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FAULT DETECTION, LOCALIZATION AND PERFORMANCE MONITORING OF
PHOTOSENSORS FOR LIGHTING CONTROLS

The invention generally relates to lighting control, and more particularly to
monitoring the performance of sensors in lighting control systems.

The proliferation of advanced lighting controls in general, and the use of
networked systems for such controls in particular, is expected to increase. Such
demand is fuelled by an increase in awareness of issues relating to energy savings,
reducing the ecological impact footprint, utilizing government incentives, and the desire
to meet certain building performance goals and industry certificates, such as a
certificate for Leadership in Energy and Environment Design (LEED).

As a result of the demand for such advances, the complexity of lighting control
systems is migrating from simple light switches to more advanced complex systems that
incorporate multiple subsystems. Maintaining optimum performance of these advanced
lighting control systems requires, in part, the use of advanced strategies that have not
been commonly applied to lighting control systems in the past.

One critical performance aspect of a lighting control system is the performance of
its sensors, for example, light sensors. The performance of such sensors needs to be
monitored to ensure that they properly operate. Abnormal or defective sensors clearly
affect the performance of the advanced lighting control system, leading to lost
opportunities and hampering savings. Light sensor abnormalities could be due to
multiple sources including, for example, user tampering, dust on the surface of the
sensor, electronic degradation, change of the reflective environment, communication
problems, and so on. A light sensor that fails to operate according to its calibrated
performance compromises the overall lighting control system performance. Typically,
such problems are not noticed, or are attributed to the performance of the lighting
control system. Currently there is no available solution to determine if problems in a
lighting system are attributable to a light sensor that is faulty and needs replacement,
repair, and even self- or manual calibration. This is a major disadvantage since users of
such lighting systems tend to disable such systems when the overall performance is

compromised, thus increasing the power consumption.
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Therefore, it would be advantageous to provide a lighting control system having a
solution for detection of faults of at least light sensors. It would be further advantageous
if the solution would allow corrective actions that can be taken either automatically or
by, for example, a building operator, as soon as a problem is detected.

Certain embodiments disclosed herein include a system for monitoring sensors
of a lighting control system. The system comprises a plurality of sensors connected to a
network; and a computing device connected to the network comprising a training
subsystem, a detecting subsystem and a locating subsystem, wherein the training
subsystem is configured to determine an optimum operation of the system, wherein the
detecting subsystem is configured to collect measurements from the plurality of sensors
and determine, based in part on data provided from at least the training subsystem, a
faulty sensor from among the plurality of sensors, and wherein the locating subsystem
is configured to determine a location of the faulty sensor from among the plurality of
sensors based on a fault indicator determined for each of the plurality of sensors.

Certain embodiments disclosed herein also include an apparatus in a lighting
control system for monitoring sensors therein. The apparatus comprises an interface to
a network for at least collecting data from a plurality of sensors connected to the
network; a fault detection unit that includes a training subsystem, a detecting subsystem
and a locating subsystem, wherein the training subsystem is configured to determine an
optimum operation of the lighting control system, wherein the detecting subsystem is
configured to collect measurements from the plurality of sensors and to determine,
based in part on data provided from at least the training subsystem, if there is a faulty
sensor from among the plurality of sensors, and wherein the locating subsystem is
configured to determine the location of the faulty sensor from among the plurality of
sensors based on a fault indicator determined for each of the plurality of sensors; and a
storage component for storing data respective of at least one of the training subsystem,
the detecting subsystem and the locating subsystem.

Certain embodiments disclosed herein also include a method for monitoring
sensors of a lighting control system. The method comprises performing a training of a
plurality of sensors of the lighting control system to determine a joint probability
distribution function (PDF) of the illuminance at a given time f; collecting parameters
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from the training and storing the parameters in a prior data storage; observing
illuminance of the plurality of sensors; determining if there is at least a faulty sensor
from among the plurality of sensors based in part on the parameters stored prior data
storage; and locating a faulty sensor based on the determination of the existence of the
at least a faulty sensor and the prior data.

