

US 20090117253A1

(19) **United States**

(12) **Patent Application Publication**
HONG et al.

(10) **Pub. No.: US 2009/0117253 A1**

(43) **Pub. Date: May 7, 2009**

(54) **PEROXISOME BIOGENESIS FACTOR PROTEIN (PEX) DISRUPTIONS FOR ALTERING POLYUNSATURATED FATTY ACIDS AND TOTAL LIPID CONTENT IN OLEAGINOUS EUKARYOTIC ORGANISMS**

(75) Inventors: **SEUNG-PYO HONG, HOCKESSIN, DE (US); PAMELA L. SHARPE, WILMINGTON, DE (US); ZHIXIONG XUE, CHADDS FORD, PA (US); NARENDRA S. YADAV, WILMINGTON, DE (US); QUINN QUN ZHU, WEST CHESTER, PA (US)**

Correspondence Address:
**E I DU PONT DE NEMOURS AND COMPANY
LEGAL PATENT RECORDS CENTER
BARLEY MILL PLAZA 25/1122B, 4417 LAN-
CASTER PIKE
WILMINGTON, DE 19805 (US)**

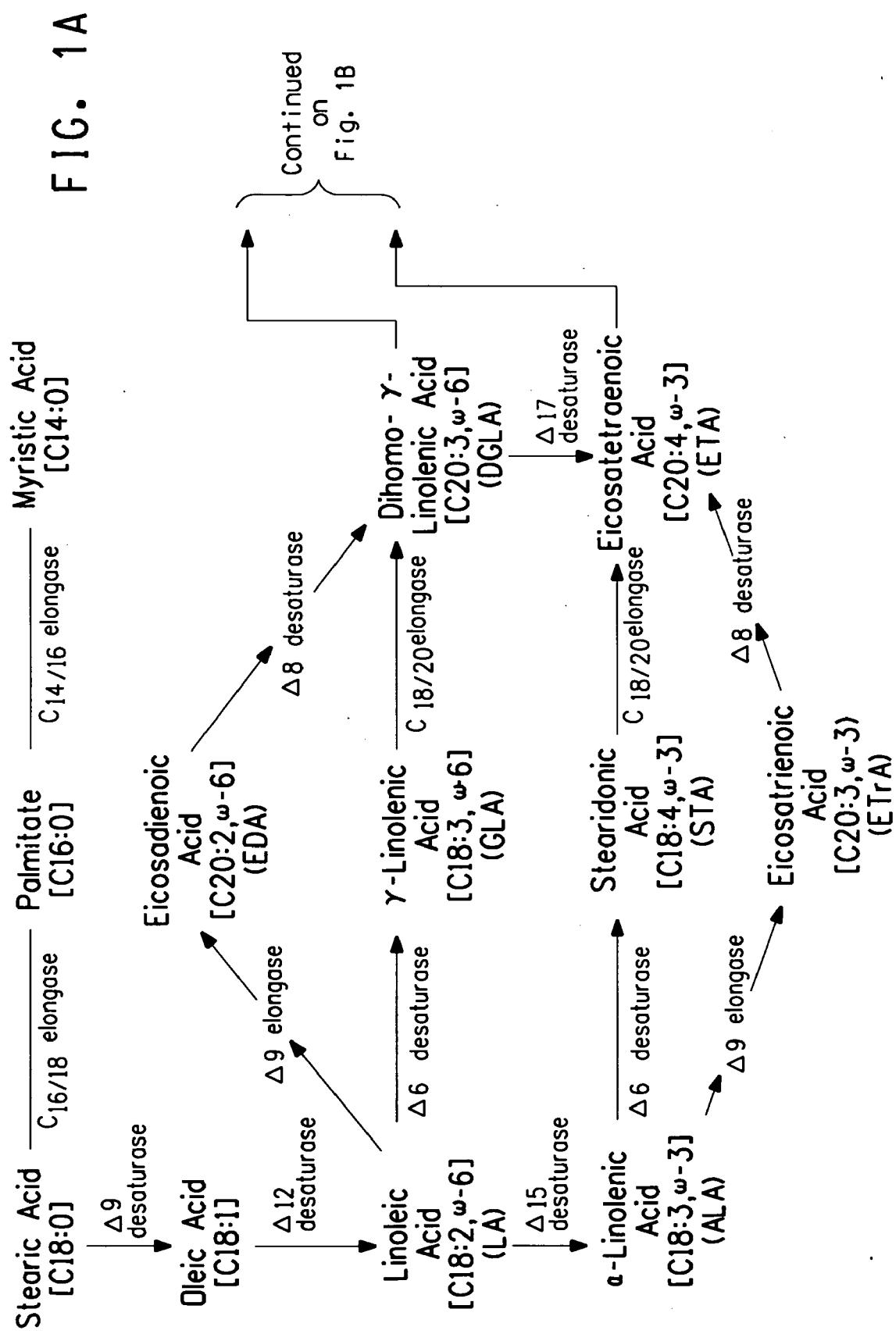
(73) Assignee: **E. I. DU PONT DE NEMOURS
AND COMPANY,
WILMINGTON, DE (US)**

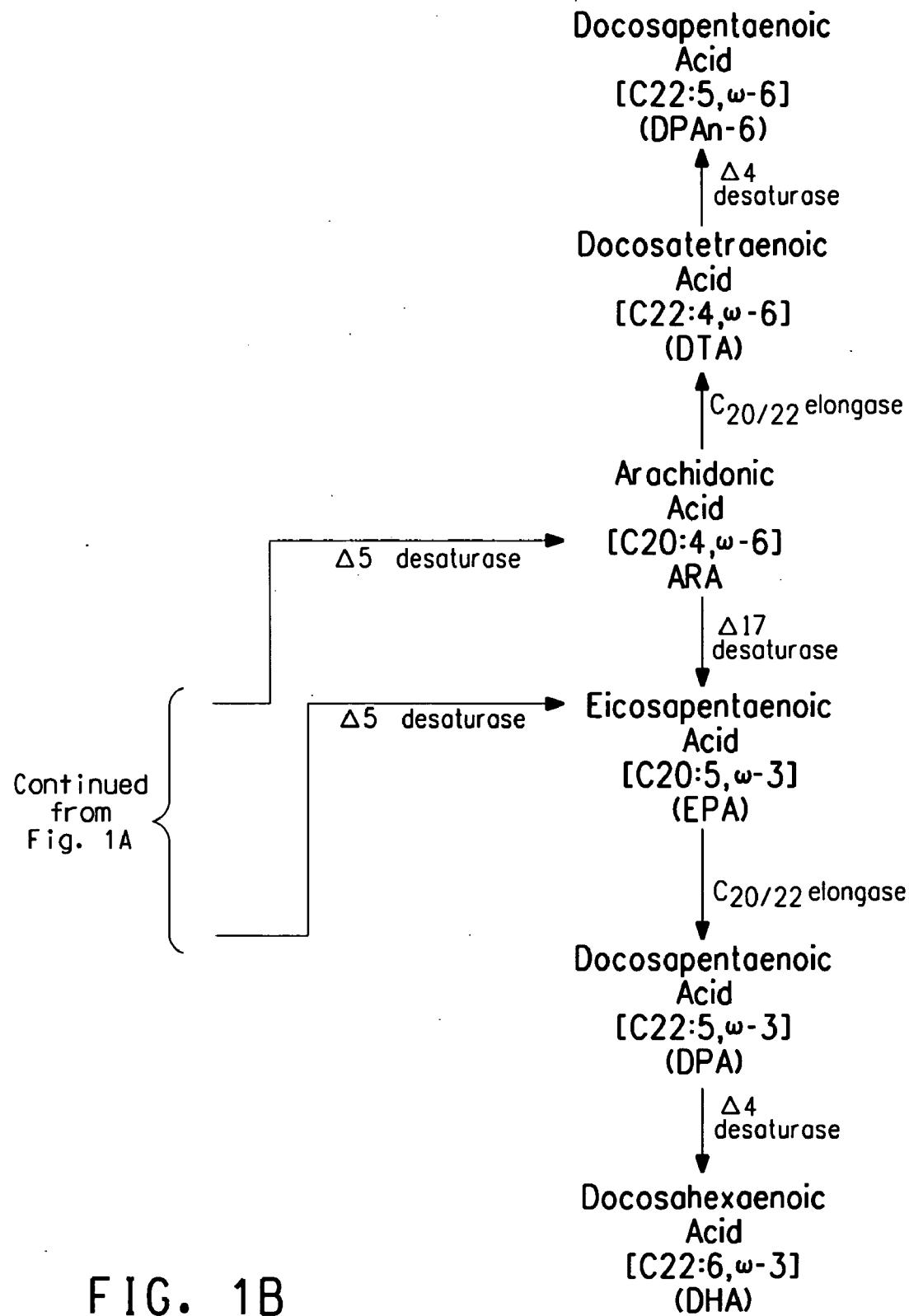
(21) Appl. No.: **12/244,950**

(22) Filed: **Oct. 3, 2008**

Related U.S. Application Data

(60) Provisional application No. 60/977,174, filed on Oct. 3, 2007, provisional application No. 60/977,177, filed on Oct. 3, 2007.


Publication Classification


(51) **Int. Cl.**
A23K 1/16 (2006.01)
C12N 15/63 (2006.01)
C12N 1/19 (2006.01)

(52) **U.S. Cl.** **426/601; 435/471; 435/254.2**

ABSTRACT

Methods of increasing the amount of polyunsaturated fatty acids (PUFAs) in the total lipid fraction and in the oil fraction of PUFA-producing, oleaginous eukaryotes, accomplished by modifying the activity of peroxisome biogenesis factor (Pex) proteins. Disruptions of a chromosomal Pex3 gene, Pex10p gene or Pex16p gene in a PUFA-producing, oleaginous eukaryotic strain resulted in an increased amount of PUFAs, as a percent of total fatty acids and as a percent of dry cell weight, in the total lipid fraction and in the oil fraction of the strain, as compared to the parental strain whose native Pex protein was not disrupted.

327 C T L C L S - - - - -
(AA 327-364 of SEQ ID NO:10 [YIPex10p])
266 C A I C F R D E E E Q E G G G A S H Y S T
(AA 266-323 of SEQ ID NO:2 [YIPex2p])
342 C P L C S K - - - - -
(AA 342-391 of SEQ ID NO:11 [YIPex12p])
* * *

333 Y I S A P A C T P C G H F F C W D C I S E W
(AA 327-364 of SEQ ID NO:10 [YIPex10p])
288 D V T N P Y Q A D C G H V Y C Y V C L V T K
(AA 266-323 of SEQ ID NO:2 [YIPex2p])
348 E L V N P T V I E S G Y V F C Y T C I Y R H
(AA 342-391 of SEQ ID NO:11 [YIPex12p])
* * *

355 V R E K P E - - - - - C P L - - - - - C
(AA 327-364 of SEQ ID NO:10 [YIPex10p])
310 L A Q G D G D - G W N C Y R - - - - - C
(AA 266-323 of SEQ ID NO:2 [YIPex2p])
370 L E D G D E E T G G R C P V T G Q K L L G C
(AA 342-391 of SEQ ID NO:11 [YIPex12p])
* *

FIG. 2A

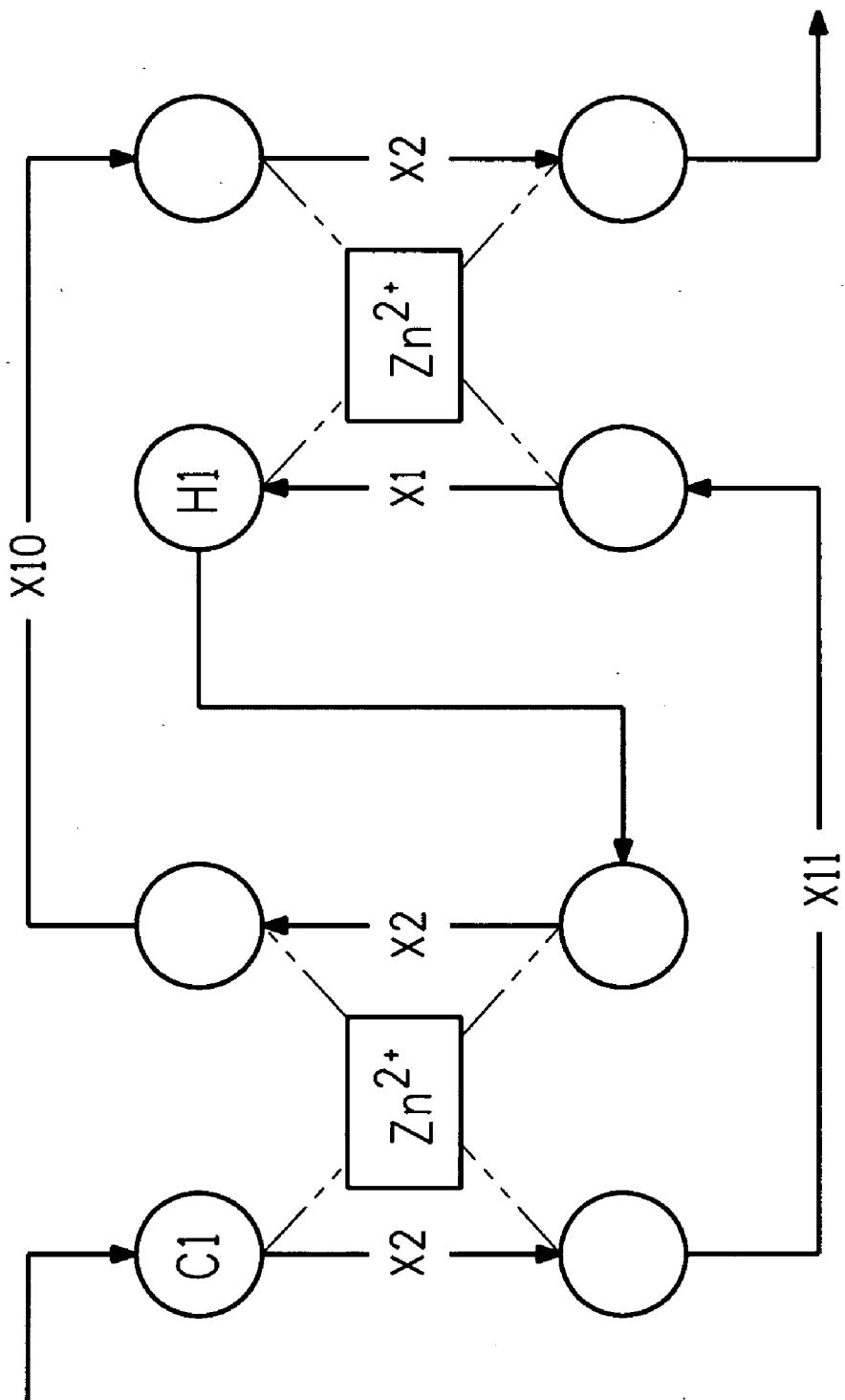


FIG. 2B

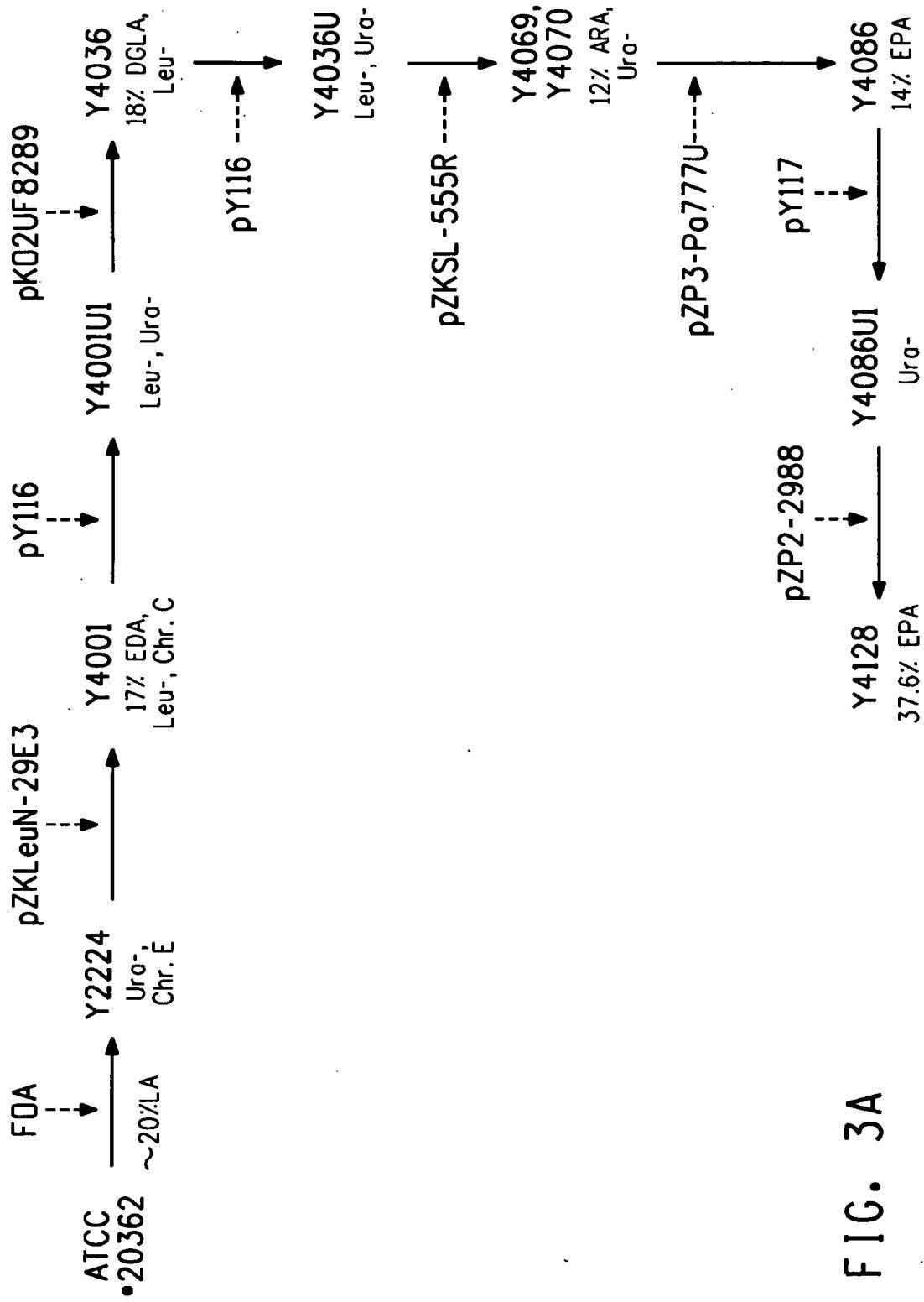


FIG. 3A

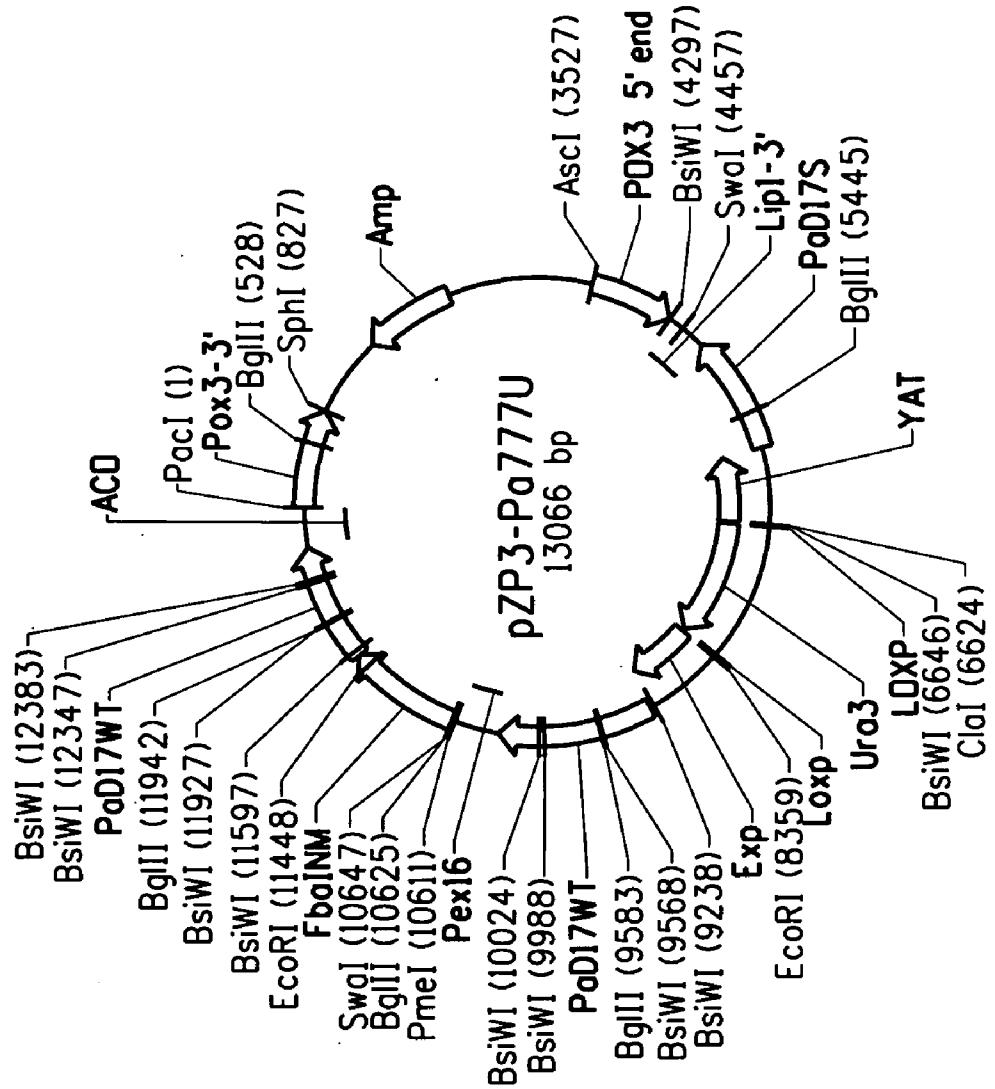


FIG. 3B

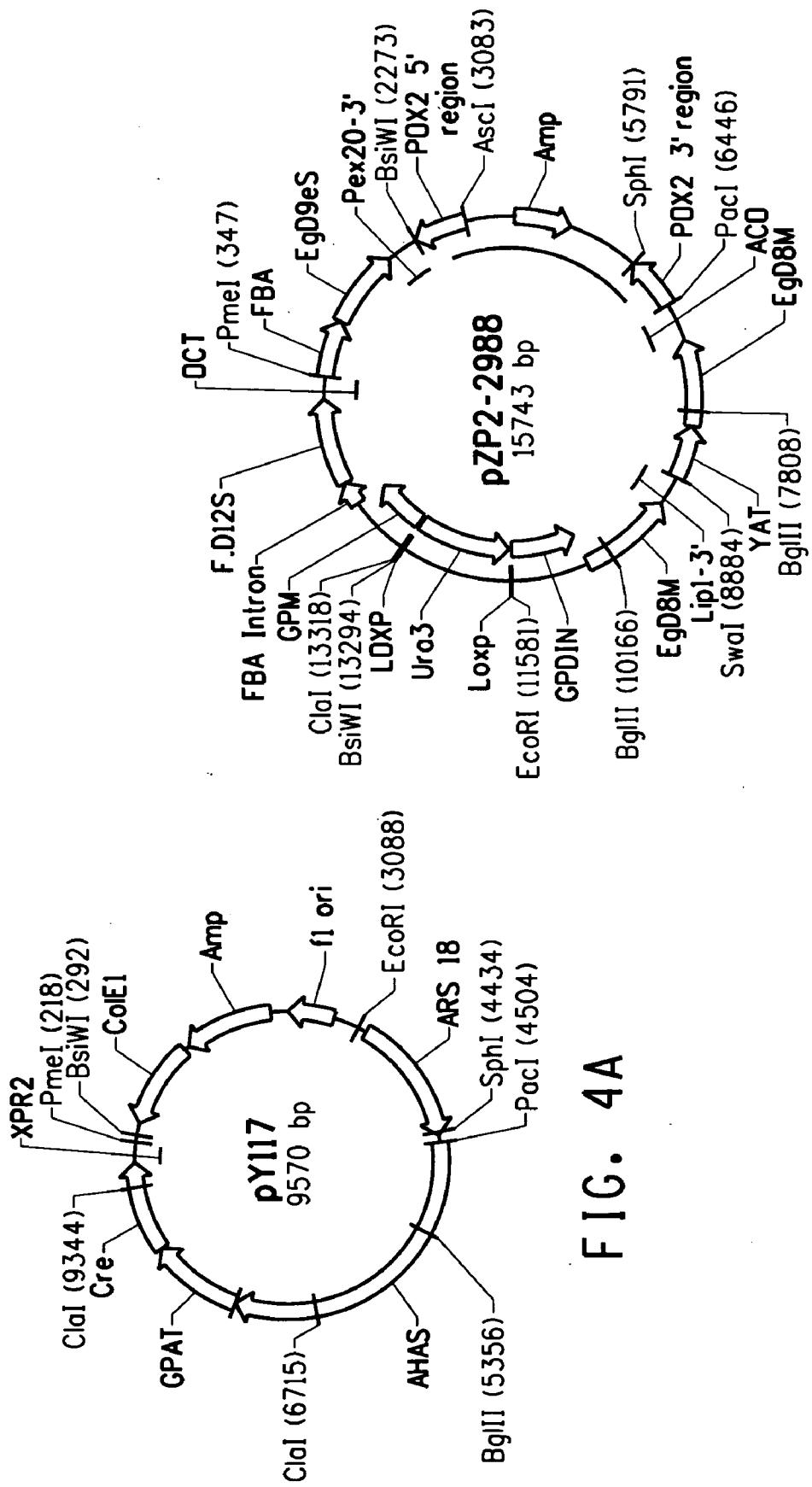


FIG. 4A

FIG. 4B

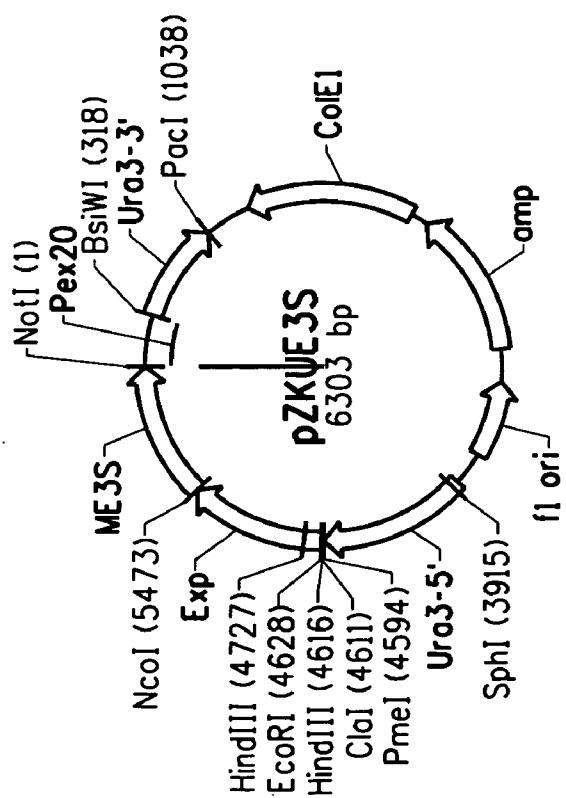


FIG. 5A

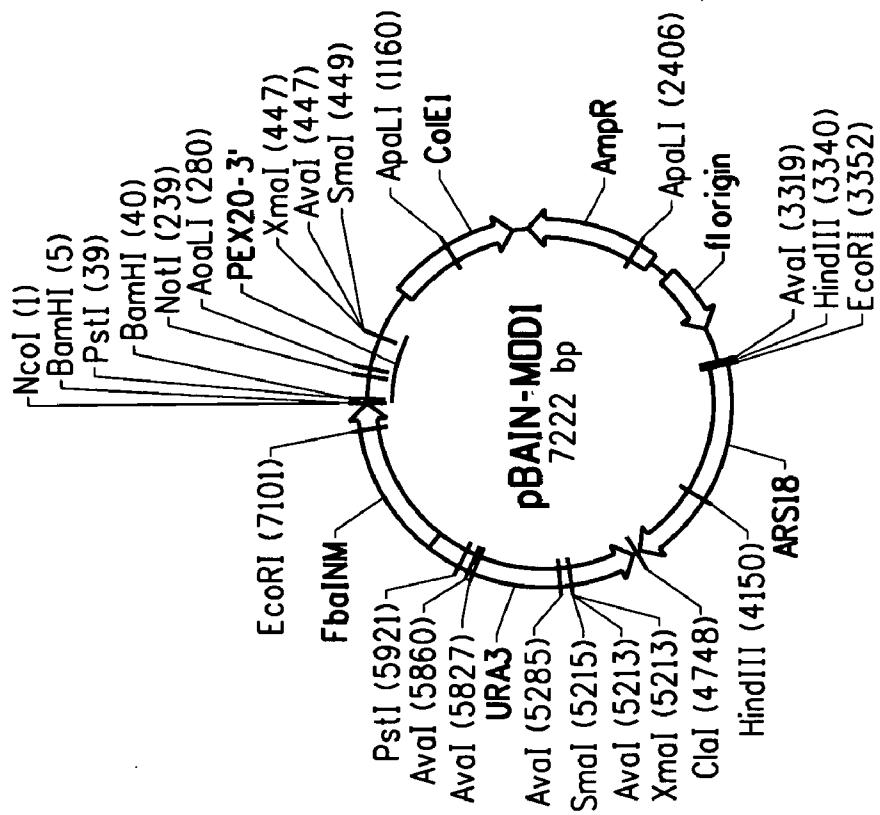


FIG. 5B

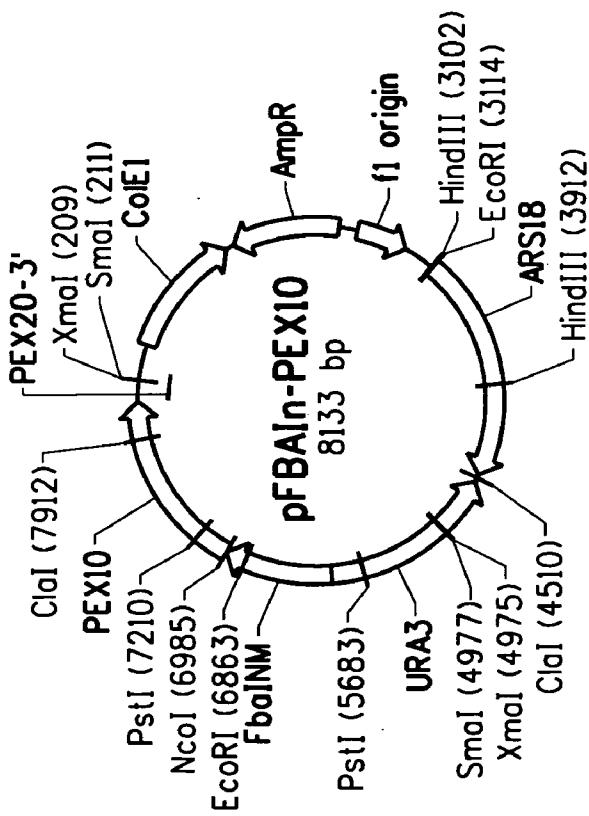


FIG. 6A

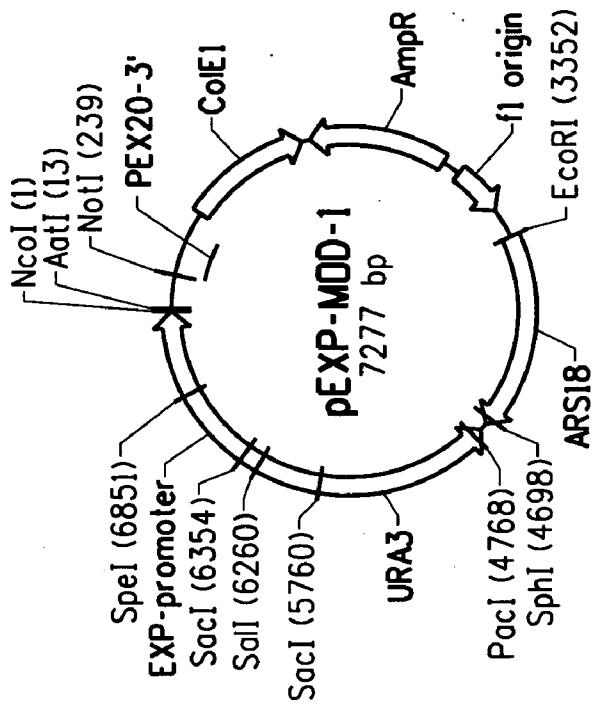


FIG. 6B

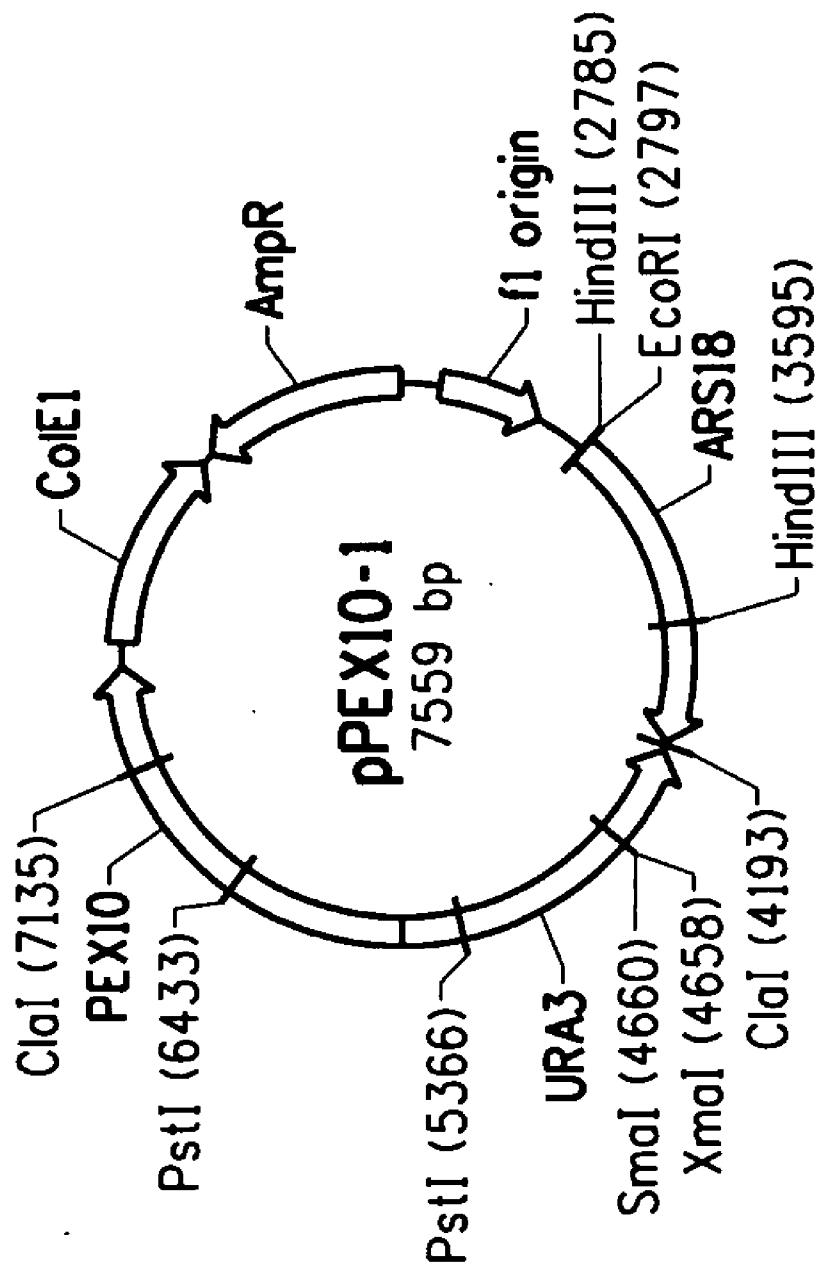


FIG. 7A

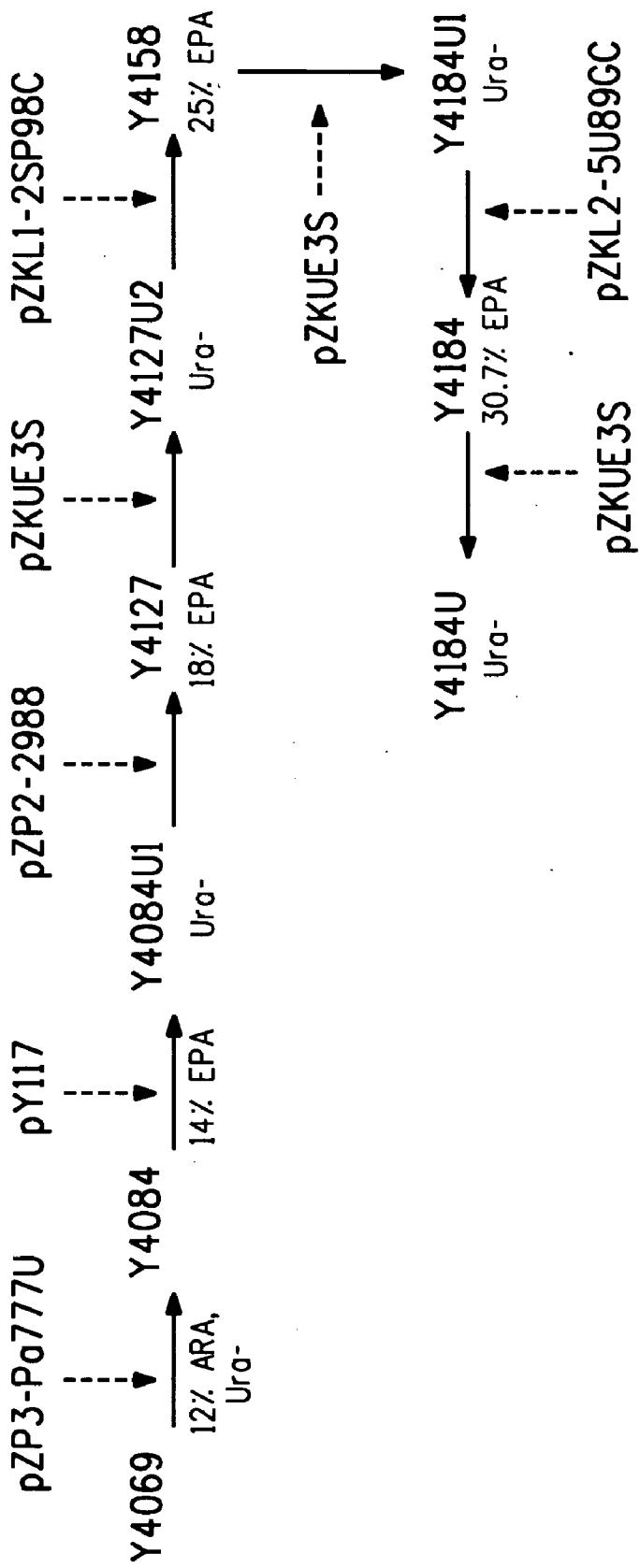


FIG. 7B

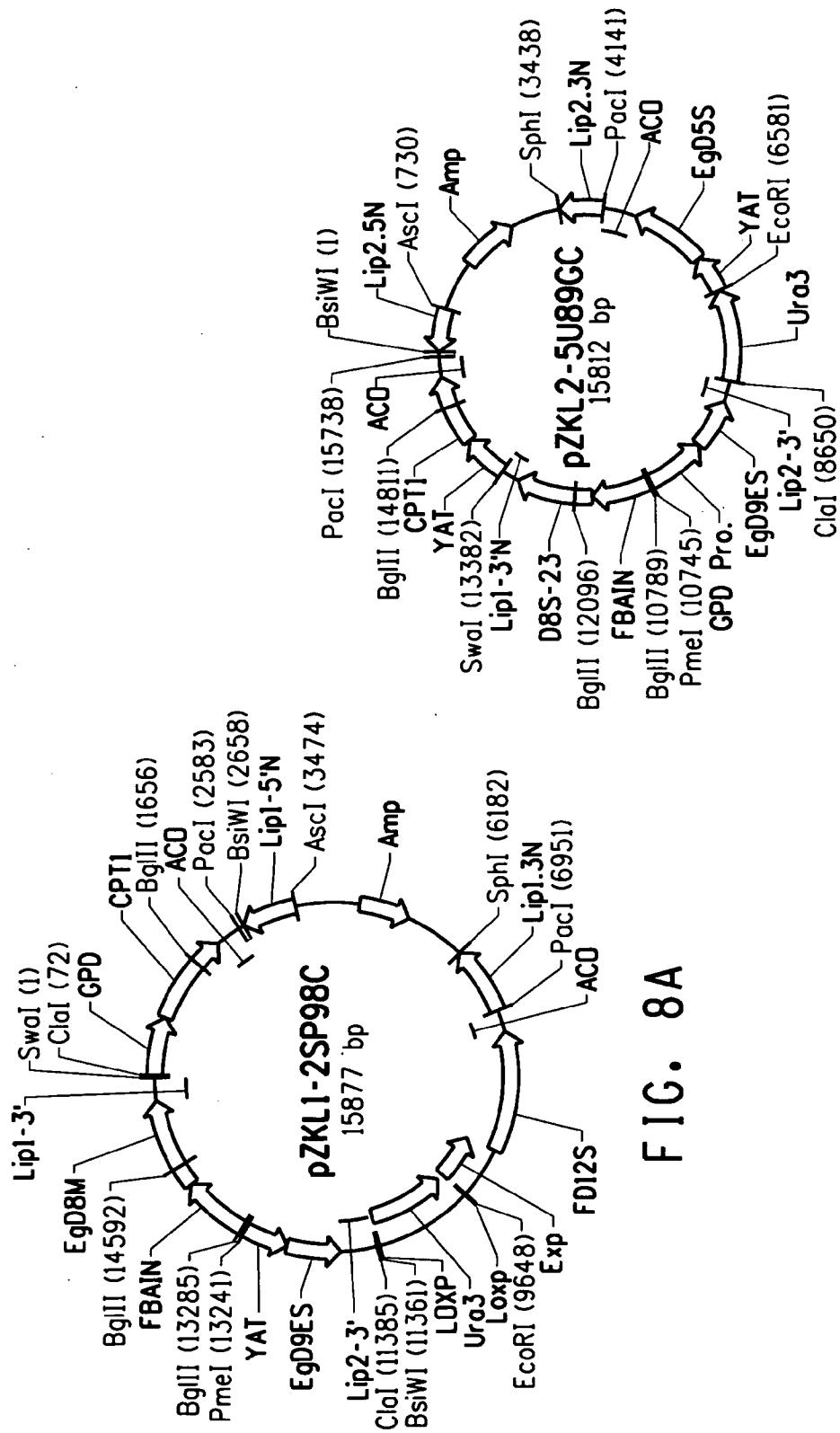


FIG. 8A

FIG. 8B

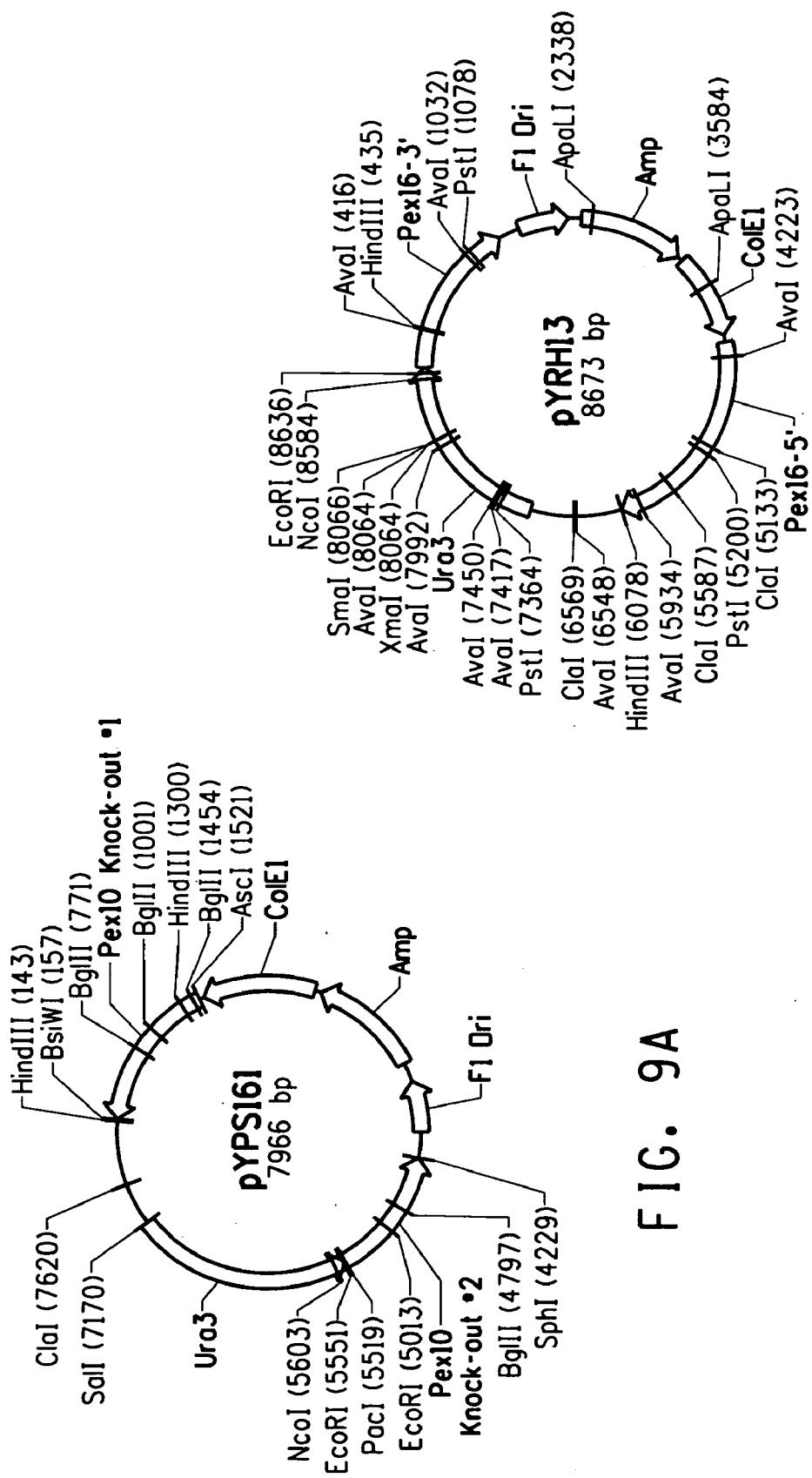


FIG. 9A

FIG. 9B

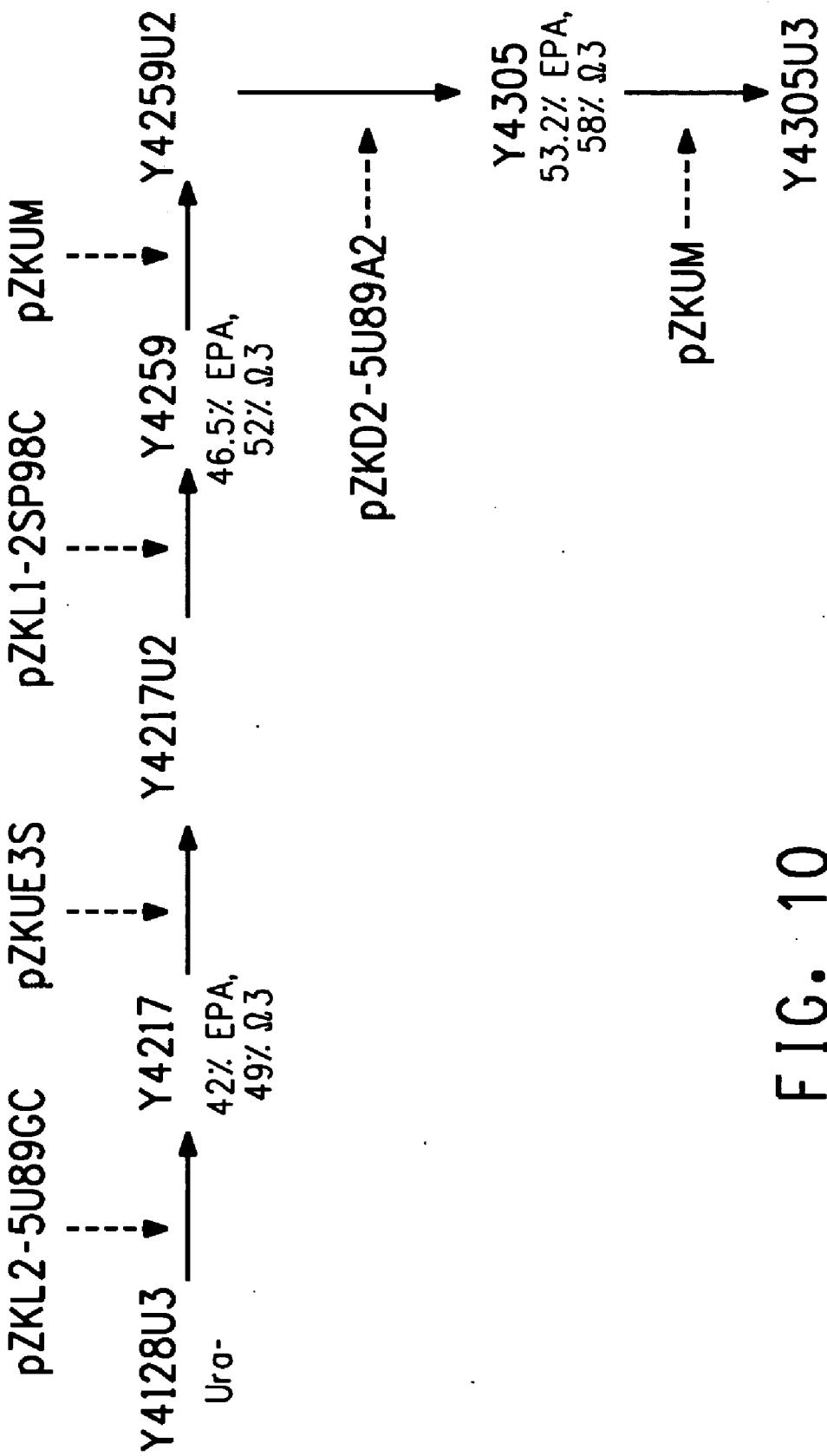


FIG. 10

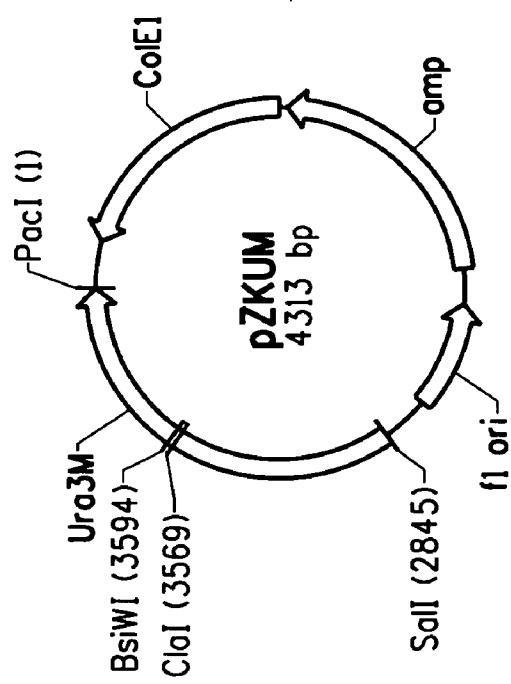


FIG. 11 A

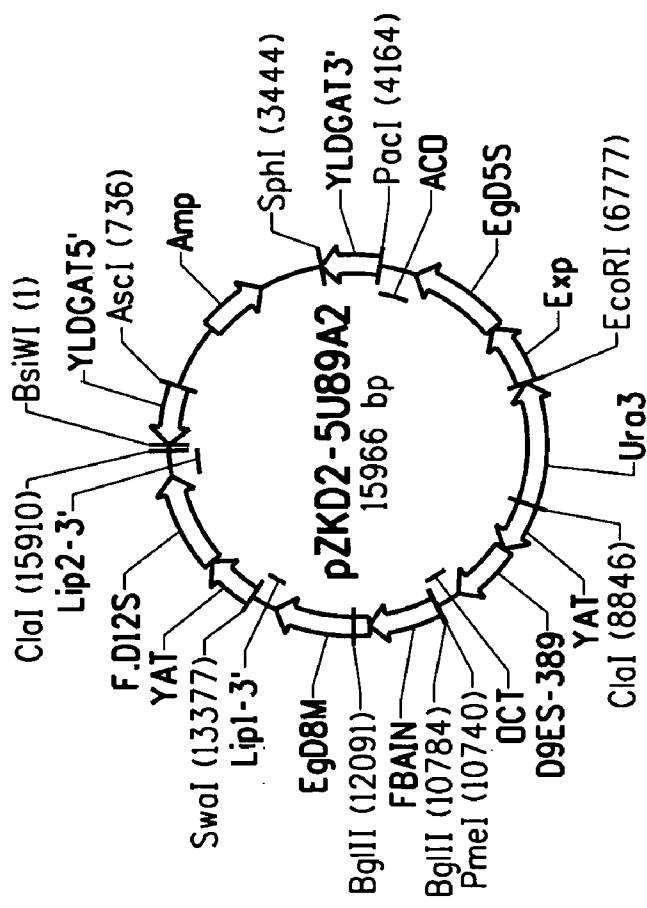


FIG. 11 B

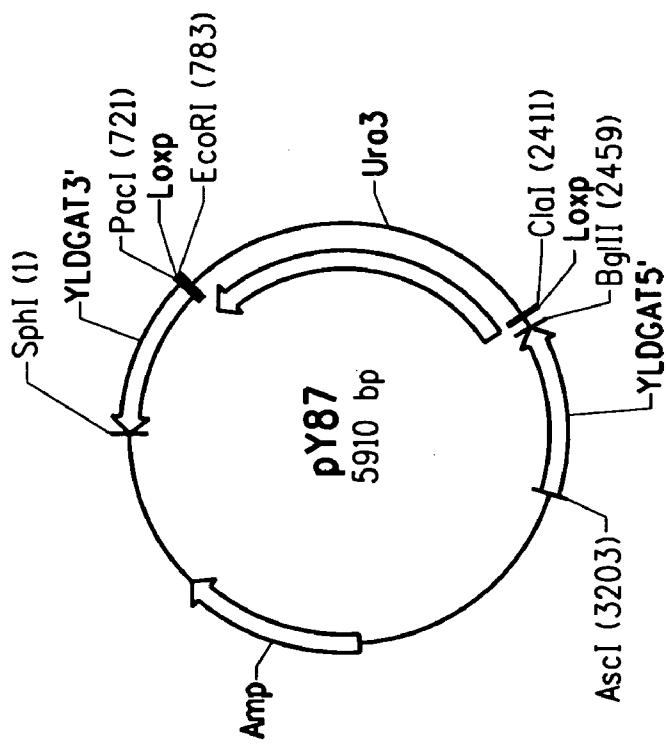


FIG. 12A

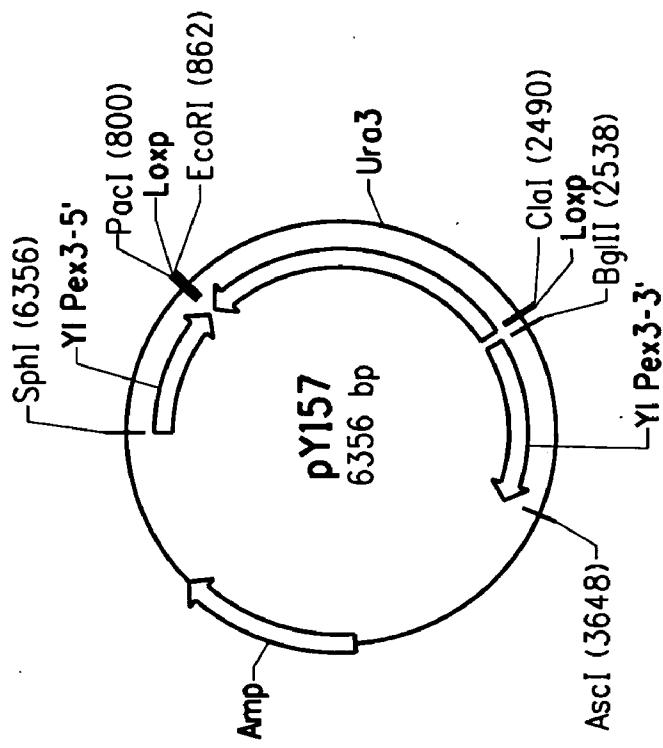


FIG. 12B

**PEROXISOME BIOGENESIS FACTOR
PROTEIN (PEX) DISRUPTIONS FOR
ALTERING POLYUNSATURATED FATTY
ACIDS AND TOTAL LIPID CONTENT IN
OLEAGINOUS EUKARYOTIC ORGANISMS**

[0001] This application claims the benefit of U.S. Provisional Applications No. 60/977,174 and No. 60/977,177, both filed Oct. 3, 2007 and both hereby incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

[0002] This invention is in the field of biotechnology. More specifically, this invention pertains to methods useful for manipulating the polyunsaturated fatty acid (PUFA) composition and lipid content of eukaryotic organisms, based on disruption of peroxisome biogenesis factor (Pex) proteins.

BACKGROUND OF THE INVENTION

[0003] The health benefits associated with polyunsaturated fatty acids [“PUFAs”], especially ω -3 and ω -6 PUFAs, have been well documented. In order to find ways to produce large-scale quantities of ω -3 and ω -6 PUFAs, researchers have directed their work toward the discovery of genes and the understanding of the encoded biosynthetic pathways that result in lipids and fatty acids.

[0004] One effort to produce these PUFAs has introduced ω -3/ ω -6 PUFA biosynthetic pathways into organisms that do not natively produce ω -3/ ω -6 PUFAs. One such organism that has been extensively manipulated is the non-oleaginous yeast, *Saccharomyces cerevisiae*. However, none of the preliminary results demonstrating limited production of linoleic acid [“LA”], γ -linolenic acid [“GLA”], α -linolenic acid [“ALA”], stearidonic acid [“STA”] and/or eicosapentaenoic acid [“EPA”] are suitable for commercial exploitation.

[0005] Other efforts to produce large-scale quantities of ω -3/ ω -6 PUFAs have cultivated microbial organisms that natively produce the fatty acid of choice, e.g., heterotrophic diatoms *Cyclotella* sp. and *Nitzschia* sp., *Pseudomonas*, *Alteromonas* or *Shewanella* species, filamentous fungi of the genus *Pythium*, or *Mortierella elongata*, *M. exigua* or *M. hygrophila*.

[0006] All these efforts suffer from an inability to substantially improve the yield of oil or to control the characteristics of the oil composition produced, since the fermentations rely on the natural abilities of the microbes themselves.

[0007] Commonly owned U.S. Pat. No. 7,238,482 describes the use of the oleaginous yeast *Yarrowia lipolytica* as a production host for the production of PUFAs. Oleaginous yeast are defined as those yeast that are naturally capable of oil synthesis and accumulation, where greater than 25% of the cellular dry weight is typical. Optimization of the production host has been described in the art (see for example Int'l. App. Pub. No. WO 2006/033723, U.S. Pat. App. Pub. No. 2006-0094092, U.S. Pat. App. Pub. No. 2006-0115881, and U.S. Pat. App. Pub. No. 2006-0110806). The recombinant strains described therein comprise various chimeric genes expressing multiple copies of heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable PUFA synthesis and accumulation. Further optimization of the host cell is needed for commercial production of PUFAs.

[0008] Lin Y. et al suggest that peroxisomes are required for both catabolic and anabolic lipid metabolism (*Plant Physiology*, 135:814-827 (2004)). However, this hypothesis was based on studies with a homolog of Pex16p in *Arabidopsis* mutants that had both abnormal peroxisome biogenesis and fatty acid synthesis (i.e., a reduction of oil to approximately 10-16% of wild type in *sse1* seeds was reported). Binns, D. et al. (*J. Cell Biol.*, 173(5):719-731 (2006)) also document an intimate collaboration between peroxisomes and lipid bodies in *Saccharomyces cerevisiae*. But, previous studies of Pex knockouts have not been performed in a PUFA-producing organism.

[0009] Applicants have solved the stated problem of optimizing host cells for commercial production of PUFAs by the unpredictable mechanism of disruption of peroxisome biogenesis factor proteins in a PUFA-producing organism, which leads to the unpredictable result of an increase in the amount of PUFAs, as a percent of total fatty acids, in a recombinant PUFA-producing strain of *Y. lipolytica*. Novel strains containing disruptions in peroxisome biogenesis factor proteins are described herein.

SUMMARY OF THE INVENTION

[0010] Described herein are methods of increasing the weight percent of at least one polyunsaturated fatty acid [“PUFA”] relative to the weight percent of total fatty acids [“TFAs”] in an oleaginous eukaryotic organism having a total lipid content, a total lipid fraction and an oil fraction, comprising:

a) providing an oleaginous eukaryotic organism comprising:

[0011] 1) genes encoding a functional polyunsaturated fatty acid biosynthetic pathway; and

[0012] 2) a disruption in a native gene encoding a peroxisome biogenesis factor protein, thereby providing a PEX-disrupted organism, and

b) growing the PEX-disrupted organism under conditions as to increase the weight percent of at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction, when compared to the weight percent of the at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction in the oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

[0013] This method of increasing may also be used to increase the percent of at least one polyunsaturated fatty acid [“PUFA”] relative to the dry cell weight [“DCW”] by applying the same steps (a) and (b).

[0014] In some of the methods described here, the weight percent of the PUFA relative to the weight percent of the TFAs is increased at least 1.3 fold.

[0015] In some of the described methods, the total lipid content in the PEX-disrupted organism may be increased or decreased compared with that of an oleaginous eukaryote having no disruption in a native PEX gene.

[0016] In any of these methods, the increased PUFA may be a single PUFA or a combination of PUFAs. In either case, the increased PUFA or increased combination of PUFAs can include linoleic acid, conjugated linoleic acid, γ -linolenic acid, dihomo- γ -linolenic acid, arachidonic acid, docosatetraenoic acid, ω -6 docosapentaenoic acid, α -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, ω -3 docosapentaenoic acid, eicosadienoic acid, eicosatrienoic acid, docosahexaenoic acid, hydroxylated or epoxy

fatty acids of these, a C₁₈ polyunsaturated fatty acid or a combination of these, a C₂₀ polyunsaturated fatty acid or a combination of these, a combination of C₂₀₋₂₂ polyunsaturated fatty acids and a C₂₂ polyunsaturated fatty acid or a combination of these.

[0017] In any of these methods, the PEX-disrupted organism may be a member of the following: *Yarrowia*, *Candida*, *Rhodotorula*, *Rhodosporidium*, *Cryptococcus*, *Trichosporon*, *Lipomyces*, *Mortierella*, *Thraustochytrium*, *Schizochytrium*, and *Saccharomyces* having the property of oleaginy. And, in any of the described methods, the PUFA biosynthetic pathway includes genes that encodes any or a combination of the following enzymes: Δ9 desaturase, Δ12 desaturase, Δ6 desaturase, Δ5 desaturase, Δ17 desaturase, Δ8 desaturase, Δ15 desaturase, Δ4 desaturase, C_{14/16} elongase, C_{16/18} elongase, C_{18/20} elongase, C_{20/22} elongase and Δ9 elongase.

[0018] The disruption may occur in a PEX gene that encodes a peroxisome biogenesis factor protein that includes the following: Pex1p, Pex 2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex5Bp, Pex5Cp, Pex5/20p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex15p, Pex16p, Pex17p, Pex14/17p, Pex18p, Pex19p, Pex20p, Pex21p, Pex21Bp, Pex22p, Pex22p-like and Pex26p. And in any of these methods, the disruption may be a gene knockout or a deletion in a portion of the gene that encodes the C-terminal portion of the protein. In some of these methods, the deletion is in the portion of the gene encoding the C-terminal portion of the C₃HC₄ zinc ring finger motif of the protein.

[0019] Also described herein is the oil fraction or the total lipid fraction in a PEX-disrupted organism, which has experienced an increase in the weight percent of at least one PUFA accomplished by the method of Claim 1. Described herein is also a PEX-disrupted *Yarrowia lipolytica*, having a disruption in a native gene encoding Pex3p or Pex10p or Pex16p. This *Y. lipolytica* may have ATCC designation ATCC PTA-8614 (strain Y4128).

Biological Deposits

[0020] The following biological materials have been deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, and bear the following designations, accession numbers and dates of deposit.

Biological Material	Accession No.	Date of Deposit
<i>Yarrowia lipolytica</i> Y2047	ATCC PTA-7186	Oct. 26, 2005
<i>Yarrowia lipolytica</i> Y2201	ATCC PTA-7185	Oct. 26, 2005
<i>Yarrowia lipolytica</i> Y2096	ATCC PTA-7184	Oct. 26, 2005
<i>Yarrowia lipolytica</i> Y3000	ATCC PTA-7187	Oct. 26, 2005
<i>Yarrowia lipolytica</i> Y4128	ATCC PTA-8614	Aug. 23, 2007
<i>Yarrowia lipolytica</i> Y4127	ATCC PTA-8802	Nov. 29, 2007

The biological materials listed above were deposited under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. The listed deposit will be maintained in the indicated international depository for at least 30 years and will be made available to the public upon the grant of a patent disclosing it. The availability of a deposit does not constitute

a license to practice the subject invention in derogation of patent rights granted by government action.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE LISTINGS

[0021] FIG. 1 consists of FIG. 1A and FIG. 1B, which together illustrate the ω-3/ω-6 fatty acid biosynthetic pathway, and should be viewed together when considering the description of this pathway below.

[0022] FIG. 2A provides an alignment of the C₃HC₄ zinc ring finger motifs of the *Yarrowia lipolytica* Pex10p (i.e., amino acids 327-364 of SEQ ID NO:10 [GenBank Accession No. CAG81606]), the *Yarrowia lipolytica* Pex2p (i.e., amino acids 266-323 of SEQ ID NO:2 [GenBank Accession No. CAG77647]) and the *Yarrowia lipolytica* Pex12p (i.e., amino acids 342-391 of SEQ ID NO:11 [GenBank Accession No. CAG81532]), with cysteine and histidine residues of the conserved C₃HC₄ zinc ring finger motif indicated by asterisks.

[0023] FIG. 2B schematically illustrates the proposed interaction between various amino acid residues of the *Y. lipolytica* Pex10p C₃HC₄ finger motif and the two zinc ions to which they bind.

[0024] FIG. 3A diagrams the development of *Yarrowia lipolytica* strain Y4128, producing 37.6% EPA in the total lipid fraction.

[0025] FIG. 3B provides a plasmid map for pZP3-Pa777U.

[0026] FIG. 4 provides plasmid maps for the following: (A) pY117; and, (B) pZP2-2988.

[0027] FIG. 5 provides plasmid maps for the following: (A) pZKUE3S; and, (B) pFBAIN-MOD-1.

[0028] FIG. 6 provides plasmid maps for the following: (A) pFBAIN-PEX10; and, (B) pEXP-MOD-1.

[0029] FIG. 7A provides a plasmid map for pPEX10-1. FIG. 7B diagrams the development of *Yarrowia lipolytica* strain Y4184U.

[0030] FIG. 8 provides plasmid maps for the following: (A) pZKL1-2SP98C; and, (B) pZKL2-5U89GC.

[0031] FIG. 9 provides plasmid maps for the following: (A) pYPS161; and, (B) pYRH13.

[0032] FIG. 10 diagrams the development of *Yarrowia lipolytica* strain Y4305U3.

[0033] FIG. 11 provides plasmid maps for the following: (A) pZKUM; and, (B) pZKD2-5U89A2.

[0034] FIG. 12 provides plasmid maps for the following: (A) pY87; and, (B) pY157.

[0035] The invention can be more fully understood from the following detailed description and the accompanying sequence descriptions, which form a part of this application.

[0036] The following sequences comply with 37 C.F.R. §1.821-1.825 ("Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures—the Sequence Rules") and are consistent with World Intellectual Property Organization (WIPO) Standard ST.25 (1998) and the sequence listing requirements of the EPO and PCT (Rules 5.2 and 49.5(a-bis), and Section 208 and Annex C of the Administrative Instructions). The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

[0037] SEQ ID NOS:1-86 are primers, ORFs encoding genes or proteins (or portions thereof, or plasmids, as identified in Table 1.

TABLE 1

Summary Of Nucleic Acid And Protein SEQ ID Numbers

Description and Abbreviation	Nucleic acid SEQ ID NO.	Protein SEQ ID NO.
<i>Yarrowia lipolytica</i> Pex1p (GenBank Accession No. CAG82178)	—	1 (1024 AA)
<i>Yarrowia lipolytica</i> Pex2p (GenBank Accession No. CAG77647)	—	2 (381 AA)
<i>Yarrowia lipolytica</i> Pex3p (GenBank Accession No. CAG78565)	—	3 (431 AA)
<i>Yarrowia lipolytica</i> Pex3Bp (GenBank Accession No. CAG83356)	—	4 (395 AA)
<i>Yarrowia lipolytica</i> Pex4p (GenBank Accession No. CAG79130)	—	5 (153 AA)
<i>Yarrowia lipolytica</i> Pex5p (GenBank Accession No. CAG78803)	—	6 (598 AA)
<i>Yarrowia lipolytica</i> Pex6p (GenBank Accession No. CAG82306)	—	7 (1024 AA)
<i>Yarrowia lipolytica</i> Pex7p (GenBank Accession No. CAG78389)	—	8 (356 AA)
<i>Yarrowia lipolytica</i> Pex8p (GenBank Accession No. CAG80447)	—	9 (671 AA)
<i>Yarrowia lipolytica</i> Pex10p (GenBank Accession No. CAG81606)	—	10 (377 AA)
<i>Yarrowia lipolytica</i> Pex12p (GenBank Accession No. CAG81532)	—	11 (408 AA)
<i>Yarrowia lipolytica</i> Pex13p (GenBank Accession No. CAG81789)	—	12 (412 AA)
<i>Yarrowia lipolytica</i> Pex14p (GenBank Accession No. CAG79323)	—	13 (380 AA)
<i>Yarrowia lipolytica</i> Pex16p (GenBank Accession No. CAG79622)	—	14 (391 AA)
<i>Yarrowia lipolytica</i> Pex17p (GenBank Accession No. CAG84025)	—	15 (225 AA)
<i>Yarrowia lipolytica</i> Pex19p (GenBank Accession No. AAK84827)	—	16 (324 AA)
<i>Yarrowia lipolytica</i> Pex20p (GenBank Accession No. CAG79226)	—	17 (417 AA)
<i>Yarrowia lipolytica</i> Pex22p (GenBank Accession No. CAG77876)	—	18 (195 AA)
<i>Yarrowia lipolytica</i> Pex26p (GenBank Accession No. NC_006072, antisense translation of nucleotides 117230-118387)	—	19 (386 AA)
Contig comprising <i>Yarrowia lipolytica</i> Pex10 gene encoding peroxisomal biogenesis factor protein (Pex10p) (GenBank Accession No. AB036770)	20 (3387 bp)	—
<i>Yarrowia lipolytica</i> Pex10 (GenBank Accession No. AB036770, nucleotides 1038-2171) (the protein sequence is 100% identical to SEQ ID NO: 10)	21 (1134 bp)	22 (377 AA)
<i>Yarrowia lipolytica</i> Pex10 (GenBank Accession No. AJ012084, which corresponds to nucleotides 1107-2171 of GenBank Accession No. AB036770) (the first 23 amino acids are truncated with respect to the protein sequences of SEQ ID NOs: 10 and 22)	23 (1065 bp)	24 (354 AA)
<i>Yarrowia lipolytica</i> Pex10p C ₄ HC ₄ zinc ring finger motif (i.e., amino acids 327-364 of SEQ ID NO: 10)	—	25 (38 AA)
<i>Yarrowia lipolytica</i> truncated Pex10p (GenBank Accession No. CAG81606 [SEQ ID NO: 10], with C-terminal 32 amino acid deletion)	—	26 (345 AA)
<i>Yarrowia lipolytica</i> mutant acetohydroxyacid synthase (AHAS) gene comprising a W497L mutation	27 (2987 bp)	—
Plasmid pZP3-Pa777U	28 (13,066 bp)	—
Plasmid pY117	29 (9570 bp)	—
Plasmid pZP2-2988	30 (15,743 bp)	—

TABLE 1-continued

Summary Of Nucleic Acid And Protein SEQ ID Numbers

Description and Abbreviation	Nucleic acid SEQ ID NO.	Protein SEQ ID NO.
Plasmid pZKUE3S	31 (6303 bp)	—
Primer pZP-GW-5-1	32	—
Primer pZP-GW-5-2	33	—
Primer pZP-GW-5-3	34	—
Primer pZP-GW-5-4	35	—
Primer pZP-GW-3-1	36	—
Primer pZP-GW-3-2	37	—
Primer pZP-GW-3-3	38	—
Primer pZP-GW-3-4	39	—
Genome Walker adaptor [top strand]	40	—
Genome Walker adaptor [bottom strand]	41	—
Nested adaptor primer	42	—
Primer Per10 F1	43	—
Primer ZPGW-5-5	44	—
Primer Per10 R	45	—
Plasmid pFBAIN-MOD-1	46 (7222 bp)	—
Plasmid pFBAIN-PEX10	47 (8133 bp)	—
Primer PEX10-R-BsiWI	48	—
Primer PEX10-F1-Sall	49	—
Primer PEX10-F2-Sall	50	—
Plasmid pEXP-MOD1	51 (7277 bp)	—
Plasmid pPEX10-1	52 (7559 bp)	—
Plasmid pPEX10-2	53 (8051 bp)	—
Plasmid pZKL1-2SP98C	54 (15,877 bp)	—
Plasmid pZKL2-5U89GC	55 (15,812 bp)	—
Plasmid pYPS161	56 (7966 bp)	—
Primer Pex-10del1 3'Forward	57	—
Primer Pex-10del2 5'Reverse	58	—
Plasmid pYRH13	59 (8673 bp)	—
Primer PEX16Fii	60	—
Primer PEX16Rii	61	—
Primer 3UTR-URA3	62	—
Primer Pex16-conf	63	—
Real time PCR primer ef-324F	64	—
Real time PCR primer ef-392R	65	—
Real time PCR primer Pex16-741F	66	—
Real time PCR primer Pex16-802R	67	—
Nucleotide portion of TaqMan probe ef-345T	68	—
Nucleotide portion of TaqMan probe PEX16-760T	69	—
Plasmid pZKUM	70 (4313 bp)	—
Plasmid pZKD2-5U89A2	71 (15,966 bp)	—
<i>Yarrowia lipolytica</i> diacylglycerol acyltransferase (DGAT2) (U.S. Pat. No. 7,267,976)	72 (2119 bp)	73 (514 AA)
Synthetic Δ12 desaturase derived from <i>Fusarium moniliforme</i> , codon-optimized for expression in <i>Yarrowia lipolytica</i> ("FmD12S")	74 (1434 bp)	75 (477 AA)
Synthetic mutant Δ8 desaturase ("EgD8M"), derived from <i>Euglena gracilis</i> ("EgD8S"; U.S. Pat. No. 7,256,033)	76 (1272 bp)	77 (422 AA)
Synthetic Δ9 elongase derived from <i>Eutreptiella</i> sp. CCMP389 codon-optimized for expression in <i>Yarrowia lipolytica</i> ("E389D9eS")	78 (792 bp)	79 (263 AA)
Synthetic Δ5 desaturase derived from <i>Euglena gracilis</i> , codon-optimized for expression in <i>Yarrowia lipolytica</i> ("EgD5S")	80 (1350 bp)	81 (449 AA)

TABLE 1-continued

Summary Of Nucleic Acid And Protein SEQ ID Numbers		
Description and Abbreviation	Nucleic acid SEQ ID NO.	Protein SEQ ID NO.
Plasmid pY157	82 (6356 bp)	—
Plasmid pY87	83 (5910 bp)	—
<i>Escherichia coli</i> LoxP recombination site, recognized by a Cre recombinase enzyme	84 (34 bp)	—
Primer UP 768	85	—
Primer LP 769	86	—

DETAILED DESCRIPTION OF THE INVENTION

[0038] Described herein are generalized methods to manipulate the concentration (as a percent of total fatty acids) and content (as a percent of the dry cell weight) of long-chain polyunsaturated fatty acids ["LC-PUFAs"] in PUFA-producing eukaryotic organisms. These methods rely on disruption of a native peroxisome biogenesis factor ["Pex"] protein within the host and will have wide-spread applicability to a variety of eukaryotic organisms having native or genetically-engineered ability to produce PUFAs, including algae, fungi, oomycetes, yeast, euglenoids, stramenopiles, plants and some mammalian systems.

[0039] PUFAs, or derivatives thereof, are used as dietary substitutes, or supplements, particularly infant formulas, for patients undergoing intravenous feeding or for preventing or treating malnutrition. For example, PUFAs may be incorporated into cooking oils, fats or margarines and ingested as part of a consumer's typical diet, thereby giving the consumer desired dietary supplementation. Further, PUFAs may also be incorporated into infant formulas, nutritional supplements or other food products and may find use as anti-inflammatory or cholesterol lowering agents. Optionally, the compositions may be used for pharmaceutical use, either human or veterinary.

DEFINITIONS

[0040] In this disclosure, a number of terms and abbreviations are used.

[0041] The following definitions are provided.

[0042] "Open reading frame" is abbreviated as "ORF".

[0043] "Polymerase chain reaction" is abbreviated as "PCR".

[0044] "American Type Culture Collection" is abbreviated as "ATCC".

[0045] "Polyunsaturated fatty acid(s)" is abbreviated as "PUFA(s)".

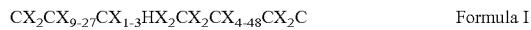
[0046] "Triacylglycerols" are abbreviated as "TAGs".

[0047] "Total fatty acids" are abbreviated as "TFAs".

[0048] "Fatty acid methyl esters" are abbreviated as "FAMEs".

[0049] "Dry cell weight" is abbreviated as "DCW".

[0050] The term "invention" or "present invention" as used herein is not meant to be limiting but applies generally to any of the inventions defined in the claims or described herein.


[0051] The term "peroxisomes" refers to ubiquitous organelles found in all eukaryotic cells. They have a single lipid bilayer membrane that separates their contents from the cytosol and that contains various membrane proteins essential

to the functions described below. Peroxisomes selectively import proteins via an "extended shuttle mechanism". More specifically, there are at least 32 known peroxisomal proteins, also known as peroxins, which participate in the process of importing proteins by means of ATP hydrolysis through the peroxisomal membrane. Some peroxins comprise a specific protein signal, i.e., a peroxisomal targeting signal or "PTS", at either the N-terminus or C-terminus to signal that importation through the peroxisomal membrane should occur. Once cellular proteins are imported into the peroxisome, they are typically subjected to some means of degradation. For example, peroxisomes contain oxidative enzymes, such as catalase, D-amino acid oxidase and uric acid oxidase, that enable degradation of substances that are toxic to the cell. Alternatively, peroxisomes breakdown fatty acid molecules to produce free molecules of acetyl-CoA which are exported back to the cytosol, in a process called β -oxidation.

[0052] The terms "peroxisome biogenesis factor protein", "peroxin" and "Pex protein" are interchangeable and refer to proteins involved in peroxisome biogenesis and/or that participate in the process of importing cellular proteins by means of ATP hydrolysis through the peroxisomal membrane. The acronym of a gene that encodes any of these proteins is "Pex gene". A system for nomenclature of Pex genes is described by Distel et al., *J. Cell Biol.*, 135:1-3 (1996). At least 32 different Pex genes have been identified so far in various eukaryotic organisms. Many Pex genes have been isolated from the analysis of mutants that demonstrated abnormal peroxisomal functions or structures. Based on a review by Kiel, J. A. K. W., et al. (*Traffic*, 7:1291-1303 (2006)), wherein in silico analysis of the genomic sequences of 17 different fungal species was performed, the following Pex proteins were identified: Pex1p, Pex2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex5Bp, Pex5Cp, Pex5/20p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex15p, Pex16p, Pex17p, Pex14/17p, Pex18p, Pex19p, Pex20p, Pex21p, Pex21Bp, Pex22p, Pex22p-like and Pex26p. Thus, each of these proteins is referred to herein as a "Pex protein", a "peroxin" or a "peroxisome biogenesis factor protein", and is encoded by at least one "Pex gene".

