0.72 mol, 20.6% ee (S)) in 100 mL THF is added drop-wise into the above solution at a rate allowing the mixture temperature to be kept below 20 °C. The resulting mixture is stirred for 1 h at room temperature and then quenched with ice-cold 2M HCl. The aqueous layer is extracted with MTBE and the combined organic layers are dried

over MgSO₄, then evaporated yielding the desired alcohol as a yellow liquid (121 g, 99% yield, 93% purity). This material is purified by distillation at 50 °C/0.08 Torr (0.107 mbar) to obtain (+)-(1RS,1'S)-1-(2',2',3'-trimethylcyclopent-3'-enyl)prop-2-en-1-ol with (ca. 20%ee) as a colorless odoriferous liquid.

5

Odour description: patchouli, spicy, anisic, badiane, linear; dry down: camphoraceous, woody, patchouli, anisic, black licorice, cinnamic, earthy, honey.

10 ¹H NMR (400 MHz, CDCl₃) δ 5.88 (ddd, 17.1 10.3 6.7 Hz, 1H); 5.21 (dt, 17.1 1.4 Hz, 1H); 5.15 (m, 1H); 5.07 (ddd, 10.2 1.6 1.0 Hz, 1H); 4.18 (t, 8.3 Hz, 1H); 2.04 (m, 1H); 1.91 (m, 1H); 1.81 (m, 1H); 1.58 (m, 3H); 1.41 (s, 1H); 1.17 (s, 3H); 0.99 (s, 3H).
15 ¹³C NMR (100 MHz, CDCl₃) δ 148.9 (C^{IV}); 141.3 (CH); 120.7 (CH); 114.6 (CH₂); 75.5 (CH); 55.0 (CH); 47.1 (C^{IV}); 33.0 (CH₂); 27.5 (CH₃); 19.6 (CH₃); 12.3 (CH₃).
MS (EI, m/z) 166 (4, M⁺); 151 (9); 148 (6); 133 (23); 109 (39); 95 (100); 67 (42); 57 (27); 41 (19).

Polarimetry (c 1.06 in EtOH): $[\alpha]_D^{22} = +0.4^\circ$, $[\alpha]_{578}^{22} = +0.5^\circ$, $[\alpha]_{546}^{22} = +0.6^\circ$, $[\alpha]_{436}^{22} = +1.3^\circ$, $[\alpha]_{365}^{22} = +2.3^\circ$.

20 Example 3: 1-(2',3',3'-trimethylcyclopent-1'-enyl)ethanol

A 100 ml two-necked round bottom flask is charged with a solution of campholytic aldehyde (10 g, 0.072 mol) in cyclohexane (30 ml) and Amberlyst 15 (12 g) is added. Under an atmosphere of nitrogen the magnetically stirred mixture is heated to reflux for 25 18 h. Then, the mixture is allowed to cool, the acid resin is filtered off and the filtrate is reduced *in vacuo* to afford a brown, viscous oil. This crude is purified by bulb-to-bulb distillation (70 °C, 0.08 Torr) to furnish the clean intermediate 2,3,3-trimethylcyclopent-1-enecarbaldehyde. This is converted to the required 1-(2',3',3'-trimethylcyclopent-1'-enyl)ethanol following the procedure outlined in Example 1 and isolated as a colorless 30 odoriferous liquid.

Odour description: minty, agrestic, patchouli, slightly cooling, a bit spicy; dry down: fresh, camphoraceous, patchouli, earthy.

IR (neat): ν = 3339 (br. s, ν O-H), 2952/2933 (s, ν CH₂), 1457/1442 (m, δ_{as} CH₃), 1377/1360 (s, δ_s CH₃), 1061 (s, ν C-O).