The subject matter that is regarded as the invention is particularly pointed out
and distinctly claimed in the claims at the conclusion of the specification. The foregoing
and other features and advantages of the invention will be apparent from the following
detailed description taken in conjunction with the accompanying drawings.

Figure 1 is a schematic diagram of a lighting control system according to an
embodiment of the invention;

Figure 2 is a schematic flowchart of a sensor fault detection and location system
according to an embodiment of the invention;

Figure 3 is a graph showing the illuminance distribution of illuminance data
gathered from a west-facing window in a typical room;

Figure 4 is a graph showing the optimum number of clusters of the illuminance
data based on a 60-min observation window;

Figure 5 is a graph showing the comparison of the estimated joint probability
distribution functions (PDF) of the daylight illuminance near for example, a window of a
typical room (based on Gaussian mixture model and signal Gaussian model);

Figure 6 is a graph showing the estimated joint PDF of the daylight illuminance
near for example, a window and the desk near the door of a typical room based on
Gaussian mixture model;

Figure 7 is a timing diagram demonstrating the fault detection system testing the
illuminance from for example, a typical dining room;

Figure 8 is a timing diagram demonstrating the fault detection system testing the
illuminance from for example, a typical office room; and

Figure 9 is a timing diagram demonstrating the fault detection system testing the

illuminance from for example, a typical cafeteria room.

It is important to note that the embodiments disclosed are only examples of the

many advantageous uses of the innovative teachings herein. In general, statements
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made in the specification of the present application do not necessarily limit any of the
various claimed inventions. Moreover, some statements may apply to some inventive
features but not to others. In general, unless otherwise indicated, singular elements
may be in plural and vice versa with no loss of generality. In the drawings, like
numerals refer to like parts through several views.

According to various embodiments discussed herein, the inherent correlation of
multiple sensors of a lighting control system, as well as the correlation of a single
sensor over a period of time, provide advantages over existing systems. To this end,
historical data is collected from the sensors of a lighting control system. Such data may
be collected over a network to which the sensors are connected. Once data is collected
several steps are taken in order to determine the operational status of each sensor and
possible corrective action thereto.

Fig. 1 depicts an exemplary and non-limiting schematic diagram of a lighting
control system 100 according to an embodiment of the invention. A plurality of sensors
130-1 through 130-N (where N is an integer number greater than 1) and collectively
referred to as sensors 130, are coupled to a network 120. The network 120 may
comprise a serial bus, parallel bus, a local area network (LAN), a wide area network
(WAN), and the like, whether wireless or wired, and any combinations thereof. To the
network 120 there is connected a computer system 110, through a network interface,
that comprises, for example, computational circuits and processors typical of such
systems, a data storage 112 for the storage of the historical data respective of the
sensors 130, and a fault detection unit 114. In an embodiment, the sensors 130 are
photosensors.

The fault detection unit 114 includes a series of instructions embedded in a
tangible computer readable medium that when executed by the computer 110 performs
the steps for detection and location as discussed in greater detail herein below. The
fault detection unit 114 may also include a display or other means for showing the
results of the processing performed by the computer system 110.

The fault detection unit 114 performs a training operation, a fault detection
operation, and a fault localization operation. In the training operation, some statistics are

computed for a group of sensors 130 over a portion of the historical data contained in
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the storage 112. Such statistics include a classification of historical data into groups,
and estimation of the statistical variables of each group, i.e., the parameters of the joint
distribution function, for example but not by way of limitation, mean, variance, and/or
covariance.

