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(57) Abstract

A system for generating variable substitution boxes from arbitrary keys for use in a block cipher system utilizes an initial set of
linearly independent numbers (13) to generate substitution tables (15). The initial set of linearly independent numbers (13) is modulated
with the bits of an arbitrary key through operations that result in final sets of linearly independent numbers to form the substitution tables
(15). The system also includes an implementation which allows for rapid key changes for the crypto system by only generating portions of

the substitution tables as needed for specific blocks of input data to

be encrypted or decrypted.




FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austris
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Isracl

Iceland

laly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugosiav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI

SK
SN
Sz
™
TG

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 98/00949 PCT/US97/13624

METHODS FOR GENERATING VARIABLE S-BOXES FROM ARBITRARY KEYS OF ARBITRARY
LENGTH

Priority Claim
This application claims the benefit of U.S. Provisional Application
No. 60/000,676 entitled "Block Cipher System that Uses High-Quality, Variable S-
Boxes Generated from a Key which may Vary in Length,” filed June 29, 1995.

Background of the Invention

Field of the Invention
The present invention relates generally to block cipher systems which, like the

Data Encryption Standard (DES), break a block of data to be encrypted (plaintext) into
smaller sub-blocks and then, among other processes, use substitution tables (S-Tables)
to provide substitute values for the sub-blocks of plaintext.

Description of Related Art

In DES, the S-Tables are organized into eight substitution boxes (S-Boxes),
each of which consists of four, 16-entry S-Tables, where each S-Table entry is a 4-bit
number -- i.e., 0000 through 1111 ( 0 through 15). The input to a DES S-Box is a
6-bit sub-block. Two bits determine which of the four S-Tables to use and the
remaining. four bits index the selected S-Table. In DES, a 56-bit key is used to
generate a “schedule” of 16, 48-bit sub-keys. In each of the 16 iterations or “rounds”
used by DES, one of the sub-kéys is combined with a portion of the plaintext, or that
round’s derivative thereof, using an exclusive-or (XOR) operation. The 48-bit XOR-
sum is then broken into eight, 6-bit sub-blocks and the S-Boxes are used to provide
substitutions for those sub-blocks.

Any block cipher system may be attacked by trying all possible keys until one
is found for which a given set of plaintext blocks result in the same encrypted blocks
(ciphertext) as they do for the device being attacked. This “brute force” method of
cryptanalysis is known as an exhaustive key search and, even with today’s high-speed
computers, a modest key length requires a prohibitive amount of processing to

accomplish. Effective cryptanalysis of a block cipher system attempts to reduce the
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processing required to find the correct key from that required for an exhaustive key
search.

A fundamental weakness of DES and DES-like cryptographic systems is that
the contents of the S-Tables are fixed and, in the case of DES, public knowledge.
One may attempt to keep secret the contents of fixed S-Tables, but it must be assumed
that eventually those contents will be available to a cryptanalyst. Hence, a
cryptanalyst has the opportunity to conduct a detailed analysis of the statistical biases
inherent in any S-Table mapping before he conducts a key search. That analysis is
useful against any key used by the block cipher device under attack. A second
fundamental weakness of DES-like systems is that the derivation of the sub-keys from
the key is a fixed, linear process. In essence, key bits interact with plaintext bits in
a known, linear process. Because of this linear interaction of the key material with
the plaintext, it is possible, using a large number of plaintext/ciphertext pairs, to
translate the knowledge about the S-Box mapping biases into information about
specific key bits. If enough key bits can be determined using this information, an
exhaustive search with respect to the remaining key bits becomes feasible.

In the last several years, two methods of cryptanalysis, Differential
Cryptanalysis and Linear Cryptanalysis have been developed which attack these
fundamental weaknesses of DES-like cryptographic systems. These methods of
cryptanalysis are used to substantially reduce the key search effort from that required
for an exhaustive key search. It is important to note that the effectiveness of these
methods increases rapidly as fewer numbers of rounds are used by the block cipher
system. Mitsura Matsui, a well-known cryptanalyst, using Linear Cryptanalysis, has
successfully recovered all 56 bits of a key used in a full, 16-round DES
implementation in 50 days using twelve high-speed computers (HP9735/PA-RISC 99
MHz) in a parallel process. A DES implementation reduced to 8 rounds, however,
can be broken by Linear Cryptanalysis in less than a minute using one modern
personal computer.

Summary of the Invention

All other things being equal, a block cipher system that uses a larger key will

be more resistant to cryptanalysis than one using a smaller key. As a consequence,

2-



10

15

20

25

30

WO 98/00949 PCT/US97/13624

one strategy that NSA has adopted regarding the export of block cipher systems is to
require that an exportable block cipher system use a smaller key than its domestic
version. Therefore, it is desirable that a block cipher device which is intended for
both domestic and foreign use be configurable to use a shorter key such that it cannot
be reconfigured to use a longer key. In such a system it is also desirable that the key
length have little or no impact on the encryption/decryption logic implemented in the
device and that the key length have no impact on the cryptographic characteristics of
the device, other than with respect to an exhaustjve key search. Advantageously, a

domestic version is usable with a foreign system to achieve a secure link by applying

'some simple manipulation of the shorter key to create a larger key for the domestic

system.

In modern digital communication systems, data from many different sources
is “packetized” and then time multiplexed into one data stream. As a consequence,
block cipher systems employed in these communication systems must be able to
change encryption/decryption keys from one packet to the next while introducing as
little data latency as possible. Block cipher systems which generate their S-Tables
from the key are usually at a disadvantage in these applications because the amount
of processing required to generate the S-Tables is generally orders of magnitude
greater than the amount of processing required, for example, to generate the sub-key
schedule used in DES. It is desirable, therefore, to be able to generate S-Tables in a
fashion which may be implemented such that the time it takes a block cipher to affect
a key change is roughly comparable to the time it takes for that block cipher to
encrypt one block of plaintext.

One aspect of the present invention is to provide a block cipher system using
S-Tables which is not vulnerable to Differential and Linear Cryptanalysis.
Advantageously, the system is efficiently implementable in a monolithic device which -
includes an embedded microprocessor and random access memory (RAM), and is also
efficiently implementable in a monolithic device which includes neither a
microprocessor nor RAM.

In another aspect of the present invention, a fixed, stored S-Table of known
cryptographic quality may be transformed, using a complete set of linearly
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independent numbers, into one of a large number of possible different S-Tables, each
of which will exhibit the same characteristics of cryptographic strength as are
exhibited by the fixed S-Table from which they are derived. Advantageously, the
complete set of linearly independent numbers are derived from an arbitrary key of
arbitrary length.