[0053] The term "conserved domain" or "motif" refers to a set of amino acids conserved at specific positions along an aligned sequence of evolutionarily related proteins. While amino acids at other positions can vary between homologous proteins, amino acids that are highly conserved at specific positions indicate amino acids that are essential in the structure, the stability, or the activity of a protein. Because they are identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers, or "signatures", to determine if a protein with a newly determined sequence belongs to a previously identified protein family. Of relevance herein, Pex2p, Pex10p and Pex12p all share a cysteine-rich motif near their carboxyl termini, known as a C_3HC_4 zinc ring finger motif. This motif appears to be required for their activities, involved in protein docking and translocation into the peroxisome (Kiel, J. A. K. W., et al., *Traffic*, 7:1291-1303 (2006)).

[0054] The term " C_3HC_4 zinc ring finger motif" or " C_3HC_4 motif" generically refers to a conserved cysteine-rich motif that binds two zinc ions, identified by the presence of a sequence of amino acids as set forth in Formula I:

The C_3HC_4 zinc ring finger motif within the *Yarrowia lipolytica* gene encoding the peroxisome biogenesis factor 10 protein, i.e., YIPex10p, is located between amino acids 327-364 of SEQ ID NO:10 and is defined by a $CX_2CX_{11}CX_1HX_2CX_2CX_{10}CX_2C$ motif (SEQ ID NO:25). The C_3HC_4 zinc ring finger motif within the *Y. lipolytica* gene

encoding the peroxisome biogenesis factor 2 protein, i.e., YIPex2p, is located between amino acids 266-323 of SEQ ID NO:2. The *Y. lipolytica* peroxisome biogenesis factor 12 protein, i.e., YIPex12p, contains an imperfect C₃HC₄ ring-finger motif located between amino acids 342-391 of SEQ ID NO:11. The protein sequences corresponding to the C₃HC₄ zinc ring finger motif of YIPex10, YIPex2 and YIPex12 are aligned in FIG. 2A; asterisks denote the conserved cysteine or histidine residues of the motif.

[0055] YIPex10, YIPex2 and YIPex12 are thought to form a ring finger complex by protein-protein interaction. The proposed interaction between the cystine and histidine residues of the YIPex10p C₃HC₄ finger motif with two zinc residues is schematically diagrammed in FIG. 2B.

[0056] The term "Pex10" refers to the gene encoding the peroxisome biogenesis factor 10 protein or peroxisomal assembly protein Peroxin 10, wherein the peroxin protein is hereinafter referred to as "Pex10p". The function of Pex10p has not been clearly elucidated, although studies in other organisms have revealed that Pex10 products are localized in the peroxisomal membrane and are essential to the normal functioning of the organelle. A C₃HC₄ zinc ring finger motif appears to be conserved in the C-terminal region of Pex10p (Kalish, J. E. et al., *Mol. Cell. Biol.*, 15:6406-6419 (1995); Tan, X. et al., *J. Cell Biol.*, 128:307-319 (1995); Warren, D. S., et al., *Am. J. Hum. Genet.*, 63:347-359 (1998)) and is required for enzymatic activity.

[0057] The term "YIPex10" refers to the *Yarrowia lipolytica* gene encoding the peroxisome biogenesis factor 10 protein, wherein the protein is hereinafter referred to as "YIPex10p". This particular peroxin was recently studied by Sumita et al. (*FEMS Microbiol. Lett.*, 214:31-38 (2002)). The nucleotide sequence of YIPex10 was registered in GenBank under multiple accession numbers, including GenBank Accession No. CAG81606 (SEQ ID NO:10), No. AB036770 (SEQ ID Nos:20, 21 and 22) and No. AJ012084 (SEQ ID Nos:23 and 24). The YIPex10p sequence set forth in SEQ ID NO:24 is 354 amino acids in length. In contrast, the YIPex10p sequences set forth in SEQ ID NO:10 and SEQ ID NO:22 are each 377 amino acids in length, as the 100% identical sequences possess an additional 23 amino acids at the N-terminus of the protein (corresponding to a different start codon than that identified in GenBank Accession No. AJ012084 (SEQ ID NO:24)).

[0058] The term "Pex3" refers to the gene encoding the peroxisome biogenesis factor 3 protein or peroxisomal assembly protein Peroxin 3, wherein the peroxin protein is hereinafter referred to as "Pex3p". Although mechanistic details concerning the function of Pex3p have not been clearly resolved, it is clear that Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis for formation of the peroxisomal membrane (see, e.g., Baerends, R. J. et al., *J. Biol. Chem.*, 271:8887-8894 (1996); Bascom, R. A. et al., *Mol. Biol. Cell*, 14:939-957 (2003)).

[0059] The term "YIPex3" refers to the *Yarrowia lipolytica* gene encoding the peroxisome biogenesis factor 3 protein, wherein the protein is hereinafter referred to as "YIPex3p". The nucleotide sequence of YIPex3 was registered in GenBank as Accession No. CAG78565 (SEQ ID NO:3).

[0060] The term "Pex16" refers to the gene encoding the peroxisome biogenesis factor 16 protein or peroxisomal assembly protein Peroxin 16, wherein the peroxin protein is hereinafter referred to as "Pex16p". The function of Pex16p has not been clearly elucidated, although studies in various

organisms have revealed that Pex16 products play a role in the formation of the peroxisomal membrane and regulation of peroxisomal proliferation (Platta, H. W. and R. Erdmann, *Trends Cell Biol.*, 17(10):474-484 (2007)).

[0061] The term "YIPex16" refers to the *Yarrowia lipolytica* gene encoding the peroxisome biogenesis factor 16 protein, wherein the protein is hereinafter referred to as "YIPex16p". This particular peroxin was described by Elizan G. A., et al. (*J. Cell Biol.*, 137:1265-1278 (1997)) and Titorenko, V. I. et al. (*Mol. Cell. Biol.*, 17:5210-5226 (1997)). The nucleotide sequence of YIPex16 was registered in GenBank as Accession No. CAG79622 (SEQ ID NO:14).

[0062] The term "disruption" in or in connection with a native Pex gene refers to an insertion, deletion, or targeted mutation within a portion of that gene, that results in either a complete gene knockout such that the gene is deleted from the genome and no protein is translated or a translated Pex protein having an insertion, deletion, amino acid substitution or other targeted mutation. The location of the disruption in the protein may be, for example, within the N-terminal portion of the protein or within the C-terminal portion of the protein. The disrupted Pex protein will have impaired activity with respect to the Pex protein that was not disrupted, and can be non-functional. A disruption in a native gene encoding a Pex protein also includes alternate means that result in low or lack of expression of the Pex protein, such as could result via manipulating the regulatory sequences, transcription and translation factors and/or signal transduction pathways or by use of sense, antisense or RNAi technology, etc.

[0063] As used herein, the term "Pex-disrupted organism" refers to any oleaginous eukaryotic organism comprising genes that encode a functional polyunsaturated fatty acid biosynthetic pathway and having a disruption, as defined above, in a native gene that encodes a peroxisome biogenesis factor protein,

[0064] The term "lipids" refer to any fat-soluble (i.e., lipophilic), naturally-occurring molecule. Lipids are a diverse group of compounds that have many key biological functions, such as structural components of cell membranes, energy storage sources and intermediates in signaling pathways. Lipids may be broadly defined as hydrophobic or amphiphilic small molecules that originate entirely or in part from either ketoacyl or isoprene groups. A general overview of lipids, based on the Lipid Metabolites and Pathways Strategy (LIPID MAPS) classification system (National Institute of General Medical Sciences, Bethesda, Md.), is shown below in Table 2.

Table 2

Overview of Lipid Classes

[0065]

Structural Building Block	Lipid Category	Examples Of Lipid Classes
Derived from condensation of ketoacyl	Fatty Acyls	Includes fatty acids, eicosanoids, fatty esters and fatty amides
	Glycerolipids	Includes mainly of mono-, di- and tri-substituted glycerols, the most well-known being the fatty acid esters of glycerol ["triacylglycerols"]

-continued

Structural Building Block	Lipid Category	Examples Of Lipid Classes
	Glycero-phospholipids or Phospholipids	Includes phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidic acids
	Sphingolipids	Includes ceramides, phosphosphingolipids (e.g., sphingomyelins), glycosphingolipids (e.g., gangliosides), sphingosine, cerebrosides
	Saccharolipids	Includes acylaminosugars, acylaminosugar glycans, acyltrehaloses, acyltrehalose glycans
	Polyketides	Includes halogenated acetogenins, polyenes, linear tetracyclines, polyether antibiotics, flavonoids, aromatic polyketides
Derived from condensation of isoprene subunits	Sterol Lipids	Includes sterols (e.g., cholesterol), C18 sterols (e.g., estrogens), C19 sterols (e.g., androgens), C21 sterols (e.g., progestogens, glucocorticoids and mineral-ocorticoids), secosteroids, bile acids
	Prenol Lipids	Includes isoprenoids, carotenoids, quinones, hydroquinones, polyprenols, hopanoids

[0066] The term “total lipid fraction” of cells herein refers to all esterified fatty acids of the cell. Various subfractions within the total lipid fraction can be isolated, including the triacylglycerol [“oil”] fraction, phosphatidylcholine fraction and the phosphatidylethanolamine fraction, although this is by no means inclusive of all sub-fractions.

[0067] “Lipid bodies” refer to lipid droplets that are bound by a monolayer of phospholipid and, usually, by specific proteins. These organelles are sites where most organisms transport/store neutral lipids. Lipid bodies are thought to arise from microdomains of the endoplasmic reticulum that contain TAG biosynthesis enzymes. Their synthesis and size appear to be controlled by specific protein components.

[0068] “Neutral lipids” refer to those lipids commonly found in cells in lipid bodies as storage fats and oils and are so called because at cellular pH, the lipids bear no charged groups. Generally, they are completely non-polar with no affinity for water. Neutral lipids generally refer to mono-, di-, and/or triesters of glycerol with fatty acids, also called monoacylglycerol, diacylglycerol or triacylglycerol, respectively, or collectively, acylglycerols. A hydrolysis reaction must occur to release free fatty acids from acylglycerols.

[0069] The terms “triacylglycerols” [“TAGs”] and “oil” are interchangeable and refer to neutral lipids composed of three fatty acyl residues esterified to a glycerol molecule. TAGs can contain long chain PUFAs, as well as shorter saturated and unsaturated fatty acids and longer chain saturated fatty acids. The TAG fraction of cells is also referred to as the “oil fraction”, and “oil biosynthesis” generically refers to the synthesis of TAGs in the cell. The oil or TAG fraction is a sub-fraction of the total lipid fraction, although also it constitutes a major part of the total lipid content, measured as the weight of total fatty acids in the cell as a percent of the dry cell weight [see below], in oleaginous organisms. The fatty acid composition in the oil [“TAG”] fraction and the fatty acid composition of the total lipid fraction are generally similar. Thus, an increase or decrease in the concentration of PUFAs in the total

lipid fraction will correspond with an increase or decrease in the concentration of PUFAs in the oil [“TAG”] fraction, and vice versa.

[0070] The term “total fatty acids” [“TFAs”] herein refer to the sum of all cellular fatty acids that can be derivatized to fatty acid methyl esters [“FAMEs”] by the base transesterification method (as known in the art) in a given sample, which may be the total lipid fraction or the oil fraction, for example. Thus, total fatty acids include fatty acids from neutral and polar lipid fractions, including the phosphatidylcholine fraction, the phosphatidylethanolamine fraction and the diacylglycerol, monoacylglycerol and triacylglycerol [“TAG or oil”] fractions but not free fatty acids.

[0071] The term “total lipid content” of cells is a measure of TFAs as a percent of the dry cell weight [“DCW”]. Thus, total lipid content [“TFAs % DCW”] is equivalent to, e.g., milligrams of total fatty acids per 100 milligrams of DCW.

[0072] Generally, the concentration of a fatty acid is expressed herein as a weight percent of TFAs [“% TFAs”], e.g., milligrams of the given fatty acid per 100 milligrams of TFAs. Unless otherwise specifically stated in the disclosure herein, reference to the percent of a given fatty acid with respect to total lipids is equivalent to concentration of the fatty acid as % TFAs (e.g., % EPA of total lipids is equivalent to EPA % TFAs).

[0073] In some cases, it is useful to express the content of a given fatty acid(s) in a cell as its percent of the dry cell weight [“% DCW”]. Thus, for example, eicosapentaenoic acid % DCW would be determined according to the following formula: (eicosapentaenoic acid % TFAs)*(TFA % DCW)/100.

[0074] The terms “lipid profile” and “lipid composition” are interchangeable and refer to the amount of an individual fatty acid contained in a particular lipid fraction, such as in the total lipid fraction or the oil [“TAG”] fraction, wherein the amount is expressed as a percent of TFAs. The sum of each individual fatty acid present in the mixture should be 100.

[0075] As used herein, the term “fold increase” refers to an increase obtained by multiplying by a number. For example, multiplying by 1.3 a quantity, an amount, a concentration, a weight percent, etc. provides a 1.3 fold increase.

[0076] The term “fatty acids” refers to long chain aliphatic acids (alkanoic acids) of varying chain lengths, from about C₁₂ to C₂₂, although both longer and shorter chain-length acids are known. The predominant chain lengths are between C₁₆ and C₂₂. The structure of a fatty acid is represented by a simple notation system of “X:Y”, where X is the total number of carbon [“C”] atoms in the particular fatty acid and Y is the number of double bonds. Additional details concerning the differentiation between “saturated fatty acids” versus “unsaturated fatty acids”, “monounsaturated fatty acids” versus “polyunsaturated fatty acids” [“PUFAs”], and “omega-6 fatty acids” [“ω-6” or “n-6”] versus “omega-3 fatty acids” [“ω-3” or “n-3”] are provided in U.S. Pat. No. 7,238,482, which is hereby incorporated herein by reference.

[0077] Nomenclature used to describe PUFAs herein is given in Table 3. In the column titled “Shorthand Notation”, the omega-reference system is used to indicate the number of carbons, the number of double bonds and the position of the double bond closest to the omega carbon, counting from the omega carbon, which is numbered 1 for this purpose. The remainder of the Table summarizes the common names of ω-3 and ω-6 fatty acids and their precursors, the abbreviations that are used throughout the specification and the chemical name of each compound.

TABLE 3

Nomenclature of Polyunsaturated Fatty Acids And Precursors			
Common Name	Abbreviation	Chemical Name	Shorthand Notation
Myristic	—	Tetradecanoic	14:0
Palmitic	Palmitate	Hexadecanoic	16:0
Palmitoleic	—	9-hexadecenoic	16:1
Stearic	—	Octadecanoic	18:0
Oleic	—	cis-9-octadecenoic	18:1
Linoleic	LA	cis-9,12-octadecadienoic	18:2 ω-6
γ-Linolenic	GLA	cis-6,9,12-octadecatrienoic	18:3 ω-6
Eicosadienoic	EDA	cis-11,14-eicosadienoic	20:2 ω-6
Dihomo-γ-Linolenic	DGLA	cis-8,11,14-eicosatrienoic	20:3 ω-6
Arachidonic	ARA	cis-5,8,11,14-eicosatetraenoic	20:4 ω-6
α-Linolenic	ALA	cis-9,12,15-octadecatrienoic	18:3 ω-3
Stearidonic	STA	cis-6,9,12,15-octadecatetraenoic	18:4 ω-3
Eicosatrienoic	ETrA	cis-11,14,17-eicosatrienoic	20:3 ω-3
Sciadonic	SCI	cis-5,11,14-eicosatetraenoic	20:3b ω-6
Juniperonic	JUP	cis-5,11,14,17-eicosatetraenoic	20:4b ω-3
Eicosa-tetraenoic	ETA	cis-8,11,14,17-eicosatetraenoic	20:4 ω-3
Eicosa-pentaenoic	EPA	cis-5,8,11,14,17-eicosapentaenoic	20:5 ω-3
Docosatrienoic	DRA	cis-10,13,16-docosatrienoic	22:3 ω-3
Docosa-tetraenoic	DTA	cis-7,10,13,16-docosatetraenoic	22:4 ω-3
Docosa-pentaenoic	DPAn-6	cis-4,7,10,13,16-docosapentaenoic	22:5 ω-6
Docosa-pentaenoic	DPA	cis-7,10,13,16,19-docosapentaenoic	22:5 ω-3
Docosa-hexaenoic	DHA	cis-4,7,10,13,16,19-docosahexaenoic	22:6 ω-3

Although the ω-3/ω-6 PUFAs listed in Table 3 are the most likely to be accumulated in the oil fractions of oleaginous yeast using the methods described herein, this list should not be construed as limiting or as complete.

[0078] As used herein, the terms “a combination of polyunsaturated fatty acids” or “any combination of polyunsaturated fatty acids” refers to a mixture of any two or more of the polyunsaturated fatty acids listed above in Table 3. Such combination has the attributes of a concentration and of a weight percent that can be measured relative to a variety of concentrations or weight percents in the cell, including relative to the weight percent of the total fatty acids in the cell.

[0079] A metabolic pathway, or biosynthetic pathway, in a biochemical sense, can be regarded as a series of chemical reactions occurring in order within a cell, catalyzed by enzymes, to achieve either the formation of a metabolic product to be used or stored by the cell, or the initiation of another metabolic pathway, which is termed “flux generating step”. Many of these pathways are elaborate, and involve a step by step modification of the initial substance to shape it into a product having the exact chemical structure desired.

[0080] The term “PUFA biosynthetic pathway” refers to a metabolic process that converts oleic acid to ω-6 fatty acids such as LA, EDA, GLA, DGLA, ARA, DRA, DTA and DPAn-6 and ω-3 fatty acids such as ALA, STA, ETrA, ETA, EPA, DPA and DHA. This process is well described in the

literature. See e.g., Int’l. App. Pub. No. WO 2006/052870. Briefly, this process involves elongation of the carbon chain through the addition of carbon atoms and desaturation of the elongated molecule through the addition of double bonds, via a series of special elongation and desaturation enzymes termed “PUFA biosynthetic pathway enzymes” that are present in the endoplasmic reticulum membrane. More specifically, “PUFA biosynthetic pathway enzymes” refer to any of the following enzymes (and genes which encode them) associated with the biosynthesis of a PUFA, including: a Δ4 desaturase, a Δ5 desaturase, a Δ6 desaturase, a Δ12 desaturase, a Δ15 desaturase, a Δ17 desaturase, a Δ9 desaturase, a Δ8 desaturase, a Δ9 elongase, a C_{14/16} elongase, a C_{16/18} elongase, a C_{18/20} elongase and/or a C_{20/22} elongase.

[0081] The term “ω-3/ω-6 fatty acid biosynthetic pathway” refers to a set of genes which, when expressed under the appropriate conditions, encode enzymes that catalyze the production of either or both ω-3 and ω-6 fatty acids. Typically the genes involved in the ω-3/ω-6 fatty acid biosynthetic pathway encode PUFA biosynthetic pathway enzymes. A representative pathway is illustrated in FIG. 1, providing for the conversion of myristic acid through various intermediates to DHA, which demonstrates how both ω-3 and ω-6 fatty acids may be produced from a common source. The pathway is naturally divided into two portions, such that one portion generates only ω-3 fatty acids and the other portion, only ω-6 fatty acids. That portion that generates only ω-3 fatty acids is referred to herein as the ω-3 fatty acid biosynthetic pathway, whereas that portion that generates only ω-6 fatty acids is referred to herein as the ω-6 fatty acid biosynthetic pathway.

[0082] The term “functional” as used herein relating to the ω-3/ω-6 fatty acid biosynthetic pathway, means that some (or all) of the genes in the pathway express active enzymes, resulting in *in vivo* catalysis or substrate conversion. It should be understood that “ω-3/ω-6 fatty acid biosynthetic pathway” or “functional ω-3/ω-6 fatty acid biosynthetic pathway” does not imply that all of the genes listed in the above paragraph are required, as a number of fatty acid products require only the expression of a subset of the genes of this pathway.

[0083] The term “Δ6 desaturase/Δ6 elongase pathway” refers to a PUFA biosynthetic pathway that minimally includes at least one Δ6 desaturase and at least one C_{16/20} elongase, thereby enabling biosynthesis of DGLA and/or ETA from LA and ALA, respectively, with GLA and/or STA as intermediate fatty acids. With expression of other desaturases and elongases, ARA, EPA, DPA and DHA may also be synthesized.

[0084] The term “Δ9 elongase/Δ8 desaturase pathway” refers to a PUFA biosynthetic pathway that minimally includes at least one Δ9 elongase and at least one Δ8 desaturase, thereby enabling biosynthesis of DGLA and/or ETA from LA and ALA, respectively, with EDA and/or ETrA as intermediate fatty acids. With expression of other desaturases and elongases, ARA, EPA, DPA and DHA may also be synthesized.

[0085] The term “desaturase” refers to a polypeptide that can desaturate adjoining carbons in a fatty acid by removing a hydrogen from one of the adjoining carbons and thereby introducing a double bond between them. Desaturation produces a fatty acid or precursor of interest. Despite use of the omega-reference system throughout the specification to refer to specific fatty acids, it is more convenient to indicate the activity of a desaturase by counting from the carboxyl end of the substrate using the delta-system. Of particular interest

herein are: 1) $\Delta 5$ desaturases that catalyze the conversion of the substrate fatty acid, DGLA, to ARA and/or of the substrate fatty acid, ETA, to EPA; 2) $\Delta 17$ desaturases that desaturate a fatty acid between the 17th and 18th carbon atom numbered from the carboxyl-terminal end of the molecule and which, for example, catalyze the conversion of the substrate fatty acid, ARA, to EPA and/or the conversion of the substrate fatty acid, DGLA, to ETA; 3) $\Delta 6$ desaturases that catalyze the conversion of the substrate fatty acid, LA, to GLA and/or the conversion of the substrate fatty acid, ALA, to STA; 4) $\Delta 12$ desaturases that catalyze the conversion of the substrate fatty acid, oleic acid, to LA; 5) $\Delta 15$ desaturases that catalyze the conversion of the substrate fatty acid, LA, to ALA and/or the conversion of the substrate fatty acid, GLA, to STA; 6) $\Delta 4$ desaturases that catalyze the conversion of the substrate fatty acid, DPA, to DHA and/or the conversion of the substrate fatty acid, DTA, to DPAn-6; 7) $\Delta 8$ desaturases that catalyze the conversion of the substrate fatty acid, EDA, to DGLA and/or the conversion of the substrate fatty acid, ETrA, to ETA; and, 8) $\Delta 9$ desaturases that catalyze the conversion of the substrate fatty acid, palmitate, to palmitoleic acid (16:1) and/or the conversion of the substrate fatty acid, stearic acid, to oleic acid. $\Delta 15$ and $\Delta 17$ desaturases are also occasionally referred to as “omega-3 desaturases”, “w-3 desaturases”, and/or “ ω -3 desaturases”, based on their ability to convert ω -6 fatty acids into their ω -3 counterparts (e.g., conversion of LA into ALA and ARA into EPA, respectively). It may be desirable to empirically determine the specificity of a particular fatty acid desaturase by transforming a suitable host with the gene for the fatty acid desaturase and determining its effect on the fatty acid profile of the host.

[0086] The term “elongase” refers to a polypeptide that can elongate a fatty acid carbon chain to produce an acid 2 carbons longer than the fatty acid substrate that the elongase acts upon. This process of elongation occurs in a multi-step mechanism in association with fatty acid synthase, as described in U.S. Pat. App. Pub. No. 2005/0132442 and Int'l App. Pub. No. WO 2005/047480. Examples of reactions catalyzed by elongase systems are the conversion of GLA to DGLA, STA to ETA and EPA to DPA. In general, the substrate selectivity of elongases is somewhat broad but segregated by both chain length and the degree and type of unsaturation. For example, a C_{14/16} elongase utilizes a C₁₄ substrate e.g., myristic acid, a C_{16/18} elongase utilizes a C₁₆ substrate e.g., palmitate, a C_{18/20} elongase [also known as a $\Delta 6$ elongase as the terms can be used interchangeably] utilizes a C₁₈ substrate e.g., GLA or STA, and a C_{20/22} elongase utilizes a C₂₀ substrate e.g., EPA. In like manner, a $\Delta 9$ elongase is able to catalyze the conversion of LA and ALA to EDA and ETrA, respectively. It is important to note that some elongases have broad specificity and thus a single enzyme may be capable of catalyzing several elongase reactions. For example a single enzyme may thus act as both a C_{16/18} elongase and a C_{18/20} elongase.

[0087] The terms “conversion efficiency” and “percent substrate conversion” refer to the efficiency by which a particular enzyme, such as a desaturase, can convert substrate to product. The conversion efficiency is measured according to the following formula: $([\text{product}]/[\text{substrate}+\text{product}]) \times 100$, where ‘product’ includes the immediate product and all products in the pathway derived from it.

[0088] The term “oleaginous” refers to those organisms that tend to store their energy source in the form of oil (Weete, In: *Fungal Lipid Biochemistry*, 2nd Ed., Plenum, 1980).

[0089] The term “oleaginous yeast” refers to those micro-organisms classified as yeasts that can make oil, that is, TAGs. Generally, the cellular oil or TAG content of oleaginous microorganisms follows a sigmoid curve, wherein the concentration of lipid increases until it reaches a maximum at the late logarithmic or early stationary growth phase and then gradually decreases during the late stationary and death phases (Yongmanitchai and Ward, *Appl. Environ. Microbiol.*, 57:419-25 (1991)). Oleaginous microorganisms as referred to herein typically accumulate in excess of about 25% of their dry cell weight as oil or TAGs. Examples of oleaginous yeast include, but are not limited to, the following genera: *Yarrowia*, *Candida*, *Rhodotorula*, *Rhodosporidium*, *Cryptococcus*, *Trichosporon* and *Lipomyces*.

[0090] As used herein, the terms “isolated nucleic acid fragment” and “isolated nucleic acid molecule” are used interchangeably and refer to a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.

[0091] A nucleic acid fragment is “hybridizable” to another nucleic acid fragment, such as a cDNA, genomic DNA, or RNA molecule, when a single-stranded form of the nucleic acid fragment can anneal to the other nucleic acid fragment under the appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known and exemplified in Sambrook, J., Fritsch, E. F. and Maniatis, T. *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1989), which is hereby incorporated herein by reference, particularly Chapter 11 and Table 11.1.

[0092] A “substantial portion” of an amino acid or nucleotide sequence is that portion comprising enough of the amino acid sequence of a polypeptide or the nucleotide sequence of a gene to putatively identify that polypeptide or gene, either by manual evaluation of the sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., *J. Mol. Biol.*, 215:403-410 (1993)). In general, a sequence of ten or more contiguous amino acids or of thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation, such as *in situ* hybridization of microbial colonies or bacteriophage plaques. In addition, short oligonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a “substantial portion” of a nucleotide sequence comprises enough of the sequence to specifically identify and/or isolate a nucleic acid fragment comprising the sequence.

[0093] The term “complementary” is used to describe the relationship between nucleotide bases that are capable of hybridizing to one another. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine.

[0094] The terms “homology” and “homologous” are used interchangeably herein. They refer to nucleic acid fragments

wherein changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype. These terms also refer to modifications of the Pex nucleic acid fragments described herein, such as deletion or insertion of one or more nucleotides that do not substantially alter the functional properties of the resulting nucleic acid fragment relative to the initial, unmodified fragment.

[0095] Moreover, the skilled artisan recognizes that homologous nucleic acid sequences are also defined by their ability to hybridize, under moderately stringent conditions, such as 0.5×SSC, 0.1% SDS, 60° C., with the sequences exemplified herein, or to any portion of the nucleotide sequences disclosed herein and which are functionally equivalent thereto.

[0096] "Codon degeneracy" refers to the nature in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. The skilled artisan is well aware of the "codon bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a gene for improved expression in a host cell, it is desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

[0097] "Synthetic genes" can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These oligonucleotide building blocks are annealed and then ligated to form gene segments that are then enzymatically assembled to construct the entire gene. Accordingly, the genes can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell, where sequence information is available.

[0098] "Gene" refers to a nucleic acid fragment that expresses a specific protein, and which may refer to the coding region alone or may include regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers to any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, native genes introduced into a new location within the native host, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure. A "codon-optimized gene" is a gene having its frequency of codon usage designed to mimic the frequency of preferred codon usage of the host cell.

[0099] "Coding sequence" refers to a DNA sequence that codes for a specific amino acid sequence. "Suitable regulatory sequences" refer to nucleotide sequences located

upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, enhancers, silencers, 5' untranslated leader sequence (e.g., between the transcription start site and the translation initiation codon), introns, polyadenylation recognition sequences, RNA processing sites, effector binding sites and stem-loop structures.

[0100] "Promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

[0101] The terms "3' non-coding sequences" and "transcription terminator" refer to DNA sequences located downstream of a coding sequence. This includes polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The 3' region can influence the transcription, RNA processing or stability, or translation of the associated coding sequence.

[0102] "RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA" or "mRNA" refers to the RNA that is without introns and which can be translated into protein by the cell. "cDNA" refers to a double-stranded DNA that is complementary to, and derived from, mRNA. "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065; Int'l. App. Pub. No. WO 99/28508). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, or the coding sequence. "Functional RNA" refers to antisense RNA, ribozyme RNA, or other RNA that is not translated and yet has an effect on cellular processes.

[0103] The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence. That is, the coding sequence is under the transcriptional con-

tral of the promoter. Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.

[0104] The term “expression”, as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from nucleic acid fragments. Expression may also refer to translation of mRNA into a polypeptide.

[0105] “Mature” protein refers to a post-translationally processed polypeptide, i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed. “Precursor” protein refers to the primary product of translation of mRNA, i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be, but are not limited to, intracellular localization signals.

[0106] “Transformation” refers to the transfer of a nucleic acid molecule into a host organism, resulting in genetically stable inheritance. The nucleic acid molecule may be a plasmid that replicates autonomously, for example, or, it may integrate into the genome of the host organism. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” or “recombinant” or “transformed” organisms.

[0107] “Stable transformation” refers to the transfer of a nucleic acid fragment into a genome of a host organism, including both nuclear and organellar genomes, resulting in genetically stable inheritance. In contrast, “transient transformation” refers to the transfer of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without integration or stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” organisms.

[0108] The terms “plasmid” and “vector” refer to an extra chromosomal element often carrying genes that are not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA fragments. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear or circular, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction that is capable of introducing an expression cassette(s) into a cell.

[0109] The term “expression cassette” refers to a fragment of DNA comprising the coding sequence of a selected gene and regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence that are required for expression of the selected gene product. Thus, an expression cassette is typically composed of: 1) a promoter sequence; 2) a coding sequence, i.e., open reading frame [“ORF”] and, 3) a 3' untranslated region, i.e., a terminator that in eukaryotes usually contains a polyadenylation site. The expression cassette(s) is usually included within a vector, to facilitate cloning and transformation. Different expression cassettes can be transformed into different organisms including bacteria, yeast, plants and mammalian cells, as long as the correct regulatory sequences are used for each host.

[0110] The term “percent identity” refers to a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. “Identity” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the percent

age of match between compared sequences. “Percent identity” and “percent similarity” can be readily calculated by known methods, including but not limited to those described in: 1) *Computational Molecular Biology* (Lesk, A. M., Ed.) Oxford University: NY (1988); 2) *Biocomputing: Informatics and Genome Projects* (Smith, D. W., Ed.) Academic: NY (1993); 3) *Computer Analysis of Sequence Data, Part I* (Griffin, A. M., and Griffin, H. G., Eds.) Humania: NJ (1994); 4) *Sequence Analysis in Molecular Biology* (von Heijne, G., Ed.) Academic (1987); and, 5) *Sequence Analysis Primer* (Gribskov, M. and Devereux, J., Eds.) Stockton: NY (1991).

[0111] Preferred methods to determine percent identity are designed to give the best match between the sequences tested. Methods to determine percent identity and percent similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations may be performed using the MegAlign™ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignment of the sequences is performed using the “Clustal method of alignment” which encompasses several varieties of the algorithm including the “Clustal V method of alignment” and the “Clustal W method of alignment” (described by Higgins and Sharp, *CABIOS*, 5:151-153 (1989); Higgins, D. G. et al., *Comput. Appl. Biosci.*, 8:189-191 (1992)) and found in the MegAlign™ v6.1 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc.). After alignment of the sequences using either Clustal program, it is possible to obtain a “percent identity” by viewing the “sequence distances” table in the program.

[0112] It is well understood by one skilled in the art that various measures of sequence percent identity are useful in identifying polypeptides, from other species, wherein such polypeptides have the same or similar function or activity. Useful examples of percent identities include, but are not limited to, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%, or any integer percentage from 50% to 100%. Indeed, any integer amino acid identity from 50% to 100% may be useful in describing suitable nucleic acid fragments (isolated polynucleotides) encoding polypeptides in methods and host cells described herein, such as 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%. In some cases, suitable nucleic acid fragments (isolated polynucleotides) encode polypeptides that are at least about 70% identical, preferably at least about 75% identical, and more preferably at least about 80% identical to the amino acid sequences reported herein. Preferred nucleic acid fragments encode amino acid sequences that are at least about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein.

[0113] Suitable nucleic acid fragments not only have the above homologies but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 150 amino acids, still more preferably at least 200 amino acids, and most preferably at least 250 amino acids.

[0114] The term “sequence analysis software” refers to any computer algorithm or software program that is useful for the analysis of nucleotide or amino acid sequences. “Sequence analysis software” may be commercially available or independently developed. Typical sequence analysis software include, but is not limited to: 1) the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, Wis.); 2) BLASTP, BLASTN, BLASTX (Altschul et al., *J. Mol. Biol.*, 215:403-410 (1990)); 3) DNASTAR (DNASTAR, Inc. Madison, Wis.); 4) Sequencher (Gene Codes Corporation, Ann Arbor, Mich.); and, 5) the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, *Comput. Methods Genome Res.*, [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Plenum: New York, N.Y.). Within this description, whenever sequence analysis software is used for analysis, the analytical results are based on the “default values” of the program referenced, unless otherwise specified. As used herein “default values” means any set of values or parameters that originally load with the software when first initialized.

[0115] Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1989) (hereinafter “Maniatis”); by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1984); and by Ausubel, F. M. et al., *Current Protocols in Molecular Biology*, published by Greene Publishing Assoc. and Wiley-Interscience, Hoboken, N.J. (1987).

An Overview Biosynthesis of Fatty Acids and Triacylglycerols

[0116] In general, lipid accumulation in oleaginous microorganisms is triggered in response to the overall carbon to nitrogen ratio present in the growth medium. This process, leading to the de novo synthesis of free palmitate (16:0) in oleaginous microorganisms, is described in detail in U.S. Pat. No. 7,238,482. Palmitate is the precursor of longer-chain saturated and unsaturated fatty acid derivates, which are formed through the action of elongases and desaturases (FIG. 1).

[0117] TAGs, the primary storage unit for fatty acids, are formed by a series of reactions that involve: 1) esterification of one molecule of acyl-CoA to glycerol-3-phosphate via an acyltransferase to produce lysophosphatidic acid; 2) esterification of a second molecule of acyl-CoA via an acyltransferase to yield 1,2-diacylglycerol phosphate, commonly identified as phosphatidic acid; 3) removal of a phosphate by phosphatidic acid phosphatase to yield 1,2-diacylglycerol (“DAG”); and, 4) addition of a third fatty acid by the action of an acyltransferase to form the TAG.

[0118] A wide spectrum of fatty acids can be incorporated into TAGs, including saturated and unsaturated fatty acids and short-chain and long-chain fatty acids. Some non-limiting examples of fatty acids that can be incorporated into TAGs by acyltransferases include: capric (10:0), lauric (12:0), myristic (14:0), palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), vaccenic (18:1), LA (18:2), eleostearic (18:3), GLA (18:3), ALA (18:3), STA (18:4), arachidic (20:0), EDA (20:2), DGLA (20:3), ETrA (20:3), ARA (20:4), ETA (20:4), EPA (20:5), behenic (22:0), DPA (22:5), DHA (22:6), lignoceric (24:0), nervonic (24:1), cerotic (26:0) and

montanic (28:0) fatty acids. In the methods and host cells described herein, incorporation of “long-chain” PUFAs into TAGs may be most desirable, wherein long-chain PUFAs include any fatty acid derived from an 18:1 substrate having at least 18 carbons in length, i.e., C₁₈ or greater. This also includes hydroxylated fatty acids, epoxy fatty acids and conjugated linoleic acid.

[0119] Although most PUFAs are incorporated into TAGs as neutral lipids and are stored in lipid bodies, it is important to note that a measurement of the total PUFAs within an oleaginous organism should include those PUFAs that are located in the phosphatidylcholine fraction, phosphatidyl-ethanolamine fraction, and triacylglycerol, also known as the TAG or oil, fraction.

Biosynthesis of Omega Fatty Acids

[0120] The metabolic process wherein oleic acid is converted to ω-3/ω6 fatty acids involves elongation of the carbon chain through the addition of carbon atoms and desaturation of the molecule through the addition of double bonds. This requires a series of special desaturation and elongation enzymes present in the endoplasmic reticulum membrane. However, as seen in FIG. 1 and as described below, there are often multiple alternate pathways for production of a specific ω-3/ω-6 fatty acid.

[0121] Specifically, FIG. 1 depicts the pathways described below. All pathways require the initial conversion of oleic acid to linoleic acid [“LA”], the first of the ω-6 fatty acids, by a Δ12 desaturase. Then, using the “Δ6 desaturase/Δ6 elongase pathway” and LA as substrate, long-chain ω-6 fatty acids are formed as follows: 1) LA is converted to γ-linolenic acid [“GLA”] by a Δ6 desaturase; 2) GLA is converted to dihomogamma-linolenic acid [“DGLA”] by a C_{18/20} elongase; 3) DGLA is converted to arachidonic acid [“ARA”] by a Δ5 desaturase; 4) ARA is converted to docosatetraenoic acid [“DTA”] by a C_{20/22} elongase; and, 5) DTA is converted to docosapentaenoic acid [“DPA-6”] by a Δ4 desaturase.

[0122] Alternatively, the “Δ6 desaturase/Δ6 elongase pathway” can use α-linolenic acid [“ALA”] as substrate to produce long-chain ω-3 fatty acids as follows: 1) LA is converted to ALA, the first of the ω-3 fatty acids, by a Δ15 desaturase; 2) ALA is converted to stearidonic acid [“STA”] by a Δ6 desaturase; 3) STA is converted to eicosatetraenoic acid [“ETA”] by a C_{18/20} elongase; 4) ETA is converted to eicosapentaenoic acid [“EPA”] by a Δ5 desaturase; 5) EPA is converted to docosapentaenoic acid [“DPA”] by a C_{20/22} elongase; and, 6) DPA is converted to docosahexaenoic acid [“DHA”] by a Δ4 desaturase. Optionally, ω-6 fatty acids may be converted to ω-3 fatty acids. For example, ETA and EPA are produced from DGLA and ARA, respectively, by Δ17 desaturase activity.

[0123] Alternate pathways for the biosynthesis of ω-3/ω-6 fatty acids utilize Δ9 elongase and Δ8 desaturase, that is, the “Δ9 elongase/Δ8 desaturase pathway”. More specifically, LA and ALA may be converted to EDA and ETrA, respectively, by a Δ9 elongase. A Δ8 desaturase then converts EDA to DGLA and/or ETrA to ETA. Downstream PUFAs are subsequently formed as described above.

[0124] The host organism herein must possess the ability to produce PUFAs, either naturally or via techniques of genetic engineering. Although many microorganisms can synthesize PUFAs (including ω-3/ω-6 fatty acids) in the ordinary course of cellular metabolism, some of whom could be commercially cultured, few to none of these organisms produce oils

having a desired oil content and composition for use in pharmaceuticals, dietary substitutes, medical foods, nutritional supplements, other food products, industrial oleochemicals or other end-use applications. Thus, there is increasing emphasis on the ability to engineer microorganisms for production of "designer" lipids and oils, wherein the fatty acid content and composition are carefully specified by genetic engineering. On this basis, it is expected that the host likely comprises heterologous genes encoding a functional PUFA biosynthetic pathway but not necessarily.

[0125] If the host organism does not natively produce the desired PUFA or possess the desired lipid profile, one skilled in the art is familiar with the considerations and techniques necessary to introduce one or more expression cassettes encoding appropriate enzymes for PUFA biosynthesis into the host organism of choice. Numerous teachings are provided in the literature to one of skill for so introducing such expression cassettes into various host organisms. Some references using the host organism *Yarrowia lipolytica* are provided as follows: U.S. Pat. No. 7,238,482; Int'l. App. Pub. No. WO 2006/033723, Pat. Appl. Pub. No. US-2006-0094092, Pat. Appl. Pub. No. US-2006-0115881-A1 and Pat. Appl. Pub. No. US-2006-0110806-A1. This list is not exhaustive and should not be construed as limiting.

[0126] Briefly, a variety of ω -3/ ω -6 PUFA products can be produced prior to their transfer to TAGs, depending on the fatty acid substrate and the particular genes of the ω -3/ ω -6 fatty acid biosynthetic pathway that are present in or transformed into the host cell. As such, production of the desired fatty acid product can occur directly or indirectly. Direct production occurs when the fatty acid substrate is converted directly into the desired fatty acid product without any intermediate steps or pathway intermediates. Indirect production occurs when multiple genes encoding the PUFA biosynthetic pathway may be used in combination such that a series of reactions occur to produce a desired PUFA. Specifically, it may be desirable to transform an oleaginous yeast with an expression cassette comprising a Δ 12 desaturase, Δ 6 desaturase, a $C_{18/20}$ elongase, a Δ 5 desaturase and a Δ 17 desaturase for the overproduction of EPA. See U.S. Pat. No. 7,238,482 and Int'l. App. Pub. No. WO 2006/052870. As is well known to one skilled in the art, various other combinations of genes encoding enzymes of the PUFA biosynthetic pathway may be useful to express in an oleaginous organism (see FIG. 1). The particular genes included within a particular expression cassette depend on the host organism, its PUFA profile and/or desaturase/elongase profile, the availability of substrate and the desired end product(s).

[0127] A number of candidate genes having the desired desaturase and/or elongase activities can be identified according to publicly available literature, such as GenBank, the patent literature, and experimental analysis of organisms having the ability to produce PUFA. Useful desaturase and elongase sequences may be derived from any source, e.g., isolated from a natural source such as from bacteria, algae, fungi, oomycete, yeast, plants, animals, etc., produced via a semi-synthetic route or synthesized de novo. Following the identification of these candidate genes, considerations for choosing a specific polypeptide having desaturase or elongase activity include: 1) the substrate specificity of the polypeptide; 2) whether the polypeptide or a component thereof is a rate-limiting enzyme; 3) whether the desaturase or elongase is essential for synthesis of a desired PUFA; 4) co-factors required by the polypeptide; and/or, 5) whether the

polypeptide is modified after its production, such as by a kinase or a prenyltransferases.

[0128] The expressed polypeptide preferably has parameters compatible with the biochemical environment of its location in the host cell. See U.S. Pat. No. 7,238,482. It may also be useful to consider the conversion efficiency of each particular desaturase and/or elongase. More specifically, since each enzyme rarely functions with 100% efficiency to convert substrate to product, the final lipid profile of unpurified oils produced in a host cell is typically a mixture of various PUFA consisting of the desired ω -3/ ω -6 fatty acid, as well as various upstream intermediary PUFA. Thus, the conversion efficiency of each enzyme is also a variable to consider when optimizing biosynthesis of a desired fatty acid.

Peroxisome Biogenesis and Pex Genes

[0129] As previously described, peroxisomes are ubiquitous organelles found in all eukaryotic cells. Their primary role is the degradation of various substances within a localized organelle of the cell, such as toxic compounds, fatty acids, etc. For example, the process of β -oxidation, wherein fatty acid molecules are broken down to ultimately produce free molecules of acetyl-CoA (which are exported back to the cytosol), can occur in peroxisomes. Although the process of β -oxidation in mitochondria results in ATP synthesis, β -oxidation in peroxisomes causes the transfer of high-potential electrons to O_2 and results in the formation of H_2O_2 , which is subsequently converted to water and O_2 by peroxisome catalases. Very long chain, such as C_{18} to C_{22} , fatty acids undergo initial β -oxidation in peroxisomes, followed by mitochondrial β -oxidation.

[0130] The proteins responsible for importing proteins by means of ATP hydrolysis through the peroxisomal membrane are known as peroxisome biogenesis factor proteins, or "peroxins". These peroxisome biogenesis factor proteins also include those proteins involved in peroxisome biogenesis/assembly. The gene acronym for peroxisome biogenesis factor proteins is Pex; and, a system for nomenclature is described by Distel et al., *J. Cell Biol.*, 135:1-3 (1996). At least 32 different Pex genes have been identified so far in various eukaryotic organisms. In fungi, however, the recent review of Kiel et al. (*Traffic*, 7:1291-1303 (2006)) suggests that the minimal requirement for peroxisome biogenesis/matrix protein import is numbered as 17, thereby requiring only Pex1p, Pex2p, Pex3p, Pex4p, Pex5p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex17p, Pex19p, Pex20p, Pex22p and Pe26p. These proteins act in a coordinated fashion to proliferate (duplicate) peroxisomes and import proteins via translocation into peroxisomes (reviewed in Waterham, H. R. and J. M. Cregg. *BioEssays*, 19(1):57-66 (1996)).

[0131] Many Pex genes were initially isolated from the analysis of mutants that demonstrated abnormal peroxisomal functions or structures. With the availability of complete genome sequences, however, it is becoming increasingly easy to identify Pex genes via computer sequence searches based on homology. Kiel et al. (*Traffic*, 7:1291-1303 (2006)) cite strong conservation of the peroxisome biogenesis machinery, despite occasional low sequence similarity. More specifically, within the yeast and filamentous fungi, their data indicate that almost all Pex proteins identified thus far are conserved. Table 4, below, shows peroxisome biogenesis factor proteins identified by Kiel et al. (supra) in *Saccharomyces cerevisiae*, *Candida glabrata*, *Ashbya gossypii*, *Kluyveromyces lactis*, *Candida albicans*, *Debaryomyces hansenii*, *Pichia pastoris*, *Hansenula polymorpha*, *Yarrowia lipolytica*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Penicillium chrysogenum*, *Magnaporthe grisea*, *Neurospora crassa*, *Gibberella zeae*, *Ustilago maydis*, *Cryptococcus neoformans* var. *neoformans* and *Schizosaccharomyces pombe*.

TABLE 4

GenBank Accession Numbers Of Fungal Peroxisome Biogenesis Factor Proteins
[Recreated From Table 2 of Kiel et al., (Traffic, 7: 1291-1303 (2006))]

	<i>Saccharomyces cerevisiae</i>	<i>Candida glabrata</i>	<i>Ashbya gossypii</i>	<i>Kluveromyces lactis</i>	<i>Candida albicans</i>	<i>Debaryomyces hansenii</i>	<i>Pichia pastoris</i>	<i>Hansenula polymorpha</i>	<i>Yarrowia lipolytica</i>
Pex1p	CAA82041	CAG60131	AAS53742	CAH02218	EAL02496	CAG89689	CAA85450	AAD52811	CAG82178
Pex2p	CAA89508	CAG60461	AAS50677	CAH00186	EAK9529	CAG85956	CAA65646	AAT97412	CAG77647
Pex3p	AAB64764	CAG62379	AAS52217	CAG99801	EAK94771	CAG89890	CAA96530	AAC49471	CAG78565
Pex3Bp	—	—	—	—	—	—	na	—	CAG83356
Pex4p	CAA97146	CAG60639	AAS53685	CAG99212	EAL03336	CAG87262	AAA53634	AAC16238	CAG79130
Pex5p	CAA89730	CAG61665	AAS53824	CAH01742	EAK94251	CAG89098	AAB40613	AAC49040	CAG78803
Pex5Bp	—	CAG61076	—	—	—	—	na	—	—
Pex5Cp	CAA89120	—	—	—	—	—	na	—	—
Pex5/20p	(Ymr018wp)	—	—	—	—	—	na	—	—
		—	—	—	—	—	na	—	—
Pex5Rp	—	—	—	—	—	—	—	—	—
Pex6p	AAA16574	CAG58438	AAS54884	CAG99125	EAK95956	CAG87108	CAA80278	AAD52812	CAG82306
Pex7p	CAA57183	CAG57936	AAS54301	CAG99215	EAK95226	CAG87150	AAC08303	ABA64462	CAG78389
Pex8p	CAA97079	CAG61238	AAS52889	CAH01253	EAK91777, EAK91778*	CAG89446	AAC41653	CAA82928	CAG80447
Pex9p	ORF wrongly identified	—	—	—	—	—	—	—	—
Pex10p	AAB64453	CAG62699	AAS53069	CAG99788	Translation of AACQ-01000128, nucleotides 37281-36306 (contains intron)	CAG89101	AAB09086	CAA86101	CAG81606
Pex12p	CAA89129	CAG62649	AAS50837	CAG99378	EAL00707	CAG84342	AAC49402	AAM66157	CAG81532
Pex13p	AAB46885	CAG57840	AAS51456	CAG99931	EAK97421	CAG86337	AAB09087	DQ345349	CAG81789
Pex14p	AAS56829	CAG58828	AAS54871	CAG99440	EAK90926	CAG91028	AAG28574	AAB40596	CAG79323
Pex15p	CAA99046	CAG58938	AAS51506	CAG98135	—	—	na	—	—
Pex16p	—	—	—	—	—	—	na	—	CAG79622
Pex17p	CAA96116	CAG61398	AAS50595	CAH01010	EAK95385	CAG86168	AAF19606	DQ345350	CAG84025
Pex14/17p	—	—	—	—	—	—	na	—	—
Pex18p	AAB68992	—	—	—	—	—	na	—	—
Pex19p	CAA98630	CAG58359	AAS52741	CAG99258	EAK97275	CAG84799	AAD43507	AAK84070	AAK84827
Pex20p	—	—	—	—	EAK91603, EAK94766*	CAG87898	AAX11696	AAX14715	CAG79226
Pex21p	CAA97267	CAG59241	AAS51769	CAG99735	—	—	na	—	—
Pex21Bp	—	CAG60281	—	—	—	—	na	—	—
Pex22p	AAC04978	CAG60970	AAS52329	CAG97800	EAK91040	CAG88727	AAD45664	DQ384616	CAG77876
Pex22p-like	—	—	—	—	—	na	—	—	EAL90994
Pex26p	—	—	—	—	EAK91093	CAG88929	na	DQ645588	Antisense translation of NC_006072, nucleotides 117230-118387
	<i>Aspergillus fumigatus</i>	<i>Aspergillus nidulans</i>	<i>Penicillium chrysogenum</i>	<i>Magnaporthe grisea</i>	<i>Neurospora crassa</i>	<i>Gibberella zeae</i>	<i>Ustilago maydis</i>	<i>Cryptococcus neoformans</i> var. <i>neoformans</i>	<i>Schizosaccharomyces pombe</i>
Pex1p	EAL93310	EAA57740	AAG09748	XP_364454	EAA34641	EAA76787	EAK85195	AAW43248	CAA19256
Pex2p	EAL88068	EAA58944	DQ793192	XP_368589	EAA35361	EAA70670	EAK81310	AAW40683	CAA16981
Pex3p	EAL91965	EAA64392	DQ793193	XP_369909	EAA33751	EAA76989	EAK87104	AAW42444	CAB10141
Pex3Bp	—	—	—	—	—	—	—	—	—
Pex4p	EAL87211	Translation of AACD0-1000130, nucleotides 150195-150738 (contains intron)	DQ793194	XP_369064	EAA34737	EAA76379	Translation of AACP0-100006, nucleotides 97041-96550 (contains intron)	—	CAB91184
Pex5p	EAL85289	EAA63772	AAR12222	XP_360528	EAA36111	EAA68640	EAK83659	AAW46349	CAA22179
Pex5Bp	—	—	—	—	—	—	—	—	—
Pex5Cp	—	—	—	—	—	—	—	—	—
Pex5/20p	—	—	—	—	—	—	EAK82973	AAW41849	—
Pex5Rp	—	—	—	—	—	—	—	—	—
Pex6p	EAL92776	EAA63496	AAG09749	XP_368715	EAA36040	EAA73732	EAK83459	AAW45333	CAB11501

TABLE 4-continued

GenBank Accession Numbers Of Fungal Peroxisome Biogenesis Factor Proteins [Recreated From Table 2 of Kiel et al., (Traffic, 7: 1291-1303 (2006))]									
Pex7p	EAL90870	EAA65909	DQ793195	XP_363555	AAN39560	EAA74171	EAK84499	AAW41119	P78798
Pex8p	EAL93137	EAA57947	DQ793196	XP_359449	EAA27783	EAA77627	EAK83936	AAW43468	CAB53406
Pex9p	—	—	—	—	—	—	—	—	—
Pex10p	EAL87045	EAA62774	DQ793197	XP_369099	EAA34967	EAA76761	EAK83811	AAW45079	CAB51769
Pex12p	EAL93972	EAA61357	DQ793198	XP_363845	EAA32773	EAA76413	EAK81282	AAW46724	CAD27496
Pex13p	EAL85282	EAA63824	DQ793199	XP_369087	EAA35785	EAA68396	EAK84395	AAW42381	CAB16740
Pex14p	EAL92562	EAA61046	DQ793200	XP_368216	EAA28304	EAA76904	EAK83123	AAW46857	CAA18656
Pex15p	—	—	—	—	—	—	—	—	—
Pex16p	EAL88469	EAA62294	DQ793201	XP_364166	EAA34648	EAA71849	EAK82801	AAW43797	CAA22819
Pex17p	See	—	—	—	—	—	—	—	—
Pex14/17p	—	—	—	—	—	—	—	—	—
Pex14/17p	EAL93590	EAA58642	DQ793202	XP_368163	EAA27748	EAA73655	EAK81127	—	—
Pex18p	—	—	—	—	—	—	—	—	—
Pex19p	EAL92487	EAA60977	DQ793203	XP_368273	EAA31855	EAA70162	EAK86072	AAW42876	CAA97344
Pex20p	EAL90176	EAA60479	DQ793204	XP_368606	AAN39561	EAA76911	—	—	—
Pex21p	—	—	—	—	—	—	—	—	—
Pex21Bp	—	—	—	—	—	—	—	—	—
Pex22p	—	—	—	—	—	—	—	—	—
Pex22p-like	EAL90994	EAA66006	DQ793205	XP_365689	EAA26537	Translation of AACM0-1000080, nucleotides 4362-3039 (contains intron)	—	—	—
Pex26p	EAL93994	EAA61336	DQ793206	XP_359606	EAA28582	EAA76391	—	—	—

*Partial ORFs encoded on non-overlapping contigs.

[0132] Mutations of Pex genes leading to impaired peroxisome biogenesis result in severe metabolic and developmental disturbances in yeasts, humans and plants (Eckert, J. H. and R. Erdmann, *Rev. Physiol. Biochem Pharmacol.*, 147:75-121 (2003); Weller, S. et al., *Annual Review of Genomics and Human Genetics*, 4:165-211 (2003); Wanders, R. J., *Am. J. Med. Genet.*, 126A:355-375 (2004); Mano, S. and M. Nishimura, *Vitam Horm.*, 72:111-154 (2005); Wanders, J. A., and H. R. Waterham, *Annu. Rev. Biochem.*, 75:295-332 (2006); Fujiki, Yukio. Peroxisome Biogenesis Disorders. In, *Encyclopedia of Life Sciences*. John Wiley & Sons, 2006). For example, X-linked adrenoleukodystrophy [“X-ALD”] and Zellweger syndrome, as well as several less severe forms of the disease, can result from single enzyme deficiencies and/or peroxisomal biogenesis disorders.

[0133] Within the yeast, *Yarrowia lipolytica*, a variety of different Pex genes have been isolated and characterized, as identified in Table 4 above. More specifically, Bascom, R. A. et al. (*Mol. Biol. Cell*, 14:939-957 (2003)) describe YIPex3p; Szilard, R. K. et al. (*J. Cell Biol.*, 131:1453-1469 (1995)) describe YIPex5p; Nuttley, W. M. et al. (*J. Biol. Chem.*, 269: 556-566 (1994)) describe YIPex6p; Elizzen G. A., et al. (*J. Biol. Chem.*, 270:1429-1436 (1995)) describe YIPex9p; Elizzen G. A., et al. (*J. Cell Biol.*, 137:1265-1278 (1997)) and Titorenko, V. I. et al. (*Mol. Cell. Biol.*, 17:5210-5226 (1997)) describe YIPex16p; Lambkin, G. R. and R. A. Rachubinski (*Mol. Biol. Cell*, 12(11):3353-3364 (2001)) describe YIPex19; and Titorenko V. I., et al. (*J. Cell Biol.*, 142:403-420 (1998)) and Smith J. J. and R. A. Rachubinski (*J. Cell Biol.*, 276:1618-1625 (2001)) describe YIPex20p.

[0134] Of initial interest herein was YIPex10p (GenBank Accession No. CAG81606, No. AB036770 and No. AJ012084). It was demonstrated in Sumita et al. (*FEMS Microbiol. Lett.*, 214:31-38 (2002) that: 1) YIPex10p functions as a component of the peroxisome; and, 2) the C₃HC₄

zinc ring finger motif of YIPex10p was essential for the protein’s function as determined via creation of C341S, C346S and H343W point mutations, followed by analysis of growth.

[0135] Studies of the C₃HC₄ zinc ring finger motif of Pex10 have been done in other organisms with similar results. For example, point mutations that alter conserved residues in the Pex10p C₃HC₄ motif of *Pichia pastoris* were found to abolish function of the protein (Kalish, J. E. et al., *Mol. Cell. Biol.*, 15:6406-6419 (1995)). Similarly, after functional complementation assays in fibroblast cell lines, Warren D. S., et al. (*Hum. Mutat.*, 15(6):509-521 (2000)) concluded that the C₃HC₄ motif was critical for Pex10p function. Several studies show that loss of function of Pex10p in *Arabidopsis* causes embryo lethality at the heart stage (Hu, J., et al., *Science*, 297:405-409 (2002); Schmumann, U. et al., *Proc. Natl. Acad. Sci. U.S.A.*, 100:9626-9631 (2003); Sparkes, I. A., et al., *Plant Physiol.*, 133:1809-1819 (2003); Fan, J. et al., *Plant Physiol.*, 139:231-239 (2005)). In follow-up research, Schemmann, U. et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 104:1069-1074 (2007)) investigated the function of Pex10p in nonlethal partial loss-of-function *Arabidopsis* mutants. Specifically, four T-DNA insertion lines expressing Pex10p with a dysfunctional C₃HC₄ motif were created in an *Arabidopsis* wildtype background. Mutant plants demonstrated impaired leaf peroxisomes and the authors suggest that inactivation of the ring finger motif in Pex10p eliminated protein interaction required for attachment of peroxisomes to chloroplasts and movement of metabolites between peroxisomes and chloroplasts.

[0136] Although studies have not identified essential domains in other Pex proteins, research has looked at the effect of various Pex mutants to learn the strategies and the molecular mechanisms evolutionarily diverse organisms use for assembling, maintaining, propagating and inheriting the peroxisome, an organelle known for its role in lipid metabolism. For example, Bascom, R. A. et al. has performed knock-

out and overexpression of the *Yarrowia lipolytica* Pex3p (*Mol. Biol. Cell*, 14:939-957 (2003)). The knockout cells did not contain wildtype peroxisomes but instead had numerous small vesicles; overexpression resulted in cells with fewer, larger and clustered peroxisomes. They hypothesized that Pex3p is involved in the initiation of peroxisome assembly by sequestering components of peroxisome biogenesis, i.e., peroxisome targeting signal (PTS) 1 and 2 import machineries. Similarly, for Guo, T. et al., knockout of the *Y. lipolytica* Pex16p resulted in excessive proliferation of immature peroxisomal vesicles and significantly decreased the rate and efficiency of their conversion to mature peroxisomes (*J. Cell Biol.*, 162:1255-1266 (2003)), while overexpression resulted in few but enlarged peroxisomes (Eitzen et al., *J. Cell Biol.*, 137:1265-1278 (1997)). Guo et al. concluded Pex16p negatively regulated the membrane scission event required for division of early peroxisomal precursors.

[0137] Despite the advances summarized above, many details concerning the roles of various Pex proteins, their interaction with one another and the biogenesis/assembly mechanism in peroxisomes remains to be elucidated. As such, the data described in the Application, wherein mutation within the C₃HC₄ motif of YIPex10p or knockout of YIPex3p, YIPex10p or YIPex16p results in creation of a *Yarrowia lipolytica* mutant that has an increased capacity to incorporate PUFAs, especially long-chain PUFAs such as C₂₀ to C₂₂ molecules, into the total lipid fraction and in the oil fraction in the cell, is a novel observation that does not yet find validation in studies with other plants or animals.

[0138] It has been suggested that peroxisomes are required for both catabolic and anabolic lipid metabolism (Lin, Y. et al., *Plant Physiology*, 135:814-827 (2004)); however, this hypothesis was based on studies with a homolog of Pex16p. More specifically, Lin, Y. et al. (supra) reported that *Arabidopsis Shrunken Seed 1* (sse1) mutants had both abnormal peroxisome biogenesis and fatty acid synthesis, based on a reduction of oil to approximately 10-16% of wild type in sse1 seeds. Binns, D. et al. (*J. Cell Biol.*, 173(5):719-731 (2006)) examined the peroxisome-lipid body interactions in *Saccharomyces cerevisiae* and determined that extensive physical contact between the two organelles promotes coupling of lipolysis within lipid bodies with peroxisomal fatty acid oxidation. More specifically, ratios of free fatty acids to TAGs were examined in various Pex knockouts and found to be increased relative to the wildtype. Clearly, further investigation will be necessary to understand the metabolic roles of peroxisomes and in particular of Pex3p, Pex10p and Pex16p proteins.

[0139] Without wishing to be held to any particular explanation or theory, it is hypothesized that disruption or knockout of a Pex gene within an oleaginous yeast cell affects both the catabolic and anabolic lipid metabolism that naturally occurs in peroxisomes or is affected by peroxisomes. Disruption or knockout results in an increase in the amount of PUFAs in the total lipid fraction and in the oil fraction, as a percent of total fatty acids, as compared with an oleaginous yeast whose native peroxisome biogenesis factor protein has not been disrupted. In some cases, an increase in the amount of PUFAs in the total lipid fraction and in the oil fraction as a percent of dry cell weight, and/or an increase in the total lipid content as a percent of dry cell weight, is also observed. It is hypothesized that this generalized mechanism is applicable within all eukaryotic organisms, such as algae, fungi,

oomycetes, yeast, euglenoids, stramenopiles, plants and some mammalian systems, since all comprise peroxisomes.

[0140] Identification and Isolation of Pex Homologs

[0141] When the sequence of a particular Pex gene or protein within a preferred host organism is not known, one skilled in the art recognizes that it will be most desirable to identify and isolate these genes, or portions of them, prior to regulating the activity of the encoded proteins, which regulation in turn facilitates altering the amount, as a percent of total fatty acids, of PUFAs incorporated into the total lipid fraction and in the oil fraction of the eukaryote. Sequence knowledge of the preferred host's Pex genes also facilitates disruption of the homologous chromosomal genes by targeted disruption.

[0142] The Pex sequences in Table 4, or portions of them, may be used to search for Pex homologs in the same or other algal, fungal, oomycete, euglenoid, stramenopiles, yeast or plant species using sequence analysis software. In general, such computer software matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Use of software algorithms, such as the BLASTP method of alignment with a low complexity filter and the following parameters: Expect value=10, matrix=Blousm 62 (Altschul, et al., *Nucleic Acids Res.* 25:3389-3402 (1997)), is well-known for comparing any Pex protein in Table 4 against a database of nucleic or protein sequences and thereby identifying similar known sequences within a preferred host organism.

[0143] Use of a software algorithm to comb through databases of known sequences is particularly suitable for the isolation of homologs having a relatively low percent identity to publicly available Pex sequences, such as those described in Table 4. It is predictable that isolation would be relatively easier for Pex homologs of at least about 70%-85% identity to publicly available Pex sequences. Further, those sequences that are at least about 85%-90% identical would be particularly suitable for isolation and those sequences that are at least about 90%-95% identical would be the most facilely isolated.

[0144] Some Pex homologs have also been isolated by the use of motifs unique to the Pex enzymes. For example, it is well known that Pex2p, Pex10p and Pex12p all share a cysteine-rich motif near their carboxyl termini, known as a C₃HC₄ zinc ring finger motif (FIG. 2A). This region of "conserved domain" corresponds to a set of amino acids that are highly conserved at specific positions and likely represents a region of the Pex protein that is essential to the structure, stability or activity of the protein. Motifs are identified by their high degree of conservation in aligned sequences of a family of protein homologues. As unique "signatures", they can determine if a protein with a newly determined sequence belongs to a previously identified protein family. These motifs are useful as diagnostic tools for the rapid identification of novel Pex2, Pex10 and/or Pex12 genes, respectively.

[0145] Alternatively, the publicly available Pex sequences or their motifs may be hybridization reagents for the identification of homologs. The basic components of a nucleic acid hybridization test include a probe, a sample suspected of containing the gene or gene fragment of interest, and a specific hybridization method. Probes are typically single-stranded nucleic acid sequences that are complementary to the nucleic acid sequences to be detected. Probes are hybridizable to the nucleic acid sequence to be detected. Although probe length can vary from 5 bases to tens of thousands of bases, typically a probe length of about 15 bases to about 30 bases is suitable. Only part of the probe molecule need be

complementary to the nucleic acid sequence to be detected. In addition, the complementarity between the probe and the target sequence need not be perfect. Hybridization does occur between imperfectly complementary molecules with the result that a certain fraction of the bases in the hybridized region are not paired with the proper complementary base.

[0146] Hybridization methods are well known. Typically the probe and the sample must be mixed under conditions that permit nucleic acid hybridization. This involves contacting the probe and sample in the presence of an inorganic or organic salt under the proper concentration and temperature conditions. The probe and sample nucleic acids must be in contact for a long enough time that any possible hybridization between the probe and the sample nucleic acid occurs. The concentration of probe or target in the mixture determine the time necessary for hybridization to occur. The higher the concentration of the probe or target, the shorter the hybridization incubation time needed. Optionally, a chaotropic agent may be added, such as guanidinium chloride, guanidinium thiocyanate, sodium thiocyanate, lithium tetrachloroacetate, sodium perchlorate, rubidium tetrachloroacetate, potassium iodide or cesium trifluoroacetate. If desired, one can add formamide to the hybridization mixture, typically 30-50% (v/v) [“by volume”].

[0147] Various hybridization solutions can be employed. Typically, these, comprise from about 20 to 60% volume, preferably 30%, of a polar organic solvent. A common hybridization solution employs about 30-50% v/v formamide, about 0.15 to 1 M sodium chloride, about 0.05 to 0.1 M buffers (e.g., sodium citrate, Tris-HCl, PIPES or HEPES (pH range about 6-9)), about 0.05 to 0.2% detergent (e.g., sodium dodecylsulfate), or between 0.5-20 mM EDTA, FICOLL (Pharmacia Inc.) (about 300-500 kdal), polyvinylpyrrolidone (about 250-500 kdal), and serum albumin. Also included in the typical hybridization solution are unlabeled carrier nucleic acids from about 0.1 to 5 mg/mL, fragmented nucleic DNA such as calf thymus or salmon sperm DNA or yeast RNA, and optionally from about 0.5 to 2% wt/vol [“weight by volume”] glycine. Other additives may be included, such as volume exclusion agents that include polar water-soluble or swellable agents (e.g., polyethylene glycol), anionic polymers (e.g., polyacrylate or polymethylacrylate) and anionic saccharinic polymers, such as dextran sulfate.

[0148] Nucleic acid hybridization is adaptable to a variety of assay formats. One of the most suitable is the sandwich assay format. The sandwich assay is particularly adaptable to hybridization under non-denaturing conditions. A primary component of a sandwich-type assay is a solid support. The solid support has adsorbed or covalently coupled to it immobilized nucleic acid probe that is unlabeled and complementary to one portion of the sequence.

[0149] Any of the Pex nucleic acid fragments or any identified homologs may be used to isolate genes encoding homologous proteins from the same or other algal, fungal, oomycete, euglenoid, stramenopiles, yeast or plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to: 1) methods of nucleic acid hybridization; 2) methods of DNA and RNA amplification, as exemplified by various uses of nucleic acid amplification technologies, such as polymerase chain reaction [“PCR”] (U.S. Pat. No. 4,683,202); ligase chain reaction [“LCR”] (Tabor, S. et al., *Proc. Natl. Acad. Sci. U.S.A.*, 82:1074 (1985)); or strand displacement amplifica-

tion [“SDA”] (Walker, et al., *Proc. Natl. Acad. Sci. U.S.A.*, 89:392 (1992)); and, 3) methods of library construction and screening by complementation.

[0150] For example, genes encoding proteins or polypeptides similar to publicly available Pex genes or their motifs could be isolated directly by using all or a portion of those publicly available nucleic acid fragments as DNA hybridization probes to screen libraries from any desired organism using well known methods. Specific oligonucleotide probes based upon the publicly available nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis, *supra*). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan, such as random primers DNA labeling, nick translation or end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part or the full length of the publicly available sequences or their motifs. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full-length DNA fragments under conditions of appropriate stringency.

[0151] Typically, in PCR-type amplification techniques, the primers have different sequences and are not complementary to each other. Depending on the desired test conditions, the sequences of the primers should be designed to provide for both efficient and faithful replication of the target nucleic acid. Methods of PCR primer design are common and well known (Thein and Wallace, “The use of oligonucleotides as specific hybridization probes in the Diagnosis of Genetic Disorders”, in *Human Genetic Diseases: A Practical Approach*, K. E. Davis Ed., (1986) pp 33-50, IRL: Herndon, Va.; Rychlik, W., In *Methods in Molecular Biology*, White, B. A. Ed., (1993) Vol. 15, pp 31-39, PCR Protocols: Current Methods and Applications. Humania: Totowa, N.J.).

[0152] Generally two short segments of available Pex sequences may be used in PCR protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. PCR may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the available nucleic acid fragments or their motifs. The sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding genes.

[0153] Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al., *Proc. Natl. Acad. Sci. U.S.A.*, 85:8998 (1988)) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the available sequences. Using commercially available 3' RACE or 5' RACE systems (e.g., BRL, Gaithersburg, Md.), specific 3' or 5' cDNA fragments can be isolated (Ohara et al., *Proc. Natl. Acad. Sci. U.S.A.*, 86:5673 (1989); Loh et al., *Science*, 243:217 (1989)).

[0154] Based on any of these well-known methods just discussed, it would be possible to identify and/or isolate Pex gene homologs in any preferred eukaryotic organism of choice. The activity of any putative Pex gene can readily be confirmed by targeted disruption of the endogenous gene within the PUFA-producing host organism, since the lipid

profiles of the total lipid fraction and of the oil fraction are modified relative to those within an organism lacking the targeted Pex gene disruption.

Increasing the Amount of PUFAs in the Total Lipid Fraction and in the Oil Fraction Via Disruption of a Native Peroxisome Biogenesis Factor Protein

[0155] As noted above, the present disclosure relates to the following described methods for increasing the weight percent of one PUFA or a combination of PUFAs in an oleaginous eukaryotic organism, comprising:

[0156] a) providing an oleaginous eukaryotic organism comprising a disruption in a native gene encoding a peroxisome biogenesis factor protein, which creates a PEX-disruption organism; and genes encoding a functional PUFA biosynthetic pathway; and,

[0157] b) growing the eukaryotic organism of (a) under conditions wherein the weight percent of one PUFA or a combination of PUFAs is increased in the total lipid fraction and in the oil fraction relative to the weight percent of the total fatty acids, when compared with those weight percents in an oleaginous eukaryotic organism whose native peroxisome biogenesis factor protein has not been disrupted.

The amount of PUFAs that increases as a percent of total fatty acids can be: 1) the PUFA that is the desired end product of a functional PUFA biosynthetic pathway, as opposed to PUFA intermediates or by-products; 2) C₂₀ to C₂₂ PUFAs; and/or, 3) total PUFAs.

[0158] In addition to the increase in the weight percent of one or a combination of PUFAs relative to the weight percent of the total fatty acids, in some cases, the total lipid content (TFA % DCW) of the cell may be increased or decreased. What this means is that regardless of whether the disruption in the PEX gene causes the amount of total lipids in the PEX-disrupted cell to increase or decrease, the disruption always causes the weight percent of a PUFA or of a combination of PUFAs to increase.

[0159] Another method provided herein relates to a disruption in a native gene encoding a peroxisome biogenesis factor protein, wherein said disruption can result in an increase in the percent of one PUFA or a combination of PUFAs relative to the dry cell weight when compared to that percent in a parental strain whose native Pex protein had not been disrupted or that was expressing a "replacement" copy of the disrupted native Pex protein.

[0160] In preferred aspects of the method above, the disruption in a native gene encoding a peroxisome biogenesis factor protein results in an increase in the amount of the PUFA that is the desired end product of a functional PUFA biosynthetic pathway, as opposed to PUFA intermediates or by-products, as a percent of dry cell weight relative to the parental strain whose native Pex protein had not been disrupted or the parental strain that was expressing a "replacement" copy of the disrupted native Pex protein. In some cases, the increase in the percent of a combination of PUFAs relative to the dry cell weight is a combination of C₂₀ to C₂₂ PUFAs or the total PUFAs.

[0161] Also described herein are organisms produced by these methods, comprising a disruption of at least one peroxisome biogenesis factor protein. Lipids and oils obtained from these organisms, products obtained from the processing of the lipids and oil, use of these lipids and oil in foods, animal

feeds or industrial applications and/or use of the by-products in foods or animal feeds are also described.

[0162] Preferred eukaryotic organisms in the methods described above include algae, fungi, oomycetes, yeast, euglenoids, stramenopiles, plants and some mammalian systems.

[0163] The peroxisome biogenesis factor protein for any of these methods may be selected from the group consisting of: Pex1p, Pex2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex5Bp, Pex5Cp, Pex5/20p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex15p, Pex16p, Pex17p, Pex14/17p, Pex18p, Pex19p, Pex20p, Pex21p, Pex21B, Pex22p, Pex22p-like and Pex26p (and protein homologs thereof). In some preferred methods described herein, the disrupted peroxisome biogenesis factor protein is selected from the group consisting of: Pex2p, Pex3p, Pex10p, Pex12p and/or Pex16p. In some more preferred methods, however, the disrupted peroxisome biogenesis factor protein is selected from the group consisting of: Pex3p, Pex10p and/or Pex16p.

[0164] The disruption in the native gene encoding a peroxisome biogenesis factor protein can be an insertion, deletion, or targeted mutation within a portion of the gene, such as within the N-terminal portion of the protein or within the C-terminal portion of the protein. Alternatively, the disruption can result in a complete gene knockout such that the gene is eliminated from the host cell genome. Or, the disruption could be a targeted mutation that results in a non-functional protein.

Disruption Methodologies

[0165] The invention includes disruption in a native gene encoding a peroxisome biogenesis factor protein within a preferred host cell. Although numerous techniques are available to one of skill in the art to achieve disruption, generally the endogenous activity of a particular gene can be reduced or eliminated by the following techniques, for example: 1) disrupting the gene through insertion, substitution and/or deletion of all or part of the target gene; or 2) manipulating the regulatory sequences controlling the expression of the protein. Both of these techniques are discussed below. However, one skilled in the art appreciates that these are well described in the existing literature and are not limiting to the methods, host cells, and products described herein. One skilled in the art also appreciates the most appropriate technique for use with any particular oleaginous yeast.

[0166] **Disruption Via Insertion, Substitution And/Or Deletion:** For gene disruption, a foreign DNA fragment, typically a selectable marker gene, is inserted into the structural gene. This interrupts the coding sequence of the structural gene and causes inactivation of that gene. Transformation of the disruption cassette into the host cell results in replacement of the functional native gene by homologous recombination with the non-functional disrupted gene. See, for example: Hamilton et al., *J. Bacteriol.*, 171:4617-4622 (1989); Balbas et al., *Gene*, 136:211-213 (1993); Gueldener et al., *Nucleic Acids Res.*, 24:2519-2524 (1996); and Smith et al., *Methods Mol. Cell. Biol.*, 5:270-277 (1996). One skilled in the art appreciates the many variations of the general method of gene targeting, which admits of positive or negative selection, creation of gene knockouts, and insertion of exogenous DNA sequences into specific genome sites in mammalian systems, plant cells, filamentous fungi, algae, oomycetes, euglenoids, stramenopiles, yeast and/or microbial systems.

[0167] In contrast, a non-specific method of gene disruption is the use of transposable elements or transposons. Transposons are genetic elements that insert randomly into DNA but can be later retrieved on the basis of sequence to determine the locus of insertion. Both *in vivo* and *in vitro* transposition techniques are known and involve the use of a transposable element in combination with a transposase enzyme. When the transposable element or transposon is contacted with a nucleic acid fragment in the presence of the transposase, the transposable element randomly inserts into the nucleic acid fragment. The technique is useful for random mutagenesis and for gene isolation, since the disrupted gene may be identified on the basis of the sequence of the transposable element. Kits for *in vitro* transposition are commercially available and include: the Primer Island Transposition Kit, available from Perkin Elmer Applied Biosystems, Branchburg, N.J., based upon the yeast Ty1 element; the Genome Priming System, available from New England Biolabs, Beverly, Mass., based upon the bacterial transposon Tn7; and EZ::TN Transposon Insertion Systems, available from Epicentre Technologies, Madison, Wis., based upon the Tn5 bacterial transposable element.

[0168] Manipulation Of Pex Regulatory Sequences: As is well known in the art, the regulatory sequences associated with a coding sequence include transcriptional and translational "control" nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of the coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Thus, manipulation of a Pex gene's regulatory sequences may refer to manipulation of the promoters, silencers, 5' untranslated leader sequences (between the transcription start site and the translation initiation codon), introns, enhancers, initiation control regions, polyadenylation recognition sequences, RNA processing sites, effector binding sites and stem-loop structures of the particular Pex gene. In all cases, however, the result of the manipulation is down-regulation of the Pex gene's expression, which promotes increased amount of PUFAs in the total lipid fraction and in the oil fraction, as a percent of total fatty acids, as compared with an oleaginous yeast whose native peroxisome biogenesis factor protein has not been disrupted.

[0169] For example, the promoter of a Pex10 gene could be deleted or disrupted. Alternatively, the native promoter driving expression of a Pex10 gene may be substituted with a heterologous promoter having diminished promoter activity with respect to that of the native promoter. Methods useful for manipulating regulatory sequences are well known.

[0170] The skilled person is able to use these and other well known techniques to disrupt a native peroxisome biogenesis factor protein within the preferred host cells described herein, such as mammalian systems, plant cells, filamentous fungi, algae, oomycetes, euglenoids, stramenopiles and yeast.

[0171] One skilled in the art is able to discern the optimum means to disrupt the native Pex gene to achieve an increased amount of PUFAs that accumulate in the total lipid fraction and in the oil fraction, as a percent of total fatty acids, as compared with a eukaryotic organisms whose native peroxisome biogenesis factor protein has not been disrupted.

Metabolic Engineering of ω -3 and/or ω -6 Fatty Acid Biosynthesis

[0172] In addition to the methods described herein for disruption of a native peroxisome biogenesis factor protein, it may also be useful to manipulate ω -3 and/or ω -6 fatty acid

biosynthesis. This may require metabolic engineering directly within the PUFA biosynthetic pathway or additional manipulation of pathways that contribute carbon to the PUFA biosynthetic pathway.