In the fault detection operation, a process takes place where for each time event
or each duration of time (e.g., a 30 minute span) and for a particular reading from a set
of sensors 130, the computer system 110 computes the probability that the currently
measured data is correct or otherwise likely to occur given prior sensor measurement
relationships, i.e., a correlation is determined. If the probability is low, then the computer
system 110 can identify this measurement event as problematic or faulty. A fault is
viewed as an event with negligible probability, i.e., an event that is unlikely to happen,
expressed as:

Pr(x(r)=x|t=n)~0
where x(¢) is the reading of a set of the sensors 130 being checked. In the fault
localization operation, an attempt is made to locate the sensor or sensors which are
faulty.

This operation is based on an evaluation of the likelihood of the measurement
from a certain sensor. Once the faulty sensor(s) from the sensors 130 are identified, the
faulty sensor(s) can be flagged as such for further investigation. Such investigation may
be manual, where a building operator can investigate the cause of the performance
deviation and correct the problem of such faulty sensors. Alternatively, one or more self-
calibration operation can also be undertaken when possible, for example, by initiating a
self-calibration process by the computer system 110 causing a faulty sensor of the
sensors 130 to perform self-calibration. Self-calibration algorithms are not discussed
herein. According to one embodiment, faults or abnormalities are identified in
measurement data received from the sensors 130 with the following properties: low
probability of false alarm; and, low probability of misdetection.

A faulty sensor is a sensor providing abnormal measurement data, which may be
attributable to various reasons, for example, user tampering, dust on the surface of the
sensor, electronic degradation, change of the reflective environment, communication

problems, and so on. A faulty sensor is not limited to an actual failure of the sensor.
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An effective estimation of the joint distribution of illuminance/luminance
measured by sensors (hereinafter, without loss of generality, the term daylight
illuminance may be used) is key to design an effective fault detection system. For the
purpose of illustration, a Gaussian mixture model is selected to describe the joint
probability distribution function (PDF) of the daylight illuminance. That is, the PDF of the
daylight illuminance is approximated by a superposition of multiple Gaussian
distributions. Therefore, the following information of the Gaussian mixture model is
required to be determined: the optimum number of Gaussian distribution components at
a given time ¢; the mean vector and the covariance matrix for each Gaussian
distribution; and, the proper weight for each Gaussian distribution when combined.

Hence, for a given time ¢, the optimum number of Gaussian distribution components is

denoted as L'(z), and denotes the mean vector, the covariance matrix, and the weight
for the k" Gaussian distribution asp, (1), Z,(¢),7,(¢) , respectively, thereby providing a

joint distribution of the daylight illuminance at a given time ras:
L)

p(x(®) [t,L' (1) = Zﬂk (ON(X(@) 1 (1), 2 (1))

where x(7)is a column vector denoting the daylight illuminance, and N(x(?) |u,(?), X, ()
denotes a multivariate Gaussian distribution with mean p,(¢) and covariance X, (7). The
parameter set {L (¢).n,(¢),X,(t), 7, (t)} completely describes the PDF of the daylight

illuminance. How to find the parameter set {L (¢),n, (), X, (¢),7,(t)} according to one

embodiment of a fault detection subsystem will be described herein below in greater
detail.

Fig. 2 depicts an exemplary and non-limiting flowchart 200 of a sensor fault
detection and location system according to an embodiment of the invention. The system
200 includes three subsystems, a training subsystem 210, a detection subsystem 220,
and a fault location subsystem 230. The task of the training subsystem 210 is to
estimate the joint probability density function of the daylight iluminance from the stored
training data. The training subsystem 210 is typically trained off-line and provides the
detecting subsystem 220 and locating subsystem 230 with the estimated model

parameters used by these subsystems. The task of the detecting subsystem 220 is to
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detect whether or not there is a fault in the measurement from the sensors 130.
Subsystem 220 runs online and tests real-time measurements based on the estimated
model parameters from the training subsystem 210. Once there is a detected fault, the
detecting subsystem 220 notifies the locating subsystem 230 to test the measurement
from each sensor 130 and to determine which of the sensors 130 is providing the faulty
measurement. The details of the subsystems 210, 220 and 230 are discussed in further
detail herein below.