In one advantageous embodiment of the present invention, a block cipher
device can effectively generate each new, variable S-Table from the key variable, as
a linear transformation of a fixed S-Table, with a data latency that is comparable to
the data latency required for the device to encrypt/decrypt one block of
plaintext/ciphertext. '

One aspect of the present invention involves a block cipher system, in which
sub-blocks of data are replaced by other sub-blocks as defined by one or more
mappings, wherein each mapping can be expressed as a substitution table. This
system has a number of complete sets of linearly independent numbers from which
a first complete set of linearly independent numbers is selected, a key, and means for
generating resulting n-bit encryption tables (E) and n-bit decryption tables (D) from
a fixed n-bit source substitution table (R) stored in memory and the first complete set
of linearly independent n-bit numbers modulated by the key. Another aspect of the
present invention involves a means by which a second complete set of linearly
independent numbers may be generated from the first complete set of linearly
independent numbers by modulating the first complete set of linearly independent
numbers by an arbitrary key. In a preferred embodiment, the key modulated complete
set of linearly independent n-bit numbers form a linear transformation to apply to the
source substitution table (R). More advantageously, the linear transformation is
executed as follows:

For K from 0 through 2"-1:

E[T(K)] = T(RIK]), and
D[T(R[K] )] = T(K).
In a particularly preferred embodiment, the linear transformation is executed

as follows:
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For K from 0 through 2°-1:
E[TK)] = T(R[K] & F), and
D[T(R[K] & F)] = T(K),
where F is an n-bit value determined from the key.
In addition, in one embodiment, the linear transformation (T) is performed on the
source substitution table (R), wherein the transformation (T) is generated from the key
and the selected first complete set of linearly independent numbers.

In another embodiment, the means for generating comprises means for
concurrently generating, from the first complete set of linearly independent numbers
and the key, a second complete set of linearly independent n-bit numbers to form a
first linear transformation (T), and a third complete set of linearly independent n-bit
numbers to form a second linear transformation (T') which is the inverse of the first
linear transformation (T).

In yet another embodiment, the means for generating comprises means for
generating the n-bit output of a temporary n-bit encryption substitution table (E), or
a temporary n-bit decryption substitution table (D) on an as needed basis, for each n-
bit input value (U) without generating the entire encryption substitution table (E) or
entire substitution table (D). Advantageously, the means for generating further
comprises matching encryption and decryption source substitution tables, R and R,
stored in memory, and further comprises means for performing an n-bit
transformation, T, and its inverse, T, as follows:

E[U] = TRg[T'( U)]), and
D[U] = TR,[T'( U)).

Another aspect of the present invention involves a block cipher system having
a first complete set of linearly independent numbers, each of a sclected bit length, a
key of a predetermined bit length, a source substitution table stored in memory, a
modulation module responsive to selected bits from the key to control operations on
the linearly independent numbers to obtain a second complete set of linearly
independent numbers, a transformation module which transforms the source
substitution table stored in memory using the second complete set of linearly

independent numbers to obtain a resulting substitution table, and an encryption module
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which has an input and an output, said input comprising data blocks to be encrypted
and said output comprising substitution blocks for said data blocks, the substitution
blocks obtained from said resulting substitution table. Advantageously, the modulation
module responds to selected key bits to select certain numbers from the first set of
linearly independent numbers to form the second set of linearly independent numbers. -
Further, the modulation module is advantageously responsive to other key bits to
select certain numbers from the second set linearly independent numbers for XOR
operations with other numbers from the second set of linearly independent numbers.

In one embodiment, the transformation module forms a matrix of the second

set of linearly independent numbers and uses this matrix as a transformation of the

source substitution table to form the resulting substitution table. Advantageously, the
transformation module right multiplies data from the source substitution table by the
matrix to form the resulting substitution table.
Brief Description of the Drawings
Figure 1 is a simplified block diagram of a block cipher system that includes
a processor; .
Figure 2 is a logic flow diagram for a hardware implementation for a block
cipher system in a monolithic device that does not require the use of a microprocessor.
Figure 3 is a logic flow diagram for a hardware implementation for a block
cipher system which generates a variable S-Table, on an as needed basis, from a key
variable, as a linear transformation of a fixed S-Table, in an amount of time that is
roughly comparable to the time required for a hardware-implemented DES-like block
cipher system to encrypt one 64-bit block of plaintext.
Figure 4 is a block diagram of an application of the block cipher system of the
present invention in a cable modem.
Definitions of Terms
An n-bit number is any number which is expressible using n binary digits or
bits. As an example, the 8-bit numbers are the numbers which take on
the values 0 through 255, all of which can be expressed using 8- bits,
e.g., 255 = 11111111
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An n-bit S-Table is a lookup table consisting of 2" entries, each consisting of
an n-bit number. The value for which a substitute is sought (input)
indexes the table and the entry or contents of the table at that index
position (memory location) provides the substitute output.

A complete set of linearly independent n-bit numbers, under the XOR
operation, is a set of n, n-bit numbers such that no one of those
numbers can result from the XOR-sum of any combination of the
others. Each of the n-bit numbers may be generated as the XOR-sum
of some combination of a complete set of linearly independent n-bit
numbers.

Let R be an n-bit source S-Table stored in Read Only Memory (ROM) and
R[i] be the value of entry i in that table.

Let E be an n-bit encryption S-Table stored in random access memory (RAM)
and E[i] be the value of entry i in that table.

Let D be an n-bit decryption S-Table stored in RAM and DJi] be the value of
entry i in that table. .

Let X;,; represent bit i of the n-bit number X (i = 0 .. (n-1)), where X, , is
the least significant bit of X and X,; ,, is the most significant bit.

“@*“ is bitwise addition modulo 2, or the exclusive-or (XOR) operation.

“*¢ is bitwise multiplication, or the logical AND operation: 1 *1=1,1*0
=0,0*1=0,and0*0=0.

Description of the Preferred Embodiments

Several embodiments consistent with the present invention are described below.

Specifically, an embodiment using a microprocessor and memory such as RAM and

ROM,

an embodiment using memory but no microprocessor, and an embodiment

using no microprocessor and no RAM. The block cipher encryption system of the

present invention can be used in any digital encryption communication system such

as in set-top boxes for the delivery of digital television programming data, and for any

digital communication transmissions such as with modems, cable modems, ATM

switches, networks, internet gateways, etc.
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Figure 1 illustrates a block diagram of a block cipher encryption system 10
constructed in accordance with the present invention. The block cipher encryption
system 10 has a key register 11, into which the current key is placed, and One Time
Programmable Memory (OTPM) 12 which is used to store data which, among other
possible functions, is used to control the hardware to determine the number of bits
accepted into the key register 11 (i.e., it controls the maximum key length that can be
used). The block cipher system 10 also has Read Only Memory (ROM) 13 which
contains one or more source S-Tables, one or more complete sets of linearly
independent numbers to be selected as a first complete set of linearly independent
numbers for subsequent modulation by the key, and firmware for the processor 14.
The processor 14 can be any standard microprocessor from simple 8-bit processors to
more complicated and powerful 64-bit processors currently available. In the present
embodiment, an Intel 8051 microcontroller provides the functions executed by the
processor 14. Finally, the block cipher system 10 has control I/0O 18 to receive and
transmit information to external systems, Random Access Memory (RAM) 15 in
which generated S-Tables are stored for use by the encryption/decryption hardware,
crypto engine 16. The memory (RAM) 15 is also used by the processor 14 for storage
of temporary variables. The crypto engine 16 accepts as input either plaintext or
ciphertext and delivers as output either ciphertext or plaintext, respectively. The
crypto engine 16 embodies any cryptographic algorithm, which uses variable S-Tables
generated using the key, as part of its processing to encrypt or decrypt input data. In
other words, input data to the crypto engine 16 may be broken into sub-blocks which
are used as indexes into one or more S-Tables in RAM 15 to provide substitution sub-
blocks which are at the RAM location indexed by the respective input sub-blocks.
Which of several S-Tables in RAM 15 is used could depend upon the position of the
input sub-block in the overall block of input data to the crypto engine. Accordingly,
the substitution sub-block used by the crypto engine 16 for its algorithm is the data
contained in the RAM 15 at the location indexed by the input sub-block to the crypto