[0173] Techniques useful for up-regulating desirable biochemical pathways and down-regulating undesirable biochemical pathways are well known in the art. For example, biochemical pathways competing with the ω -3 and/or ω -6 fatty acid biosynthetic pathways for energy or carbon, or native PUFA biosynthetic pathway enzymes that interfere with production of a particular PUFA end-product, may be eliminated by gene disruption or down-regulated by other means, such as antisense mRNA and zinc-finger targeting technologies.

[0174] The following discuss altering the PUFA biosynthetic pathway as a means to increase GLA, ARA, EPA or DHA, respectively, and desirable manipulations in the TAG biosynthetic pathway and in the TAG degradation pathway: Int'l. App. Pub. No. WO 2006/033723, Int'l. App. Pub. No. WO 2006/055322 [U.S. Pat. Appl. Pub. No. 2006-0094092-A1], Int'l. App. Pub. No. WO 2006/052870 [U.S. Pat. Appl. Pub. No. 2006-0115881-A1] and Int'l. App. Pub. No. WO 2006/052871 [U.S. Pat. Appl. Pub. No. 2006-0110806-A1], respectively.

Expression Systems, Cassettes, Vectors and Transformation of Host Cells

[0175] It may be necessary to create and introduce a recombinant construct into the preferred eukaryotic host, such as e.g., mammalian systems, plant cells, filamentous fungi, algae, oomycetes, euglenoids, stramenopiles and yeast, to result in disruption of a native peroxisome biogenesis factor protein and/or introduction of genes encoding a PUFA biosynthetic pathway. One of skill in the art appreciates standard resource materials that describe: 1) specific conditions and procedures for construction, manipulation and isolation of macromolecules, such as DNA molecules, plasmids, etc.; 2) generation of recombinant DNA fragments and recombinant expression constructs; and 3) screening and isolating of clones. See Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1989); Maliga et al., *Methods in Plant Molecular Biology*, Cold Spring Harbor, N.Y. (1995); Birren et al., *Genome Analysis: Detecting Genes*, v. 1, Cold Spring Harbor, N.Y. (1998); Birren et al., *Genome Analysis Analyzing DNA*, v. 2, Cold Spring Harbor: NY (1998); *Plant Molecular Biology: A Laboratory Manual*, Clark, ed. Springer: NY (1997).

[0176] In general, the choice of sequences included in the construct depends on the desired expression products, the nature of the host cell and the proposed means of separating transformed cells versus non-transformed cells. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector to successfully transform, select and propagate host cells containing the chimeric gene. Typically, however, the vector or cassette contains sequences directing transcription and translation of the relevant gene(s), a selectable marker and sequences allowing autonomous replication or chromosomal integration. Suitable vectors comprise a region 5' of the gene that controls transcriptional initiation, i.e., a promoter, and a region 3' of the DNA fragment that controls transcriptional termination, i.e., a terminator. It is most preferred when both control regions are derived from genes from the transformed host cell.

[0177] Initiation control regions or promoters useful for driving expression of heterologous genes or portions of them in the desired host cell are numerous and well known. These control regions may comprise a promoter, enhancer, silencer, intron sequences, 3' UTR and/or 5' UTR regions, and protein and/or RNA stabilizing elements. Such elements may vary in their strength and specificity. Virtually any promoter (i.e., native, synthetic, or chimeric) capable of directing expression of these genes in the selected host cell is suitable. Expression in a host cell can occur in an induced or constitutive fashion. Induced expression occurs by inducing the activity of a regulatable promoter operably linked to the Pex gene of interest. Constitutive expression occurs by the use of a constitutive promoter operably linked to the gene of interest.

[0178] When the host cell is, for example, yeast, transcriptional and translational regions functional in yeast cells are provided, particularly from the host species. See Int'l. App. Pub. No. WO 2006/052870 for preferred transcriptional initiation regulatory regions for use in *Yarrowia lipolytica*. Any of a number of regulatory sequences may be used, depending on whether constitutive or induced transcription is desired, the efficiency of the promoter in expressing the ORF of interest, the ease of construction, etc.

[0179] 3' non-coding sequences encoding transcription termination signals, i.e., a "termination region", must be provided in a recombinant construct and may be from the 3' region of the gene from which the initiation region was obtained or from a different gene. A large number of termination regions are known and function satisfactorily in a variety of hosts when utilized in both the same and different genera and species from which they were derived. The termination region is selected more for convenience rather than for any particular property. Termination regions may also be derived from various genes native to the preferred hosts.

[0180] Particularly useful termination regions for use in yeast are those derived from a yeast gene, particularly *Saccharomyces*, *Schizosaccharomyces*, *Candida*, *Yarrowia* or *Kluyveromyces*. The 3'-regions of mammalian genes encoding γ -interferon and α -2 interferon are also known to function in yeast. The 3'-region can also be synthetic, as one of skill in the art can utilize available information to design and synthesize a 3'-region sequence that functions as a transcription terminator. A termination region may be unnecessary, but is highly preferred.

[0181] The vector may comprise a selectable and/or scorable marker, in addition to the regulatory elements described above. Preferably, the marker gene is an antibiotic resistance gene such that treating cells with the antibiotic causes inhibition of growth, or death, of untransformed cells and uninhibited growth of transformed cells. For selection of yeast transformants, any marker that functions in yeast is useful with resistance to kanamycin, hygromycin and the amino glycoside G418 and the ability to grow on media lacking uracil, lysine, histine or leucine being particularly useful.

[0182] Merely inserting a gene into a cloning vector does not ensure its expression at the desired rate, concentration, amount, etc. In response to the need for a high expression rate, many specialized expression vectors have been created by manipulating a number of different genetic elements that control transcription, RNA stability, translation, protein stability and location, oxygen limitation, and secretion from the host cell. Some of the manipulated features include: the nature of the relevant transcriptional promoter and terminator sequences, the number of copies of the cloned gene and

whether the gene is plasmid-borne or integrated into the genome of the host cell, the final cellular location of the synthesized foreign protein, the efficiency of translation and correct folding of the protein in the host organism, the intrinsic stability of the mRNA and protein of the cloned gene within the host cell and the codon usage within the cloned gene, such that its frequency approaches the frequency of preferred codon usage of the host cell. Each of these may be used in the methods and host cells described herein to further optimize expression of PUFA biosynthetic pathway genes and to diminish expression of a native Pex gene.

[0183] After a recombinant construct is created, e.g., comprising a chimeric gene comprising a promoter, ORF and terminator, suitable for disruption or knock out of a native peroxisome biogenesis factor protein and/or expression of genes encoding a PUFA biosynthetic pathway activity, it is placed in a plasmid vector capable of autonomous replication in the host cell or is directly integrated into the genome of the host cell. Integration of expression cassettes can occur randomly within the host genome or can be targeted through the use of constructs containing regions of homology with the host genome sufficient to target recombination with the host locus. Where constructs are targeted to an endogenous locus, all or some of the transcriptional and translational regulatory regions can be provided by the endogenous locus.

[0184] When two or more genes are expressed from separate replicating vectors, each vector may have a different means of selection and should lack homology to the other construct(s) to maintain stable expression and prevent reassortment of elements among constructs. Judicious choice of regulatory regions, selection means and method of propagation of the introduced construct(s) can be experimentally determined so that all introduced genes are expressed at the necessary levels to provide for synthesis of the desired products.

[0185] Constructs comprising the gene of interest may be introduced into a host cell by any standard technique. These techniques include transformation, e.g., lithium acetate transformation (*Methods in Enzymology*, 194:186-187 (1991)), protoplast fusion, biolistic impact, electroporation, microinjection, vacuum filtration or any other method that introduces the gene of interest into the host cell.

[0186] For convenience, a host cell that has been manipulated by any method to take up a DNA sequence, for example, in an expression cassette, is referred to herein as "transformed" or "recombinant". The transformed host will have at least one copy of the expression construct and may have two or more, depending upon whether the gene is integrated into the genome, amplified, or is present on an extrachromosomal element having multiple copy numbers.

[0187] The transformed host cell can be identified by selection for a marker contained on the introduced construct. Alternatively, a separate marker construct may be co-transformed with the desired construct, as many transformation techniques introduce many DNA molecules into host cells. Typically, transformed hosts are selected for their ability to grow on selective media. Selective media may incorporate an antibiotic or lack a factor necessary for growth of the untransformed host, such as a nutrient or growth factor. An introduced marker gene may confer antibiotic resistance, or encode an essential growth factor or enzyme, thereby permitting growth on selective media when expressed in the transformed host. Selection of a transformed host can also occur when the expressed marker protein can be detected, either

directly or indirectly. The marker protein may be expressed alone or as a fusion to another protein. The marker protein can be detected by its enzymatic activity (e.g., β -galactosidase can convert the substrate X-gal [β -D-galactopyranoside] to a colored product; luciferase can convert luciferin to a light-emitting product) or its light-producing or modifying characteristics (e.g., the green fluorescent protein of *Aequorea Victoria* fluoresces when illuminated with blue light). Alternatively, antibodies can be used to detect the marker protein or a molecular tag on, for example, a protein of interest. Cells expressing the marker protein or tag can be selected, for example, visually, or by techniques such as fluorescence-activated cell sorting or panning using antibodies.

[0188] Regardless of the selected host or expression construct, multiple transformants must be screened to obtain a strain or plant line displaying the desired expression level, regulation and pattern, as different independent transformation events result in different levels and patterns of expression (Jones et al., *EMBO J.*, 4:2411-2418 (1985); De Almeida et al., *Mol. Gen. Genetics*, 218:78-86 (1989)). Such screening may be accomplished by Southern analysis of DNA blots (Southern, *J. Mol. Biol.*, 98:503 (1975)), Northern analysis of mRNA expression (Kroczeck, *J. Chromatogr. Biomed. Appl.*, 618(1-2):133-145 (1993)), Western and/or Elisa analyses of protein expression, phenotypic analysis or GC analysis of the PUFA products.

Preferred Eukaryotic Host Organisms

[0189] A variety of eukaryotic organisms are suitable as host herein, to thereby yield a transformant host organism comprising a disruption in a native peroxisome biogenesis factor protein and genes encoding a PUFA biosynthetic pathway, wherein the transformed eukaryotic host organism has an increased amount of PUFA incorporated into the total lipid fraction and in the oil fraction, as a percent of total fatty acids, as compared to a eukaryotic organism whose native peroxisome biogenesis factor protein has not been disrupted. Various mammalian systems, plant cells, fungi, algae, oomycetes, yeasts, stramenopiles and/or euglenoids may be useful hosts. Although oleaginous organisms are preferred, non-oleaginous organisms also have utility herein such that, when one of their native PEX genes is disrupted, an increase in the weight percent of at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction will be experienced and may lead to a 1.3 fold increase in the PUFA. Additionally, the percent of the PUFA may be increased relative to the dry cell weight in the non-oleaginous organism. In alternate embodiments, a non-oleaginous organism can be genetically modified to become oleaginous, e.g., yeast such as *Saccharomyces cerevisiae*.

[0190] Oleaginous organisms are naturally capable of oil synthesis and accumulation, wherein the total oil content typically comprises greater than about 25% of the cellular dry weight. Various algae, moss, fungi, yeast, stramenopiles and plants are naturally classified as oleaginous.

[0191] Preferred oleaginous microbes include those algal, stramenopile and fungal organisms that naturally produce ω -3/ ω -6 PUFA. For example, ARA, EPA and/or DHA is produced via *Cyclotella* sp., *Nitzschia* sp., *Pythium*, *Thraustochytrium* sp., *Schizochytrium* sp. and *Mortierella*. The method of transformation of *M. alpina* is described by Mackenzie et al. (*Appl. Environ. Microbiol.*, 66:4655 (2000)).

Similarly, methods for transformation of *Thraustochytriales* microorganisms (e.g., *Thraustochytrium*, *Schizochytrium*) are disclosed in U.S. Pat. No. 7,001,772.

[0192] More preferred are oleaginous yeast, including those that naturally produce and those genetically engineered to produce ω -3/ ω -6 PUFA. Genera typically identified as oleaginous yeast include, but are not limited to: *Yarrowia*, *Candida*, *Rhodotorula*, *Rhodosporidium*, *Cryptococcus*, *Trichosporon* and *Lipomyces*. More specifically, illustrative oil-synthesizing yeasts include: *Rhodosporidium toruloides*, *Lipomyces starkeyii*, *L. lipoferus*, *Candida revkaufi*, *C. pulcherrima*, *C. tropicalis*, *C. utilis*, *Trichosporon pullans*, *T. cutaneum*, *Rhodotorula glutinis*, *R. graminis* and *Yarrowia lipolytica* (formerly classified as *Candida lipolytica*).

[0193] Most preferred is the oleaginous yeast *Yarrowia lipolytica*; and, in a further embodiment, most preferred are the *Y. lipolytica* strains designated as ATCC #76982, ATCC #20362, ATCC #8862, ATCC #18944 and/or LGAM S(7)1 (Papanikolaou S., and Aggelis G., *Bioresour. Technol.*, 82(1): 43-9 (2002)).

[0194] Specific teachings relating to transformation of *Yarrowia lipolytica* include U.S. Pat. No. 4,880,741 and U.S. Pat. No. 5,071,764 and Chen, D. C. et al. (*Appl. Microbiol. Biotechnol.*, 48(2):232-235 (1997)), while suitable selection techniques are described in U.S. Pat. No. 7,238,482 and Int'l. App. Pub. Nos. WO 2005/003310 and WO 2006/052870.

[0195] The preferred method of expressing genes in *Yarrowia lipolytica* is by integration of linear DNA into the genome of the host. Integration into multiple locations within the genome can be particularly useful when high level expression of genes are desired, such as in the Ura3 locus (GenBank Accession No. AJ306421), the Leu2 gene locus (GenBank Accession No. AF260230), the Lys5 gene locus (GenBank Accession No. M34929), the Aco2 gene locus (GenBank Accession No. AJ001300), the Pox3 gene locus (Pox3: GenBank Accession No. XP_503244 or Aco3: GenBank Accession No. AJ001301), the Δ 12 desaturase gene locus (U.S. Pat. No. 7,214,491), the Lip1 gene locus (GenBank Accession No. Z50020), the Lip2 gene locus (GenBank Accession No. AJ012632), the SCP2 gene locus (GenBank Accession No. AJ431362), the Pex3 gene locus (GenBank Accession No. CAG78565), the Pex16 gene locus (GenBank Accession No. CAG79622) and/or the Pex10 gene locus (GenBank Accession No. CAG81606).

[0196] Preferred selection methods for use in *Yarrowia lipolytica* are resistance to kanamycin, hygromycin and the amino glycoside G418, as well as ability to grow on media lacking uracil, leucine, lysine, tryptophan or histidine. 5-fluoroorotic acid [5-fluorouracil-6-carboxylic acid monohydrate or "5-FOA"] may also be used for selection of yeast Ura⁻ mutants. This compound is toxic to yeast cells that possess a functioning URA3 gene encoding orotidine 5'-monophosphate decarboxylase [OMP decarboxylase]; thus, based on this toxicity, 5-FOA is especially useful for the selection and identification of Ura⁻ mutant yeast strains (Bartel, P. L. and Fields, S., Yeast 2-Hybrid System, Oxford University: New York, v. 7, pp 109-147, 1997; see also Int'l. App. Pub. No. WO 2006/052870 for 5-FOA use in *Yarrowia*).

[0197] An alternate preferred selection method for use in *Yarrowia* relies on a dominant, non-antibiotic marker for *Yarrowia lipolytica* based on sulfonylurea (chlorimuron ethyl; E. I. duPont de Nemours & Co., Inc., Wilmington, Del.) resistance. More specifically, the marker gene is a native acetohydroxyacid synthase ("AHAS" or acetolactate syn-

thase; E.C. 4.1.3.18) that has a single amino acid change, i.e., W497L, that confers sulfonyl urea herbicide resistance (Int'l. App. Pub. No. WO 2006/052870). AHAS is the first common enzyme in the pathway for the biosynthesis of branched-chain amino acids, i.e., valine, leucine, isoleucine, and it is the target of the sulfonylurea and imidazolinone herbicides.

Fermentation Processes for Polyunsaturated Fatty Acid Production

[0198] The transformed host cell is grown under conditions that optimize expression of PUFA biosynthetic genes and produce the greatest and most economical yield of desired PUFAs. In general, media conditions may be optimized by modifying the type and amount of carbon source, the type and amount of nitrogen source, the carbon-to-nitrogen ratio, the amount of different mineral ions, the oxygen level, growth temperature, pH, length of the biomass production phase, length of the oil accumulation phase and the time and method of cell harvest. Oleaginous yeast of interest, such as *Yarrowia lipolytica*, are generally grown in a complex medium such as yeast extract-peptone-dextrose broth (YPD) or a defined minimal media that lacks a component necessary for growth and forces selection of the desired expression cassettes (e.g., Yeast Nitrogen Base (DIFCO Laboratories, Detroit, Mich.)).

[0199] Fermentation media for the methods and host cells described herein must contain a suitable carbon source such as are taught in U.S. Pat. No. 7,238,482. Suitable sources of carbon encompass a wide variety of sources, with sugars, glycerol and/or fatty acids being preferred. Most preferred is glucose and/or fatty acids containing between 10-22 carbons.

[0200] Nitrogen may be supplied from an inorganic (e.g., $(\text{NH}_4)_2\text{SO}_4$) or organic (e.g., urea or glutamate) source. In addition to appropriate carbon and nitrogen sources, the fermentation media must also contain suitable minerals, salts, cofactors, buffers, vitamins and other components known to those skilled in the art suitable for the growth of the oleaginous yeast and the promotion of the enzymatic pathways of PUFA production. Particular attention is given to several metal ions, such as Fe^{+2} , Cu^{+2} , Mn^{+2} , Co^{+2} , Zn^{+2} and Mg^{+2} , that promote synthesis of lipids and PUFAs (Nakahara, T. et al., *Ind. Appl. Single Cell Oils*, D. J. Kyle and R. Colin, eds. pp 61-97 (1992)).

[0201] Preferred growth media for the methods and host cells described herein are common commercially prepared media, such as Yeast Nitrogen Base (DIFCO Laboratories, Detroit, Mich.). Other defined or synthetic growth media may also be used and the appropriate medium for growth of the transformant host cells is well known in microbiology or fermentation science. A suitable pH range for the fermentation is typically between about pH 4.0 to pH 8.0, wherein pH 5.5 to pH 7.5 is preferred as the range for the initial growth conditions. The fermentation may be conducted under aerobic or anaerobic conditions, wherein microaerobic conditions are preferred.

[0202] Typically, accumulation of increased amounts of PUFAs and TAGs in oleaginous yeast cells requires a two-stage process, since the metabolic state must be "balanced" between growth and synthesis/storage of fats. Thus, most preferably, a two-stage fermentation process is necessary for the production of oils in oleaginous yeast. This approach is described in U.S. Pat. No. 7,238,482, as are various suitable

fermentation process designs (i.e., batch, fed-batch and continuous) and considerations during growth.

Purification and Processing of PUFA Oils

[0203] Fatty acids, including PUFAs, may be found in the host organisms as free fatty acids or in esterified forms such as acylglycerols, phospholipids, sulfolipids or glycolipids. These fatty acids may be extracted from the host cells through a variety of means well-known in the art. One review of extraction techniques, quality analysis and acceptability standards for yeast lipids is that of Z. Jacobs (*Critical Reviews in Biotechnology*, 12(5/6):463-491 (1992)). A brief review of downstream processing is also available by A. Singh and O. Ward (*Adv. Appl. Microbiol.*, 45:271-312 (1997)).

[0204] In general, means for the purification of fatty acids (including PUFAs) may include extraction (e.g., U.S. Pat. No. 6,797,303 and U.S. Pat. No. 5,648,564) with organic solvents, sonication, supercritical fluid extraction (e.g., using carbon dioxide), saponification and physical means such as presses, or combinations thereof. See U.S. Pat. No. 7,238,482.

Oils for Use in Foodstuffs, Health Food Products, Pharmaceuticals and Animal Feeds

[0205] The market place contains many food and feed products, incorporating ω -3 and/or ω -6 fatty acids, particularly ALA, GLA, ARA, EPA, DPA and DHA. It is contemplated that the microbial biomass comprising long-chain PUFAs, partially purified microbial biomass comprising PUFAs, purified microbial oil comprising PUFAs, and/or purified PUFAs made by the methods and host cells described herein impart health benefits, upon ingestion of foods or feed improved by their addition. These oils can be added to food analogs, drinks, meat products, cereal products, baked foods, snack foods and dairy products, to name a few. See U.S. Pat. App. Pub. No. 2006/0094092, hereby incorporated herein by reference.

[0206] These compositions may impart health benefits by being added to medical foods including medical nutritionals, dietary supplements, infant formula and pharmaceuticals. The skilled artisan will appreciate the amount of the oils to be added to food, feed, dietary supplements, nutriceuticals, pharmaceuticals, and other ingestible products as to impart health benefits. Health benefits from ingestion of these oils are described in the art, known to the skilled artisan and continuously investigated. Such an amount is referred to herein as an "effective" amount and depends on, among other things, the nature of the ingested products containing these oils and the physical conditions they are intended to address.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0207] As demonstrated in the Examples and summarized in Table 5, infra, disruptions in the C-terminal portion of the C_3HC_4 zinc ring finger motif of YIPex10p, deletion of the entire chromosomal YIPex10 gene or of the entire chromosomal YIPex16 gene, deletion of both the entire chromosomal YIPex10 and the YIPex16 gene, and deletion of the entire chromosomal YIPex3 gene all resulted in an engineered PUFA-producing strain of *Yarrowia lipolytica* that had an increased weight percent of PUFAs as a percent of total fatty acids, relative to the parental strain whose native Pex protein had no disruption. Expression of an extrachromosomal YIPex10p in an engineered EPA-producing strain of *Yarrowia lipolytica* that possessed a disruption in the genomic Pex10p and an increased amount of PUFAs in the total lipid fraction and in the oil fraction reversed the effect.

[0208] Table 5 compiles data from Examples 3, 4, 5, 7, 9, 11 and 12, such that trends concerning total lipid content [“TFAs % DCW”], concentration of a given fatty acid(s) expressed as a weight percent of total fatty acids [“% TFAs”], and content of a given fatty acid(s) as its percent of the dry cell weight [“% DCW”] can be deduced, based on the presence/absence of a Pex disruption or knockout. “Desired PUFA % TFAs” and “Desired PUFA % DCW” quantify the particular concentration or content, respectively, of the desired PUFA product (i.e., DGLA or EPA) that the engineered PUFA biosynthetic pathway was designed to produce. “All PUFAs” includes LA, ALA, EDA, DGLA, ETrA, ETA and EPA, while “C20 PUFAs” is limited to EDA, DGLA, ETrA, ETA and EPA.

to the parental strain whose native Pex protein had not been disrupted or the parental strain that was expressing a “replacement” copy of the disrupted native Pex protein):

[0210] 1) Pex disruption in a PUFA-producing *Yarrowia* results in an increase in the weight percent of a single PUFA, for example EPA or DGLA, relative to the weight percent of total fatty acids (% TFAs) in the total lipid fraction and in the oil fraction;

[0211] 2) Pex disruption in a PUFA-producing *Yarrowia* results in an increase in the weight percent of C₂₀ PUFAs relative to the weight percent of total fatty acids in the total lipid fraction and in the oil fraction;

TABLE 5

PUFA % TFAs and % DCW In <i>Yarrowia lipolytica</i> Strains With Mutant Pex Genes									
Example	Strain	Genomic Pex Gene	TF A % DCW	% TF As		% DCW			
				Desired PUFA	All PUFAs	C20 PUFAs	Desired PUFA	All PUFAs	C20 PUFAs
3, 4	Y4086	Wildtype Pex10	28.6	9.8 [EPA]	60.1	25.2	2.8 [EPA]	17.2	7.2
	Y4128	Mutant* Pex10	11.2	42.8 [EPA]	79.3	57.9	4.8 [EPA]	8.9	6.4
5	Y4128U1 + pFBAIn-PEX10	Mutant* Pex10 + Plasmid Wildtype Pex10 within chimeric FBAInm::Pex10::Pex20 gene	29.2	10.8 [EPA]	60	27.3	3.1 [EPA]	17.5	8.0
	Y4128U1 + pPEX10-1	Mutant* Pex10 + Plasmid Wildtype Pex10 within Pex10-5' (500 bp)::Pex10::Pex10-3' gene	27.1	10.7 [EPA]	60.1	26.7	2.9 [EPA]	16.2	7.2
	Y4128U1 + pPEX10-2	Mutant* Pex10 + Plasmid Wildtype Pex10 within Pex10-5' (991 bp)::Pex10::Pex10-3' gene	28.5	10.8 [EPA]	59	26.9	3.1 [EPA]	16.8	7.7
	Y4128U1 + control	Mutant* Pex10	22.8	27.7 [EPA]	62.6	42.3	6.3 [EPA]	14.2	9.6
7	Y4184U	Wildtype Pex10	11.8	20.6 [EPA]	nq♦	nq♦	2.4 [EPA]	nq♦	nq♦
			8.8	23.2 [EPA]	nq♦	nq♦	2.0 [EPA]	nq♦	nq♦
	Y4184U ΔPex10	Mutant Pex10	17.6	43.2 [EPA]	nq♦	nq♦	7.6 [EPA]	nq♦	nq♦
			13.2	46.1 [EPA]	nq♦	nq♦	6.1 [EPA]	nq♦	nq♦
9	Y4036 (avg)	Wildtype Pex16	Nq♦	23.4 [DGLA]	61.5	33.7	nq♦	nq♦	nq♦
	Y4036 (ΔPex16) (avg)	Mutant Pex16	Nq♦	43.4 [DGLA]	69.1	49.1	nq♦	nq♦	nq♦
11	Y4305U (Δpex10) (avg)	Mutant Pex10 and Wildtype Pex16	30	44.7 [EPA]	76.6	55.4	13.4 [EPA]	23.0	16.6
	Y4305 (ΔPex10, ΔPex16) (avg)	Mutant Pex10, Mutant Pex16	30	48.3 [EPA]	79.0	57.7	14.5 [EPA]	23.7	17.3
12	Y4036	Wildtype Pex3	4.7	19 [DGLA]	57	27	0.9 [DGLA]	2.7	1.3
	Y4036 (ΔPex3)	Mutant Pex3	6.1	46 [DGLA]	68	56	2.8 [DGLA]	4.4	3.4
			5.9	46 [DGLA]	68	56	2.7 [DGLA]	4.0	3.3

*Pex10 disruption in Y4128 results in a truncated protein, wherein the last 32 amino acids of the C-terminus (corresponding to the C-terminal portion of the C₃HC₄ zinc ring finger motif) are not present.

♦nq = not quantified

[0209] Although data cannot be directly compared between Examples, as a result of different *Yarrowia* strains and growth conditions, the following conclusions can be drawn (relative

[0212] 3) By the extension of point 1), Pex disruption in a PUFA-producing *Yarrowia* results in an increase in the amount of any and all combinations of PUFAs relative to

the weight percent of total fatty acids in the total lipid fraction and in the oil fraction; and

[0213] 4) Pex disruption in a PUFA-producing *Yarrowia* results in an increase in the percent of a single PUFA, for example EPA or DGLA, relative to the dry cell weight.

[0214] Variable results are observed when comparing the effects of Pex disruptions in "All PUFAs % DCW", "C20 PUFAs % DCW" and TFA % DCW. Specifically, in some cases, the Pex disruption in the PUFA-producing *Yarrowia* results in an increased amount of C₂₀ PUFAs or All PUFAs, as a percent of dry cell weight, in the total lipid fraction and in the oil fraction (relative to the parental strain whose native Pex protein had not been disrupted). In other cases, there is a diminished amount of C₂₀ PUFAs or All PUFAs, as a percent of dry cell weight, in the total lipid fraction and in the oil fraction (relative to the parental strain whose native Pex protein had not been disrupted). Similar results are observed with respect to the total lipid content (TFA % DCW), in that the effect of the Pex disruption can either result in an increase in total lipid content or a decrease.

[0215] Although each of the above generalizations are of interest, it is particularly useful to examine the effect of the Pex disruptions on the ratio of the desired PUFA which the organism was engineered to produce relative to the amount of total PUFAs.

[0216] For example, 54% of the PUFAs (as a % TFAs) were EPA in strain Y4128 containing the Pex10 disruption that resulted in truncation of the last 32 amino acids of the C-terminus, while only 16.3% of the PUFAs (as a % TFAs) were EPA in the parent strain, Y4086. Thus, the disruption was responsible for a 3.3-fold increase in the amount of the desired PUFA (as % TFAs) (Examples 3, 4). In a similar manner, 62.8% of the PUFAs (as a % TFAs) were DGLA in strain Y4036 (ΔPex16), while only 38.1% of the PUFAs (as a % TFAs) were DGLA in Y4036—a 1.65 fold increase (Example 9). And, 67.7% of the PUFAs (as a % TFAs) were DGLA in strain Y4036 (ΔPex3), while only 33.3% of the PUFAs (as a % TFAs) were DGLA in Y4036—a 2.0 fold increase (Example 12). These results support the hypothesis that the Pex disruption results in a selective increase in the amount, as a % TFAs, of the desired PUFA which the organism was engineered to produce in the total lipid and oil fractions.

[0217] Less significant selectivity is observed when examining the effect of Pex disruptions on the ratio of C20 PUFAs relative to the amount of total PUFAs. For example, 73% of the PUFAs (as a % TFAs) were C20 PUFAs in strain Y4128 containing the Pex10 disruption, while only 42% of the PUFAs (as a % TFAs) were C20 PUFAs in strain Y4086. Thus, the disruption was responsible for a 1.7-fold increase in the amount of C20 PUFAs that accumulated in the total lipid and oil fractions, relative to the total PUFAs (Examples 3, 4). In a similar manner, 71% of the PUFAs (as a % TFAs) were C20 PUFAs in strain Y4036 (ΔPex16), while only 54.8% of the PUFAs (as a % TFAs) were C20 PUFAs in Y4036—a 1.3 fold increase (Example 9). And, 82.4% of the PUFAs (as a % TFAs) were C20 PUFAs in strain Y4036 (ΔPex3), while only 47.4% of the PUFAs (as a % TFAs) were C20 PUFAs in Y4036—a 1.7 fold increase (Example 12).

[0218] On the basis of the teachings and results described herein, it is expected that the feasibility and commercial utility of utilizing various disruptions in native genes encoding peroxisome biogenesis factor proteins as a means to increase the amount of PUFAs produced in a PUFA-producing eukaryotic organism will be appreciated. The PUFA-producing

eukaryotic organism can synthesize a variety of ω-3 and/or ω-6 PUFAs, using either the Δ9 elongase/Δ8 desaturase pathway or the Δ6 desaturase/Δ6 elongase pathway.

EXAMPLES

[0219] The present invention is further described in the following Examples, which illustrate reductions to practice of the invention but do not completely define all of its possible variations.

General Methods

[0220] Standard recombinant DNA and molecular cloning techniques used in the Examples are well known in the art and are described by: 1) Sambrook, J., Fritsch, E. F. and Maniatis, T., *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1989) (Maniatis); 2) T. J. Silhavy, M. L. Bennan, and L. W. Enquist, *Experiments with Gene Fusions*; Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. (1984); and, 3) Ausubel, F. M. et al., *Current Protocols in Molecular Biology*, published by Greene Publishing Assoc. and Wiley-Interscience, Hoboken, N.J. (1987).

[0221] Materials and methods suitable for the maintenance and growth of microbial cultures are well known in the art. Techniques suitable for use in the following examples may be found as set out in *Manual of Methods for General Bacteriology* (Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, Eds), American Society for Microbiology: Washington, D.C. (1994); or by Thomas D. Brock in *Biotechnology: A Textbook of Industrial Microbiology*, 2nd ed., Sinauer Associates Sunderland, Mass. (1989). All reagents, restriction enzymes and materials used for the growth and maintenance of microbial cells were obtained from Aldrich Chemicals (Milwaukee, Wis.), DIFCO Laboratories (Detroit, Mich.), New England Biolabs, Inc. (Beverly, Mass.), GIBCO/BRL (Gaithersburg, Md.), or Sigma Chemical Company (St. Louis, Mo.), unless otherwise specified. *E. coli* strains were typically grown at 37° C. on Luria Bertani (LB) plates.

[0222] General molecular cloning was performed according to standard methods (Sambrook et al., *supra*). DNA sequence was generated on an ABI Automatic sequencer using dye terminator technology (U.S. Pat. No. 5,366,860; EP 272,007) using a combination of vector and insert-specific primers. Sequence editing was performed in *Sequencher* (Gene Codes Corporation, Ann Arbor, Mich.). All sequences represent coverage at least two times in both directions. Unless otherwise indicated herein comparisons of genetic sequences were accomplished using DNASTAR software (DNASTAR Inc., Madison, Wis.).

[0223] The meaning of abbreviations is as follows: "sec" means second(s), "min" means minute(s), "h" means hour(s), "d" means day(s), "μL" means microliter(s), "mL" means milliliter(s), "L" means liter(s), "μM" means micromolar, "mM" means millimolar, "M" means molar, "mmol" means millimole(s), "pmole" mean micromole(s), "g" means gram (s), "μg" means microgram(s), "ng" means nanogram(s), "U" means unit(s), "bp" means base pair(s) and "kB" means kilobase(s).

Nomenclature for Expression Cassettes:

[0224] The structure of an expression cassette is represented by a simple notation system of "X::Y::Z", wherein X

describes the promoter fragment, Y describes the gene fragment, and Z describes the terminator fragment, which are all operably linked to one another.

Transformation and Cultivation of *Yarrowia lipolytica*

[0225] *Yarrowia lipolytica* strain ATCC #20362 was purchased from the American Type Culture Collection (Rockville, Md.). *Yarrowia lipolytica* strains were routinely grown at 28-30° C. in several media, according to the recipes shown below. Agar plates were prepared as required by addition of 20 g/L agar to each liquid media, according to standard methodology.

[0226] YPD agar medium (per liter): 10 g of yeast extract [Difco], 20 g of Bacto peptone [Difco], and 20 g of glucose.

[0227] Basic Minimal Media (MM) (per liter): 20 g glucose, 1.7 g yeast nitrogen base without amino acids, 1.0 g proline, and pH 6.1 (not adjusted).

[0228] Minimal Media+Uracil (MM+uracil or MMU) (per liter): Prepare MM media as above and add 0.1 g uracil and 0.1 g uridine.

[0229] Minimal Media+Uracil+Sulfonylurea (MMU+SU) (per liter): Prepare MMU media as above and add 280 mg sulfonylurea.

[0230] Minimal Media+Leucine+Lysine (MMLeuLys) (per liter): Prepare MM media as above and add 0.1 g leucine and 0.1 g lysine.

[0231] Minimal Media+5-Fluoroorotic Acid (MM+5-FOA) (per liter): 20 g glucose, 6.7 g Yeast Nitrogen base, 75 mg uracil, 75 mg uridine and appropriate amount of FOA (Zymo Research Corp., Orange, Calif.), based on FOA activity testing against a range of concentrations from 100 mg/L to 1000 mg/L (since variation occurs within each batch received from the supplier).

[0232] High Glucose Media (HGM) (per liter): 80 glucose, 2.58 g KH₂PO₄ and 5.36 g K₂HPO₄, pH 7.5 (do not need to adjust).

[0233] Fermentation medium without Yeast Extract (FM without YE) (per liter): 6.70 g Yeast Nitrogen base, 6.00 g KH₂PO₄, 2.00 g K₂HPO₄, 1.50 g MgSO₄·7H₂O and 20 g Glucose.

[0234] Fermentation medium (FM) (per liter): Prepare FM without YE media as above and add 5.00 g Yeast extract (BBL).

[0235] Synthetic Dextrose Media (SD) (per liter): 6.7 g Yeast Nitrogen base with ammonium sulfate and without amino acids; and 20 g glucose.

[0236] Complete Minimal Glucose Broth Minus Uracil (CSM-Ura): Catalog No. C8140, Teknova, Hollister, Calif. (0.13% amino acid dropout powder minus uracil. 0.17% yeast nitrogen base, 0.5% (NH₄)₂SO₄, 2.0% glucose).

[0237] Transformation of *Y. lipolytica* was performed according to the method of Chen, D. C. et al. (*Appl. Microbiol. Biotechnol.*, 48(2):232-235 (1997)), unless otherwise noted. Briefly, *Yarrowia* was streaked onto a YPD plate and grown at 30° C. for approximately 18 hr. Several large loopfuls of cells were scraped from the plate and resuspended in 1 mL of transformation buffer containing: 2.25 mL of 50% PEG, average MW 3350; 0.125 mL of 2 M Li acetate, pH 6.0; and 0.125 mL of 2 M DTT. Then, approximately 500 ng of linearized plasmid DNA was incubated in 100 µL of resuspended cells, and maintained at 39° C. for 1 hr with vortex mixing at 15 min intervals. The cells were plated onto selection media plates and maintained at 30° C. for 2 to 3 days.

Fatty Acid Analysis Of *Yarrowia lipolytica*

[0238] For fatty acid analysis, cells were collected by centrifugation and lipids were extracted as described in Bligh, E. G. & Dyer, W. J. (*Can. J. Biochem. Physiol.*, 37:911-917 (1959)). Fatty acid methyl esters ["FAMEs"] were prepared by transesterification of the lipid extract with sodium methoxide (Roughan, G., and Nishida I., *Arch Biochem Biophys.*, 276(1):3846 (1990)) and subsequently analyzed with a Hewlett-Packard 6890 GC fitted with a 30-mx0.25 mm (i.d.) HP-INNOWAX (Hewlett-Packard) column. The oven temperature was from 170° C. (25 min hold) to 185° C. at 3.5° C./min.

[0239] For direct base transesterification, *Yarrowia* culture (3 mL) was harvested, washed once in distilled water, and dried under vacuum in a Speed-Vac for 5-10 min. Sodium methoxide (100 µL of 1%) was added to the sample, and then the sample was vortexed and rocked for 20 min. After adding 3 drops of 1 M NaCl and 400 µL hexane, the sample was vortexed and spun. The upper layer was removed and analyzed by GC as described above.

Example 1

Generation of *Yarrowia lipolytica* Strain Y4086 to Produce about 14% EPA of Total Lipids Via the Δ9 Elongase/Δ8 Desaturase Pathway

[0240] The present Example describes the construction of strain Y4086, derived from *Yarrowia lipolytica* ATCC #20362, capable of producing about 14% EPA relative to the total lipids via expression of a Δ9 elongase/Δ8 desaturase pathway (FIG. 3A).

[0241] The development of strain Y4086 required the construction of strain Y2224 (a FOA resistant mutant from an autonomous mutation of the Ura3 gene of wildtype *Yarrowia* strain ATCC #20362), strain Y4001 (producing 17% EDA with a Leu- phenotype), strain Y4001U (Leu- and Ura-phenotype), strain Y4036 (producing 18% DGLA with a Leu- phenotype), strain Y4036U (Leu- and Ura- phenotype) and strain Y4070 (producing 12% ARA with a Ura- phenotype). Further details regarding the construction of strains Y2224, Y4001, Y4001U, Y4036, Y4036U and Y4070 are described in Example 7 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference.

[0242] The final genotype of strain Y4070 with respect to wildtype *Yarrowia lipolytica* ATCC #20362 was Ura3-, unknown 1-, unknown 3-, Leu+, Lys+, GPD::FmD12::Pex20, YAT1::FmD12::OCT, YAT1::ME3S::Pex16, GPAT::EgD9e::Lip2, EXP1::EgD9eS::Lip1, FBAINm::EgD9eS::Lip2, FBAINm::EgD8M::Pex20, EXP1::EgD8M::Pex16, FBAIN::EgD5::Aco, EXP1::EgD5S::Pex20, YAT1::RD5S::OCT (wherein FmD12 is a *Fusarium moniliforme* Δ12 desaturase gene [Int'l. App. Pub. No. WO 2005/047485]; ME3S is a codon-optimized C_{16/18} elongase gene, derived from *Mortierella alpina* [Int'l. App. Pub. No. WO 2007/046817]; EgD9e is a *Euglena gracilis* Δ9 elongase gene [Int'l. App. Pub. No. WO 2007/061742]; EgD9eS is a codon-optimized Δ9 elongase gene, derived from *Euglena gracilis* [Int'l. App. Pub. No. WO 2007/061742]; EgD8M is a synthetic mutant Δ8 desaturase [Int'l. App. Pub. No. WO 2008/073271], derived from *Euglena gracilis* [U.S. Pat. No. 7,256,033]; EgD5 is a *Euglena gracilis* Δ5 desaturase [U.S. Pat. App. Pub. US 2007-0292924-A1]; EgD5S is a codon-optimized Δ5 desaturase gene, derived from *Euglena gracilis* [U.S. Pat. App. Pub. No. 2007-0292924]; and RD5S is a

codon-optimized $\Delta 5$ desaturase, derived from *Peridinium* sp. CCMP626 [U.S. Pat. App. Pub. No. 2007-0271632].

Generation of Y4086 Strain to Produce about 14% EPA of Total Lipids

[0243] Construct pZP3-Pa777U (FIG. 3B; SEQ ID NO:28), described in Table 19 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference, was generated to integrate three $\Delta 17$ desaturase genes into the Pox3 loci (GenBank Accession No. AJ001301) of strain Y4070, to thereby enable production of EPA. The $\Delta 17$ desaturase genes were PaD17, a *Pythium aphanidermatum* $\Delta 17$ desaturase (Int'l. App. Pub. No. WO 2008/054565), and PaD17S, a codon-optimized $\Delta 17$ desaturase derived from *Pythium aphanidermatum* (Int'l. App. Pub. No. WO 2008/054565).

[0244] The pZP3-Pa777U plasmid was digested with *Ascl*/SphI, and then used for transformation of strain Y4070 according to the General Methods. The transformant cells were plated onto MM plates and maintained at 30° C. for 2 to 3 days. Single colonies were re-streaked onto MM plates, and then inoculated into liquid MMLeuLys at 30° C. and shaken at 250 rpm/min for 2 days. The cells were collected by centrifugation, lipids were extracted, and FAMEs were prepared by trans-esterification, and subsequently analyzed with a Hewlett-Packard 6890 GC.

[0245] GC analyses showed the presence of EPA in the transformants containing the 3 chimeric genes of pZP3-Pa777U, but not in the parent Y4070 strain. Most of the selected 96 strains produced 10-13% EPA of total lipids. There were 2 strains (i.e., #58 and #79) that produced about 14.2% and 13.8% EPA of total lipids. These two strains were designated as Y4085 and Y4086, respectively.

[0246] The final genotype of strain Y4086 with respect to wildtype *Yarrowia lipolytica* ATCC #20362 was Ura3+, Leu+, Lys+, unknown 1-, unknown 2-, YALI0F24167g-, GPD::FmD12::Pex20, YAT1::FmD12::OCT, YAT1::ME3S::Pex16, GPAT::EgD9e::Lip2, EXP1::EgD9eS::Lip1, FBAINm::EgD9eS::Lip2, FBAINm::EgD8M::Pex20, EXP1::EgD8M::Pex16, FBAINm::EgD5::Aco, EXP1::EgD5S::Pex20, YAT1::RD5S::OCT, YAT1::PaD17S::Lip1, EXP1::PaD17::Pex16, FBAINm::PaD17::Aco.

Example 2

Generation of *Yarrowia Lipolytica* Strain Y4128 to Produce about 37% EPA of Total Lipids Via the $\Delta 9$ Elongase/ $\Delta 8$ Desaturase Pathway

[0247] The present Example describes the construction of strain Y4128, derived from *Yarrowia lipolytica* ATCC #20362, capable of producing about 37.6% EPA relative to the total lipids (i.e., greater than a 2-fold increase in EPA concentration as percent of total fatty acids with respect to Y4086; FIG. 3A).

[0248] The development of strain Y4128 required the construction of strains Y2224, Y4001, Y4001U, Y4036, Y4036U, Y4070 and Y4086 (described in Example 1), as well as construction of strain Y4086U1 (Ura-).

Generation Of Strain Y4086U1 (Ura-)

[0249] Strain Y4086U1 was created via temporary expression of the Cre recombinase enzyme in construct pY117 (FIG. 4A; SEQ ID NO:29; described in Table 20 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) within strain Y4086 to produce a Ura- phenotype.

This released the LoxP sandwiched Ura3 gene from the genome. The mutated *Yarrowia acetohydroxyacid synthase* ["AHAS"; E.C. 4.1.3.18] enzyme (i.e., GenBank Accession No. XP_501277, comprising a W497L mutation as set forth in SEQ ID NO:27; see Int'l. App. Pub. No. WO 2006/052870) in plasmid pY117 conferred sulfonyl urea herbicide resistance (SU^R), which was used as a positive screening marker.

[0250] Plasmid pY117 was used to transform strain Y4086 according to the General Methods. Following transformation, the cells were plated onto MMU+SU (280 μ g/mL sulfonylurea; also known as chlorimuron ethyl, E. I. duPont de Nemours & Co., Inc., Wilmington, Del.) plates and maintained at 30° C. for 2 to 3 days. The individual SU^R colonies grown on MMU+SU plates were picked, and streaked into YPD liquid media at 30° C. and shaken at 250 rpm/min for 1 day to cure the pY117 plasmid. The grown cultures were streaked onto MMU plates. After two days at 30° C., the individual colonies were re-streaked onto MM and MMU plates. Those colonies that could grow on MMU, but not on MM plates were selected. Two of these strains with Ura-phenotypes were designated as Y4086U1 and Y4086U2.

Generation of Y4128 Strain to Produce about 37% EPA of Total Lipids

[0251] Construct pZP2-2988 (FIG. 4B; SEQ ID NO:30; described in Table 21 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was generated to integrate one $\Delta 12$ desaturase gene (i.e., FmD12S, a codon-optimized $\Delta 12$ desaturase gene derived from *Fusarium moniliforme* [Int'l. App. Pub. No. WO 2005/047485]), two $\Delta 8$ desaturase genes (i.e., EgD8M) and one $\Delta 9$ elongase gene (i.e., EgD9eS) into the Pox2 loci (GenBank Accession No. AJ001300) of strain Y4086U1, to thereby enable higher level production of EPA. The pZP2-2988 plasmid was digested with *Ascl*/SphI, and then used for transformation of strain Y4086U1 according to the General Methods. The transformant cells were plated onto MM plates and maintained at 30° C. for 2 to 3 days. Single colonies were re-streaked onto MM plates, and then inoculated into liquid MMLeuLys at 30° C. and shaken at 250 rpm/min for 2 days. The cells were collected by centrifugation, resuspended in HGM and then shaken at 250 rpm/min for 5 days. The cells were collected by centrifugation, lipids were extracted, and FAMEs were prepared by trans-esterification, and subsequently analyzed with a Hewlett-Packard 6890 GC.

[0252] GC analyses showed that most of the selected 96 strains produced 12-15.6% EPA of total lipids. There were 2 strains (i.e., #37 within Group I and #33 within Group II) that produced about 37.6% and 16.3% EPA of total lipids. These two strains were designated as Y4128 and Y4129, respectively.

[0253] The final genotype of strain Y4128 with respect to wildtype *Yarrowia lipolytica* ATCC #20362 was: YALI0F24167g-, Pex10-, unknown 1-, unknown 2-, GPD::FmD12::Pex20, YAT1::FmD12::OCT, GPM/FBAINm::FmD12S::OCT, YAT1::ME3S::Pex16, GPAT::EgD9e::Lip2, EXP1::EgD9eS::Lip1, FBAINm::EgD9eS::Lip2, FBAINm::EgD8M::Pex20, FBAINm::EgD8M::Lip1, EXP1::EgD8M::Pex16, GPDIN::EgD8M::Lip1, YAT1::EgD8M::Aco, FBAINm::EgD5::Aco, EXP1::EgD5S::Pex20, YAT1::RD5S::OCT, YAT1::PaD17S::Lip1, EXP1::PaD17::Pex16, FBAINm::PaD17::Aco.

[0254] *Yarrowia lipolytica* strain Y4128 was deposited with the American Type Culture Collection on Aug. 23, 2007 and bears the designation ATCC PTA-8614.

Generation of Y4128U Strains With A Ura- Phenotype

[0255] In order to disrupt the Ura3 gene in strain Y4128, construct pZKUE3S (FIG. 5A; SEQ ID NO:31; described in Table 22 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was created to integrate a EXP1::ME3S::Pex20 chimeric gene into the Ura3 gene of strain Y4128. Plasmid pZKUE3S was digested with SphI/PacI, and then used to transform strain Y4128 according to the General Methods. Following transformation, cells were plated onto MM+5-FOA selection plates and maintained at 30° C. for 2 to 3 days.

[0256] A total of 24 transformants grown on MM+5-FOA selection plates were picked and re-streaked onto fresh MM+5-FOA plates. The cells were stripped from the plates,

[0260] Dry cell weight was determined by collecting cells from 10 mL of culture via centrifugation, washing the cells with water once to remove residual medium, drying the cells in a vacuum oven at 80° C. overnight, and weighing the dried cells. The total amount of FAMEs in a sample was determined by comparing the areas of all peaks in the GC profile with the peak area of an added known amount of internal standard C15:0 fatty acid.

[0261] Based on the above analyses, lipid content as a percentage of dry cell weight (DCW) and lipid composition was determined for strains Y4086 and Y4128. Strain Y4128 had decreased lipid content with respect to strain Y4086 (11.2 TFAs % DCW versus 28.6 TFAs % DCW). In contrast, strain Y4128 had elevated EPA concentrations among lipids with respect to strain Y4086, as shown below in Table 6. Fatty acids are identified as 18:0 (stearic acid), 18:1 (oleic acid), LA, ALA, EDA, DGLA, ETrA, ETA and EPA; fatty acid compositions were expressed as the weight percent (wt. %) of total fatty acids (TFAs).

TABLE 6

Sample	Lipid Composition in <i>Yarrowia lipolytica</i> Strains Y4086 And Y4128								
	18:0	18:1	18:2 [LA]	18:3 (n-3) [ALA]	20:2 [EDA]	20:3 (n-6) [DGLA]	20:3 (n-3) [ETrA]	20:4 (n-3) [ETA]	20:5 (n-3) [EPA]
Y4086	4.6	26.8	28.0	6.9	7.6	0.9	4.9	2.0	9.8
Y4128	1.8	6.7	19.6	1.8	4.2	3.4	1.5	6.0	42.8

EPA content in the cell, expressed as mg EPA/g dry cell and calculated according to the following formula: (% of EPA/Lipid) * (% of Lipid/dry cell weight) * 0.1, increased from 28 mg EPA/g DCW in strain Y4086 to 47.9 mg EPA/g DCW in strain Y4128.

lipids were extracted, and FAMEs were prepared by trans-esterification, and subsequently analyzed with a Hewlett-Packard 6890 GC.

[0257] GC analyses showed the presence of between 10-15% EPA in all of the transformants with pZKUE3S from plates. The strains identified as #3, #4, #10, #12, #19 and #21 that produced 12.9%, 14.4%, 15.2%, 15.4%, 14% and 10.9% EPA of total lipids were designated as Y4128U1, Y4128U2, Y4128U3, Y4128U4, Y4128U5 and Y4128U6, respectively (collectively, Y4128U).

[0258] The discrepancy in the % EPA quantified in Y4128 (37.6%) versus Y4128U (average 13.8%) is based on differing growth conditions. Specifically, the former culture was analyzed following two days of growth in liquid culture, while the latter culture was analyzed after growth on an agar plate. The Applicants have observed a 2-3 fold increase in % EPA, when comparing results from agar plates to those in liquid culture. Thus, although results are not directly comparable, both Y4128 and Y4128U strains demonstrate production of EPA.

Example 3

Determination of Total Lipid Content of *Yarrowia lipolytica* Strain Y4128

[0259] The total amount of lipid produced by strain Y4128 and the percentage of each fatty acid species in the lipid were measured by GC analysis. Specifically, total lipids were extracted, and FAMEs were prepared by trans-esterification, and subsequently analyzed with a Hewlett-Packard 6890 GC, as described in the General Methods.

[0262] Thus, the results in Table 6 showed that compared to the parent strain Y4086, strain Y4128 had a lower total lipid content (TFAs % DCW) (11.2% versus 28.6%), higher EPA % TFAs (42.8% versus 9.8%), and higher EPA % DCW (4.8% versus 2.8%). Additionally, strain Y4128 had a 3.3-fold increase in the amount of EPA relative to the total PUFAs (54% of the PUFAs [as a % TFAs] versus 16.3% of the PUFAs [as a % TFAs]) and a 1.7-fold increase in the amount of C20 PUFAs relative to the total PUFAs (73% of the PUFAs [as a % TFAs] versus 42% of the PUFAs [as a % TFAs]).

Example 4

Determination of the Integration Site of pZP2-2988 in *Yarrowia lipolytica* Strain Y4128 as a Pex10Integration

[0263] The genomic integration site of pZP2-2988 in strain Y4128 was determined by genome walking using the Universal GenomeWalker™ Kit from Clontech (Palo Alto, Calif.), following the manufacturer's recommended protocol. Based on the sequence of the plasmid, the following primers were designed for genome walking: pZP-GW-5-1 (SEQ ID NO:32), pZP-GW-5-2 (SEQ ID NO:33), pZP-GW-5-3 (SEQ ID NO:34), pZP-GW-54 (SEQ ID NO:35), pZP-GW-3-1 (SEQ ID NO:36), pZP-GW-3-2 (SEQ ID NO:37), pZP-GW-3-3 (SEQ ID NO:38) and pZP-GW-34 (SEQ ID NO:39).

[0264] Genomic DNA was prepared from strain Y4128 using the Qiagen Miniprep kit with a modified protocol. Cells were scraped off a YPD medium plate into a 1.5 mL microfuge tube. Cell pellet (100 µl) was resuspended with 250 µl of buffer P1 containing 0.125 M β -mercaptoethanol

and 1 mg/mL zymolyase 20 T (MP Biomedicals, Inc., Solon, Ohio). The cell suspension was incubated at 37° C. for 30 min. Buffer P2 (250 µl) was then added to the tube. After mixing by inverting the tube for several times, 350 µl of buffer N3 was added. The mixture was then centrifuged at 14,000 rpm for 5 min in a microfuge. Supernatant was poured into a Qiagen miniprep spin column, and centrifuged for 1 min. The column was washed once by adding 0.75 mL of buffer PE, followed by centrifugation at 14,000 rpm for 1 min. The column was dried by further centrifugation at 14,000 rpm for 1 min. Genomic DNA was eluted by adding 50 µl of buffer EB to the column, allowed to sit for 1 min and centrifuged at 14,000 rpm for 1 min.

[0265] Purified genomic DNA was used for genome walking. The DNA was digested with restriction enzymes DraI, EcoRV, PvuII and StuI separately, according to the protocol of the GenomeWalker kit. For each digestion, the reaction mixture contained 10 µl of 10x restriction buffer, 10 µl of the appropriate restriction enzyme and 8 µg of genomic DNA in a total volume of 100 µl. The reaction mixtures were incubated at 37° C. for 4 hrs. The digested DNA samples were then purified using Qiagen PCR purification kit following the manufacturer's protocol exactly. DNA samples were eluted in 16 µl water. Purified, digested genomic DNA samples were then ligated to the genome walker adaptor (infra). Each ligation mixture contained 1.9 µl of the genome walker adaptor, 1.6 µl of 10x ligation buffer, 0.5 µl T4 DNA ligase and 4 µl of the digested DNA. The reaction mixtures were incubated at 16° C. overnight. Then, 72 µl of 50 mM Tris HCl, 1 mM EDTA, pH 7.5 were added to each ligation mixture.

[0266] For 5'-end genome walking, four PCR reactions were carried out using 1 µl of each ligation mixture individually as template. In addition, each reaction mixture contained 1 µl of 10 µM primer pZP-GW-5-1 (SEQ ID NO:32), 1 µl of 10 µM kit-supplied Genome Walker adaptor, 41 µl water, 5 µl 10x cDNA PCR reaction buffer and 1 µl Advantage cDNA polymerase mix from Clontech. The sequence of the Genome Walker adaptor (SEQ ID NOs:40 [top strand] and 41 [bottom strand]), is shown below:

5' -GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCGGGCTGG
T-3'

3' -H2N-CCCGACCA-5'

The PCR conditions were as follows: 95° C. for 1 min, followed by 30 cycles at 95° C. for 20 sec and 68° C. for 3 min, followed by a final extension at 68° C. for 7 min. The PCR products were each diluted 1:100 and 1 µl of the diluted PCR product used as template for a second round of PCR. The conditions were exactly the same except that pZP-GW-5-2 (SEQ ID NO:33) replaced pZP-GW-5-1 (SEQ ID NO:32).

[0267] For 3'-end genome walking, four PCR reactions were carried out as above, except primer pZP-GW-3-1 (SEQ ID NO:36) and nested adaptor primer (SEQ ID NO:42) were used. The PCR products were similarly diluted and used as template for a second round of PCR, using pZP-GW-3-2 (SEQ ID NO:37) to replace pZP-GW-3-1 (SEQ ID NO:36).

[0268] PCR products were analyzed by gel electrophoresis. One reaction product, using EcoRV digested genomic DNA as template and the primers pZP-GW-3-2 and nested adaptor primer, generated a ~1.6 kB fragment. This fragment was isolated, purified with a Qiagen gel purification kit and cloned into pCR2.1—TOPO. Sequence analysis showed that the

fragment included both part of plasmid pZP2-2988 and the *Yarrowia* genomic DNA from chromosome C. The junction between them was at nucleotide position 139826 of chromosome C. This was inside the coding region of the Pex10 gene (GenBank Accession No. CAG81606; SEQ ID NO:10).

[0269] To determine the 5' end of the junction, PCR amplification was performed using genomic DNA from strain Y4128 as the template and primers Per10 F1 (SEQ ID NO:43) and ZPGW-5-5 (SEQ ID NO:44). The reaction mixture included 1 µl each of 20 µM primer, 1 µl genomic DNA, 22 µl water and 25 µl TaKaRa ExTaq 2x premix (TaKaRa Bio Inc., Otsu Shiga, Japan). The thermocycler conditions were: 94° C. for 1 min, followed by 30 cycles of 94° C. for 20 sec, 55° C. for 20 sec and 72° C. for 2 min, followed by a final extension at 72° C. for 7 min. A 1.6 kB DNA fragment was amplified and cloned into pCR2.1—TOPO. Sequence analysis showed that it was a chimeric fragment between *Yarrowia* genomic DNA from chromosome C and pZP2-2988. The junction was at nucleotide position 139817 of chromosome C. Thus, a 10 nucleotide segment of chromosome C was replaced by the Ascl/SphI fragment from pZP2-2988 (FIG. 4B) in strain Y4128. As a result, Pex10 in strain Y4128 was lacking the last 32 amino acids of the encoded protein.

[0270] Based on the above conclusions, the Y4128U strains isolated in Example 2 (supra) are referred to subsequently as Δpex10 strains. For clarity, strain Y4128U1 is equivalent to strain Y4128U1 (Δpex10).

Example 5

Plasmid Expression of Pex10In *Yarrowia lipolytica* Strain Y4128U1 (Δpex10)

[0271] Three plasmids that carried the *Y. lipolytica* Pex10 gene were constructed: 1) pFBAIn-PEX10 allowed the expression of the Pex100RF under the control of the FBAInm promoter; and, 2) pPEX10-1 and pPEX10-2 allowed the expression of Pex10 under control of the native Pex10 promoter, although pPEX10-1 used a shorter version (~500 bp) while pPEX10-2 used a longer version (~900 bp) of the promoter. Following construction of these expression plasmids and transformation, the effect of Pex10 plasmid expression on total oil and on EPA level in the *Y. lipolytica* strain Y4128U1 (Δpex10) was determined. Deletion of Pex10 resulted in an increased amount of EPA as a percent of TFAs, but a reduced amount of total lipid, as a percent of DCW, in the cell.

Construction of pFBAIn-PEX10, pPEX10-1 and pPEX10-2

[0272] To construct pFBAIn-PEX10, the primers Per10 F1 (SEQ ID NO:43) and Pe10 R (SEQ ID NO:45) were used to amplify the coding region of the Pex10 gene using *Y. lipolytica* genomic DNA as template. The PCR reaction mixture contained 1 µl each of 20 µM primers, 1 µl of *Y. lipolytica* genomic DNA (~100 ng), 25 µl ExTaq 2x premix and 22 µl water. The reaction was carried out as follows: 94° C. for 1 min, followed by 30 cycles of 94° C. for 20 sec, 55° C. for 20 sec and 72° C. for 90 sec, followed by a final extension of 72° C. for 7 min. The PCR product, a 1168 bp DNA fragment, was purified with a Qiagen PCR purification kit, digested with NcoI and NotI, and cloned into pFBAIn-MOD-1 (SEQ ID NO:46; FIG. 5B) digested with the same two restriction enzymes.

[0273] Of the 8 individual clones subjected to sequence analysis, 2 had the correct sequence of Pex10 with no errors.

The components of pFBAIn-PEX10 (SEQ ID NO:47; FIG. 6A) are listed below in Table 7.

TABLE 7

Components Of Plasmid pFBAIn-PEX10 (SEQ ID NO: 47)	
RE Sites And Nucleotides Within SEQ ID NO: 47	Description Of Fragment And Chimeric Gene Components
BglII-BsiWI (6040-318)	FBAInm::Pex10::Pex20, comprising: FBAInm: <i>Yarrowia lipolytica</i> FBAInm promoter (U.S. Pat. No. 7,202,356); Pex10: <i>Y. lipolytica</i> Pex10 ORF (GenBank Accession No. AB036770, nucleotides 1038-2171; SEQ ID NO: 21); Pex20: Pex20 terminator sequence from <i>Yarrowia</i> Pex20 gene (GenBank Accession No. AF054613) <i>Yarrowia</i> URA3 (GenBank Accession No. AJ306421)
PacI-BglII (4530-6040) (3123-4487)	<i>Yarrowia</i> autonomous replicating sequence 18 (ARS18; GenBank Accession No. A17608) <i>E. coli</i> f1 origin of replication
(2464-2864) (1424-2284)	Ampicillin-resistance gene (Amp ^R) for selection in <i>E. coli</i>
(474-1354)	ColE1 plasmid origin of replication

[0274] To construct pPEX10-1 and pPEX10-2, primers PEX10-R-BsiWI (SEQ ID NO:48), PEX10-F1-Sall (SEQ ID NO:49) and PEX10-F2-Sall (SEQ ID NO:50) were designed and synthesized. PCR amplification using genomic *Yarrowia lipolytica* DNA and primers PEX10-R-BsiWI and PEX10-F1-Sall generated a 1873 bp fragment containing the Pex100RF, 500 bp of the 5' upstream region and 215 bp of the 3' downstream region of the Pex10 gene, flanked by Sall and Bs/WI restriction sites at either end. This fragment was purified with the Qiagen PCR purification kit, digested with Sall and BsiWI, and cloned into pEXP-MOD-1 (SEQ ID NO:51; FIG. 6B) digested with the same two enzymes to generate pPEX10-1 (SEQ ID NO:52; FIG. 7A). Plasmid pEXP-MOD1 is similar to pFBAIN-MOD-1 (SEQ ID NO:46; FIG. 5B) except that the FBAINm promoter in the latter was replaced with the EXP1 promoter. Table 8 lists the components of pPEX10-1.

TABLE 8

Components Of Plasmid pPEX10-1 (SEQ ID NO: 52)	
RE Sites And Nucleotides Within SEQ ID NO: 52	Description Of Fragment And Chimeric Gene Components
Sall-BsiWI (5705-1)	Pex10-5'::Pex10::Pex10-3', comprising: Pex10-5': 500 bp of the 5' promoter region of <i>Yarrowia lipolytica</i> Pex10 gene;

TABLE 8-continued

Components Of Plasmid pPEX10-1 (SEQ ID NO: 52)		
RE Sites And Nucleotides	Within SEQ ID NO: 52	Description Of Fragment And Chimeric Gene Components
PacI-SalI (4216-5703) (2806-4170)	Pex10: <i>Yarrowia lipolytica</i> Pex10 ORF (GenBank Accession No. AB036770, nucleotides 1038-2171; SEQ ID NO: 21); Pex10-3': 215 bp of Pex10 terminator sequence from <i>Yarrowia</i> Pex10 gene (GenBank Accession No. AB036770) [Note the entire Pex10-5'::Pex10::Pex10-3' expression cassette is labeled collectively as "PEX10" in the Figure] <i>Yarrowia</i> URA3 gene (GenBank Accession No. AJ306421)	
(2147-2547) (1107-1967)	<i>Yarrowia</i> autonomous replicating sequence 18 (ARS18; GenBank Accession No. A17608)	
(157-1037)	<i>E. coli</i> f1 origin of replication Ampicillin-resistance gene (Amp ^R) for selection in <i>E. coli</i> ColE1 plasmid origin of replication	

[0275] PCR amplification of *Yarrowia lipolytica* genomic DNA using PEX10-R-BsiWI (SEQ ID NO:48) and PEX10-F2-SalI (SEQ ID NO:50) generated a 2365 bp fragment containing the PEX10 ORF, 991 bp of the 5' upstream region and 215 bp of the 3' downstream region of the Pex10 gene, flanked by SalI and BsiWI restriction sites at either end. This fragment was purified with a Qiagen PCR purification kit, digested with SalI and BsiWI, and cloned into similarly digested pEXP-MOD-1. This resulted in synthesis of pPEX10-2 (SEQ ID NO:53), whose construction is analogous to that of plasmid pPEX10-1 (Table 8, supra), with the exception of the longer Pex10-5' promoter in the chimeric Pex10-5'::Pex10::Pex10-3' gene.

Expression of Pex10 in Strain Y4128U1 (Δ pex10)

[0276] Plasmids pFBAIN-MOD-1 (control; SEQ ID NO:46), pFBAIN-PEX10 (SEQ ID NO:47), pPEX10-1 (SEQ ID NO:52) and pPEX10-2 (SEQ ID NO:53) were transformed into Y4128U1 (Apex10) according to the protocol in the General Methods. Transformants were plated on MM plates. The total lipid content and fatty acid composition of transformants carrying the above plasmids were analyzed as described in Example 3.

[0277] Lipid content as a percentage of dry cell weight (DCW) and lipid composition are shown below in Table 9. Specifically, fatty acids are identified as 18:0 (stearic acid), 18:1 (oleic acid), LA, ALA, EDA, DGLA, ETrA, ETA and EPA; fatty acid compositions were expressed as the weight percent (wt. %) of total fatty acids.

TABLE 9

Lipid Composition in *Yarrowia lipolytica* Strain Y4128U1 (Apex10) Transformed With Various Pex10 Plasmids

Plasmid	TFA			18:3		20:3		20:3		20:4		20:5	
	% DCW	18:0	18:1	[LA]	[ALA]	[20:2]	(ω6)	[DGLA]	[ETrA]	[ETA]	[EPA]	(ω3)	(ω3)
pFBAIN-MOD-1	22.8	1.9	9.6	18.3	2.0	4.3	2.3	2.1	5.9	27.7			
pFBAIN-PFX10	29.2	4.0	24.9	25.1	7.6	6.6	1.0	5.3	3.6	10.8			

TABLE 9-continued

Plasmid	Lipid Composition in <i>Yarrowia lipolytica</i> Strain Y4128U1 (Δpex10) Transformed With Various Pex10 Plasmids									
	TFA % DCW	18:0	18:1	18:2 [LA]	18:3 (ω3) [ALA]	20:2 [EDA]	20:3 (ω6) [DGLA]	20:3 (ω3) [ETrA]	20:4 (ω3) [ETA]	20:5 (ω3) [EPA]
pPEX10-1	27.1	3.9	25.0	25.2	8.2	6.4	0.9	5.2	3.5	10.7
pPEX10-2	28.5	4.3	25.4	24.5	7.6	6.4	1.0	5.3	3.4	10.8

[0278] The results in Table 9 showed that expression of Pex10 in Y4128U1 (Δpex10), either from the native *Y. lipolytica* Pex10 promoter or from the *Y. lipolytica* FBAINm promoter, reduced the percent of EPA back to the level of Y4086 while increasing the total lipid content (TFA % DCW) up to the level of Y4086 (see data of Table 6 for comparison). EPA content per gram of dry cell changed from 63.2 mg in the case of the control sample (i.e., cells carrying pFBAIN-MOD-1) to 31.5 mg in cells carrying pFBAIN-PEX10, 29 mg in cells carrying pPEX10-1 and 30.8 mg in cells carrying pPEX10-2. These results demonstrated that disruption of the ring-finger domain of Pex10 increased the amount of EPA but reduced the total lipid content in the cell.

[0279] Thus, the results in Table 9 showed that compared to Y4128U1 (Δpex10) transformant with control plasmid, all transformants with Pex10 expressing plasmids showed higher lipid content (TFAs % DCW) (>27% versus 22.8%), lower EPA % TFAs (ca. 10.8% versus 27.7%), and lower EPA % DCW (<3.1% versus 6.3%). Additionally, strain Y4128U1 (Δpex10) transformant with control plasmid, as compared to those transformants with Pex10 expressing plasmids, had a 2.5-fold increase in the amount of EPA relative to the total PUFAs (44% of the PUFAs [as a % TFAs] versus 17.5% (avg) of the PUFAs [as a % TFAs]) and a 1.5-fold increase in the amount of C20 PUFAs relative to the total PUFAs (67% of the PUFAs [as a % TFAs] versus 44% (avg) of the PUFAs [as a % TFAs]).

Example 6

Generation of Y4184U Strain to Produce EPA

[0280] *Y. lipolytica* strain Y4184U was used as the host in Example 7, infra. Strain Y4184U was derived from *Y. lipolytica* ATCC #20362, and is capable of producing EPA via expression of a Δ9 elongase/Δ8 desaturase pathway. The strain has a Ura- phenotype and its construction is described in Example 7 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference.

[0281] In summary, however, the development of strain Y4184U required the construction of strain Y2224, strain Y4001, strain Y4001U, strain Y4036, strain Y4036U and strain Y4069 (supra, Example 1). Further development of strain Y4184U (diagrammed in FIG. 7B) required generation of strain Y4084, strain Y4084U1, strain Y4127 (deposited with the American Type Culture Collection on Nov. 29, 2007, under accession number ATCC PTA-8802), strain Y4127U2, strain Y4158, strain Y4158U1 and strain Y4184. The plasmid construct pZKL1-2SP98C, used for transformation of strain Y4127U2, is diagrammed in FIG. 8A (SEQ ID NO:54; described in Table 23 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference). Plasmid pZKL2-5U89GC, used for transformation of strain

Y4158U1, is shown in FIG. 8B (SEQ ID NO:55; described in Table 24 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference).

[0282] The final genotype of strain Y4184 (producing 31% EPA of total lipids) with respect to wildtype *Yarrowia lipolytica* ATCC #20362 was unknown 1-, unknown 2-, unknown 4-, unknown 5-, unknown 6-, unknown 7-, YAT1::ME3S::Pex16, EXP1::ME3S::Pex20 (2 copies), GPAT::EgD9e::Lip2, FBAINm::EgD9eS::Lip2, EXP1::EgD9eS::Lip1, FBA::EgD9eS::Pex20, YAT1::EgD9eS::Lip2, GPD::EgD9eS::Lip2, GPDIN::EgD8M::Lip1, YAT1::EgD8M::Aco, EXP1::EgD8M::Pex16, FBAINm::EgD8M::Pex20, FBAIN::EgD8M::Lip1 (2 copies), GPM/FBAIN::FmD12S::Oct, EXP1::FmD12S::Aco, YAT1::FmD12::Oct, GPD::FmD12::Pex20, EXP1::EgD5S::Pex20, YAT1::EgD5S::Aco, YAT1::Rd5S::Oct, FBAIN::EgD5::Aco, FBAINm::PaD17::Aco, EXP1::PaD17::Pex16, YAT1::PaD17S::Lip1, YAT1::YICPT1::Aco, GPD::YICPT1::Aco (wherein FmD12 is a *Fusarium moniliforme* Δ12 desaturase gene [Int'l. App. Pub. No. WO 2005/047485]; FmD12S is a codon-optimized Δ12 desaturase gene, derived from *Fusarium moniliforme* [Int'l. App. Pub. No. WO 2005/047485]; ME3S is a codon-optimized C_{16/18} elongase gene, derived from *Mortierella alpina* [Int'l. App. Pub. No. WO 2007/046817]; EgD9e is a *Euglena gracilis* Δ9 elongase gene [Int'l. App. Pub. No. WO 2007/061742]; EgD9eS is a codon-optimized Δ9 elongase gene, derived from *Euglena gracilis* [Int'l. App. Pub. No. WO 2007/061742]; EgD8M is a synthetic mutant Δ8 desaturase [Int'l. App. Pub. No. WO 2008/073271], derived from *Euglena gracilis* [U.S. Pat. No. 7,256,033]; EgD5 is a *Euglena gracilis* Δ5 desaturase [U.S. Pat. App. Pub. US 2007-0292924-A1]; EgD5S is a codon-optimized Δ5 desaturase gene, derived from *Euglena gracilis* [U.S. Pat. App. Pub. No. 2007-0292924]; RD5S is a codon-optimized Δ5 desaturase, derived from *Peridinium* sp. CCMP626 [U.S. Pat. App. Pub. No. 2007-0271632]; PaD17 is a *Pythium aphanidermatum* Δ17 desaturase [Int'l. App. Pub. No. WO 2008/054565]; PaD17S is a codon-optimized Δ17 desaturase, derived from *Pythium aphanidermatum* [Int'l. App. Pub. No. WO 2008/054565]; and, YICPT1 is a *Yarrowia lipolytica* diacylglycerol choline-phosphotransferase gene [Int'l. App. Pub. No. WO 2006/052870]).

[0283] In order to disrupt the Ura3 gene in strain Y4184, construct pZKUE3S (FIG. 5A; SEQ ID NO:31; described in Table 22 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was used to integrate a EXP1::ME3S::Pex20 chimeric gene into the Ura3 gene of strain Y4184 to result in strains Y4184U1 (11.2% EPA of total lipids), Y4184U2 (10.6% EPA of total lipids) and Y4184U4 (15.5% EPA of total lipids), respectively (collectively, Y4184U).

Example 7

Chromosomal Deletion of Pex10 in *Yarrowia lipolytica* Strain Y4184U4 Increases Accumulation of EPA and Total Lipid Content

[0284] Construct pYPS161 (FIG. 9A, SEQ ID NO:56) was used to knock out the chromosomal Pex10 gene from the EPA-producing *Yarrowia* strain Y4184U4 (Example 6). Transformation of *Y. lipolytica* strain Y4184U4 with the Pex10 knock out construct resulted in creation of strain Y4184 (Δpex10). The effect of the Pex10 knockout on total oil and on EPA level was determined and compared. Specifically, knockout of Pex10 resulted in an increased percentage of EPA (as % TFAs and % DCW) and an increased total lipid content in the cell.

Construct PYSP161

[0285] The construct pYPS161 contained the following components:

TABLE 10

Description of Plasmid pYPS161 (SEQ ID NO: 56)	
RE Sites And Nucleotides Within SEQ ID	Description Of Fragment And Chimeric Gene
NO: 56	Components
Ascl/BsiWI (1521-157)	1364 bp Pex10 knockout fragment #1 of <i>Yarrowia</i> Pex10 gene (GenBank Accession No. AB036770)
PacI/SphI (5519-4229)	1290 bp Pex10 knockout fragment #2 of <i>Yarrowia</i> Pex10 gene (GenBank Accession No. AB036770)
Sall/EcoRI (7170-5551)	<i>Yarrowia</i> URA3 gene (GenBank Accession No. AJ306421)
2451-1571	Cole1 plasmid origin of replication
3369-2509	ampicillin-resistance gene (Amp ^R) for selection in <i>E. coli</i>
3977-3577	<i>E. coli</i> f1 origin of replication

Generation of *Yarrowia lipolytica* Knockout Strain Y4184 (ΔPex10)

[0286] Standard protocols were used to transform *Yarrowia lipolytica* strain Y4184U4 (Example 6) with the purified 5.3 kB Ascl/SphI fragment of Pex10 knockout construct pYPS161 (supra), and a cells alone control was also prepared. There were about 200 to 250 colonies present for each of the experimental transformations, while there were no colonies present on the cells alone plates (per expectations).

[0287] Colony PCR was used to screen for cells having the Pex10 deletion. Specifically, the PCR reaction was performed using MasterAmp Taq polymerase (Epicentre Technologies, Madison, Wis.) following standard protocols, using PCR primers Pex-10 del1 3'.Forward (SEQ ID NO:57) and Pex-10 del2 5'.Reverse (SEQ ID NO:58). The PCR reaction conditions were 94° C. for 5 min, followed by 30 cycles at 94° C. for 30 sec, 60° C. for 30 sec and 72° C. for 2 min, followed by a final extension at 72° C. for 6 min. The reaction was then held at 4° C. If the Pex10 knockout construct integrated within the Pex10 region, a single PCR product 2.8 kB in size was expected to be produced. In contrast, if the strain integrated the Pex10 knockout construct in a chromosomal region other than the Pex10 region, then two PCR fragments, i.e., 2.8 kB and 1.1 kB, would be generated. Of the 288 colonies screened, the majority had the Pex10 knockout construct integrated at a random site. Only one of the 288 colonies contained the Pex10 knockout. This strain was designated Y4184 (Δpex10).

Evaluation of *Yarrowia lipolytica* Strains Y4184 And Y4184 (ΔPex10) for Total Oil and EPA Production

[0288] To evaluate the effect of the Pex10 knockout on the percent of PUFA in the total lipid fraction and the total lipid content in the cells, strains Y4184 and Y4184 (Δpex10) were grown under comparable oleaginous conditions. Specifically, cultures were grown at a starting OD₆₀₀ of ~0.1 in 25 mL of either fermentation media (FM) or FM medium without Yeast Extract (FM without YE) in a 250 mL flask for 48 hrs. The cells were harvested by centrifugation for 10 min at 8000 rpm in a 50 mL conical tube. The supernatant was discarded and the cells were re-suspended in 25 mL of HGM and transferred to a new 250 mL flask. The cells were incubated with aeration for an additional 120 hrs at 30° C.

[0289] To determine the dry cell weight (DCW), the cells from 5 mL of the FM-grown cultures and 10 mL of the FM without YE-grown cultures were processed. The cultured cells were centrifuged for 10 min at 4300 rpm. The pellet was re-suspended using 10 mL of saline and was centrifuged under the same conditions for a second time. The pellet was then re-suspended using 1 mL of sterile H₂O (three times) and was transferred to a pre-weighed aluminum pan. The cells were dried overnight in a vacuum oven at 80° C. The weight of the cells was determined.

[0290] The total lipid content and fatty acid composition of transformants carrying the above plasmids were analyzed as described in Example 3. DCW, total lipid content (TFAs % DCW), total EPA % TFAs, and EPA % DCW are shown below in Table 11.

TABLE 11

Lipid Composition in <i>Y. lipolytica</i> Strains Y4184 And Y4184 (ΔPex10)					
Media	Strain	DCW	TFAs % DCW	EPA % TFAs	EPA % DCW
FM	Y4184	11.5	11.8	20.6	2.4
	Y4184 (ΔPex10)	11.5	17.6	43.2	7.6
FM without YE	Y4184	4.6	8.8	23.2	2.0
	Y4184 (ΔPex10)	4.0	13.2	46.1	6.1

[0291] The results in Table 11 showed that knockout of the chromosomal Pex10 gene in Y4184 (ΔPex10) increased the percent of EPA (as % TFAs and as % DCW) and increased the total oil content, as compared to the percent of EPA and total oil content in strain Y4184 whose native Pex10p had not been knocked out. More specifically, in FM media, there was about 109% increase in EPA (% TFAs), about 216% increase in EPA productivity (% DCW) and about 49% increase in total oil (TFAs % DCW). In FM without YE media, there was about 100% increase in EPA (% TFAs), about 205% increase in EPA productivity (% DCW) and about 50% increase in total oil (TFAs % DCW).

[0292] Thus, the results in Table 11 showed that in FM medium, compared to the parent strain Y4184, Y4184 (ΔPex10) strain had higher lipid content (TFAs % DCW) (17.6% versus 11.8%), higher EPA % TFAs (43.2% versus 20.6%), and higher EPA % DCW (7.6% versus 2.4%). Similarly, in FM medium without YE, compared to the parent strain Y4184, Y4184 (ΔPex10) strain had higher lipid content (TFAs % DCW) (13.2% versus 8.8%), higher EPA % TFAs (46.1% versus 23.2%), and higher EPA % DCW (6.1% versus 2.0%).