The training subsystem 210 shown in Fig. 2 includes three operations: S212
grouping of the training data, S214 estimation of the optimum number of Gaussian
distributions L(t) 214, and S216 estimation of n(@),2,@),7, ().

In $S212, the training subsystem 210 groups the training data according to the
observation time of the data and the desired observation window length. The training
data is defined as the pre-stored normal daylight illuminance measured from functional
sensors of the sensors 130. The observation time is the time instance when the daylight
illuminance is measured. The observation window length is the time duration to
discretize the originally continuous time information. For instance, if the observation
window length is 30 minutes, all the daylight illuminance measurements with the 30
minute time interval are grouped together and viewed as following the same PDF. In
S214, the training subsystem 210 determines the optimum number of Gaussian
distribution components. To find L'(t) is equivalent to finding the optimum number of
clusters to describe the daylight illuminance, the clusters being described in greater
detail herein below.

Fig. 3 is an exemplary and non-limiting graph showing the illuminance distribution
of illuminance data gathered during 16:00-16:01 from, for example, a west-facing
window in a typical room, from a single sensor of the sensors 130. By simply observing
Fig. 3, it is readily understood that the data can be roughly grouped into several clusters
based on the illuminance levels. The optimum number of clusters is defined herein as
the number of clusters that properly describes that data without inducing excessive
model complexity. For instance, three clusters is a better choice to describe the
illuminance data in Fig. 3 compared to a partition into ten different clusters. For
example, an X-means algorithm is utilized in this step to find L'(t).
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Fig. 4 is an exemplary and non-limiting diagram of the result of the L () for the
west-facing room. From Fig. 4, it is understood that the optimum number of clusters of
the illuminance varies over time based on the daylight availability. For example, during
night time, when there is no daylight, the optimum number of clusters is only 2; while
between 15:00 and 18:00 hours, when there is direct sunlight for the west-facing room,
the optimum number of clusters is between 8 and 11. It should be further noted that the
optimum number of clusters of the illuminance also depends on the observation window
length and the environment of the building.

Returning to Fig. 2, in $S216 it is necessary to find the parameter set

n,(0),X,.(), 7, (t) based on L'(t) found in S214, wherel1 < k < L'(¢) and 7, () satisfies:

0<m, ()<l

I40)

Zﬂk(t) =1

The optimal parameter set is defined herein as the maximum likelihood solution, i.e.,
* * * u Lo ;
(0,0 (), L, ()} =arg malen{ T (ONX (@) [0 (), 2, (t))}
i=1 k=1
Although there is no closed form to find the optimalp, (z), X, (1), 7, (¢) , an efficient

expectation-maximization (EM) algorithm can be directly applied to find the solution.
Fig. 5 shows an exemplary and non-limiting graph comparing the estimated PDFs
of the daylight illuminance near the west-facing window of a typical room (shown as a
red solid curve 510) during 16:00-16:01 (1-min observation window) based on a
Gaussian mixture model and the traditional single Gaussian model (curve 520).
Compared with the traditional single Gaussian distribution assumption 520, the
Gaussian mixture model 510 describes the daylight illuminance much more accurately
and clearly embodies the multimodal nature of the daylight illuminance distribution.
Another example of the Gaussian mixture model for two daylight measurements is
shown in Fig. 6. Specifically, Fig. 6 provides a graph showing the estimated joint PDF of
the daylight illuminance near the west-facing window and at a desk near the door of a
typical room during 16:00-16:01 (1-min observation window) based on a Gaussian

mixture model with two measurements.
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Returning to Fig. 2, once the system has been trained by the training subsystem
210, the detecting subsystem 220 receives in S222 a new incoming observation x(t) for
which a respective probability density is determined in S224 based on the previously

found parameter sets:

[(®) = p(x() | £, L (), 70, (), ;. (£), 2 (1))
Thereafter, in S226 the probability density is compared with a predefined threshold o

value based on the following simple detection rule:

I(t)>d x(¢)isanormal observation
I(t) <0 x(¢)1sa faulty observation

That is, if I(t)>0 then the observation is displayed in S228 as normal. However, if I(t) <
then the observation is faulty and processing continues by the locating subsystem 230

to determine which of the sensors 130 is a faulty sensor.