engine 16.
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Generating a lete Set of Linearly Inde t ber. an Arbitrary Stri
of Bits

This section describes a method of using a sub-string of the key stored in the
key register 11 to modulate (through selection and XOR operations) a first complete
set of linearly independent numbers selected from the one or more complete sets
stored in the ROM 13 to obtain a complete new set of linearly-independent numbers.
The key is generally received via the control I/O logic 18. The following method
makes use of the mathematical theorem that the rank of a matrix is unchanged if a
row of the matrix is XORed with any other row of that matrix and the result is used
to replace either of the two operand rows. Specifically, with each row of the matrix
being one of the n-bit numbers from the complete set of linearly independent n-bit
numbers before an XOR operation, then the rows of a matrix resulting from XOR
operations with other rows comprise a new complete set of linearly independent n-bit
numbers.

In the present embodiment, a series of XOR operations, controlled by an
arbitrary string of bits of any length from the "key" stored in the key register 11,
transform any complete set of linearly independent numbers stored in the ROM 13,
into a new complete set of linearly independent numbers which has been modulated
by the key bits. The resulting set of linearly independent numbers are then used to
generate S-Tables for the RAM 15.

More specifically, selected bits of the key are used to direct or index a function
on the initial set of linearly independent numbers, N, through N,, such that the result
is a modified set of linearly independent numbers through the XOR operations of rows
of the matrix of linearly independent n-bit numbers with other rows. Each row of a
matrix formed by the set of linearly independent numbers is, in turn, XORed with
none to all of the remaining rows in the matrix and is replaced by the result before the
next row is modified. The selected key bits are used to indicate whether and what
additional rows of the matrix will be XORed with the selected row. For example,
assume that the initial set of linearly independent numbers is 8 linearly independent
numbers forming a matrix. Seven bits from the key are then selected to guide the
operations to be performed on each row of the matrix. Initially, the first row of the

-9-
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matrix is selected for operation. The first seven selected bits of the key dictate which
of the remaining 7 rows are XORed with the first row. In other words, 7 arbitrarily
selected bits of the key register 11 are assigned to the remaining 7 rows of the matrix.
If the corresponding key bit is a 1, the selected operand row will be XORed with the
row corresponding to the key bit. If the key bit corresponding to a row is 0, that row
will not be XORed with the selected operand row. The resulting operand row will
replace the original operand in the matrix. This process may proceed through each
of the rows of the matrix acting as the operand row. Preferably, for the second
selected operand row, the next 7 bits of the key would be used to indicate which rows
will be XORed with the second selected operand row, and so forth. This use of the
key bits is what is meant by modulating the complete set of linearly independent n-bit
numbers with the bits of the key. In order to obtain even more variety in this process,
a number of different complete sets of linearly independent n-bit numbers may be
stored in the ROM 13. Then, certain key bits may be used to select one of these
complete sets as the initial values for N, through N_,.

It should be understood that the bits selected from the key to control the
operations on the complete set of linearly independent numbers need not be selected
consecutively, but could be selected from some selection criteria.

The following steps describe this method, implemented by the processor 14,
and stored as instructions in the ROM 13, whereby a sub-string, M, of length m, of
a key stored in the key register 11, is used to modulate any complete set of linearly
independent n-bit numbers N, through N, , stored in the ROM 13. The result is a
complete set of linearly independent n-bit numbers, for any m greater than or equal
to 0.

Step 1) Set variables, N, through N,, to one of the complete sets of n

linearly independent n-bit numbers stored in ROM 13, as determined
by selected bits in the key register 11.

Step 2) Set a variable, POINTER, to 0.

Step 3) Until POINTER is greater than or equal to m, do the following:

a) Set the (n-1)-bit number variable, PATTERN, to the value of n-1
bits of the key, M, as follows:

-10-
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For a variable, p, from 0 to n-2 do the following:
If (POINTER+p) is greater than or equal to m, then
set PATTERN,; , to 1,
otherwise, set PATTERN,; , 10 My ponvrer+p)-
b) Set a variable, K, to the greatest integer less than or equal to
(POINTER / (n-1)).
c) Set Ny to the following:
Ng ® (PATTERN,,,) * Nqun modulo n
@ (PATTERN 53) * Nocoz) matuo o
® (PATTERNy na) * Nices) moduo n

® (PATTERan 0) * N(K#n-l) modulo n
d) Increment POINTER by (n-1).

(Now use the key bits in reverse order)
Step 4) Set POINTER to m-1.
Step 5) Until POINTER is less than 0, do the following:
a) Set the (n-1)-bit number, PATTERN to the value of n-1 bits of M
as follows:
For p from 0 to n-2 do the following:
If (POINTER - p) is less than 0, then
set PATTERN, (o1 t0 1,
otherwise, set PATTERN,, o1y 10 My ponven - py-
b) Set K to the greatest integer that is less than or equal to
((m-1) - POINTER) / (n-1).
c) Set N to the foliowing:
Ny © (PATTERNy .2) * Neosy motuon
©® (PATTERN,; .3) * Ni:2) moduio n
® (PATTERN p4) * Nes) moduio n

-11-
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@& (PATTERN o) * Ng+n-1) modulo o
d) Decrement POINTER by (n-1).

At the completion of these Steps, N, through N, comprise a new complete
set of linearly independent n-bit numbers which have been modulated by the key
variable. A block-wise reverse order processing of the bits of M (Steps 4 and 5) is
used as well as the forward order processing (Steps 1 through 3) in the example to
eliminate the bias that results from processing the n-bit numbers in only one direction
across the key -- i.e., the beginning key bits having much more effect upon the final
result than the ending key bits. The bias resulting from processing the key bits in
only one direction could also be alleviated by using a number of bits near the end of
M in some manner to determine which of several complete sets of linearly
independent n-bit numbers, stored in ROM 13, is selected for the initial values of N,
through N_,. Furthermore, in those block cipher systems using more than one S-
Table, allocation of the bits of the key register 11 to generate the multiple S-Tables
can alleviate the above-described bias. In other words, selection of different bits from
the key to be the beginning bits for processing for each separate set of linearly
independent n-bit numbers would be one way of reducing the bias if processing in
both directions is not used.