Example 8

Prophetic

Chromosomal Knockout of Alternate Pex Genes in PUFA-Producing Strains Of *Yarrowia lipolytica*

[0293] The present Example describes various strains of *Yarrowia lipolytica* that have been engineered to produce ω -3/ ω -6 PUFAs. It is contemplated that any of these *Y. lipolytica* host strains could be engineered to produce an increased amount of ω -3/ ω -6 PUFAs in the total lipid fraction and in the oil fraction, if the chromosomal gene encoding Pex1p, Pex2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex6p, Pex7p, Pex8p, Pex12p, Pex13p, Pex14p, Pex16p, Pex17p, Pex19p, Pex20p, Pex22p or Pex26p was disrupted using the methodology of Example 7, supra.

[0294] More specifically, a variety of *Yarrowia lipolytica* strains have been engineered by the Applicant's Assignee to produce high concentrations of various ω -3/ ω -6 PUFAs via expression of a heterologous Δ 6 desaturase/ Δ 6 elongase PUFA pathway or a heterologous Δ 9 elongase/ Δ 8 desaturase PUFA pathway.

Summary of Representative *Yarrowia lipolytica* Strains Producing ω -3/ ω -6 PUFAs

[0295] Although some representative strains are summarized in the Table below, the disclosure of *Yarrowia lipolytica* strains producing ω -3/ ω -6 PUFAs is not limited in any way to the strains therein. Instead, all of the teachings provided in the present Application, in addition to the following commonly owned and co-pending applications, are useful for development of a suitable *Yarrowia lipolytica* strain engineered to produce ω -3/ ω -6 PUFAs. These specifically include the following Applicants' Assignee's co-pending patents and applications: U.S. Pat. No. 7,125,672, U.S. Pat. No. 7,189,559,

U.S. Pat. No. 7,192,762, U.S. Pat. No. 7,198,937, U.S. Pat. No. 7,202,356, U.S. Pat. No. 7,214,491, U.S. Pat. No. 7,238,482, U.S. Pat. No. 7,256,033, U.S. Pat. No. 7,259,255, U.S. Pat. No. 7,264,949, U.S. Pat. No. 7,267,976, U.S. Pat. No. 7,273,746, U.S. patent application Ser. No. 10/985,254 and No. 10/985,691 (filed Nov. 10, 2004), U.S. patent application Ser. No. 11/183,664 (filed Jul. 18, 2005), U.S. patent application Ser. No. 11/185,301 (filed Jul. 20, 2005), U.S. patent application Ser. No. 11/190,750 (filed Jul. 27, 2005), U.S. patent application Ser. No. 11/198,975 (filed Aug. 8, 2005), U.S. patent application Ser. No. 11/253,882 (filed Oct. 19, 2005), U.S. patent application Ser. No. 11/264,784 and No. 11/264,737 (filed Nov. 1, 2005), U.S. patent application Ser. No. 11/265,761 (filed Nov. 2, 2005), U.S. patent application Ser. No. 11/601,563 and No. 11/601,564 (filed Nov. 16, 2006), U.S. patent application Ser. No. 11/635,258 (filed Dec. 7, 2006), U.S. patent application Ser. No. 11/613,420 (filed Dec. 20, 2006), U.S. patent application Ser. No. 11/787,772 (filed Apr. 18, 2007), U.S. patent application Ser. No. 11/737,772 (filed Apr. 20, 2007), U.S. patent application Ser. No. 11/740,298 (filed Apr. 26, 2007), U.S. patent application Ser. No. 12/111,237 (filed Apr. 29, 2008), U.S. patent application Ser. No. 11/748,629 and No. 11/748,637 (filed May 15, 2007), U.S. patent application Ser. No. 11/779,915 (filed Jul. 19, 2007), U.S. Pat. App. No. 60/991,266 (filed Nov. 30, 2007), U.S. patent application Ser. No. 11/952,243 (filed Dec. 7, 2007), U.S. Pat. App. No. 61/041,716 (filed Apr. 2, 2008), U.S. patent application Ser. No. 12/061,738 (filed Apr. 3, 2008), U.S. patent application Ser. No. 12/099,811 (filed Apr. 9, 2008), U.S. patent application Ser. No. 12/102,879 (filed Apr. 15, 2008), U.S. patent application Ser. No. 12/111,237 (filed Apr. 29, 2008), U.S. Pat. App. No. 61/055,511 (filed May 23, 2008) and U.S. Pat. App. No. 61/093,007 (filed Aug. 29, 2008).

TABLE 12

Lipid Profile Of Representative *Yarrowia lipolytica* Strains Engineered To Produce ω -3/ ω -6 PUFAs

Strain	Reference	ATCC	Deposit No.	Fatty Acid Content (As A Percent [%] of Total Fatty Acids)						
				16:0	16:1	18:0	18:1	18:2	18:3 (ALA)	GLA
Wildtype	US 2006-0035351-	#76982		14	11	3.5	34.8	31	—	0
pDMW208	A1; WO2006/033723	—		11.9	8.6	1.5	24.4	17.8	—	25.9
pDMW208D62	—	—		16.2	1.5	0.1	17.8	22.2	—	34
M4	US 2006-0115881- A1; WO2006/052870	—		15	4	2	5	27	—	35
Y2034	US 2006-0094092-	—	PTA-7186	13.1	8.1	1.7	7.4	14.8	—	25.2
Y2047	A1; WO2006/055322	—		15.9	6.6	0.7	8.9	16.6	—	29.7
Y2214	—	—		7.9	15.3	0	13.7	37.5	—	0
EU	US 2006-0115881- A1; WO2006/052870	—		19	10.3	2.3	15.8	12	—	18.7
Y2072	—	—		7.6	4.1	2.2	16.8	13.9	—	27.8
Y2102	—	—		9	3	3.5	5.6	18.6	—	29.6
Y2088	—	—		17	4.5	3	2.5	10	—	20
Y2089	—	—		7.9	3.4	2.5	9.9	14.3	—	37.5
Y2095	—	—		13	0	2.6	5.1	16	—	29.1
Y2090	—	—		6	1	6.1	7.7	12.6	—	26.4
Y2096	PTA-7184	8.1	1	6.3	8.5	11.5	—	—	25	
Y2201	PTA-7185	11	16.1	0.7	18.4	27	—	—	—	
Y3000	US 2006-0110806- A1; WO2006/052871	PTA-7187	5.9	1.2	5.5	7.7	11.7	—	30.1	
Y4001	WO2008/073367	—		4.3	4.4	3.9	35.9	23	0	—
Y4036	—	—		7.7	3.6	1.1	14.2	32.6	0	—
Y4070	—	—		8	5.3	3.5	14.6	42.1	0	—
Y4158	—	—		3.2	1.2	2.7	14.5	30.4	5.3	—
Y4184	—	—		3.1	1.5	1.8	8.7	31.5	4.9	—

TABLE 12-continued

Strain	Fatty Acid Content (As A Percent [%] of Total Fatty Acids)							Lipid % dew
	20:2	DGLA	ARA	ETA	EPA	DPA	DHA	
Wildtype	—	—	—	—	—	—	—	—
pDMW208	—	—	—	—	—	—	—	—
pDMW208D62	—	—	—	—	—	—	—	—
M4	—	8	0	0	0	—	—	—
Y2034	—	8.3	11.2	—	—	—	—	—
Y2047	—	0	10.9	—	—	—	—	—
Y2214	—	7.9	14	—	—	—	—	—
EU	—	5.7	0.2	3	10.3	—	—	36
Y2072	—	3.7	1.7	22	15	—	—	—
Y2102	—	3.8	2.8	2.3	18.4	—	—	—
Y2088	—	3	2.8	1.7	20	—	—	—
Y2089	—	2.5	1.8	1.6	17.6	—	—	—
Y2095	—	3.1	1.9	2.7	19.3	—	—	—
Y2090	—	6.7	2.4	3.6	26.6	—	—	22.9
Y2096	—	5.8	2.1	2.5	28.1	—	—	20.8
Y2201	3.3	3.3	1	3.8	9	—	—	—
Y3000	—	2.6	1.2	1.2	4.7	18.3	5.6	—
Y4001	23.8	0	0	0	—	—	—	—
Y4036	15.6	18.2	0	0	—	—	—	—
Y4070	6.7	2.4	11.9	—	—	—	—	—
Y4158	6.2	3.1	0.3	3.4	20.5	—	—	27.3
Y4184	5.6	2.9	0.6	2.4	28.9	—	—	23.9

Chromosomal Knockout of Pex Genes

[0296] Following selection of a preferred *Yarrowia lipolytica* strain producing the desired ω -3/ ω -6 PUFA (or combination of PUFAs thereof), one of skill in the art could readily engineer a suitable knockout construct, similar to pYPS161 in Example 7, to result in knockout of a chromosomal Pex gene upon transformation into the parental *Y. lipolytica* strain. Preferred Pex genes would include: YIPex1p (GenBank Accession No. CAG82178; SEQ ID NO:1), YIPex2p (GenBank Accession No. CAG77647; SEQ ID NO:2), YIPex3p (GenBank Accession No. CAG78565; SEQ ID NO:3), YIPex3Bp (GenBank Accession No. CAG83356; SEQ ID NO:4), YIPex4p (GenBank Accession No. CAG79130; SEQ ID NO:5), YIPex5p (GenBank Accession No. CAG78803; SEQ ID NO:6), YIPex6p (GenBank Accession No. CAG82306; SEQ ID NO:7), YIPex7p (GenBank Accession No. CAG78389; SEQ ID NO:8), YIPex8p (GenBank Accession No. CAG80447; SEQ ID NO:9), YIPex12p (GenBank Accession No. CAG81532; SEQ ID NO:11), YIPex13p (GenBank Accession No. CAG81789; SEQ ID NO:12), YIPex14p (GenBank Accession No. CAG79323; SEQ ID NO:13), YIPex16p (GenBank Accession No. CAG79622; SEQ ID NO:14), YIPex17p (GenBank Accession No. CAG84025; SEQ ID NO:15), YIPex19p (GenBank Accession No. AAK84827; SEQ ID NO:16), YIPex20p (GenBank Accession No. CAG79226; SEQ ID NO:17), YIPex22p (GenBank Accession No. CAG77876; SEQ ID NO:18) and YIPex26p (GenBank Accession No. NC_006072, antisense translation of nucleotides 117230-118387; SEQ ID NO:19).

[0297] It would be expected that the chromosomal disruption of Pex would result in an increased amount of PUFAs in the total lipid fraction and in the oil fraction, as a percent of total fatty acids, as compared with a eukaryotic organism whose native peroxisome biogenesis factor protein has not been disrupted, wherein the amount of PUFAs can be: 1) the

PUFA that is the desired end product of a functional PUFA biosynthetic pathway, as opposed to PUFA intermediates or by-products, 2) C₂₀ and C₂₂ PUFAs, and/or 3) total PUFAs. Preferred results not only achieve an increase in the amount of PUFAs as a percent of total fatty acids but also result in an increased amount of PUFAs as a percent of dry cell weight, as compared with a eukaryotic organism whose native peroxisome biogenesis factor protein has not been disrupted. Again, the amount of PUFAs can be: 1) the PUFA that is the desired end product of a functional PUFA biosynthetic pathway, as opposed to PUFA intermediates or by-products, 2) the C₂₀ and C₂₂ PUFAs, and/or 3) the total PUFAs. In some cases, the total lipid content also increases, relative to that of a eukaryotic organism whose native peroxisome biogenesis factor protein has not been disrupted.

Example 9

Chromosomal Deletion of Pex16 In *Yarrowia lipolytica* Strain Y4036U Increases Percent DGLA Accumulated

[0298] The present Example describes use of construct pYRH13 (FIG. 9B; SEQ ID NO:59) to knock out the chromosomal Pex16 gene in the DGLA-producing *Yarrowia* strain Y4036U (Example 1). Transformation of *Y. lipolytica* strain Y4036U with the Pex16 knockout construct resulted in creation of strain Y4036U (Δpex16). The effect of the Pex16 knockout on DGLA level was determined and compared. Specifically, knockout of Pex16 resulted in an increased percentage of DGLA as a percent of total fatty acids in the cell. Construct pYRH13

[0299] Plasmid pYRH13 was derived from plasmid pYPS161 (FIG. 9A, SEQ ID NO:56; Example 7). Specific-

cally, a 1982 bp 5' promoter region of the *Yarrowia lipolytica* Pex16 gene (GenBank Accession No. CAG79622) replaced the Ascl/BsiWI fragment of pYPS161 and a 448 bp 3' terminator region of the *Yarrowia lipolytica* Pex16 gene (GenBank Accession No. CAG79622) replaced the PacI/SphI fragment of pYPS161 to produce pYRH13 (SEQ ID NO:59; FIG. 9B). Generation of *Yarrowia lipolytica* Knockout Strain Y4036 (Δ Pex16)

[0300] Standard protocols were used to transform *Yarrowia lipolytica* strain Y4036U (Example 1) with the purified 6.0 kB Ascl/SphI fragment of Pex16 knockout construct pYRH13.

[0301] To screen for cells having the Pex16 deletion, colony PCR was performed using Taq polymerase (Invitrogen; Carlsbad, Calif.) and the PCR primers PEX16Fii (SEQ ID NO:60) and PEX16Rii (SEQ ID NO:61). This set of primers was designed to amplify a 1.1 kB region of the intact Pex16 gene, and therefore the Pex16 deleted mutant (i.e., Δ pex16) would not produce the band. A second set of primers was designed to produce a band only when the Pex16 gene was deleted. Specifically, one primer (i.e., 3UTR-URA3; SEQ ID NO:62) binds to a region in the vector sequences of the introduced 6.0 kB Ascl/SphI disruption fragment, and the other primer (i.e., PEX16-conf; SEQ ID NO:63) binds to the Pex16 terminator sequences of chromosome outside of the homologous region of the disruption fragment.

[0302] More specifically, the colony PCR was performed using a reaction mixture that contained: 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl₂, 400 μ M each of dGTP, dCTP, dATP, and dTTP, 2 μ M of each primer, 20 μ l water and 2 U Taq polymerase. Amplification was carried out as follows: initial denaturation at 94° C. for 120 sec, followed by 35 cycles of denaturation at 94° C. for 60 sec, annealing at 55° C. for 60 sec, and elongation at 72° C. for 120 sec. A final elongation cycle at 72° C. for 5 min was carried out, followed by reaction termination at 4° C.

[0303] Of 205 colonies screened, 195 had the Pex16 knockout fragment integrated at a random site in the chromosome and thus were not Δ pex16 mutants (however, the cells could grow on ura- plates, due to the presence of pYRH13). Three of these random integrants, designated as Y4036U-17, Y4036U-19 and Y4036U-33, were used as controls in lipid production experiments (infra).

[0304] The remaining 10 colonies screened (i.e., of the total 205) contained the Pex16 knockout. These ten Δ pex16 mutants within the Y4036U strain background were designated RHY25 through RHY34.

Confirmation of *Yarrowia lipolytica* Knockout Strain Y4036U (Δ Pex16) by Quantitative Real Time PCR

[0305] Further confirmation of the Pex16 knockout in strains RHY25 through RHY34 was performed by quantitative real time PCR, with the *Yarrowia* translation elongation factor (tef-1) gene (GenBank Accession No. AF054510) used as the control.

[0306] First, real time PCR primers and TaqMan probes targeting the Pex16 gene and the tef-1 gene, respectively, were designed with Primer Express software v 2.0 (Applied-Biosystems, Foster City, Calif.). Specifically, real time PCR primers ef-324F (SEQ ID NO:64), ef-392R (SEQ ID NO:65), PEX16-741F (SEQ ID NO:66) and PEX16-802R (SEQ ID NO:67) were designed, as well as the TaqMan probes ef-345T (i.e., 5' 6-FAMTM-TGCTGGTGGTGTGGTGGAGTT-

TAMRATM, wherein the nucleotide sequence is set forth as SEQ ID NO:68) and PEX16-760T (i.e., 5'-6FAMTM-CT-GTCCATTCTGCGACCCCTC-TAMRATM, wherein the nucleotide sequence is set forth as SEQ ID NO:69). The 5' end of the TaqMan fluorogenic probes have the 6FAMTM fluorescent reporter dye bound, while the 3' end comprises the TAMRATM quencher. All primers and probes were obtained from Sigma-Genosys (Woodlands, Tex.).

[0307] Knockout candidate DNA was prepared by suspending 1 colony in 50 μ l of water. Reactions for tef-1 and PEX16 were run separately, in triplicate for each sample: Real time PCR reactions included 20 pmoles each of forward and reverse primers (i.e., ef-324F, ef-392R, PEX16-741F and PEX16-802R 5', supra), 5 pmoles TaqMan probe (i.e., ef-345T and PEX16-760T), 10 μ l TaqMan Universal PCR Master Mix—No AmpErase[®] Uracil-N-Glycosylase (UNG) (Catalog No. PN 4326614, AppliedBiosystems), 1 μ l colony suspension and 8.5 μ l RNase/DNase free water for a total volume of 20 μ l per reaction. Reactions were run on the ABI PRISM[®] 7900 Sequence Detection System under the following conditions: initial denaturation at 95° C. for 10 min, followed by 40 cycles of denaturation at 95° C. for 15 sec and annealing at 60° C. for 1 min. Real time data was collected automatically during each cycle by monitoring 6-FAMTM fluorescence. Data analysis was performed using tef-1 gene threshold cycle (CT) values for data normalization as per the ABI PRISM[®] 7900 Sequence Detection System instruction manual.

[0308] Based on this analysis, it was concluded that all ten of the Y4036U (Δ pex16) colonies (i.e., RHY25 through RHY34) were valid Pex16 knockouts, wherein the pYRH13 construct had integrated into the chromosomal YIPex16.

Evaluation of *Yarrowia lipolytica* Strains Y4036U and Y4036U (Δ Pex16) for DGLA Production

[0309] To evaluate the effect of the Pex16 knockout on the percent of PUFAs in the total lipid fraction and the total lipid content in the cells, the Y4036U and Y4036U (Δ pex16) strains were grown under comparable oleaginous conditions. More specifically, strains Y4036U-17, Y4036U-19 and Y4036U-33 having the Pex16 knockout fragment integrated at a random site in the chromosome were considered as Pex16 wild type (i.e., Y4036U) and strains RHY25 through RHY34 were the Pex16 mutant strains (i.e., Y4036U (Δ pex16)). Cultures of each strain were grown at a starting OD₆₀₀ of ~0.1 in 25 mL of MM containing 90 mg/L L-leucine in a 125 mL flask for 48 hrs. The cells were harvested by centrifugation for 5 min at 4300 rpm in a 50 mL conical tube. The supernatant was discarded and the cells were re-suspended in 25 mL of HGM and transferred to a new 125 mL flask. The cells were incubated with aeration for an additional 120 hrs at 30° C.

[0310] The fatty acid composition (i.e., LA (18:2), ALA, EDA and DGLA) for each of the strains is shown below in Table 13; fatty acid composition is expressed as the weight percent (wt. %) of total fatty acids. The average fatty acid composition of strains Y4036U and Y4036U (Δ pex16) are highlighted in gray and indicated with “Ave”. None of the strains tested provided sufficient cell mass in MM+L-leucine media, and thus total lipid content was not analyzed.

TABLE 13

Lipid Composition In *Y. lipolytica* Strains Y4036U And Y4036U (Δpex16)

Strain	Sample	18:2	ALA	EDA	DGLA
Y4036U	Y4036U-17	26.1	2.4	9.9	24.9
	Y4036U-19	29.4	1.6	9.9	18.1
	Y4036U-33	20.7	3.1	11.2	27.3
Y4036U	AVE	23.4	2.4	10.3	23.4
Y4036U (Δpex16)	RHY25-1	14.9	5.1	5.5	44.1
	RHY25-2	14.3	5.0	5.4	42.6
	RHY26-1	14.4	5.1	5.6	42.9
	RHY26-2	13.8	4.9	5.9	44.6
	RHY27-1	14.4	5.0	5.4	42.6
	RHY27-2	15.1	4.9	5.6	44.2
	RHY28	15.3	4.6	5.7	42.6
	RHY29	15.4	4.8	5.5	43.9
	RHY30	15.5	4.5	5.9	43.6
	RHY31	15.5	4.7	5.8	43.9
	RHY32	15.5	4.9	5.9	44.4
	RHY33	15.9	4.7	5.9	41.8
	RHY34	15.9	4.9	6.2	43.5
Y4036U (Δpex16)	AVE	15.1	4.9	5.7	43.4

The results in Table 13 showed that knockout of the chromosomal Pex16 gene in Y4036U (Δpex16) increased the DGLA % TFAs approximately 85%, as compared to the DGLA % TFAs in strain Y4036U whose native Pex16p had not been knocked out. However, Y4036U (Δpex16) also had a ~40% decrease in the LA (18:2) accumulation.

[0311] Thus, the results in Table 13 showed that compared to the parent strain Y4036, Y4036 (ΔPex16) strain had higher average DGLA % TFAs (43.4% versus 23.4%). Additionally, strain Y4036U (Δpex16) had a 1.65-fold increase in the amount of DGLA relative to the total PUFAs (62.8% of the PUFAs [as a % TFAs] versus 38.1% of the PUFAs [as a % TFAs]) and a 1.3-fold increase in the amount of C20 PUFAs relative to the total PUFAs (71% of the PUFAs [as a % TFAs] versus 54.8% of the PUFAs [as a % TFAs]).

Example 10

Generation of Y4305 Strain to Produce about 53.2% EPA of Total Liquids

[0312] *Y. lipolytica* strain Y4305U, having a Ura- phenotype, was used as the host in Example 11, infra. Strain Y4305 (a Ura+ strain that was parent to Y4305U) was derived from *Y. lipolytica* ATCC #20362, and is capable of producing about 53.2% EPA relative to the total lipids via expression of a Δ9 elongase/Δ8 desaturase pathway.

[0313] The development of strain Y4305U required the construction of strain Y2224, strain Y4001, strain Y4001U, strain Y4036, strain Y4036U, strain Y4070 and strain Y4086 (supra, Example 1). Further development of strain Y4305U required construction of strain Y4086U1, strain Y4128 and strain Y4128U3 (supra, Example 2). Subsequently, development of strain Y4305U (diagrammed in FIG. 10) required construction of strain Y4217 (producing 42% EPA), strain Y4217U2 (Ura-), strain Y4259 (producing 46.5% EPA), strain Y4259U2 (Ura-) and strain Y4305 (producing 53.2% EPA).

[0314] Although the details concerning transformation and selection of the EPA-producing strains developed after strain Y4128U3 are not elaborated herein, the methodology used for isolation of strain Y4217, strain Y4217U2, strain Y4259,

strain Y4259U2, strain Y4305 and strain Y4305U was as described in Examples 1 and 2.

[0315] Briefly, construct pZKL2-5U89GC (FIG. 8B; SEQ ID NO:55; described in Table 24 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was generated to integrate one Δ9 elongase gene (i.e., EgD9eS), one Δ8 desaturase gene (i.e., EgD8M), one Δ5 desaturase gene (i.e., EgD5S), and one *Yarrowia lipolytica* diacylglycerol cholinephosphotransferase (CPT1) gene into the Lip2 loci (GenBank Accession No. AJ012632) of strain Y4128U3 to thereby enable higher level production of EPA. Six strains, designated as Y4215, Y4216, Y4217, Y4218, Y4219 and Y4220, produced about 41.1%, 41.8%, 41.7%, 41.1%, 41% and 41.1% EPA of total lipids, respectively.

[0316] Strain Y4217U1 and Y4217U2 were created by disrupting the Ura3 gene in strain Y4217 via construct pZKUE3S (FIG. 5A; SEQ ID NO:31; described in Table 22 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference), comprising a chimeric EXP1::ME3S::Pex20 gene targeted for the Ura3 gene. Construct pZKL1-2SP98C (FIG. 8A; SEQ ID NO:54; described in Table 23 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was utilized to integrate one Δ9 elongase gene (i.e., EgD9eS), one Δ8 desaturase gene (i.e., EgD8M), one Δ12 desaturase gene (i.e., FmD12S), and one *Yarrowia lipolytica* CPT1 gene into the Lip1 loci (GenBank Accession No. Z50020) of strain Y4217U2, thereby resulting in isolation of strains Y4259, Y4260, Y4261, Y4262, Y4263 and Y4264, producing about 46.5%, 44.5%, 44.5%, 44.8%, 44.5% and 44.3% EPA of total lipids, respectively.

[0317] A Ura- derivative (i.e., strain Y4259U2) was then created, via transformation with construct pZKUM (FIG. 11A; SEQ ID NO:70; described in Table 33 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference), which integrated a Ura3 mutant gene into the Ura3 gene of strain Y4259, thereby resulting in isolation of strains Y4259U1, Y4259U2 and Y4259U3, respectively (collectively, Y4259U) (producing 31.4%, 31% and 31.3% EPA of total lipids, respectively).

[0318] Finally, construct pZKD2-5U89A2 (FIG. 11B; SEQ ID NO:71) was generated to integrate one Δ9 elongase gene, one Δ5 desaturase gene, one Δ8 desaturase gene, and one Δ12 desaturase gene into the diacylglycerol acyltransferase (DGAT2) loci of strain Y4259U2, to thereby enable increased production of EPA. The pZKD2-5U89A2 plasmid contained the following components:

TABLE 14

Description of Plasmid pZKD2-5U89A2 (SEQ ID NO: 71)		
RE Sites And Nucleotides Within SEQ ID NO: 71	Description Of Fragment And Chimeric Gene Components	
Ascl/BsiWI (1-736)	728 bp 5' portion of <i>Yarrowia</i> DGAT2 gene (SEQ ID NO: 72) (labeled as "YLDGAT5" in Figure; U.S. Pat. No. 7,267,976)	
PacI/SphI (4164-3444)	714 bp 3' portion of <i>Yarrowia</i> DGAT2 gene (SEQ ID NO: 72) (labeled as "YLDGAT3" in Figure; U.S. Pat. No. 7,267,976)	
SwaI/BsiWI (13377-1)	YAT1::FmD12S::Lip2, comprising: YAT1: <i>Yarrowia lipolytica</i> YAT1 promoter (labeled as "YAT" in Figure; Pat. Appl. Pub. No. US 2006/0094102-A1);	

TABLE 14-continued

Description of Plasmid pZKD2-5U89A2 (SEQ ID NO: 71)	
RE Sites And Nucleotides Within SEQ ID NO: 71	Description Of Fragment And Chimeric Gene Components
PmeI/SwaI (10740-13377)	FmD12S: codon-optimized Δ12 elongase (SEQ ID NO: 74), derived from <i>Fusarium moniliforme</i> (labeled as "FD12S" in Figure; Int'l. App. Pub. No. WO 2005/047485); Lip2: Lip2 terminator sequence from <i>Yarrowia</i> Lip2 gene (GenBank Accession No. AJ012632); FBAIN: EgD8M::Lip1 comprising: FBAIN: <i>Yarrowia lipolytica</i> FBAIN promoter (U.S. Pat. No. 7,202,356); EgD8M: Synthetic mutant Δ8 desaturase (SEQ ID NO: 76; Pat. Appl. Pub. No. US 2008-0138868 A1), derived from <i>Euglena gracilis</i> ("EgD8S"; U.S. Pat. No. 7,256,033); Lip1: Lip1 terminator sequence from <i>Yarrowia</i> Lip1 gene (GenBank Accession No. Z50020) YAT1::E389D9eS::OCT, comprising: YAT1: <i>Yarrowia lipolytica</i> YAT1 promoter (labeled as "YAT" in Figure; Pat. Appl. Pub. No. US 2006/0094102-A1); E389D9eS: codon-optimized Δ9 elongase (SEQ ID NO: 78), derived from <i>Eutreptiella</i> sp. CCMP389 (labeled as "D9ES-389" in Figure; Int'l. App. Pub. No. WO 2007/061742); OCT: OCT terminator sequence from <i>Yarrowia</i> OCT gene (GenBank Accession No. X69988) <i>Yarrowia</i> Ura3 gene (GenBank Accession No. AJ306421) EXP1::EgD5S::ACO, comprising: EXP1: <i>Yarrowia lipolytica</i> export protein (EXP1) promoter (labeled as "Exp" in Figure; Int'l. App. Pub. No. WO 2006/052870); EgD5S: codon-optimized Δ5 desaturase (SEQ ID NO: 80), derived from <i>Euglena gracilis</i> (Pat. Appl. Pub. No. US 2007-0292924-A1); Aco: Aco terminator sequence from <i>Yarrowia</i> Aco gene (GenBank Accession No. AJ001300)
ClaI/PmeI (8846-10740)	
ClaI/EcoRI (8846-6777) EcoRI/PacI (6777-4164)	

[0319] The pZKD2-5U89A2 plasmid was digested with AsclI/SphI and then used for transformation of strain Y4259U2 according to the General Methods. The transformed cells were plated onto MM plates, and plates were maintained at 30° C. for 3 to 4 days. Single colonies were re-streaked onto MM plates, and the resulting colonies were used to inoculate liquid MM. Liquid cultures were shaken at 250 rpm/min for 2 days at 30° C. The cells were collected by centrifugation, resuspended in HGM, and then shaken at 250 rpm/min for 5 days. The cells were collected by centrifugation, and lipids were extracted. FAMEs were prepared by trans-esterification and subsequently analyzed with a Hewlett-Packard 6890 GC.

[0320] GC analyses showed that most of the selected 96 strains produced 40-46% EPA of total lipids. Four strains, designated as Y4305, Y4306, Y4307 and Y4308, produced about 53.2%, 46.4%, 46.8% and 47.8% EPA of total lipids, respectively. The complete lipid profile of Y4305 is as follows: 16:0 (2.8%), 16:1 (0.7%), 18:0 (1.3%), 18:1 (4.9%), 18:2 (17.6%), ALA (2.3%), EDA (3.4%), DGLA (2.0%), ARA (0.6%), ETA (1.7%) and EPA (53.2%). The total lipid % dry cell weight was 27.5.

[0321] The final genotype of strain Y4305 with respect to wild type *Yarrowia lipolytica* ATCC #20362 was SCP2- (YALI0E01298g), YALI0C18711g-, Pex10-, YALI0F24167g-, unknown 1-, unknown 3-, unknown 8-,

GPD::FmD12::Pex20, YAT1::FmD12::OCT, GPM/FBAIN::FmD12S::OCT, EXP1::FmD12S::Aco, YAT1::FmD12S::Lip2, YAT1::ME3S::Pex16, EXP1::ME3S::Pex20 (3 copies), GPAT::EgD9e::Lip2, EXP1::EgD9eS::Lip1, FBAINm::EgD9eS::Lip2, FBA::EgD9eS::Pex20, GPD::EgD9eS::Lip2, YAT1::EgD9eS::Lip2, YAT1::E389D9eS::OCT, FBAINm::EgD8M::Pex20, FBAIN::EgD8M::Lip1 (2 copies), EXP1::EgD8M::Pex16, GPDIN::EgD8M::Lip1, YAT1::EgD8M::Aco, FBAIN::EgD5::Aco, EXP1::EgD5S::Pex20, YAT1::EgD5S::Aco, EXP1::EgD5S::ACO, YAT1::RD5S::OCT, YAT1::PaD17S::Lip1, EXP1::PaD17::Pex16, FBAINm::PaD17::Aco, YAT1::YICPT1::ACO, GPD::YICPT1::ACO.

[0322] In order to disrupt the Ura3 gene in strain Y4305, construct pZKUM (FIG. 11A; SEQ ID NO:70; described in Table 33 of Int'l. App. Pub. No. WO 2008/073367, hereby incorporated herein by reference) was used to integrate a Ura3 mutant gene into the Ura3 gene of strain Y4305. A total of 8 transformants grown on MM+5-FOA plates were picked and re-streaked onto MM plates and MM+5-FOA plates, separately. All 8 strains had a Ura-phenotype (i.e., cells could grow on MM+5-FOA plates, but not on MM plates). The cells were scraped from the MM+5-FOA plates, and lipids were extracted. FAMEs were prepared by trans-esterification and subsequently analyzed with a Hewlett-Packard 6890 GC.

[0323] GC analyses showed the presence of 37.6%, 37.3% and 36.5% EPA of total lipids in pZKUM transformants #1, #6 and #7 grown on MM+5-FOA plates. These three strains were designated as strains Y4305U1, Y4305U2 and Y4305U3, respectively (collectively, Y4305U). For clarity in Example 11, strain Y4305U is referred to as strain Y4305U (Δpex10).

Example 11

Chromosomal Deletion of Pex16 in *Yarrowia lipolytica* Strain Y4305U (Δpex10) Further Increased Percent EPA Accumulated

The Double Pex10-Pex16 Knockout

[0324] The present Example describes use of construct pYRH13 (FIG. 9B; SEQ ID NO:59) to knock out the chromosomal Pex16 in *Yarrowia* strain Y4305U (Δpex10) (Example 10), to thereby result in a Pex10-Pex16 double mutant. The effect of the Pex10-Pex16 double knockout on total oil and EPA level was determined and compared. Specifically, the effect of the Pex10-Pex16 double mutation in strain Y4305U (Δpex10) (Δpex16) resulted in an increased amount of EPA in the cell (EPA % TFAs and EPA % DCW), as compared to the single mutant (i.e., strain Y4305U (Δpex10)). Generation of *Yarrowia lipolytica* Knockout Strain Y4305U (ΔPex10) (Apex16)

[0325] Standard protocols were used to transform *Yarrowia lipolytica* strain Y4305U (Apex10) (Example 10) with the purified 6.0 kB AsclI/SphI fragment of Pex16 knockout construct pYRH13 (Example 9; SEQ ID NO:59). Screening and identification of cells having the Pex16 deletion was conducted by colony PCR, as described in Example 9.

[0326] Of 93 colonies screened, 88 had the Pex16 knockout fragment integrated at a random site in the chromosome and thus were not Δpex16 mutants (however, the cells could grow on Ura-plates, due to the presence of pYRH13). Two of these random integrants, designated as Y4305U-22 and Y4305U-25, were used as controls in lipid production experiments (infra).

[0327] The remaining 5 colonies screened (i.e., of the total 93) contained the Pex16 knockout. These five Δ pex16 mutants within the Y4305U strain background were designated RHY20, RHY21, RHY22, RHY23 and RHY24. Further confirmation of the YIPex16 knockout was performed by quantitative real time PCR, as described in Example 9.

Evaluation of *Yarrowia lipolytica* Strains Y4305U (Δ Pex10) and Y4305U (Δ Pex10) (Δ pex16) for EPA Production

[0328] To evaluate the effect of mutation in multiple Pex genes on the percent of PUFAs in the total lipid fraction and the total lipid content in the cells, Y4305U (Pex10) and Y4305U (Δ pex10) (Δ pex16) strains were grown under comparable oleaginous conditions. More specifically, strains Y4305U-22 and Y4305U-25 having the Pex16 knockout fragment integrated at a random site in the chromosome were considered as Pex16 wild type, Pex10 knockouts (i.e.,

times) and was transferred to a pre-weighed aluminum pan. The cell suspension was dried overnight in a vacuum oven at 80° C. The weight of the cells was determined.

[0331] To determine the total lipid content, 1 mL of HGM cultured cells were collected by centrifugation for 1 min at 13,000 rpm, total lipids were extracted, and FAMEs were prepared by trans-esterification, and subsequently analyzed with a Hewlett-Packard 6890 GC (General Methods).

[0332] The fatty acid composition (i.e., 16:0 (palmitate), 16:1 (palmitoleic acid), 18:0, 18:1 (oleic acid), 18:2 (LA), 18:3 (ALA), EDA, DGLA, ARA, ETrA, ETA and EPA) for each of the strains is shown below in Table 15 (expressed as the weight percent (wt. %) of total fatty acids (TFA)), as well as the DCW (g/L) and total lipid content (TFA % DCW). The average fatty acid composition of strains Y4305U (Pex10) and Y4305U (Δ Pex10) (Δ pex16) are highlighted in gray and indicated with “Ave”.

TABLE 15

Lipid Composition In *Y. lipolytica* Strains Y4305U (Δ Pex10) And Y4305U (Δ Pex10) (Δ Pex16)

Strain	Sample	DCW (g/L)	TFAs % DCW	16:0	16:1	18:0	18:1	18:2	18:3	EDA	DGLA	ARA	ETrA	ETA	EPA	
Y4305U (Δ pex10)	Y4305U -22 #1	3.50	29	3.1	0.7	2.1	6.4	18.7	2.6	4.2	1.8	0.5	1.8	2.0	45.4	
	Y4305U -22 #2	3.94	29	3.0	0.7	2.1	6.2	18.5	2.5	4.5	1.8	0.5	1.8	2.0	45.6	
	Y4305U -25 #1	4.14	31	3.6	1.1	1.8	6.1	18.8	2.4	4.5	1.9	0.6	1.6	2.0	43.9	
	Y4305U -25 #2	4.12	30	3.6	1.1	1.8	6.1	18.7	2.4	4.6	1.9	0.6	1.6	2.0	44.0	
Y4305U (Δ Pex10)		Ave	3.93	30	3.2	0.9	2.0	6.2	18.7	2.5	4.5	1.9	0.6	1.7	2.0	44.7
Y4305U (Δ pex10) (Δ pex16)	RHY22 #1	4.04	29	2.7	0.7	1.5	5.4	18.5	2.7	3.4	1.9	0.5	1.4	2.0	48.5	
	RHY22 #2	3.82	32	2.7	0.6	1.5	5.5	18.4	3.0	3.0	2.0	0.5	1.5	2.0	48.8	
	RHY23 #1	4.66	30	2.7	0.7	1.5	5.4	18.6	2.7	3.5	2.0	0.6	1.4	2.0	48.2	
	RHY23 #2	4.18	30	2.7	0.7	1.5	5.4	18.4	2.6	3.5	1.9	0.6	1.4	2.0	48.5	
	RHY24 #1	4.34	30	2.8	0.8	1.5	5.5	18.6	2.6	3.6	1.9	0.6	1.4	2.0	47.9	
	RHY24 #2	4.58	30	2.7	0.7	1.5	5.6	18.8	2.6	3.6	2.0	0.6	1.4	2.0	47.8	
Y4305U (Δ Pex10) (Δ pex16)		Ave	4.27	30	3.2	0.7	1.5	5.5	18.6	2.7	3.4	2.0	0.6	1.4	2.0	48.3

Y4305U (Δ Pex10)). Strains RHY22, RHY23 and RHY24 were the double knockout mutant strains (i.e., Y4305U (Δ Pex10) (Δ pex16)). Cultures of each strain were grown in duplicate under comparable oleaginous conditions.

[0329] Specifically, cultures were grown at a starting OD₆₀₀ of ~0.1 in 25 mL of synthetic dextrose media (SD) in a 125 mL flask for 48 hrs. The cells were harvested by centrifugation for 5 min at 4300 rpm in a 50 mL conical tube. The supernatant was discarded and the cells were re-suspended in 25 mL of HGM and transferred to a new 125 mL flask. The cells were incubated with aeration for an additional 120 hrs at 30° C.

[0330] To determine the dry cell weight (DCW), the cells from 5 mL of the HGM-grown cultures were processed. The cultured cells were centrifuged for 5 min at 4300 rpm. The pellet was re-suspended using 10 mL of sterile water and was centrifuged under the same conditions for a second time. The pellet was then re-suspended using 1 mL of sterile H₂O (three

[0333] The results in Table 15 showed that knockout of the chromosomal Pex16 gene in Y4305U (Δ Pex10) (Δ pex16) increased the EPA % TFAs approximately 8%, as compared to the EPA % TFAs in strain Y4305U (Δ Pex1.0) whose native Pex16p had not been knocked out. Additionally, the EPA % DCW was also increased in the double mutant as compared to in the single mutant strain, while the TFAs % DCW remained the same.

[0334] Thus, the results in Table 15 showed that compared to the control Y4305 (Δ Pex10) strains, Y4305 (Δ Pex10, Δ Pex16) strains on average had higher EPA % TFAs (48.3% versus 44.7%) and higher EPA % DCW (14.57% versus 13.23%). Strain Y4305 (Δ Pex10, Δ pex16) had only a 1.05-fold increase in the amount of EPA relative to the total PUFAs (61% of the PUFAs [as a % TFAs] versus 58.3% of the PUFAs [as a % TFAs]) relative to strain Y4305 (Δ Pex10), while the increase in the amount of C20 PUFAs relative to the total PUFAs was effectively identical (73% of the PUFAs [as a % TFAs] versus 72% of the PUFAs [as a % TFAs]).

Example 12

Chromosomal Deletion of Pex3 in *Yarrowia lipolytica* Strain Y4036U Increases Percent DGLA Accumulated

[0335] The present Example describes use of construct PY157 (FIG. 12B; SEQ ID NO:82) to knock out the chromosomal Pex3 gene (SEQ ID NO:3) in the Ura-, DGLA-producing *Yarrowia* strain Y4036U (Example 1). Transformation of *Y. lipolytica* strain Y4036U with the Pex3 knockout construct resulted in creation of strain Y4036 (Δpex3). The effect of the Pex3 knockout on DGLA level was determined and compared to the control strain Y4036 (a Ura⁺ strain that was parent to strain Y4036U). Specifically, knockout of Pex3 increased DGLA as a percentage of total fatty acids and improved ca. 3-fold DGLA % DCW, compared to the control.

Construct PY157

[0336] Plasmid pY87 (FIG. 12A) contained a cassette to knock out the *Yarrowia lipolytica* diacylglycerol acyltransferase (DGAT2) gene, as described below in Table 16:

TABLE 16

Description of Plasmid pY87 (SEQ ID NO: 83)	
RE Sites And Nucleotides Within SEQ ID NO: 83	Description Of Fragment And Chimeric Gene Components
SphI/PacI (1-721)	5' portion of <i>Yarrowia</i> DGAT2 gene (bases 1-720 of SEQ ID NO: 72) (U.S. Pat. No. 7,267,976)
PacI/BglII (721-2459)	LoxP::Ura3::LoxP, comprising: LoxP sequence (SEQ ID NO: 84); <i>Yarrowia</i> Ura3 gene (GenBank Accession No. AJ306421); LoxP sequence (SEQ ID NO: 84)
BglII/AscI (2459-3203)	3' portion of <i>Yarrowia</i> DGAT2 gene (bases 2468-3202 of SEQ ID NO: 72) (U.S. Pat. No. 7,267,976)
AscI/SphI (3203-5910)	Vector backbone including: ColE1 plasmid origin of replication; ampicillin-resistance gene (Amp ^R) for selection in <i>E. coli</i> (4191-5051); <i>E. coli</i> f1 origin of replication

[0337] Plasmid pY157 was derived from plasmid pY87. Specifically, a 704 bp 5' promoter region of the *Yarrowia lipolytica* Pex3 gene replaced the SphI/PacI fragment of pY87 and a 448 bp 3' terminator region of the *Yarrowia lipolytica* Pex3 gene replaced the BglII/AscI fragment of pY87 to produce pY157 (SEQ ID NO:82; FIG. 12B).

Generation of *Yarrowia lipolytica* Knockout Strain Y4036 (ΔPex3)

[0338] Standard protocols were used to transform *Yarrowia lipolytica* strain Y4036U (Example 1) with the purified 3648 bp AscI/SphI fragment of Pex3 knockout construct pY157 (supra).

[0339] To screen for cells having the Pex3 deletion, colony PCR was performed using Taq polymerase (Invitrogen; Carlsbad, Calif.) and the PCR primers UP 768 (SEQ ID NO:85) and LP 769 (SEQ ID NO:86). This set of primers was designed to amplify a 2039 bp wild type band of the intact Pex3 gene and 3719 bp knockout-specific band when the Pex3 gene was disrupted by targeted knockout.

[0340] More specifically, the colony PCR was performed using a MasterAmp Taq kit (Epicentre Technologies, Madison, Wis.; Catalog No. 82250) and the manufacturer's instructions in a 25 μ l reaction comprising: 2.5 μ l of 10x

MasterAmp Taq buffer, 2.0 μ l of 25 mM MgCl₂, 7.5 μ l of 16 \times MasterAmp Enhancer, 2.5 μ l of 2.5 mM dNTPs (TaKaRa Bio Inc., Otsu Shiga, Japan), 1.0 μ l of 10 μ M Upper primer, 1.0 μ l of 10 μ M Lower primer, 0.25 μ l of MasterAmp Taq DNA polymerase and 19.75 μ l of water. Amplification was carried out as follows: initial denaturation at 95° C. for 5 min, followed by 40 cycles of denaturation at 95° C. for 30 sec, annealing at 56° C. for 60 sec, and elongation at 72° C. for 4 min. A final elongation cycle at 72° C. for 10 min was carried out, followed by reaction termination at 4° C.

[0341] Of 48 colonies screened, 46 had the 2039 bp band expected from the wild type (i.e., undisrupted) Pex3 gene thus were not Δpex3 mutants. The remaining 2 colonies showed only a faint band of 2039 bp, suggesting that they were Δpex3 mutants with some contaminating untransformed cells present in the background. This was confirmed by streaking the 2 putative knockout colonies on selection plates to isolate single colonies. Then, genomic DNA was isolated from 3 single colonies from each putative knockout strain and screened by the same primer pair. i.e., UP 768 and LP 769 (SEQ ID NOs:85 and 86). This method was considered more sensitive than colony PCR. All three single colonies from both primary transformants lacked the 2039 bp wild type band and instead possessed the 3719 bp knockout-specific band. The two Δpex3 mutants within the Y4036U strain background were designated L134 and L135.

Evaluation of *Yarrowia lipolytica* Strains Y4036 And Y4036 (ΔPex3) for DGLA Production

[0342] To evaluate the effect of the Pex3 knockout on the percent of PUFAs in the total lipid fraction and the total lipid content in the cells, the Y4036 and Y4036 (Δpex3) strains were grown under comparable oleaginous conditions. Strains Y4036, L134 (i.e., Y4036 (Δpex3)) and L135 (i.e., Y4036 (Δpex3)) were inoculated into 25 mL of CSM-Ura and grown at 30° C. overnight in a shaker. The preculture was aliquoted into fresh 25 mL CSM-Ura flasks at a final OD₆₀₀ of 0.4. Cultures were grown at 30° C. in shaker. After 48 hrs, the cells (which barely grew) were spun down and resuspended in fresh 25 mL CSM-Ura and continued to grow for 72 hrs. Cells were spun down, re-suspended in 25 mL of HGM, and continued to grow as above for 72 hrs. Cells were harvested by centrifugation, washed once in distilled water and resuspended in 25 mL water to give a final volume of 20.5 mL. An aliquot (1.5 mL) was used for lipid content, following extraction of the total lipids, preparation of FAMEs by base transesterification, and analysis by a Hewlett-Packard 6890 GC (General Methods). The remaining aliquot was dried down to measure dry cell weight (DCW), as described in Example 11.

[0343] The fatty acid composition (i.e., 16:0 (palmitate), 16:1 (palmitoleic acid), 18:0, 18:1 (oleic acid), 18:2 (LA), EDA and DGLA) for each of the strains is shown below in Table 17 (expressed as the weight percent (wt. %) of total fatty acids (TFA)), as well as the total lipid content (TFA % DCW). The conversion efficiency ("CE") was measured according to the following formula: ([product]/[substrate+product]) \times 100, where 'product' includes the immediate product and all products in the pathway derived from it. Thus, the Δ12 desaturase conversion efficiency (Δ12% CE) was calculated as: ([LA+EDA+DGLA]/[18:1+LA+EDA+DGLA]) \times 100; the Δ9 elongase conversion efficiency (Δ9 elo % CE) was calculated as: ([EDA+DGLA]/[LA+EDA+DGLA]) \times 100; and, the Δ8 desaturase conversion efficiency (Δ8% CE) was calculated as: ([DGLA]/[EDA+DGLA]) \times 100. The average fatty acid composition of strains Y4036, L134 and L135 are highlighted in gray and indicated with "Ave", while "S.D." indicates the Standard Deviation. As expected, the Δpex3 strains did not grow on plates with oleate as a sole source of carbon.

TABLE 17

Lipid Content And Composition In *Y. lipolytica* Strains Y4036 And Y4036 (ΔPex3)

Strain	Sample	TFA % DCW	16:0	16:1	18:0	18:1	18:2	EDA	DGLA	Δ12 % CE	Δ9 elo % CE	Δ8 % CE
Y4036	Y4036-1	6.1	10	7	1	14	29	9	19	80	49	69
	Y4036-2	3.7	11	6	1	14	30	8	20	81	48	70
	Y4036-3	4.1	11	5	1	15	31	8	19	80	47	70
	Δ9g	4.7	10	6	1	14	30	8	19	80	48	70
	S.D.	1.3	0.3	0.9	0.1	0.3	0.7	0.3	0.2	0.3	0.9	0.8
Y4036 (Δpex3)	L134-1	6.2	7	5	1	8	12	10	45	89	83	81
	L134-2	5.4	7	5	1	8	11	10	47	90	83	82
	L134-3	6.7	6	5	1	8	12	11	46	90	83	82
	Δ9g	6.3	7	5	1	8	12	10	46	90	83	82
	S.D.	0.6	0.5	0.1	0.1	0.3	0.1	0.1	1.0	0.5	0.4	0.3
Y4036 (Apex3)	L135-1	4.2	7	5	1	8	12	11	45	89	82	81
	L135-2	6.5	6	5	1	8	12	10	47	90	83	82
	L135-3	7.1	7	5	1	8	12	10	46	90	83	82
	Δ9g	5.9	7	5	1	8	12	10	46	90	83	82
	S.D.	1.6	0.6	0.1	0.1	0.3	0.1	0.1	1.1	0.5	0.4	0.5

[0344] The results in Table 17 showed that knockout of the chromosomal Pex3 gene in Y4036 (Δpex3) increased the DGLA % TFAs approximately 142%, as compared to the DGLA % TFAs in strain Y4036 whose native Pex3p had not been knocked out. Specifically, the Pex3 knockout increased DGLA levels from ca. 19% in Y4036 to 46% in Y4036 (Δpex3) strains, L134 and L135. Additionally, the Δ9 elongase percent conversion efficiency increased from ca. 48% in Y4036 to 83% in Y4036 (Δpex3) strains, L134 and L135; and, TFA % DCW increased from 4.7% to 6% in the strains L134 and L135. The LA % TFAs decreased from 30% to 12%. Pex3 deletion indeed increases the flux of fatty acids and thus the substrate availability for Δ9 elongation.

[0345] Thus, the results in Table 17 showed that compared to the parent strain Y4036, Y4036 (Δpex3) strain had on

average higher lipid content (TFAs % DCW) (ca. 6.0% versus 4.7%), higher DGLA % TFAs (46% versus 19%), and higher DGLA % DCW (ca. 2.8% versus 0.9%). Additionally, strain Y4036 (Δpex3) had a 2-fold increase in the amount of DGLA relative to the total PUFAs (67.7% of the PUFAs [as a % TFAs] versus 33.3% of the PUFAs [as a % TFAs]) and a 1.7-fold increase in the amount of C20 PUFAs relative to the total PUFAs (82% of the PUFAs [as a % TFAs] versus 47% of the PUFAs [as a % TFAs]).

[0346] It is hypothesized that the improved DGLA productivity would also result in improved EPA productivity in *Yarrowia lipolytica* strains engineered for EPA production (e.g., *Y. lipolytica* strain Y4305U, as described in Example 10, and derivatives therefrom).

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 86

<210> SEQ ID NO 1
<211> LENGTH: 1024
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1) .. (1024)
<223> OTHER INFORMATION: Y1Pex1p; GenBank Accession No. CAG82178

<400> SEQUENCE: 1

Met Thr Ser Lys Ser Asp Tyr Ser Gly Lys Asp Lys Ile Glu Leu Asp
1 5 10 15

Pro Val Phe Ala Lys Ser Ile Asp Leu Leu Pro Asn Thr Gln Val Val
20 25 30

Ile Asp Ile Gln Leu Asn Pro Lys Ile Ala His Thr Ile His Leu Glu
35 40 45

Pro Val Thr Val Ala Asp Trp Glu Ile Val Glu Leu His Ala Ala Tyr
50 55 60

Leu Glu Ser Arg Met Ile Asn Gln Val Arg Ala Val Ser Pro Asn Gln
65 70 75 80

```

-continued

Pro Val Thr Val Tyr Pro Ser Ser Thr Thr Ser Ala Thr Leu Lys Val
 85 90 95
 Ile Arg Ile Glu Pro Asp Leu Gly Ala Ala Gly Phe Ala Lys Leu Ser
 100 105 110
 Pro Asp Ser Glu Val Val Ala Pro Lys Gln Arg Lys Lys Glu Glu
 115 120 125
 Lys Gln Val Lys Lys Arg Ser Gly Ser Ala Arg Ser Thr Gly Ser Gln
 130 135 140
 Lys Arg Lys Gly Gly Arg Gly Pro His Ala Leu Arg Arg Ala Ile Ser
 145 150 155 160
 Glu Asp Phe Asp Gly His Leu Arg Leu Glu Val Ser Leu Asp Val Ser
 165 170 175
 Gln Leu Pro Pro Glu Phe His Gln Leu Lys Asn Val Ser Ile Lys Val
 180 185 190
 Ile Thr Pro Pro Asn Leu Ala Ser Pro Gln Gln Ala Ala Ser Ile Ala
 195 200 205
 Val Glu Glu Lys Ser Glu Glu Ser Leu Ser Gln Asn Lys Pro Pro Ser
 210 215 220
 Ser Glu Pro Lys Val Glu Val Pro Pro Asp Ile Ile Asn Pro Ala Ser
 225 230 235 240
 Glu Ile Val Ala Thr Leu Val Asn Asp Thr Thr Ser Pro Thr Gly His
 245 250 255
 Ala Lys Leu Ser Tyr Ala Leu Ala Asp Ala Leu Gly Ile Pro Ser Ser
 260 265 270
 Val Gly His Val Ile Arg Phe Glu Ser Ala Ser Lys Pro Leu Ser Gln
 275 280 285
 Lys Pro Gly Ala Leu Val Ile His Arg Phe Ile Thr Lys Thr Val Gly
 290 295 300
 Ala Ala Glu Gln Lys Ser Leu Arg Leu Lys Gly Glu Lys Asn Ala Asp
 305 310 315 320
 Asp Gly Val Ser Ala Asp Asp Gln Phe Ser Leu Leu Glu Glu Leu Lys
 325 330 335
 Lys Leu Gln Met Leu Glu Gly Pro Ile Thr Asn Phe Gln Arg Leu Pro
 340 345 350
 Pro Ile Pro Glu Leu Leu Pro Leu Gly Gly Val Ile Gly Leu Gln Asn
 355 360 365
 Ser Glu Gly Trp Ile Gln Gly Gly Tyr Leu Gly Glu Glu Pro Ile Pro
 370 375 380
 Phe Val Ser Gly Ser Glu Ile Leu Arg Ser Glu Ser Ser Leu Ser Pro
 385 390 395 400
 Ser Asn Ile Glu Ser Glu Asp Lys Arg Val Val Gly Leu Asp Asn Met
 405 410 415
 Leu Asn Lys Ile Asn Glu Val Leu Ser Arg Asp Ser Ile Gly Cys Leu
 420 425 430
 Val Tyr Gly Ser Arg Gly Ser Gly Lys Ser Ala Val Leu Asn His Ile
 435 440 445
 Lys Lys Glu Cys Lys Val Ser His Thr His Thr Val Ser Ile Ala Cys
 450 455 460
 Gly Leu Ile Ala Gln Asp Arg Val Gln Ala Val Arg Glu Ile Leu Thr
 465 470 475 480

-continued

Lys Ala Phe Leu Glu Ala Ser Trp Phe Ser Pro Ser Val Leu Phe Leu
 485 490 495

Asp Asp Ile Asp Ala Leu Met Pro Ala Glu Val Glu His Ala Asp Ser
 500 505 510

Ser Arg Thr Arg Gln Leu Thr Gln Leu Phe Leu Glu Leu Ala Leu Pro
 515 520 525

Ile Met Lys Ser Arg His Val Ser Val Val Ala Ser Ala Gln Ala Lys
 530 535 540

Glu Ser Leu His Met Asn Leu Val Thr Gly His Val Phe Glu Glu Leu
 545 550 555 560

Phe His Leu Lys Ser Pro Asp Lys Glu Ala Arg Leu Ala Ile Leu Ser
 565 570 575

Glu Ala Val Lys Leu Met Asp Gln Asn Val Ser Phe Ser Gln Asn Asp
 580 585 590

Val Leu Glu Ile Ala Ser Gln Val Asp Gly Tyr Leu Pro Gly Asp Leu
 595 600 605

Trp Thr Leu Ser Glu Arg Ala Gln His Glu Met Ala Leu Arg Gln Ile
 610 615 620

Glu Ile Gly Leu Glu Asn Pro Ser Ile Gln Leu Ala Asp Phe Met Lys
 625 630 635 640

Ala Leu Glu Asp Phe Val Pro Ser Ser Leu Arg Gly Val Lys Leu Gln
 645 650 655

Lys Ser Asn Val Lys Trp Asn Asp Ile Gly Gly Leu Lys Glu Thr Lys
 660 665 670

Ala Val Leu Leu Glu Thr Leu Glu Trp Pro Thr Lys Tyr Ala Pro Ile
 675 680 685

Phe Ala Ser Cys Pro Leu Arg Leu Arg Ser Gly Leu Leu Leu Tyr Gly
 690 695 700

Tyr Pro Gly Cys Gly Lys Thr Tyr Leu Ala Ser Ala Val Ala Ala Gln
 705 710 715 720

Cys Gly Leu Asn Phe Ile Ser Ile Lys Gly Pro Glu Ile Leu Asn Lys
 725 730 735

Tyr Ile Gly Ala Ser Glu Gln Ser Val Arg Glu Leu Phe Glu Arg Ala
 740 745 750

Gln Ala Ala Lys Pro Cys Ile Leu Phe Phe Asp Glu Phe Asp Ser Ile
 755 760 765

Ala Pro Lys Arg Gly His Asp Ser Thr Gly Val Thr Asp Arg Val Val
 770 775 780

Asn Gln Met Leu Thr Gln Met Asp Gly Ala Glu Gly Leu Asp Gly Val
 785 790 795 800

Tyr Val Leu Ala Ala Thr Ser Arg Pro Asp Leu Ile Asp Pro Ala Leu
 805 810 815

Leu Arg Pro Gly Arg Leu Asp Lys Met Leu Ile Cys Asp Leu Pro Ser
 820 825 830

Tyr Glu Asp Arg Leu Asp Ile Leu Arg Ala Ile Val Asp Gly Lys Met
 835 840 845

His Leu Asp Gly Glu Val Glu Leu Glu Tyr Val Ala Ser Arg Thr Asp
 850 855 860

Gly Phe Ser Gly Ala Asp Leu Gln Ala Val Met Phe Asn Ala Tyr Leu
 865 870 875 880

Glu Ala Ile His Glu Val Val Asp Val Ala Asp Asp Thr Ala Ala Asp

-continued

885	890	895	
Thr Pro Ala Leu Glu Asp Lys Arg Leu Glu Phe Phe Gln Thr Thr Leu			
900	905	910	
Gly Asp Ala Lys Lys Asp Pro Ala Ala Val Gln Asn Glu Val Met Asn			
915	920	925	
Ala Arg Ala Ala Val Ala Glu Lys Ala Arg Val Thr Ala Lys Leu Glu			
930	935	940	
Ala Leu Phe Lys Gly Met Ser Val Gly Val Asp Asn Asp Asp Asp Lys			
945	950	955	960
Pro Arg Lys Lys Ala Val Val Val Ile Lys Pro Gln His Met Asn Lys			
965	970	975	
Ser Leu Asp Glu Thr Ser Pro Ser Ile Ser Lys Lys Glu Leu Leu Lys			
980	985	990	
Leu Lys Gly Ile Tyr Ser Gln Phe Val Ser Gly Arg Ser Gly Asp Met			
995	1000	1005	
Pro Pro Gly Thr Ala Ser Thr Asp Val Gly Gly Arg Ala Thr Leu			
1010	1015	1020	

Ala

<210> SEQ ID NO 2
<211> LENGTH: 381
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(381)
<223> OTHER INFORMATION: Y1Pex2p; GenBank Accession No. CAG77647

<400> SEQUENCE: 2			
Met Ser Ser Val Leu Arg Leu Phe Lys Ile Gly Ala Pro Val Pro Asn			
1	5	10	15
Val Arg Val His Gln Leu Asp Ala Ser Leu Leu Asp Ala Glu Leu Val			
20	25	30	
Asp Leu Leu Lys Asn Gln Leu Phe Lys Gly Phe Thr Asn Phe His Pro			
35	40	45	
Glu Phe Arg Asp Lys Tyr Glu Ser Glu Leu Val Leu Ala Leu Lys Leu			
50	55	60	
Ile Leu Phe Lys Leu Thr Val Trp Asp His Ala Ile Thr Tyr Gly Gly			
65	70	75	80
Lys Leu Gln Asn Leu Lys Phe Ile Asp Ser Arg His Ser Ser Lys Leu			
85	90	95	
Gln Ile Gln Pro Ser Val Ile Gln Lys Leu Gly Tyr Gly Ile Leu Val			
100	105	110	
Val Gly Gly Tyr Leu Trp Ser Lys Ile Glu Gly Tyr Leu Leu Ala			
115	120	125	
Arg Ser Glu Asp Asp Val Ala Thr Asp Gly Thr Ser Val Arg Gly Ala			
130	135	140	
Ser Ala Ala Arg Gly Ala Leu Lys Val Ala Asn Phe Ala Ser Leu Leu			
145	150	155	160
Tyr Ser Ala Ala Thr Leu Gly Asn Phe Val Ala Phe Leu Tyr Thr Gly			
165	170	175	
Arg Tyr Ala Thr Val Ile Met Arg Leu Leu Arg Ile Arg Leu Val Pro			
180	185	190	

-continued

Ser Gln Arg Thr Ser Ser Arg Gln Val Ser Tyr Glu Phe Gln Asn Arg
 195 200 205
 Gln Leu Val Trp Asn Ala Phe Thr Glu Phe Leu Ile Phe Ile Leu Pro
 210 215 220
 Leu Leu Gln Leu Pro Lys Leu Lys Arg Arg Ile Glu Arg Lys Leu Gln
 225 230 235 240
 Ser Leu Asn Val Thr Arg Val Gly Asn Val Glu Glu Ala Ser Glu Gly
 245 250 255
 Glu Leu Ala His Leu Pro Gln Lys Thr Cys Ala Ile Cys Phe Arg Asp
 260 265 270
 Glu Glu Glu Gln Glu Gly Gly Ala Ser His Tyr Ser Thr Asp
 275 280 285
 Val Thr Asn Pro Tyr Gln Ala Asp Cys Gly His Val Tyr Cys Tyr Val
 290 295 300
 Cys Leu Val Thr Lys Leu Ala Gln Gly Asp Gly Asp Gly Trp Asn Cys
 305 310 315 320
 Tyr Arg Cys Ala Lys Gln Val Gln Lys Met Lys Pro Trp Val Asp Val
 325 330 335
 Asp Glu Ala Ala Val Val Gly Ala Ala Glu Met His Glu Lys Val Asp
 340 345 350
 Val Ile Glu His Ala Glu Asp Asn Glu Gln Glu Glu Glu Phe Asp
 355 360 365
 Asp Asp Asp Glu Asp Ser Asn Phe Gln Leu Met Lys Asp
 370 375 380

<210> SEQ ID NO 3
 <211> LENGTH: 431
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(431)
 <223> OTHER INFORMATION: Y1Pex3p; GenBank Accession No. CAG78565

<400> SEQUENCE: 3

Met Asp Phe Phe Arg Arg His Gln Lys Lys Val Leu Ala Leu Val Gly
 1 5 10 15
 Val Ala Leu Ser Ser Tyr Leu Phe Ile Asp Tyr Val Lys Lys Lys Phe
 20 25 30
 Phe Glu Ile Gln Gly Arg Leu Ser Ser Glu Arg Thr Ala Lys Gln Asn
 35 40 45
 Leu Arg Arg Arg Phe Glu Gln Asn Gln Gln Asp Ala Asp Phe Thr Ile
 50 55 60
 Met Ala Leu Leu Ser Ser Leu Thr Thr Pro Val Met Glu Arg Tyr Pro
 65 70 75 80
 Val Asp Gln Ile Lys Ala Glu Leu Gln Ser Lys Arg Arg Pro Thr Asp
 85 90 95
 Arg Val Leu Ala Leu Glu Ser Ser Thr Ser Ser Ala Thr Ala Gln
 100 105 110
 Thr Val Pro Thr Met Thr Ser Gly Ala Thr Glu Glu Gly Glu Lys Ser
 115 120 125
 Lys Thr Gln Leu Trp Gln Asp Leu Lys Arg Thr Thr Ile Ser Arg Ala
 130 135 140
 Phe Ser Leu Val Tyr Ala Asp Ala Leu Leu Ile Phe Phe Thr Arg Leu

-continued

145	150	155	160
Gln Leu Asn Ile Leu Gly Arg Arg Asn Tyr Val Asn Ser Val Val Ala			
165	170	175	
Leu Ala Gln Gln Gly Arg Glu Gly Asn Ala Glu Gly Arg Val Ala Pro			
180	185	190	
Ser Phe Gly Asp Leu Ala Asp Met Gly Tyr Phe Gly Asp Leu Ser Gly			
195	200	205	
Ser Ser Ser Phe Gly Glu Thr Ile Val Asp Pro Asp Leu Asp Glu Gln			
210	215	220	
Tyr Leu Thr Phe Ser Trp Trp Leu Leu Asn Glu Gly Trp Val Ser Leu			
225	230	235	240
Ser Glu Arg Val Glu Ala Val Arg Arg Val Trp Asp Pro Val Ser			
245	250	255	
Pro Lys Ala Glu Leu Gly Phe Asp Glu Leu Ser Glu Leu Ile Gly Arg			
260	265	270	
Thr Gln Met Leu Ile Asp Arg Pro Leu Asn Pro Ser Ser Pro Leu Asn			
275	280	285	
Phe Leu Ser Gln Leu Leu Pro Pro Arg Glu Gln Glu Glu Tyr Val Leu			
290	295	300	
Ala Gln Asn Pro Ser Asp Thr Ala Ala Pro Ile Val Gly Pro Thr Leu			
305	310	315	320
Arg Arg Leu Leu Asp Glu Thr Ala Asp Phe Ile Glu Ser Pro Asn Ala			
325	330	335	
Ala Glu Val Ile Glu Arg Leu Val His Ser Gly Leu Ser Val Phe Met			
340	345	350	
Asp Lys Leu Ala Val Thr Phe Gly Ala Thr Pro Ala Asp Ser Gly Ser			
355	360	365	
Pro Tyr Pro Val Val Leu Pro Thr Ala Lys Val Lys Leu Pro Ser Ile			
370	375	380	
Leu Ala Asn Met Ala Arg Gln Ala Gly Gly Met Ala Gln Gly Ser Pro			
385	390	395	400
Gly Val Glu Asn Glu Tyr Ile Asp Val Met Asn Gln Val Gln Glu Leu			
405	410	415	
Thr Ser Phe Ser Ala Val Val Tyr Ser Ser Phe Asp Trp Ala Leu			
420	425	430	

```

<210> SEQ_ID NO 4
<211> LENGTH: 395
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(395)
<223> OTHER INFORMATION: Y1Pex3Bp; GenBank Accession No. CAG83356

```

<400> SEQUENCE: 4

Met Leu Gln Ser Leu Asn Arg Asn Lys Lys Arg Leu Ala Val Ser Thr			
1	5	10	15
Gly Leu Ile Ala Val Ala Tyr Val Val Ile Ser Tyr Thr Thr Lys Arg			
20	25	30	
Leu Ile Glu Lys Gln Glu Gln Lys Leu Glu Glu Glu Arg Ala Lys Glu			
35	40	45	
Arg Leu Lys Gln Leu Phe Ala Gln Thr Gln Asn Glu Ala Ala Phe His			
50	55	60	

-continued

Thr	Ala	Ser	Val	Leu	Pro	Gln	Leu	Cys	Glu	Gln	Ile	Met	Glu	Phe	Val
65															80
Ala	Val	Glu	Lys	Ile	Ala	Glu	Gln	Leu	Gln	Asn	Met	Arg	Ala	Glu	Lys
				85				90							95
Arg	Lys	Lys	Gln	Asn	Met	Asp	Asp	Asp	Lys	His	Ser	Val	Leu	Ser	Leu
				100				105							110
Gly	Thr	Glu	Thr	Thr	Ala	Ser	Met	Ala	Asp	Gly	Gln	Lys	Met	Ser	Lys
				115				120							125
Ile	Gln	Leu	Trp	Asp	Glu	Leu	Lys	Ile	Glu	Ser	Leu	Thr	Arg	Ile	Val
				130				135							140
Thr	Leu	Ile	Tyr	Cys	Val	Ser	Leu	Leu	Asn	Tyr	Leu	Ile	Arg	Leu	Gln
				145				150							160
Thr	Asn	Ile	Val	Gly	Arg	Lys	Arg	Tyr	Gln	Asn	Glu	Ala	Gly	Pro	Ala
				165				170							175
Gly	Ala	Thr	Tyr	Asp	Met	Ser	Leu	Glu	Gln	Cys	Tyr	Thr	Trp	Leu	Leu
				180				185							190
Thr	Arg	Gly	Trp	Lys	Ser	Val	Val	Asp	Asn	Val	Arg	Arg	Ser	Val	Gln
				195				200							205
Gln	Val	Phe	Thr	Gly	Val	Asn	Pro	Arg	Gln	Asn	Leu	Ser	Leu	Asp	Glu
				210				215							220
Phe	Ala	Thr	Leu	Leu	Lys	Arg	Val	Gln	Thr	Leu	Val	Asn	Ser	Pro	Pro
				225				230							240
Tyr	Ser	Thr	Thr	Pro	Asn	Thr	Phe	Leu	Thr	Ser	Leu	Leu	Pro	Pro	Arg
				245				250							255
Glu	Leu	Glu	Gln	Leu	Arg	Leu	Glu	Lys	Glu	Lys	Gln	Ser	Leu	Ser	Pro
				260				265							270
Asn	Tyr	Thr	Tyr	Gly	Ser	Pro	Leu	Lys	Asp	Leu	Val	Phe	Glu	Ser	Ala
				275				280							285
Gln	His	Ile	Gln	Ser	Pro	Gln	Gly	Met	Ser	Ser	Phe	Arg	Ala	Ile	Ile
				290				295							300
Asp	Gln	Ser	Phe	Lys	Val	Phe	Leu	Glu	Lys	Val	Asn	Glu	Ser	Gln	Tyr
				305				310							320
Val	Asn	Pro	Pro	Ser	Thr	Gly	Gly	Lys	Arg	Ile	Ala	Val	Gly	Ala	Leu
				325				330							335
Gln	Pro	Pro	Ile	Ile	Ser	Gly	Gly	Pro	Lys	Lys	Val	Lys	Leu	Ala	Ser
				340				345							350
Leu	Leu	Ser	Val	Ala	Thr	Arg	Gln	Ser	Ser	Val	Ile	Ser	His	Ala	Gln
				355				360							365
Pro	Asn	Pro	Tyr	Val	Asp	Ala	Ile	Asn	Ser	Val	Ala	Glu	Tyr	Asn	Gly
				370				375							380
Leu	Cys	Ala	Val	Ile	Tyr	Ser	Ser	Phe	Glu	Gln					
				385				390							395

<210> SEQ_ID NO 5
<211> LENGTH: 153
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(153)
<223> OTHER INFORMATION: Y1Pex4p; GenBank Accession No. CAG79130
<400> SEQUENCE: 5

-continued

Met Ala Ser Gln Lys Arg Leu Ile Lys Glu Leu Ala Ala Tyr Lys Lys
 1 5 10 15

Asp Pro Asn Pro Cys Leu Ala Ser Leu Thr Ala Asp Gly Asp Ser Leu
 20 25 30

Tyr Lys Trp Thr Ala Val Met Arg Gly Thr Glu Gly Thr Ala Tyr Glu
 35 40 45

Asn Gly Leu Trp Gln Val Glu Ile Asn Ile Pro Glu Asn Tyr Pro Leu
 50 55 60

Gln Pro Pro Thr Met Phe Phe Arg Thr Lys Ile Cys His Pro Asn Ile
 65 70 75 80

His Phe Glu Thr Gly Glu Val Cys Ile Asp Val Leu Lys Thr Gln Trp
 85 90 95

Ser Pro Ala Trp Thr Ile Ser Ser Ala Cys Thr Ala Val Ser Ala Met
 100 105 110

Leu Ser Leu Pro Glu Pro Asp Ser Pro Leu Asn Ile Asp Ala Ala Asn
 115 120 125

Leu Val Arg Cys Gly Asp Glu Ser Ala Met Glu Gly Leu Val Arg Tyr
 130 135 140

Tyr Val Asn Lys Tyr Ala Ser Gly Asn
 145 150

<210> SEQ ID NO 6
 <211> LENGTH: 598
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(598)
 <223> OTHER INFORMATION: Y1Pex5p; GenBank Accession No. CAG78803

<400> SEQUENCE: 6

Met Ser Phe Met Arg Gly Gly Ser Glu Cys Ser Thr Gly Arg Asn Pro
 1 5 10 15

Leu Ser Gln Phe Thr Lys His Thr Ala Glu Asp Arg Ser Leu Gln His
 20 25 30

Asp Arg Val Ala Gly Pro Ser Gly Gly Arg Val Gly Gly Met Arg Ser
 35 40 45

Asn Thr Gly Glu Met Ser Gln Gln Asp Arg Glu Met Met Ala Arg Phe
 50 55 60

Gly Ala Ala Gly Pro Glu Gln Ser Ser Phe Asn Tyr Glu Gln Met Arg
 65 70 75 80

His Glu Leu His Asn Met Gly Ala Gln Gly Gly Gln Ile Pro Gln Val
 85 90 95

Pro Ser Gln Gln Gly Ala Ala Asn Gly Gly Gln Trp Ala Arg Asp Phe
 100 105 110

Gly Gly Gln Gln Thr Ala Pro Gly Ala Ala Pro Gln Asp Ala Lys Asn
 115 120 125

Trp Asn Ala Glu Phe Gln Arg Gly Gly Ser Pro Ala Glu Ala Met Gln
 130 135 140

Gln Gln Gly Pro Gly Pro Met Gln Gly Gly Met Gly Met Gly Gly Met
 145 150 155 160

Pro Met Tyr Gly Met Ala Arg Pro Met Tyr Ser Gly Met Ser Ala Asn
 165 170 175

Met Ala Pro Gln Phe Gln Pro Gln Gln Ala Asn Ala Arg Val Val Glu

-continued

180	185	190	
Leu Asp Glu Gln Asn Trp Glu Glu Gln Phe Lys Gln Met Asp Ser Ala			
195	200	205	
Val Gly Lys Gly Lys Glu Val Glu Glu Gln Thr Ala Glu Thr Ala Thr			
210	215	220	
Ala Thr Glu Thr Val Thr Glu Thr Thr Thr Glu Asp Lys Pro			
225	230	235	240
Met Asp Ile Lys Asn Met Asp Phe Glu Asn Ile Trp Lys Asn Leu Gln			
245	250	255	
Val Asn Val Leu Asp Asn Met Asp Glu Trp Leu Glu Glu Thr Asn Ser			
260	265	270	
Pro Ala Trp Glu Arg Asp Phe His Glu Tyr Thr His Asn Arg Pro Glu			
275	280	285	
Phe Ala Asp Tyr Gln Phe Glu Glu Asn Asn Gln Phe Met Glu His Pro			
290	295	300	
Asp Pro Phe Lys Ile Gly Val Glu Leu Met Glu Thr Gly Arg Leu			
305	310	315	320
Ser Glu Ala Ala Leu Ala Phe Glu Ala Ala Val Gln Lys Asn Thr Glu			
325	330	335	
His Ala Glu Ala Trp Gly Arg Leu Gly Ala Cys Gln Ala Gln Asn Glu			
340	345	350	
Lys Glu Asp Pro Ala Ile Arg Ala Leu Glu Arg Cys Ile Lys Leu Glu			
355	360	365	
Pro Gly Asn Leu Ser Ala Leu Met Asn Leu Ser Val Ser Tyr Thr Asn			
370	375	380	
Glu Gly Tyr Glu Asn Ala Ala Tyr Ala Thr Leu Glu Arg Trp Leu Ala			
385	390	395	400
Thr Lys Tyr Pro Glu Val Val Asp Gln Ala Arg Asn Gln Glu Pro Arg			
405	410	415	
Leu Gly Asn Glu Asp Lys Phe Gln Leu His Ser Arg Val Thr Glu Leu			
420	425	430	
Phe Ile Arg Ala Ala Gln Leu Ser Pro Asp Gly Ala Asn Ile Asp Ala			
435	440	445	
Asp Val Gln Val Gly Leu Gly Val Leu Phe Tyr Gly Asn Glu Glu Tyr			
450	455	460	
Asp Lys Ala Ile Asp Cys Phe Asn Ala Ala Ile Ala Val Arg Pro Asp			
465	470	475	480
Asp Ala Leu Leu Trp Asn Arg Leu Gly Ala Thr Leu Ala Asn Ser His			
485	490	495	
Arg Ser Glu Glu Ala Ile Asp Ala Tyr Tyr Lys Ala Leu Glu Leu Arg			
500	505	510	
Pro Ser Phe Val Arg Ala Arg Tyr Asn Leu Gly Val Ser Cys Ile Asn			
515	520	525	
Ile Gly Cys Tyr Lys Glu Ala Ala Gln Tyr Leu Leu Gly Ala Leu Ser			
530	535	540	
Met His Lys Val Glu Gly Val Gln Asp Asp Val Leu Ala Asn Gln Ser			
545	550	555	560
Thr Asn Leu Tyr Asp Thr Leu Lys Arg Val Phe Leu Gly Met Asp Arg			
565	570	575	
Arg Asp Leu Val Ala Lys Val Gly Asn Gly Met Asp Val Asn Gln Phe			
580	585	590	

-continued

Arg Asn Glu Phe Glu Phe
595

<210> SEQ ID NO 7
<211> LENGTH: 1024
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1024)
<223> OTHER INFORMATION: Y1Pex6p; GenBank Accession No. CAG82306

<400> SEQUENCE: 7

Met Pro Ser Ile Ser His Lys Pro Ile Thr Ala Lys Leu Val Ala Ala
1 5 10 15

Pro Asp Ala Thr Lys Leu Glu Leu Ser Ser Tyr Leu Tyr Gln Gln Leu
20 25 30

Phe Ser Asp Lys Pro Ala Glu Pro Tyr Val Ala Phe Glu Ala Pro Gly
35 40 45

Ile Lys Trp Ala Leu Tyr Pro Ala Ser Glu Asp Arg Ser Leu Pro Gln
50 55 60

Tyr Thr Cys Lys Ala Asp Ile Arg His Val Ala Gly Ser Leu Lys Lys
65 70 75 80

Phe Met Pro Val Val Leu Lys Arg Val Asn Pro Val Thr Ile Glu His
85 90 95

Ala Ile Val Thr Val Pro Ala Ser Gln Tyr Glu Thr Leu Asn Thr Pro
100 105 110

Glu Gln Val Leu Lys Ala Leu Glu Pro Gln Leu Asp Lys Asp Arg Pro
115 120 125

Val Ile Arg Gln Gly Asp Val Leu Leu Asn Gly Cys Arg Val Arg Leu
130 135 140

Cys Glu Pro Val Asn Gln Gly Lys Val Val Lys Gly Thr Thr Lys Leu
145 150 155 160

Thr Val Ala Lys Glu Gln Glu Thr Ile Gln Pro Ala Asp Glu Ala Ala
165 170 175

Asp Val Ala Phe Asp Ile Ala Glu Phe Leu Asp Phe Asp Thr Ser Val
180 185 190

Ala Lys Thr Arg Glu Ser Thr Asn Leu Gln Val Ala Pro Leu Glu Gly
195 200 205

Ala Ile Pro Thr Pro Leu Ser Asp Arg Phe Asp Asp Cys Glu Ser Arg
210 215 220

Gly Phe Val Lys Ser Glu Thr Met Ser Lys Leu Gly Val Phe Ser Gly
225 230 235 240

Asp Ile Val Ser Ile Lys Thr Lys Asn Gly Ala Glu Arg Val Leu Arg
245 250 255

Leu Phe Ala Tyr Pro Glu Pro Asn Thr Val Lys Tyr Asp Val Val Tyr
260 265 270

Val Ser Pro Ile Leu Tyr His Asn Ile Gly Asp Lys Glu Ile Glu Val
275 280 285

Thr Pro Asn Gly Glu Thr His Lys Ser Val Gly Glu Ala Leu Asp Ser
290 295 300

Val Leu Glu Ala Ala Glu Glu Val Lys Leu Ala Arg Val Leu Gly Pro
305 310 320

-continued

Thr Thr Thr Asp Arg Thr Phe Gln Thr Ala Tyr His Ala Gly Leu Gln
 325 330 335
 Ala Tyr Phe Lys Pro Val Lys Arg Ala Val Arg Val Gly Asp Leu Ile
 340 345 350
 Pro Ile Pro Phe Asp Ser Ile Leu Ala Arg Thr Ile Gly Glu Asp Pro
 355 360 365
 Glu Met Ser His Ile Pro Leu Glu Ala Leu Ala Val Lys Pro Asp Ser
 370 375 380
 Val Ala Trp Phe Gln Val Thr Ser Leu Asn Gly Ser Glu Asp Pro Ala
 385 390 395 400
 Ser Lys Gln Tyr Leu Val Asp Ser Ser Gln Thr Lys Leu Ile Glu Gly
 405 410 415
 Gly Thr Thr Ser Ser Ala Val Ile Pro Thr Ser Val Pro Trp Arg Glu
 420 425 430
 Tyr Leu Gly Leu Asp Thr Leu Pro Lys Phe Gly Ser Glu Phe Ala Tyr
 435 440 445
 Ala Asp Lys Ile Arg Asn Leu Val Gln Ile Ser Thr Ser Ala Leu Ser
 450 455 460
 His Ala Lys Leu Asn Thr Ser Val Leu Leu His Ser Ala Lys Arg Gly
 465 470 475 480
 Val Gly Lys Ser Thr Val Leu Arg Ser Val Ala Ala Gln Cys Gly Ile
 485 490 495
 Ser Val Phe Glu Ile Ser Cys Phe Gly Leu Ile Gly Asp Asn Glu Ala
 500 505 510
 Gln Thr Leu Gly Thr Leu Arg Ala Lys Leu Asp Arg Ala Tyr Gly Cys
 515 520 525
 Ser Pro Cys Val Val Val Leu Gln His Leu Glu Ser Ile Ala Lys Lys
 530 535 540
 Ser Asp Gln Asp Gly Lys Asp Glu Gly Ile Val Ser Lys Leu Val Asp
 545 550 555 560
 Val Leu Ala Asp Tyr Ser Gly His Gly Val Leu Leu Ala Ala Thr Ser
 565 570 575
 Asn Asp Pro Asp Lys Ile Ser Glu Ala Ile Arg Ser Arg Phe Gln Phe
 580 585 590
 Glu Ile Glu Ile Gly Val Pro Ser Glu Pro Gln Arg Arg Gln Ile Phe
 595 600 605
 Ser His Leu Thr Lys Ser Gly Pro Gly Gly Asp Ser Ile Arg Asn Ala
 610 615 620
 Pro Ile Ser Leu Arg Ser Asp Val Ser Val Glu Asn Leu Ala Leu Gln
 625 630 635 640
 Ser Ala Gly Leu Thr Pro Pro Asp Leu Thr Ala Ile Val Gln Thr Thr
 645 650 655
 Arg Leu Arg Ala Ile Asp Arg Leu Asn Lys Leu Thr Lys Asp Ser Asp
 660 665 670
 Thr Thr Leu Asp Asp Leu Leu Thr Leu Ser His Gly Thr Leu Gln Leu
 675 680 685
 Thr Pro Ser Asp Phe Asp Asp Ala Ile Ala Asp Ala Arg Gln Lys Tyr
 690 695 700
 Ser Asp Ser Ile Gly Ala Pro Arg Ile Pro Asn Val Gly Trp Asp Asp
 705 710 715 720
 Val Gly Gly Met Glu Gly Val Lys Lys Asp Ile Leu Asp Thr Ile Glu

-continued

725	730	735	
Thr Pro Leu Lys Tyr Pro His Trp Phe Ser Asp Gly Val Lys Lys Arg 740	745	750	
Ser Gly Ile Leu Phe Tyr Gly Pro Pro Gly Thr Gly Lys Thr Leu Leu 755	760	765	
Ala Lys Ala Ile Ala Thr Thr Phe Ser Leu Asn Phe Phe Ser Val Lys 770	775	780	
Gly Pro Glu Leu Leu Asn Met Tyr Ile Gly Glu Ser Glu Ala Asn Val 785	790	795	800
Arg Arg Val Phe Gln Lys Ala Arg Asp Ala Lys Pro Cys Val Val Phe 805	810	815	
Phe Asp Glu Leu Asp Ser Val Ala Pro Gln Arg Gly Asn Gln Gly Asp 820	825	830	
Ser Gly Gly Val Met Asp Arg Ile Val Ser Gln Leu Leu Ala Glu Leu 835	840	845	
Asp Gly Met Ser Thr Ala Gly Gly Glu Gly Val Phe Val Val Gly Ala 850	855	860	
Thr Asn Arg Pro Asp Leu Leu Asp Glu Ala Leu Leu Arg Pro Gly Arg 865	870	875	880
Phe Asp Lys Met Leu Tyr Leu Gly Ile Ser Asp Thr His Glu Lys Gln 885	890	895	
Gln Thr Ile Met Glu Ala Leu Thr Arg Lys Phe Arg Leu Ala Ala Asp 900	905	910	
Val Ser Leu Glu Ala Ile Ser Lys Arg Cys Pro Phe Thr Phe Thr Gly 915	920	925	
Ala Asp Phe Tyr Ala Leu Cys Ser Asp Ala Met Leu Asn Ala Met Thr 930	935	940	
Arg Thr Ala Asn Glu Val Asp Ala Lys Ile Lys Leu Leu Asn Lys Asn 945	950	955	960
Arg Glu Glu Ala Gly Glu Glu Pro Val Ser Ile Arg Trp Trp Phe Asp 965	970	975	
His Glu Ala Thr Lys Ser Asp Ile Glu Val Glu Val Ala Gln Gln Asp 980	985	990	
Phe Glu Lys Ala Lys Asp Glu Leu Ser Pro Ser Val Ser Ala Glu Glu 995	1000	1005	
Leu Gln His Tyr Leu Lys Leu Arg Gln Gln Phe Glu Gly Gly Lys 1010	1015	1020	

Lys