Lastly, the locating subsystem 230 evaluates the measurement and locates the
faulty sensor(s) of the sensors 130. As shown in Fig. 2, the faulty sensors are located
by examining their fault indicator l(t) 230, where j represents the number of sensor
1304. The fault indicator according to the invention is defined as an evaluation of the
likelihood of the measurement from a certain sensor. The fault indicators can be
different functions as long as they can reflect the likelihood of the measurement. For
instance, the fault indicator of sensor j can be the following conditional probability
density:

1,(6) = p(x, ()| X,(0),t, L ()70, (£, 0, (), 5 (1), Vi# jl<i<D
where D is the total number of sensors. As another example, the fault indicator can be

determined as the marginal probability density of the sensor j:

L) = pGx;(0)|6L 0,7 ().m (D), Z(1))

L)

- Zn; (ON(X, (1) | 1, (0.2, ()

where pfw.(z) represents the j‘h element of the vector p, (¢), and Z;j,j(t) represents the

element on the ;" row and the ;" column of the matrix X (¢). Thus in this case each
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component of the Gaussian mixture model becomes a single variate Gaussian. Once
the fault indicator for each individual sensor is calculated, as shown above or otherwise,
the rule of determining whether or not sensor j has an error is determined simply by

comparing l;(t) with a predetermined threshold §;as follows:

[,(t)>45; sensor jisnormal
[,(1)<6, sensor jhas fault

that is, the sensor j is determined to be operating normally if I;(t) is larger than §; 236,
and is determined to be faulty 238 otherwise. In an embodiment, the status of each
sensor 130 may be displayed by the computer 110. It should be understood that the
thresholds for fault detecting and locating need not to be the same. The appropriate
values of the thresholds can be obtained from the training data. For example, if the fault
indicator is the marginal probability density, the threshold can be found as:

§ = mmin p(x(t) |1, L' (), 7, (1), 1, (1), Z,(1))

x(1)
0 VX(#) in training data set

8, = nmin > T (ONK,0)| 1}, (0. Zp,,(0)

X () g

where 1 is a scalar, e.g. 107, to provide a margin for the fault detection by the

subsystems 220 and 230.

The following discussions relating to Figs. 7-9 illustrate by non-limiting examples,
the operation of a lighting system according to various embodiments of the invention.
For this illustrative purpose, three different environments are discussed: a dining room
(Fig. 7), an office room (Fig. 8), and a building hallway (Fig. 9). The sample rate for all
the sensors in the experiments is 1 sample/minute. The observation window length is 1
minute. There are five sensors deployed in the dining room, thirteen sensors deployed
in the office room, and four sensors deployed in the building hallway. These sensors
are placed at various locations. In the case of the office room and dining room, the
sensors are located at the ceiling, table/desks and window. In the case of the hallway,
sensors are located on the windows at different locations along the hallway.

10
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Fig. 7 provides an exemplary and non-limiting timing diagram demonstrating the
fault detection and locating system testing the illuminance from a typical dining room
mentioned above. In this example, training data was collected over a period of 28 days
and the measurements from all 5 sensors are used to train the fault detection and
locating system. In this example nine artificial faulty periods of 30-minutes are randomly
inserted into the illuminance data. During each faulty period, the sensor measuring the
illuminance through the window (denoted by “sensor #1: window” in Fig. 7) is assumed
to have fault.

The graph at the top of Fig. 7 shows the illuminance data with inserted faulty
measurements. The graph at the bottom of Fig. 7 shows the output of the detection
performed by subsystems 220 and 230, when there is a detected fault the output is 1,
otherwise, the output is 0. The threshold is set based on a fault indicator that is the
marginal probability density.