An optimal use of key bits suggests that m = n*(n-1) in the above described
method to generate a complete linearly independent set of n-bit numbers. It can be
shown that for m = n*(n-1), Steps 1 through 3 result in 2™ different ordered
complete sets of linearly independent n-bit numbers. That is, two keys each n*(n-1)
bits in length which differ by only one bit will result in two different ordered
complete sets of linearly independent n-bit numbers. The order of the set of numbers
is significant because of how the complete set is used, as described in Generating
Substitution Tables from a Source Table and a Complete Set of Linearly Independent

Numbers. In other words, all of the information contained in n*(n-1) key bits is used

-12-
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by the process described in Steps 1 through 3. The total number of different, ordered,
complete sets of linearly independent n-bit numbers is greater than 2"™" but
significantly less than 2™*", Hence, the process described in Steps 1 through 3 does
not use all of the information contained in n*n key bits. '

Data stored in the OTPM 12 determines how many bits the key register 11 is
allowed to receive from an external source by programming this number into the
OTPM 12 at the time the block cipher system is manufactured. The processor 14
reads the information from the OTPM 12 and limits the bits which can be loaded into
the key register 11 to the number specified in the OTPM 12. If the device is
configured to allow less than the maximum capacity of bits of the key register 11, the
remainder of the key register 11 can be filled by reusing (expanding), in some manner,
the bits received. Then the method described above, which uses the full key register
11, can be used to generate the required number of complete sets of linearly
independent numbers. Furthermore, this allows a device with a longer key length
capability (domestic use only, for example) to be configured to communicate with a
device of shorter key length (exportable). The expansion of the key bits is preferably
in accordance with a non-linear function, as opposed to simply copying the key bits.
The non-linear source tables stored in ROM may be used for such non-linear function.
Such methods of expanding keys are known.in the art.

Generating Substitution Tables from a Source Table and a Complete Set of Linearly
Independent Numbers
This section describes a method whereby a new n-bit encryption S-Table, E,

and/or decryption S-Table, D, to be stored in the RAM 15, is generated from a source
S-Table, R, stored in ROM 13, and the n linearly independent numbers N, through
N,, which are generated as described above. N, , through N, are used as rows of an
n x n matrix, whose rank is n, where N,, is the top row and N, is the bottom row.
Treating each n-bit index to and corresponding n-bit number from the source S-Table
to be transformed as n-element “row” vectors and multiplying each such n-element
vector by the matrix, where the “addition” operation is the XOR operation, results in
a linear transformation, T, of the n-bit numbers of the source S-Table. In order to

treat the n-bit number to be transformed as a row vector, requires that the linearly
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independent numbers, N, , through N, be used as a matrix for "right multiplication”
of that row vector. In (eq. 1), below, F is an n-bit number determined from bits of
the key rcgistér 11. For instance, F may simply be a number of bits selected from the
key register or a number of bits selected according to a non-linear function of some
key bits. The operation using F is used to give more variety in the resulting S-Table.
For some of the source S-Tables, the number chosen for F changes the cycle structure
of the resulting S-Table from the source S-Tables. If F is not 0, the resulting S-Table
will be an “affine” transformation of the source table, and in that case, certain
algebraic structures, such as the number of fixed points and the number and lengths
of cycles, will not be preserved in E or D by the transformation of R. For purposes
of this and the following descriptions, the label, T, will be applied to both the linear
transformation and the matrix which, when used as a right multiplier, results in the
linear transformation, T.

In essence, for each value, K, from 0 through 2°-1, two values are generated:

X = T(K),
(i.e., the vector K is right multiplied by the matrix of linearly independent number N,
- No)
and

Y=T( RIK] & F ). (eq. 1)

(i.e., the vector formed by the contents of R indexed by K and XORed with F is right
multiplied by the matrix of linearly independent numbers N, - Ny)

The encryption S-Table, E, is generated by using the value, X, as index to E and the
value, Y, as the contents of E at that index. The decryption S-Table, D, is generated
by using the value, Y, as an index into D and the value, X, as the contents of D at
that index.

The following Steps describe the method in detail:
For every n-bit number, K, from 0 to 2"-1, do the following:

Step 1) Set n-bit variable, V, to R[K] & F.

Step 2) Set n-bit variable, X, to
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Koito) * Noy @ Kpignd) * Ny, © ... 0 (Kiio) * N,
Note that K; will be either a 0 or a 1; so that the bits of K indicate the
combination of the linearly independent numbers XOR-summed to
determine X.

Step 3) Set variable, Y, to
Veiad) * Nt © (Vo) * N,y @ ... 0 (Vi) * N,
Note that V, will be either a 0 or a 1, so that the bits of V indicate the
combination of the linearly independent n-bit numbers XOR-summed
to determine Y. |

Step 4) Set E[X] to Y, and set D[Y] to X.

Generating Substitution Tables from One or More Source Tables and an Arbitrary Key

Without a Microprocessor
The following paragraphs describe a discrete processor implementation 100

which can use an arbitrary key, M, of arbitrary length, m, to modulate an initial
complete set of linearly independent n-bit numbers with the result being a complete
set of linearly independent n-bit numbers. This implementation, diagrammed in Figure
2, can also generate and store an encryption S-Table, E, and/or a decryption S-Table,
D, based upon a transformation using the complete set of linearly independent n-bit
numbers resulting from the key modulation, and an n-bit source S-Table, R, stored in
a memory (such as ROM 13). The hardware implementation 100 shown in Figure 2,
in essence, replaces the processor 14 in Figure 1 and its firmware stored in ROM 13.
For simplification, a value of 8 is selected for n, although an expansion of the
architecture shown in Figure 2 could be used for any value of n.

In general, the discrete processor implementation 100 comprises control logic
102 (note that the control logic 102 has been reproduced in Figures 2A and 2C for
simplicity of illustration), a counter 108 (Figure 2A), a ROM 110 (Figure 2A), a .
storage register 112 (Figure 2A), a multiplexer 114 (Figure 2A), a key 120 which
originates from the key register 11 (Figure 1), a set of registers 104 (Figure 2B), a
multiplexer 106 (Figure 2B), an XOR network 113 (Figure 2B), an address register
132 (Figure 2C), a data register 138 and an address selection multiplexer 139. It will
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also be noted that the memory 15 in Figure 1 is reproduced in Figure 2C for
simplification of illustration.

