发明名称
柿皮中果胶、单宁及色素的连续提取方法

摘要
本发明公开了一种柿皮中果胶、单宁及色素的连续提取方法，其方法是：a. 将柿皮预处理后，在大于等于 70°C 小于 100°C 的温度下用水提取预处理后的柿皮，得到提取液和浆料；b. 将上述提取液用切割分子量在 10000~30000 的超滤膜过滤，截留部分即为果胶液，滤液用大孔径树脂吸附分离，得到单宁；c. 步骤 a 中得到的浆料在 60°C~70°C 下用丙酮萃取，萃取液过滤、蒸馏、干燥得到色素。本方法原料来源丰富，提取方法简单，更适于大工业生产；所用试剂价格比较低廉、毒性小，可操作性强，技术易于放大，成本应低于目前相应产品的提取成本。本方法所提取的产品安全无毒，生产工艺简单合理。

<table>
<thead>
<tr>
<th>发明名称</th>
<th>柿皮中果胶、单宁及色素的连续提取方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>摘要</td>
<td>本发明公开了一种柿皮中果胶、单宁及色素的连续提取方法，其方法是：a. 将柿皮预处理后，在大于等于 70°C 小于 100°C 的温度下用水提取预处理后的柿皮，得到提取液和浆料；b. 将上述提取液用切割分子量在 1000030000 的超滤膜过滤，截留部分即为果胶液，滤液用大孔径树脂吸附分离，得到单宁；c. 步骤 a 中得到的浆料在 60°C70°C 下用丙酮萃取，萃取液过滤、蒸馏、干燥得到色素。本方法原料来源丰富，提取方法简单，更适于大工业生产；所用试剂价格比较低廉、毒性小，可操作性强，技术易于放大，成本应低于目前相应产品的提取成本。本方法所提取的产品安全无毒，生产工艺简单合理。</td>
</tr>
</tbody>
</table>
1. 一种柿皮中果胶、单宁及色素的连续提取方法，其特征在于该方法采用下述工艺步骤：

 a. 将柿皮预处理后，在大于等于 70℃小于 100℃的温度下用水提取预处理后的柿皮，得到提取液和浆料；

 b. 将上述提取液用切割分子量在 10000~30000 的超滤膜过滤，截留部分即为果胶液，滤液用大孔径树脂吸附分离，得到单宁；

 c. 步骤 a 中得到的浆料在 60℃~70℃下用丙酮萃取，萃取液过滤、蒸馏、干燥得到色素。

2. 根据权利要求 1 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于步骤 a 中所述的预处理过程为：在 60℃的条件下将柿皮烘干，烘干后的柿皮粉碎至直径小于或等于 2mm。

3. 根据权利要求 1 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于步骤 a 中所述的提取过程为：在预处理的柿皮中加入柿皮和水的重量比为 1：15 的去离子水，在大于等于 70℃小于 100℃的温度下浸泡 1~2 小时，然后将柿皮和水的混合物打成碎浆，将打好的碎浆进行压榨，得到提取液和经一次提取的浆料。

4. 根据权利要求 3 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于在经一次浸取的浆料中加入浆料和水的重量比为 1：10 的去离子水，用质量分数为 1~2%的盐酸调上述粗渣和水的混合物至 pH 值为 3~5；在大于等于 70℃小于 100℃的温度下，保温蒸煮上述调整 pH 值后的混合物 40~50 分钟，过滤得到提取液和经二次提取的浆料。

5. 根据权利要求 4 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于用质量分数为 1~2%的盐酸调上述粗渣和水的混合物至 pH 值为 4.5~5。

6. 根据权利要求 1 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于将步骤 b 中的截留的果胶液中加入乙醇，将所得酒精—果胶混合物静置 4
－8h，过滤，打散滤饼后用质量分数 95%乙醇洗涤，再次压滤，得到果胶成品。

7、根据权利要求 6 所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于将果胶成品喷雾干燥，制得果胶粉。