By effectively exploiting the correlation between different illuminance
measurements, the fault detection subsystem 220 is able to detect the faulty
measurements even if they are close to a normal measurement. For example, the faulty
measurements highlighted in circles 710, 720 and 730 are similar to the normal
measurements; however, the subsystems 220 and 230 detect the slight abnormality as
indicated by the respective circles 715, 725 and 735.

Fig. 8 provides an exemplary and non-limiting timing diagram demonstrating the
operation of system 100 testing the illuminance from, for example, a typical office room
having 13 sensors. In this example training data collected over a period of 30 days and
the measurements from all 13 sensors are used to train the fault detection and locating
system. Again nine artificial faulty periods of 30-minutes are randomly inserted into the
illuminance data. During each faulty period, the sensor measuring the illuminance
through the window (denoted by “sensor #1: east-facing window” in Fig. 8) is assumed
to have fault. The graph at the top of Fig. 8 shows the illuminance data with inserted
faulty measurements.

The graph at the bottom of Fig. 8 shows the output of the subsystems 220 and
230; when there is a detected fault the output is 1, otherwise the output is 0. The

threshold is set based on a fault indicator that is the marginal probability density. By

11
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effectively exploiting the correlation between different illuminance measurements, the
fault detection system is able to detect the faulty measurements even if they are close
to the normal measurement. For example, the faulty measurements highlighted in
circles 810 and 820 are similar to normal measurements; however, the detector detects
the slight abnormality as indicated by the respective circles 815 and 825.

Fig. 9 provides an exemplary and non-limiting timing diagram demonstrating a
fault detection system testing the illuminance from, for example, a building hallway
having four sensors. In this example training data collected over a period of 30 days and
the measurements from all four sensors are used to train the fault detection and locating
system. Again, nine artificial faulty periods of 30-minutes are randomly inserted into the
illuminance data. During each faulty period, the sensor measuring the illuminance
through a window (denoted by “sensor #1: west-facing cafeteria” in Fig. 9) is assumed
to have a fault. The graph at the top of Fig. 9 shows the illuminance data with inserted
faulty measurements.

The graph at the bottom of Fig. 9 shows the output of the subsystems 220 and
230; when there is a detected fault the output is 1, otherwise the output is 0. The
threshold is set based on a fault indicator that is the marginal probability density. By
effectively exploiting the correlation between different illuminance measurements, the
fault detection system is able to detect the faulty measurements even if they are close
to the normal measurement. For example, the faulty measurements highlighted in
circles 910, 920 and 930 are similar to normal measurements; however, the detector is
still able to detect the slight abnormality as indicated by the respective circles 915, 925
and 935.

The various embodiments disclosed herein can be implemented as hardware,
firmware, software or any combination thereof. Moreover, the software is preferably
implemented as an application program tangibly embodied on a program storage unit, a
non-transitory computer readable medium, or a non-transitory machine-readable
storage medium that can be in a form of a digital circuit, an analogy circuit, a magnetic
medium, or combination thereof. The application program may be uploaded to, and
executed by, a machine comprising any suitable architecture. Preferably, the machine is

implemented on a computer platform having hardware such as one or more central
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processing units (“CPUs”), a memory, and input/output interfaces. The computer
platform may also include an operating system and microinstruction code. The various
processes and functions described herein may be either part of the microinstruction
code or part of the application program, or any combination thereof, which may be
executed by a CPU, whether or not such computer or processor is explicitly shown. In
addition, various other peripheral units may be connected to the computer platform such
as an additional data storage unit and a printing unit.