¹H NMR (CDCl₃): δ = 0.93/0.99 (2s, 6 H, 2'-Me₂), 1.24 (d, J = 6.6 Hz, 3 H, 2-H₃), 1.55 (br. s, 3 H, 3'-Me), 1.62 (m_c, 2 H, 1'-H₂), ~1.75 (br. s, 1 H, O-H), 2.22-2.51 (m, 2 H, 5'-H₂), 4.66 (q, J = 6.0 Hz, 1 H, 1-H).

¹³C NMR (CDCl₃): δ = 9.25 (q, C-2), 21.5 (q, 3'-Me), 25.9/26.2 (2q, 2'-Me₂), 27.0 (t, C-1'), 38.5 (d, C-5'), 47.1 (s, C-2'), 64.8 (d, C-1), 136.2 (s, C-3'), 140.9 (s, C-4').

MS (EI): *m/z* (%) = 41 (12) [C₃H₁₅⁺], 43 (100) [C₂H₃O⁺], 45 (6) [C₂H₄OH⁺], 55 (17) [C₄H₇⁺], 67 (11) [C₅H₇⁺], 79 (11) [C₆H₇⁺], 83 (13) [M⁺ - CH₂=Me₂ - CH₃], 95 (36) [C₇H₁₁⁺], 98

10 (7)[[M⁺ - CH₂=Me₂]]105 (7) [C₈H₉⁺], 109 (6) [C₈H₁₃⁺], 121 (31) [M⁺ - CH₃ - H₂O], 136 (5) [M⁺ - H₂O], 139 (48) [M⁺ - CH₃], 154 (24) [M⁺].

Example 4: (+)-(1RS,1'S,3'RS)-1-(2',2',3'-Trimethylcyclopentyl)ethanol (ca. 20%ee)

15

2,2,3-trimethylcyclopentanecarbaldehyde was prepared directly from α -campholytic aldehyde as follows: To a solution of α -campholytic aldehyde (5 g, 36 mmol, 20.6% ee (S)) in n-butanol/ethyl acetate (1:1, 36 mL), is added palladium on charcoal (5%, 0.3 g).

20 The mixture is magnetically stirred for 18 h under an atmosphere of hydrogen (balloon fitted), after which GC-monitoring showed the reaction to be virtually completed. The mixture is filtered through a plug of celite and the filtrate reduced *in vacuo* to afford the required 2,2,3-trimethylcyclopentanecarbaldehyde as colourless odoriferous liquid (5.1 g, quantitative yield, purity >95%). This material was used directly in the procedure described in Example 1 and (+)-(1RS,1'S)-1-(2',2',3'-Trimethylcyclopentyl)ethanol (ca. 25 20%ee) was obtained as a colourless, odoriferous liquid (purified by distillation at 70 °C/0.2 Torr (0.266 mbar)) as a complex mixture of four diastereoisomers.

Odour description: Piney, fruity, agrestic (borneol), woody, patchouli (but not so earthy), a bit spicy, resinous (spruce).

30

IR (neat): ν = 3357 (br. s, ν O-H), 1468/1455 (m, δ_{as} CH₃), 1372/1366 (s, δ_s CH₃), 1145/1126/1024 (s, ν C-O).

¹H NMR (CDCl₃): δ = 0.64-1.25 (several s and d, 12 H, 1-Me, 2'-Me₂, 3'-Me), 1.05-1.25 (m_c, 1 H, 4'-H), 1.41-1.86 (m_c, 5 H, 1'-H, 3'-H, 4'-H, 5'-H₂), 3.64-3.97 (4 m_c, 1 H, 1-H).

¹³C NMR (CDCl₃): δ = 13.2-16.5 (several q, 2Me), 23.1/23.2/25.0/27.5 (4t, C-4'), 23.6-27.8 (several q, 2Me), 27.8/29.6/31.5/31.6 (4t, C-5'), 41.6/41.8/41.9/42.4 (4s, C-2'), 44.8/44.8/45.7/45.7 (4d, C-4'), 55.0/55.8/57.4/57.8 (4d, C-1'), 68.2/68.7/70.0/70.5 (4d, C-1).