```

<210> SEQ_ID NO 8
<211> LENGTH: 356
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(356)
<223> OTHER INFORMATION: Y1Pex7p; GenBank Accession No. CAG78389

<400> SEQUENCE: 8

```

Met Leu Gly Phe Lys Thr Gln Gly Phe Asn Gly Tyr Ala Ala Asn Tyr 1	5	10	15
Ser Pro Phe Phe Asn Asp Lys Ile Ala Val Gly Thr Ala Ala Asn Tyr 20	25	30	

-continued

Gly Leu Val Gly Asn Gly Lys Leu Phe Ile Leu Gly Ile Ser Pro Glu
 35 40 45

Gly Arg Met Val Cys Glu Gly Gln Phe Asp Thr Gln Asp Gly Ile Phe
 50 55 60

Asp Val Ala Trp Ser Glu Gln His Glu Asn His Val Ala Thr Ala Cys
 65 70 75 80

Gly Asp Gly Ser Val Lys Leu Phe Asp Ile Lys Ala Gly Ala Phe Pro
 85 90 95

Leu Val Ser Phe Lys Glu His Thr Arg Glu Val Phe Ser Val Asn Trp
 100 105 110

Asn Met Ala Asn Lys Ala Leu Phe Cys Thr Ser Ser Trp Asp Ser Thr
 115 120 125

Ile Lys Ile Trp Thr Pro Glu Arg Thr Asn Ser Ile Met Thr Leu Gly
 130 135 140

Gln Pro Ala Pro Ala Gln Gly Thr Asn Ala Ser Ala His Ile Gly Arg
 145 150 155 160

Gln Thr Ala Pro Asn Gln Ala Ala Gln Glu Cys Ile Tyr Ser Ala
 165 170 175

Lys Phe Ser Pro His Thr Asp Ser Ile Ile Ala Ser Ala His Ser Thr
 180 185 190

Gly Met Val Lys Val Trp Asp Thr Arg Ala Pro Gln Pro Leu Gln Gln
 195 200 205

Gln Phe Ser Thr Gln Gln Thr Glu Ser Gly Gly Pro Pro Glu Val Leu
 210 215 220

Ser Leu Asp Trp Asn Lys Tyr Arg Pro Thr Val Ile Ala Thr Gly Gly
 225 230 235 240

Val Asp Arg Ser Val Gln Val Tyr Asp Ile Arg Met Thr Gln Pro Ala
 245 250 255

Ala Asn Gln Pro Val Gln Pro Leu Ser Leu Ile Leu Gly His Arg Leu
 260 265 270

Pro Val Arg Gly Val Ser Trp Ser Pro His His Ala Asp Leu Leu Leu
 275 280 285

Ser Cys Ser Tyr Asp Met Thr Ala Arg Val Trp Arg Asp Ala Ser Thr
 290 295 300

Gly Gly Asn Tyr Leu Ala Arg Gln Arg Gly Gly Thr Glu Val Lys Cys
 305 310 315 320

Met Asp Arg His Thr Glu Phe Val Ile Gly Gly Asp Trp Ser Leu Trp
 325 330 335

Gly Asp Pro Gly Trp Ile Thr Thr Val Gly Trp Asp Gln Met Val Tyr
 340 345 350

Val Trp His Ala
 355

```

<210> SEQ_ID 9
<211> LENGTH: 671
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(671)
<223> OTHER INFORMATION: Y1Pex8p; GenBank Accession No. CAG80447
  
```

<400> SEQUENCE: 9

Met Asn Lys Tyr Leu Val Pro Pro Pro Gln Ala Asn Arg Thr Val Thr

-continued

1	5	10	15
Asn Leu Asp Leu Leu Ile Asn Asn Leu Arg Gly Ser Ser Thr Pro Gly			
20	25	30	
Ala Ala Glu Val Asp Thr Arg Asp Ile Leu Gln Arg Ile Val Phe Ile			
35	40	45	
Leu Pro Thr Ile Lys Asn Pro Leu Asn Leu Asp Leu Val Ile Lys Glu			
50	55	60	
Ile Ile Asn Ser Pro Arg Leu Leu Pro Pro Leu Ile Asp Leu His Asp			
65	70	75	80
Tyr Gln Gln Leu Thr Asp Ala Phe Arg Ala Thr Ile Lys Arg Lys Ala			
85	90	95	
Leu Val Thr Asp Pro Thr Ile Ser Phe Glu Ala Trp Leu Glu Thr Cys			
100	105	110	
Phe Gln Val Ile Thr Arg Phe Ala Gly Pro Gly Trp Lys Lys Leu Pro			
115	120	125	
Leu Leu Ala Gly Leu Ile Leu Ala Asp Tyr Asp Ile Ser Ala Asp Gly			
130	135	140	
Pro Thr Leu Glu Arg Lys Pro Gly Phe Pro Ser Lys Leu Lys His Leu			
145	150	155	160
Leu Lys Arg Glu Phe Val Thr Thr Phe Asp Gln Cys Leu Ser Ile Asp			
165	170	175	
Thr Arg Asn Arg Ser Asp Ala Thr Lys Trp Val Pro Val Leu Ala Cys			
180	185	190	
Ile Ser Ile Ala Gln Val Tyr Ser Leu Leu Gly Asp Val Ala Ile Asn			
195	200	205	
Tyr Arg Arg Phe Leu Gln Val Gly Leu Asp Leu Ile Phe Ser Asn Tyr			
210	215	220	
Gly Leu Glu Met Gly Thr Ala Leu Ala Arg Leu His Ala Glu Ser Gly			
225	230	235	240
Gly Asp Ala Thr Thr Ala Gly Gly Leu Ile Gly Lys Lys Leu Lys Glu			
245	250	255	
Pro Val Val Ala Leu Leu Asn Thr Phe Ala His Ile Ala Ser Ser Cys			
260	265	270	
Ile Val His Val Asp Ile Asp Tyr Ile Asp Arg Ile Gln Asn Lys Ile			
275	280	285	
Ile Leu Val Cys Glu Asn Gln Ala Glu Thr Trp Arg Ile Leu Thr Ile			
290	295	300	
Glu Ser Pro Thr Val Met His His Gln Glu Ser Val Gln Tyr Leu Lys			
305	310	315	320
Trp Glu Leu Phe Thr Leu Cys Ile Ile Met Gln Gly Ile Ala Asn Met			
325	330	335	
Leu Leu Thr Gln Lys Met Asn Gln Phe Met Tyr Leu Gln Leu Ala Tyr			
340	345	350	
Lys Gln Leu Gln Ala Leu His Ser Ile Tyr Phe Ile Val Asp Gln Met			
355	360	365	
Gly Ser Gln Phe Ala Ala Tyr Asp Tyr Val Phe Phe Ser Ala Ile Asp			
370	375	380	
Val Leu Leu Ser Glu Tyr Ala Pro Tyr Ile Lys Asn Arg Gly Thr Ile			
385	390	395	400
Pro Pro Asn Lys Glu Phe Val Ala Glu Arg Leu Ala Ala Asn Leu Ala			
405	410	415	

-continued

Gly Thr Ser Asn Val Gly Ser His Leu Pro Ile Asp Arg Ser Arg Val
 420 425 430

Leu Phe Ala Leu Asn Tyr Tyr Glu Gln Leu Val Thr Val Cys His Asp
 435 440 445

Ser Cys Val Glu Thr Ile Ile Tyr Pro Met Ala Arg Ser Phe Leu Tyr
 450 455 460

Pro Thr Ser Asp Ile Gln Gln Leu Lys Pro Leu Val Glu Ala Ala His
 465 470 475 480

Ser Val Ile Leu Ala Gly Leu Ala Val Pro Thr Asn Ala Val Val Asn
 485 490 495

Ala Lys Leu Ile Pro Glu Tyr Met Gly Gly Val Leu Pro Leu Phe Pro
 500 505 510

Gly Val Phe Ser Trp Asn Gln Phe Val Leu Ala Ile Gln Ser Ile Val
 515 520 525

Asn Thr Val Ser Pro Pro Ser Glu Val Phe Lys Thr Asn Gln Lys Leu
 530 535 540

Phe Arg Leu Val Leu Asp Ser Leu Met Lys Lys Cys Arg Asp Thr Pro
 545 550 555 560

Val Gly Ile Pro Val Pro His Ser Val Thr Val Ser Gln Glu Gln Glu
 565 570 575

Asp Ile Pro Pro Thr Gln Arg Ala Val Val Met Leu Ala Leu Ile Asn
 580 585 590

Ser Leu Pro Tyr Val Asp Ile Arg Ser Phe Glu Leu Trp Leu Gln Glu
 595 600 605

Thr Trp Asn Met Ile Glu Ala Thr Pro Met Leu Ala Glu Asn Ala Pro
 610 615 620

Asn Lys Glu Leu Ala His Ala Glu His Glu Phe Leu Val Leu Glu Met
 625 630 635 640

Trp Lys Met Ile Ser Gly Asn Ile Asp Gln Arg Leu Asn Asp Val Ala
 645 650 655

Ile Arg Trp Trp Tyr Lys Lys Asn Ala Arg Val His Gly Thr Leu
 660 665 670

<210> SEQ_ID NO 10
 <211> LENGTH: 377
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(377)
 <223> OTHER INFORMATION: YlPex10p; GenBank Accession No. CAG81606

<400> SEQUENCE: 10

Met Trp Gly Ser Ser His Ala Phe Ala Gly Glu Ser Asp Leu Thr Leu
 1 5 10 15

Gln Leu His Thr Arg Ser Asn Met Ser Asp Asn Thr Thr Ile Lys Lys
 20 25 30

Pro Ile Arg Pro Lys Pro Ile Arg Thr Glu Arg Leu Pro Tyr Ala Gly
 35 40 45

Ala Ala Glu Ile Ile Arg Ala Asn Gln Lys Asp His Tyr Phe Glu Ser
 50 55 60

Val Leu Glu Gln His Leu Val Thr Phe Leu Gln Lys Trp Lys Gly Val
 65 70 75 80

-continued

Arg Phe Ile His Gln Tyr Lys Glu Glu Leu Glu Thr Ala Ser Lys Phe
 85 90 95

Ala Tyr Leu Gly Leu Cys Thr Leu Val Gly Ser Lys Thr Leu Gly Glu
 100 105 110

Glu Tyr Thr Asn Leu Met Tyr Thr Ile Arg Asp Arg Thr Ala Leu Pro
 115 120 125

Gly Val Val Arg Arg Phe Gly Tyr Val Leu Ser Asn Thr Leu Phe Pro
 130 135 140

Tyr Leu Phe Val Arg Tyr Met Gly Lys Leu Arg Ala Lys Leu Met Arg
 145 150 155 160

Glu Tyr Pro His Leu Val Glu Tyr Asp Glu Asp Glu Pro Val Pro Ser
 165 170 175

Pro Glu Thr Trp Lys Glu Arg Val Ile Lys Thr Phe Val Asn Lys Phe
 180 185 190

Asp Lys Phe Thr Ala Leu Glu Gly Phe Thr Ala Ile His Leu Ala Ile
 195 200 205

Phe Tyr Val Tyr Gly Ser Tyr Tyr Gln Leu Ser Lys Arg Ile Trp Gly
 210 215 220

Met Arg Tyr Val Phe Gly His Arg Leu Asp Lys Asn Glu Pro Arg Ile
 225 230 235 240

Gly Tyr Glu Met Leu Gly Leu Ile Phe Ala Arg Phe Ala Thr Ser
 245 250 255

Phe Val Gln Thr Gly Arg Glu Tyr Leu Gly Ala Leu Leu Glu Lys Ser
 260 265 270

Val Glu Lys Glu Ala Gly Glu Lys Glu Asp Glu Lys Glu Ala Val Val
 275 280 285

Pro Lys Lys Lys Ser Ser Ile Pro Phe Ile Glu Asp Thr Glu Gly Glu
 290 295 300

Thr Glu Asp Lys Ile Asp Leu Glu Asp Pro Arg Gln Leu Lys Phe Ile
 305 310 315 320

Pro Glu Ala Ser Arg Ala Cys Thr Leu Cys Leu Ser Tyr Ile Ser Ala
 325 330 335

Pro Ala Cys Thr Pro Cys Gly His Phe Phe Cys Trp Asp Cys Ile Ser
 340 345 350

Glu Trp Val Arg Glu Lys Pro Glu Cys Pro Leu Cys Arg Gln Gly Val
 355 360 365

Arg Glu Gln Asn Leu Leu Pro Ile Arg
 370 375

<210> SEQ ID NO 11
 <211> LENGTH: 408
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(408)
 <223> OTHER INFORMATION: Y1Pex12p; GenBank Accession No. CAG81532

<400> SEQUENCE: 11
 Met Asp Tyr Phe Ser Ser Leu Asn Ala Ser Gln Leu Asp Pro Asp Val
 1 5 10 15

Pro Thr Leu Phe Glu Leu Leu Ser Ala Lys Gln Leu Glu Gly Leu Ile
 20 25 30

Ala Pro Ser Val Arg Tyr Ile Leu Ala Phe Tyr Ala Gln Arg His Pro

-continued

35	40	45
Arg Tyr Leu Leu Arg Ile Val Asn Arg Tyr Asp Glu Leu Tyr Ala Leu		
50	55	60
Phe Met Gly Leu Val Glu Tyr Tyr Asn Leu Lys Thr Trp Asn Ala Ser		
65	70	75
Phe Thr Glu Lys Phe Tyr Gly Leu Lys Arg Thr Gln Ile Leu Thr Asn		
85	90	95
Pro Ala Leu Arg Thr Arg Gln Ala Val Pro Asp Leu Val Glu Ala Glu		
100	105	110
Lys Arg Leu Ser Lys Lys Ile Trp Gly Ser Leu Phe Phe Leu Ile		
115	120	125
Val Val Pro Tyr Val Lys Glu Lys Leu Asp Ala Arg Tyr Glu Arg Leu		
130	135	140
Lys Gly Arg Tyr Leu Ala Arg Asp Ile Asn Glu Glu Arg Ile Glu Ile		
145	150	155
Lys Arg Thr Gly Thr Ala Gln Gln Ile Ala Val Phe Glu Phe Asp Tyr		
165	170	175
Trp Leu Leu Lys Leu Tyr Pro Ile Val Thr Met Gly Cys Thr Thr Ala		
180	185	190
Thr Leu Ala Phe His Met Leu Phe Leu Phe Ser Val Thr Arg Ala Tyr		
195	200	205
Ser Ile Asp Asp Phe Leu Leu Asn Ile Gln Phe Ser Arg Met Thr Arg		
210	215	220
Tyr Asp Tyr Gln Met Glu Thr Gln Arg Asp Ser Arg Asn Ala Ala Asn		
225	230	235
Val Ala His Thr Met Lys Ser Ile Ser Glu Tyr Pro Val Ala Glu Arg		
245	250	255
Val Met Leu Leu Leu Thr Thr Lys Ala Gly Ala Asn Ala Met Arg Ser		
260	265	270
Ala Ala Leu Ser Gly Leu Ser Tyr Val Leu Pro Thr Ser Ile Phe Ala		
275	280	285
Leu Lys Phe Leu Glu Trp Trp Tyr Ala Ser Asp Phe Ala Arg Gln Leu		
290	295	300
Asn Gln Lys Arg Arg Gly Asp Leu Glu Asp Asn Leu Pro Val Pro Asp		
305	310	315
Lys Val Lys Gly Ala Asp Lys Leu Ala Glu Ser Val Ala Lys Trp Lys		
325	330	335
Glu Asp Thr Ser Lys Cys Pro Leu Cys Ser Lys Glu Leu Val Asn Pro		
340	345	350
Thr Val Ile Glu Ser Gly Tyr Val Phe Cys Tyr Thr Cys Ile Tyr Arg		
355	360	365
His Leu Glu Asp Gly Asp Glu Glu Thr Gly Gly Arg Cys Pro Val Thr		
370	375	380
Gly Gln Lys Leu Leu Gly Cys Arg Trp Gln Asp Asp Val Trp Gln Val		
385	390	395
Thr Gly Leu Arg Arg Leu Met Val		
405		

<210> SEQ ID NO 12

<211> LENGTH: 412

<212> TYPE: PRT

<213> ORGANISM: Yarrowia lipolytica

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(412)
<223> OTHER INFORMATION: Y1Pex13p; GenBank Accession No. CAG81789

<400> SEQUENCE: 12

Met Ser Val Pro Arg Pro Lys Pro Trp Glu Gly Ala Ser Gly Ser Ser
1 5 10 15

Ala Ala Thr Ala Thr Pro Ala Ala Thr Ala Thr Pro Ala Ser Thr Asp
20 25 30

Ala Val Ser Ser Ser Ala Gly Ser Ala Thr Gly Ala Pro Glu Leu Pro
35 40 45

Ser Arg Pro Ser Ala Met Gly Ser Thr Ser Asn Ala Leu Ser Ser Pro
50 55 60

Met Gly Ser Ser Met Asn Ser Gly Tyr Gly Gly Met Asn Ser Gly Tyr
65 70 75 80

Gly Gly Met Gly Ser Ser Tyr Gly Ser Gly Tyr Gly Ser Ser Tyr Gly
85 90 95

Met Gly Ser Ser Tyr Gly Ser Gly Tyr Gly Ser Gly Leu Gly Tyr
100 105 110

Gly Ser Tyr Gly Gly Met Gly Gly Met Tyr Gly Ser Arg
115 120 125

Tyr Gly Gly Tyr Gly Ser Tyr Gly Gly Met Gly Gly Tyr Gly Gly Tyr
130 135 140

Gly Gly Met Gly Gly Pro Met Gly Gln Asn Gly Leu Ala Gly Gly
145 150 155 160

Thr Gln Ala Thr Phe Gln Leu Ile Glu Ser Ile Val Gly Ala Val Gly
165 170 175

Gly Phe Ala Gln Met Leu Glu Ser Thr Tyr Met Ala Thr Gln Ser Ser
180 185 190

Phe Phe Ala Met Val Ser Val Ala Glu Gln Phe Gly Asn Leu Lys Asn
195 200 205

Thr Leu Gly Ser Leu Leu Gly Ile Tyr Ala Ile Met Arg Trp Ala Arg
210 215 220

Arg Leu Val Ala Lys Leu Ser Gly Gln Pro Val Thr Gly Ala Asn Gly
225 230 235 240

Ile Thr Pro Ala Gly Phe Ala Lys Phe Glu Ala Thr Gly Gly Ala Ala
245 250 255

Gly Pro Gly Arg Gly Pro Arg Pro Ser Tyr Lys Pro Leu Leu Phe Phe
260 265 270

Leu Thr Ala Val Phe Gly Leu Pro Tyr Leu Leu Gly Arg Leu Ile Lys
275 280 285

Ala Leu Ala Ala Lys Gln Glu Gly Met Tyr Asp Glu His Gly Asn Leu
290 295 300

Leu Pro Gly Ala Gln Met Gly Met Gly Pro Gly Met Glu Gly Gly
305 310 315 320

Ala Glu Ile Asp Pro Ser Lys Leu Glu Phe Cys Arg Ala Asn Phe Asp
325 330 335

Phe Val Pro Glu Asn Pro Gln Leu Glu Leu Glu Leu Arg Lys Gly Asp
340 345 350

Leu Val Ala Val Leu Ala Lys Thr Asp Pro Met Gly Asn Pro Ser Gln
355 360 365

```

-continued

Trp Trp Arg Val Arg Thr Arg Asp Gly Arg Ser Gly Tyr Val Pro Ala
370 375 380

Asn Tyr Leu Glu Val Ile Pro Arg Pro Ala Val Glu Ala Pro Lys Lys
385 390 395 400

Val Glu Glu Ile Gly Ala Ser Ala Val Pro Val Asn
405 410

<210> SEQ ID NO 13
<211> LENGTH: 380
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(380)
<223> OTHER INFORMATION: Y1Pex14p; GenBank Accession No. CAG79323

<400> SEQUENCE: 13

Met Ile Pro Ser Cys Leu Ser Thr Gln His Met Ala Pro Arg Glu Asp
1 5 10 15

Leu Val Gln Ser Ala Val Ala Phe Leu Asn Asp Pro Gln Ala Ala Thr
20 25 30

Ala Pro Leu Ala Lys Arg Ile Glu Phe Leu Glu Ser Lys Asp Met Thr
35 40 45

Pro Glu Glu Ile Glu Glu Ala Leu Lys Arg Ala Gly Ser Gly Ser Ala
50 55 60

Gln Ser His Pro Gly Ser Val Val Ser His Gly Gly Ala Ala Pro Thr
65 70 75 80

Val Pro Ala Ser Tyr Ala Phe Gln Ser Ala Pro Pro Leu Pro Glu Arg
85 90 95

Asp Trp Lys Asp Val Phe Ile Met Ala Thr Val Thr Val Gly Val Gly
100 105 110

Phe Gly Leu Tyr Thr Val Ala Lys Arg Tyr Leu Met Pro Leu Ile Leu
115 120 125

Pro Pro Thr Pro Pro Ser Leu Glu Ala Asp Lys Glu Ala Leu Glu Ala
130 135 140

Glu Phe Ala Arg Val Gln Gly Leu Leu Asp Gln Val Gln Gln Asp Thr
145 150 155 160

Glu Glu Val Lys Asn Ser Gln Val Glu Val Ala Lys Arg Val Thr Asp
165 170 175

Ala Leu Lys Gly Val Glu Glu Thr Ile Asp Gln Leu Lys Ser Gln Thr
180 185 190

Lys Lys Arg Asp Asp Glu Met Lys Leu Val Thr Ala Glu Val Glu Arg
195 200 205

Ile Arg Asp Arg Leu Pro Lys Asn Ile Asp Lys Leu Lys Asp Ser Gln
210 215 220

Glu Gln Gly Leu Ala Asp Ile Gln Ser Glu Leu Lys Ser Leu Lys Gln
225 230 235 240

Leu Leu Ser Thr Arg Thr Ala Ala Ser Ser Gly Pro Lys Leu Pro Pro
245 250 255

Ile Pro Pro Pro Ser Ser Tyr Leu Thr Arg Lys Ala Ser Pro Ala Val
260 265 270

Pro Ala Ala Ala Pro Ala Pro Val Thr Pro Gly Ser Pro Val His Asn
275 280 285

Val Ser Ser Ser Ser Thr Val Pro Ala Asp Arg Asp Asp Phe Ile Pro

-continued

290	295	300
Thr Pro Ala Gly Ala Val Pro Met Ile Pro Gln Pro Ala Ser Met Ser		
305	310	315
Ser Ser Ser Thr Ser Thr Val Pro Asn Ser Ala Ile Ser Ser Ala Pro		
325	330	335
Ser Pro Ile Gln Glu Pro Glu Pro Phe Val Pro Glu Pro Gly Asn Ser		
340	345	350
Ala Val Lys Lys Pro Ala Pro Lys Ala Ser Ile Pro Ala Trp Gln Leu		
355	360	365
Ala Ala Leu Glu Lys Glu Lys Glu Lys Glu Lys Glu		
370	375	380
<210> SEQ ID NO 14		
<211> LENGTH: 391		
<212> TYPE: PRT		
<213> ORGANISM: Yarrowia lipolytica		
<220> FEATURE:		
<221> NAME/KEY: MISC_FEATURE		
<222> LOCATION: (1)..(391)		
<223> OTHER INFORMATION: YlPex16p, GenBank Accession No. CAG79622		
<400> SEQUENCE: 14		
Met Thr Asp Lys Leu Val Lys Val Met Gln Lys Lys Lys Ser Ala Pro		
1	5	10
Gln Thr Trp Leu Asp Ser Tyr Asp Lys Phe Leu Val Arg Asn Ala Ala		
20	25	30
Ser Ile Gly Ser Ile Glu Ser Thr Leu Arg Thr Val Ser Tyr Val Leu		
35	40	45
Pro Gly Arg Phe Asn Asp Val Glu Ile Ala Thr Glu Thr Leu Tyr Ala		
50	55	60
Val Leu Asn Val Leu Gly Leu Tyr His Asp Thr Ile Ile Ala Arg Ala		
65	70	75
80		
Val Ala Ala Ser Pro Asn Ala Ala Val Tyr Arg Pro Ser Pro His		
85	90	95
Asn Arg Tyr Thr Asp Trp Phe Ile Lys Asn Arg Lys Gly Tyr Lys Tyr		
100	105	110
Ala Ser Arg Ala Val Thr Phe Val Lys Phe Gly Glu Leu Val Ala Glu		
115	120	125
Met Val Ala Lys Lys Asn Gly Gly Glu Met Ala Arg Trp Lys Cys Ile		
130	135	140
Ile Gly Ile Glu Gly Ile Lys Ala Gly Leu Arg Ile Tyr Met Leu Gly		
145	150	155
160		
Ser Thr Leu Tyr Gln Pro Leu Cys Thr Thr Pro Tyr Pro Asp Arg Glu		
165	170	175
Val Thr Gly Glu Leu Leu Glu Thr Ile Cys Arg Asp Glu Gly Glu Leu		
180	185	190
Asp Ile Glu Lys Gly Leu Met Asp Pro Gln Trp Lys Met Pro Arg Thr		
195	200	205
Gly Arg Thr Ile Pro Glu Ile Ala Pro Thr Asn Val Glu Gly Tyr Leu		
210	215	220
Leu Thr Lys Val Leu Arg Ser Glu Asp Val Asp Arg Pro Tyr Asn Leu		
225	230	235
240		
Leu Ser Arg Leu Asp Asn Trp Gly Val Val Ala Glu Leu Leu Ser Ile		
245	250	255

-continued

Leu Arg Pro Leu Ile Tyr Ala Cys Leu Leu Phe Arg Gln His Val Asn
 260 265 270

Lys Thr Val Pro Ala Ser Thr Lys Ser Lys Phe Pro Phe Leu Asn Ser
 275 280 285

Pro Trp Ala Pro Trp Ile Ile Gly Leu Val Ile Glu Ala Leu Ser Arg
 290 295 300

Lys Met Met Gly Ser Trp Leu Leu Arg Gln Arg Gln Ser Gly Lys Thr
 305 310 315 320

Pro Thr Ala Leu Asp Gln Met Glu Val Lys Gly Arg Thr Asn Leu Leu
 325 330 335

Gly Trp Trp Leu Phe Arg Gly Glu Phe Tyr Gln Ala Tyr Thr Arg Pro
 340 345 350

Leu Leu Tyr Ser Ile Val Ala Arg Leu Glu Lys Ile Pro Gly Leu Gly
 355 360 365

Leu Phe Gly Ala Leu Ile Ser Asp Tyr Leu Tyr Leu Phe Asp Arg Tyr
 370 375 380

Tyr Phe Thr Ala Ser Thr Leu
 385 390

<210> SEQ ID NO 15
 <211> LENGTH: 225
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(225)
 <223> OTHER INFORMATION: Y1Pex17p; GenBank Accession No. CAG84025

<400> SEQUENCE: 15

Met Ser Ala Phe Pro Glu Pro Ser Ser Phe Glu Ile Glu Phe Ala Lys
 1 5 10 15

Gln Met Asn Arg Pro Arg Thr Val Gln Phe Lys Gln Leu Val Ala Val
 20 25 30

Leu Tyr Ile Phe Gly Gly Thr Ser Ala Leu Ile Tyr Ile Ile Ser Lys
 35 40 45

Thr Ile Leu Asn Pro Leu Phe Glu Glu Leu Thr Phe Ala Arg Ser Glu
 50 55 60

Tyr Ala Ile His Ala Arg Arg Leu Met Glu Gln Leu Asn Ala Lys Leu
 65 70 75 80

Ser Ser Met Ala Ser Tyr Ile Pro Pro Val Arg Ala Leu Gln Gly Gln
 85 90 95

Arg Phe Val Asp Ala Gln Thr Gln Thr Glu Asp Glu Glu Gly Glu Asp
 100 105 110

Ile Pro Asn Pro Ser Leu Gly Lys Ser Ser His Val Ser Phe Gly Glu
 115 120 125

Ser Pro Met Gln Leu Lys Leu Ala Glu Lys Glu Lys Gln Gln Lys Leu
 130 135 140

Ile Asp Asp Ser Val Asp Asn Leu Glu Arg Leu Ala Asp Ser Leu Lys
 145 150 155 160

His Ala Gly Glu Val Ser Asp Leu Ser Ala Leu Ser Gly Phe Lys Tyr
 165 170 175

Gln Val Glu Glu Leu Thr Asn Tyr Ser Asp Gln Leu Ala Met Ser Gly
 180 185 190

-continued

Tyr Ser Met Met Lys Ser Gly Leu Pro Gly His Glu Thr Ala Met Ser
 195 200 205

Glu Thr Lys Lys Glu Ile Arg Ser Leu Lys Gly Ser Val Leu Ser Val
 210 215 220

Arg
 225

<210> SEQ ID NO 16
 <211> LENGTH: 324
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(324)
 <223> OTHER INFORMATION: Y1Pex19p; GenBank Accession No. AAK84827

<400> SEQUENCE: 16

Met Ser His Glu Glu Asp Leu Asp Asp Leu Asp Asp Phe Leu Asp Glu
 1 5 10 15

Phe Asp Glu Gln Val Leu Ser Lys Pro Pro Gly Ala Gln Lys Asp Ala
 20 25 30

Thr Pro Thr Thr Ser Thr Ala Pro Thr Thr Ala Glu Ala Lys Pro Asp
 35 40 45

Ala Thr Lys Lys Ser Thr Glu Thr Ser Gly Thr Asp Ser Lys Thr Glu
 50 55 60

Gly Ala Asp Thr Ala Asp Lys Asn Ala Ala Thr Asp Ser Ala Glu Ala
 65 70 75 80

Gly Ala Glu Lys Val Ser Leu Pro Asn Leu Glu Asp Gln Leu Ala Gly
 85 90 95

Leu Lys Met Asp Asp Phe Leu Lys Asp Ile Glu Ala Asp Pro Glu Ser
 100 105 110

Lys Ala Gln Phe Glu Ser Leu Leu Lys Glu Ile Asn Asn Val Thr Ser
 115 120 125

Ala Thr Ala Ser Glu Lys Ala Gln Gln Pro Lys Ser Phe Lys Glu Thr
 130 135 140

Ile Ser Ala Thr Ala Asp Arg Leu Asn Gln Ser Asn Gln Glu Met Gly
 145 150 155 160

Asp Met Pro Leu Gly Asp Asp Met Leu Ala Gly Leu Met Glu Gln Leu
 165 170 175

Ser Gly Ala Gly Gly Phe Gly Glu Gly Glu Gly Asp Phe Gly Asp
 180 185 190

Met Leu Gly Gly Ile Met Arg Gln Leu Ala Ser Lys Glu Val Leu Tyr
 195 200 205

Gln Pro Leu Lys Glu Met His Asp Asn Tyr Pro Lys Trp Trp Asp Glu
 210 215 220

His Gly Ser Lys Val Thr Glu Glu Lys Glu Arg Asp Arg Leu Lys Leu
 225 230 235 240

Gln Gln Asp Ile Val Gly Lys Ile Cys Ala Lys Phe Glu Asp Pro Ser
 245 250 255

Tyr Ser Asp Asp Ser Glu Ala Asp Arg Ala Val Ile Thr Gln Leu Met
 260 265 270

Asp Glu Met Gln Glu Thr Gly Ala Pro Pro Asp Glu Ile Met Ser Asn
 275 280 285

Val Ala Asp Gly Ser Ile Pro Gly Gly Leu Asp Gly Leu Gly

-continued

290

295

300

Gly Leu Gly Gly Lys Met Pro Glu Met Pro Glu Asn Met Pro Glu
 305 310 315 320

Cys Asn Gln Gln

<210> SEQ ID NO 17
 <211> LENGTH: 417
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1) .. (417)
 <223> OTHER INFORMATION: Y1Pex20p; GenBank Accession No. CAG79226

<400> SEQUENCE: 17

Met Ala Ser Cys Gly Pro Ser Asn Ala Leu Gln Asn Leu Ser Lys His
 1 5 10 15

Ala Ser Ala Asp Arg Ser Leu Gln His Asp Arg Met Ala Pro Gly Gly
 20 25 30

Ala Pro Gly Ala Gln Arg Gln Phe Arg Ser Gln Thr Gln Gly Gly
 35 40 45

Gln Leu Asn Asn Glu Phe Gln Gln Phe Ala Gln Ala Gly Pro Ala His
 50 55 60

Asn Ser Phe Glu Gln Ser Gln Met Gly Pro His Phe Gly Gln Gln His
 65 70 75 80

Phe Gly Gln Pro His Gln Pro Gln Met Gly Gln His Ala Pro Met Ala
 85 90 95

His Gly Gln Gln Ser Asp Trp Ala Gln Ser Phe Ser Gln Leu Asn Leu
 100 105 110

Gly Pro Gln Thr Gly Pro Gln His Thr Gln Gln Ser Asn Trp Gly Gln
 115 120 125

Asp Phe Met Arg Gln Ser Pro Gln Ser His Gln Val Gln Pro Gln Met
 130 135 140

Ala Asn Gly Val Met Gly Ser Met Ser Gly Met Ser Ser Phe Gly Pro
 145 150 155 160

Met Tyr Ser Asn Ser Gln Leu Met Asn Ser Thr Tyr Gly Leu Gln Thr
 165 170 175

Glu His Gln Gln Thr His Lys Thr Glu Thr Lys Ser Ser Gln Asp Ala
 180 185 190

Ala Phe Glu Ala Ala Phe Gly Ala Val Glu Glu Ser Ile Thr Lys Thr
 195 200 205

Ser Asp Lys Gly Lys Glu Val Glu Lys Asp Pro Met Glu Gln Thr Tyr
 210 215 220

Arg Tyr Asp Gln Ala Asp Ala Leu Asn Arg Gln Ala Glu His Ile Ser
 225 230 235 240

Asp Asn Ile Ser Arg Glu Glu Val Asp Ile Lys Thr Asp Glu Asn Gly
 245 250 255

Glu Phe Ala Ser Ile Ala Arg Gln Ile Ala Ser Ser Leu Glu Ala
 260 265 270

Asp Lys Ser Lys Phe Glu Lys Ser Thr Phe Met Asn Leu Met Arg Arg
 275 280 285

Ile Gly Asn His Glu Val Thr Leu Asp Gly Asp Lys Leu Val Asn Lys
 290 295 300

-continued

Glu	Gly	Glu	Asp	Ile	Arg	Glu	Glu	Val	Arg	Asp	Glu	Leu	Leu	Arg	Glu
305							310				315				320
Gly	Ala	Ser	Gln	Glu	Asn	Gly	Phe	Gln	Ser	Glu	Ala	Gln	Gln	Thr	Ala
							325				330				335
Pro	Leu	Pro	Val	His	His	Glu	Ala	Pro	Pro	Pro	Glu	Gln	Ile	His	Pro
							340				345				350
His	Thr	Glu	Thr	Gly	Asp	Lys	Gln	Leu	Glu	Asp	Pro	Met	Val	Tyr	Ile
							355				360				365
Glu	Gln	Glu	Ala	Ala	Arg	Arg	Ala	Ala	Glu	Ser	Gly	Arg	Thr	Val	Glu
							370				375				380
Glu	Glu	Lys	Leu	Asn	Phe	Tyr	Ser	Pro	Phe	Glu	Tyr	Ala	Gln	Lys	Leu
							385				390				400
Gly	Pro	Gln	Gly	Val	Ala	Lys	Gln	Ser	Asn	Trp	Glu	Glu	Asp	Tyr	Asp
							405				410				415

Phe

<210> SEQ ID NO 18
 <211> LENGTH: 195
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(195)
 <223> OTHER INFORMATION: Y1Pex22p; GenBank Accession No. CAG77876

<400> SEQUENCE: 18

Val	Pro	Arg	Cys	Thr	Ser	His	Pro	Cys	Asn	Leu	Thr	Leu	His	Leu	Pro
1										5		10		15	
Val	Thr	Thr	Met	Ala	Pro	Arg	Lys	Thr	Arg	Leu	Pro	Ala	Val	Ile	Gly
										20		25		30	
Ala	Val	Ala	Tyr	Leu	Val	Tyr	Ser	Phe	Val						
							35			40		45			
Ala	Lys	Ser	Asn	Ser	Asp	Gln	Asp	Thr	Phe	Asp	Ser	Ser	Val	Gln	Ser
							50			55		60			
Ser	Ser	Lys	Ser	Ser	Thr	Lys	Ser	Pro	Lys	Ser	Thr	Ala	Thr	Asn	Ser
							65			70		75			80
Lys	Ile	Thr	Val	Val	Val	Ser	Gln	Glu	Leu	Val	Gln	Ser	Gln	Leu	Val
							85			90		95			
Asp	Phe	Lys	His	Leu	Met	Ser	Val	His	Pro	Asn	Leu	Val	Val	Ile	Val
							100			105		110			
Pro	Pro	Met	Val	Ala	Asn	Lys	Phe	His	Arg	Ala	Leu	Lys	Ser	Ser	Val
							115			120		125			
Gly	His	Asp	His	Gly	Val	Lys	Val	Ile	Arg	Cys	Asp	Thr	Asp	Val	Gly
							130			135		140			
Val	Ile	His	Val	Ile	Lys	His	Ile	Arg	Pro	Asp	Leu	Ala	Leu	Ile	Ala
							145			150		155			160
Asp	Gly	Val	Gly	Asp	Asn	Ile	Gln	Gly	Glu	Ile	Lys	Arg	Phe	Val	Gly
							165			170		175			
Ser	Ser	Glu	Ala	Leu	Ser	Gly	Asp	Val	Asn	Leu	Ala	Glu	Arg	Leu	
							180			185		190			
Thr	Gly	Leu													
		195													

<210> SEQ ID NO 19

-continued

```

<211> LENGTH: 386
<212> TYPE: PRT
<223> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(386)
<223> OTHER INFORMATION: Y1Pex26p; GenBank Accession No. NC_006072,
antisense translation of nucleotides 117230-118387

<400> SEQUENCE: 19

Met Pro Pro Ala Met Pro Gln Met Thr Thr Ser Thr Leu Leu Thr Asp
1 5 10 15

Ser Val Thr Ser Ala Val Asn Gln Ala Ala Thr Pro Lys Val Asp Gln
20 25 30

Met Tyr Gln Thr Phe Gly Glu Ser Ala Arg Glu Phe Val Asn Lys Asn
35 40 45

Phe Tyr Asn Ser Tyr Glu Leu Ile Arg Pro Phe Phe Asp Glu Ile Thr
50 55 60

Ala Lys Gly Ala Gln Gln Asn Gly Ser Thr Val Leu Asp Ala Glu Asn
65 70 75 80

Pro His Asn Ile Pro Leu Ser Leu Trp Ile Lys Val Trp Ser Leu Tyr
85 90 95

Leu Ala Ile Leu Asp Ala Ser Cys Lys Gln Ala Gly Glu Ala Leu Leu
100 105 110

Asn Ser Thr Gly Asp Leu Ser Gly Ser Asp Ser Gly Glu Trp Asn Gln
115 120 125

Thr Arg Lys Leu Leu Ala Arg Lys Leu Thr Ser Gly Ser Val Trp Asp
130 135 140

Glu Leu Val Thr Ala Ser Gly Gly Thr Gly Asn Ile His Pro Thr Ile
145 150 155 160

Leu Ala Leu Leu Ala Ser Leu Ser Ile Arg His Asp Thr Asp Ala Lys
165 170 175

Leu Met Ala Asp Asn Leu Glu Lys Phe Ile Val Thr Tyr Asn Asp Asn
180 185 190

Gly Ser Asp Asp Val Lys Thr Lys Thr Ala Phe Tyr Lys Val Leu Asp
195 200 205

Leu Tyr Leu Leu Arg Val Leu Pro Asp Leu Gly Gln Trp Asp Val Ala
210 215 220

His Ser Phe Val Asn Asn Thr Asn Leu Phe Ser His Glu Gln Lys Lys
225 230 235 240

Glu Met Thr His Lys Leu Asp Gln Ser Gln Lys His Ala Glu Gln Glu
245 250 255

His Lys Arg Leu Leu Glu Glu Ala Gln Glu Lys Glu Lys Ser Asp Ala
260 265 270

Lys Glu Lys Glu Arg Glu Glu Arg Val Ser Arg Asp Thr Gln Ser Arg
275 280 285

Glu Ile Lys Ser Pro Ile Val Asp Ser Ser Thr Ser Ser Arg Asp Val
290 295 300

Thr Arg Asp Thr Thr Arg Glu Leu Ser Lys Ser Ser Arg Gln Pro Arg
305 310 315 320

Thr Leu Ser Gln Ile Ile Ser Thr Ser Leu Lys Ser Gln Phe Asp Gly
325 330 335

Asn Ala Ile Phe Arg Thr Leu Ala Leu Ile Val Ile Val Ser Leu Ser
340 345 350

```

-continued

Ala Ala Asn Pro Leu Ile Arg Lys Arg Val Val Asp Thr Leu Lys Met
 355 360 365

Leu Trp Ile Lys Ile Leu Gln Thr Leu Ser Met Gly Phe Lys Val Ser
 370 375 380

Tyr Leu
 385

<210> SEQ ID NO 20
 <211> LENGTH: 3387
 <212> TYPE: DNA
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(3387)
 <223> OTHER INFORMATION: GenBank Accession No. AB036770

<400> SEQUENCE: 20

ggtaccatca	agggtaaaat	caaggctatc	atcaagggcc	atataatcgca	agtttggggg	60
aagataatat	gttcatatgt	aatcggttgc	tggatttcct	catctaacgg	cattataact	120
agtcttggag	ggtctttttt	atggataacc	tccatgtacg	atgtatccaa	gatctccacg	180
tactgtgttc	tgtttcctaa	gtaataccca	acaacctctc	caacaaacac	ttggaaagat	240
gcacccgtgc	tgagatgtca	agatgttaga	gagtagagac	agtagcaacg	gtaaaaggcg	300
gccgaggcca	ccgagagaac	agcgttagcag	ggcgctgt	caccacaggg	gacgcagaac	360
caaacaatg	acgaagaaga	accacaagga	gacgtttca	aaggcaatgc	aaacgaagag	420
ggcaatggaa	ggatttagat	tagagaactg	gagactggag	tggcgtttc	ccgatgaacg	480
aacaaacacg	cgaagctatg	tggaccaaca	tacaacacgg	actgaaccag	gtttttttat	540
gatttttta	ctggaaatag	gtacgtgcca	agttggacca	tgacactaaa	cgtgttaat	600
tagtaatatt	cgtgtaaagcg	tacattcatt	tcaaaggta	ttctttcacg	gcaaagttat	660
aattaaatga	atgtatatgc	agaaaaaaaaa	aaaaaaagta	ctgtactgaa	tggagagaat	720
attaataat	aattgttacc	caactacatc	ttgtcgattt	aaagagaccc	ctaagacaga	780
taggatatct	gcaacccgag	gaatgaaccc	cccagcacgg	gcacccttcc	tattaacaaa	840
atgccaactg	aaatttgaaa	agttcaacta	aacttattt	acccacaaaa	actcgtaaa	900
agtggccggcg	aaagctggca	aatgatgaca	tcccttgaa	accatgatat	cctctcgaa	960
tcttcgtccc	catttgccac	atctacttgc	aacgccacat	ctgcttacta	agcaacccaa	1020
atctgcctcg	gctcaaaaatg	tggggaaagt	cacatgcatt	cgctggtaa	tctgatctga	1080
cactacaact	acacaccagg	tccaacatga	gcgacaatac	gacaatcaa	aagccgatcc	1140
gacccaaacc	gatccggacg	gaacgcctgc	cttacgctgg	ggccgcgacaa	atcatccgag	1200
ccaaccagaa	agaccactac	tttgagtcgg	tgcttgaaca	gcatctcgtc	acgtttctgc	1260
agaaatggaa	ggggatgtacg	tttatccacc	agtacaagga	ggagctggag	acggcgctca	1320
agtttgcata	tctcggttt	tgtacgttt	tgggctccaa	gactctcgga	gaagagtaca	1380
cacaatctcat	gtacactatc	agagaccgaa	cagctctacc	gggggtgggt	agacgggttg	1440
gctacgtgt	ttccaacact	ctgtttccat	acctgtttgt	gctacatcg	ggcaagttgc	1500
gacccaaact	gatgcgcgag	tatccccatc	tggtggagta	cgacgaagat	gacgcctgtgc	1560
ccagcccgga	aacatggaag	gagcggtca	tcaagacgtt	tgtgaacaag	tttgacaagt	1620

-continued

tcacggcgctt	ggaggggttt	accgcgatcc	acttggcgat	tttctacgtc	tacggctcg	1680
actaccagct	cagtaagegg	atctggggca	tgcgttatgt	atttggacac	cgactggaca	1740
agaatgagcc	tcgaatcggt	tacgagatgc	tcggctcgct	gatttcgcc	cggttgc	1800
cgtcatttgt	gcagacggga	agagagtacc	tcggagcgct	gctggaaaag	agcgtggaga	1860
aagaggcagg	ggagaaggaa	gatgaaaagg	aagcggttgt	gccgaaaaag	aagtctgtcaa	1920
ttccgttcat	tgaggataca	gaagggaga	cggaagacaa	gatcgatctg	gaggaccctc	1980
gacagctcaa	gttcattct	gaggcgtcca	gagcgtgcac	tctgtgtctg	tcatacatta	2040
gtgegcggc	atgtacgcca	tgtggacact	ttttctgttg	ggactgtatt	tccgaatggg	2100
tgagagagaa	gcccggagtgt	cccttgtgtc	ggcagggtgt	gagagagcag	aacttggc	2160
ctatcagata	atgacgaggt	ctggatggaa	ggactagtca	gcgagacaca	gagcatcagg	2220
gaccagacac	gaccaattca	atcgacaaca	ctgtgtcgca	tagcagtgc	cagaggctc	2280
ggccatgaat	atattttagc	attggagata	ttagtggtag	agcgtatacata	gtattaattg	2340
tggaggtatc	tcgtcgcat	gatagagcaa	tacagttact	gctgaaggaa	atgataaccga	2400
gtatccggc	ccgattcagt	tcttgatatac	gtcattttgt	ctctattgtc	tactttcag	2460
ataacacctaa	caaatcttca	acaatctcc	cagtaaacag	tcagagatca	tatccgagat	2520
catatcagat	atgtcacat	ccgagtaacaa	taatggatata	taatctgtct	gatttgaat	2580
tctgttgcga	ttatgatttc	tttgattcg	atatgaacac	atacggcgac	tcccagac	2640
ttagaagctc	cagtttgat	tcttagcaat	ggttacactc	aactataatcc	caagtaatac	2700
ttggtaacaa	tatgccaaatgt	tagtcattca	tccgttatag	gagttacaa	gtgttgtca	2760
gctaaaaatg	gttagtcgg	cgattaccac	ttagatctt	tcagcgtgaa	acttgatgg	2820
acgcttgaac	cgacacttgg	agtagtcggg	gctgttgatg	acgttagatga	cgtttcgtc	2880
agggtgagga	gtgcaatagt	agtactcctt	ggggccgtct	ctcagctcaa	aggttccatc	2940
ggcggcaatg	tcaaagacccg	agccctggag	ctttagccg	tagtcggcg	tccagaacaa	3000
agcctgcagc	tccagatagg	cgatgggcatt	gtcgtaaaca	gagaagggt	tgcctcgcc	3060
ctcggtgatg	gtgatgggtt	cgccgtcggt	ggaggcgggt	atcaggtcat	cttggtaggt	3120
gacggcaga	gattcgaccg	attggcgctc	tgtatcggt	tagtgcagct	tgtacttgtc	3180
tccgacagcc	gccagagccgg	tggtagcgac	ggtgatgggg	gagatgagtt	tcatatggc	3240
ggcaagttt	gcaaaagatg	gcagtggat	tgagggacaa	gagtgtttat	atagatata	3300
atacaacaca	acgagtctga	atgagacaac	cgagacaacc	actccgaag	cctcactaat	3360
agttactaac	ggcatatttc	aggtacc				3387

<210> SEQ ID NO 21
 <211> LENGTH: 1134
 <212> TYPE: DNA
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (1)..(1134)
 <223> OTHER INFORMATION: Pex10; GenBank Accession No. AB036770,
 nucleotides 1038-2171

<400> SEQUENCE: 21

atg	tgg	gga	agt	tca	cat	gca	ttc	gct	ggt	gaa	tct	gat	ctg	aca	cta	48
Met	Trp	Gly	Ser	Ser	His	Ala	Phe	Ala	Gly	Glu	Ser	Asp	Leu	Thr	Leu	
1							5		10				15			

-continued

caa cta cac acc agg tcc aac atg agc gac aat acg aca atc aaa aag Gln Leu His Thr Arg Ser Asn Met Ser Asp Asn Thr Thr Ile Lys Lys 20 25 30	96
ccg atc cga ccc aaa ccg atc cgg acg gaa cgc ctg cct tac gct ggg Pro Ile Arg Pro Lys Pro Ile Arg Thr Glu Arg Leu Pro Tyr Ala Gly 35 40 45	144
gcc gca gaa atc atc cga gcc aac cag aaa gac cac tac ttt gag tcc Ala Ala Glu Ile Ile Arg Ala Asn Gln Lys Asp His Tyr Phe Glu Ser 50 55 60	192
gtg ctt gaa cag cat ctc gtc acg ttt ctg cag aaa tgg aag gga gta Val Leu Glu Gln His Leu Val Thr Phe Leu Gln Lys Trp Lys Gly Val 65 70 75 80	240
cga ttt atc cac cag tac aag gag gag ctg gag acg gcg tcc aag ttt Arg Phe Ile His Gln Tyr Lys Glu Glu Leu Glu Thr Ala Ser Lys Phe 85 90 95	288
gca tat ctc ggt ttg tgt acg ctt gtg ggc tcc aag act ctc gga gaa Ala Tyr Leu Gly Leu Cys Thr Leu Val Gly Ser Lys Thr Leu Gly Glu 100 105 110	336
gag tac acc aat ctc atg tac act atc aga gac cga aca gct cta ccg Glu Tyr Thr Asn Leu Met Tyr Thr Ile Arg Asp Arg Thr Ala Leu Pro 115 120 125	384
ggg gtg gtg aga cgg ttt ggc tac gtg ctt tcc aac act ctg ttt cca Gly Val Val Arg Arg Phe Gly Tyr Val Leu Ser Asn Thr Leu Phe Pro 130 135 140	432
tac ctg ttt gtg cgc tac atg ggc aag ttg cgc gcc aaa ctg atg cgc Tyr Leu Phe Val Arg Tyr Met Gly Lys Leu Arg Ala Lys Leu Met Arg 145 150 155 160	480
gag tat ccc cat ctg gtg gag tac gac gaa gat gag cct gtg ccc agc Glu Tyr Pro His Leu Val Glu Tyr Asp Glu Asp Glu Pro Val Pro Ser 165 170 175	528
ccg gaa aca tgg aag gag cgg gtc atc aag acg ttt gtg aac aag ttt Pro Glu Thr Trp Lys Glu Arg Val Ile Lys Thr Phe Val Asn Lys Phe 180 185 190	576
gac aag ttc acg gcg ctg gag ggg ttt acc gcg atc cac ttg gcg att Asp Lys Phe Thr Ala Leu Glu Gly Phe Thr Ala Ile His Leu Ala Ile 195 200 205	624
ttc tac gtc tac ggc tcg tac tac cag ctc agt aag cgg atc ttg ggc Phe Tyr Val Tyr Gly Ser Tyr Tyr Gln Leu Ser Lys Arg Ile Trp Gly 210 215 220	672
atg cgt tat gta ttt gga cac cga ctg gac aag aat gag cct cga atc Met Arg Tyr Val Phe Gly His Arg Leu Asp Lys Asn Glu Pro Arg Ile 225 230 235 240	720
ggt tac gag atg ctc ggt ctg ctg att ttc gcc cgg ttt gcc acg tca Gly Tyr Glu Met Leu Gly Leu Leu Ile Phe Ala Arg Phe Ala Thr Ser 245 250 255	768
ttt gtg cag acg gga aga gag tac ctc gga gcg ctg ctg gaa aag acg Phe Val Gln Thr Gly Arg Glu Tyr Leu Gly Ala Leu Leu Glu Lys Ser 260 265 270	816
gtg gag aaa gag gca ggg gag aag gaa gat gaa aag gaa gcg gtt gtg Val Glu Lys Glu Ala Gly Glu Asp Glu Lys Glu Ala Val Val 275 280 285	864
ccg aaa aag aag tcg tca att ccg ttc att gag gat aca gaa ggg gag Pro Lys Lys Lys Ser Ser Ile Pro Phe Ile Glu Asp Thr Glu Gly Glu 290 295 300	912
acg gaa gac aag atc gat ctg gag gac cct cga cag ctc aag ttc att Thr Glu Asp Lys Ile Asp Leu Glu Asp Pro Arg Gln Leu Lys Phe Ile 305 310 315 320	960

-continued

cct gag gcg tcc aga gcg tgc act ctg tgt ctg tca tac att agt gcg	1008
Pro Glu Ala Ser Arg Ala Cys Thr Leu Cys Leu Ser Tyr Ile Ser Ala	
325 330 335	
ccg gca tgt acg cca tgt gga cac ttt ttc tgt tgg gac tgt att tcc	1056
Pro Ala Cys Thr Pro Cys Gly His Phe Phe Cys Trp Asp Cys Ile Ser	
340 345 350	
gaa tgg gtg aga gag aag ccc gag tgt ccc ttg tgt cgg cag ggt gtg	1104
Glu Trp Val Arg Glu Lys Pro Glu Cys Pro Leu Cys Arg Gln Gly Val	
355 360 365	
aga gag cag aac ttg ttg cct atc aga taa	1134
Arg Glu Gln Asn Leu Leu Pro Ile Arg	
370 375	

<210> SEQ ID NO 22
<211> LENGTH: 377
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica

<400> SEQUENCE: 22

Met Trp Gly Ser Ser His Ala Phe Ala Gly Glu Ser Asp Leu Thr Leu	
1 5 10 15	
Gln Leu His Thr Arg Ser Asn Met Ser Asp Asn Thr Thr Ile Lys Lys	
20 25 30	
Pro Ile Arg Pro Lys Pro Ile Arg Thr Glu Arg Leu Pro Tyr Ala Gly	
35 40 45	
Ala Ala Glu Ile Ile Arg Ala Asn Gln Lys Asp His Tyr Phe Glu Ser	
50 55 60	
Val Leu Glu Gln His Leu Val Thr Phe Leu Gln Lys Trp Lys Gly Val	
65 70 75 80	
Arg Phe Ile His Gln Tyr Lys Glu Glu Leu Glu Thr Ala Ser Lys Phe	
85 90 95	
Ala Tyr Leu Gly Leu Cys Thr Leu Val Gly Ser Lys Thr Leu Gly Glu	
100 105 110	
Glu Tyr Thr Asn Leu Met Tyr Thr Ile Arg Asp Arg Thr Ala Leu Pro	
115 120 125	
Gly Val Val Arg Arg Phe Gly Tyr Val Leu Ser Asn Thr Leu Phe Pro	
130 135 140	
Tyr Leu Phe Val Arg Tyr Met Gly Lys Leu Arg Ala Lys Leu Met Arg	
145 150 155 160	
Glu Tyr Pro His Leu Val Glu Tyr Asp Glu Asp Glu Pro Val Pro Ser	
165 170 175	
Pro Glu Thr Trp Lys Glu Arg Val Ile Lys Thr Phe Val Asn Lys Phe	
180 185 190	
Asp Lys Phe Thr Ala Leu Glu Gly Phe Thr Ala Ile His Leu Ala Ile	
195 200 205	
Phe Tyr Val Tyr Gly Ser Tyr Tyr Gln Leu Ser Lys Arg Ile Trp Gly	
210 215 220	
Met Arg Tyr Val Phe Gly His Arg Leu Asp Lys Asn Glu Pro Arg Ile	
225 230 235 240	
Gly Tyr Glu Met Leu Gly Leu Ile Phe Ala Arg Phe Ala Thr Ser	
245 250 255	
Phe Val Gln Thr Gly Arg Glu Tyr Leu Gly Ala Leu Leu Glu Lys Ser	
260 265 270	

-continued

Val Glu Lys Glu Ala Gly Glu Lys Glu Asp Glu Lys Glu Ala Val Val
 275 280 285

Pro Lys Lys Lys Ser Ser Ile Pro Phe Ile Glu Asp Thr Glu Gly Glu
 290 295 300

Thr Glu Asp Lys Ile Asp Leu Glu Asp Pro Arg Gln Leu Lys Phe Ile
 305 310 315 320

Pro Glu Ala Ser Arg Ala Cys Thr Leu Cys Leu Ser Tyr Ile Ser Ala
 325 330 335

Pro Ala Cys Thr Pro Cys Gly His Phe Phe Cys Trp Asp Cys Ile Ser
 340 345 350

Glu Trp Val Arg Glu Lys Pro Glu Cys Pro Leu Cys Arg Gln Gly Val
 355 360 365

Arg Glu Gln Asn Leu Leu Pro Ile Arg
 370 375

<210> SEQ ID NO 23
 <211> LENGTH: 1065
 <212> TYPE: DNA
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (1)...(1065)
 <223> OTHER INFORMATION: Y1PEX10; GenBank Accession No. AJ012084, which
 corresponds to nucleotides 1107-2171 of GenBank Accession No.
 AB036770

<400> SEQUENCE: 23

atg	agc	gac	aat	acg	aca	atc	aaa	aag	ccg	atc	cga	ccc	aaa	ccg	atc	48
Met	Ser	Asp	Asn	Thr	Thr	Ile	Lys	Lys	Pro	Ile	Arg	Pro	Lys	Pro	Ile	
1						5		10		15						
cgg	acg	gaa	cgc	ctg	cct	tac	gct	ggg	gcc	gca	gaa	atc	atc	cga	gcc	96
Arg	Thr	Glu	Arg	Leu	Pro	Tyr	Ala	Gly	Ala	Ala	Glu	Ile	Ile	Arg	Ala	
20						25					30					
aac	cag	aaa	gac	cac	tac	ttt	gag	tcc	gtg	ctt	gaa	cag	cat	ctc	gtc	144
Asn	Gln		Asp	His	Tyr	Phe	Glu	Ser	Val	Leu	Glu	Gln	His	Leu	Val	
35						40				45						
acg	ttt	ctg	cag	aaa	tgg	aag	gga	gta	cga	ttt	atc	cac	cag	tac	aag	192
Thr	Phe	Leu	Gln		Trp	Lys	Gly	Val	Arg	Phe	Ile	His	Gln	Tyr	Lys	
50						55				60						
gag	gag	ctg	gag	acg	gcg	tcc	aag	ttt	gca	tat	ctc	ggg	ttg	tgt	acg	240
Glu	Glu	Leu	Glu	Thr	Ala	Ser	Lys	Phe	Ala	Tyr	Leu	Gly	Leu	Cys	Thr	
65						70		75		80						
ctt	gtg	ggc	tcc	aag	act	ctc	gga	gaa	gag	tac	acc	aat	ctc	atg	tac	288
Leu	Val	Gly	Ser	Lys	Thr	Leu	Gly	Glu	Tyr	Thr	Asn	Leu	Met	Tyr		
85						90				95						
act	atc	aga	gac	cga	aca	gct	cta	ccg	ggg	gtg	gtg	aga	ccg	ttt	ggc	336
Thr	Ile	Arg	Asp	Arg	Thr	Ala	Leu	Pro	Gly	Val	Val	Arg	Arg	Phe	Gly	
100						105				110						
tac	gtg	ctt	tcc	aac	act	ctg	ttt	cca	tac	ctg	ttt	gtg	cgc	tac	atg	384
Tyr	Val	Leu	Ser	Asn	Thr	Leu	Phe	Pro	Tyr	Leu	Phe	Val	Arg	Tyr	Met	
115						120				125						
ggc	aag	ttg	cgc	gcc	aaa	ctg	atg	cgc	gag	tat	ccc	cat	ctg	gtg	gag	432
Gly	Lys	Leu	Arg	Ala	Lys	Leu	Met	Arg	Glu	Tyr	Pro	His	Leu	Val	Glu	
130						135				140						
tac	gac	gaa	gat	gag	cct	gtg	ccc	agc	ccg	gaa	aca	tgg	aag	gag	cg	480
Tyr	Asp	Glu	Asp	Glu	Pro	Val	Pro	Ser	Pro	Glu	Thr	Trp	Lys	Glu	Arg	
145						150				155			160			
gtc	atc	aag	acg	ttt	gtg	aac	aag	ttt	gac	aag	tcc	acg	gcg	ctg	gag	528

-continued

Val Ile Lys Thr Phe Val Asn Lys Phe Asp Lys Phe Thr Ala Leu Glu			
165	170	175	
ggg ttt acc gcg atc cac ttg gcg att ttc tac gtc tac ggc tcg tac			576
Gly Phe Thr Ala Ile His Leu Ala Ile Phe Tyr Val Tyr Gly Ser Tyr			
180	185	190	
tac cag ctc agt aag cgg atc tgg ggc atg cgt tat gta ttt gga cac			624
Tyr Gln Leu Ser Lys Arg Ile Trp Gly Met Arg Tyr Val Phe Gly His			
195	200	205	
cga ctg gac aag aat gag cct cga atc ggt tac gag atg ctc ggt ctg			672
Arg Leu Asp Lys Asn Glu Pro Arg Ile Gly Tyr Glu Met Leu Gly Leu			
210	215	220	
ctg att ttc gcc cgg ttt gcc acg tca ttt gtg cag acg gga aga gag			720
Leu Ile Phe Ala Arg Phe Ala Thr Ser Phe Val Gln Thr Gly Arg Glu			
225	230	235	240
tac ctc gga gcg ctg ctg gaa aag acg gtg gag aaa gag gca ggg gag			768
Tyr Leu Gly Ala Leu Leu Glu Lys Ser Val Glu Lys Glu Ala Gly Glu			
245	250	255	
aag gaa gat gaa aag gaa gcg gtt gtg cgg aaa aag aag tcg tca att			816
Lys Glu Asp Glu Lys Glu Ala Val Val Pro Lys Lys Ser Ser Ile			
260	265	270	
ccg ttc att gag gat aca gaa ggg gag acg gaa gac aag atc gat ctg			864
Pro Phe Ile Glu Asp Thr Glu Gly Glu Thr Glu Asp Lys Ile Asp Leu			
275	280	285	
gag gac cct cga cag ctc aag ttc att cct gag gcg tcc aga gcg tgc			912
Glu Asp Pro Arg Gln Leu Lys Phe Ile Pro Glu Ala Ser Arg Ala Cys			
290	295	300	
act ctg tgt ctg tca tac att agt gcg ccg gca tgt acg cca tgt gga			960
Thr Leu Cys Leu Ser Tyr Ile Ser Ala Pro Ala Cys Thr Pro Cys Gly			
305	310	315	320
cac ttt ttc tgt tgg gac tgt att tcc gaa tgg gtg aga gag aag ccc			1008
His Phe Phe Cys Trp Asp Cys Ile Ser Glu Trp Val Arg Glu Lys Pro			
325	330	335	
gag tgt ccc ttg tgt cgg cag ggt gtg aga gag cag aac ttg ttg cct			1056
Glu Cys Pro Leu Cys Arg Gln Gly Val Arg Glu Gln Asn Leu Leu Pro			
340	345	350	
atc aga taa			1065
Ile Arg			

<210> SEQ ID NO 24
 <211> LENGTH: 354
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica

<400> SEQUENCE: 24

Met Ser Asp Asn Thr Thr Ile Lys Lys Pro Ile Arg Pro Lys Pro Ile				
1	5	10	15	
Arg Thr Glu Arg Leu Pro Tyr Ala Gly Ala Ala Glu Ile Ile Arg Ala				
20	25	30		
Asn Gln Lys Asp His Tyr Phe Glu Ser Val Leu Glu Gln His Leu Val				
35	40	45		
Thr Phe Leu Gln Lys Trp Lys Gly Val Arg Phe Ile His Gln Tyr Lys				
50	55	60		
Glu Glu Leu Glu Thr Ala Ser Lys Phe Ala Tyr Leu Gly Leu Cys Thr				
65	70	75	80	
Leu Val Gly Ser Lys Thr Leu Gly Glu Glu Tyr Thr Asn Leu Met Tyr				
85	90	95		

-continued

Thr Ile Arg Asp Arg Thr Ala Leu Pro Gly Val Val Arg Arg Phe Gly
 100 105 110

Tyr Val Leu Ser Asn Thr Leu Phe Pro Tyr Leu Phe Val Arg Tyr Met
 115 120 125

Gly Lys Leu Arg Ala Lys Leu Met Arg Glu Tyr Pro His Leu Val Glu
 130 135 140

Tyr Asp Glu Asp Glu Pro Val Pro Ser Pro Glu Thr Trp Lys Glu Arg
 145 150 155 160

Val Ile Lys Thr Phe Val Asn Lys Phe Asp Lys Phe Thr Ala Leu Glu
 165 170 175

Gly Phe Thr Ala Ile His Leu Ala Ile Phe Tyr Val Tyr Gly Ser Tyr
 180 185 190

Tyr Gln Leu Ser Lys Arg Ile Trp Gly Met Arg Tyr Val Phe Gly His
 195 200 205

Arg Leu Asp Lys Asn Glu Pro Arg Ile Gly Tyr Glu Met Leu Gly Leu
 210 215 220

Leu Ile Phe Ala Arg Phe Ala Thr Ser Phe Val Gln Thr Gly Arg Glu
 225 230 235 240

Tyr Leu Gly Ala Leu Leu Glu Lys Ser Val Glu Lys Glu Ala Gly Glu
 245 250 255

Lys Glu Asp Glu Lys Glu Ala Val Val Pro Lys Lys Lys Ser Ser Ile
 260 265 270

Pro Phe Ile Glu Asp Thr Glu Gly Glu Thr Glu Asp Lys Ile Asp Leu
 275 280 285

Glu Asp Pro Arg Gln Leu Lys Phe Ile Pro Glu Ala Ser Arg Ala Cys
 290 295 300

Thr Leu Cys Leu Ser Tyr Ile Ser Ala Pro Ala Cys Thr Pro Cys Gly
 305 310 315 320

His Phe Phe Cys Trp Asp Cys Ile Ser Glu Trp Val Arg Glu Lys Pro
 325 330 335

Glu Cys Pro Leu Cys Arg Gln Gly Val Arg Glu Gln Asn Leu Leu Pro
 340 345 350

Ile Arg

```

<210> SEQ ID NO 25
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Yarrowia lipolytica
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5)..(15)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (19)..(20)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (22)..(23)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:

```

-continued

```

<221> NAME/KEY: misc_feature
<222> LOCATION: (25)..(34)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (36)..(37)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

```

<400> SEQUENCE: 25

```

Cys Xaa Xaa Cys Xaa Cys
1          5          10          15

Xaa His Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
20         25          30

Xaa Xaa Cys Xaa Xaa Cys
35

```

<210> SEQ_ID NO 26

<211> LENGTH: 345

<212> TYPE: PRT

<213> ORGANISM: Yarrowia lipolytica

<400> SEQUENCE: 26

```

Met Trp Gly Ser Ser His Ala Phe Ala Gly Glu Ser Asp Leu Thr Leu
1          5          10          15

```

```

Gln Leu His Thr Arg Ser Asn Met Ser Asp Asn Thr Thr Ile Lys Lys
20         25          30

```

```

Pro Ile Arg Pro Lys Pro Ile Arg Thr Glu Arg Leu Pro Tyr Ala Gly
35         40          45

```

```

Ala Ala Glu Ile Ile Arg Ala Asn Gln Lys Asp His Tyr Phe Glu Ser
50         55          60

```

```

Val Leu Glu Gln His Leu Val Thr Phe Leu Gln Lys Trp Lys Gly Val
65         70          75          80

```

```

Arg Phe Ile His Gln Tyr Lys Glu Glu Leu Glu Thr Ala Ser Lys Phe
85         90          95

```

```

Ala Tyr Leu Gly Leu Cys Thr Leu Val Gly Ser Lys Thr Leu Gly Glu
100        105         110

```

```

Glu Tyr Thr Asn Leu Met Tyr Thr Ile Arg Asp Arg Thr Ala Leu Pro
115        120         125

```

```

Gly Val Val Arg Arg Phe Gly Tyr Val Leu Ser Asn Thr Leu Phe Pro
130        135         140

```

```

Tyr Leu Phe Val Arg Tyr Met Gly Lys Leu Arg Ala Lys Leu Met Arg
145        150         155         160

```

```

Glu Tyr Pro His Leu Val Glu Tyr Asp Glu Asp Glu Pro Val Pro Ser
165        170         175

```

```

Pro Glu Thr Trp Lys Glu Arg Val Ile Lys Thr Phe Val Asn Lys Phe
180        185         190

```

```

Asp Lys Phe Thr Ala Leu Glu Gly Phe Thr Ala Ile His Leu Ala Ile
195        200         205

```

```

Phe Tyr Val Tyr Gly Ser Tyr Tyr Gln Leu Ser Lys Arg Ile Trp Gly
210        215         220

```

```

Met Arg Tyr Val Phe Gly His Arg Leu Asp Lys Asn Glu Pro Arg Ile
225        230         235         240

```

```

Gly Tyr Glu Met Leu Gly Leu Leu Ile Phe Ala Arg Phe Ala Thr Ser
245        250         255

```

```

Phe Val Gln Thr Gly Arg Glu Tyr Leu Gly Ala Leu Leu Glu Lys Ser

```

-continued

260	265	270
Val Glu Lys Glu Ala Gly Glu Lys Glu Asp Glu Lys Glu Ala Val Val		
275	280	285
Pro Lys Lys Lys Ser Ser Ile Pro Phe Ile Glu Asp Thr Glu Gly Glu		
290	295	300
Thr Glu Asp Lys Ile Asp Leu Glu Asp Pro Arg Gln Leu Lys Phe Ile		
305	310	315
Pro Glu Ala Ser Arg Ala Cys Thr Leu Cys Leu Ser Tyr Ile Ser Ala		
325	330	335
Pro Ala Cys Thr Pro Cys Gly His Phe		
340	345	

<210> SEQ ID NO 27
 <211> LENGTH: 2987
 <212> TYPE: DNA
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <223> OTHER INFORMATION: mutant acetohydroxyacid synthase (AHAS) with W497L mutation
 <300> PUBLICATION INFORMATION:
 <302> TITLE: HIGH EICOSAPENTAENOIC ACID PRODUCING STRAINS OF YARROWIA LIPOLYTICA
 <310> PATENT DOCUMENT NUMBER: US 2006-0115881-A1
 <311> PATENT FILING DATE: 2005-11-02
 <312> PUBLICATION DATE: 2006-06-01
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)...(2987)
 <300> PUBLICATION INFORMATION:
 <302> TITLE: HIGH EICOSAPENTAENOIC ACID PRODUCING STRAINS OF YARROWIA LIPOLYTICA
 <310> PATENT DOCUMENT NUMBER: WO 2006/052870
 <311> PATENT FILING DATE: 2005-11-03
 <312> PUBLICATION DATE: 2006-05-18
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)...(2987)

<400> SEQUENCE: 27

ttcccttagtc ccagtgtaca cccgcccata tgcgttaccc tgcageccgga ttaaggttgg	60
caatttttca cgttcttgtc tccgcaatta ctcaccgggt ggtttataag attgcaagcg	120
tcttgatttg tctctgtata ctaacatgca atcgcgactc gcccgcacggg ccactaacct	180
ggccagaatc tccagatcca agtattctct tggtctgcga tatgtttcca acacaaaagc	240
ccctgctgcc cagccggcaa ctgctgagtg agtattccctt gccataaaacg acccagaacc	300
actgtatagt gtttggaaagc actagtcaga agaccagcga aaacaggtgg aaaaaactga	360
gacgaaaagc aacgaccaga aatgtatagt gtggaaaagc gacacacaca gagcagataa	420
agaggtgaca aataacgaca aatgaaatat cagtatctc ccacaatcac tacctctcag	480
ctgtctgaag gtgcggctga tatatccatc ccacgtctaa cgtatggagt gtgatagaat	540
atgacgacac aagcatgaga actcgctctc tatccaacca ccgaaacact gtcactacag	600
ccgttcttgt tgcgtccattc gttttgtga ttccatgcct tctctgtga ctgacaacat	660
tccttcctt tctccagccc tgggtttatc tgctcatgac ctacggccac tctctatcgc	720
atactaacat agacgatccc agcccgctcc ccacttccag ggcaccgttg gcaagctcc	780
tatcctcaag aaggctgagg ctgccaacgc tgacatggac gagtccttca tcggaatgtc	840
tggaggagag atcttccacg agatgatgct gcgacacaac gtcgacactg tcttcggta	900
ccccgggtgga gccattctcc cggctttga cgccattcac aactctgagt acttcaactt	960
tgtgctccct cgacacgagc agggtgcggc ccacatggcc gagggctacg ctcgagcctc	1020