The discrete processor implementation 100 operates in two modes. The first
mode generates the sets of linearly independent n-bit numbers, and the second mode
generates the entries for the encryption and decryption S-Tables to be stored in the
memory 15. In the first mode of operation of the circuit 100, it modulates an initial
complete set of 8 linearly indepehdent 8-bit numbers. The registers 104, BO through
B7, are loaded from external memory such as the ROM 13 with an initial set of
linearly independent values, N, - N,, by shifting those values in through the IN input
to the multiplexer 106 and via data in, DI, lines 107, in a byte parallel fashion, while
the shift select control 109, SS, is set to 1 and the shift control 111, SH is set to 1.
{Note that the initial values in B0 through B7 correspond to the initial values for N,
to N,, respectively stored in the ROM 13, as discussed in the embodiment of Figure
1. The numbers are used to obtain a complete set of linearly independent n-bit
numbers. Advantageously, the initial values for N, to N, to be used in a particular
instance are selected from a number of complete sets of linearly independent n-bit
numbers stored in the ROM 13, where the selection is determined by selected key bits.
For instance, the last few bits or a selected number of bits from somewhere in the key
can be used to indicate the starting point of linearly independent n-bit numbers stored
in the ROM 13, the set of linearly independent n-bit numbers N,-N, being the 8
numbers in sequence in the ROM 13 from the starting point indicated by the selected
key bits.} SS 109 is switched to 0 for the remainder of the process to select the XOR
network 113 result, and the multiplexer control 115, G, is set to 1 to select the bits of
the sub-string M as the M’ control inputs to the XOR network 113.

In each subsequent clock period, the “next” n-1 (in this example, seven) bits
of M, along with a fixed bit, are used as M, - M, through the multiplexer 114 to
selectively enable the corresponding bytes Bl through B7 in the XOR network 113
(the enable bit M, associated with byte B0 is always a logic ‘1’). The result of the
XOR network 113 is loaded into B7 while, on the same clock edge, bytes Bl to B7
are shifted “up” so that the data in Bl moves to BO (where B1 will be the byte to be
replaced in the next operation based on the values in the “next” 7 bits of M), B2
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moves to Bl, etc. Note that, at the end of the clock period, the original vaiue
contained in BO is simply overwritten with the value contained in Bl. The original
value contained in B0 is, however, one of the operands in the XOR-sum whose result
is stored in B7 at the end of the clock period.

This process continues until the last of the bits of M, the key 120, are used.
If the number of bits of M is not evenly divisible by n-1, then the remaining bits are
padded with logic “1” as needed for the last iteration. The process is then repeated
py traversing the bits of M in the opposite direction, again in groups of n-1. The
resulting numbers are a complete set of n, linearly independent n-bit numbers which
are used in transformation operation.

In the second mode of operation, that of generating the entries for the
encryption, E, and decryption, D, S-Tables to be stored in RAM 15, the RAM address
select control 131, AS, is set to 1 to pass the generated RAM addresses, and the
registers BO through B7 104 are held constant (SH = 0) since they are already loaded
with the complete set of n, linearly independent n-bit numbers to be used as the
transformation. The multiplexer 114 control 115, G, is set to 0 since the bits of M are
not used in this mode.

The basic operational flow is to generate an address and corresponding data
value for each location of the Encryption E (or Decryption D) S-Table in the RAM
15, and then to write to the memory 15. In both operations, all address locations from
0 - 2°-1 are generated, so every location in both the Encryption E and Decryption D
tables is loaded.

The operation to generate values for the encryption S-Table E, proceeds as
follows. On a clock edge, the counter 108 is incremented to the next K by pulsing
the Count control line 124 (if this is the first time, the counter 108 is reset to 0 by the
control logic 102 by pulsing the Reset control line 126), and the ROM select control
128, RS, is set to O to select the 8-bit counter value K, which passes through the
multiplexer 114 to become M’,through M’,. This enables the appropriate bytes of B0
through B7, respectively, into the XOR network 113. The 8-bit result, RSLT, through
RSLT,, is stored as the RAM address, X, by enabling EA 130 of the Address Register
132. On the next clock, RS 128 is switched to 1, passing V = R[K] @ F (via the
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XOR gate 134 fed by the source S-Table ROM 110 and the F register 112) through
the 8-bit multiplexer 114 to become M’ through M’, and on through the XOR
network 113, where the result, RSLT, through RSLT,, is stored as the RAM data, Y,
by enabling ED 136 of the Data Register 138. Finally, the Encryption RAM, E, is
written (E[X] set to Y) on the next clock, requiring the RAM to be strobed with STB -
140 while the R/W line 142 is in the write mode. This process continues until the
counter 108 cycles through all values of K (from O through 255 in the present
embodiment). There are of course many ways to implement this operation in logic.
A straightforward implementation is shown for ease of understanding.

If loading the Decryption RAM, D, instead of the Encryption RAM, E, then
the change to the above operation is to reverse the order of the enabling of the
Address Register 132 and Data Register 138 (i.e., when RS equals 0, enable ED
instead of EA, and when RS equals 1, enable EA instead of ED). The effect of this
reversal is to swap the address and data words X and Y before writing to the RAM
(D[Y] set to X). |
Generating Substitution Tables from One or More Source Tables and an Arbitrary
Ke ing a Processing Effort Comparable to that Required to Encrypt One Plaintext
Block, Without a Processor or an Encryption or Decryption RAM

The embodiments described above set forth methods by which a temporary n-
bit encryption S-Table, E, and a temporary n-bit decryption S-Table, D, can be
generated, and stored in memory, from some n-bit source S-Table, R, and an arbitrary
string of key bits from a key. In effect, the key bits are used to generate an n-bit
linear transformation, T, and then E is generated by transforming each index value,
K, and the source S-Table R;, to get

U = T(K)
and then storing in E, at that index value, U, (i.e., E[U]), the value,

T( RK] ® F ),
where U, K and F are n-bit numbers.

If the inverse transformation of T, T, is determined, it is possible to obtain a
substitution value based on E, for any input value, U, on an “as needed” basis without

generating E. Because T is a linear transformation of the n-bit numbers onto the n-bit
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numbers, there must be some n-bit value, K, such that T(K) = U, or expressed in
terms of T, K = T'(U). Then,

E[U] = TR[T'(L)] & F).
That is, the value, U, for which a substitution is sought, is first transformed by T into
the value, K, which is then used as an index into the source S-Table, R, to obtain a
value which is then XOR-summed with F, the result of which is then transformed by
the T transform into the value that is substituted for the original value, U. Note that
E never needs to be generated, nor does it need to exist in memory. Rather, the
substitution affected by E is computed for each value, U, on an “as needed” basis
using T, R and T.

To perform a similar process in the decryption direction requires that there be
a source S-Table, Ry, stored in ROM, which expresses the mapping that is the inverse
to that expressed by R — i.e., for all n-bit values, K, K = Ry[ R[K] ]. For the sake
of clarity, the source table in ROM used for encryption shall be referred to as R
rather than R.

Then, for any n-bit value, U, there is an n-bit value, K, such that U = T(K) and
K = T'(U), and

D[U] = TR,[T'(U) & F) ).
Because, under the XOR operation, T is a linear transformation then, T(U & V) =
T(U) & T(V). Thus, for all n-bit values, U,

D[E[U]]

= D[ TRT'(U)] ® F)] = TR[T(TRLT'(V)] & F)) & F])

= TRT(TRe[K] & F)) ®F]) = TRIT'(T(ReK]) & T(F)) & F])

= TRL[T'(T(R[K])) & T'(T(F)) ® F] ) = TRy[ Re[K] & F & F])
T(K)

= U
That is, D affects a substitution mapping that is the inverse of the substitution
mapping affected by E.