While the present invention has been described at some length and with some
particularity with respect to the several described embodiments, it is not intended that it
should be limited to any such particulars or embodiments or any particular embodiment,
but it is to be construed with references to the appended claims so as to provide the
broadest possible interpretation of such claims in view of the prior art and, therefore, to
effectively encompass the intended scope of the invention. Furthermore, the foregoing
describes the invention in terms of embodiments foreseen by the inventor for which an
enabling description was available, notwithstanding that insubstantial modifications of

the invention, not presently foreseen, may nonetheless represent equivalents thereto.
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CLAIMS

What is claimed is:

1. A system (100) for monitoring sensors of a lighting control system, comprising:

a plurality of sensors (130-1, 130-N) connected to a network; and

a computing device (110) connected to the network comprising a training
subsystem (210), a detecting subsystem (220) and a locating subsystem (230), wherein
the training subsystem is configured to determine an optimum operation of the system,
wherein the detecting subsystem is configured to collect measurements from the
plurality of sensors and determine, based in part on data provided from at least the
training subsystem, a faulty sensor from among the plurality of sensors, and wherein
the locating subsystem is configured to determine a location of the faulty sensor from
among the plurality of sensors based on a fault indicator determined for each of the

plurality of sensors.

2. The system of claim 1, wherein the sensors are photosensors.

3. The system of claim 1, wherein the training subsystem determines a joint
probability distribution function (PDF) of the illuminance at a given time t.

4, The system of claim 1, wherein the detecting subsystem determines a probability
density.
5. The system of claim 4, wherein the detecting subsystem compares the

probability density to a predefined threshold value to determine if there is a faulty sensor
of the plurality of sensors.

0. The system of claim 1, wherein the locating subsystem compares for each

sensor its respective probability density to a respective predefined threshold value to

determine if each sensor is faulty or not.
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7. An apparatus in a lighting control system (100) for monitoring sensors therein,
comprising:

an interface to a network (120) for at least collecting data from a plurality of
sensors (130-1, 130-N) connected to the network;

a fault detection unit (114) that includes a training subsystem (210), a detecting
subsystem (220) and a locating subsystem (230), wherein the training subsystem is
configured to determine an optimum operation of the lighting control system, wherein
the detecting subsystem is configured to collect measurements from the plurality of
sensors and to determine, based in part on data provided from at least the training
subsystem, if there is a faulty sensor from among the plurality of sensors, and wherein
the locating subsystem is configured to determine the location of the faulty sensor from
among the plurality of sensors based on a fault indicator determined for each of the
plurality of sensors; and

a storage component (112) for storing data respective of at least one of the

training subsystem, the detecting subsystem and the locating subsystem.

8. The apparatus of claim 7, wherein the sensors are photosensors.

9. The apparatus of claim 7, wherein the training subsystem determines a joint

probability distribution function (PDF) of the illuminance at a given time t.

10.  The apparatus of claim 7, wherein the detecting subsystem is further configured
to determine a probability density.

11.  The apparatus of claim 10, wherein the detecting subsystem is further configured
to compare the probability density to a predefined threshold value to determine if there

is a faulty sensor among the plurality of sensors.
12.  The apparatus of claim 12, wherein the locating subsystem is further configured

to compare for each sensor its respective probability density to a respective predefined

threshold value to determine if each sensor is faulty or not.
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13. A method for monitoring sensors of a lighting control system, comprising:

performing a training of a plurality of sensors of the lighting control system (210)
to determine a joint probability distribution function (PDF) of the illuminance at a given
time ¢

collecting parameters from the training and storing the parameters in a prior data
storage (S212);

observing illuminance of the plurality of sensors (S222);

determining if there is at least a faulty sensor from among the plurality of sensors
based in part on the parameters stored prior data storage (S224); and

locating a faulty sensor based on the determination of the existence of the at

least a faulty sensor and the prior data (5232, S234).

14. The method of claim 13, wherein collecting parameters from the training further
comprises:

determining an optimum number of Gaussian distribution components.
15.  The method of claim 13, wherein determining if there is a faulty sensor

comprises:

determining a probability density.
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