-continued

tggtaagccc	ggtgtcggttc	tcgtcacctc	tggcccccgt	gccaccaacg	tcatcacccc	1080
catgcaggac	gcttttccg	atggtacccc	catgggtgtc	ttcacccggtc	aggctctgac	1140
ctccgttatac	ggcactgacg	ccttccagga	ggccgatgtt	gtcggcatct	cccgatcttg	1200
caccaagtgg	aacgtcatgg	tcaagaacgt	tgctgagctc	ccccgacgaa	tcaacgaggc	1260
ctttgagatt	gctacttccg	gccgaccggg	tcccgttctc	gtcgatctgc	ccaaggatgt	1320
tactgctgcc	atcctgcgag	agcccatccc	caccaagtcc	accattccct	cgcattctct	1380
gaccaacctc	acctctgcgg	ccgcccacccg	gttccagaag	caggctatcc	agcgagccgc	1440
caacctcata	aaccagtcca	agaagcccg	cctttacgtc	ggacagggtt	tccttggttc	1500
cgaggagggt	cctaagctgc	ttaaggagct	ggctgagaag	gccgagattc	ccgtcaccac	1560
tactctgcag	ggtcttgggt	ccttgcgacg	gcgagacccc	aagtctctgc	acatgctcgg	1620
tatgcacgg	tccggctacg	ccaacatggc	catgcagaac	gctgactgta	tcattgtct	1680
cggcgcgg	tttgatgacc	gagttacccg	ctccatcccc	aagtttggcc	ccgaggctcg	1740
agccgctgcc	cttgagggtc	gaggtggat	tgttcaactt	gagatccagg	ccaagaacat	1800
caacaagggtt	gttcaggcaca	ccgaaggccgt	tgagggagac	gttaccgagt	ctgtccgaca	1860
gctcatcccc	ctcatcaaca	aggtctctgc	cgctgagcga	gtccctggta	ctgagactat	1920
ccagtcctgg	aagcagcagt	tccccttcct	cttcgaggtt	gaagggttgg	atgggtttat	1980
caagccccag	tccgtcattt	ctctgctctc	tgacctgaca	gagaacaaca	aggacaagac	2040
catcatcacc	accgggtgtt	gtcagcatca	gatgtggact	gcccagcatt	tccgatggcg	2100
acacccctcg	accatgatca	cttctgggtt	tcttggaaact	atgggttacg	gcctgcccgc	2160
cgctatcgcc	gccaagggtt	cccgacatga	ctgcgacgtc	attgacatcg	atgggtacgc	2220
ttctttcaac	atgactctga	ccgagctgtc	caccggccgtt	cagttcaaca	ttggcgtcaa	2280
ggctattgtc	ctcaacaacg	aggaacaggg	tatggtcacc	cagctgcagt	ctctttctta	2340
cgagaaccga	tactgccaca	ctcatcagaa	gaaccccgac	ttcatgaagc	tggccgagtc	2400
catgggcatg	aagggtatcc	gaatcactca	cattgaccag	ctggaggccg	gtctcaagga	2460
gatgctcga	tacaaggggcc	ctgtgctcg	tgagggttgg	gtcgacaaga	agatccccgt	2520
tcttccatg	gttcccgctg	gtaaaggctt	gcatgagttc	cttgcacatcg	acgctgcacgc	2580
cgaggctgt	tctcgaccccg	atcgactgaa	gaatgcccc	gcccctcact	tccaccagac	2640
cacctttgag	aactaagtgg	aaaggaacac	aagcaatccg	aaccaaaaat	aattggggtc	2700
ccgtgccccac	agagtctagt	gcagacctaa	aatgaccacca	gtaaattata	gctgttattt	2760
aacatgagat	tttgaccaac	aagagcgtag	gaatgttatt	agctactact	tgtacataca	2820
cagcatttgt	tttaaataat	gttgccctcca	ggggcagtga	gatcaggacc	cagatccgt	2880
gccagctctc	tgacttcaga	ccgcttgc	ttaaggcagct	cgcaacactg	ttgtcgagga	2940
ttgaacttgc	catattcgat	tttgcgtca	tgaatccagc	acaccc		2987

<210> SEQ ID NO 28

<211> LENGTH: 13066

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pZP3-Pa777U

<400> SEQUENCE: 28

-continued

tctcggtcta ttcttttgcata ttataaggga ttttgcgcata ttccggcttat tggttaaaaa	60
atgagctgat ttaacaaaaa tttaacgcga attttaacaa aatattaacg cttacaattt	120
cctgatgcgg tattttctcc ttacgcatact gtgcggattt tcacaccgca tcaggtggca	180
cttttcgggg aaatgtgcgc ggaaccccta tttgtttttt tttctaaata cattcaaata	240
tgtatccgt catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaaga	300
gtatgagtat tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc	360
ctgttttgc tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg	420
cacgagttggg ttacatcgaa ctggatctca acagcggtaa gatccttgag agtttcgccc	480
ccgaagaacg tttccaatg atgagcaattt ttaaaggttct gctatgtggc gcggatttat	540
cccgatttgc cggccggcaaa gagcaactcg gtcgcccata acactatttc cagaatgact	600
tggttgagta ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat	660
tatgcagtgc tgcataacc atgagtgata acactgcggc caacttactt ctgacaacga	720
tggaggacc gaaggagcta accgctttt tgcacaacat gggggatcat gtaactcgcc	780
ttgatcggtt ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga	840
tgcctgtac aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag	900
cttccggca acaattaata gactggatgg aggccggataa agttgcgagga ccacttctgc	960
gctcgccct tccggctggc tggtttattt ctgataaaatc tggagccgggt gagcgtgggt	1020
ctcgccgtat cattgcagca ctggggccaa atggtaagcc ctcccgatc gtagttatct	1080
acacgacggg gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg	1140
cctcaactgat taagcattgg taactgtcag accaagttt ctcataata ctttagattt	1200
atttaaaact tcattttaa tttaaaaggta ttaggtgaa gatcctttt gataatctca	1260
tgacaaaaat cccttaacgt gagtttgcgt tccactgagc gtcagacccc gtagaaaaaga	1320
tcaaaggatc ttcttgagat ctttttttc tgcgcgtaat ctgctgcttgc caaacaaaaa	1380
aaccacccgtt accagcgggtt gtttgcgttgc cggatcaaga gctaccaact cttttccga	1440
aggtaactgg cttagcaga ggcagatacc caaatactgt tcttctagtg tagccgtatgt	1500
taggccacca cttaagaacat tctgttagcac cgcctacata cctcgctctg ctaatctgt	1560
taccagtggc tgctgccagt ggccgataagt cgtgtcttac cgggttggac tcaagacgt	1620
agttaccggtaa taaggcgcag cggtcgggtt gaaacgggggg ttcgtgcaca cagccagct	1680
tggagcgaac gacccataccgaa gaaactgagat acctacagcg tgagctatga gaaagcggca	1740
cgcttccgaa agggagaaag gggcacaggat atccggtaag cggcagggtt ggaacaggag	1800
agcgcacccgg gggggaaacg cctggatctt ttatagtcct gtcgggtttc	1860
gccaccccttgc acttgagatgtt cgtgtctgc agggggccgg agccatcgatggaa	1920
aaaacgcccgg caacgcggcc ttttacggt tctggccctt ttgctggctt tttgtcaca	1980
tgttcttcc tgcgttatacc cctgattctg tggataaccg tattaccggc tttgagttgg	2040
ctgataccgc tgcgcgcaggc cgaacgcggc agcgcaggcga gtcagtgagc gaggaagccgg	2100
aagagcgcacca aatacgcaaa cccgccttc cccgcgcgtt gccgattcat taatgcagct	2160
ggcgccac caatcacaat tctgaaaacg acatcttgc tccctcattt cggggagttcc	2220
aacgggtggtc ttattccccc gaatttcccg ctcatactcg ttccagacccg accccggacac	2280

-continued

agtgcctaac	gccgttccga	aactctaccc	cagatatgct	ccaacggact	gggctgcata	2340
gatgtgatcc	tcggcttgg	gaaatggata	aaagccggcc	aaaaaaaaaaag	cgaaaaaaag	2400
cggaaaaaaaaa	gagaaaaaaaaa	atcgcaaaat	ttgaaaaata	ggggggaaaaag	acgaaaaaac	2460
gcaaggaggg	gggagtatat	gacactgata	agcaagctca	caacggttcc	tcttattttt	2520
ttccatct	tctgcctagg	ttcccaaaat	cccagatgct	tctctccagt	gccaaaagta	2580
agtacccac	aggtttccg	ccgaaaattc	cacgtgcagc	aacgtcggt	gggggtttaa	2640
aatgtggggg	gggggaacca	ggacaagagg	ctcttgcgg	agccgaatga	gagcacaaag	2700
cgggcggtg	tgataaggc	attttgcc	attttccctt	ctcctgtctc	tccgacgggt	2760
atggcggtgt	gcgtcctcta	tttctttta	tttcttttg	ttttatttct	ctgactaccg	2820
atttggttt	atttcctcaa	ccccacacaa	ataagctcg	gccgaggaa	atataatatac	2880
acggacacag	tcgcctgtg	gacaacacgt	caactacct	acgatacaca	ccgtacggt	2940
tgtggaagct	tgtgagcga	taacaattt	acacaggaaa	cagctatgac	catgattacg	3000
ccaagctcg	aattaaccct	cactaaaggg	aacaaaagct	ggagctccac	cgccggacaca	3060
atatctggtc	aaatttcagt	ttcgatcat	ttaaattcct	tcactcaag	ttcattttc	3120
atctgcttct	gttttacttt	gacaggcaaa	tgaagacatg	gtacgacttg	atggaggcca	3180
agaacgccc	ttcacccga	gacacca	tgccctgaaat	cctggctgcc	cccatggata	3240
acatcgaaa	ctacggtatt	ccggaaagt	tatatagaac	cttccccag	cttgcgtctg	3300
tggatatgga	tggatgtatc	cccttgcgt	actcgatct	gtttctctcc	gagcagtatg	3360
aggctctcta	atctagcgca	ttaatatct	caatgtat	ttatattt	cttctcatgc	3420
ggccgcctt	tagtggcttgg	tcttggc	cttggctcc	ttgagggtaa	acatctggc	3480
atccttgc	accacgcgt	acttggcgta	cataagacca	attcgatga	aggtggaaat	3540
gatggagaa	gcgcactt	gcaccagt	ggggaaaggcc	tgagcgaagg	cagcagtggc	3600
ctcggtgac	ttgttagtgc	aatcgatgg	aaacagatgg	tggatctgat	gtgtaccaat	3660
gttggggac	agggtgt	tgagggtcc	gtagcttgc	tccacagagg	acaagttgc	3720
cttgacatag	gtccactcg	aatcgatgg	ccagggagg	tcctcgatgc	tgtgtggag	3780
gaaggtatg	acaaccagca	tggggcgaa	tccaaagaga	ggtgcgaatg	aatacagac	3840
catggcttg	aggccgtaga	cgttagt	agtaggcgt	agaccagca	aggccacag	3900
agagccgagg	gaaatgt	cgccagacat	tcttcgcagg	tagagaggct	cccatggatt	3960
gaagtgggt	accttccgg	gaggaaatcc	agcaacggagg	taggc	aaaggcaacc	4020
aaaggagatg	accatgtgc	gggacagggg	atgagatcg	gcttctcgct	gagggtagaa	4080
gatctcatcc	ttgtcgatgt	tgccgggtt	cttgcgtatgg	tgtcgatggc	tgtatccaa	4140
cgactcgat	ggagtatcgaa	tgtatggatg	aatgagatgt	ccaacagaga	agttgcgt	4200
gtgggatcgc	gagaaggcac	catgtccaca	gtcgatgc	atggtaaaga	atccccagaa	4260
cacgatacc	tggagcgaa	tgtatgcgt	gcaaaaggac	gcatcgatgc	gtgcaaaactc	4320
ctgcacgata	gcaagggtc	gacatagta	cagtccgaga	gcaaggaaac	cgcaatgcc	4380
cagagctcgc	acggatagt	agagggacca	ggaaacagag	gcttcgaac	agtgcccagg	4440
cagggatcgc	ttgatctcg	tgagatgt	gaactcgat	ggagcggcaa	cggtatggaa	4500
agccatggtt	gtgaattagg	gtggatggaa	tggatgggt	tagggaaagaa	tcaaaggccc	4560

-continued

-continued

cacaatacca	ccactgcact	accactacac	caaaaccatg	atcaaaccac	ccatggactt	6900	
cctggaggca	gaagaactt	g	ttatggaaaa	gctcaagaga	gagatcataa	cttcgtatag	6960
catacattat	acgaagttat	cctgcaggtt	aaggaattca	tgctgttcat	cgtggtaat	7020	
gctgctgtgt	gctgtgtgt	tgtgttgtt	ggcgctcatt	gttgcgttat	gcagcgtaca	7080	
ccacaatatt	ggaagctt	atgccttct	atttttcgt	ttgcaaggct	taacaacatt	7140	
gctgtggaga	gggatgggaa	tatggaggcc	gctggaggga	gtcggagagg	cgttttggag	7200	
cggttggcc	tggcgccag	ctcgcgaaac	gcacctagga	ccctttggca	cggccgaaatg	7260	
tgccacttt	cagtcttagt	acgccttacc	tacgtcatc	catgcgtgca	tgtttgcgc	7320	
tttttccct	tgcccttgat	cgcacacag	tacagtgcac	tgtacagtgg	aggttttggg	7380	
ggggtcttag	atgggagcta	aaagcggcct	agcggtacac	tagtgggatt	gtatggagtg	7440	
gcatggagcc	taggtggagc	ctgacaggac	gcacgaccgg	ctagcccgtg	acagacgatg	7500	
ggtgtccacc	gttgtccacc	gcttacaaat	gtttgggcca	aagtcttgc	agccttgc	7560	
gcaacactaa	tcccaattt	tgtcaactcg	caccccaatt	gatcgagccc	taaccctgc	7620	
ccatcaggca	atccaattaa	gctcgcat	tctgccttgc	ttagtttggc	tcctgcgcgt	7680	
ttcggcgtcc	acttgcacaa	acacaaacaa	gcattatata	taaggctcg	ctctccctcc	7740	
caaccacact	cacttttttgc	cccgcttcc	cttgctaa	caaaagtcaa	gaacacaaac	7800	
aaccacccca	accccttac	acacaagaca	tatctacagc	aatggccatg	gcttcttcca	7860	
ctgttgctgc	gcccgtacgag	tcccgacgc	tgacggagat	caagcgtcg	ctggcagcgc	7920	
actgcttgc	ggcgtcggtc	ccgtggtgc	tctactacac	cgtgcgcgcg	ctgggatcg	7980	
ccggctcg	cgegtcg	ctctactacg	cgcgccgcgt	cgcgatcg	caggagtttgc	8040	
ccctgctgga	tgccgtgtc	tgcacggggt	acattctgt	gcagggatc	gtatttggg	8100	
gtttcttac	catggccat	gactgcggc	acggcgccgt	ctcgctcg	cacctgctca	8160	
acttcagcgt	cggtcacgtc	attcactcga	tcatcctcac	gccgtacgag	tcatgaaaga	8220	
tctcgacccg	ccaccacac	aagaacacgg	gcaacatcga	caaggacgag	attttctacc	8280	
cgcagcgcga	ggccgactcg	cacccactgt	cccgacacat	ggtgatctcg	ctcggtcg	8340	
cctgggtcg	gtacctcg	ggggcttcc	ctccctcgaa	ggtaaccac	ttcaaccctt	8400	
gggaaccgtt	gtacctcg	ccgtatcat	ctcaactcg	tcgctcg	8460		
cgttcgccgg	cttgcgtcg	tatctcac	acgtctatgg	ccttaagacc	atggcgctgt	8520	
actacttcgc	ccctctctt	gggttcgcca	cgatgtcg	ggtaactacc	ttttgcacc	8580	
acaatgacga	ggaaacgca	tggtaacgccc	actcggagtg	gacgtacgtc	aagggaacc	8640	
tctcgccgt	ggaccgctcg	tacggcg	tcatcgacaa	cctgagccac	aacatcg	8700	
cgcaccagat	ccaccac	tttccgtatca	tcccgacta	caagctgac	gagggacgg	8760	
cagegttcgc	gcaggcg	ccggacgtcg	tgcgc	cgcgatcg	atcatcccg	8820	
cgttcatccg	catggggc	atgtacg	cggtggcgt	cgtggacaag	gacgccaaga	8880	
tgttacgt	caaggaggcc	aaggccgcca	agaccaaggc	caacttaggc	gccgcattga	8940	
tgattggaaa	cacacacatg	ggttat	aggtgaggt	tagttggaca	gttat	9000	
aatcagcta	tgccaacgg	aacttcattc	atgtcaacga	ggaaccagtg	actgcaagta	9060	
atatagaatt	tgaccac	tttccgtatc	tgcactc	tactatatc	catttatttc	9120	

-continued

ttatatacaa atcacttctt cttcccagca tcgagctcgaa	9180
aacacctcatg agcaataaca	
tcgtggatct cgtcaataga gggcttttg gactccttgc	9240
tgttggccac cttgccttgc	
ctgtttaaac agtgtacgca gatctactat agaggaacat	9300
ttaaattgcc ccggagaaga	
cggccaggcc gccttagatga caaattcaac aactcacagc	9360
tgactttctg ccattgccac	
taggggggggg ccttttata tggccaagcc aagctctcca	9420
cgtcggttgg gctgcaccca	
acaataaaatg ggtagggttg caccaacaaa gggatggat	9480
ggggggtaga agatacgagg	
ataacggggc tcaatggcac aaataagaac gaataactgcc	9540
attaagactc gtgatccagc	
gactgacacc attgcatcat ctaaggccct caaaactacc	9600
tcggaactgc tgcgctgatc	
tggacaccac agaggttccg agcactttag gttgcaccaa	9660
atgtcccacc aggtgcaggc	
agaaaacgct ggaacagcgt gtacagtttgc tcttaacaaa	9720
aagtgaggggc gctgaggttc	
agcagggtgg tgtgacttgt tatagcctt agagctgcga	9780
aagcgcgtat ggatttggct	
catcaggcca gattgagggt ctgtggacac atgtcatgtt	9840
agtgtacttc aatcgcccc	
tggatatacg cccgacaata ggccgtggcc tcatttttt	9900
gccttcgca catttcatt	
gctcggtacc cacaccttgc ttctcctgca cttgccaacc	9960
ttaataactgg tttacattga	
ccaacatctt acaagcgggg gggttgtata	10020
aaacagtggc tctcccaatc	
ggttgcgcgt ctcttttttc ctttcttcc	10080
ccacagatc gaaatctaaa ctacacatca	
cagaattccg agccgtgagt atccacgaca agatcagtgt	10140
cgagacgacg cgttttgtgt	
aatgacacaa tccgaaagtc gctagcaaca	10200
cacactctt acacaaacta acccagctt	
ggtaccatgg cttcttccac ttttgcgtcgcc	10260
ccgtacgagt tcccgacgt tcccgacgt gacggagatc	
aagegcgtgc tgcgcgcgc	10320
ctgttttagt ggctcggtcc cgtggtcgt ctactacacc	
gtgcgcgcgc tgggcategc	10380
cggctcgatc ggcgtcgatc	
gcgcgcgcgc tctactacgc	10440
gcgcgcgcgc aggagtttgc cctgctggat	
gggggtgtct gcacggggta cattctgt	10500
cagggcateg tattctgggg gtttttccacc	
atcgcccatg actgcggcca cggcgatgtt	10560
tcgcgttcgc acctgctaa	
tttcagegtc ggcacgatca	10620
tttactcgat ctcgcacccgc	
caccaccaca agaacacggg caacatcgac	10680
aaggacgaga ttttctaccc	
gcagcgcgag gccgactcgc	10740
acccactgtc cccgacacatg	
gtgatctcgcc tgggttcgc	10800
ctgggttcgc tacctcgatg	
cggttttccc tcctcgaa	10860
gtgaaccact tcaacccttgc	
ggaaccgttg tacctcgatc	10920
gcatgttcgc cgtcatcatc	
cttaagacca tggcgctgtat	10980
ctacttcgc cctcttttgc	
gggttcgcac gatgtcgatc	11040
gtcactacat ttttgcacca	
caatgacgag gaaacgcacat	11100
ggtacgcccga ctccggatgt	
ctcgagatgttgc	11160
acgtacgtca agggcaacat	
ctcgatcgatc gaccgcgtgt	11220
acggcgatcgatc acatcgccac	
gcaccagatc caccacatgt	11280
ttcccgatcat cccgcactac	
aagctgaacg aggcgcacggc	11340
agcgttcgcgc cggatcgatc	
cgatcgatc tgcgtgttgc	11400
gagtcgtatgt tttctatgaa	
gttgcgtatgtt gttgtgatgt	
tttagtagaca ttagatggttt	
atatatgtatgaaatgatgaa	
tgtgattttg atttgcacga	

-continued

ttggaaatttggaa aactttgttaa acgtacatgg gaatgtatga atgtgggggt tttgtactg	11460
gataactgac ggtcagtggc cgccgttggt caaatatcca agagatgcga gaaactttgg	11520
gtcaagtggaa catgtcctct ctgttcaagt aaaccatcaa ctatggtag tatatttagt	11580
aaggacaaga gttgagatc tttggagttcc tagaaacgta ttttcgcgtt ccaagatcaa	11640
attatgttagag taatacgggc acgggaatcc attcatagtc tcaatcctgc aggtgagtt	11700
attaagatga cgacatttgc gagctggacg aggaatagat ggagcgtgtc ttctgagtcg	11760
atgttttctt tggagttgt agtggtagta gacatgtatgg gtttatatat gatgaatgaa	11820
tagatgtatgg tttgatttgc acgatggaa tgagaacttt gtaaacgtac atggaaatgt	11880
atgaatgtgg ggggtttgtg actggataac tgacggtcag tggacgcgt tggtcaataa	11940
tccaaagagat gcgagaaact ttgggtcaag tgaacatgtc ctctctgttc aagtaaacca	12000
tcaactatgg gtagtatatt tagtaaggac aagagtttag attcttggg gtcctagaaa	12060
cgtattttcg cggttccaaga tcaaattatgt agagtaataac gggcacggga atccattcat	12120
agtctcaatt ttccccatagg tggctacaa ggtgttgaga tgggttacag taccaccatg	12180
attcgaggtt aagagcccaag aagtcatgtt tgaggtaaag aaatacacag atctcagct	12240
caatacaatg aataatcttct ttcatattct tcaggtaaca ccaagggtgt ctattttccc	12300
cagaaatgcg tgaaaaggcg cgtgtgttgc gtggagttatg ggttcgggtt gctgtatccct	12360
catatatcga cgaaatagta gggcaagaga tgacaaaaag tatctatatg tagacagcgt	12420
agaatatggt ttggattggt ataaattcat ttattgcgtg tctcacaaat actctcgata	12480
agttgggggtt aaactggaga tggacaatgt tcgatatctc gacgcatgcg acgtggggcc	12540
caattcgcctt tatagtgtt cgtattacaa ttcaactggcc gtcgttttac aacgtcgtga	12600
ctggaaaac cctggcgtaa cccaaacttaa tcgccttgcg acacatcccc ctggcccg	12660
ctggcgtaat agcgaagagg cccgcacccga tcgccttcc caacagttgc gcagccgtt	12720
tggcgaatgg acgcgccttg tagcggcgca ttaagcgtgg cgggtgtggt ggtaacgcgc	12780
agcgtgaccg ctacacttgc cagcgcccta gcgcggcgtc ctggcgatcc ctggcccttcc	12840
tttctcgcca cgttcggccgg ctggcccttca caagctctaa atcggttttcc cttcccttcc	12900
ttccgattta gtgttttacg gcacccgtac cccaaaaaaat ttgatttaggg tggatgttca	12960
cgtatgtggc catcgccctg atagacggtt ttccgcctt tgacgttgc gtccacgttc	13020
ttaataatgtt gactcttggt cccaaactggaa acaacactca acccta	13066

```
<210> SEQ ID NO 29
<211> LENGTH: 9570
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pY117
```

<400> SEQUENCE: 29

```
ggccgcacc gccccggag attccggct cttcgccgc caagcgaccc gggtgacgt 60
ctagaggatc ctagcaattt acagatagtt tgccggat aattcttta acctccaca 120
ctcctttgac ataacgatt atgtaacgaa actgaaattt gaccagatat tggccgcg 180
gtggagctcc agctttgtt cccttagtg agggttaaa cgagcttggc gtaatcatgg 240
tcatactgtt ttccatgttgg aaattgttat ccgcgtcacaat ttccacacaa cgtacgagcc 300
```

-continued

ggaaggataa	agtgtaaaagc	ctgggggtgcc	taatgagtga	gctaactcac	attaattgcg	360
ttgcgcgtcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	420
ggccaacgcg	cggggagagg	cggtttgcgt	attgggcgt	cttccgccttc	ctcgctcact	480
gactcgctgc	gctcggtcgt	tcggctgcgg	cgagcggat	cagctcactc	aaaggcggta	540
atacggttat	ccacagaatc	aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	600
caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	gctccgc(ccc	660
cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	720
taaagatacc	aggcgttcc	ccctggaage	tcctctcg	gtctcttgt	tccgacccctg	780
ccgcttaccg	gatacctgtc	cgccttctc	ccttcggaa	gcgtggcgt	ttctcatagc	840
tcacgctgta	ggtatctcag	ttcgggttag	gtcggtcgct	ccaagctggg	ctgtgtgcac	900
gaacccccc	ttcagccga	ccgctgcgc	ttatccgta	actatcgct	tgagtccaac	960
ccggtaagac	acgacttac	gcaactggca	gcagccactg	gtaacaggat	tagcagagcg	1020
aggtatgtag	gccccgtac	agagttttg	aagtggtggc	ctaactacgg	ctacactaga	1080
aggacagttat	ttggtatctg	cgctctgtc	aagccagta	ccttcggaa	aagagtgg	1140
agctcttgc	ccggcaaaca	aaccaccgct	ggtagcggtg	gttttttgt	ttgcaagcag	1200
cagattacgc	gcagaaaaaa	aggatctcaa	gaagatccc	tgatctttc	tacggggct	1260
gacgctcagt	ggaacgaaaa	ctcacgtta	gggatttgg	tcatgagatt	atcaaaaagg	1320
atcttcaccc	agatccttt	aaattaaaaa	tgaagttta	aatcaatcta	aagtatata	1380
gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagt	aggcacctat	ctcagogatc	1440
tgtctatttc	gttcatccat	agttgcgtga	ctccccgtcg	tgtagataac	tacgatacgg	1500
gagggcttac	catctggccc	cagtgcgtca	atgataaccgc	gagacccacg	ctcacoggct	1560
ccagattttat	cagaataaa	ccagccagcc	ggaagggccg	agcgcagaag	tggtctcgca	1620
actttatccg	cctccatcca	gtctattaaat	tgttgcggg	aagctagagt	aagtagttcg	1680
ccagttataa	gtttgcgaa	cgttggcc	attgctacag	gcatcggtt	gtcaegctcg	1740
tcgtttggta	tggtttcatt	cagtcgggt	tcccaacgt	caaggegagt	tacatgatcc	1800
cccatgttgt	gcaaaaaaagc	ggttagtcc	tccggccctc	cgatcggtt	cagaagtaag	1860
ttggccgcag	tgttatca	catggttatg	gcagcactgc	ataattctct	tactgtcatg	1920
ccatccgtaa	gatgctttc	tgtgactgtt	gagtaactca	ccaagtcatt	ctgagaatag	1980
tgtatgcggc	gaccgagtt	ctcttgc	cggtcaatac	gggataatac	cgccgcacat	2040
agcagaactt	taaaaagtct	catcattgg	aaacgttctt	cgggggaaa	actctcaagg	2100
atcttaccgc	tgtttagatc	cagttcgat	taacccactc	gtgcacccaa	ctgatctca	2160
gcatcttta	ctttcaccag	cgttctggg	tgagaaaaaa	caggaaggca	aatgcgcga	2220
aaaaaggaa	taagggcgcac	acggaaatgt	tgaatactca	tactcttct	tttcaat	2280
tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatattga	atgtat	2340
aaaaataaaac	aaataggggt	tccgcgcaca	tttccccaa	aagtgcacc	tgacgcgc	2400
tgtagcggcg	cattaagcgc	ggcggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	2460
gccagcgc	tagcgc	cccttcg	ttcttc	ccttcgc	cacgtcg	2520
ggcttcccc	gtcaagctct	aaatcggggg	ctccctttag	ggttccgatt	tagtgc	2580

-continued

cggcacctcg	accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	gccatgccc	2640
tgatagacgg	ttttcgccc	tttgacgttg	gagtccacgt	tcttaatag	tggactttg	2700
ttccaaactg	gaacaacact	caaccctatc	tcggctattt	ctttgattt	ataaggatt	2760
ttgcccattt	cggcctattt	gttaaaaaat	gagctgattt	aacaaaaatt	taacgccaat	2820
tttaacaaaa	tattaacgct	tacaatttcc	attcgccatt	caggctgcgc	aactgttggg	2880
aagggcgatc	ggtgcgggccc	tcttcgctat	tacgcccagct	ggcgaaagggg	ggatgtgctg	2940
caaggcgatt	aagttggta	acgccagggt	tttcccagtc	acgacgttgt	aaaacgacgg	3000
ccagtgaatt	gtaatacgac	tcactatagg	gcgaatttggg	taccggggcc	ccctcgagg	3060
tcgatggtgt	cgataagctt	gatatcgaat	tcatgtcaca	caaaccgatc	ttcgcctcaa	3120
ggaaacctaa	ttctacatcc	gagagactgc	cgagatccag	tctacactga	ttaattttcg	3180
ggccaataat	ttaaaaaaat	cgtgttatat	aatatttatat	gtatttatata	tatacatcat	3240
gatgatactg	acagtcatgt	cccattgtca	aatagacaga	ctccatctgc	cgcctccaa	3300
tgatgttctc	aatatTTAAG	gggtcatctc	gcattgttta	ataataaaca	gactccatct	3360
accgcctcca	aatgtatgttc	tcaaaatata	ttgttatgaac	ttatTTTtat	tacttagtat	3420
tattagacaa	cttacttgc	ttatgaaaaa	cacttcctat	ttaggaaaca	atttataatg	3480
gcagttcggt	catttaacaa	tttatgtaga	ataaatgtta	taaatcgcta	tggaaatct	3540
taaatatgga	tagcataaat	gatatctgca	ttgcctaatt	cgaaatcaac	agcaacgaaa	3600
aaaatccctt	gtacaacata	aatagtcatc	gagaaatatac	aactatcaa	gaacagctat	3660
tcacacgtta	ctatttgagat	tattattgga	cgagaatcac	acactcaact	gtctttctct	3720
cttctagaaa	tacaggtaca	agtatgtact	attctcatg	ttcataacttc	tagtcatttc	3780
atccccacata	ttccttggat	ttctctccaa	tgaatgacat	tctatctgc	aaatccaa	3840
attataataa	gatataccaa	agtagcggta	tagtggcaat	caaaaagctt	ctctgggttg	3900
cttctcgat	ttatTTTtat	tctaatgatc	cattaaaggt	atatattttat	ttcttgttat	3960
ataatccctt	tgtttattac	atgggctgga	tacataaagg	tatTTTgatt	taatTTTtg	4020
cttaaattca	atccccccctc	gttcagtgtc	aactgtaatg	gttaggaaatt	accataactt	4080
tgaagaagca	aaaaaaatga	aagaaaaaaa	aaatcgatt	tccaggttag	acgttccgca	4140
gaatctagaa	tgcggatgtc	ggtacattgt	tcttcgaacg	taaaagtgtc	gtccctgag	4200
atattgtaca	tttttgcttt	tacaagtaca	agtacatcgt	acaactatgt	actactgttg	4260
atgcatccac	aacagtttgt	tttggTTTTT	ttttttctaa	tgattcatta		4320
ccgctatgt	tacctacttg	tacttgttagt	aagccgggtt	attgggggttc	attaatcat	4380
agacttatga	atctgcacgg	tgtgcgtgc	gagttacttt	tagttatgc	atgctacttg	4440
ggtgtaatat	tgggatctgt	tggaaatca	acggatgtc	aaccgatttc	gacagtaatt	4500
aattaattcc	ctagtcccag	tgtacacccg	ccgatatcgc	ttaccctgca	gccggattaa	4560
ggttggcaat	ttttcacgtc	cttgtctccg	caattactca	ccgggtgggt	tataagattg	4620
caagcgtctt	gatttgcgtc	tgtatactaa	catgcaatcg	cgactcgccc	gacggggcac	4680
taacctggcc	agaatctcca	gatccaagta	ttctcttgg	ctgcgatatg	tttccaacac	4740
aaaagccctt	gctgcccagc	cgccaactgc	tgagtgagta	ttccttgcca	taaacgaccc	4800
agaaccactg	tatagtgttt	ggaagcacta	gtcagaagac	cagcgaaaaac	aggtggaaaa	4860

-continued

aactgagacg	aaaagcaacg	accagaaaatg	taatgtgtgg	aaaagcgaca	cacacagacg	4920
agataaaagag	gtgacaaaata	acgacaaaatg	aaatatcagt	atcttcccac	aatcactacc	4980
tctcagctgt	ctgaaggtgc	ggctgatata	tccatcccac	gtctaacgta	tggagtgtga	5040
tagaatatga	cgacacaacg	atgagaactc	gctctctatc	caaccaccga	aacactgtca	5100
ctacagccgt	tcttggttgt	ccattcgott	ttgtgattcc	atgccttctc	tggtgactga	5160
caacattcct	tccttttctc	cagccctgtt	gttatctgct	catgacccatc	ggccactctc	5220
tatcgatac	taacatagac	gatcccagcc	cgctccccac	ttccagggca	ccgttggcaa	5280
gcctccatc	ctcaagaagg	ctgaggctgc	caacgctgac	atggacgagt	ccttcatcg	5340
aatgtctgga	ggagagatct	tccacgagat	gatgctgcga	cacaacgtcg	acactgtctt	5400
cggttacccc	ggtgaggcca	ttctcccccgt	ctttgacgcc	attcacaact	ctgagtaactt	5460
caactttgtg	ctccctcgac	acgagcaggg	tgccggccac	atggccgagg	gctacgctcg	5520
agcctctggt	aagcccggtg	tcgttctcg	cacccctggc	cccgggtgcca	ccaaacgtcat	5580
caccccatg	caggacgctc	tttccgatgg	taccccatg	gttgccttca	ccggtaaggt	5640
cctgacccctc	gttatcggca	ctgacgcctt	ccaggaggcc	gatgttgcg	gcatctcccg	5700
atcttgcacc	aagtggAACG	tcatggtaaa	gaacgttgc	gagctcccc	gacgaatcaa	5760
cgaggccttt	gagattgcta	cttccggccg	acccggtccc	gttctcg	atctgcocca	5820
ggatgttact	gctgcccattc	tgccgagagcc	catccccacc	aagtccacca	ttccctcgca	5880
ttctctgacc	aacccctaccc	ctgcccggcc	caccggatcc	cagaaggcagg	ctatcoagcg	5940
agccggccaa	ctcatcaacc	agtccaaagaa	gcccgttcc	tacgctggac	agggtatcct	6000
tggctccgag	gagggtccta	agotgcttaa	ggagctggct	gagaaggccg	agattcccg	6060
caccaact	ctgcagggtc	tttgtgcctt	tgacgagcga	gaccccaagt	ctctgcacat	6120
gctcggtatg	cacgggttccg	gctacgcca	catggccatg	cagaacgctg	actgtatcat	6180
tgctctcgcc	gccccgatgg	atgaccgagt	tacccgctcc	atcccaagt	ttgccccgaa	6240
ggctcgagcc	gctgcccctt	agggtcgagg	tggattgtt	cacttgaga	tccaggccaa	6300
gaacatcaac	aagggttgc	aggccaccga	agccgttgc	ggagacgta	ccgagtcgt	6360
ccgacagctc	atccccctca	tcaacaagg	ctctggcc	gagcgagctc	cctggactga	6420
gactatccag	tcctggaa	agcagttccc	cttcccttc	gaggctgaag	gtgaggatgg	6480
tgttatcaag	ccccagtc	tcattgtct	gtctctgc	ctgacagaga	acaacaagg	6540
caagaccatc	atcaccaccc	gtgttggta	gcatcagatg	tggactgccc	agcattccg	6600
atggcgacac	cctcgaa	tgtacttc	tggtggctt	ggaactatgg	gttaeggcc	6660
gccccccgc	atcggcgeca	aggttgc	acctgactgc	gacgttattg	acatcgatgg	6720
tgaegcttct	ttaacatga	ctctgacccg	gctgtccacc	gccgttca	tcaacattgg	6780
cgtcaaggct	attgtcctca	acaacgagga	acagggtatg	gtcacccagc	tgcagtctc	6840
cttctacgag	aaccgatact	gccacactca	tcaagaagaa	cccgactca	tgaagctgg	6900
cgagtccatg	ggcatgaagg	gtatccgaat	cactcacatt	gaccagctgg	aggccggct	6960
caaggagatg	ctcgatata	agggccctgt	gtcgttgc	gttgccttgc	acaagaagat	7020
ccccgttctt	cccatggcc	ccgctggtaa	ggcttgc	gagttcccttgc	tctacgacgc	7080
tgacgcccag	gtgttctc	gacccgtatcg	actgaagaat	gccccccccc	ctcacgttca	7140

-continued

ccagaccacc	tttgagaact	aagtggaaag	gaacacaagc	aatccgaaacc	aaaaataaatt	7200
ggggtcccgt	gccccacagag	tctagtgcag	acctaaaatg	accacagtaa	attatacgctg	7260
ttttaaaaca	tgagattttg	accaacaaga	gcgttaggaat	gttattagct	actacttgta	7320
catacacagc	atttgtttta	aataatgttg	cctccagggg	cagttagatc	aggaccaga	7380
tccgtggcca	gctctctgac	ttcagaccgc	ttgtacttaa	gcagctcgca	acactgttgt	7440
cgaggattga	acttgccata	ttcgattttg	tggtcatgaa	tccagcacac	ctcatttaaa	7500
tgttagcta	ac ggttagcaggc	gaactactgg	tacataccctc	ccccggaata	tgtacaggca	7560
taatgcgtat	ctgtgggaca	tgtggtcgtt	gcccattat	gtaagcagcg	tgtactcctc	7620
tgactgtcca	tatggtttgc	tccatctcac	cctcatcggt	ttcattgttc	acaggcggcc	7680
acaaaaaaaaac	tgtcttctct	ccttctctct	tcgccttagt	ctactcgac	cagttttagt	7740
ttagcttggc	gccactggat	aaatgagacc	tcaggccttg	tgtgaggag	gtcactttagt	7800
aagcatgtta	gggggtgttt	gtatggatag	agaagcaccc	aaaataataa	gaataataat	7860
aaaacagggg	gctgtgtat	ttcatatcg	gttttacca	tcaatacacc	tccaaacaat	7920
gcccttcatg	tggccagecc	caatattgtc	ctgttagttca	actctatgc	gctcgtatct	7980
tattgagcaa	gtaaaactct	gtcagccgat	attgcccgc	ccgcgacaag	ggtcaacaag	8040
gtgggtgtaa	gccttcgcag	aagtcaaaac	tgtgccaac	aaacatctag	agtcttttg	8100
gtgtttctcg	catatattt	atcggctgtc	ttacgtattt	gcccctcggt	accggactaa	8160
tttcggatca	tcccaatac	gttttttctt	cgcagctgtc	aacagtgtcc	atgatotatc	8220
cacctaaatg	ggtcatatga	ggcgtataat	ttcgtggtgc	tgataataat	tcccatatat	8280
ttgacacaaa	acttcccccc	ctagacatac	atctcacaat	ctcaacttctt	gtgtttctgt	8340
cacacatctc	ctccagctga	cttcaactca	cacctctgcc	ccagttggtc	tacagoggt	8400
taaggtttct	ccgcatagag	gtgcaccact	cctcccgata	cttgggtgt	tgactttgtgg	8460
gtcacgacat	atatatctac	acacattgcg	ccaccctttt	gttcttccag	cacaacaaaa	8520
acacgacacg	ctaaccatgg	ccaatttact	gaccgtacac	caaatttgc	ctgcattacc	8580
ggtcgatgca	acgagtgtat	aggttcgaa	gaacctgtat	gacatgtca	gggatogcca	8640
ggcgttttct	gagcatacct	ggaaaatgt	tctgtccgtt	tgccggcgt	gggcggcatg	8700
gtgcaagttg	aataaccgga	aatggttcc	cgcagaacct	gaagatgttc	gcgattatct	8760
tctatatctt	caggcgcgcg	gtctggcagt	aaaaactatc	cagcaacatt	tgggccagct	8820
aaacatgctt	catcgctcgt	ccgggctgccc	acgaccaagt	gacagcaatg	ctgtttcact	8880
gtttatgcgg	cggatccgaa	aagaaaaacgt	tgtgcccgt	gaacgtgcaaa	aacaggctct	8940
agcgttcgaa	cgcactgatt	tcgaccagg	tcgttca	atggaaaata	gcgatcgctg	9000
ccaggatata	cgtaatctgg	catttctggg	gattgtttat	aacaccctgt	tacgtatagc	9060
cgaaattgcc	aggatcagg	ttaaagatat	ctcacgtact	gacgggtggga	gaatgttaat	9120
ccatattggc	agaacgaaaa	cgctggtag	caccgcaggt	gtagagaagg	cacttagcct	9180
gggggttaact	aaactggtcg	agcgatggat	ttccgtctct	ggtgtagctg	atgatccgaa	9240
taactacctg	ttttgccggg	tcagaaaaaa	tggtgttgcc	gcccacatctg	ccaccagcca	9300
gctatcaact	cgcgcctgg	aagggatttt	tgaagcaact	catcgatga	tttacggcgc	9360
taaggatgac	tctggtcaga	gatacctggc	ctggctcgga	cacagtgc	cccc gttcgaggc	9420

-continued

cgcgcgagat atggcccgcg ctggagttc aataccggg atcatgcaag ctggggctg	9480
gaccaatgt aatattgtca tgaactatac ccgtaacctg gatagtgaaa caggggcaat	9540
qgtqcqcctq ctqqaqatq qcqattaqc	9570

```
<210> SEQ ID NO 30
<211> LENGTH: 15743
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pZP2-2988
```

<400> SEQUENCE: 30

-continued

cggaacattc	cctgcttaccg	acaagatgga	atgagaatgt	ttggctgggtt	tttcaactac	1860
ttctacgttg	gtactgtctt	gtgtctgttc	ctcaacttct	acgtgcagac	ctacatcgtc	1920
cgaaaggcaca	agggagccaa	aaagattcag	tgagcggccg	caagtgtgga	tggggaaagt	1980
agtgcgggt	tctgtgtc	caattggcaa	tccaagatgg	atggattcaa	cacaggata	2040
tagcgagcta	cgtgtgtgt	cgaggatata	gcaacggata	tttatgtttg	acacttgaga	2100
atgtacgata	caagcactgt	ccaagtacaa	tactaaacat	actgtacata	ctcataactcg	2160
tacccggca	acggtttac	ttgagtgca	tggctagtgc	tcttactcgt	acagtgtca	2220
atactgcgt	tcatagtctt	tgatgtat	cgtattcatt	catgttagtt	gcgtacgggc	2280
gtcggtgctt	gtgtgatttt	tgaggaccca	tcccttttgtt	atataagtat	actctgggtt	2340
taaggttgcc	cgtgtgtct	aggttatagt	tttcatgtga	aataccgaga	gccgaggggag	2400
aataaaacggg	ggtatttgga	cttgtttttt	tcgcggaaaa	gcgtcgaatc	aaccctgcgg	2460
gccttgcacc	atgtccacga	cgtgtttctc	gccccaaattc	gccccttgca	cgtcaaaatt	2520
aggcctccat	ctagaccct	ccataacatg	tgactgtggg	aaaaagtata	agggaaacca	2580
tgcaaccata	gacgacgtga	aagacggggg	ggaaccaatg	gaggccaaag	aaatggggta	2640
gcaacagtcc	aggagacaga	caaggagaca	aggagaggc	gcccggaaaga	tcggaaaaac	2700
aaacatgtcc	aattggggca	gtgacggaaa	cgacacggac	acttcagtagc	aatggaccga	2760
ccatctccaa	gccagggtta	ttccggtata	accttggccg	taaccctcccg	ctggtaacctg	2820
atattgtaca	cgttcacatt	caatatactt	tcagctacaa	taagagaggc	tgtttgtcgg	2880
gcatgtgtgt	ccgtcgat	gggtgatgtc	cgagggcgaa	attcgctaca	agcttaactc	2940
tggcgcttgc	ccagatgaa	tagacaatgc	aagaccatg	gtgccatgt	tgacaggggag	3000
gtacaagact	tcgataactc	agoattactc	ggacttgcgg	cgattgaaca	gacggcgat	3060
cgcttctccc	ccgtattgccc	ggcgccgccc	ctgcattaat	gaatcgccca	acgcgggggg	3120
agaggcggtt	tgcgtattgg	gctgtttcc	gcttcctcgc	tcactgactc	gctgctcg	3180
gtcggtcgcc	tgcggcgagc	ggtatcgcgt	cactcaaagg	cgtaatacgc	gttatccaca	3240
gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	gccageaaaa	ggccaggaac	3300
cgtaaaaagg	ccgcgttgc	ggcggttttc	cataggctcc	gccccctgca	cgagcatcac	3360
aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	ataccaggcg	3420
tttccccctg	gaagctccct	cgtgcgtct	cctgttccga	ccctgcgcgt	taccggatac	3480
ctgtccgcct	tttcccttc	gggaagcg	ggtttctc	atagctacgc	ctgttaggtat	3540
ctcagttcgg	tgttaggtgt	tcgttcaag	ctgggtgt	tgcacgaacc	ccccgttcag	3600
cccgaccgc	gcccgttatac	cggttaactat	cgttttgagt	ccaacccggt	aagacacgcac	3660
ttatcgccac	tggcagcagc	cactggtaac	aggattagca	gagcgaggt	tgttaggggt	3720
gctacagagt	tcttgaagt	gtggccta	tacggctaca	ctagaagaac	agtattttgt	3780
atctgcgtc	tgtgtaaagcc	agttaccc	ggaaaaagag	ttggtagctc	ttgtatccgc	3840
aaacaaacca	ccgctggtag	cggtggttt	tttggat	agcagcagat	tacgcgcaga	3900
aaaaaaggat	ctcaagaaga	tcctttgatc	tttctacgg	ggtctgacgc	tcagtggaaac	3960
gaaaactcac	gttaaggat	tttggat	agattatcaa	aaaggatctt	cacctagatc	4020
cttttaaatt	aaaaatgaag	ttttaatca	atctaaagta	tatatgagta	aacttggtct	4080

-continued

gacagttacc aatgcttaat cagtgaggca cctatcttag cgatctgtct atttcggtca	4140
tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct	4200
ggccccagtg ctgcaatgtat acccgagac ccacgctcac cggctccaga tttatcagca	4260
ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc	4320
atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagttt	4380
cgcaacgttg ttgccattgc tacaggcatc gtgggtgtcac gctcgtcggtt tggtatggct	4440
tcattcagct ccggttccca acgatcaagg cgagttacat gatccccat gttgtgcaaa	4500
aaagcggtta gctcccttcgg tccctccgatc gttgtcagaa gtaagttggc cgcaagtgtta	4560
tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc	4620
ttttctgtga ctgggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg	4680
agttgctttt gccccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa	4740
gtgctcatca ttggaaaacg ttcttcgggg cgaaaaactct caaggatctt accgctgttg	4800
agatccagtt cgatgttaacc cactcgtgca cccaaactgtat ctgcagatc ttttacttcc	4860
accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaaaatagg	4920
gcgcacacgga aatgttgaat actcataactc ttcccttttc aatattattt aagcatttat	4980
cagggttatt gtctcatgag cggtatcata tttgaatgtt ttttagaaaaaa taaacaaaata	5040
gggggttccgc gcacatttcc ccgaaaagtgc ccacctgtatc cggtgtgaaa taccgcacag	5100
atgcgttaagg agaaaatacc gcatcaggaa attgttaagcg ttaatattttt gttaaaaattc	5160
gcgttaaattt tttgttaaat cagtcattt tttaaccaat aggccgaaat cggcaaaatc	5220
ccttataaat caaaaagaata gaccgagata ggggttgcgtt ttgttccagt ttggaaacaag	5280
agtccactat taaaagaacgt ggactccaaac gtcaaaaggc gaaaaacccgt ctatcaggc	5340
gtatggccac tacgtgaacc atcaccctaa tcaagttttt tgggggtcgat gtgcgttaaa	5400
gcactaaatc ggaaccctaa agggagcccc cgatttagag ctgcacgggg aaagecggcg	5460
aacgtggcga gaaaggaagg gaagaaagcg aaaggagccg ggcgttagggc gctggcaagt	5520
gtagcggtca cgctgcgtgtt aaccaccaca cccggccgc ttaatgcgcc gctacaggc	5580
gcgtccatcc gccattcagg ctgcgtcaact gttggaaagg ggcgtcggtt cgggccttt	5640
cgctattaaatc ccagctggcg aaagggggat gtgcgtcaag ggcgttacgt tgggttaacgc	5700
cagggttttc ccagtcacga cggtgtttt ccacggccag tgaattgttac tacgactcac	5760
tatagggcga attggggcccg acgtcgatcg cgctgtatgc actttgtct gaaagagatg	5820
cattttgaat cccaaacttg cagtgcctaa gtgcacataca tctccgcgtt ttggaaaatg	5880
ttcagaaaca gttgattgtt ttggaaatggg gaatggggaa tggaaaaatg actcaagttat	5940
caattccaaa aacttctcg gtcggcgtt cctactgtcc atactactgc attttctcca	6000
gtcaggccac tctataactcg acgacacagt agtaaaaaccc agataatttc gacataaaca	6060
agaaaacaga cccaaataata tttatataat gtcagccgtt tgcgttgcgtt agactgtat	6120
agccgaaaaaa aaatccaaag tttctattctt agggaaaatat attccaaatat ttttattct	6180
taatctcatt tattttatcc tagcgtaaata catttcagct acttgagaca tgcgttgcgtt	6240
acaatcgga ttccggactcg gttgttcaga agagcatatg gtcattcgatc tgcgttgcgtt	6300
acgtattctt cctgttccat ctcttggcccg acaatcacac aaaaatgggg tttttttttt	6360

-continued

aattctaatg	attcattaca	gcaaaattga	gatatagcag	accacgtatt	ccataatcac	6420
caaggaagtt	cttgggcgtc	ttaattaact	cacctgcagg	attgagacta	tgaatggatt	6480
cccggtcccg	tattactcta	ctaatttgat	cttggAACgc	gaaaatacgt	ttcttaggact	6540
ccaaagaatc	tcaactcttg	tccttactaa	atatactacc	catagttgt	ggtttacttg	6600
aacagagagg	acatgttac	ttgacccaaa	gtttctcgca	tctcttgat	atttgaacaa	6660
cggcgtccac	tgaccgtcag	ttatccagtc	acaaaacccc	cacattdata	cattcccatg	6720
tacgtttaca	aagttctcaa	ttccatcggt	caaataaaaa	tcacatctat	tcattcatca	6780
tatataaaacc	catcatgtct	actaacactc	acaactccat	agaaaacatc	gactcagaac	6840
acacgctcca	tgccggccgt	tactgagct	tggcacccgg	ctgcttcgt	gccattcgag	6900
cgaactggga	caggtatcg	agcaggatga	cgagacctc	atggggcaga	gggtttcggt	6960
aggggagggtt	gtgcttctgg	cacagctgtt	ccacctggta	ggaaacggca	gtgaggttgt	7020
gtcgaggcag	ggtgcccgag	agatgggtct	cgatctggta	gttcaggct	ccaaagaacc	7080
agtcaagtaat	gatgccttgt	cgaatgttca	tggtctatg	gatctgaccc	acagagaagc	7140
catgtccgtc	ccagacggaa	tcaccgtatc	tctccaggg	gtatgggttc	atgaagacca	7200
cgatggcaat	tccgaagcca	ccgacgagct	cggaaacaaa	gaacaccagc	atcgaggtca	7260
ggatggaggg	cataaagaag	aggtggaaca	gggtcttgag	agtccagtc	agagegagtc	7320
caatggcctc	tttcttgtac	tgagatcggt	agaactgggt	gtctcggtcc	ttgagggatc	7380
gaacggtcag	cacagactgg	aaacaccaga	tgaatcgac	gagaatacag	atgaccaagga	7440
aatagtactg	ttggaactga	atgagcttc	gggagatggg	agaagctcga	gtgacatcgt	7500
cctcgacca	ggcgagcaga	ggcagggttat	caatgtcggt	atcgtgaccc	tgaacgttgg	7560
tagcagaatg	atgggcgttg	tgtctgtct	tccaccaggt	cacggagaag	ccctggagtc	7620
cgttgccaaa	gaccagaccc	aggacgttat	tccagttcg	gttcttgaa	gtctgggtgt	7680
ggcagatgtc	atgagacagc	catcccattt	gtggtagtg	cataccgagc	acgagagcac	7740
caatgaagta	caggtggta	tggaccagca	tgaagaaggc	aagcaegcca	agacccagggg	7800
tggtaagat	cttgtacgag	taccagaggg	gagagggcgtc	aaacatgcca	gtggegatca	7860
gctcttctcg	gagcttccgg	aaatccctcct	gagcttctgtt	gacggcagcc	tggggaggca	7920
gctcgaaagc	ctgggttgc	ttgggcattc	gtttagctt	gtcgaaggct	tcctgagagt	7980
gcataaccat	gaaggcgtca	gtacgtatc	gtccctggta	gttctcaatg	atttcagctc	8040
caccagggtg	gaagttcacc	caagcggaga	cgtcgatcac	cttccgtcg	atgacgaggg	8100
gcagagcctg	tcgagaagcc	tccaccatgg	ttgtgaat	gggtgggtgg	aatgggttgt	8160
tgttagggaa	aatcaaaggc	cggtctcggt	atccgtgggt	atatatatat	atatatatat	8220
atacgtatc	tcgttac	cctgttctca	aaactgttgtt	tttctgtttt	tcgttttttg	8280
cttttttga	tttttttagg	gccaactaag	cttccagatt	tcgctaatca	cctttgtact	8340
aattacaaga	aaggaagaag	ctgatttagag	ttgggttttt	tatgcaactg	tgctactcct	8400
tatctctgtat	atgaaagtgt	agacccaatc	acatcatgtc	attttagagtt	ggtaatactg	8460
ggaggataga	taaggcacga	aaacgagcc	tagcagacat	gctgggtgt	gccaagcaga	8520
agaaagtaga	tgggagccaa	ttgacgagcg	agggagctac	gccaatccga	catacgacac	8580
gctgagatcg	tcttggccgg	ggggtagctca	cagatgtcca	aggtaagt	cttgactgta	8640

-continued

attgtatgtc	tgaggacaaa	tatgttagtca	gccgtataaa	gtcataccag	gcaccagtgc	8700
catcatcgaa	ccactaactc	tctatgatac	atgcctccgg	tattattgta	ccatgcgtcg	8760
ctttgttaca	tacgtatctt	gccttttct	ctcagaaact	ccagacttgc	gctattggtc	8820
gagataagcc	cggaccatag	tgagtcttac	acactctaca	tttctccctt	gctccaacta	8880
tttaattcc	ttcacttcaa	gttcattctt	catctgcttc	tgttttactt	tgacaggcaa	8940
atgaagacat	ggtacgactt	gatggaggcc	aagaacgc	tttcaccccg	agacacccgaa	9000
gtgcctgaaa	tcctggctgc	ccccattgt	aacatcgaa	actacggat	tccggaaaagt	9060
gtatataagaa	ccttcccca	gcttgtgtct	gtggatatgg	atgggttaat	cccccggat	9120
tactcgtctt	ggttctctc	cgagcagtat	gaggctctc	aatctagcgc	attnaatatc	9180
tcaatgtatt	tatataattt	tcttctatg	cggccgctt	ctgagccctt	gcaccgggct	9240
gcttctcgcc	cattcgagcg	aactgggaca	ggtatcgag	caggatgacg	agaccttcat	9300
ggggcagagg	gtttcggtag	gggaggttgt	gcttctggca	cagctgttcc	acctggtagg	9360
aaacggcagt	gaggttgtgt	cgaggcagg	tggccagag	atgggtctcg	atctggtagt	9420
tcaggcctcc	aaagaaccag	tcaaatgta	tgccctcg	aatgttcatg	gtctcatgga	9480
tctgaccac	agagaagcca	tgtccgtccc	agacggaatc	accgatctc	tccagagggt	9540
agtgggtcat	gaagaccacg	atggcaattc	cgaaggccacc	gacgagctcg	gaaacaaaga	9600
acaccagcat	cgaggtcagg	atggagggca	taaagaagag	gtggaacagg	gtcttgagag	9660
tccagtgcag	agcagagtcc	atggccttctt	tcttgcgttgc	atgtcggttgc	aactgggttgc	9720
ctcggcctt	gagggatcga	acggtcagca	cagactggaa	acaccagatg	aatcgoagga	9780
gaatacagat	gaccaggaaa	tagtactgtt	ggaactgaat	gagcttgcg	gagatgggg	9840
aagctcgagt	gacatcgcc	tccgaccagg	cgagcagagg	caggttatca	atgtcggttgc	9900
cgtgaccctg	aacgttggta	gcagaatgt	gggcgttgc	tctgttcc	caccaggatca	9960
cggagaagcc	ctggagtcgg	ttgccaaaga	ccagacccag	gacgttattc	cagttcgggt	10020
tcttgaaggt	ctgggtgtgg	cagatgtcat	gagacgcca	tcccatttc	tggttagtgca	10080
taccgagcac	gagagcacca	atgaagtaca	ggtggtactg	gaccagcatg	aagaaggcaa	10140
gcacgccaag	accagggtgt	gtcaagatct	tgtacgagta	ccagagggg	gaggcgtcaa	10200
acatgccagt	ggcgatcagc	tcttctcgga	gtttcggaa	atcctctga	gcttcgttgc	10260
cggcagcctg	gggaggcagc	tcggaaacgt	ggttgtatctt	gggcattcgc	ttgagcttgc	10320
cgaaggctc	ctgagagtgc	ataaccatga	aggcgtca	agcatctcg	ccctggtagt	10380
tctcaatgtat	ttcagctcca	ccagggtgg	agttcacca	agcggagacg	tcgtacacat	10440
tcccgctcat	gacgaggggc	agacgctgtc	gagaagcc	caccatggc	aggacctgt	10500
ttagtacatt	gtcggtgggt	catcaattgg	ttcgacaggt	tgtcgactgt	tagtatgagc	10560
tcaattggc	tctgggtgggt	cgatgacact	tgtcatctgt	ttctgttgg	tcatgttcc	10620
atcaccttct	atggactca	caatcgcc	gatcgcccg	aatccgtta	taccgactt	10680
gatggccatg	ttgatgtgt	ttaattcaa	gaatgaat	agagaagaga	agaagaaaaa	10740
agattcaatt	gagccggcga	tgcagaccc	tatataaaatg	ttgccttgg	cagacggagc	10800
aagcccgccc	aaacctacgt	tcgggtataat	atgttaagct	ttttaacaca	aagggttggc	10860
ttgggttaac	ctgatgtgg	gaaaagacc	gggcgttggc	gagccattgc	gcggggcgaat	10920

-continued

gggccgtga ctcgtctcaa attcgaggcgtgcctcaat tcgtccccccgtggctttt 10980
 cccgcgtt ccgccccgtt tgcaccactg cagccgcttc tttggttcgg acaccttgct 11040
 gcgagctagg tgccttgc tacttaaaa gtggcctccc aacaccaaca tgacatgagt 11100
 gcgtggccca agacacgttg gcggggtcgc agtcggctca atggccggaa aaaaacgctg 11160
 ctggagctgg ttcggacgca gtccgcccgcg gcgtatggat atccgcaagg ttccatagcg 11220
 ccatggcct ccgtcggcgt ctatcccgc aacctctaaat agagcgggaa tataacccaa 11280
 gcttctttt tttcccttaa cacgcacacc cccaaactatc atgttgcgtc tgctgttga 11340
 ctctactctg tggaggggtg ctcccaccca acccaaccta caggtggatc cggcgctgtg 11400
 attggctgat aagtctccta tccggactaa ttctgaccaa tgggacatgc ggcgaggacc 11460
 caaatgcgc aattacgtaa ccccaacgaa atgcctaccc ctctttggag cccagccggcc 11520
 ccaaatcccc ccaaggcagcc cggttctacc ggcttccatc tccaaggcaca agcagccgg 11580
 aattccctta cctgcaggat aacttcgtat aatgtatgct atacgaagtt atgatctctc 11640
 tcttgagtt ttcataaca agttttctcg cctccagggaa gtccatgggt gtttgcata 11700
 tggtttgggt gtatggtag tgcagtggtag gtattgtgac tggggatgta gttgagaata 11760
 agtcatacac aagtcaagtt tttcgagcc tcatataagt ataagtagtt caacgttatta 11820
 gcactgttacc cagcatctcc gtatcgagaa acacaacaac atgccttccatttggacatca 11880
 tgcggatata caggttgcgtc agtacatcatac atactcgatc agacaggtcg tctgaccatc 11940
 atacaagctg aacaagcgct ccatacttcg acgctctcta tatacacagt taaattacat 12000
 atccatagtc taacctctaa cagttatct totggtaagc ctcccagcca gccttgcgt 12060
 atcgcttggc ctccatcaata ggatctcggt totggccgta cagacctcgcc cgcacaattta 12120
 tgatatccgt tccggtagac atgacatctt caacagttcg gtactgtgtt ccgagagcgt 12180
 ctcccttgcgtc gtcaagaccc accccggggg tcaagataag ccagtcctca gagtcggccct 12240
 taggtcggtt ctggcaatg aagccaaacca caaactcggtt gtcggatcg gcaagctcaa 12300
 tggtctgcgtt ggagactcg ccagtggcca gagagccctt gcaagacagc tcggccagca 12360
 tgagcagacc tctggccagc ttctcggttgg gagaggggac taggaactcc ttgtactggg 12420
 agttctcgta gtcagagacg tccctcttc tctgttcaga gacagttcc tcggccaccag 12480
 ctcgcaggcc agcaatgatt ccgggtccgg gtacaccgtg ggcgttgggt atatcgacc 12540
 actcggcgat tcgggtacac cggtaactggt gttgacagt gttgccaata tctcgaaact 12600
 ttctgtccctc gaacagggaa aaccgtgtct taagacaaag ttccctgagg gggagcacag 12660
 tgccggcgta ggtgaagtcg tcaatgtatgat cgatatgggt tttgatcatg cacacataag 12720
 gtccgacctt atcgcaagc tcaatgagct cttgggttgg ggttaacatcc agagaagcac 12780
 acaggttgggt ttcttggctt gecacgagct tggactcg agccggaaag gccggacttgt 12840
 ggaacgttgcg tggagggca ttttgggttggt gaagaggaga ctgaaataaa 12900
 ttttagtctgc agaactttt atcgaaacctt tattttgggc agtgaagttt atgttatgg 12960
 aatagttacg agttagttga acttataatgat agactggact atacggctat cggtccaaat 13020
 tagaaagaac gtcaatggct ctctggccgt cgccttgc gacaaaaatg tgatcatgat 13080
 gaaagccagc aatgacgttg cagctgat tggactcgcc caaccggcc gaaaacgcag 13140
 ctgtcagacc cacagccctcc aacgaagaat gtatcgtaa agtgcgtccaa gcacactcat 13200

-continued

agttggagtc gtactccaaa ggcggcaatg acgagtcaga cagataactcg tcgacgcgat 13260
 aacttcgtat aatgtatgtc atacgaagtt atcgtacgt agtttagtaga caacaatcga 13320
 taacgtctcg taccaccac agattacgac ccattcgcag tcacagtca ctagggtttg 13380
 gtttgcattcc gttgagagcg gtttgcattcc aacccatccat atgtgctcac tcaggtttg 13440
 gtttcagatc aatcaaggc gtgaaccact ttgtttgagg acaaattgtga cacaaccaac 13500
 cagtgtcagg ggcaggatcc tgacaaaggc gaagatacaa tgcaattact gacagttaca 13560
 gactgcctcg atgccttaac cttgcctccaa aataagacaa ctgtcctcg ttaagcgaa 13620
 ccctattcag cgtcactcgta taatagcgat tggatagcac tagtctatga ggagcggttt 13680
 atgttgcgtt gaggcgatt ggtgctata tgggttcaat tgaggtggcg gaacgagctt 13740
 agtcttcaat tgaggtgcga ggcacacaat tgggtgtcac gtggcctaat tgacctcggg 13800
 tcgtggagtc cccagttata cagcaaccac gaggtgcgt ggttaggagac gtcaccagac 13860
 aatagggttt ttttggact ggaggggtt gggcaaaagc gctcaacggg ctgtttgggg 13920
 agctgtgggg gaggaattgg cgatattttt gaggtaacg gtcggattt gcgtgtttt 13980
 tcgtcctcg atctccccat acccatatct tccctccca cctctttcca cgataatttt 14040
 acggatcagc aataagggttc ctttccttag tttccacgtc catatataatc tatgtgcgt 14100
 cgtccttttc gtgacatcac caaaacacat acaacaatgg ctgttactga cgtccttaag 14160
 cgaaaagtccg gtgtcatcgat cggcgacgtat gtccgagccg tgagtatcca cgacaagatc 14220
 agtgcgaga cggcgcgtt tggtaatga cacaatccga aagtcgcgtca aacacacac 14280
 tctctacaca aactaaccct aacttccatg gctccacat cggctctgcc caagcagaac 14340
 cctccctcc gacgaacgtt cacttccacc actgtgaccc acttcggatc tgctgcgtc 14400
 tctccctccg atttcccaatc acactcgcc tctctacat cgctgttttccatgatcgag 14460
 gtggacattt ccaagccaa gtccgagttac ggtgtcatgc tggataccctt cggcaaccag 14520
 ttcgaagttt cccacttccatc catcaaggac atctacaacg ctatcccaa gcactgttcc 14580
 aagegatctg ctctcaaggg atacgggtac attcttcgag acattgtctt cctgactacc 14640
 actttcagea tctggtacaa ctttggatca cccgagttaca ttccctccac tccctgcgt 14700
 gcccgtctgtt gggctgttca caccgttccat caggacttccatg tggacttccatg actgtgggtc 14760
 attgcccacg agtgtggaca tggtgcttccatc tccgattccc gaatcatcaa cgacattact 14820
 ggctgggtgc ttcacttccatc cctgcttccatc ccctacttca gctggcaat ctccaccgg 14880
 aagcatcaca aggccacttgg aaacatggag cgagacatgg tcttcgttcc tcgaacccga 14940
 gagcagcaag cttactcgact cggcaagatg acccacgaac tcgcccattt taccgaggaa 15000
 acttcctgtt tcaccctgtt cttcgttccatc tccgatccatc tggtcgggtt gccaactat 15060
 ctcattacca acgttactgg acacaactac catgatggc acgtgggggg tcgaggcaag 15120
 gaaaggcaca acgggtttgg cgggtggatgtt aaccatttcg atcccgatc tcctctgtac 15180
 gagaacagcg acggcaagatc catcgtgtccatc tccgatccatc gcatgggtt tattggcacc 15240
 gctctgtact ttctcgatca gaagttccatc ttctacaaca tggccatctg gtacttcgtt 15300
 ccctacttgcgtt gggtaacca ctggctcgatc gccattacct ttctgcgtca cacagatcct 15360
 actcttcccc actacaccaa cgacgagttgg aactttgtgc gaggtggccgc tgcaaccatc 15420
 gaccgagaga tgggcttcat tggacgtcat ctgtccacg gcattatcga gactcacgtc 15480

-continued

ctgcatcaact acgtctcttc cattcccttc tacaatgcgg acgaagctac cgaggccatc	15540
aaacctatca tgggcaagca ctatcgagct gatgtccagg acggtcctcg aggattcatt	15600
cgagccatgt accgatctgc acgaatgtgc cagtgggtg aaccctccgc tggtgccgag	15660
ggagctggca agggtgtctt gttctttcga aaccgaaaca atgtggcac tcctcccgct	15720
gtcatcaagc ccgttgcccta agc	15743

<210> SEQ ID NO 31	
<211> LENGTH: 6303	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Plasmid pZKUE3S	
<400> SEQUENCE: 31	
ggccgcaagt gtggatgggg aagtgagtgc ccgggtctgt gtgcacaatt ggcaatccaa	60
gatggatgga ttcaacacag ggatatacgcg agctacgtgg tggtgccgagg atatacgcaac	120
ggatatttat gtttgacact tgagaatgtt cgataacaagc actgtccaaag tacaatacta	180
aacatactgt acataactcat actcgatccc gggcaacgggt ttcaacttgag tgcagtggct	240
agtgctctta ctcgtacagt gtgcaataact gcgtatcata gtctttgatg tatactgtat	300
tcattcatgt tagttgcgtt cgaggaaact gtctctgaac agaagaaggaa ggacgtctct	360
gactacgaga actcccgatgtt caaggagttt ctagtccctt ctcccaacgaa gaagctggcc	420
agaggtctgc tcatgctggc cgagctgtct tgcaagggtt ctctggccac tggcgagttac	480
tccaaaggcaga ccatttgcgtt tgcccgatcc gaccccgagt ttgtgggtgg cttcatttgc	540
cagaaccgac ctaaggggcgtt ctgtggggc tggcttattt tgaccccccgg ggtgggtctt	600
gacgacaagg gagacgcgtt cggacagcgtt taccgttgcgtt ttggggatgtt catgttacc	660
ggaacggata tcataattgtt cggccgggtt ctgtacggcc agaaccgaga tcctatttgc	720
gaggccaaagc gataccggaa gggtgggtgg gaggcttacc agaagatattttt ctgttagagg	780
ttagactatgtt gatattgtt ttaactgtgtt atatacgatgtt cgtgcaatgtt tggagcgctt	840
gttcagcttgc tatgtggcgtt agacgacactt tctgtatgtt tttttttttt actgcacaaac	900
ctgtgtatcc gcatgtatgtt tccaaatggggt catgttgcgtt tggttctcgatc tccggatgtt	960
ctgggtacatgtt tgtaataactt tataacttata tgaggctcgatc agaaagctgtt	1020
cttgggtatgtt acttaattttt tccggatgtt cgttaatcatgt gtcataatgtt tttttttttt	1080
gaaattgttacatgtt tccggatgtt attccacacaca acatacgatgtt cggaaaggatgtt aagtgttacatgtt	1140
cctgggggtgtt ctaatgtgtt agttaatgtt cattaaatgtt gttggcgatgtt ctggcccgatgtt	1200
tccaggatgtt aaacatgtgtt tgccagatgtt attaatgtt cggccaaacgtt gccccggatgtt	1260
cggtttgtgtt tattggggcgtt tttttttttt cctcgatgtt cttttttttt tgactcgatgtt cgctcgatgtt	1320
tccggatgtt gcgagcgatgtt tccggatgtt cttttttttt cttttttttt cttttttttt cttttttttt	1380
caggggatgtt cccggatgtt aacatgtgtt cttttttttt cttttttttt cttttttttt cttttttttt	1440
aaaaggccgcgtt gttggatgtt tttttttttt ggtttttttt ccctggatgtt cttttttttt cttttttttt	1500
atcgacgttcgtt aagtcagatgtt tggcgaaaccgtt cgacaggactt ataaagatgtt caggcgatgtt	1560
ccctggatgtt cccctggatgtt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt	1620
ccggatgtt cccctggatgtt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt	1680

-continued

-continued

cgatacattc	ttcggtggag	gctgtgggtc	tgacagctgc	gttttcggcg	cgggtggccg	4020
acaacaatat	cagctgcaac	gtcattgctg	gctttcatca	tgatcacatt	tttgcggca	4080
aaggcgacgc	ccagagagcc	attgacgttc	tttctaattt	ggaccgatag	ccgtatagtc	4140
cagtctatct	ataagttcaa	ctaactcgta	actattacca	taacatatac	ttcactgccc	4200
cagataagg	tccgataaaa	agttctgcag	actaaattt	tttcagtc	ctcttcacca	4260
ccaaaatgcc	ctcctacgaa	gctcgagtgc	tcaagctcg	ggcagccaag	aaaaccacc	4320
tgtgtgttcc	tctggatgtt	accaccacca	aggagctcat	tgagcttgc	gataaggtcg	4380
gaccttatgt	gtgcatgatc	aaaacccata	tcgacatcat	tgacgacttc	acctacgccc	4440
gcactgtgt	ccccctcaag	gaacttgctc	ttaagcacgg	tttcttcctg	ttcgaggaca	4500
gaaagttcgc	agatattggc	aacactgtca	agcaccagta	ccgggtgtcac	cgaatcgccg	4560
agtggtccga	tatcaccaac	gcccacggtg	tttaaaccgg	gaaccggaa	cgataagctt	4620
gatatcgaat	tcatgctgtt	catcggtt	aatgctgtcg	tgtgtgtgt	gtgtgtgtt	4680
tttggcgctc	attgttgctgt	tatgcagcgt	acaccacaat	attggaaagct	tattagcctt	4740
tctatTTTT	cgtttgcaag	gcttaacaac	attgctgtgg	agaggatgg	ggatatggag	4800
gccgctggag	ggagtcggag	aggcgTTT	gagcggctt	gcctggcgcc	cagctcgca	4860
aacgcaccta	ggacccttgc	gcacgcccga	atgtgcact	tttcagtc	gtaaacgcctt	4920
acctacgtca	ttccatgegt	gcatgtttgc	gcctttttc	ccttgc	catacgcaca	4980
cagtagctgt	cactgtacag	tggaggTTT	gggggggtct	tagatggag	ctaaaagcgg	5040
cctagcggta	cactagtggg	attgtatgga	gtggcatgga	gccttaggtgg	agcctgacag	5100
gacgcacgac	cggctagecc	gtgacagacg	atgggtggct	cctgttgcc	accgegtaca	5160
aatgtttggg	ccaaagtctt	gtcagccttgc	cttgc	taatccaa	tttgcact	5220
tcgcacccccc	attgatcgag	ccctaacc	tgcccatcag	gcaatccaa	taagctcgca	5280
ttgtctgcct	tgTTtagtt	ggctcctg	cgttccggcg	tccacttgca	caaacacaaa	5340
caaggcattat	atataaggct	cgtctctccc	tcccaaccac	actca	ttgc	5400
tcccttgcta	acacaaaagt	caagaacaca	aacaaccacc	ccaacccct	tacacacaag	5460
acatatctac	accatggagt	ctggaccat	gcctgtggc	attcccttc	ctgagta	5520
tgacttctt	atggactgga	agactccc	ggccatcg	gccac	taca	5580
cggtctcttc	aacccaagg	ttggcaagg	ctcccgag	gttgc	aa	5640
aaaggcctgcc	gagcgaaccc	agtccggagc	tgccatgact	gccttgc	ttgtgcacaa	5700
cctcattctg	tgtgtctact	ctggcatc	cttctactac	atgttgc	ctatggta	5760
gaacttccga	acccacacac	tgcacgaagc	ctactg	gegac	acggatc	5820
caacgcac	ttgtactggg	gttacctct	ctacctgtcc	aagt	tctacg	5880
caccatcatc	atcatcctga	agggacgac	gtcctcg	cttca	gacaccat	5940
tggagccatg	attaccatgt	ggtctgg	cat	actacc	gccactcc	6000
tgtggtcttc	aactcctca	ttcacaccat	catgtactgt	tactatgc	ctac	6060
cggattccat	cctcctggca	aaaagtac	ctactcgat	cagattactc	agtttgc	6120
cggat	tacc	ttgc	ctgt	ccaa	cacccgg	6180
tcagatgg	ct	gtc	ggatca	acgtcgg	ctgttccc	6240

-continued

ctttgccaag cgaacctact ccaagcgatc tgccattgcc gctcagaaaa aggctcagta 6300
agc 6303

<210> SEQ ID NO 32
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-5-1

<400> SEQUENCE: 32
cgacaagatg gaatgagaat g 21

<210> SEQ ID NO 33
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-5-2

<400> SEQUENCE: 33
ctggtttttc aactacttct ac 22

<210> SEQ ID NO 34
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-5-3

<400> SEQUENCE: 34
gtactgtcct gtgtctgttc c 21

<210> SEQ ID NO 35
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-5-4

<400> SEQUENCE: 35
ctacatcgac cgaaaggcaca ag 22

<210> SEQ ID NO 36
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-3-1

<400> SEQUENCE: 36
ctaccagatc gagcaccatc tctg 24

<210> SEQ ID NO 37
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-3-2

<400> SEQUENCE: 37
ctaccagggtg gaacagctgt g 21

-continued

```
<210> SEQ ID NO 38
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-3-3

<400> SEQUENCE: 38

tctgccccat gaagggtctcg tc                                22

<210> SEQ ID NO 39
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer pZP-GW-3-4

<400> SEQUENCE: 39

cctgtcccaag ttgcgtcgaa tg                                22

<210> SEQ ID NO 40
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Genome Walker adaptor-1

<400> SEQUENCE: 40

gtaatacgcac tataggggcac gcgtggtcga cggccgggc tggt                                44

<210> SEQ ID NO 41
<211> LENGTH: 8
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Genome Walker adaptor-2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: 5' end is associated with a -PO4 group
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: 3' end is associated with a -H2N group

<400> SEQUENCE: 41

accagccc                                8

<210> SEQ ID NO 42
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Nested adaptor primer

<400> SEQUENCE: 42

gtaatacgcac tcactatagg gc                                22

<210> SEQ ID NO 43
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer Per10F1
```