For secure systems, key changes are effected periodically to minimize the
possibility of cryptanalysis. In the embodiments of Figures 1 and 2, each time a new

key is received, new S-Tables must be generated as described in those embodiments,
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resulting in significant processing overhead to generate the new S-Tables. If T is
determined concurrently and with the same amount of processing as required to
determine T, the processing required to affect a key change for the system, per an
encryption or decryption S-Table, would be substantially reduced from that required
by the embodiments of Figures 1 and 2. For n-bit numbers, the embodiment shown
in Figure 2 and described above, would require at least 2*n + n? clocks to generate
E in RAM, and twice as long to generate both E and the decryption S-Table, D. The
implementation described in the following paragraphs concurrently generates T and
T' in 2*n clocks. The process of determining an encryption or a decryption
substitution for a given value, U, requires one clock.

If the key bits in M are processed in both the forward and reverse directions,
and if the size of M in bits is m = n*(n-1), then the hardware implementation shown
in Figure 3, operated in the mode where bits from M are used in both XOR networks,
can determine both T and T, concurrently, in 2*n clocks. Restrictions are placed on
the size and processing of M only for the purposes of simplifying the description of
the embodiment.

Essentially, both T and T' are generated by applying elementary row
operations to the identity matrix, except that the elementary row operations applied to
generate T are those used to generate T but applied in reverse order. That is, T is
generated by starting with the identity matrix -- i.e., the matrix whose rows are N,
=2 N,,=2"% ..., N, =2° and then row manipulating that matrix according to
the bits of M, starting with N, and working to N,, as discussed in the previous
embodiment. T is generated, concurrently, by starting with the identity matrix and
then row manipulating that matrix, using the bits of M in an (n-1)-bit, block-wise
order which is in reverse to that used for T and starting with N, and working up to
N,

A well known theorem in linear algebra states that any sequence of elementary
row operations that reduces an n x n matrix, A, to the n x n identity matrix, also
transforms the identity matrix to A, Note that if the processing described in the
previous paragraph to generate the matrix for T were applied to the T matrix, the
identity matrix would result. This is because in the mathematical field of n-bit
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numbers where addition is the XOR operation, each n-bit number is its own additive
inverse -- i.e., X ® X =0. As a corollary of this fact, if

X, =X 0a*X,®a,*X; ... ©a'X,
where a, = 1 or 0, then

X, 0a*X,0a*X;®... ©ar*X =

X, ®Dat*X,®a*X,®@... Da*X) DX, a,*X,0... ©a*X =

X, ® a,*X, © a,*X, ® a,*X, @ a,*X,; @... ©a.*X, & a*X, =

X
because

a*X; ®a*X; = 0.
In other words, for n x n matrices whose entries are 0 or 1 and where the additive
operation is the XOR operation, an elementary row operation is its own inverse
operation. This result does not hold generally for n x n matrices. Based on the above
and treating each row of the matrix for T as an n-bit number, performing the last row
manipulation on T results in the matrix, T, ,, that resulted after the second to last row
manipulation; performing the second to last row manipulation on T,, results in the
matrix, T, ,, that resulted after the third to last row manipulation; etc.; and performing
the first row manipulation on the matrix that resulted after the first row manipulation
of the identity matrix, results in the identity matrix. Hence, applying those row
manipulations to the identity matrix results in T

Figure 3 diagrams a block cipher system 200 which in one mode generates T
and T and in a second mode encrypts or decrypts a particular value, U. To simplify
Figure 3, a value of 8 is used for n, although an expansion of the hardware
implementation shown in Figure 3 could be used for any value of n. The two XOR
networks 202, 204 in Figure 3 have the same structure. Hence, if the processing
throughput requirements of a particular application allow, a single XOR network could -
be time-multiplexed to generate both T and T, and then to encrypt or decrypt U. In
order to achieve the reverse order processing of the identity matrix in the first XOR
network 204, the BO through B7 registers 206 are loaded with the identity matrix in

reverse order -- i.e., BO=2°, Bl = 2!, B2= 22, ..., B7 = 27 -- and seven bits from
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the key M 198, and the fixed bit, M’,, are mapped to the eight input lines 208 to the
first XOR network 204 as follows:
M’, to M7,
M’ to M”,
M’, to M”
(Mapping One (logic 201))

M’ to M”,.

This mapping occurs via the "mapping one" logic 201 and selecting the "1"
input to the multiplexer 203 via the multiplexer select line G 216. This directs the
mapping from the key to the M" inputs to the XOR network 204.

The second XOR network 202 is loaded with the identity matrix in normal
order -- i.e.,, B'0=27, B'1 =25 B2=2% ..., B’7=2° - and the same seven bits
from M, and the fixed bit, M’,, are mapped to the eight input lines 210 to the second
XOR network as follows:

M’,to MA,

M’ to M~

M’to M*,

(Mapping Two (logic 205))

M’oto M,

This xhapping performed by the "mapping two" logic 205 through the
multiplexer 207 which is selected to pass the "mapping two" outputs to the M” inputs
of the XOR network 202. Although the control logic 209 is depicted in Figure 3A,
the individual signal line connections are not shown for clarity in the Figure. The

control logic 209 provides the necessary timing for system 200.
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The following paragraphs describe the operation of the circuit 200 shown in
Figure 3. In the first mode of operation, used to generate two 8 x 8 transformation
matrices, T and T™, the BO through B7 registers 206 are loaded in one clock with 1,
2, 4, 8, 16, 32, 64 and 128, respectively, and the B’0 through B’7 registers 212 are
loaded with 128, 64, 32, 16, 8, 4, 2 and 1, respectively. The registers 206 and 212
are loaded by using the preset/clear lines 215. The preset and clear lines 215 for each
of the flip-flops which make up the B registers are connected such that the respective
flip-flops are either preset to "1" or cleared to "0" such that the B registers are loaded
with the correct number. In other words, one flip-flop in each register will be preset
to "1" and the other flip-flops for that register will be cleared to "0" initially. The
particular flip-flop that is preset to "1" will be selected such that the number in the
register is the appropriate loaded number set forth above. Then the shift controls SH
214 and SH’, 216 are set to "1" for the remainder of the process to select the XOR
networks 204, 202 result, and multiplexer controls 216, 218, G and G’, are each set
to "1" to select the substring of bits M’, through M’ from the Key M 198 as the M”’
and M” control inputs to the first and second XOR networks 204, 202, respectively.