5 MS (EI): *m/z* (%) = 41 (50) [C₃H₅⁺], 45 (42) [C₂H₄OH⁺], 55 (62) [C₄H₇⁺], 69 (100) [C₅H₉⁺], 81 (22) [C₆H₉⁺], 91 (6) [C₇H₇⁺], 95 (38) [C₇H₁₁⁺], 112 (21) [C₈H₁₆⁺], 123 (27) [M⁺ - CH₃ - H₂O], 138 (11) [M⁺ - H₂O], 141 (1) [M⁺ - CH₃], 156 (1) [M⁺].
Polarimetry (c 1.02 in EtOH): [α]_D²³ = +0.4°, [α]₅₇₈²³ = +0.4°, [α]₅₄₆²³ = +0.5°, [α]₄₃₆²³ = +1.0°, [α]₃₆₅²³ = +1.5°.

Example 5: (+)-(1RS,1'S,3'RS)-1-(2',2',3'-trimethylcyclopentyl)prop-2-en-1-ol

According to the procedure described in Example 2, (+)-(1RS,1'S,3'RS)-1-(2',2',3'-

15 trimethylcyclopentyl)prop-2-en-1-ol was prepared with vinyl magnesium bromide starting from 2,2,3-trimethylcyclopentanecarbaldehyde and obtained as a colourless, odoriferous liquid (purified by distillation at 83 °C/0.2 Torr (0.266 mbar)) as a complex mixture of four diastereoisomers.

20 Odour description: Fruity, metallic, woody, agrestic, patchouli, cooked vegetable.

IR (neat): ν = 3379 (br. s, νO-H), 1642 (w, νC=C), 1468/1450 (m, δ_{as}CH₃), 1386/1365 (m, δ_sCH₃), 1120/1109/1066/1045/990/980 (m-s, νC-O).

¹H NMR (400 MHz, CDCl₃) δ = 5.86 (m_c, 1H, 2-H); 5.21 (m_c, 1H, 3-H); 5.08 (m_c, 1H, 3-

25 H); 4.23/4.04/3.97 (3t, 1H, 1-H); 1.87-1.40 (m_c, 6 H, 1-OH, 1'-H, 3'-H, 4'-H, 5'-H₂), 1.17-1.07 (m_c, 1 H, 4'-H), 1.11-0.64 (several s and d, 9 H, 2'-Me₂, 3'-Me).

¹³C NMR (CDCl₃): δ = 13.3-16.0 (several q, 2Me), 23.4/24.1/25.5/27.7 (4t, C-4'), 24.0-27.7 (several q, 2Me), 29.5/29.9/31.5/31.7 (4t, C-5'), 41.7/41.9/42.1/42.5 (4s, C-2'),

44.6/45.6/45.6/45.7 (4d, C-4'), 53.2/53.7/55.2/55.6 (4d, C-1'), 73.7/74.8/75.0/76.1 (4d,

30 C-1), 114.1/114.3/114.5/114.9 (4t, C-3), 141.5/141.6/141.8/141.9 (4d, C-2).

MS (EI, *m/z*) 168 (1, M⁺); 153 (1); 135 (3); 111 (56); 95 (26); 69 (100); 55 (52); 41 (33).

Polarimetry (c 1.01 in EtOH): [α]_D²³ = +0.2°, [α]₅₇₈²³ = +0.2°, [α]₅₄₆²³ = +0.3°, [α]₄₃₆²³ = +0.6°, [α]₃₆₅²³ = +1.0°.