-continued

<400> SEQUENCE: 43

gatcaaccat ggggggaagt tcacatgcat tcgctg 36

<210> SEQ ID NO 44

<211> LENGTH: 29

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer ZPGW-5-5

<400> SEQUENCE: 44

gttatagttt tcatgtgaaa taccgagag 29

<210> SEQ ID NO 45

<211> LENGTH: 37

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer Per10R

<400> SEQUENCE: 45

gatcaagcgg cccgcagacc tcgtcattat ctgatag 37

<210> SEQ ID NO 46

<211> LENGTH: 7222

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pFBAIn-MOD-1

<400> SEQUENCE: 46

catggatcca ggcctgttaa cggccattac ggcctgcagg atccgaaaaa acctccac 60

cctcccccgt aacctgaaac ataaaatgaa tgcaattgtt gttgttaact tgtttattgc 120

agcttataat ggttacaat aaagcaatg catcacaaat ttcacaaata aagcatttt 180

ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttac atgtctgcgg 240

ccgcaagtgt ggtatgggaa gtgagtgccc ggttctgtgt gcacaatgg caatccaaga 300

tggatggatt caacacaggg atatacgag ctacgtggg gtgcgaggat atagcaacgg 360

atatttatgt ttgacacttg agaatgtacg atacaagcac tgtccaagta caataactaaa 420

catactgtac atactcatac tegtaccgg gcaacggtt cacttgagtg cagtggctag 480

tgctcttaact cgtacagtgt gcaatactgc gtatcatagt ctttgatgtatacgattc 540

attcatgtta gttgcgtacg agccggaagc ataaagtgt aagcctgggg tgcctaattga 600

gtgagctaac tcacattaat tgcgttgcgc tcaactgeccg ctttccagtc gggaaacctg 660

tcgtgccagc tgcattaatg aatcgccaa cgcgcgggaa gaggcggttt gcgtattggg 720

cgctcttccg cttcctcgct cactgactcg ctgcgtcgg tcgttccggc gcgccggagcg 780

gtatcagctc actcaaaggc ggtataacgg ttatccacag aatcaggggtaa acgcaggg 840

aagaacatgt gacaaaagg ccagcaaaag gccaggaaacc gtaaaaaggc cgcgttctg 900

gcgttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtctc 960

aggtggcga acccgacagg actataaaga taccaggcgt ttcccccgtt aagctccctc 1020

gtgcgtctc ctgttccgac cctgcccgtt accggatacc tgtccgcctt tctccctc 1080

ggaagcgtgg cgcttctca tagctcacgc tgttaggtatc tcagttccgtt gtaggtcgtt 1140

-continued

cgctccaagg	tgggctgtgt	gcacgaaccc	cccgttcagc	ccgaccgctg	cgccttatcc	1200
ggtaactatac	gtctttagtc	caaccccgta	agacacgact	tatcgccact	ggcagcagcc	1260
actggtaaca	ggatttagcag	agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	1320
tggcctaact	acggctacac	tagaaggaca	gtatggta	tctgcgtct	gctgaagcca	1380
gttacccctcg	gaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	cgctggtagc	1440
ggtggttttt	ttgttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	1500
ccttgatct	tttctacggg	gtctgacgct	cagtggaaacg	aaaactcact	ttaagggatt	1560
ttggtcatga	gattatcaa	aaggatcttc	acctagatcc	ttttaaattt	aaaatgaagt	1620
ttaaatcaa	tctaaagtat	atatgagtaa	acttggctcg	acagttacca	atgcttaatc	1680
agtgaggcac	ctatctcagc	gatctgtctta	tttcgttcat	ccatagtgc	ctgactcccc	1740
gtcgtgtaga	taactacgat	acggggagggc	ttaccatctg	gccccagtgc	tgcaatgata	1800
ccgcgagacc	cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccgaaagg	1860
gccgagcgc	gaagtggtcc	tgcaacttta	tccgcetcca	tccagtttat	taattttgc	1920
cgggaagcta	gagtaagtag	ttcgccagg	aatagttgc	gcaacgttgt	tgccattgct	1980
acaggcatacg	tggtgtcact	ctcgctgttt	ggtatggctt	cattcagctc	cggttcccaa	2040
cgatcaaggc	gagttacatg	atccccatg	ttgtgcaaaa	aagcggttag	ctcccttcgg	2100
cctccgatcg	ttgtcagaag	taagttggcc	gcagtgttat	cactcatggt	tatggcagca	2160
ctgcataatt	ctcttactgt	catgcccattc	gtaagatgt	tttctgtgac	tggtgagttac	2220
tcaaccaagt	cattctgaga	atagtgtatg	cggcgaccga	gttgcttttgc	cccggcgtca	2280
atacgggata	ataccgcgccc	acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	2340
tcttcggggc	gaaaactctc	aaggatctta	ccgctgttga	gatccagttc	gatgttaaccc	2400
actcgtgcac	ccaaactgatc	ttcagcatct	tttactttca	ccagcgtttc	tgggtgagca	2460
aaaacaggaa	ggcaaaaatgc	cgcaaaaaag	ggaataaggg	cgacaegaa	atgttgaata	2520
ctcatactct	tccttttca	atattattga	agcattttatc	agggttatttgc	tctcatgagc	2580
ggatacatat	ttgaatgtat	ttagaaaaat	aaacaaatag	gggttccgca	cacattttcc	2640
cgaaaagtgc	cacctgacgc	gccctgttgc	ggcgcattaa	gcccgggggg	tgtgggggtt	2700
acgegcageg	tgaccgctac	acttgcacgc	gccctagcgc	ccgctccccc	cgctttttcc	2760
ccttccttcc	tcgcccacgtt	cgccggcttt	ccccgtcaag	ctctaaatcg	ggggctccct	2820
ttagggttcc	gatttagtgc	tttacggcac	ctcgacccca	aaaaacttgc	ttagggtgat	2880
gtttcacgta	gtggggccatc	gccctgtatag	acggtttttc	gccctttgc	gttggagtcc	2940
acgttcttta	atagtggact	cttgcaccaa	actggaaacaa	cactcaaccc	tatctcggtc	3000
tattcttttgc	atttataagg	gattttgcgc	atttccggct	attggttaaa	aatatgatgc	3060
attnaaca	attnaacgc	gaattttaaac	aaaatattaa	cgcttacaat	ttccattcgc	3120
cattcaggct	gcgcactgt	tgggaaggggc	gatcggtgc	ggccctctcg	ctattacgcc	3180
agctggcgaa	agggggatgt	gctgcaaggc	gattaagttgc	ggttaacgcca	gggtttccc	3240
agtcacgacg	ttgtaaaacg	acggccagtg	aattgtatata	cgactcaacta	tagggcgaat	3300
tgggtaccgg	gccccccctc	gagggtcgatg	gtgtcgatata	gcttgatatac	gaattcatgt	3360
cacacaaacc	gatcttcgccc	tcaaggaaac	ctaattctac	atccgagaga	ctgcccagat	3420

-continued

ccagtctaca	ctgattaatt	ttcggggcaa	taatttaaaa	aaatcggtt	atataatatt	3480
atatgtatta	tatataataca	tcatgatgat	actgacagtc	atgtcccatt	gctaaataga	3540
cagactccat	ctgccgcctc	caactgatgt	tctcaatatt	taaggggtca	tctcgattg	3600
ttaataata	aacagactcc	atctaccgcc	tccaaatgtat	gttctaaaa	tatattgtat	3660
gaacttattt	ttattactta	gtattattag	acaacttact	tgctttatga	aaaacacttc	3720
ctattnagga	aacaattttat	aatggcagt	cgttcattta	acaattttagt	tagaataaat	3780
gttataaatg	cgtatggaa	atcttaaata	tggatagcat	aatgatatc	tgcattgcct	3840
aattcgaaat	caacagcaac	aaaaaaaatc	ccttgtacaa	cataaaatagt	catcgagaaa	3900
tatcaactat	caaagaacag	ctattcacac	gttactattg	agattattat	tggacgagaa	3960
tcacacactc	aactgtcttt	ctctcttctca	gaaatacagg	tacaagtatg	tactattctc	4020
attgttcata	cttctagtc	tttcatccca	catattcctt	ggattttctt	ccaatgaatg	4080
acattctatc	ttgcaaaattc	aacaattata	ataagatata	ccaaagttagc	ggtataatgg	4140
caatcaaaaa	gcttctctgg	tgtgcttctc	gtatttat	ttattctaat	gatccattaa	4200
aggatataat	ttattncttg	ttatataatc	ctttgttta	ttacatgggc	tggatacata	4260
aaggatattt	gattnaattt	tttgcttaaa	ttcaatcccc	cctcgttcag	tgtcaactgt	4320
aatggtagga	aattaccata	cttttgaaga	agcaaaaaaa	atgaaagaaa	aaaaaaatcg	4380
tattnccagg	ttagacgttc	cgcagaatct	agaatgcggt	atgcggtaca	ttgttottcg	4440
aacgtaaaaag	ttgcgctccc	tgagatattg	tacattttg	cttttacaag	tacaagtaca	4500
tcgtacaact	atgtactact	gttgatgoat	ccacaacagt	ttgttttgtt	tttttttgtt	4560
tttttttttt	ctaatgatc	attaccgota	tgtataccca	cttgcacttg	tagtaagccg	4620
ggttattggc	gttcaattaa	tcatagactt	atgaatctgc	acgggtgtgc	ctgcgagtt	4680
cttttagctt	atgcgtgtca	cttgggtgt	atattggat	ctgttggaa	atcaacggat	4740
gctcaatcga	tttgcacagt	aattaattaa	gtcatacacaca	agtcaacgtt	cttcgagcct	4800
catataagta	taagtagttc	aacgtattag	cactgtaccc	agcatctccg	tatcgagaaa	4860
cacaacaaca	tgccttattt	gacagatcat	gcccatacac	aggttgtgca	gtatcataca	4920
tactcgatca	gacaggttgt	ctgaccatca	tacaagctga	acaagegtctc	cataacttgc	4980
cgctctctat	atacacagtt	aaattacata	tccatagttct	aacctctaac	agttaatctt	5040
ctggtaagcc	tcccagccag	ccttctggta	tgccttggcc	tcctcaatag	gatctcggtt	5100
ctggccgtac	agacctcggc	cgacaattat	gatatccgtt	ccggtagaca	tgacatccctc	5160
aaacgttcgg	tactgtgtc	cgagagegtc	tcccttgcgt	tcaagaccca	ccccgggggt	5220
cagaataagc	cagtcctcag	agtcgcctt	aggtcggttc	tgggcaatga	agccaaccac	5280
aaactcgggg	tcggatcggg	caagctcaat	ggtctgtttt	gagtaactcgc	cagtggccag	5340
agagcccttg	caagacagct	cggccagcat	gagcagacct	ctggccagct	tctcggtt	5400
agagggggact	aggaactctt	tgtactggaa	gttctcgtag	tcaagacagt	cctccttctt	5460
ctgttcagag	acagtttctt	cggcaccagc	tgcgaggcct	gcaatgattc	cggttccggg	5520
tacaccgtgg	gcgttggta	tatcgacca	ctcgccgatt	cggtgacacc	ggtactgggt	5580
cttgacagt	ttgccaatat	ctgcgtactt	tctgttctcg	aacaggaaga	aaccgtgctt	5640
aagagcaagt	tccttgaggg	ggagcacagt	gcccggcgtag	gtgaagtctgt	aatgtatgtc	5700

-continued

gatatgggtt ttgatcatgc acacataagg tccgacccta tcggcaagct caatgagctc 5760
cttggtggtg gtaacatcca gagaagcaca caggtggtt ttcttggctg ccacagagtt 5820
gagcactcgaa gggcaaaagg cggaacttgcg gacgttagct cgagcttcgtt aggaggggcat 5880
tttgggtggtg aagaggagac taaaataat ttagtctgca gaactttta tcggaacctt 5940
atctggggca gtgaagtata tgttatggta atagttacga gttagttgaa cttatagata 6000
gactggacta tacggctata ggtccaaatt agaaagaacgc tcaatggctc tctggcgctc 6060
gcctttgcgc aaaaaatgt gatcatgatg aaagccagca atgacgttgc agctgatatt 6120
gttgtcgcc aaccgcgcg aaaacgcgcg tgcagaccc acagcctcca acgaaagatg 6180
tatcgtaaaa gtgatccaag cacactcata gttggagtcg tactccaaag gcggcaatga 6240
cgagtcagac agatactcgt cgaaaacagt gtacgcagat ctactataga ggaacattta 6300
aattgccccg gagaagacgg ccaggccgc tagatgacaa attcaacaac tcacagctga 6360
ctttctgcctt ttgcccactag gggggggcct ttttatatgg ccaagccaag ctctccacgt 6420
cggttggct gcacccaaca ataaatgggt agggttgcac caacaaaggg atggatggg 6480
gggttagaaga tacgaggata acggggctca atggcacaaa taagaacgaa tactgccatt 6540
aagactcgtg atccagcgac tgacaccatt gcatcatcta agggcctcaa aactacctcg 6600
gaactgctgc gctgatctgg acaccacaga gttccgagc actttagtt gcaccaaata 6660
tcccaccagg tgcaggcaga aaacgctgga acagcgtgta cagttgtct taacaaaaag 6720
tgagggcgt gagggtcgagc aggggtgggt gacttggttt agcctttttaga gctgcgaaag 6780
cgcgatggta ttggctcat cagggcagat tgagggctg tggacacatg tcatgttagt 6840
gtacttcaat cgccccctgg atatacgcccc gacaataggc cgtggcctca tttttttgc 6900
ttccgcacat ttccattgct cggtacccac accttgcctt tctgcactt gccaacctta 6960
atactggttt acattgacca acatottaca agggggggc ttgtcttaggg tatatataaa 7020
cagttggctct cccaaatcggt tgccagtc tttttccctt tttttcccca cagattcgaa 7080
atctaaacta cacatcacag aattccgagc cgtgagttt caccgacaaga tcagtgtcg 7140
gacgacgcgt tttgtgtaat gacacaatcc gaaagtcgct agcaacacac actctctaca 7200
caaaactaacc cagctctggt ac 7222

```
<210> SEQ ID NO 47
<211> LENGTH: 8133
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pFBAIN-Pex10
```

<400> SEQUENCE: 47

ggccgcaagt gtggatgggg aagtgagtcg ccggttctgt gtgcacaatt ggcaatccaa	60
gatggatgga ttcaacacag ggatatageg agctacgtgg tggtggegagg atatagcaac	120
ggatatttat gtttgacact tgagaatgt a cgataacaagg actgttcaag tacaatacta	180
aacatactgt acatactcat actcgtaccc gggcaacgggt ttcacttgag tgcaagtggct	240
agtgcctta ctcgtacagt gtgcaatact gcgtatcata gtctttgtat tatatcgat	300
tcattcatgt tagttgcgtt cgagccggaa gcataaagtg taaaggctgg ggtgcctaatt	360
gagtgagctt actcacattn attgcgttgc gctcaactgcg cgctttccag tcggggaaacc	420

-continued

tgtcgtgcca gctgcattaa tgaatcgcc aacgcgcggg gagaggcggt ttgcgtattg	480
ggcgcttcg cgttcctcg ctcaactgact cgctgcgcgc ggtcggtcg ctgcggcgag	540
cggtatcagc tcactcaaag gcggtataac ggttatccac agaatacgagg gataacgcag	600
gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc	660
tgccgtttt ccataggctc cgccccctcg acgagcatca caaaaatcga cgctcaagtc	720
agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc	780
tcgtgcgcgc tcctgttccg accctgcccgc ttaccggata cctgtccgc tttctccctt	840
cgggaagcgt ggccgtttct catacgctac gctgttaggt tctcagttcg gtgttaggtcg	900
ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgcaccgc tgccgttat	960
ccggtaacta tcgtctttag cccaacccgg taagacacga cttatcgcca ctggcagcag	1020
ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt	1080
ggtggcctaa ctacggctac actagaagga cagtattttg tatctgcgt ctgtgtaaagc	1140
cagttacctt cggaaaaaaga gttggtagct cttgatccgg caaacaaacc accgtggta	1200
gggggtgggtt ttttgggtgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag	1260
atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggaa	1320
ttttggtcat gagattatca aaaaggatct tcaccttagat ccttttaaat taaaatgaa	1380
gttttaatc aatctaaagt atatatgagt aaacttggtc tgacagttac caatgtttaa	1440
tcagtggagc acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc	1500
ccgtcgtgta gataactacg atacgggagg gtttaccatc tggccccagt gctgcaatga	1560
tacccgcgaga cccacgctca cccgcgtccg attttatcgc aataaaaccag ccagecggaa	1620
ggggccggcgg cagaagtgggt cctgcaactt tatccgcctc catccagtct attaattgtt	1680
ggccggaaagc tagagtaagt agttcgccag ttaatagtt gcgcaacggtt gttgcatttgc	1740
ctacaggcat cgtgggtgtca cgctcggtgt ttggatggc ttcattcgc tccgggtccc	1800
aacgatcaag gcgagttaca tggatccca tggatggcaaa aaaaagggtt agcttcgttgc	1860
gtcctccgat cgttgcaga agtaagtgg ccgcagtgtt atcactcatg gttatggcag	1920
cactgcataa ttctcttact gtcatgcat ccgtaaatgt ctttctgttgc actgggtgagt	1980
actcaaccaa gtcattctga gaatagtgtt tgccggcacc gagttgtct tgccggcggt	2040
caatacggga taataccgcg ccacatgcg aactttaaa agtgcgtatc attggaaaac	2100
gttcttcggg gcgaaaaactc tcaaggatct taccgtgtt gagatccagt tcgtgttaac	2160
ccactcggtc acccaactga ttttcgcgtat ctttacttt caccaggtt tctgggttag	2220
caaaaacagg aaggcaaaaat gcccggaaaa agggataaag ggcgcacacgg aatgttggaa	2280
tactcataact ctccctttt caatattattt gaagcattt tcagggttat tgcgttgcata	2340
gccccatcatc atttgaatgt atttagaaaa ataaacaaat aggggttccg cgacatttc	2400
cccgaaaaatg gcccacgtac gcccgtgtc gcccgcgtt aagcgcggcg ggtgtgggtgg	2460
ttacgcgcag cgtgaccgtt acacttgcca gcccgttgc gcccgttgc ttcgtttct	2520
tcccttcctt tctcgccacg ttccgggtt cttccgtca agtctaaat cgggggttcc	2580
ctttagggtt ccgatgttgcgtt gctttacggc acctcgaccc caaaaacattt gattagggttgc	2640
atggttcactg tagtggccca tccgcgttgcgtt agacgggtttt tccgcgttgcgtt acgttggagt	2700

-continued

ccacgttctt	taatagtgga	ctcttgttcc	aaactggAAC	aacactcaAC	cctatctcgG	2760
tctattcttt	tgatttataa	gggattttgc	cgatttcggc	ctattggta	aaaaatgagc	2820
tgatTTAACA	aaaatTTAAC	gcgaattttA	acaaaatatt	aacgcttaca	atTTCCATTc	2880
gccattcagg	ctgcgcAACT	gttgggaagg	gcgatcggT	cgggccttC	cgttattacG	2940
ccagctggcg	aaagggggat	gtgctgcaag	gcgattaAGT	tggtaacgc	cagggtttc	3000
ccagtcacga	cgttgtaaaa	cgacggccag	tgaattgtaa	tacgactcac	tataggGCgA	3060
atgggttacc	gggcCCCCC	tcgaggtcga	tggtgtcgat	aagcttgata	tcgaattcat	3120
gtcacacaaa	ccgatcttcg	cctcaaggaa	acctaattct	acatccgaga	gactgcgag	3180
atccagtcta	cactgattaa	tttcgggCC	aataatttaa	aaaaatcgTg	ttatataata	3240
ttatATgtat	tatataatata	catcatgtat	atactgacag	tcatgtcccA	ttgtctaaata	3300
gacagactcc	atctgccgCc	tccaactgat	gttctcaata	tttaaggggT	catctcgcat	3360
tgttaataa	taaacagact	ccatctaccg	cctccaaatg	atgttctcaa	aatatattgt	3420
atgaacttat	tttttattact	tagtattatt	agacaactta	cttgctttat	aaaaaacact	3480
tcctatTTAG	gaaacaattt	ataatggcag	ttcgttCatt	taacaatttA	tgtagaataa	3540
atgttataaa	tgcgtatggg	aaatcttAA	tatggatagc	ataaatgata	tctgcattgc	3600
ctaattcgaa	atcaacagca	acgaaaaaaaa	tcccttgac	aacataaata	gtcatcgaga	3660
aatatcaact	atcaaagaac	agctattcac	acgttactat	tgagattatt	attggacgag	3720
aatcacacac	tcaactgtct	ttctcttc	tagaaataca	ggtacaagta	tgtactattc	3780
tcattgttca	tacttctagt	catttcattcc	cacatattcc	ttggattttc	ctccaaatgaa	3840
tgacattcta	tcttgcaat	tcaacaattt	taataagata	taccaaAGTA	gcggtagat	3900
ggcaatcaaa	aagtttctct	ggtgtgttcc	tctgtattat	ttttattctA	atgatocatt	3960
aaaggTtat	attttttct	tgttatataa	tccttttGTT	tattacatgg	gctggataca	4020
taaaggTatt	ttgatttaat	tttttgcTTA	aattcaatcc	cccctegttc	agtgtcaact	4080
gtaatggtag	gaaatttacca	tacttttggaa	gaagcaaaaa	aatgaaaga	aaaaaaaaat	4140
cgtatTTCCA	ggtttagaegt	tccgcagaat	ctagaatgcg	gtatgeggta	cattgttctt	4200
cgaacgtaaa	agttgcgctc	cctgagatat	tgtacattt	tgctttaca	agtacaagta	4260
cattgtacaa	ctatgtacta	ctgttgatgc	atccacaaca	gtttgttttG	tttttttttG	4320
tttttttttt	ttctaatgt	tcattaccgc	tatgtatacc	tacttgtact	tgttagtaagc	4380
cgggttattg	gcgttcaatt	aatcatacag	ttatgaatct	gcacgggtg	cgctgcgagt	4440
tacttttagc	ttatgcattc	tacttgggt	taatattggg	atctgttccg	aaatcaacgg	4500
atgtcaatc	gatttcgaca	gtaattaatt	aagtcataca	caagtcaagt	ttcttcgagc	4560
ctcatataag	tataagtagt	tcaacgtatt	agcactgtac	ccagcatctc	cgtatcgaga	4620
aacacaacaa	catgccccat	tggacagatc	atgcggatAC	acaggTTGt	cgtatcata	4680
catactcgat	cagacaggTC	gtctgaccat	catacaagct	gaacaagcgc	tccatacttg	4740
cacgctctct	atatacacag	ttaaattaca	tatccatagt	ctaaccTcta	acagttaatc	4800
ttctggtaag	cctcccaGcc	agccttctgg	tatcgcttgg	cctccctcaat	aggatctcgG	4860
ttctggccgt	acagacctcg	gccgacaatt	atgatatccg	ttccggtaga	catgacatcc	4920
tcaacagttc	ggtactgtcg	tccgagagcg	tctcccttgt	cgtcaagacc	caccccgggg	4980

-continued

gtcagaataa	gccagtcctc	agagtcgccc	ttaggtcggt	tctgggcaat	gaagccaacc	5040
acaaactcg	ggtcggatcg	ggcaagctca	atggtctgct	tggagtaactc	gccagtggcc	5100
agagagccct	tgcaagacag	ctcgccagc	atgagcagac	ctctggccag	cttctcgttg	5160
ggagagggga	cttagaactc	cttgtactgg	gagttctcg	agtcagagac	gtcctccctc	5220
ttctgttcag	agacagttc	ctcgccacca	gtcgcaggc	cagcaatgat	tccggttccg	5280
ggtacaccgt	gggcgttgg	gatatcgac	cactcgccga	ttcggtgaca	ccggacttgg	5340
tgcttgacag	tgttgccaat	atctgcgaac	tttctgtcct	cgaacaggaa	gaaaccgtgc	5400
ttaagagcaa	gttccctttag	ggggagcaca	gtgcggcg	aggtgaagtc	gtcaatgatg	5460
tcgatatggg	ttttgatcat	gcacacataa	ggtccgac	tatcggaag	ctcaatgagc	5520
tccttgggtgg	tggttaacatc	cagagaagca	cacaggttgg	ttttcttggc	tgccacgagc	5580
ttgagcactc	gagcggcaaa	ggcggacttg	tggacgttag	ctcgagcttc	gtaggaggc	5640
attttgggtgg	tgaagaggag	actgaaataa	atttagtcg	cagaactttt	tatcggaacc	5700
ttatctgggg	cagtgaagta	tatgttatgg	taatagttac	gagtttagtg	aacttataga	5760
tagactggac	tatacggtca	tcgggtccaa	ttagaaagaa	cgtcaatggc	tctctggcg	5820
tcgcctttgc	cgacaaaaat	gtgatcatga	tgaaagccag	caatgacg	ttgcagtgata	5880
ttgttgcgg	ccaaaccgcgc	cgaaaaacgca	gtgtcagac	ccacagc	ctcaacgaagaa	5940
tgtatcgta	aagtgtatcca	agcacactca	tagtggagt	cgtactccaa	aggcggcaat	6000
gacgagtcag	acagatactc	gtcgaaaaca	gtgtacgcag	atctactata	gaggaacatt	6060
taaattgccc	cgggagaagac	ggccaggccg	cctagatgac	aaattcaaca	actcaacgct	6120
gactttctgc	cattgccact	agggggggcc	ctttttatat	ggccaagcca	agctctccac	6180
gtcgggttggg	ctgcacccaa	caataatgg	gtagggttgc	accaacaaag	ggatggatg	6240
gggggttagaa	gatacgagga	taacggggct	caatggcaca	aataagaacg	aatactgcca	6300
ttaagactcg	tgtatccagcg	actgacacca	ttgcacatc	taagggc	cctc aaaactacct	6360
cggaaactgt	gcgcgtatct	ggacaccaca	gaggttccga	gcactttag	ttgcacccaa	6420
tgtccacca	ggtgcaggca	gaaaacgctg	gaacagegtg	tacagttgt	cttaacaaaa	6480
agtggggcgt	ctgagggtcga	gcagggtgg	gtgacttgc	atagcctta	gagctgcgaa	6540
agcgcgtatg	gatttggctc	atcaggccag	attgagggtc	tgtggacaca	tgtcatgtta	6600
gtgtacttca	atcgccccct	ggatatacgcc	ccgacaatag	gccgtggct	catttttttg	6660
ccttccgcac	attccattg	ctcggtaccc	acacctgtc	tctctgcac	ttgccaacct	6720
taataactgg	ttacattgac	caacatcta	caaggggggg	gcttgc	tctatata	6780
aaacgtggct	ctcccaatcg	gttgccagtc	tctttttcc	tttctttccc	cacagattcg	6840
aaatctaaac	tacacatcac	agaatccga	gccgtgagta	tccacgacaa	gatcagtgtc	6900
gagacgacgc	gttttgtgta	atgacacaat	ccgaaagtgc	ctagcaacac	acactctcta	6960
cacaaactaa	cccagctcg	gtaccatggg	ggaaagttca	catgcattcg	ctggtaatc	7020
tgatctgaca	ctacaactac	acaccaggc	caacatgagc	gacaatacga	caataaaaaa	7080
gccgatccga	cccaaaccga	tccggacgga	acgcctgcct	tacgctgggg	ccgcagaaat	7140
catccgagcc	aaccagaaag	accactactt	tgagtcgcgt	tttgcacagc	atctcgatc	7200
gtttctgcag	aaatggaagg	gagta	tcgttgcatt	tatccaccag	tacaaggagg	7260

-continued

ggcgtccaag tttgcatac tcggtttgta tacgcttgta ggctccaaga ctctcgaga	7320
agagtacacc aatctcatgt acactatcg agaccgaaca gctctaccgg gggtggttag	7380
acggtttggc tacgtgcctt ccaacactct gttccatac ctgtttgta gctacatgg	7440
caagttgcgc gccaaactga tgcgcgagta tccccatctg gtggagtacg acgaagatga	7500
gcctgtgccc agcccgaaa catggaggaa gcccggatc aagacgttg tgaacaagtt	7560
tgacaagttc acggcgctgg aggggtttac cgcgatccac ttggcgattt tctacgtcta	7620
cggctcgta taccagctca gtaagcggat ctggggcatg cgttatgtat ttggacaccg	7680
actggacaag aatgagcctc gaatcggtta cgagatgctc ggtctgtga ttttcgccc	7740
gtttgccacg tcatttgtc agacggaaag agagtacccg ggagcgctgc tggaaaagag	7800
cgtggagaaa gaggcagggg agaaggaaga tgaaaagaa gcgggttgta cgaaaaagaa	7860
gtcgtcaatt cggttcattt aggatacaga aggggagacg gaagacaaga tcgatctgga	7920
ggaccctcga cagctcaagt tcattctgtc ggcgtccaga gcgtgcactc tgcgtgtgc	7980
atacatttagt ggcggcat gtacgcatg tggacactt ttctgttggg actgtatttc	8040
cgaatgggtg agagagaagc cggagtgtcc cttgtgtcg cagggtgtga gagagcagaa	8100
cttggcct atcagataat gacgaggctc ggc	8133

<210> SEQ ID NO 48
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer PEX10-R-BsiWI

<400> SEQUENCE: 48

gatcaacgtt cgttcagca gtaactgtat tgctc	35
---------------------------------------	----

<210> SEQ ID NO 49
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer PEX10-F1-SalI

<400> SEQUENCE: 49

gatcaagtcg acattgtaac tagtcctggg gggtc	35
--	----

<210> SEQ ID NO 50
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer PEX10-F2-SalI

<400> SEQUENCE: 50

gatcaagtcg acgtcttagc gtcatgtatt ctcaag	36
---	----

<210> SEQ ID NO 51
<211> LENGTH: 7277
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pEXP-MOD1

<400> SEQUENCE: 51

-continued

catggatcca	ggcctgttaa	cggccattac	ggcctgcagg	atccgaaaaa	acctcccaca	60
cctccccctg	aacctgaaac	ataaaatgaa	tgcaattgtt	gttgttaact	tgtttattgc	120
agcttataat	ggttacaat	aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	180
ttcactgcat	tctagttgt	gtttgtccaa	actcatcaat	gtatcttatac	atgtctgcgg	240
ccgcaagtgt	ggatggggaa	gtgagtgccc	ggttctgtgt	gcacaattgg	caatccaaga	300
tggatggatt	caacacaggg	atatagcgag	ctacgtggtg	gtgcgaggat	atagcaacgg	360
atatttatgt	ttgacacttg	agaatgtacg	atacaagcac	tgtccaagta	caataactaaa	420
catactgtac	ataactcatac	tcgtacccgg	gcaacgggtt	cacttgaatg	cagtggctag	480
tgctcttact	cgtacagtgt	gcaataactgc	gtatcatagt	ctttgatgta	tatcgattc	540
attcatgtta	gttgcgtacg	agccggaagc	ataaaagtgt	aaggcctgggg	tgcctaatga	600
gtgagctaac	tcacattaat	tgcgttgcgc	tcactgccc	ctttccagtc	gggaaacctg	660
tcgtgccage	tgcattatg	aatcgccaa	cgcgccccaa	gaggcggtt	gcgtattggg	720
cgtcttccg	cttcctcgct	cactgactcg	ctgcgtctgg	tcgttgggt	gcggcgagcg	780
gtatcagctc	actcaaaggc	ggttaatacg	ttatccacag	aatcagggg	taacgcagga	840
aagaacatgt	gagcaaaagg	ccagcaaaag	gccaggaacc	gtaaaaaggc	cgcgttgcgt	900
cggttttcc	ataggctccg	ccccccgtac	gagcatcaca	aaaatcgacg	ctcaagttag	960
agggtggcgaa	accogacagg	actataaaga	taccaggcgt	ttccccctgg	aagctccctc	1020
gtgcgtctc	ctgttccgac	cctgcgttgc	accggatacc	tgtccgttgc	tctccottcg	1080
ggaagcgtgg	cgttttctca	tagtcacgc	tgttaggtatc	tcagttcggt	gtaggtcggt	1140
cgcctcaagc	tgggtgtgt	gcacgaaccc	cccggttca	ccgacccgtgc	cgcccttatcc	1200
ggtaactatac	gttttgcgtc	caacccgtta	agacacgact	tatgcgtact	ggcagcagcc	1260
actggtaaca	ggatttagcag	agcgaggtat	gtaggcggtg	ctacagat	cttgcgttgc	1320
tggcttaact	acggctacac	tagaaggaca	gtatggta	tctgcgtct	gctgaaggcca	1380
gttaccttgc	aaaaaagagt	tggtagtct	tgtatccggca	aacaaaccac	cgcgttgcgt	1440
ggtggttttt	ttgtttgc	gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	1500
ccttgcgttct	tttctacggg	gtctgcgtct	cagtggacacg	aaaactcact	ttaagggtt	1560
ttggtcatga	gattatcaa	aaggatctt	acctagatcc	ttttaaatta	aaaatgaagt	1620
tttaaatcaa	tctaaagtat	atatgagtaa	acttggtctg	acagttacca	atgcattatc	1680
agtggggcac	ctatctcgc	gatctgtcta	tttcgttcat	ccatagtgc	ctgactcccc	1740
gtcggttgc	taactacgt	acggggggc	ttaccatctg	gccccagtgc	tgcaatgata	1800
ccgagagacc	cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccggaagg	1860
gcccggcgtca	gaagtggtcc	tgcaacttta	tccgcctcca	tccagtcata	taattgtgc	1920
cgggaagcta	gagtaagtag	ttcgccagtt	aatagttgc	gcaacgttgt	tgccattgt	1980
acaggcatacg	tgggtgtc	ctcgctgtt	ggatggctt	cattcagctc	cggttccaa	2040
cgtatcaaggc	gagttacatg	atccccatg	ttgtgc	aaaaaaggtag	ctccttcgt	2100
cctccgatcg	ttgtcagaag	taagttggcc	gcagtgat	tttctgtgac	tggtgagtag	2160
ctgcataatt	ctcttactgt	catgcccattc	gtaagatgt	tttctgtgac	tggtgagtag	2220
tcaaccaagt	cattctgaga	atagtgtatg	cgccgaccga	gttgcgttgc	cccgccgtca	2280

-continued

-continued

-continued

tagcggata ctagtggat tgtatggagt ggcatggagc ctaggtggag cctgacagga	6900
cgcacgaccg gctagccgt gacagacat ggggtggctcc tgggtccac cgcgtacaaa	6960
tgttggcc aaagtcttgt cagccttgct tgcgaaccta attcccaatt ttgtcacttc	7020
gcaccccat tgatcgagcc ctaacccctg cccatcaggc aatccaatta agctcgatt	7080
gtctgccttgg ttttagttgg ctctgtcccc tttcggcgtc cacttgacaca aacacaaaca	7140
agcattataat ataaggctcg tctctccctc ccaaccacac tcactttttt gcccgtcttc	7200
ccttgctaac acaaaagtca agaacacaaa caaccacccc aacccctta cacacaagac	7260
atatctacag caatggc	7277

<210> SEQ ID NO 52

<211> LENGTH: 7559

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pPEX10-1

<400> SEQUENCE: 52

gtacgagccg gaagcataaa gtgtaaagcc tgggggtgcct aatgagttagtgcataactcaca	60
ttaattgcgt tgcgtcaact gcccgtttc cagtcggaa acctgtcgat ccagtcgtcat	120
taatgaatcg gccaacgcgc ggggagggc ggtttgcgtt ttggggcgtc ttccgttcc	180
tgcgtcaactg actcgctcgct ctgcgtcgat cggctgcggc gagcggatc agctcactca	240
aaggcgttaa tacggttatac cacagaatca ggggataacg cagggaaagaa catgtgagca	300
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcggtt tttccatagg	360
ctccggccccc ctgacgagca tcacaaaaat cgacgtcaa gtcagaggtg gcgaaacccg	420
acaggactat aaagatacca gggtttccc ctggaaagct ccctcgatcg ctctctgtt	480
ccgaccctgc cgttacccgg atacgtgtcc gcctttctcc ctgcggaaag cgtggcgctt	540
tctcatagtc cagcgtgttagt gtatctcaatgt tggtgttagg tggttcgtc caagtcggc	600
tgtgtgcacg aaccccccgt tcaagcccgac cgctgcgcct tatccgttaa ctatcgat	660
gagtccaaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt	720
agcagagcga ggtatgtagg cgggtctaca gagttctga agtgggtggcc taactacggc	780
tacactagaa ggacagtatt tggtatctgc gctctgtca agccagttac ctccggaaaa	840
agagttggta gctcttgatc cggcaaaacca accaccgtcg gtacgggtgg tttttttgtt	900
tgcgaaggcgc agattacgcg cagaaaaaaa ggatctcaag aagatccccc gatctttct	960
acggggctcg acgctcaatcg gaacgaaaac tcacgttaag ggatgggtt catgagatta	1020
tcaaaaagga tcttcaccta gatccttttta aattaaaaat gaagttttaa atcaatctaa	1080
agtatataatg agttaaacttg gtctgacatgt taccaatgtt taatcgttgc ggcacccatc	1140
tcagcgatct gtctatttcg ttcatccata gttgcgtac tccccgtcgat gtagataact	1200
acgatacggg agggcttacc atctggcccc agtgcgtcata tgataccgcg agacccacgc	1260
tcacccggctc cagatccatc agcaataaac cagccagccg gaaggccgaa ggcgcagaagt	1320
ggtcctgcaat ctttatccgc ctccatccag tctattaatt gttgcgggaa agcttagatgta	1380
agtagttcgat cagttatag tttgcgtcaac gttgttgcctt tgctacagg ctcgtggat	1440
tcacgctcgat cgtttggat gggttcattt acgtccggat cccaaacgtc aaggccagtt	1500

-continued

acatgatccc	ccatgttgtg	caaaaaagcg	gttagctcct	tcggcttcc	gatcggtgtc	1560
agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	cagcaactgca	taattcttctt	1620
actgtcatgc	catccgtaaag	atgctttct	gtgactggtg	agtaactcaac	caagtcattc	1680
tgagaatagt	gtatgcggcg	accgagttgc	tcttgcccg	cgtcaatacg	ggataataacc	1740
gccccacata	gcagaacttt	aaaagtgtc	atcattggaa	aacgttcttc	ggggcgaaaa	1800
ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	1860
tgatcttcag	catctttac	tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	1920
aatgcccaca	aaaaggaaat	aaggcgaca	cggaaatgtt	gaatactcat	actctttctt	1980
tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	catattgaa	2040
tgtatattaga	aaaataaaaca	aatagggggtt	ccgcgcacat	ttccccgaaa	agtgcacact	2100
gacgcgcct	gtacggcgc	attaagcgcg	gcgggtgtgg	tggttacgcg	cagcgtgacc	2160
gctacacttgc	ccagcgcct	agcgccgcgt	ccttgcgtt	tcttcccttc	ctttctcgcc	2220
acgttcgccg	gtttcccg	tcaagctcta	aatcgggggc	tccctttagg	gttccgattt	2280
agtgccttac	ggcacctcg	ccccaaaaaa	cttgattagg	gtgatgggtc	acgttagtgg	2340
ccatgcgcct	gatagacggt	tttgcgcct	ttgacgttgg	agtccacgtt	ctttaatagt	2400
ggactcttgc	tccaaactgg	aacaacactc	aaccctatct	cggtcttattc	ttttgattta	2460
taagggattt	tgccgatttc	ggcctattgg	ttaaaaaatg	agctgattta	acaaaaattt	2520
aacgcgaatt	ttaacaaaat	attaacgott	acaatttcca	ttcgcatttc	aggctgcgca	2580
actgttggga	agggcgatcg	gtgcgggcct	cttcgctatt	acgccagctg	gcgaaagggg	2640
gatgtgctgc	aaggcgatttgc	agttgggtaa	cgccagggtt	ttcccgatca	cgacgtgtta	2700
aaacgacggc	cagtgaatttgc	taatacgaact	cactataggg	cgaattgggt	accggggccc	2760
ccctcgaggt	cgatgggtgc	gataagtttgc	atatcgaaatt	catgtcacaac	aaaccgatct	2820
tcgcctcaag	gaaacctaatt	tctacatccg	agagactgcc	gagatccagt	ctacactgat	2880
taattttcgg	gccaataatt	taaaaaatc	gtgttatata	atattatatg	tattatata	2940
atacatcatg	atgatactga	cagtcatgtc	ccattgtcaa	atagacagac	tccatctgcc	3000
gcctccaaact	gatgttctca	atatttaagg	ggtcatctcg	cattgtttaa	taataaacag	3060
actccatcta	ccgcctccaa	atgatgttct	caaaatata	tgtatgaact	tattttatt	3120
acttagtatt	attagacaac	ttacttgc	tatgaaaaac	acttcctatt	taggaaacaa	3180
tttataatgg	cagttcggtc	attnaacaat	ttatgttagaa	taaatgttat	aaatgcgtat	3240
ggaaatctt	aaatatggat	agcataaaatg	atatctgc	tgcctaattc	gaaatcaaca	3300
gcaacgaaaa	aaatcccttg	tacaacataa	atagtc	agaaatatac	actatcaaag	3360
aacagctatt	cacacgttac	tattgagatt	attattggac	gagaatcaca	cactcaactg	3420
tctttcttc	ttctagaaat	acaggtacaa	gtatgtacta	ttctcatgt	tcataacttct	3480
agtcatatca	tcccacatata	tccttggatt	tctctcaat	gaatgcatt	ctatctgca	3540
aattcaacaa	ttataataag	atataccaaa	gtacgggtat	agtggcaatc	aaaaagcttc	3600
tctgggtgtc	ttctcgattt	tattttatt	ctaatgatcc	attaaaggt	tatatttatt	3660
tcttgggtata	taatcccttt	gttattaca	tgggctggat	acataaaggta	ttttgattt	3720
aatttttgc	ttaaattcaa	tccccctcg	ttcagtgtca	actgtatgg	taggaaatta	3780

-continued

ccatactttt	gaagaagcaa	aaaaaatgaa	agaaaaaaaaa	aatcgatattt	ccaggttaga	3840
cgttccgcag	aatctagaat	gcccgtatgcg	gtacattgtt	cttcgaacgt	aaaagttgcg	3900
ctccctgaga	tattgtacat	ttttgcctttt	acaagtacaa	gtacatcgta	caactatgt	3960
ctactgtga	tgcacccaca	acagttgtt	ttgttttttt	ttgttttttt	tttttctaat	4020
gattcattac	cgtatgtat	acctacttgt	acttgttagta	agccgggta	ttggcgttca	4080
attaatcata	gacttatgaa	tctgcacgg	gtgcgcgtcg	agttactttt	agcttacgtca	4140
tgctacttgg	gtgtatattt	gggatctgtt	cggaaatcaa	cggatgctca	atcgatttcg	4200
acagtaatta	attaagtcat	acacaagtca	gttttcttcg	agcctcata	aagtataagt	4260
agtcaacgt	attagcactg	tacccagcat	ctccgtatcg	agaaacacaa	caacatgccc	4320
cattggacag	atcatgcgga	tacacaggtt	gtgcagttatc	atacataactc	gatcagacag	4380
gtcgctgac	catcatacaa	gctgaacaag	cgctccatac	ttgcacgctc	tctatataca	4440
cagttaaatt	acatatccat	agtcttaacct	ctaacagttt	atcttctggt	aagcctccca	4500
gccagccttc	tggtatecgct	tggcctcctc	aataggatct	cggttctggc	cgtacagacc	4560
tcggccgaca	attatgatat	cggttccgg	agacatgaca	tcctcaacag	ttcggtactg	4620
ctgtccgaga	gcgtctccct	tgtcgtaag	acccaccccg	ggggtcagaa	taagccagtc	4680
ctcagagtcg	cccttaggtc	ggttctggg	aatgaagcca	accacaaact	cggggtcgga	4740
tcgggcaagc	tcaatggtct	gcttggagta	ctcgccagtg	gccagagagc	ccttgcaga	4800
cagctcgcc	agcatgagca	gacctctggc	cagttctcg	ttgggagagg	ggacttaggaa	4860
ctccttgcac	tgggagttct	cgtagtcaga	gacgtccctcc	tttttctgtt	cagagacagt	4920
ttcctcggea	ccagctcgca	ggccagcaat	gattccgg	ccgggtacac	cgtggcggt	4980
ggtgatatacg	gaccaactcg	cgattcggt	acaccgtac	tggtgcgtga	cagtgttgcc	5040
aatatctcg	aacttctgt	cctcgaacag	gaagaaacccg	tgcttaagag	caagttcctt	5100
gagggggagc	acagtgcgg	cgtaggtgaa	gtcgtcaatg	atgtcgat	gggtttgtat	5160
catgcacaca	taaggcctga	ccttateggc	aagctcaatg	agtccttgg	tggtggtaac	5220
atccagagaa	gcacacaggt	tggtttctt	ggctgccacg	agcttgagca	ctcgagcggc	5280
aaaggcggac	tgtggacgt	tagctcgac	tgcgttaggg	ggcattttgg	tggtgaagag	5340
gagactgaaa	taaatttagt	ctgcagaact	ttttatcgga	accttatctg	ggcagtgaa	5400
gtatatgtta	tggtaatagt	tacgagtt	ttgaacttat	agatagactg	gactatacgg	5460
ctatcggtcc	aaatttagaaa	gaacgtcaat	ggctcttgg	gcgtcgccctt	tgccgacaaa	5520
aatgtgatca	tgtgaaacgc	cagcaatgac	gttgcagctg	atattgtgt	cgcccaacccg	5580
cggcggaaac	gcagctgtca	gacccacacg	ctccaaacgaa	aatgtatcg	tcaaagtgtat	5640
ccaagcacac	tcatagttgg	agtcgtactc	caaagggggc	aatgaacgt	cagacagata	5700
ctcgctgaca	ttgtacttag	tcctggaggg	tctttttat	ggataacctc	catgtacgt	5760
gtatccaaga	tctccacgt	ctgtgttctg	tttcctaaat	aatacccaac	aaccttccca	5820
acaaacactt	ggaaagatgc	acttgtgtcg	agatgtcaag	atgttagtac	tgtactggat	5880
ggagagaata	ttaataaata	attgttaccc	aactacatct	tgtcgattga	aagagatacc	5940
cctaagacag	ataggatatc	tgcaacccga	ggaatgaaacc	ccccagcacc	ggcacccttt	6000
ctattaacaa	aatgccaact	gaaatttgaa	aagttcaact	aaacttattt	gacccacaaa	6060

-continued

aactcgtcaa aagtggcgcc	gaaagctggc	aatgtatgac	atccccttgg	aactatgata	6120	
tcccctcgga	atttcgtcc	ccatttgcua	catctacttg	caacgccacg	tctgcttact	6180
aagcaaccca	aatctgcctc	ggctcaaaat	gtggggaaagt	tcacatgcat	tcgctggtga	6240
atctgatctg	acactacaac	tacacaccag	gtccaaacatg	agcgacaata	cgacaatcaa	6300
aaagccgatc	cgacccaaac	cgatccggac	ggaacgcctg	ccttacgctg	gggcccaga	6360
aatcatccga	gccaaccaga	aagaccacta	ctttgagttc	gtgcttgaac	agcatctcg	6420
cacgtttctg	cagaaatgga	agggagttacg	atttatccac	cagtacaagg	aggagctgga	6480
gacggcgtcc	aagtttgcac	atctcggtt	gtgtacgctt	gtgggcttca	agactctcg	6540
agaagagttac	accaatctca	tgtacactat	cagagaccga	acagctctac	cgggggttgt	6600
gagacggttt	ggctacgtgc	tttccaacac	tctgttttca	tacctgttttgc	tgctgttacat	6660
gggcaagttt	cgcgcacaaac	tgtatgcgcga	gtatccccat	ctgggtggagt	acgacgaaaga	6720
tgagcctgtt	cccagcccg	aaacatggaa	ggagcgggtc	atcaagacgt	ttgtgaacaa	6780
gtttgacaag	ttaacggcgc	tggaggggtt	taccgcgatc	cacttggcga	ttttctacgt	6840
ctacggctcg	tactaccgc	tcaagtaacgc	gatctggggc	atcgctttagt	tatggaca	6900
ccgactggac	aagaatgagc	ctcgaatcgg	ttacgagatg	ctcggtctgc	tgatttcgc	6960
ccggtttgcc	acgtcatttgc	tgcagacggg	aagagagttac	ctcgagcgc	tgctggaaaa	7020
gagcgtggag	aaagaggcag	gggagaagga	agatgaaaag	gaagcgggttgc	tgccgaaaaaa	7080
gaagtctgtca	attccgttca	tttggggat	agaagggggag	acggaagaca	agatcgatct	7140
ggaggaccct	cgcacagctca	agttcattcc	tgaggcgtcc	agagcgtgc	ctctgtgtct	7200
gtcatacatt	agtgcgcgg	catgtacgc	atgtggacac	ttttctgtt	gggactgtat	7260
ttccgaatgg	gtgagagaga	agcccgagtg	tcccttgtt	cggcagggttgc	tgagagagca	7320
gaacttggat	cctatcgat	aatgacgagg	tctggatgga	aggactatgc	agcgagacac	7380
agagcatcg	ggaccagaca	cgaccaatttgc	aatcgacaac	actgtgtgc	atacgactgc	7440
acagagggtcc	tgggcatgaa	tatatttttag	cattggagat	atgagtggta	gagcgtata	7500
agtattaatt	gtggaggtat	ctcgatcgat	tgatagagca	atacagtta	tgctgaagc	7559

<210> SEQ ID NO 53

<211> LENGTH: 8051

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pPEX10-2

<400> SEQUENCE: 53

gtacgagccg	gaagcataaa	gtgtaaagcc	tggggtgctt	aatgagttag	ctaaactcaca	60
ttaattcgct	tgcgttcact	gcccgccttc	cagtcggaa	acctgtcg	ccagctgc	120
taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgtt	ttggggctc	ttccgttcc	180
tcgctcactg	actcgctcg	ctcggtcg	cggctggcgc	gagcggat	atgcactca	240
aaggcgtaa	tacggttatc	cacagaatca	ggggataacg	cagggaaagaa	catgtgagca	300
aaaggccagc	aaaaggccag	gaaccgtaaa	aaaggccgcgt	tgctgggtt	tttccatagg	360
ctccgcggcc	ctgacgagca	tcacaaaaat	cgacgtcaa	gtcagaggttgc	gcaaaacccg	420
acaggactat	aaagatacca	ggcggttccc	cctggaaagct	ccctcgatgc	ctctctgtt	480

-continued

ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt	540
tctcatagct cacgctgttag gtatctcagt tcgggttagg tcgttcgctc caagctggc	600
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgctt	660
gagtccaaacc cggtaagaca cgacttacg ccactggcag cagccactgg taacaggatt	720
agcagagcga ggtatgttagg cggtgctaca gagttcttga agtggtgcc taactacggc	780
tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcgaaaaa	840
agagttggta gctcttgatc cggcaaacaacc accaccgctg gttagcggtgg ttttttgtt	900
tgcaaggcgc agattacgcg cagaaaaaaaaa ggatctcaag aagatccccc gatctttct	960
acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggatttgggt catgagatta	1020
tcaaaaagga ttttcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa	1080
agtatatacg agtaaacttg gtctgacagt taccatgtt taatcagtga ggcacctatc	1140
tcagcgatct ctatcttcg ttcatccata gttgcctgac tccccgtcgt gtagataact	1200
acgatacggg agggcttacc atctggcccc agtgctgaa tgataccggc agacccacgc	1260
tcacccggctc cagatttac agcaataaaac cagccagccg gaagggccga ggcgcagaagt	1320
ggtctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga agctagagta	1380
agtagttcgc cagttaatag tttgcgcaac gttgttgcga ttgctacagg ctcgtggtg	1440
tcacgctcgt cgtttggat gggttcattt acgtccgggtt cccaaacgatc aaggcgagtt	1500
acatgatccc ccatgttgcg caaaaaaaaacg gttagctct tcggccctcc gatcgttgc	1560
agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca taatttctt	1620
actgtcatgc catccgtaag atgttttctt gtgactgggt agtactcaac caagtcattc	1680
tgagaatagt gtagccggc acccgagtgc ttttgcggc cgtcaataacgg ggataataacc	1740
gcgcacata gcagaacttt aaaagtgcctc atcattggaa aacgttccccc gggggaaaaa	1800
ctctcaagga tcttaccgcgt gttgagatcc agttcgatgt aacccactcg tgcacccaaac	1860
tgatcttcag catctttac tttcaccaggc gtttctgggt gagcaaaaaac aggaaggcaa	1920
aatgcccgc当地 aaaaaggaaat aagggcgaca cggaaatgtt gaataactcat actcttcctt	1980
tttcaatatt attgaagcat ttatcagggtt tattgtctca tgagccggata cataattgaa	2040
tgtatattaga aaaataaaaca aatagggggtt ccgcgcacat ttccccggaa agtgcaccc	2100
gacgcgcctt gtacggcgcg attaagcgcg cgggggtgtgg tggttacgcg cagcgtgacc	2160
gctacacttg ccacgcgcctt agcgccccgtt ctttcgcctt tcttcccttc ctttctcgcc	2220
acgttcgcgcg gctttcccg tcaagctcta aatcgccccgc tccctttagg gttccgattt	2280
agtgccttac ggcacctega ccccaaaaaa cttgatttgg gtgatgggtc acgttagtggg	2340
ccatgcgcctt gatagacgggtt tttcgcctt ttgacgttgg agtccacgtt cttaatagt	2400
ggactcttgcg tccaaactgg aacaacactc aaccctatct cggcttatttcc ttttgcattt	2460
taagggattt tgccgatttcc ggcctattgg taaaaaaatgg agtgcatttac aaaaaattt	2520
aacgcgaaatt ttaacaaaat attaacgcgtt acaatttcca ttgcgcatttcc aggctgcgc	2580
actgttggga agggcgatcg gtgcggccctt tcgcgtattt acggccagctg gcgaaagggg	2640
gatgtgctgc aaggcgatttcc agttgggtaa cgccagggtt ttcccagtcg cgcacgttgc	2700
aaacgcacggc cagtgaatttgc taatacgcact cactataggg cgaatttgggtt accggggcccc	2760

-continued

ccctcgaggt	cgatgggtgc	gataagcttg	atatcgaatt	catgtcacac	aaaccgatct	2820
tcgcctcaag	gaaacctaatt	tctacatccg	agagactgcc	gagatccagt	ctacactgat	2880
taattttcg	gccaataatt	taaaaaaaatc	gtgttatata	atattatatg	tattatata	2940
atacatcatg	atgatactga	cagtcatgtc	ccattgctaa	atagacagac	tccatctgcc	3000
gcctccaaact	gatgttctca	atatttaagg	ggtcatctcg	cattgtttaa	taataaacag	3060
actccatcta	ccgcctccaa	atgatgttct	caaaatata	tgtatgaact	tatTTTatt	3120
acttagtatt	attagacaac	ttacttgott	tatgaaaaac	acttcctatt	tagaaacaa	3180
tttataatgg	cagttcgttc	atthaacaat	ttatgttagaa	taaatgttat	aaatgcttat	3240
ggaaatctt	aaatatggat	agcataaatg	atatctgcat	tgcctaattc	gaaatcaaca	3300
gcaacgaaaa	aaatcccttg	tacaacataa	atagtcatcg	agaaatatca	actatcaaag	3360
aacagctatt	cacacgttac	tattgagatt	attattggac	gagaatcaca	cactcaactg	3420
tcttcctctc	ttcttagaaat	acaggtacaa	gtatgtacta	ttctcattgt	tcataacttct	3480
agtcaattca	tcccacata	tccttgatt	tctctcaat	gaatgacatt	ctatctgca	3540
aattcaacaa	ttataataag	atataccaa	gtagcggtat	agtggcaatc	aaaaagcttc	3600
tctggtgtgc	ttctcgtatt	tatTTTatt	ctaattgatcc	attaaaggtt	tatatttt	3660
tcttggtata	taatcccttt	gttattaca	tgggctggat	acataaagg	tatTTTgattt	3720
aatttttgc	ttaaattcaa	tccccctcg	ttcagtgtca	actgtatgg	tagaaatta	3780
ccatactttt	gaagaagcaa	aaaaatgaa	agaaaaaaa	aatcgatattt	ccaggttaga	3840
cgttccgcag	aatctagaat	gcggtatgcg	gtacattgtt	cttcgaacgt	aaaagttgcg	3900
ctccctgaga	tattgtacat	tttgctttt	acaagtacaa	gtacatcgta	caactatgtta	3960
ctactgtga	tgcattccaca	acagttgtt	ttgtttttt	ttgtttttt	ttttttaat	4020
gattcattac	cgtatgtat	acctactgt	acttgttagt	agccgggtta	ttggcggttca	4080
attaatcata	gacttatgaa	tctgcacgg	gtgcgtgcg	agttactttt	agcttatgca	4140
tgctacttgg	gtgtatattt	gggatctgtt	cgaaaatcaa	cgatgtc	atcgatttcg	4200
acagtaatta	attaagtcat	acacaagtca	gtttcttcg	agcctatata	aagtataagt	4260
agttcaacgt	attagcactg	tacccagcat	ctccgtatcg	agaaacacaa	caacatgccc	4320
cattggacag	atcatgcgga	tacacaggtt	gtgcagtatc	atacatactc	gatcagacag	4380
gtcgctgac	catcataaa	gctgaacaag	cgctccat	ttgcacgctc	tctatataca	4440
cagttaaatt	acatatccat	agtctaacct	ctaacagtta	atcttctgg	aaggcctccca	4500
gccagccttc	ttgtatcgct	tggcctctc	aataggatct	cggttctggc	cgtacagacc	4560
tcggccgaca	attatgat	cggttccgg	agacatgaca	tcctcaacag	ttcggtactg	4620
ctgtccgaga	gcgtctccct	tgtcgtcaag	acccaccccg	ggggtcgaa	taagecagtc	4680
ctcagagtcg	cccttaggtc	ggttctggc	aatgaagcca	accacaaact	cggggtcgg	4740
tcggccaagc	tcaatggct	gcttggagta	ctcgccagtg	gccagagacg	ccttgcaga	4800
cagtcggcc	agcatgagca	gacctctggc	cagttctcg	ttgggagagg	ggacttagaa	4860
ctccttgtac	ttgggagttct	cgtagtcaga	gacgtcctcc	ttcttctgtt	cagagacagt	4920
ttcctcggca	ccagctcgca	ggccagcaat	gattccgggtt	ccgggtacac	cgtgggcgtt	4980
ggtgatatcg	gaccactcg	cgattcggt	acaccggta	tggtgcgtga	cagtgttgcc	5040

-continued

aatatctgcg aactttctgt cctcgaacag gaagaaaaccg tgcttaagag caagttcctt	5100
gagggggagc acagtgcggc cgttaggtaa gtcgtcaatg atgtcgatat gggtttgat	5160
catgcacaca taaggccga ccttacggc aagctcaatg agctccttgg tgggtgtaac	5220
atccagagaa gcacacaggt tggtttctt ggctgccacg agcttgagca ctcgagcggc	5280
aaaggccggac ttgtggacgt tagctcgacg ttctgtggag ggcattttgg tggtaagag	5340
gagactgaaa taaattttagt ctgcagaact ttttacggaa accttatctg gggcagtgaa	5400
gtatatgtta tggtaatagt tacgagttag ttgaacttat agatagactg gactatacgg	5460
ctatcggtcc aaatttagaaa gaacgtcaat ggctctctgg gcgtcgccctt tgccgacaaa	5520
aatgtgatca ttagtggaaagc cagcaatgac gttcgagctg atattgtgt cggccaaccg	5580
cggccaaaaac gcagctgtca gacccacagc ctccaaacgaa gaatgtatcg tcaaagtgtat	5640
ccaaggcacac tcatacggttgg agtcgtactc caaaggccggc aatgacgagt cagacagata	5700
ctcgctgacg tcttagcgtc atgtattctc aagcttagtc agagagaagg actatggagg	5760
agaaggggag aatttggaaag ggtattttggaa gggactttga aggtcggtg gaagaggtac	5820
ttgaagaggt atttggaaaggt cacgtggaaag aggtattttga agatcacgtg gaagaagttac	5880
ttgttttaca gagaatatcg gggtgatttt gacagtggaa ttgtctccca agtcctaaatc	5940
gtttgacatg ggaggcgtga aaagtccggc taaaaaaaggaa aatatcgaa atcgaaaga	6000
cggaaagaat tactggactc atgttttagta gatctgagca cttcaaattt gaaaatatct	6060
cttcaaacag cagatcggtt ggtcggtggag gtaccatcaa gggtaaaatc aaggctatca	6120
tcaaggccca tatatcgcaa gtttggggaa agataatatg ttcatagtgta atcagggtt	6180
tggatttcct catctaaacgg cattgttaact agtcctggag ggtctttttt atggataacc	6240
tccatgtacg atgtatccaa gatctccacg tactgtgttc tgtttccaa gtaataccca	6300
acaacacctc caacaaacac ttgggaagat gcacttgc tgagatgtca agatgttagt	6360
actgtactgg atggagagaa tattaataaa taattgttac ccaactacat cttgtcgatt	6420
gaaagagata cccctaagac agataggata tctgcaaccc gaggaatgaa ccccccagca	6480
ccggcaccct ttcttattaaac aaaatgccaat ctgaaatttg aaaagttcaa ctaaacttat	6540
ttgaccaccaca aaaactcgtc aaaagtggcg cggaaagctg gcaaatgtat acatccccctt	6600
ggaactatga tatcccctcg gaatcttcgt ccccatggc cacatctact tgcaacgcca	6660
cgtctgctta ctaagcaacc caaatctgcc tcggctcaaa atgtggggaa gttcacatgc	6720
atttcgttgtt gaatctgtatc tgacactaca actacacacc aggtccaaca tgagcgacaa	6780
tacgacaatc aaaagccga tccgacccaa accgatccgg acggaaacgcc tgccttacgc	6840
tggggccgca gaaatcatcc gagccaaacca gaaagaccac tactttgagt ccgtgttga	6900
acagcatctc gtcacgttgc tgcagaaatg gaagggagta cgatttatcc accagtacaa	6960
ggaggagctg gagacggcgt ccaagttgc atatctcggt ttgtgtacgc ttgtgggctc	7020
caagactctc ggagaagagt acaccaatct catgtacact atcagagacc gaacagctct	7080
accgggggtg gtgagacgggt ttggctacgt gctttccaac actctgttcc catacctgtt	7140
tgtgcgtac atgggcaagt tgccgcggcc ggaaacatgg aaggagccgg tcatcaagac	7200
gtacgacgaa gatgagcctg tgcccagccc ggaaacatgg aaggagccgg tcatcaagac	7260
gtttgtgaac aagtttgaca agttcacggc gctggagggg tttaccgcga tccacttggc	7320

-continued

gattttctac	gtctacggct	cgtactaccca	gctcagtaag	cgatctggg	gcatgcgtta	7380
tgtatttggaa	caccgactgg	acaagaatga	gcctcgaatc	ggttacgaga	tgctcggtct	7440
gctgattttc	gccccgtttg	ccacgtcatt	tgtgcagacg	ggaagagagt	acctcgagc	7500
gctgctggaa	aagagcgtgg	agaaagaggc	aggggagaag	gaagatgaaa	aggaagcggt	7560
tgtgccgaaa	aagaagtctgt	caattccgtt	cattgaggat	acagaagggg	agacggaaga	7620
caagatcgat	ctggaggacc	ctcgacact	caagttcatt	cctgaggcgt	ccagagcgtg	7680
cactctgtgt	ctgtcataca	ttagtgcgcc	ggcatgtacg	ccatgtggac	acttttctg	7740
ttgggactgt	atttccgaat	gggtgagaga	gaagcccgag	tgtcccttgt	gtcggcaggg	7800
tgtgagagag	cagaacttgt	tgcctatcag	ataatgacga	ggtctggatg	gaaggactag	7860
tcagcgagac	acagagcatac	agggaccaga	cacgaccaat	tcaatcgaca	acactgtgt	7920
gcatagcagt	gcacagaggt	cctggcata	aatatatttt	agcattggag	atatgagtgg	7980
tagagcgtat	acagtattaa	ttgtggaggt	atctcgatgc	attgatagag	caatacagtt	8040
actgctgaag	c					8051

<210> SEQ_ID NO 54

<211> LENGTH: 15877

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pZKL1-2SP98C

<400> SEQUENCE: 54

aaatgatgtc	gacgcagtag	gatgtcctgc	acgggtcttt	ttgtggggtg	tggagaaaagg	60
ggtgcttggaa	tcgatgaaag	ccggtagaac	cgggctgttt	gtgcttggag	atggaaagccg	120
gtagaacccgg	gctgcttgggg	gggatttggg	gcccgtgggc	tccaaagagg	ggtaggcatt	180
tcgttgggtt	tacgtatgg	ccgcattttg	gtcctgcgcg	catgtcccat	tggtcaaat	240
tagtccggat	aggagactta	tcaagccaaatc	acagcgcgg	atccacctgt	aggttgggtt	300
gggtggggagc	acccctccac	agagtagagt	caaacagcag	cagcaacatg	atagttgggg	360
gtgtgcgtgt	taaaggaaaa	aaaagaagct	tgggttataat	tcccgetcta	tttagaggtt	420
gcgggataga	cggcgacgga	gggcaatggc	gctatggaaac	cttgcggata	tccatacgcc	480
gcggcggact	gcgtccgaaac	cagctccagc	agcgaaaaat	ccggccatt	gagccgactg	540
cgaccccgcc	aacgtgttt	ggcccaacgca	ctcatgtcat	gttgggttg	ggaggccact	600
ttttaagtag	cacaaggcac	ctagctcgca	gcaagggtgtc	cgaaccaaag	aagcggctgc	660
agtggtgcaa	acggggcgga	aacggcgaaa	aaaagccacg	ggggcacgaa	ttgaggcactg	720
ccctcgaatt	tgagacgagt	cacggccccca	ttcgccccgcg	caatggctcg	ccaaacgcccc	780
gtcttttgc	ccacatcagg	ttaccccaag	ccaaaccttt	gtgttaaaaa	gcttaacata	840
ttataccgaa	cgtaggttt	ggcgcccttg	ctccgtctgt	ccaaggcaac	atttatataa	900
gggtctgcata	cggcggtca	attgaatctt	ttttcttctt	ctcttctctta	tattcattct	960
tgaattaaac	acacatcaac	catggcgta	ttcattaaac	aggagcagct	tccggctctc	1020
aagaagtaca	agtactccgc	cgaggatcac	tgcgtcatct	ccaacaacat	tctgcgcggcc	1080
ttctggcgac	agtttgcata	aatctccct	ctgtggatgg	cccccaacat	ggtgactctg	1140
ctgggcttct	tctttgtcat	tgtgaacttc	atcaccatgc	tcattgtga	tcccacccac	1200

-continued

gaccgcgagc ctcccgatg ggtctaccc acctacgctc tgggtctgtt ccttaccag 1260
acatttgatg cctgtgacgg atcccatgcc cgacgaactg gccagagtgg acccccttgg 1320
gagctgtttg accactgtgt cgaeccatg aatacccttc tgatttcac ggtgtgggt 1380
tccaccaccc atatgggata taacatgaag ctactgattg tgcaagattgc cgctctcgga 1440
aacttctacc tgtcgacccg ggagacctac cataccggaa ctctgtaccc ttctggcttc 1500
tctggctctg ttgaaggat cttgattctg gtggctctt tcgtccctac cttcttcaact 1560
ggtccccaaacg tgcacgctct gacccgtctac gaggctctt ccgagtcac cacttcgtg 1620
ctgcctgcac gcttccctgga cgtcaccatc acccagatct acattggatt cggagtgctg 1680
ggcatgggtgt tcaacatcta cggcgccctgc ggaaacgtga tcaagttacta caacaacaag 1740
ggcaagagcg ctctccccgc catttcgga atcgccccct ttggcatctt ctacgtcgcc 1800
gtctttgcctt gggccatgt tgctccctg ctctctcca agtacccat cgtctatctg 1860
tttgcatttgcctt tgccatgca gtcggccaga tgattttgc ccacatctcg 1920
cttgctccct ttccccactg gaacgtgctg ctcttctcc ctttggggg actggcagtg 1980
caactacatttgc caccctgtt tggctgggac gcccatacg tgctgggtaa cactcttcc 2040
acctgttttgc ggcgcacccct ctccatttac gccttcttgc tgcttgagat catcgacgag 2100
atcacaactt acctcgatata ctgggtgtctg cgaatcaagt accctcagga gaagaagacc 2160
gaataaggcgcc cccatggag cgtgtgttct gactcgatgt tttctatggg gttgtgagtg 2220
tttagtagaca tgatgggtttt atatatgtat aatgaataga tggatgttttgc atttgcacga 2280
tggaaatttgcgaa aactttgtaa acgtacatgg gaatgtatga atgtgggggt tttgtgactg 2340
gataactgac ggtcagtgaa cggcggttcaa ataaatatccaa agagatgcga gaaactttgg 2400
gtcaagtgaa catgtccctct ctgttcaagt aaaccatcaa ctatggtag tatatttagt 2460
aaggacaaga gttgagattt tttggagatcc tagaaacgtt aaaaacgtt ccaagatcaa 2520
atttagtagag taatacgggc acgggaatcc attcatagtc tcaatccctgc aggtgagtt 2580
attaatcgat cttggcgtaa tcatggtcat agtgcatttgc tggatgttttgc tggatgttttgc 2640
tcacaattcc acacaacgtt cgtatgttgc tagacaacaa tcagaacatc tccctccctt 2700
tataatcaca caggccagaa cgcgttcaaac taaagcgctt tggacactat gttacattgg 2760
cattgatttgc actgaaacca cagttccctt cgcctgttgc gagcaatggg tggatgttttgc 2820
agtcaacttc actagaagag cgggttctatg cttgttcaag atcatatcat aaactcactc 2880
tgttattaccc catctataga acacttgc tgaatggcg gaaacattcc gctatatgc 2940
cctttccaca ctaatgcggaa gatgtgcattt tcacacccgtt agtaagactg gttccgactt 3000
ccgttgcattt gggatgttgc acctcgatata tgcaacatc cccacatatacactcttac 3060
acaggccatataatctgtt cattttactaa atatttaatgtt ctatgcaccc gtttgcatttgc 3120
aaggccgacg gatgttgcattt tcttagttcc gccaatccaa gaaccaactg tggatgttttgc 3180
gggtgttagccctt atggccacaca gaccaaaatg gaaaatagatc acatccgggg ttcgacccgt 3240
gggtgcctcgaa gcaacacccct tggatgttgc tggatgttttgc aacccatccaa 3300
acatcgcaac gatccgggttgc gacccgttgc acgtatccaa tggatgttttgc tggatgttttgc 3360
aacaatggcg gttgacaaacca caagggaaatg ccggaaaatg ttcttcttgc acttgcatttgc 3420
agagttgttgc tggatgttttgc gggatgttgc accatttgc tggatgttttgc tggatgttttgc 3480

-continued

gctgcattaa tgaatcgccc aacgcgcggg gagaggcggt ttgcgtattg ggccgtcttc	3540
cgcttcctcg ctcaactgact cgctgcgctc ggtcgttcgg ctgcggcggag cggtatcagc	3600
tcactcaaag gcggtataac ggttatccac agaatcaggg gataacgcag gaaagaacat	3660
gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgtttt	3720
ccataggctc cgcggccctg acgagcatca caaaaatcga cgctcaagtc agagggtggcg	3780
aaacccgaca ggactataaa gataccaggc gtttccccc ggaagctccc tcgtgcgctc	3840
tcctgttccg accctgccc ttaccggata cctgtccggc tttctccctt cgggaagcgt	3900
ggcgctttct catagtctac gctgttagtta tctcagttcg gtgttagtgc ttgcgtccaa	3960
gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgccgcctt ccggtaacta	4020
tcgtctttagt tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa	4080
caggatttgc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggctaa	4140
ctacggctac actagaagaa cagtatttgg tatctgcgtc ctgctgaagc cagttacctt	4200
cggaaaaaga gttggtagct cttgatccgg caaacaacc accgctggta gcgggtggtt	4260
ttttgtttgc aacgacgaga ttacgcgcag aaaaaaaagga tctcaagaag atccctttgat	4320
ctttcttacg gggtctgacg ctcaagtggaa cgaaaactca cgtaaggga ttttggtcat	4380
gagattatca aaaaggatct tcacctagat ctttttaat taaaaatgaa gtttttaatc	4440
aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc	4500
acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcggtta	4560
gataactacg atacgggagg gcttaccatc tggcccaagt gctgcaatga taccgogaga	4620
cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg	4680
cagaagtggc cctgcaactt tatccgcctc catccagttt attaatttggt gcccggaaagc	4740
tagagtaagt agttcgccag ttaatagttt ggcacacgtt gttgcatttgc ttagggcat	4800
cgtgggtgtca cgetcgtegt ttggatggc ttcatcagc tccgggtccc aacgatcaag	4860
gcgaggatca tgatccccca tgggtgtcaaaa aaaaagggtt agtccttcg gtcctccgt	4920
cgttgcaga agtaagttgg cgcagtttgc atcactcatg gttatggcag cactgcataa	4980
ttctcttaact gtcatgccat ccgtaaatgtt cttttctgtg actgggtgatc actcaaccaa	5040
gtcattctga gaatagtgtt tgccggcacc gagttgtctt tgccggcgt caatacgga	5100
taatacccgcc acatcgca gaactttaaa agtgcgtatc attggaaaac gttttccgg	5160
gcgaaaactc tcaaggatct taccgcgtt gatccaggatc tcgtgttaac ccactcggtc	5220
acccaaactca tcttcagcat cttttactttt caccagegtt tctgggtgag caaaaacagg	5280
aaggcaaaaat gcccggaaaaa agggaaataag ggcgacacgg aaatgttga tactcataact	5340
tttcctttttaatattttaat gaaggatca tcaagggtttat tgcgttcatga gcccgtatcat	5400
atttgaatgtt attagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt	5460
gccacactgtat gcccgtgtggaa ataccgcaca gatgcgttaag gagaaaataac cgcacatcgaa	5520
aattgttgcgtt gttatattttt tggtaaaaattt cgcgttaat ttttggtaaa tcaagtcatt	5580
tttttaaccaat tagggccggaaa tcggcaaaaat cccttataaa tcaaaaagaat agaccgagat	5640
agggttgcgtt gttgttccag tttggaaacaa gagtccacta ttaaagaacg tggactccaa	5700
cgtcaaaagggg cggaaaaaccgg tctatcaggg cgcgttccca ctacgtgaac catcaccctta	5760

-continued

atcaagttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc	5820
ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaaggaag ggaagaaaagc	5880
gaaaggagcg ggcgcgttaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac	5940
acccgcccgcg cttaatgcgc cgctacaggg cgctgtccatt cgccattcag gctgcgcac	6000
tgttggaaag ggcgatcggt gccccctct tcgctattac gccagctggc gaaaggggga	6060
tgtgctcaaag ggcgattaag ttgggtaacg ccagggtttt cccagtcacg acgttgaaa	6120
acgacggcca gtgaattgtat acacgtacta ctataggcg aattgggccc gacgtcgcat	6180
gcttagaaagt gaggattaca agaagccctcgat gatgaacgta ctcagcggt	6240
ggtcaagcat ttcgaccgtc gaatcgacga ggtgttcaacc tttgacaagc gagggttccc	6300
aattgatcac gttctcgagt ttttcaatc ttctctcaac atctctcgatc atgaactatc	6360
tctgttgcac aacgtgtcac ccactgttcc tcgaacgccc ttctccaggt ttggctgaa	6420
catcttcgat ctcaaactga cccccgcagt gatcaatgtt gccatgccac tgccatgcg	6480
gtggaaacat ccctggaggg attctcgag ctctacacaa tgcaatgtt gtgtcgagt	6540
actctctacc ttgctcaat gacttattgt gctactactg cactcatgtc tgcatatgt	6600
gccctactgc accccaaatt tggtgatctg attgagacag agtaccctct tcagctgatt	6660
cagaagatca tcgcaacat gaatgtatgtt gttgaccagg caggctgtt tagtacgtc	6720
cttcacttca agttcatttc tcatctgtttt ctgttttact ttgacaggca aatgaagaca	6780
tggtaacact tcatggggc caagaacgcg atttcacccca gagacacccga agtgcctgaa	6840
atccctggctg cccccattga taacatcgaa aactacggta ttccggaaag tggatata	6900
acctttccccc agtttgcgtc tggatattgtt gatggatataa tcccccttaat taactcacct	6960
gcaggattga gactatgaat ggattcccggtt gcccgttataa ctctactaat ttgatctgg	7020
aacgcgaaaa ttcgtttca ggactccaaat gaatctcaac tcttgcctt actaaatata	7080
ctaccatcgat ttgatggttt acttgaacag agaggacatg ttcaatttgc ccaaaatttc	7140
tcgcatctct tggatatttg aacaacggcg tccactgacc gtcagttatc cagtcacaaa	7200
ccccccacat tcatacatcc ccatgtacgt ttacaaatgtt ctcaatttca tcgtgoaaat	7260
caaaatcaca tctattcatt catcatatataa aacccatca tggtaactaa cactcacaac	7320
tccatagaaa acatcgactc agaacacacg ctccatgcgg ccgtttaggc aacgggcttgc	7380
atgacacgcgg gaggagtgcc cacattgtt cgggttgcgaa agaacaggac acccttgc	7440
gctccctcggtt caccaggcgaa ggggttcaacc cactggcaca ttcgtgcaga tcggatcatgt	7500
gctcgaatgtt atcctcgagg accgttctgg acatcgactc gatagtgtt gcccgttata	7560
ggtttatgg cctcggttgc ttgttgcggca ttgttgcggaa gatggaaaga gacgtgtgt	7620
tgcaggacgt ggttgcgtat aatggcggtt agcagatgac gtccatgtt gcccgttata	7680
cggtcgatgg ttgcagcgcc acctcgacaa aagttccact cgttgcgtt gtagtggggaa	7740
agagtaggtt ctgtgtgtgtt cggaaagggtt atggcgacga gccagttgtt aacccacaac	7800
tagggaaacga agtaccatgtt ggccatgtt tagatccga acttctgttac gagaagttac	7860
agagcggtgg ccataagacc aatgccaatgtt tcggagagca cgttgcgtt ggcgtcgctg	7920
tttcccttgc ctcgacccttc tcatgttgcgtt ttttgcgtt gtagtgggtt aacgttggta	7980
tttcccttgc ctcgacccttc tcatgttgcgtt ttttgcgtt gtagtgggtt aacgttggta	8040

-continued

atgagatagt	tggcccaacc	gaccagttgc	tgaagcacaa	gcatgagcag	ggtgaaaagca	8100
ggagtttcct	cggtaagatg	ggcgagttcg	tgggtcatct	tgccgagtcg	agttagcttc	8160
tgctctcggt	ttcgaggaac	gaagaccatg	tctcgctcca	tgtttccagt	ggccttgtga	8220
tgcttccgg	gggagatgg	ccagctgaag	taggaaacaa	gcaggaaaga	gtgaagcacc	8280
cagccagtaa	tgtcggtat	gattcgggaa	tcggagaaag	caccatgtcc	acactcgtgg	8340
gcaatgaccc	acagtccagt	accgaagagt	ccctgaagaa	cggtgtacac	agccacaga	8400
ccggctcgag	caggagtgg	gggaatgtac	tcgggtgtca	caaagttgta	ccagatgctg	8460
aaagtggtag	tcaggaggac	aatgtctcg	agaatgttagc	cgtatccctt	gagagcagat	8520
cgcttgaagc	agtgcgggg	aatagcgttg	tagatgtcct	tgtggtaaa	gtcgaaaact	8580
tgcgacttgt	tgcggttaggt	atccagcatg	acaccgtact	cggaacttggg	cttggcaatg	8640
tccaccccg	acatggaaaga	cagcgatgta	gaggaggccg	agtgtctggg	agaatcgag	8700
ggagagacgg	cagcagactc	cgagtcggc	acagtgggtg	aagtgcgggt	tcgtcgagg	8760
gcagggttct	gttggggcag	agccgaggtg	gaggccatgg	ccattgtgt	agatatgtct	8820
tgtgtgtaa	gggggtgggg	tgttgggtt	tgttcttgc	ttttggtaa	gcaaggaaag	8880
acggggcaaaa	aagtgagtgt	ggttgggagg	gagagacgag	ccttataat	aatgtttgtt	8940
tgtgtttgt	caagtggacg	ccggaaacggg	caggagccaa	actaaacaag	gcagacaatg	9000
cgagcttaat	tggattgcct	gatgggcagg	ggtagggct	cgatcaatgg	gggtgcgaag	9060
tgacaaaatt	ggggattagg	tgcgaagca	aggctgacaa	gactttggcc	caaacatttg	9120
tacgcgggtgg	acaacaggag	ccacccatcg	tctgtcacgg	gctagccgg	cgtgcgtcct	9180
gtcaggctcc	acctaggctc	catgccactc	catacaatcc	caactgtgt	ccgcgtaggcc	9240
gcttttagct	cccatctaag	acccccccaa	aacctccact	gtacagtgc	ctgtactgt	9300
tggcgatcaa	gggcaaggga	aaaaggcgc	aaacatgcac	gcatgaaatg	acgttagttaa	9360
ggcggtacta	gactgaaaag	tggcacattt	cgcggtgc	aagggtccta	ggtgcgttcc	9420
gcgagctggg	cgecaggeca	agccgcttca	aaacgcctct	ccgactccct	ccageggcc	9480
ccatatcccc	atccctctcc	acagcaatgt	tgttaagcct	tgcaaaacaa	aaaatagaaa	9540
ggctaataag	cttccaaat	tgtgggtac	gtgcataac	gcaacaatga	gcgcaaaaca	9600
acacacacac	acagcacaca	gcagcattaa	ccacgatgaa	cagcatgaat	tccttacct	9660
gcaggataac	ttcgtataat	gtatgtata	cgaagttatg	atctctct	ttagttttc	9720
cataacaagt	tcttctgcct	ccaggaagtc	catgggttgt	ttgatcatgg	ttttgggtgt	9780
gtggtagtgc	agtgggtggta	ttgtgactgg	ggatgttagt	gagaataagt	catacacaag	9840
tcaagttct	tgcgacccctca	tataagtata	agtagttcaa	cgtattagca	ctgtacccag	9900
catctccgta	tgcgagaaaca	caacaacatg	ccccattgga	cagatcatgc	ggatacacag	9960
gttgtgcagt	atcatacata	ctcgatcaga	caggctgtct	gaccatcata	caagctgaac	10020
aagcgctcca	tacttgcacg	ctctctat	acacagttaa	attacatata	catagtctaa	10080
cctctaacag	ttaatcttct	ggtaagcctc	ccagccagcc	ttctggatc	gcttggcc	10140
ctcaatagga	tctcggttct	ggccgtacag	acctcgccg	acaattatga	tatccgttcc	10200
ggttagacatg	acatccctaa	cagttcggt	ctgctgtccg	agagegtctc	ccttgcgtc	10260
aagacccacc	ccgggggtca	gaataagcca	gtcctcagag	tcgccttag	gtcggttctg	10320