8、根据权利要求 1－7 中任意一项所述的柿皮中果胶、单宁及色素的连续提取方法，其特征在于将步骤 c 中的萃取步骤为：萃取料液比 1:20g/ml，在温度 50－60℃下萃取 2－3 个小时，将得到的萃取液过滤、减压蒸馏、真空干燥，得到为深红色固体的色素。
柿皮中果胶、单宁及色素的连续提取方法

技术领域

本发明涉及一种从柿皮中提取有效成分的方法，尤其是一种柿皮中果胶、单宁及色素的连续提取方法。

背景技术

作为柿子深加工的副产物柿皮，约占柿子总重量的10-15%，产量相当可观，目前主要作为食品填充使用，有些地方甚至白白扔掉。现代医学研究表明：柿皮中含有较多的膳食纤维和果胶物质，对促进人体消化，改善肠道功能具有很好的作用，并且果胶在稳定含有蛋白质的饮料如奶蛋白方面有着特殊的效用，可以避免因为蛋白质粒子间的相互作用而凝聚。提取的果胶既可做商品出售，也可就地转化生产果冻、果胶软糖的原料。

柿果中含有的较丰富的类胡萝卜素及其脂肪酸酯，类胡萝卜素作为天然色素用于食品着色，安全性高；对于人和动物而言，部分类胡萝卜素是最有效的维生素A原，可提供人类需要的维生素A量的30%-100%；更为重要的是类胡萝卜素具有一定的抗氧化活性，能抑制脂质过氧化、淬灭单线态氧，因而能防止细胞氧化损伤，预防心血管疾病，尤其是对降低肿瘤发病率有显著效果；

柿果中还含有丰富单宁（鞣质、鞣酸）等生物活性物质，成熟的柿子单宁主要分布在柿皮中。柿皮发涩主要是由于含有单宁，在柿子脱涩时，不可能将其中的鞣酸全部脱尽，如果连皮一起吃容易形成胃柿石，但另一方面，单宁可止血愈伤、抑菌抗过敏，尤其是具有抗氧化、延缓衰老、抗癌变、防止心脑血管疾病的功效，在啤酒、葡萄酒酿造业，具有去除蛋白质，改善口感之功效，因此，只要合理地运用单宁，定能让大自然的赐予为人类更好地服务。

目前，国内外对柿皮的利用主要是针对果胶提取与应用研究，且报道很少，而柿皮中提取单宁和类胡萝卜素未见报道，事实上，在利用柿皮提取果胶的工艺过程中，单宁及色素（类胡萝卜素）均作为废弃物扔掉的，这样不仅污染环
境，还将造成资源的浪费。

发明内容

本发明要解决的技术问题是提供一种提取柿果中有效成分的柿果中果胶、单宁及色素的连续提取方法，以提高柿果的利用率。

为解决上述技术问题，本发明采用下述工艺步骤：

a、将柿果预处理后，在大于等于 70℃小于 100℃的温度下用水提取预处理后的柿果，得到提取液和浆料；

b、将上述提取液用切割分子量在 10000—30000 的超滤膜过滤，截留部分即为果胶液，滤液用大孔径树脂吸附分离，得到单宁；

c、步骤 a 中得到的浆料在 60℃—70℃下用丙酮萃取，萃取液过滤、蒸馏、干燥得到色素。

采用上述技术方案所产生的有益效果在于：本发明专利申请一种以柿子皮为原料连续提取果胶、单宁及色素的整套技术方案。本发明原料来源丰富，提取方法简单，适于大工业生产。本发明方法中提取柿果中果胶、单宁及色素所用试剂的价格比较低廉、毒性小。本方法可操作性强，技术易于放大，成本应低于目前相应产品的提取成本。本发明方法所提取的产品安全无毒，果胶可应用于果冻、果酱的胶凝剂，也可用于制造胶凝软糖及在生产酸奶时用作水果基质，还可作为食品的稳定剂与增稠剂等；单宁可用于制革中的鞣制；食品抗氧化、防腐；可用于在啤酒、葡萄酒酿造液，具有去除蛋白质、改善口感的作用；还可应用于美容、美发。色素中的类胡萝卜素直接从天然植物（柿果）中提取，味香甜，色泽鲜艳，性质稳定，生产工艺简单合理，生产过程未采用任何使色素产生有害变化的手段和药剂，是一种较为理想的天然色素，添加到食品中，不仅使食品具有悦人的色泽，而且还具有营养保健之功效。