Example 6: 1-(2,2,3-trimethylcyclopent-3-enyl)propan-1-ol

A solution of α -campholytic aldehyde (10 g, 72 mmol, 20.6% ee (*R*)) in 11 mL THF is added drop-wise into a cooled, mechanically stirred solution of ethylmagnesium bromide (40 mL, 87 mmol, 2.2 M in THF) at a rate allowing the mixture temperature to 5 be kept between -10 °C and 0 °C (ca. 20 min). The resulting solution is stirred for 2h while the temperature is allowed to warm to 0 °C. The resulting heterogeneous mixture is quenched with 100 mL of 2M HCl. The aqueous layer is extracted with MTBE and the combined organic layers are dried over MgSO₄, then evaporated yielding 11.9 g of a yellow liquid (98 % yield). This material can be purified by distillation or 10 chromatography, but was used directly in the next step.

Odour description: Very natural, agrestic, patchouli, a bit earthy/mossy, fruity (fenchyl acetate-type), slightly green.

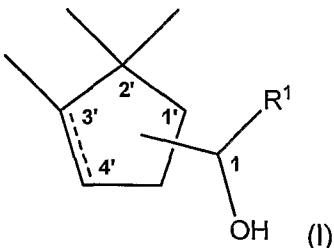
15 ¹H NMR (400 MHz, CDCl₃) δ 5.26 (broad s, 1H); 3.66 (dt, 8.1, 4.6 Hz, 1H); 2.24 (m, 2H); 1.87 (td, 8.2, 4.8 Hz, 1H); 1.58 (m, 3H); 1.6-1.4 (m, 2H); 1.42 (broad s, 1H); 1.01 (s, 3H); 0.96 (t, 7.3 Hz, 3H); 0.95 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 148.2 (C^{IV}); 121.8 (CH); 73.4 (CH); 54.3 (CH); 46.7 (C^{IV}); 30.4 (CH₂); 29.6 (CH₂); 27.0 (CH₃); 20.5 (CH₃); 12.4 (CH₃); 10.3 (CH₃).
20 MS (EI, m/z) 168 (2, M⁺); 150 (16); 135 (18); 121 (100); 107 (18); 95 (88); 79 (14); 67 (20); 59 (16); 55 (16); 41 (23).

Example 6: Fougère aromatic green-fruity composition for a shower gel

25	Ingredient	parts by weight
	Allyl amyl glycolate	6
	Ambrofix (dodecahydro-3a,6,6,9a-tetramethyl-naphtho-(2,1-b)-furan)	2
	Amyl salicylate	60
30	Carvone laevo ((<i>R</i>)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enone)	10
	Cedrylacetate	40
	Citronellol	60
	Coumarin	30
	Dihydro eugenol	6
35	Dihydro myrcenol (2,6-dimethyloct-7-en-2-ol)	60

	Ethyl vanillin at 10% in dipropylene glycol (DPG)	2
	Fenchyl acetate	30
	Galaxolide® 50 (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-benzopyran) at 50% in isopropylmyristate (IPM)	100
5	Heliotropine	10
	Hexenol-3-cis	6
	Hexyl acetate	12
	Hexyl cinnamic aldehyde	100
	Ionone beta	40
10	Iso E super (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)-ethanone)	60
	Labienoxime (2,4,4,7-tetramethyl-6,8-nonadiene-3-one-oxime) at 1% in IPM-TEC (isopropylmyristate – triethylcitrate mixture 90/10)	2
	Linalool	160
15	Maltol isobutyrate at 10% in DPG	4
	Radjanol (2-ethyl-4-(2,2,3-trimethylcyclopent-3-enyl)but-2-en-1-ol)	16
	Stemone® (5-methyl-3-heptanone oxime)	4
	Terpinyl acetate (2-(4-methylcyclohex-3-enyl)propan-2-yl acetate)	80
	<u>(+)-(1RS, 1'S)-1-(2',2',3'-Trimethylcyclopent-3'-en-1'-yl)ethanol (ca. 20%ee)</u>	100
20	Total: 1000	