The operational flow is under the control of control logic 209, and is as
follows. In each clock period, the “next” n-1 (in this example, seven) bits of M 198
are used to selectively enable the corresponding bytes B1 through B7 and B’1 through
B’7in the XOR networks 204, 202 (the enable bits M, and M",, associated with byte
BO and B’0, respectively, are always a logic ‘1’). The result of the first and second
XOR networks 204, 202 are loaded into the B7 register 206¢c and B’7 register 212c,
respectively, while, on the same clock edge, bytes B1 through B7 and B’1 through B’7
are shifted “up” so that the data in the B1 register 206b moves to the B0 register 206a
and the data in the B’ register 212b moves to the B’0 register 212a (where Bl and
B’1 will be the bytes to be replaced in the next operation based on the values in the
“next” 7 bits of M 198), the contents of the B2 register move to the Bl register, and
the contents of the B’2 register move to the B’1 register, etc. Note that, at the end of
the clock period, the original value contained in the BO register 206a is simply
overwritten with the value contained in the Bl register 206b. The original value
contained in the BO register 206a is, however, one of the operands in the XOR-sum
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result stored in the B7 register 206c at the end of the clock period. Similarly, the
original value contained in the B’0 register 212a is overwritten with the value
contained in the B’1 register 212b, but is one of the operands in the XOR-sum whose
result is stored in the B’7 register 212c.

This process continues until the last of the bits of the key M 198 are used. To °
simplify the discussion, it has been assumed that the number of bits in M 198 is n*(n-
1), or in this example, 56. The process is then repeated by traversing the bits of M
198 in the opposite direction, agam in 8 groups of 7 bits each.

In the second mode of operation, generating a substitution for some value, U,
the multiplexer controls 216, 218, G and G’ are each set to 0 to pass the bits of the
input value, U, to the first XOR network 204 and the output of the appropriate ROM
source table 220, R; or Ry, to the second XOR network 202, rather than the bits from
M 198. The BO through B7 registers 206 and B0’ through B7’ registers 212 are held
constant (SH = 0 and SH’ = 0), since they are already loaded with T' and T,
respectively. Finally, if the device is encrypting, the encryption control line 222, E
= 1 so that F as contained in the F register 224 is XORed using the XOR gate 226
with the output from ROM 220, but not with the input or address to the ROM 220;
if the device is decrypting, E = 0 so that F is XORed using XOR 228 with the input
or address to ROM 220 as selected by multiplexer 230, but not with the output from
ROM 220. As discussed below, the E signal line 222 is also used to select whether
R or Ry, is used for the input to the second XOR network 202.

Two versions of the ROM source substitution table are stored, one for
encryption, Rg, and one for decryption, R;,. When a resulting substitution value for
some value, U, is sought in the encryption mode, R; is used as a source substitution
table and when in the decryption mode, R;, is used as a source substitution table,
either substitution table being appropriately transformed. Both tables can be stored
in the same physical ROM 220 by using the highest order address bit to select
between the two. As seen in Figure 3A, the encryption control line 222, E, is
provided as an independent input to the ROM 220 as the highest order address bit
input to the ROM 220. IfE = 1, then a value from R; is used as the input to the
second XOR network 202. Otherwise, a value from Ry, is used. In the encryption
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mode, in one clock period, U is transformed by T, contained in the B7 through B0
registers 206 of the first XOR network 204, into the value, K on signal lines 231,
which is used as an index into the selected ROM encryption S-Table, Rg, the output
of which is XORed with some value, F, and the result used as t.he'input to the second
XOR network 202 whose B’0 through B’7 registers 212 contain T. The output from
the second XOR network 202 is the resulting substitution, E[U], for U. Note that, as
shown in Figure 3A, the bits of U are mapped to the M" signal lines as follows:

U, to M",

U, to M"

U, to M"

U, to M",

U, to M",

U, to M",

U, to M",

U, to M",

This reverse mapping is used because, since the identity was loaded in B0 - B7
registers 206 in reverse order, the result after the key modulation will be T with its
rows in reverse order.

In the decryption mode, in one clock period, U is transformed by T, contained
in the BO through B7 registers 206 of the first XOR network 204, into the value, K
on signal lines 231, which is XORed using XOR gate 228 with the same value, F, as
used for encryption, the result of which is used as an index into the selected ROM
decryption S-Table, R, the output of which is used as the input to the second XOR
network 202 whose B’0 through B’7 registers 212 contain T. The output from the
second XOR network 204 is the substitution, D[U], for U.

As explained above, the crypto system of the present invention has application
in any digital data system. One example, for cable modems communication, is
depicted generally in Figure 4. A.cable modem is a device which can receive, and
optionally send, high-speed digital data through television cable (CATV) networks
which are capable of delivering digital data. As depicted in Figure 4, the use of the

present invention in a cable modem 400 connected to cable system 402 involves a

25-



10

15

20

25

30

" WO 98/00949 PCT/US97/13624

duplex filter 404, a tuner 406, a Quadrature Phase Shift Keying (QPSK) modulator
408 a Quadrature Amplitude Modulation (QAM) demodulator 410, a block cipher
security system 412 complying with the present invention, a processor 414, and a
network interface such as an Ethernet interface 416 coupled to a computer 417, and
optionally a conventional telephone line modem 418 connected to the telephone lines
420.

The cable modem system 400 receives data frames from the downstream RF
channel 403 from the cable system 402. The received frames, after qualification and
processing, are delivered to the computer 417 via the network interface 416. In the
depicted embodiment, the network interface advantageously comprises a 10Base-T
ethernet interface. Data received from the computer 417 (“client") (through the
interface 416) is formatted and returned upstream via the upstream modulator 408.
The modem can return data received from the client 417 via the optional modem 418.
This option provides the user the benefit of hi-speed downstream data delivery when
the user is using a "One Way" cable plant (i.e., there is no upstream capability in the
cable system 402).

For data from the Cable System 402, the RF signal arrives at the duplex filter
404 which provides high-pass filtering. The signal is then delivered to the tuner 406.
The tuner selects the RF channel of interest and delivers the selected intermediate
frequency (IF) signal to the QAM demodulator 410. The QAM demodulator 410
demodulates the IF signal, providing synchronization, error detection/correction and
outputs paralle]l data to the receiver portion (the receive buffer Rx) of the Security
Device 412. The security device 412 decrypts the received data, if necessary, and
based on conditional access functionality contained in the security device 412, and
conditional access control information received in the downstream data, delivers the
decrypted data to the processor 414. The processor 414 is responsibie for
reassembling the received packets of data and, after additional qualification, signals
the ethernet controller to send the packet(s) to the computer 417.

For data to be sent upstream, the processor 414 formats the data received from
the computer 417 for transmission via the QPSK modulator 408 or via the optional

modem 418. The processor then passes the data packet(s) to the security device 412
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for encryption. The security device 412 then passes the packets to the QPSK
modulator 408, to the duplex filter 404, and then to the cable system 402. If the
packet is to be sent via the standard modem 418, the data packet is passed by the
processor 414 to the modem 418 without encrypting.