具体实施方式

实施例 1：

1、柿果预处理：选择没有发霉的柿果，清洗后在 60℃的条件下烘干，粉碎
柿皮至直径小于或等于 2mm。

2、浸取：

a、打浆、取压榨汁：按柿子皮实际重量加入料液比为 1：15 的去离子水，在 80°C－90°C 下浸泡 1 小时，然后打成碎浆，将打好的碎浆放入压榨机中压榨，得到提取液和浆料。

b、浆料二次提取：在经一次浸取的浆料中加入料液比为 1：10 的去离子水，用 1%（质量分数）的盐酸调 PH 值为 4.5—5，在温度为 80°C—90°C 下保温蒸煮 40—50 分钟，压榨得到提取液和经二次提取的浆料。

3、超滤膜过滤：将上述提取液用超滤膜过滤，因为果胶相对分子量是 30000—100000，而单宁的相对分子量仅有 500—3000，实验利用了两者之间分子大小上的差异，采用切割分子量在 10000—30000 的超滤膜截留果胶，直至果胶浓度达到 2%—4%，使果胶与单宁得以分离并使果胶浓缩。

浓缩的果胶液采用喷雾干燥得果胶粉；滤液采用大孔树脂吸附分离，使单宁得以纯化。

4、丙酮萃取：所有浆料用丙酮萃取，萃取料液比 1：20g/ml，在温度 60°C 下提取 2 个小时。将得到的萃取液过滤，减压蒸馏，真空干燥，得到深红色的色素（类胡萝卜素）固体。对萃取剂（丙酮）可进行回收再利用。经计算，在此条件下的提取率为 79.38mg/100g。

实施例 2：

1、柿皮预处理：选择没有发霉的柿皮，清洗后在 60°C 的条件下烘干，粉碎柿皮至直径小于或等于 2mm。

2、浸取：

a、打浆、取压榨汁：按柿子皮实际重量加入料液比为 1：15 的去离子水，在大于等于 70°C 小于 100°C 的温度下浸泡 2 小时，然后打成碎浆，将打好的碎浆放入压榨机中压榨，得到提取液和经一次提取的浆料。

b、浆料二次提取：在经一次浸取的浆料中加入料液比为 1：10 的去离子水，
用 1%（质量分数）的盐酸酸化 PH 值为 3—5，在温度为 70℃—90℃下保温蒸煮 40—50 分钟，压榨得到提取液和经二次提取的浆料。

3、超滤膜过滤：采用切分分子量在 10000—30000 的超滤膜截留果胶，直至果胶浓度达到 2%—4%，使果胶与单宁得以分离。滤液采用大孔树脂吸附分离得到经纯化的单宁。

截留的果胶液用醇沉法沉析果胶：在截留的果胶液中加入乙醇，将所得酒精—果胶混合物静置 4—8h，过滤，打散滤饼后用质量分数 95%乙醇洗涤，再次压滤，得到果胶成品。

4、丙酮萃取：所有浆料用丙酮萃取，萃取料液比 1：20g/ml，在温度 50℃下提取 3 个小时。将得到的萃取液过滤，减压蒸馏，真空干燥，得到深红色的类胡萝卜素固体。对萃取剂可进行回收再利用。

经检测，本柿皮中果胶、单宁及色素的连续提取方法中，果胶的提取率大于 85%，产品纯度大于 80%，胶凝度大于 120，干燥失重小于 11%，灰分小于 5%，重金属含量（以 pb 计）小于 0.0015%，PH=2.8±0.2，各种指标均达到 GBn246—85 食品添加剂果胶质量标准；单宁提取率大于 83%，品纯度大于 75%；类胡萝卜素提取率大于 75%，纯度大于 80%。