This fougére fragrance with a spearmint leaf effect and fruity green undertones in the direction of apple, provides a green-aromatic freshness to shower gel formulations, which is greatly enhanced by the patchouli character of $(+)-(1RS,1'S)-1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)ethanol$. Incorporation of this new odorant conveys a natural resinous-woody, balsamic character that enhances the fresh-aromatic theme of the composition without dominating the fragrance with its patchouli note. $(+)-(1RS,1'S)-1-(2',2',3'-Trimethylcyclopent-3'-en-1'-yl)ethanol$ also stresses the fresh eucalyptus and spearmint effect, but most importantly renders it the construction of a fougére theme possible without incorporation of oak moss. Without the woody-camphoraceous-earthy patchouli scent of $(+)-(1RS,1'S)-1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)ethanol$ with its slightly spicy accents and fruity-green facets that ideally form a great part of the aromatic, herbal, green-fruity theme, the fragrance is not recognizable as a fougére anymore, besides that it appears flat and musty.


Example 7: Fougère aromatic lavender composition for a masculine eau-de-cologne

Ingredient	parts by weight
Agrumex (2-tert-butylcyclohexyl acetate)	80
5 Allyl amyl glycolate	6
Ambrofix (dodecahydro-3a,6,6,9a-tetramethyl-naphtho-(2,1-b)-furan)	20
Anise oil	2
Bourgeonal T (3-(4-tert-butylphenyl)propanal)	6
Clove bud oil	2
10 Cyclohexal	80
Damascenone (1-(2,6,6-trimethylcyclohexa-1,3-dienyl)but-2-en-1-one)	
at 10% in dipropylene glycol (DPG)	4
Dimethyl phenyl ethyl carbinol (2-methyl-4-phenyl-2-butanol)	20
Fennaldehyde (3-(4-methoxyphenyl)-2-methylpropanal)	10
15 Fixolide (1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-ethanone)	120
Floralozone (3-(4-ethylphenyl)-2,2-dimethylpropanal)	2
Hedione® HC (methyl 2-(3-oxo-2-pentylcyclopentyl)acetate)	160
Hexenol-3-cis	4
20 Irone alpha (4-(2,5,6,6-tetramethylcyclohex-2-enyl)but-3-en-2-one)	2
Iso E super (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)-ethanone)	120
Lavender oil	80
Lemon oil	40
25 Liffarome ((Z)-hex-3-enyl methyl carbonate)	2
Ligustral (2,4-dimethylcyclohex-3-enecarbaldehyde)	2
Mandarin oil	14
Methyl cedryl ketone	80
Radjanol (2-ethyl-4-(2,2,3-trimethylcyclopent-3-enyl)but-2-en-1-ol)	20
30 Spearmint oil	2
Tropional (3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanal)	30
Vanillin	2
<u>(+)-(1^{RS}, 1'^S)-1-(2,2,3-trimethylcyclopent-3-enyl)prop-2-en-1-ol (ca. 20%ee)</u>	<u>90</u>
	Total: 1000

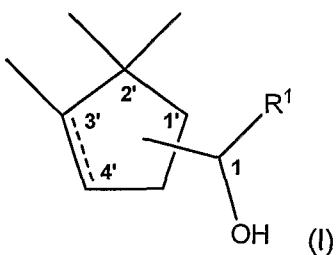
This composition presents a fresh cologne character with a particular emphasis on a true natural lavender effect. The lavender is blended with a rich woody, ambery and powdery background, while the heart is a soft floral with watery connotations. The 5 addition of (+)-(1^{RS}, 1'^S)-1-(2,2,3-trimethylcyclopent-3-enyl)prop-2-en-1-ol (ca. 20%ee, Example 2) brings an agrestic patchouli character to the composition. It enhances also the crisp and natural feeling while improving the lift and freshness.

Claims

1. A compound of formula (I)

wherein

R^1 is methyl, ethyl or vinyl;


the bond between C-3' and C-4' is a single bond or the dotted line together with the bond between C-3' and C-4' represents a double bond; and

the side chain $-CR^1OH$ is at position 1' or 4' of the ring;

provided that 1-(2,2,3-trimethylcyclopent-3-enyl)ethanol is excluded.