The encryption/decryption functionality of the security device 412 may be
implemented in software or in hardware. In the present embodiment, software can be
used for data throughput requirements of less than 10 Mbits/sec. Hardware provides
faster throughput. In order to handle packets from different sources, the security
device 412 may be required to perform fast key switching. In applicaﬁom where only
a few simultaneous sources are possible, this may be accomplished by caching the
tables required for each key in memory (such as RAM). In applications where
numerous simultaneous sources are possible, or where the use of memory (such as
RAM) is constrained, the embodiment of Figure 3 above may be utilized.

While preferred embodiments of this invention have been disclosed herein,
those skilled in the art will appreciate that changes and modifications may be made
therein without departing from the spirit and scope of the invention.
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1. A block cipher system, in which sub-blocks of data are replaced by
other sub-blocks as defined by one or more mappings, wherein each mapping can be
expressed as a substitution table, said system comprising:

a first complete set of linearly independent numbers selected from a
plurality of complete sets of linearly independent numbers;

a key; and .

means for generating at least portions of a resulting n-bit encryption
table (E) and a resulting n-bit decryption table (D) from a fixed n-bit source
substitution table (R) stored in memory and said first complete set of linearly
independent n-bit numbers.

2. The block cipher system of Claim 1, wherein said first complete set of
linearly independent n-bit numbers is used to form a linear transformation for the
source substitution table (R).

3. The block cipher system of Claim 2, wherein the linear transformation
comprises a second complete set of linearly independent numbers generated by
modulating the first complete set of linearly independent numbers with said key.

4. The block cipher system of Claim 3, wherein said linear transformation
(T) is used as follows:

For K from 0 through 2"-1:

E[T(K)] = T(R[K]), and
D[T( R[K] )] = T().

5. The block cipher system of Claim 4, wherein the transformation (T)
comprises a right multiplication by a matrix formed from the second complete set of
linearly independent numbers.

6. The block cipher system of Claim 3, wherein said linear transformation
is used as follows:

For K from 0 through 2"-1:

E[T(K)] = T(RK] & F), and
D[T(R[K] & F)] = T(K),

where F is an n-bit value determined from the key.
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7. The block cipher system of Claim 1, wherein said means for generating
comprises 8 means for performing a linear transformation (T) on said source
substitution table (R), said transformation (T) comprising a second complete set of
linearly independent numbers generated from said key and said first complete set of
linearly independent numbers.

8. The block cipher system of Claim 1, wherein said means for generating
comprises means for concurrently generating a second complete set of linearly
independent n-bit numbers to form a first linear transformation (T), and a third
complete set of linearly independent n-bit numbers to form a second linear
transformation (T™') which is the inverse of the first linear transformation (T);

9. The block cipher system of Claim 1, wherein said means for generating
comprises means for generating the specific n-bit output which correspond to outputs
for the encryption substitution table or the decryption substitution table on an as
needed basis, for each n-bit input value (U) without generating the entire encryption
substitution table (E) or entire substitution table (D).

10. The block cipher system of Claim 9, wherein said means for generating
further comprises encryption and decryption source substitution tables, Ry and Ry,
stored in memory, and further comprises means for performing an n-bit
transformation, T, and its inverse, T, as follows:

E[U] = T(R[T'( U )]), and
D[U] = T®R,[T'( U)D.

11. A block cipher system comprising:

a first complete set of linearly independent numbers, each of a selected
bit length;

a key;

a source substitution table stored in memory;

a modulation module responsive to selected bits from said key to
control operations on said first complete set of linearly independent numbers

to obtain a second complete set of linearly independent numbers;
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a transformation module which transforms the source substitution table
stored in memory using said second complete set of linearly independent
numbers to obtain a resulting substitution table; and

a decryption substitution module which has an input and an output, said
input comprising data blocks for which substitution is desired and said output
comprising the substitution blocks for said input data blocks, said substitution
blocks obtained from said resulting substitution table.

12.  The block cipher system of Claim 11, further comprising an encryption
module with an input and an output, said input comprising data Blocks for which
substitution is desired and said output comprising substitution blocks for said input
data blocks, said substitution blocks obtained from said resulting substitution table.

13.  The block cipher system of Claim 11, further comprising a plurality of
complete sets of linearly independent numbers stored in memory, wherein said
modulation module is responsive to selected key bits to select said first complete set
of linearly independent numbers from said plurality of complete sets.

14.  The block cipher system of Claim 13, wherein said modulation module
is responsive to other key bits to select certain numbers from said first complete set
of linearly independent numbers for XOR operations with other numbers from said
first complete set of linearly independent numbers to form said second set of linearly
independent numbers.

15.  The block cipher system of Claim 11, wherein said modulation module
is responsive to selected key bits to select certain numbers of said first set of linearly
independent numbers for an XOR operation with other numbers of said first set of
linearly independent numbers to form said second set of linearly independent numbers.

16.  The block cipher system of Claim 11, wherein said transformation
module forms a matrix of the second set of linearly independent numbers and uses this
matrix as a transformation of the source substitution table to form sald resulting
substitution table.

17.  The block cipher system of Claim 16, wherein said transformation
module right multiplies data from said source substitution table by said matrix to form
said resulting substitution table.
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18.  The block cipher system of Claim 17, wherein said source substitution
table comprises a plurality of data blocks of a predetermined bit length, and wherein
said transformation comprises two inputs, said first input being an index input and said
second input being said data blocks from said source substitution table, wherein said
transformation module right multiplies said index by said matrix and right multiplies
said data blocks by said matrix in order to obtain said resulting substitution table.

19. The block cipher system of Claim 18, wherein said transformation
module comprises outputs, said outputs comprising a transformed index and a
transformed data block, said index providing an address for the transformed data
block.

20. A block cipher system comprising:

a first complete set of linearly independent numbers, each of a selected
bit length;

a key;

a source substitution table stored in memory;

a transformation module which transforms the source substitution table
stored in memory using a transformation from said first complete set of
linearly independent numbers and said key to obtain a temporary portions of
a resulting substitution table on an as needed basis, without generating entire
substitution tables for encryption and decryption; and

a crypto module which has an input and an output, said input
comprising data blocks to be encrypted or decrypted and said output
comprising substitution blocks for said input data blocks, said substitution
blocks obtained from said temporary portions of the re.sulting substitution table.
21.  The block cipher system of Claim 20, wherein said transformation

module comprises an n-bit transformation logic and an n-bit inverse transformation
logic.

22. The block cipher system of Claim 21, wherein said n-bit linear
transformation logic and said n-bit inverse linear transformation logic have variable

portions which are configured simultaneously.
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23. The block cipher system of Claim 21, wherein said transformation
module performs the following transformation:
E[U] = T(Rg[T'(U))), and
D[U] = TR,[T'(U)D,

5 where R; is the source encryption substitution table, R, is the source
decryption substitution table, T is the inverse n-bit linear transformation, T
is the n-bit linear transformation, E[U] is the temporary portion of the resulting
encryption substitution table and D[U] is the temporary portion of the resulting
decryption table and U is the input data block.

10
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