2. A compound according to claim 1 selected from the group consisting of (1*RS*,1*S*)-1-(2',2',3'-trimethylcyclopent-3'-enyl)prop-2-en-1-ol, 1-(2',3',3'-trimethylcyclopent-1'-enyl)ethanol, (+)-(1*RS*,1*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)ethanol, (+)-(1*RS*,1*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)prop-2-en-1-ol, and 1-(2,2,3-trimethylcyclopent-3-enyl)propan-1-ol.

3. The use as flavour or fragrance of a compound of formula (I)

wherein

R^1 is methyl, ethyl or vinyl;

the bond between C-3' and C-4' is a single bond or the dotted line together with the bond between C-3' and C-4' represents a double bond; and

the side chain $-CR^1OH$ is at position 1' or 4' of the ring.

4. The use according to claim 3 wherein the compound of formula (I) is selected from
(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)ethanol,
(1*RS*,1'*S*)-1-(2',2',3'-trimethylcyclopent-3'-enyl)prop-2-en-1-ol,
1-(2',3',3'-trimethylcyclopent-1'-enyl)ethanol,
(+)-(1*RS*,1'*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)ethanol,
(+)-(1*RS*,1'*S*,3'*RS*)-1-(2',2',3'-trimethylcyclopentyl)prop-2-en-1-ol, and
1-(2,2,3-trimethylcyclopent-3-enyl)propan-1-ol; or a mixture thereof.
5. A method of improving, enhancing or modifying a fragrance application through addition thereto of an olfactory acceptable amount of a compound of formula (I) as defined in claim 3, or a mixture thereof.
6. A fragrance application comprising as odorant a compound of formula (I) as defined in claim 3, or a mixture thereof; and a consumer product base.
7. A fragrance application according to claim 6 wherein the consumer product base is selected from fine fragrances, household products, laundry products, body care products, cosmetics and air care products.

INTERNATIONAL SEARCH REPORT

International application No
PCT/CH2009/000054

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07C33/12 C07C31/135

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C C11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>HANS MEERWEIN: "Über Ringveränderungen bei der Wasserspaltung aus alicyclischen Alkoholen" JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 417, 1918, pages 255-277, XP002531576 pages 271-272, "1,2,2,3-Tetramethyl-1,alpha-oxäthylcyclopentan"</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
10 June 2009	23/06/2009
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Sen, Alina

INTERNATIONAL SEARCH REPORT

International application No
PCT/CH2009/000054

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>RUPE H ET AL: "1,2,2,3-Tétramethylcyclopentane-1-carbino 1 and its derivatives" HELVETICA CHIMICA ACTA, VERLAG HELVETICA CHIMICA ACTA. BASEL, CH, vol. 3, 1 January 1920 (1920-01-01), pages 272-298, XP009091171 ISSN: 0018-019X page 275; page 295, "1,2,2,3-Tetramethyl-cyclo-pentan-methylca rbinol-1"</p> <p>-----</p> <p>WO 92/22518 A (GIVAUDAN ROURE INT [CH]) 23 December 1992 (1992-12-23) claims</p> <p>-----</p> <p>WO 2008/046239 A (GIVAUDAN SA [CH]; BAJGROWICZ JERZY A [CH]; KRAFT PHILIP [CH]) 24 April 2008 (2008-04-24) cited in the application page 7, compound 2; claims</p> <p>-----</p>	1-7
A		1-7
P,A		1-7

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/CH2009/000054

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9222518	A 23-12-1992	CA DE EP JP	2089146 A1 69204801 D1 0542964 A1 6500569 T	11-12-1992 19-10-1995 26-05-1993 20-01-1994
WO 2008046239	A 24-04-2008	NONE		