-continued

ggcaatgaag ccaaccacaa actcggggtc ggatcgggca agctcaatgg tctgcttgg 10380
 gtactcgcca gtggccagag agcccttgca agacagctcg gccagcatga gcagacactct 10440
 ggccagcttc tcggtgggag aggggactag gaactccttg tactgggagt tctcgtagtc 10500
 agagacgtcc tccttcttctt gttcagagac agtttcctcg gcaccagctc gcaggccagc 10560
 aatgattccg gttccgggta caccgtgggc gttggtgata tcggaccact cggcgattcg 10620
 gtgacaccgg tactgggtct tgacagtgtt gccaatatct gcgaacttcc tgcctcgaa 10680
 caggaagaaa ccgtgcttaa gagcaagttc cttgaggggg agcacagtg cggcgttaggt 10740
 gaagtctca atgatgtcga tatgggtttt gatcatgcac acataaggtc cgaccttac 10800
 ggcaagctca atgagctctt tgggtgggtt aacatccaga gaagcacaca ggttgggttt 10860
 cttggctgcc acgagcttga gcactcgacg ggcaaaggcg gacttgggta cgtagctcg 10920
 agcttcgtag gaggcattt tgggtggtaa gaggagactg aaataaaattt agtctgcaga 10980
 actttttatc ggaaccttat ctggggcagt gaagtatatg ttatggtaat agttacgagt 11040
 tagttgaact tatagataga ctggactata cggctatcg tccaaattag aaagaacgtc 11100
 aatggctctc tggcgctcgc ctttgcgcac aaaaatgtga tcatgtgaa agccagcaat 11160
 gacggtgcag ctgatattgt tgcggccaa cgcgcgcgaa aacgcagctg tcagacccac 11220
 agcctccaac gaagaatgtta tcgtcaaagt gatccaagca cactcatagt tggagtctga 11280
 ctccaaaggc ggcaatgacg agtcagacag atactcgctcg acgcgataac ttctgtataat 11340
 gtatgtatac cgaagtttac gtacgatagt tagtagacaa caatcgatcg aggaagagga 11400
 caagcggctg cttcttaagt ttgtgacatc agtatccaag gcaccattgc aaggattcaa 11460
 ggcttgaac ccgtcatttg ccattctgtaa cgctggtaga caggttgcgc ggttccctac 11520
 ggccctccacc tgggtcaatc ttctcaagct gctgactat caggacattt atcaacttcg 11580
 gaagaaactt ttgtatgcca ttgcgtaca tgctggtttc gatgggtctt agaggaacgc 11640
 atatacagta atcatagaga ataaacgata ttcatattt aaagtagata gttgaggtag 11700
 aagttgtaaa gagtgataaa tagcggccgc tcactgatc tttttggctc ctttgcgtt 11760
 tcggacgatg taggtctgca cgtagaagtt gaggaacaga cacaggacag taccacgt 11820
 gaagtagttt aaaaaccgc caaacattct cattccatct tgcggtagc agggaaatgtt 11880
 ccggtaatcc cagacgatgt agaagccaac gttgaactga atgatctgca tagaagtaat 11940
 cagggacttg ggcataggga acttgagctt gatcagtcgg gtccaaatgt agccgtacat 12000
 gatccagtgta atgaagccgt tgagcagcac aaagatccaa acggcttcgt ttggtagtt 12060
 gttagacacg ccatgttca taggatgtcc gagatggtaga aagaactgca accaggtcag 12120
 aggttgcacc atgaggggca gatagaagga gtcaatgtac tcgaggaact tgctgaggt 12180
 gaacagctga tggtgattc ggaagacatt gttgtcgaaa gccttctcgc agttgtcgga 12240
 catgacacca atgggttaca tggcgtaggc catagagagg aaggagccca gcgagtat 12300
 ggacatgacg aggttgtatg tggtaacac aaacttcatt cgagactgac ctttgggtcc 12360
 gagaggacca agggtaact tcaggatgac gaaggcgatg gagaggtaca gcacctcgca 12420
 gtgcgaggca tcagaccaga gctgagcata gtcgaccccttg ggaagaacct cctggccaaat 12480
 ggagacgatt tgcgtcacga cttccatggt tgcgtatggat ggtggtaga atgggtgggtt 12540
 gttagggaaaga atcaaaggcc ggtctcggttcccggtatata tatatatata 12600

-continued

tacgatcctt	cgttacacctcc	ctgttctcaa	aactgtgggtt	tttcgttttt	cgttttttgc	12660
ttttttgtat	tttttttaggg	ccaactaagc	ttccagattt	cgctaatcac	ctttgtacta	12720
attacaagaa	aggaagaagc	tgatttagagt	tgggcttttt	atgcaactgt	gctactcctt	12780
atctctgata	tgaaagtgtta	gaccatca	catcatgtca	tttagagttt	gtaatactgg	12840
gaggatagat	aaggcacgaa	aacgagccat	agcagacatg	ctgggtgttag	ccaaggcagaa	12900
gaaagtatagat	gggagccaat	tgacgagcga	gggagctacg	ccaatccgac	atacgacacg	12960
ctgagatcgt	cttggccggg	gggtacctac	agatgtccaa	gggtaagtgc	ttgactgtaa	13020
ttgtatgtct	gaggacaaat	atgtatgtacg	ccgtataaaag	tcataccagg	caccagtgcc	13080
atcatcgAAC	cactaactct	ctatgataca	tgccctccgg	attattgtac	catgcgtcgc	13140
tttggttacat	acgtatcttgc	cctttttctc	tcaaaaaactc	cagactttgg	ctattggtgc	13200
agataaAGCCC	ggaccatagt	gagtcttca	cactctgttt	aaacaccact	aaaacccac	13260
aaaatatac	ttaccgaata	tacagatcta	ctatagagga	acaattgccc	cggagaagac	13320
ggccaggccg	cctagatgac	aaattcaaca	actcacagct	gacttttgc	cattgcact	13380
agggggggggc	ctttttatata	ggccaagccaa	agctctccac	gtcggttggg	ctgcacccaa	13440
caataaatgg	gtagggttgc	accaacaaag	ggatgggatg	gggggttagaa	gatacggagga	13500
taacggggct	caatggcaca	aataagaacg	aatactgcca	ttaagactcg	tgatcoagcg	13560
actgacacca	ttgcatcata	taagggcctc	aaaactacct	cggaactgct	gctgtatct	13620
ggacaccaca	gaggttccga	gcacttttagg	ttgcacccaa	tgtccacca	ggtgcaggca	13680
gaaaacgctg	gaacagcgtg	tacagtttgc	cttaacaaaa	agtggggcg	ctgaggtcga	13740
gcagggtgg	gtgactttgtt	atagcctta	gagctgcgaa	agcgcgtatg	gattttggctc	13800
atcaggccag	attgagggtc	tgtggacaca	tgtcatgtta	gtgtacttca	atgcocccct	13860
ggatatagec	ccgacaatacg	gcccgtggct	catttttttg	ccttccgcac	atttccattg	13920
ctcggtaccc	acaccttgc	tctcctgcac	ttgccaacct	taatactgg	ttacattgac	13980
caacatctta	caagccccgg	gcttgcgt	ggtatataata	aacagtggct	ctcccaatcg	14040
gttgcagtc	tctttttcc	tttcttccc	cacagattcg	aatctaaac	tacacatcac	14100
acaatgcctg	ttactgacgt	ccttaagcga	aagtccgggt	tcatcgtcg	cgacgatgtc	14160
cgagccgtga	gtatccacga	caagatcgt	gtcgagacga	cgcgtttgt	gtaatgacac	14220
aatccgaaag	tcgctagcaa	cacacactct	ctacacaaac	taacccagct	ctccatgg	14280
aggcttc	gacaggctct	gcccctcg	atcgacggaa	aggtgtacga	cgtctccgct	14340
tgggtgaact	tccaccctgg	tggagctgaa	atcattgaga	actaccagg	acgagatgt	14400
actgacgcct	tcatggttat	gcactctcg	gaagccttcg	acaagctcaa	gcgaatgccc	14460
aagatcaacc	aggcttccga	gtgcctccc	caggctgcgc	tcaacgaagc	tcaggaggat	14520
ttccgaaagc	tccgagaaga	gtctatgtcc	actggcatgt	ttgacgcctc	tccctctgg	14580
tactcgtaca	agatcttgc	caccctgggt	cttgcgtgc	ttgccttctt	catgcgtgg	14640
cagtaaccacc	tgtacttcat	ttgtgcgtc	gtgcgtggta	tgcactacca	gcaaatgg	14700
tggctgtctc	atgacatctg	ccaccaccag	accttcaaga	accgaaaactg	gaataacgtc	14760
ctgggtctgg	tcttggcaa	cgactccag	ggcttctccg	tgacctgg	gaaggacaga	14820
cacaacgccc	atcattctgc	taccaacgtt	cagggtcacg	atcccgacat	tgataaacctg	14880

-continued

cctctgtctcg	cctggtccga	ggacgatgtc	actcgagctt	ctccccatctc	ccgaaagctc	14940
attcagttcc	aacagacta	tttctggtc	atctgtattc	tcctggattt	catctggtgt	15000
ttccagttctg	tgctgaccgt	tcgatccctc	aaggaccggag	acaaccagtt	ctaccgatct	15060
cagtacaaga	aagaggccat	tggactcgct	ctgcactgga	ctctcaagac	cctgttccac	15120
cttcttctta	tgccctccat	cctgacccctcg	atgctggtgt	tctttgttcc	cgagtcgtc	15180
ggtgtggcttcg	gaattgccat	cgtggtcttc	atgaaccact	accctctgga	gaagatcggt	15240
gattccgtct	gggacggaca	tgggttctct	gtgggttcaga	tccatagac	catgaacatt	15300
cgacgaggca	tcattactga	ctggttcttt	ggaggccctga	actaccagat	cgagcaccat	15360
ctctggccca	ccctgtctcg	acacaacccctc	actggcgttt	cctaccaggat	ggaacagctg	15420
tgccagaagc	acaacccccc	ctaccgaaac	cctctggccc	atgaaggatct	cgtcatccctg	15480
ctccgatacc	tgtcccagtt	cgtcgaatg	gccgagaagc	agccccgtgc	caaggtctag	15540
taagcggccg	catgagaaga	taaatatata	aatacattga	gatattaaat	gcgctagatt	15600
agagagecctc	atactgctcg	gagagaagcc	aagacgagta	ctcaaagggg	attacaccat	15660
ccatatccac	agacacaagc	tggggaaagg	ttctatatac	actttccgga	ataccgtatg	15720
ttccgatgtt	atcaatgggg	gcagccagga	tttcaggcc	ttcggtgtct	cgggtgtaaa	15780
tggcggttctt	ggcctccatc	aagtctgtacc	atgtcttcat	ttgcctgtca	aagtaaaaca	15840
qaqcaqatq	aaqaatqaac	ttqaqatqaa	qqaattt			15877

```
<210> SEQ ID NO 55
<211> LENGTH: 15812
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pZKL2-5U89GC
```

<400> SEQUENCE: 55
gtacgttata atttgaacag tgaaaggcta cagtaacaga agcagttgt aacttcattc 60
cggttattct gtactacagt accccactac gccgcttccg ctgacactgt tcaacccaaa 120
aactacatct gcgtgcgcgtg tgtaaggcta tcatcagata catactgttag attctgtaga 180
tgcgAACCTG ctgttatcat atacatcccc ctcccccgtga cctgcacaag caagaatgt 240
gacattgata ttgctgctta tcttagtggcg aggatgtgaa agccgagact caaacattc 300
ttttactctc ttgttccctga ccagacctgg cggagattac gccagttatgttgcagg 360
tctgagacaa gccttggaaaca gccaacattt attttcgaa gcgagaaaaca tgccacaccc 420
cggtcacgttc agagatgtat atgatttgtt ttgcagatgtt cagttacccccc ccccccccc 480
ccaaatgtaaac cagtttactt cacaccatcc tcattcaag cgttacactg attacgcgc 540
catcaacgcg acgtatgggg gactgtgtat ctgtatcaat caaatgtacta caaaaatgc 600
aataatgtaaag agcaaaacgac aaaaaagaaa caggtaacc aatcccgctt caatgtctca 660
ccacaatccca gcactgtttc tcattaccc tcctccctaa tttcagatgtt gcatcagggt 720
ccttgcgttgc ggcggcgtt cattatgtaa tcggccaaacg cgccggggaga ggcgggttgc 780
gtatggggcg ctcttcgcgt tcctcgctca ctgactcggt ggcgttgcgttgcgttgc 840
ggcgagcggtt atcagtcac tcaaaggcggtt taatacgggtt atccacagaa tcaggggata 900
acggcaggaa gaacatgtgtaa gcaaaaggcc agcaaaaggcc caggaaccgtt aaaaaggccg 960

-continued

cgttgctggc	gttttccat	aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	1020						
caagtca	gag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcg	tttccccctggaa	1080					
gctccctcg	tg	cgctctct	gttccgaccc	tgccgcttac	cgat	gatacctc	tccgcctt	1140				
tcccttcgg	aa	gacgtggcg	cttctcata	gat	tcacgctg	tagtatctc	agttcggtgt	1200				
aggtcgttc	ct	ccaagctg	ggctgtgtgc	acgaaccccc	cgttca	gagcccc	gaccgtgc	1260				
ccttatccgg	ta	actatcg	cttgagtc	accccg	taag	acacgactt	tcgccc	1320				
cagcagccac	tg	gtaacagg	at	tagcagag	cgagg	atgt	aggcggtgc	acagagttct	1380			
tgaagtgg	tg	ctaactac	ggt	actaca	gaaga	acagt	tttggat	atc	tgcgct	1440		
tgaaggcc	at	ccat	ttcg	aaaag	tttgc	aa	tttggat	ccat	aaaccaccg	1500		
ctggtagcgg	tg	gtt	ttttttt	tttgc	aa	ggc	agaaaa	aaaggat	ctc	1560		
aagaagatcc	ttt	gat	ttt	tctacgg	gg	acgtt	actac	gtt	acgtt	1620		
aagggat	ttt	ttt	ttt	tttgc	gg	atctt	ccat	tttgc	tttgc	1680		
aatgaagttt	taa	atca	atc	taa	atg	at	tttgc	tttgc	tttgc	1740		
gcttaatcag	tg	aggcac	ct	tctacg	gca	tct	tttgc	tttgc	tttgc	1800		
gactccccgt	cgt	gttagata	actac	gatac	gggagg	gtt	accatct	ggc	cccagt	gtg	1860	
caatgatacc	gcg	agaccca	cgt	tcacccgg	ct	ccagat	tt	atc	gcaata	aaccaggcc	1920	
ccggaagg	gc	gagcgcaga	ag	tgg	tc	tttgc	tttgc	tttgc	tttgc	tttgc	1980	
attgttgc	cg	gaagctaga	gt	aatgtt	cg	ccagttaa	tttgc	tttgc	tttgc	tttgc	2040	
ccattgctac	agg	catcg	tg	gt	gt	tttgc	tttgc	tttgc	tttgc	tttgc	2100	
gttcccaacg	at	caagg	g	tttgc	at	ccatgtt	tttgc	tttgc	tttgc	tttgc	2160	
ccttcgg	tc	ccatgtt	gt	caagg	at	tttgc	tttgc	tttgc	tttgc	tttgc	2220	
tggcagca	ct	ataattt	ctt	actgt	tc	tttgc	tttgc	tttgc	tttgc	tttgc	2280	
gtgagta	ct	aacc	aa	gttgc	at	tttgc	tttgc	tttgc	tttgc	tttgc	2340	
cggcgtca	at	acgg	gata	acc	cgcc	at	tttgc	tttgc	tttgc	tttgc	tttgc	2400
gaaaacgtt	tc	gggg	g	aa	act	tttgc	tttgc	tttgc	tttgc	tttgc	2460	
tgtaacccac	tc	gtgc	accc	a	act	gtt	tttgc	tttgc	tttgc	tttgc	tttgc	2520
ggtgagca	aa	ca	agg	ca	aa	at	tttgc	tttgc	tttgc	tttgc	tttgc	2580
gttgaata	ct	act	ctt	tc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2640
tcatgagcg	at	aca	tattt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2700
cattcccg	aa	aa	gttgc	cc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2760
aaataccg	ca	tca	gg	aa	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2820
gttaatcag	ct	at	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2880
aagaatag	ac	cg	at	agg	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2940
agaacgtg	ca	ct	cc	aa	acc	gt	tttgc	tttgc	tttgc	tttgc	tttgc	3000
gtgaaccatc	ac	cct	taat	ca	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	3060
accctaaagg	gag	cccc	ga	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	3120
aggaagg	aa	aa	gg	gg	gg	gg	gg	gg	gg	gg	gg	3180
tgcgcgt	ta	ac	cac	ac	cc	gc	cc	gc	cc	gc	cc	3240

-continued

attcaggctg	cgcaactgtt	gggaaggcg	atcggcg	gcctcttcgc	tattacgcca	3300
gctggcgaaa	ggggatgtg	ctgcaaggcg	attaagtgg	gtaacgccag	ggtttccca	3360
gtcacgacgt	tgtaaaacga	cggccagtga	attgtatac	gactcactat	agggcgaatt	3420
gggcccgcacg	tcgcatgctg	gtttcgatt	gtcttagagg	aacgcatata	cagtaatcat	3480
agagaataaa	cgtatattat	ttattaaagt	agatagtta	ggtagaagtt	gtaaagagt	3540
ataaaatagct	tagataaccac	agacaccctc	ggtgacgaag	tactgcagat	ggtttccaaat	3600
cacattgacc	tgctggagca	gagtgttacc	ggcagagcac	tgtttattgc	tctggccctg	3660
gcacatgaca	acgttggaga	gaggagggtg	gatcaggggc	cagtcaataa	agacctcacc	3720
agagcagtgc	tggtaaccgt	cccagaaggg	cacttgagg	acgataatctc	ctcggtgggt	3780
gattcggtag	agctttcggt	cttggacac	cttggagaca	tcggggttct	cctggccaaa	3840
gaagagttt	tcgacccagt	tagcaaagcc	agcggttaccg	acaatgggt	gaccaagagt	3900
aacaacgagg	ggatcgtggc	cgttaacctt	gagggttatt	ccgaacagaa	gggctgcagc	3960
tcctccgaga	gagtgacccg	tgacagcaat	ctggtagtcg	ggataactgt	caatcacaga	4020
gtcgagctt	ggggccatct	gattgttagt	gttggtag	gactggatga	agccattgt	4080
gacaagacag	tcatcacaag	tagcagtaga	agagatgtt	gcagcaagat	caaagttaat	4140
taactcacct	gcaggattga	gactatgaat	ggattccctgt	gcccgttatta	ctctactaat	4200
ttgatcttgg	aacgcgaaaa	tacgtttcta	ggactccaaa	gaatctcaac	tcttgcctt	4260
actaaatata	ctacccatag	ttgatggttt	acttgaacag	agaggacatg	ttcaacttgac	4320
ccaaagttt	tcgcatctt	tggatatttg	aacaacggcg	tccactgacc	gtcagttatc	4380
cagtcacaaa	accocccacat	tcatacattc	ccatgtacgt	ttacaaagtt	ctcaattcca	4440
tcgtgcaaat	caaaatcaca	tctattcatt	catcatatata	aaacccatca	tgtctactaa	4500
cactcacaac	tccatagaaa	acatcgact	agaacacacg	ctccatgccc	ccgcttagga	4560
atcctgaccc	tccttgacac	agtgaaccac	accgactttg	tgcatgtact	tgagggtgga	4620
aatgatgtt	cccacaatgg	tagggtagaa	gacgtaccga	actccgtgtc	gttcgcaaca	4680
ctctcgacca	gcttgctgca	cgaaggata	gtgccaagac	gacattcgag	gaaagaggt	4740
atgctcgatc	tggaggttga	gaccggccat	aaagaacatg	gcaatgggtc	caccgttaggt	4800
ggaagaggtc	tccaccttag	ctctgtacca	gtcgatctga	tcggcttcaa	cgtccttctc	4860
ggagctttt	accttgcagt	tcttgcggg	gattgcgtcc	gagccatcg	agttgtgaga	4920
caagatgaaa	aagaagggttga	ggaaggcacc	ggtagcagt	ggcaccagag	gaatgggtat	4980
gagcaggagg	gttccagtga	gataccagg	caagaaggcg	gttcgaaaga	tgaagaaagc	5040
tcgcataacg	aatgcaaggg	ttcggtaccg	tcgcagaaag	ccgttctctc	gcatggctgt	5100
gacagactcg	ggaatgggt	cgttgcgtc	cattcggaag	atgtagagag	ggttgtacac	5160
cagcgaaaacg	ccgttaggttc	caagcacgag	gtacatgtac	caggcctgga	atcggtgaaa	5220
ccactttcga	gcagtgttgg	cagcagggtt	gttggtaac	acaaggaatg	gttctgcgg	5280
ctcggcattcc	aggtcgagac	catgctgatt	ggtgttaggt	tgtatgc	tgtatgtgaga	5340
ctgcagccag	atccatctgg	acgatccat	gacgtcgat	ccgtaggca	agagagcg	5400
gacccagggc	ttttgcgtga	tgccaccatg	agaggcatg	tgctgaatgg	acaggccgat	5460
ctgcatgtgc	atgaatccag	tcaagagacc	ccacagcacc	attccggtag	tagcccgat	5520

-continued

ccactcgcaa aaggcggtga cagcaatgat gccaacgggtt cgccagccaga atccaggtgt	5580
ggcataccag ttccgacctt tcatgacctc tcgcataagtt cgcttgcacgt cctgtgcaaa	5640
gggagagtcg taggtgtaga caatgtcctt ggaggttcgg tcgtgcttc ctcgcacgaa	5700
ctgttgaagc agcttcgagt tctcgggctt gacgtaaggg tgcatggagt agaacagagg	5760
agaagcatcg gaggcaccag aagcgaggat caagtcgcctt ccggatggaa cttggcaag	5820
accttccaga tcgttagagaa tgccgtcgtt ggcaaccagg tcgggtcgctt cgagcagctg	5880
ctcggtagta agggagagag ccatggttt gaatttagggtt ggtgagaatg gttgggttta	5940
ggsaagaatc aaaggccgtt ctccggatcc gtgggtatataatataatataatatac	6000
gatccttcgt tacctccctt ttctcaaaac tttttttttt ctttttcgtt tttttgtttt	6060
ttttgatttt ttttagggcca actaagtttcc cagatttcgc taatcacctt tttttttttt	6120
acaagaaagg aagaagctga ttagagttgg gttttttatg caactgtgtt actccttatac	6180
tctgtatgtt aagtgttagac ccaatcacat catgttcatttt agatgtggta atactgggag	6240
gatagataag gcacgaaaac gagccatagc agacatgtt ggtgttagcca agcagaagaa	6300
agtagatggg agccaaatttga cgagcgaggag agctacgcca atccgacata cgacacgctg	6360
agatcgttcc ttccggggggg tacctacaga tttttttttt tttttttttt tttttttttt	6420
tatgtcttgcg gacaaatatg tagtcggccg tataaaagtca taccaggcac cttttttttt	6480
atcgaaccac taactctcta tgatacatgc ctccggattt attgttaccat ggtttttttt	6540
gttacatacg tatcttcgtt tttttttttt gaaactccat aattttttttt tttttttttt	6600
tccataacaa gtttttttgc ctccaggaaag tccatgggtt gttttttttt gttttttttt	6660
tagtggtagt gcaatgttttttggg tattttttttt gggggatgtttt ttggatataa gttttttttt	6720
agtcaatctttt ctttttttttccatataatgtt taatgtttttt aacgtttagt cttttttttt	6780
agcatctccg tatcgagaaa cacaacaaca tgcccccattt gacagatcat gttttttttt	6840
aggttgttca gtttttttttccatataca tactcgatca gacaggttgcgtt ctgaccatca tttttttttt	6900
acaagcgctc catacttgcg ctccggatcc ttttttttttccatataca tccatgttcc	6960
tttttttttccatataac agtttatctt ctggtaagcc tccatgttcc ttttttttttccatataac	7020
tttttttttccatataatg gatcttcgtt ctggccgtac agaccttcggc ctttttttttccatataatg	7080
ccggtagaca tgacatccctt aacagtttcgg tactgtgtt ccggatcc ttttttttttccatataatg	7140
tcaagaccca ccccccggggt cagaataatgtt ctttttttttccatataatg ttttttttttccatataatg	7200
tggggatataa agccaaaccac aaacttcgggg tcggatccggg caagcttcaat ggttttttttccatataatg	7260
gagtttttttccatataatg ctttttttttccatataatg ctttttttttccatataatg ctttttttttccatataatg	7320
ctggccatgtt ttttttttttccatataatg agggggactt agggggactt ttttttttttccatataatg	7380
tcaagaccca ccccccggggt cagaataatgtt ctttttttttccatataatg ttttttttttccatataatg	7440
tttttttttccatataatg gatcttcgtt ctggatccgg tactgtgtt ccggatcc ttttttttttccatataatg	7500
ccggtagaca ggttttttttccatataatg ttttttttttccatataatg ttttttttttccatataatg	7560
tttttttttccatataatg aaccgttccgtt aagagcaatgtt ttttttttttccatataatg ttttttttttccatataatg	7620
tttttttttccatataatg gatatgggtt ttgtatcatgc acacataagg ttttttttttccatataatg	7680
tttttttttccatataatg ttttttttttccatataatg ttttttttttccatataatg ttttttttttccatataatg	7740
tttttttttccatataatg ccacgagttt gtttttttttccatataatg ttttttttttccatataatg	7800

-continued

cgagcttcgt	aggagggcat	tttgggtggta	aagaggagac	tgaataaaat	ttagtctgca	7860
gaactttta	tcggaacctt	atctggggca	gtgaagtata	tgttatggta	atagttacga	7920
gttagttgaa	cttatagata	gactggacta	tacggctatc	ggtccaaatt	agaaagaacg	7980
tcaatggctc	tctgggcgtc	gcctttgcgg	acaaaaatgt	gatcatgatg	aaagccagca	8040
atgacgttgc	agctgatatt	gttgcggcc	aaccgcgcgg	aaaacgcgcg	tgtcagaccc	8100
acagcctcca	acgagaatg	tatcgtaaa	gtgatccaag	cacactcata	gttggagtcg	8160
tactccaaag	gcccgaatga	cgagtcagac	agatactcgt	cgacctttc	cttgggaacc	8220
accaccgtca	gcccttctga	ctcacgtatt	gtagccacgg	acacaggca	cagtccgtgg	8280
atagcagaat	atgtcttgc	ggtccatttc	tcaccaactt	taggcgtcaa	gtgaatgtt	8340
cagaagaagt	atgtgccttc	attgagaatc	ggtggttgcgt	atttcaataa	agtcttgaga	8400
tcagtttgc	cagtcatgtt	gtggggggta	attggattga	gttatcgct	acagtcgtta	8460
caggataact	cgctgcccac	tttatacttt	ttgattccgc	tgcacttgc	gcaatgtcg	8520
ttacaaaaag	tgagaatgt	ccacagaaca	cacccagggg	tatggttgag	caaaaaataaa	8580
acactccgat	acggggaaatc	gaaccccggt	ctccacgggt	ctcaagaatg	attcttgatg	8640
agagcgtatc	gatcgaggaa	gaggacaagc	ggctgtttct	taagtttgcg	acatcgttat	8700
ccaaggcacc	attgcaagga	ttcaaggott	tgaacccgtc	atttgcatt	cgtaaogctg	8760
gtagacaggt	tgatcggttc	cctacggcct	ccacctgtgt	caatcttctc	aagctgcctg	8820
actatcagga	cattgatcaa	cttcggaaaga	aacttttgc	tgccattcga	tcacatgctg	8880
gtttcgattt	gtcttagagg	aacgcatata	cagtaatcat	agagaataaa	cgatattcat	8940
ttattaaagt	agatagttga	ggtagaaatgt	gtaaagagtg	ataaaatagcg	gcccgtcact	9000
gaatctttt	ggctcccttg	tgotttcgga	cgatgttagt	ctgcacgt	aagttgagga	9060
acagacacag	gacagttacca	acgttagaaatgt	agttgaaaaa	ccagccaaac	attctcattc	9120
catcttgcgt	gtagcaggaa	atgttccgg	acttccagac	gatgttagaa	ccaaacgttga	9180
actgaatgtat	ctgcataaaaa	gtatcagggg	acttggcat	agggaaacttgc	agcttgcattc	9240
gtcgggtcca	atagtagccg	tacatgatcc	agtgaatgaa	gccgttgagc	agcacaaaga	9300
tccaaacggc	ttcggttccg	tagttgtaga	acagccacat	gtccatagga	gctccgagat	9360
ggtgaaagaa	ctgcaaccag	gtcagaggct	tgcccatgag	gggcagatag	aaggagtcaa	9420
tgtactcgag	gaacttgcgt	aggttagaaaca	gctgagttgt	gattcggaa	acattttgt	9480
cggaaaggctt	ctcgcaatgt	tcggacatga	caccaatgggt	gtacatggcg	taggcatacg	9540
agaggaagga	gcccagcgcg	tagatggaca	tgagcagggt	gtatgttgcgt	aacacaaact	9600
tcattcgaga	ctgacccttg	ggtccgagag	gaccaagggt	gaacttcagg	atgacgaagg	9660
cgtggagag	gtacagcacc	tcgcgtgc	aggcatcaga	ccagagtcg	gcatacg	9720
ccttggaaag	aacctcctgg	ccaatggaga	cgatttcgtt	cacgacccatcc	atggttgtat	9780
tgtgtttat	tcaagaatga	atatacgaa	gagaagaaga	aaaaagatcc	aattgagccg	9840
gcgtatgcaga	cccttatata	aatgttgcct	tggacagacg	gagcaagccc	gccccaaacct	9900
acgttcggta	taatatgtta	agcttttaa	cacaaagggtt	tggcttgggg	taacctgtat	9960
tggtgcaaaa	gaccggcgt	tgccgagcca	ttgcgcgggc	gaatggggcc	gtgactcgtc	10020
tcaaattcga	gggcgtgcct	caattcgtgc	ccccgtggct	tttccggcc	gttccggccc	10080

-continued

cgtttgcacc actgcagccg cttctttggg tcggacacct tgctgcgagc taggtgcctt 10140
 gtgctactta aaaagtggcc tcccaacacc aacatgacat gagtgcgtgg gccaaagacac 10200
 gttggcgggg tcgcagtcgg ctcaatggcc cgaaaaaaac gctgctggag ctggttcgga 10260
 cgcagtcgcg cgcggcgat gatatccgc aagggttccat agcgccatg ccctccgtcg 10320
 gcgcttatcc cgcaacctct aaatagagcg ggaatataac ccaagcttct ttttttccct 10380
 ttaacacgca caccggcaac tatcatgttg ctgctgctgt ttgactctac tctgtggagg 10440
 ggtgctccca cccaaacccaa cctacaggtg gatccggcgcc tggattggc tgataagtct 10500
 cctatccgga ctaattctga ccaatggac atgcgcgcag gacccaaatg ccgcattac 10560
 gtaaccccaa cgaaatgcct acccctcttt ggagcccagc ggccccaaat ccccccacgc 10620
 agcccggttc taccggcttc catctccaa cacaaggcgc cgggttctac cgggttccat 10680
 ctccaagcac ccctttctcc acacccaca aaaagacccg tgcaggacat cctactgcgt 10740
 gtttaaacac cactaaaacc ccacaaaata tatcttaccc aatatacaga tctactatag 10800
 aggaacaatt gccccggaga agacggccag gccgcctaga tgacaaatcc aacaactcac 10860
 agctgacttt ctgcattgc cactaggggg gggccctttt atatggccaa gccaaagctct 10920
 ccacgtcggt tgggctgcac ccaacaataa atgggttaggg ttgcaccaac aaaggatgg 10980
 gatggggggt agaagatacg aggataacccg ggctcaatgg cacaataag aacgaataact 11040
 gccattaaga ctgcgtatcc agcgactgac accattgcatt catctaaggc cctcaaaact 11100
 acctcggaac tgctgcgtcg atctggacac cacagagggtt ccgagactt taggttgcac 11160
 caaatgtccc accaggtgca ggcagaaaac gctggaacag cgtgtacagt ttgtcttaac 11220
 aaaaagttag ggcgcgtgagg tgcagcaggg tgggtgtact tggtatagcc tttagagctg 11280
 cgaaagcgcg tatggatttg gtcatcagg ccagatttag ggtctgtggc cacaatgtcat 11340
 gtttagtgcac ttcaatcgcc ccctggatag agccccgaca atagggcgtg gcctcatttt 11400
 tttgccttcc gcacatttcc attgtcggtt acccacaccc tgcattctcc gcacttgcca 11460
 accttaatac tggtttacat tgaccaacat cttacaagcg ggggggttctgt ctagggata 11520
 tataaacatgt ggcctctccaa atcggttgcc agtctttttt ttccttttcc tccccacaga 11580
 ttgcgaaatct aaactacaca tcacacaatg cctgttactg acgtccttaa gcgaaagtcc 11640
 ggtgtcateg tcggcgacga tgcgcgagcc gtgagttatcc acgacaagat cagtgtcgag 11700
 acgacgcgtt ttgtgtatgc acacaatccg aaagtcgcta gcaacacaca ctctctacac 11760
 aaactaaccg agctctccat ggtgaaggct tctcgacagg ctctgcctt cgtcatcgac 11820
 gggaaagggtgt acgacgttcg cgttgggtt aacttccacc ctgggtggagc tgaaatcatt 11880
 gagaactacc agggacgaga tgcgtactgac gccttcattt ttatgcactc tcaggaagcc 11940
 ttgcacaagc tcaagcgaat gcccacatc aaccaggctt ccgagctgcc tccccaggct 12000
 gccgtcaacg aagctcgatggg ggatttccga aagctccgag aagagctgtat cggccactggc 12060
 atgtttgtatgc cctctccctt ctgggtactcg tacaagatct tgaccacccct ggggtcttggc 12120
 gtgcttgcct tcttcattgtt ggtccagttac cacctgtact tcattggtgc tctcgatgtc 12180
 ggtatgcactt accagcaat gggatggctg tctcatgaca tctgccacca ccagacccctc 12240
 aagaaccgaa actggaaataa cgtcctgggtt ctgggttttg gcaacggact ccagggttcc 12300
 tccgtgaccc ggtggaaagga cagacacaac gcccatttgc ctgctaccaa cgttcagggt 12360

-continued

cacgatccc acattgataa cctgcctctg ctcgcctggt ccgaggacga tgtcactcga 12420
 gcttctcca tctcccgaaa gtcattcag ttccaaacagt actatccct ggtcatctgt 12480
 atttcctgc gattcatctg gtgttccag tctgtgctga ccgttcgatc cctcaaggac 12540
 cgagacaacc agttctaccg atctcagtagc aagaaagagg ccattggact cgctctgcac 12600
 tggactctca agaccctgtt ccaccttcc tttatgcctt ccatcctgac ctcgatgctg 12660
 gtgttcttg tttccgagct cgtcgggtgc ttccgaaattt ccatcgtggt cttcatgaac 12720
 cactaccctc tggagaagat cggtgattcc gtctgggacg gacatggctt ctctgtgggt 12780
 cagatccatg agaccatgaa cattcgcacg ggcacatcatc ctgactgggtt ctttggaggc 12840
 ctgaactacc agatcgagca ccacatctgg cccaccctgc ctcgacacaa cctcaactgcc 12900
 gtttccctacc aggttggaaaca gctgtgccaag aagcacaacc tcccctaccg aaaccctctg 12960
 ccccatgaag gtctcgatcat cctgctccga tacctgtccc agttcgcctcg aatggccgag 13020
 aagcagcccg gtgccaaggc tcaagtcacg gccgcacatg aagataaaata tataatataca 13080
 ttgagatatt aaatgcgcta gattagagag ctcataactg ctcggagaga agccaagacg 13140
 agtactcaaa ggggattaca ccacccatata ccacagacac aagctgggg aaggttctat 13200
 atacactttc cggaaataccg tagttccga tgttatcaat gggggcagcc aggatttcag 13260
 gcacttcgggt gtctcggtt gaaatggcgt tcttggccctc catcaagtcg taccatgtct 13320
 tcatttgccct gtcaaagtaa aacagaagca gatgaagaat gaacttgaag tgaaggaatt 13380
 taaaatgttg gagcaaggga gaaatgttga gtgtgaaaga ctcactatgg tccgggctta 13440
 tctcgaccaa tagccaaagt ctggagtttgc tgagagaaaa aggcaagata cgtatgtaac 13500
 aaagcgacgc atggtacaat aataccggag gcatgtatca tagagagttt gtggttcgat 13560
 gatggcactg gtgcctggta tgactttata cggctgacta catatttgc ctcagacata 13620
 caattacagt caagcactta cccttggaca tctgttagta ccccccggcc aagaegatct 13680
 cagegtgtcg tatgtcggat tggcgttagct ccctcgctcg tcaattggct cccatctact 13740
 ttcttctgtct tggctacacc cagcatgtct gctatggctc gttttcgatc cttatctatc 13800
 ctccccagttat taccacttcaat aaatgacatg atgtgattgg gtctacactt tcataatcaga 13860
 gataaggagt agcacagttt cataaaaaacg ccaactctaa tcagcttctt cctttttgt 13920
 aattagtaca aaggtgatta gcgaaatctg gaagcttagt tggccctaaa aaaatcaaaa 13980
 aaagcaaaaa acgaaaaacg aaaaaccaca gttttgagaa cagggaggtt acgaaggatc 14040
 gtatataat atatataat atataccac ggatccccgg accggccccc gattctccc 14100
 tacaaccaac catttcacc accctaatttca acaaccatgg gcttattcat taaacaggag 14160
 cagttccgg ctctcaagaa gtacaagtac tccggccagg atcactcgatc catctccaa 14220
 aacattctgc gccccttctg ggcacatgtt gtcaaaatct tccctctgtt gatggccccc 14280
 aacatgggtga ctctgtggg cttttttttt gtcattgtga acttcatcac catgtctatt 14340
 gttgatccca cccacgaccc cgagccccc agatgggtt acctcaccta cgctctgggt 14400
 ctgttcctttt accagacatt tgatgcctgt gacggatccc atgcccacg aactggccag 14460
 agtggacccc ttggagagct gtttgaccac tggatgcacg ccatgaataac ctctctgatt 14520
 ctcacgggtgg tggatgcac caccatgtt ggtatataaca tgaagctact gattgtgcag 14580
 attggccgttc tggaaactt ctacctgtcg acctgggaga cctaccatac cggaactctg 14640

-continued

taaccttctg gcttctctgg tcctgttcaa ggtatcttgc ttctggggc tcttttcgtc 14700
ctcaccttct tcactggtcc caacgtgtac gctctgaccg tctacgaggc tcttcccgag 14760
tccatcaactt cgctgtgcc tgccagcttc ctggacgtca ccatcacccca gatctacatt 14820
ggattcggag tgctgggcat ggtgttcaac atctacggcg cctgcggaaa cgtgatcaag 14880
tactacaaca acaagggcaa gagcgctctc cccgcccattc tcggaatcgc ccccttggc 14940
atcttctacg tcggcgttctt tgcctggcc catgttgc tctctgttctt ctccaagtac 15000
gccatcgctc atctgtttgc cattggggct gccttgcca tgcaagtccg ccagatgatt 15060
cttgcccatc tcgtgttgc tccctttccc cactggaaacg tgctgttctt ctcccccttt 15120
gtgggactgg cagtgcacta cattgcaccc gtgtttggct gggacgcccga tatcgtgtcg 15180
gttaacactc tcttcacccgt ttttggccgc accctctcca tttacgcctt cttttgctt 15240
gagatcatcg acgagatcac caactaccc gatatctgt gtctgcgaat caagtaccct 15300
caggagaaga agacccgaata agcggccgcga tggagcgtgt gttctgagtc gatgtttct 15360
atggagttgt gagtgtagt agacatgtatg ggtttatata tgatgaatga atagatgtga 15420
ttttgatttg cacgatggaa ttgagaactt tgtaaacgtt catggaaatg tatgaatgtg 15480
ggggttttgt gactggataa ctgacggtca gtggacgcgg ttgttcaaattt atccaagaga 15540
tgcgagaaac ttgggttcaa gtgaacatgt cctctctgtt caagtaaacc atcaactatg 15600
ggtagtatat ttagtaagga caagagttga gattcttgg agtccttagaa acgtatttc 15660
gcgttccaaatg atcaaatttag tagagtaata cgggcacggg aatccattca tagtctcaat 15720
cctgcagggtt agttaaattaa tcgagcttgg cgtaatcatg gtcatacgctg tttccgttgt 15780
gaaattgtta tccgctcaca attccacacaca ac 15812

```
<210> SEQ ID NO 56
<211> LENGTH: 7966
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pYPS161
```

<400> SEQUENCE: 56
aaatgttaac aaactgaaat ttgaccagat attgtgtccg cggtgaggct ccagctttg 60
ttccctttag tgagggtaa ttgcagctt ggcgtaatca tggcatatgc tgtttctgt 120
gtgaaattgt tatccgctca caagcttcca cacaacgtac gttctggttg gctcgatga 180
tttctgcggc cccagcgtaa ggcaggcggtt ccgtccggat cggttgggtt cggatcggt 240
ttttgattgt cgtattgtcg ctcatgttgg acctgggttg tagttttagt gtcagatcg 300
attcaccaggc gaatgcattgt gaacttcccc acatttttagt ccgaggcaga tttgggttgc 360
tttagtaagca gacgtggcggt tgcaagttaga tggccaaat ggggacgaag attccgagg 420
gatatcatag ttccaaggggg atgtcatcat ttgcagctt tcgcccac ttttgacgag 480
tttttgtggg tcaaataagt ttatgttgcac ttttcaattt tcagttggca tttttgttaat 540
agaaagggtt cccgtgtctgg ggggttcatt cctcggttgc cagatatcct atctgttta 600
gggttatctc tttcaatcga caagatgttag ttggtaaca attattttt aatattctct 660
ccatccagta cagtaactaac atcttgacat ctcagcacaa gtgcatttc ccaagtgttt 720
gttggagaggtt ttgttgggtt ttacttagga aacagaacac agtacgtggat gatctggat 780

-continued

acatcgatac tggaggttat ccataaaaaa gaccctccag gactagttac aatgccgtta	840
gatgaggaaa tccacaaccc tgattcacta tgaacatatt atcttcccc aaacttgcga	900
tataatggccc ttgatgatag ccttgatttt acccttgatg gtacctccac gaccaaccga	960
tctgctgttt gaagagatat ttcaaaattt gaagtgcata gatctactaa acatgagtcc	1020
agtaattctt tccgtcttc cgattccga tattccctt tttagccga cttttactg	1080
ctcccatgtc aaacgattag gacttggag acaatccac tgtcaaaatc accccgatat	1140
tctctgtaaa acaagttactt cttccacgtg atcttcaaattt acctcttcca cgtgacccat	1200
aaataacctct tcaagtaccc tttccacgcg accttcaaag tccctcaaa tacccttctc	1260
aattctcccc ttctcctcca tagtccttct ctctgactaa gcttgagaat acatgacgct	1320
aagacgaaaa cacactagag accctgagag cctgaacatg catccactct gcagttgcgc	1380
acgtgcctac agcaactatc gggtccagtg ctggatctga cactgcgtct ccctatgaag	1440
aaactgataa acagatctgc actcataaca atgatctgag cgatgaaaac gtgacccat	1500
cagccacaag tcataatccgg cgccgcagct gcattaatga atcggccaaac gcgcggggag	1560
aggccggtttgc cgtattgggc gcttcccgcc ttccctcgctc actgactcgc tgcgctcggt	1620
cgttcggctg cggcgagccgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga	1680
atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg	1740
taaaaaggcc gcgttgcgtgg cgttttcca taggctccgc cccccctgacg agcatcaca	1800
aaatcgacgc tcaagtccaga ggtggcgaaa cccgacagga ctataaagat accaggcggtt	1860
tccccctgga agtcctctcg tgccgtctcc tggccgacc ctgccgttta ccggataacct	1920
gtccgcctt ctcccttcgg gaagcgtggc gttttctcat agtcacgct gtaggtatct	1980
cagtcgggtg taggtcgttc gtccttccaaactt gggctgtgtg cacgaaccccc ccgttccagcc	2040
cgaccgcgtc gccttccatcg gtaactatcg tcttggatcc aacccggtaa gacacgactt	2100
atcgccactg gcagcagecca ctggtaacag gattagcaga gcgaggtatg taggegggtgc	2160
tacagagttc ttgaagttggt ggcctaacta cggcttccaaactt agaagaacag tattttgtat	2220
ctgcgtctg ctgaagccag ttaccccttcgg aaaaagagggtt ggtacgttctt gatccggcaa	2280
acaacaccacc gctggtagcg gtggttttttt tggccgttcaag cagcagattt ccgcgcgaaaa	2340
aaaaggatct caagaagatc ctttgcgtttt ttcttacgggg tctgacgctc agtggaaacga	2400
aaactcacgt taagggttattt tggctcatgat attatcaaaa aggtacccatca ccttagatctt	2460
ttaaaattaa aatgaagttt ttaaaatcaat ctaaaatgtata tatgataaa ctgggtctga	2520
cagttaccaa tgcgttacatca gtgaggccatc tatctcagcg atctgttcatc ttgcgttcatc	2580
catagttgcc tgcgttcccg tgcgtttagat aactacgata cggggagggtt taccatctgg	2640
ccccagttgtt gcaatgatac cggcgacacc acgcttccacgg gctccagattt tatcagcaat	2700
aaaccagcca gcccggaaaggcc cccggccgcg aagtggccctt gcaactttat ccgcctccat	2760
ccagtcttattt aattttttttt gggaaaggatcg agttaagttgtt tgcgttcccg tgcgttcatc	2820
caacgttgcgtt gccattgtca caggcatcgat ggtgttcccg tgcgttcccg tgcgttcatc	2880
atttcacgtcc ggttcccaac gatcaaggcg agttacatga tccccatgt tgcgttcatc	2940
agcggtttagc tcccttcggcc ctccgcgttcatc tgcgttcccg tgcgttcatc	3000
actcatggttt atggcagccac tgcataatttcc tcttactgtc atgcgttcccg taagatgttt	3060

-continued

ttctgtact ggtgagtaact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag	3120
ttgctcttgc ccggcgtcaa tacggataaa taccgcgc当地 catagcagaa cttaaaaagt	3180
gctcatcatt ggaaaacgtt ctccggggcg aaaactctca aggtatctac cgctgttag	3240
atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttacttcac	3300
cagcgtttct gggtgagcaa aaacaggaag gaaaaatgcc gaaaaaaagg gaataaggc	3360
gacacggaaa tggtgaataac tcatactctt ccttttcaa tattatggaa gcatttatca	3420
gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg	3480
gttccgcgc acatttcccc gaaaagtgcc acctgtgcg gtgtgaaata ccgcacagat	3540
gcgttaaggag aaaataccgc atcaggaaat tgtaagcgtt aatattttgt taaaattcgc	3600
gttaaatttt tgtaaatca gtcattttt taaccaatag gccgaaatcg gaaaaatccc	3660
ttataaatca aaagaataga ccgagatagg gttgagttt gttccagttt ggaacaagag	3720
tccactatta aagaacgtgg actccaacgt caaagggcga aaaaccgtct atcaggcgc	3780
tggcccacta cgtgaaccat caccataatc aagtttttg gggtcgaggt gccgtaaagc	3840
actaaatcgg aaccctaaag ggagcccccg atttagagct tgacggggaa agccggcga	3900
cgtggcgaga aaggaaggga agaaagcga aggagcggc gctagggcgc tggcaagtgt	3960
agcggtcactg ctgcgcgtaa ccaccacacc cgcgcgcgtt aatgcgcgc tacaggcgc	4020
gtccattcgc cattcaggct ggcactgt tggttgcgc gatcggtgcg ggcctttcg	4080
ctattacgca agtggcgaa agggggatgt gtcgcaaggc gattaagttt ggttaacgc	4140
gggtttccc agtcacgacg ttgtaaaacg acggccagt aattgtataa cgtactaacta	4200
tagggcgaat tggggccgac gtgcgcgtca actattatgt aggcttcggg agtgggtgtc	4260
tccgttgc tattcagact cgttgcgtt tatctataatc tatataaaca ctctgtccc	4320
tcaatcccac tgcgcgttt tgctaaactt gcccataata tgaaactcat ctccctcatc	4380
accgtcgcta ccaccgctct ggccgcgttc ggagacaagt acaagctgac ctataccaga	4440
tcaacgcacc aatcggtcgat atctctgcgc gtcacccatc aagatgcact gatcaccgc	4500
tccaccgacg gcgaacccat caccatcacc gagggcgagg gcaacacctt ctctgttaac	4560
gacatgcaca tgcgcgtatct ggagctgcgat gtttgcgtt ggaccggcga ctacggctac	4620
aagtcagg gtcgggttt tgacattgcc gccgatggaa ctttgagct gagagacggc	4680
ccaaaggagt actactattt cactcctcact cctgagcgaa acgtcatcta cgtcatcaac	4740
agccccgact actccaagtg tcgggtcaag cgtaccatca agttccacgc tgaaaagatc	4800
taagtggtaa tcgaccgact aaccatccc agctgacaaa cacttgcata ctccctataac	4860
gaatgaatga ctaacttggc atattgttac caagtattac ttggatata gttgagttgt	4920
accattgcta agaatccaaa ctggagttc taaaggctcg ggagtcgc当地 tatgtgttca	4980
tatcgaaatc aaagaaatca taatcgcaac agaattcaaa atcaagcaga ttaatatcca	5040
ttattgtact cggatcgtga catatctgtat atgatctcg atatgtatctc tgactgttta	5100
ctgggagatt tggtgaagat ttgttgcgtt tatctgaaaa gtagacaata gagacaaaat	5160
gacgatataca agaactgaat cggccgaaa tactcggtat cattccctc agcagtaact	5220
gtattgcctt atcaatgcga cgagataacctt ccacaattaa tactgtatac gctctaccac	5280
tcatactcc aatgctaaaa tatattcatg cccaggacct ctgtgcactg ctatgcagca	5340

-continued

cagtgttgc	gattgaattt	gtcggtctg	gtccctgatg	ctctgttct	cgctgactag	5400
tccttccatc	cagacctcg	cattatctga	taggcaacaa	gttctgtct	ctcacacccct	5460
gccgacacaa	gggacactcg	ggcttctctc	tcacccatc	ggaaatacag	tccttaattt	5520
agttgcaca	catgtcttgc	tagtatcttgc	aattctctt	cttggacttt	tccataacaa	5580
gttcttctgc	ctccaggaag	tccatgggtt	gtttgatcat	ggttttgggt	tagtggtagt	5640
gcagtgggtt	tattgtgact	ggggatgttag	ttgagaataa	gtcatacaca	agtcagcttt	5700
cttcgagcct	catataagta	taagtagttc	aacgtattag	cactgtaccc	agcatctccg	5760
tatcgagaaa	cacaacaaca	tgcggccat	gacagatcat	gcccatacac	aggttgcac	5820
gtatcataca	tactcgatca	gacaggtcg	ctgaccatca	tacaagctga	acaaggcgtc	5880
catacttgca	cgtctctat	atacacatgtt	aaattacata	tccatagtct	aacctctaacc	5940
agttaatctt	ctggtaagcc	tcccagccag	ccttctggta	tcgcttggcc	tcctcaatag	6000
gatctcggtt	ctggccgtac	agacctcggt	cgacaattat	gatatccgtt	ccggtagaca	6060
tgacatcctc	aacagttcg	tactgctgtc	cgagagcg	tcccttgcg	tcaagaccca	6120
ccccgggggt	cagaataa	cgtcctca	agtcgcctt	aggtcggtt	tgggcaatga	6180
agccaaccac	aaactcg	tcggatcg	caagctcaat	ggtctgcttgc	gagtactcgc	6240
cagtggccag	agagcccttgc	caagacagct	cgccca	gaggcagact	ctggcoagct	6300
tctcggttgg	agaggggact	aggaactcct	tgtactggg	gttctcgtag	tcaagacgt	6360
cctcccttctt	ctgttcagag	acagttcc	cgccacc	tcgcaggcc	gcaatgattc	6420
cggttccggg	tacaccgtgg	gcgttggta	tatcgacca	ctcgccgatt	cggtgacacc	6480
gttactgggt	cttgacagtg	ttgccaat	ctgcgaac	tctgttctcg	aacaggaa	6540
aaccgtgtt	aagagca	tcttgagg	ggagcac	gcccggtag	gtgaagtgc	6600
caatgatgtc	gatatgggtt	ttgtatcatgc	acacataagg	tccgac	tccgcaagct	6660
caatgagctc	cttgggttgg	gtaacatcca	gagaagcaca	cagg	ttcttggctg	6720
ccacgagctt	gagactcg	gccc	ggacttgc	gacgttag	cgagctcg	6780
aggagggcat	tttgggttgg	aaggag	gac	ttagtctg	gaacttttta	6840
tccgaac	atctggggca	gtgaagtata	tgttatgg	atagttacg	gttagtgc	6900
cttata	gactggacta	tacggctatc	ggtccaa	at	agaaagaac	6960
tctggcg	gccttgc	acaaaaatgt	gatcatgat	aaagcc	ca	7020
agctgat	gttgcggcc	aaccgc	aaaacgc	tgtc	agac	7080
acgaagaat	tatcgtaaa	gtgatcca	cacactcata	gttgg	atcg	7140
gcggcaat	cgagtca	agatactcg	cgac	cttgg	accaccgtca	7200
gccttctg	ctcacgtatt	gtgcccac	acacagg	cagtc	cttgg	7260
atgtcttgc	ggtccattc	tcacca	actt	gtgaa	atcg	7320
atgtgc	catttgc	tttgc	tttgc	at	tttgc	7380
cagtcatgtt	gtgggggt	atggatt	gttac	acag	tgt	7440
cgctgcccac	tttatactt	ttgattcc	tgcac	tgc	gttac	7500
tgagaat	ccacagaaca	caccc	cac	ca	actcc	7560
acgggaaatc	gaaccccggt	ctccac	gggt	ctcaaga	gtt	7620

-continued

gatgagccta aaatgaaccc gagtatatct cataaaatc tcggtgagag gtctgtgact	7680
gtcagtacaa ggtgccttca ttatgccttc aaccttacca tacctcaactg aatgtatgt	7740
acctctaaaa atgaaataca gtgc当地aaag ccaaggcact gagctcgct aacggacttg	7800
atatacacaacc aattaaaaca aatgaaaaga aatacagtcc tttgtatcat ttgtacaat	7860
taccctgtac aaactaaggt attgaaatcc cacaatattc ccaaagtcca ccccttcca	7920
aattgtcatg cctacaactc atataccaag cactaaccctt ccgttt	7966

<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer Pex-10del1 3'.Forward

<400> SEQUENCE: 57
ccacatgag cgacaatacg 20

<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer Pex-10del2 5'.Reverse

<400> SEQUENCE: 58
caagttctgc tctctcacac 20

<210> SEQ ID NO 59
<211> LENGTH: 8673
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pYRH13

<400> SEQUENCE: 59
taagcgattg atgattggaa acacacacat gggttatatac taggtgagag ttagttggac 60
agttatataat taaatcagct atgccaacgg taacttcatt catgtcaacg aggaaccagt 120
gactgcaagt aatatagaat ttgaccaccc tggcattctc ttgcactcct ttactatatac 180
tcatttattt cttatataca aatcacttct ttttcccagc atcgagctcg gaaacccat 240
gagaataaac atcggttgc tcttccatag agggctttt ggactccctg ctgttggcca 300
ccttgcctt gctgtctggc tcattctgt tcaacgcctt tcgcgcacaga ccatcaacct 360
tgttgagctc tccgtcagca gctcgacca gatcatcaaa accagaaccc ttggctcgag 420
ttcgggcttc tcgaagcttgc tctttagctt cttcataatc gccccttgc atagcaatca 480
cacggactcc atatgtgcat agaggctggg cctcctcgac ttcccttggc cgtcggacat 540
cgggctcaag agaaggaatg gcttggaa cacgcttgc acatgactcg gatcgagcca 600
ggcggttatt actgctcgac ttccattgtt ccagaggaat ctcgcgcct gtgtcagctt 660
tgatgggtgtt gcccctcgat ttttccggcag tgtgaacaat cacctccacg tggtcagaca 720
tgaggtagaa catggaggctt aggttggctt gggctaaaca cagatctccc actccacatc 780
cgaaagcaag catgatctga taagtgattt gcttctctt gagagcaacg ttggcgagg 840
cgtcagagag gttgtgagtt gtgagcacat cacgagcagc aataagctcg tctctgaagg 900

-continued

gcatccaggc	gtcgtaattg	ccggaagcac	gcagcagacg	agcatgagac	gcacttttag	960
tcagctgggt	catgaactcc	cgctcgctct	gtgtcgaaaa	cgtgctggcg	agtttcagca	1020
gatctgtggc	ctcgaaaaac	cgtcgacaga	cctcttcttg	agccagcagg	atctgcagca	1080
gtagcgctcg	tgataaccaca	tcattttct	cggttccaga	aatgtgagcg	agcttgagag	1140
cgatcccgag	acctctctgg	atcacctggg	gccggacatc	ctggggattt	ttgttattct	1200
ggaaggcgctc	aacgtaggca	gcacaaaatct	ccatgtacac	gtcgtggca	gcgtccgggt	1260
agttgagcat	ctcgtagatc	tctgccagtt	tgagctggat	gcctgtgtat	tcgtccgaca	1320
agggagacag	gccttggcc	tcggcctcca	taagtgcctc	aatgtaaatac	ttgacggcat	1380
gcgacgtcg	gccccatctcg	ccctatacg	agtcgtat	caattcaact	gccgtcg	1440
tacaacgtcg	tgactggaa	aaccctggcc	ttacccaact	taatcgcc	tcagcacatc	1500
cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac	cgatcgcc	tcccaacagt	1560
tgcgacgcct	gaatggcga	tggacgcgc	ctgtagcggc	gcattaagcg	cggcgggtgt	1620
ggtggtta	cgcagcgtga	ccgctacact	tgccagcggc	ctagecgcc	ctcccttcgc	1680
ttttttccct	tcctttctcg	ccacgttcgc	cggtttccc	cgtcaagctc	taaatcgaaa	1740
gtccccctta	gggttccgat	tttagtgc	acggcacctc	gacccaaaaa	aacttgatta	1800
gggtgtatgg	tcacgttagt	ggccatgc	ctgatagacg	gttttcgc	ctttgacgtt	1860
ggagtccacg	ttcttttaata	gtggactt	gttccaaact	ggaacaacac	tcaaccctat	1920
ctcggcttat	tcttttgatt	tataaggat	tttgcgcatt	tcggcctatt	gtttaaaaaa	1980
tgagctgatt	taacaaaaat	ttaacgcga	ttttaaacaa	atattaacgc	ttacaatttc	2040
ctgtatcggt	attttctct	taatcgatct	tgccgtat	cacacgc	cagggtggcac	2100
tttccgggaa	aatgtgcgc	gaacccat	ttgtttat	ttctaaatac	attcaaatat	2160
gtatccgc	atgagacaat	aaccctgata	aatgctcaa	taatattgaa	aaaggaagag	2220
tatgagtatt	caacatttc	gtgtcgcc	tatccctt	tttgcggcat	tttgccttcc	2280
tgttttgc	cacccagaaa	cgctgggaa	agtaaaagat	gctgaagatc	agttgggtgc	2340
acgagtgggt	tacatcgac	tggatctaa	cagcgtaag	atcctgaga	gttttgc	2400
cgaagaacgt	tttccatga	tgagactt	taaagttctg	ctatgtggc	cggattatc	2460
cgtattgac	gccgggcaag	agcaactcgg	tcggcgcata	cactatttc	agaatgactt	2520
gtttgagttac	tcaccagtca	cagaaaagca	tcttacggat	ggcatgacag	taagagaatt	2580
atgcagtgt	gccataacca	tgagtgata	caactgcggc	aacttacttc	tgacaacgt	2640
cggaggacgg	aaggagctaa	ccgtttttt	gcacaacatg	ggggatcatg	taactcgcc	2700
tgatcggtgg	gaacccggac	tgaatgaac	cataccaaac	gacgagcgt	acaccacgt	2760
gcctgtatca	atggcaacaa	cggtgcgc	actattaact	ggcgaactac	ttactctagc	2820
ttcccgccaa	caatataatag	actggatgaa	ggcgataaa	gttgcaggac	cacttctgc	2880
ctcgccctt	ccggctggct	ggtttattgc	tgataaaatct	ggagccgggt	agcgtgggtc	2940
tcgcggat	attgcagcac	tggggccaga	tggtaagccc	tcccgat	tagttatcta	3000
cacgacgggg	agtcaggca	ctatggat	acgaaataga	cagatcgct	agataggtgc	3060
ctcactgatt	aagcattgg	aactgtcaga	ccaagttac	tcatatatac	tttagattga	3120
ttaaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atccctttt	ataatctcat	3180

-continued

gacccaaatc	ccttaacgtg	agtttcgtt	ccactgagcg	tcagaccccg	tagaaaaat	3240
caaaggatct	tcttgagatc	cttttttct	gcgcgtaatc	tgctgcttgc	aaacaaaaaa	3300
accaccgcta	ccagcggtgg	tttggggcc	ggatcaagag	ctaccaactc	ttttccgaa	3360
gttaactggc	ttcagcagag	cgcagataacc	aaatactgtt	cttctatgt	agccgtatgt	3420
aggccaccac	ttcaagaact	ctgttagcacc	gcctacatac	ctcgcttgc	taatccgtt	3480
accagtggct	gctgccagtg	gcatataatc	gtgtcttacc	gggttggact	caagacgata	3540
gttaccggat	aaggcgcagc	ggtcgggctg	aacgggggg	tcgtgcacac	agcccgat	3600
ggagcgaacg	acctacacccg	aactgagata	cctacagcgt	gagctatgag	aaagcggcac	3660
gcttcccgaa	gggagaaagg	cggacaggtt	tccggtaagc	ggcagggtcg	gaacaggaga	3720
gcccacgggg	gagttccag	ggggaaacgc	ctggatattt	tatagtccgt	tcgggtttcg	3780
ccacctctga	tttgcgtc	gattttgcgt	atgctcgta	ggggggcgga	gcctatggaa	3840
aaacgcccac	aacgcggct	tttacgggtt	cctggccctt	tgctggccctt	ttgctcacat	3900
gttcttctt	ggttatccc	ctgatttgcgt	ggataaccgt	attaccgcct	ttgagtgagc	3960
tgataccgtt	cgcgcgcagcc	gaacgaccgc	gcccacggag	tcagtggcg	aggaacgcgg	4020
agagcgcacca	atacgcaaac	cgcctctccc	cgccgcgttgg	ccgattcatt	aatgcagctg	4080
ggcgcgcgggt	ttctgtctct	cgtcggtc	catatgggt	tgttggat	gagttcttgg	4140
ttgcctgtt	tcgcacaagg	tggtcgtc	ggttgtgtgg	agaggggctt	gaaggagggg	4200
ggtcgagggt	caggagcgtc	ccccgagggg	ccctaggccg	tcacatgacc	ggcataatgg	4260
tgtggagtcg	ggttttgggt	ttctgggggg	gttccacact	tgtcaagtct	cgtttttcag	4320
gcttttttc	actcgctt	tttgcactt	ggcatcttt	tacctttgtt	gcttaccacc	4380
tttgcactt	ggaaatctat	tgggttgggt	gtatagggtt	aaaaaaa	gccaagggtt	4440
actgtttttt	tccgactegg	tcatgttgc	ttttgtgcga	tattataatg	ggggaaacgaa	4500
tggaggcggag	ctgggtgtat	acgggagctg	ctgtttctca	cgattctgcc	cagccattta	4560
tcacgcgcac	gctgacatct	tgcacttagt	catcaagac	tacagtcgt	cgagtcata	4620
ctagagccaa	ccactcctga	agtgccttca	tgagttcagt	tgagtgcgt	accaactctc	4680
gacactctcg	acagcctgtt	aaaaggatgt	agtgtgttgc	aagggttca	atactggaga	4740
agagagggga	gagatcgaga	gggtgtatgtt	acatccccaa	gcgtcgatgt	ctcgcggttga	4800
tgactggaaac	ggactgttgc	acgacgtatc	acatgggttgc	caagctgtat	gacatgtgg	4860
ccaatgggtt	agaagcgat	gttgcgttcc	taacgcacca	ctactgcct	gtcaagtgt	4920
gtgtgtactt	gttctactc	ctactcgct	cactgggttc	taggggttgc	agcacccgtcg	4980
cttatgaaag	acgcccgttc	ctatgaaaga	caccgtcgct	cattgaagac	tagatccata	5040
atataaaca	aagagtattt	ctctgtatgg	cgacggatgt	gccagcccc	tcgttacaca	5100
atttgcctaa	aaacaccatc	tctgcgttcc	atcgatatact	ttcgttacatc	tccggaccag	5160
acagtagagc	tttgagaacc	ccgaaggagg	aatactgcag	tgaagtgttgc	tttggaaactc	5220
tgactggagt	atctccattt	ctatatctcc	attagtaatc	actccaaaca	gatgttcc	5280
agcttgcgtc	agccgagacc	acggtcacgt	atgggtatcc	cttcaaacat	ataactccat	5340
tgacctaaca	agacactggc	agttgttacat	acgttacatc	attctgtat	taagttttaa	5400
tctgatttgc	gactcttgc	agtaacacac	tctttccaa	gcagtcattt	tggccctttt	5460

-continued

tcttccaaa cccgtctcgta ttactcatca ggttttatct gagaacccaa acgtctcaat 5520
cattgacata ttgttaccatc aactctgtaa aaacttgcata gatgtgtac ttgtgtcatt 5580
atgaatcgat ttccaaata tccattatca ttatccattt tcttccccga tattcacctcc 5640
ccatctacca cctccattta ccaaccacca tgcgtcgtaa tcagaaactc ctcttcacag 5700
accacaattt ccaataatg accaccaaaa gtcgttccat gtgtttctcc ggtgaccagg 5760
tctcgcttc acccatttat tccctcaaaa acacccctac agtaattca ggcgccttcc 5820
atcaaactcc atacttgcaa caaaatcaca atggcccccct gcctaaacta cggccggccca 5880
taatttgatg tattttgtatg acaatcccgac tcgaaatttgc gcccacttgc tccccagat 5940
ccaaatattc actattcacc ttccacccgt gcccacccgt gcccccaat gccccccgtg 6000
ctcgtaacgt ctccctccccc cacacccccc acacgtgaca taaagtgtaa agtgcgagta 6060
cccgtagtgc gtgtggaaatc ttgtgagccgataacaattt cacacaggaa acagatgtga 6120
ccatgattac gccaagctcg aaattaaccc tcactaaagg gaacaaaagc tggagctcca 6180
ccgcggacac aatatctggt caaatttcag ttccgttaca tttaaacggt aggttagtgc 6240
tttgtatatg agttgttaggc atgacaattt gggaaagggtt ggactttggg aatattgtgg 6300
gatttcaata ccttagttt tacagggtaa ttgttacaaa tgatataaag aactgtatTTT 6360
ctttcattt gttttatgtt gttgtatatc aagtccgtt aacgcgttca gtcgccttgc 6420
tttggcact gtatttcattt ttttagaggta cactacattt achtggatgtt ggttaagggtt 6480
agggcataat gaaggcacct tgcgtactgaca gtcacagacc tctcaccggag aattttgc 6540
gatatactcg gggtcattt aggctcatcg atacgccttc atcaagaata cttcttgaga 6600
accgtggaga ccgggggttcg attcccccgtt tcggaggtt tatttttgc tcaaccatac 6660
cctgggggtgt gttctgttgc gcatcttcac tttggtaaa cgacattgttca gtcgtcag 6720
cggaatcaa aagtataaag tggcagcga gtataccgtt acagactgtt ggcgataact 6780
caatccaattt acccccccaca acatgactgg ccaaactgtt ctcaagactt tattgtaaatc 6840
agcaacacccg attctcaatg aaggcacata cttcttgc aacatttact tgacgccttac 6900
agttggtagt aatggacccg acaagacata ttctgttac cacggactgt tgcctgtgtc 6960
ggtagtaca atacgttagt cagaagggtt gacgggttgc gttcccaagg aaaaggtcg 7020
cgagtagtctg tctgactcgat cattggccgc tttggagttac gactccactt atgagttgtgc 7080
ttggatcaat ttgacgatcatttttgcgtt ggaggctgtt ggtctgacag ctgcgttttc 7140
ggcgccggttt gcccacaaca atatcagctg caacgttcaat gtcggcttca atcatgatca 7200
catttttgtt ggcggccggcg acggcccgag agccatttgc gttcttctca atttggacccg 7260
atagccgtat agtccagtttctt atctataatg tcaactaactt cgtaactattt accataacat 7320
atacttcactt gccccagata aggttccgtt aaaaagggtt gcaactaaa ttatgttgc 7380
tctcccttttcc accaccaaaa tgcccttca cgaagctcgat gtcgttccat acaagtcgc 7440
cttgcgttccatc cgagtgctca agtctgttgc agccaaagaaa accaaccgtt gtcgttccat 7500
ggatgttacc accaccaagg agcttgcgttgc gttgcgttgc aaggttggac cttatgtgtc 7560
catgtatcaa accccatatcg acatcatttgc cgtacttcacc ttcggccggca ctgtgtcc 7620
cctcaaggaa cttgcgttca agcgttccat gtcgttccat gggacagaa agtgcgaga 7680
tattggcaacttgcgttca accaggatccg gtcgttccat gtcgttccat ggtccgtat 7740

-continued

caccaacgcc cacggtgtac ccggaaaccgg aatcattgct ggcctgcgag ctggtgccga	7800
gaaaaactgtc tctgaacaga agaaggagga cgtctctgac tacgagaact cccagtacaa	7860
ggagttctca gtcccccttc ccaacgagaa gctggccaga ggtctgctca tgctggccga	7920
gctgtcttgc aagggtctc tggccactgg cgagtaactcc aacgcagacca ttgagcttgc	7980
ccgatccgac cccgagtttgg tggttggctt cattgcccag aaccgaccta agggcgactc	8040
tgaggactgg cttattctga cccccggggg gggtcttgac gacaaggag acgctctcg	8100
acagcagttac cgaactgttg aggatgtcat gtctaccgga acggatata taattgtcgg	8160
ccgaggtctg tacggccaga accgagatcc tattgaggag gccaagcgat accagaaggc	8220
tggctggag gcttaccaga agattaactg ttagaggtt gactatggat atgtaattta	8280
actgtgtata tagagagcgt gcaagatgg agcgcttgc cagctgtat gatggcaga	8340
cgacctgtct gatcgagttat gatatgatact gcacaacctg tgtatccgca tgatctgtcc	8400
aatggggcat gttgttgtt ttctcgatac ggagatgtg ggtacagtgc taatacgttt	8460
aactacttat acttatatga ggctcgaaga aagctgactt gtgtatgact tattctcaac	8520
tacatccccca gtcacaatac caccactgca ctaccactac accaaaacca tgatcaaacc	8580
acccatggac ttcttgagg cagaagaact tgttatggaa aagctcaaga gagagaattc	8640
aagatactat caagacatgt gtcgcaactt aat	8673

<210> SEQ ID NO 60	
<211> LENGTH: 38	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer PEX16Fii	
<400> SEQUENCE: 60	
ccaaccagat caccacccac tacaccttcc aggaaccc	38

<210> SEQ ID NO 61	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer PEX16Rii	
<400> SEQUENCE: 61	
ctggtagaac tcgcctcgga acaaccacca tccc	34

<210> SEQ ID NO 62	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 3UTR-URA3	
<400> SEQUENCE: 62	
gagagaattc aagatactat caagacatgt gtcg	34

<210> SEQ ID NO 63	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer Pex16-conf	

-continued

<400> SEQUENCE: 63
cacacacccatca ccccggaagt cgccaccatt ctg 33

<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Real time PCR primer ef-324F

<400> SEQUENCE: 64
cgactgtgcc atcctcatca 20

<210> SEQ ID NO 65
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Real time PCR primer ef-392R

<400> SEQUENCE: 65
tgaccgtcct tggagataacc a 21

<210> SEQ ID NO 66
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Real time PCR primer Pex16-741F

<400> SEQUENCE: 66
gggagtggtg gccgagtt 18

<210> SEQ ID NO 67
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Real time PCR primer Pex16-802R

<400> SEQUENCE: 67
ggaaaagcaaa gcatgcgtag a 21

<210> SEQ ID NO 68
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Nucleotide portion of primer ef-345T

<400> SEQUENCE: 68
tgctgggtgt gttgggtgagt t 21

<210> SEQ ID NO 69
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Nucleotide portion of TaqMan probe Pex16-760T

<400> SEQUENCE: 69
ctgtccatcc tgcgaccctc c 21

-continued

```
<210> SEQ ID NO 70
<211> LENGTH: 4313
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pZKUM

<400> SEQUENCE: 70
taatcgagct tggcgtaatc atggtcatacg ctgtttccctg tggaaatttgc ttatccgctc 60
acaattccac acaacatacg agccggaagc ataaagtgtt aagcctgggg tgcctaatacg 120
gtgagctaac tcacattaat tgcgttgcgc tcactgccccg ctttccagtc gggaaacctg 180
tcgtgccaggc tgcattaatg aatcgccaa cgcgcggggg gaggcggtt gcgtattggg 240
cgcttcccg ctccctcgct cactgactcg ctgcgcgtcg tcgttccggct gcggcgagcg 300
gtatcagctc actcaaaggc ggtataacgg ttatccacag aatcaggggg taacgcagg 360
aagaacatgt gagcaaaaggc ccagcaaaaggc ggcaggaaacc gtaaaaaggc cgcggttgc 420
gcgttttcc ataggctccg ccccccgtac gaggcatcaca aaaatcgacg ctcaagtcag 480
agggtggcgaa accccgacagg actataaaga taccaggcggtt ttcccccgtt aagctccctc 540
gtgcgcgttc ctgttccgac cctgcccgtt accggataacc tgcgttccggctt tctcccttcg 600
ggaaggcgtgg cgctttctca tagctcagc tgcgttccggctt gtaggtcggtt 660
cgctccaaggc tgggtgtgtt gcacgaaccc cccgttccgcg cccgaccgtcg cgccttatcc 720
ggttaactatc gtcttgcgttca caaccggta agacacgact tgcgcactt ggcagoagcc 780
actggtaaca ggatttagcag agcgaggat tggcggttgc ctacagatgg cttgaagtgg 840
tggccactt acggctacac tagaaggaca gtatgggtt tctgcgcgtt gtcgaaggcc 900
gttacccctcg gaaaaagagt tggtagctt tgcgttccggca aacaaaccac cgctggtagc 960
gggtgggtttt ttgtttgcggca gcaggcattt acgcgcggaa aaaaaggatc tcaagaagat 1020
ccttgcgttctt tttctacggg gtctgcgtt cagtgaaacg aaaaactcactt ttaaggatt 1080
ttggtcgttca gattatcaaa aaggatctt accttagatcc tttaaaatcaaaaatgtt 1140
tttaaatcaatc tctaaatgtt atatgagttt acctgggttgc acagttacca atgcttaatc 1200
agtggggcac ctatctcgcg gatctgttca ttgcgttcat ccatgttgc ctgactcccc 1260
gtcgtgttca taactacgtt acggggaggc ttaccatctt gcccgttgc tgcaatgata 1320
ccggcgaccacc caccgttccacc ggctccatgtt tttccatgttccaa taaaccggcc agccggagg 1380
ggccgaggcga gaagtgggtcc tgcacttta tccgccttca tccagtttat taaatgggttgc 1440
cgggaggcttca ggtttttttt ttcgttccggat aatagtttgc gcaacgttgc tgccattgtt 1500
acaggcatttgc tgggtgttccggc ctgcgttccggctt ggtatgggttccaa tttccatgttccaa 1560
cgatcaaggc gagttacatgtt atccccatgtt ttgttgcggaa aagcggttgc ctcccttccgtt 1620
cctccgttccatgtt ttgttgcgttca taagttggcc gcaatgttgc tttccatgttccaa 1680
ctgcataatttccatgtt catggccatcc gtaatgttgc tttccatgttccaa tttccatgttccaa 1740
tcaaccaatgtt cattctgaga atatgttgc gggcgaccga gttgttccgttccaa tttccatgttccaa 1800
atacgggata ataccggcc accatgttca acatgttccgttccaa tttccatgttccaa tttccatgttccaa 1860
tcttcggggc gaaaactcttca aaggatcttca ccgttgcgttca gatccgttccgttccaa tttccatgttccaa 1920
actcggttccgttccaa ccaactgttccgttccaa tttccatgttccaa tttccatgttccaa tttccatgttccaa 1980
```

-continued

aaaacaggaa ggcaaaatgc cgcaaaaag ggaataaggg cgacacggaa atgttata	2040
ctcatactct tccttttca atattattga agcatttac agggttattt tctcatgagc	2100
ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacattccc	2160
cgaaaagtgc cacctgacgc gcccgtacg ggcgcattaa ggcgcgggg tgggtgggtt	2220
acgcgcagcg tgaccgtac acttgcgcg gcccgtacg cgcgtccccc cgctttttc	2280
ccttccttcc tcgcacgtt cgccggctt ccccgtaag ctctaaatcg ggggctccct	2340
ttagggttcc gatttagtgc tttacggcac ctgcacccca aaaaacttga ttagggtgat	2400
gtttcacgtt gtggggccatc gcccgtatag acggttttc gcccgttgc gttggagtcc	2460
acgttcttta atagttggact cttgttccaa acttggacaa cactcaaccc tatctcggtc	2520
tattcttttatttataagg gattttgcg atttgcgcctt attggtaaa aaatgagctg	2580
atttaaacaaa aatttaacgc gaattttaaac aaaatattaa cgcttacaat ttccatcg	2640
cattcaggct ggcacactgt tgggaagggc gatcggtgcg ggccttgcg ctattacgc	2700
agctggcgaa agggggatgt gtcgcaaggc gattaagtgc ggttaacgcca gggtttccc	2760
agtcacgcg acgtttaaaacg acggccatgt aattgtataa cgactcaacta tagggcgaat	2820
tgggtaccgg gccccccctc gaggtcgacg agtatactgtc tgactcgatc ttggccgcctt	2880
tggagtacga ctccaaactat gagtgcgtt ggatcactt gacgatacat tcttcgttgg	2940
aggctgtggg tctgacagct gcttttcgg cgccgttggc cgacaacaat atcagctgca	3000
acgtcattgc tggctttcat catgatcaca tttttgtcgg caaaggcgc gcccagagag	3060
ccattgacgt tctttctaat ttggaccatg agccgtatag tccagtcata ctataagttc	3120
aactaactcg taactattac cataacatatacttactgc cccagataag gttccgataa	3180
aaagttctgc agactaaatt tatttcgttcc tctcttcac caccaaaatgc ccctcttacg	3240
aagtcacgt gctcaagtc gtcggcggca agaaaaacaa cctgtgtgtc tctctggatg	3300
tttaccaccac caaggagtc attgagcttgc cggataaggt cggacattatgttgcgtatga	3360
tcaaaaccca tatcgacatc attgacgtact tcacctacgc cggcactgtg ctccccctca	3420
aggaacttgc tcttaagcac ggtttttcc tggatcgagga cagaaatgc gcagatattg	3480
gcaacactgt caaggcaccag taccgggtgc accgaatgcg cggatggcc gatataccca	3540
acgeccacgg tggatccggaa accggaaatcg attgctggcc tggatggatgg tggatcgag	3600
gaaactgtct ctgaacagaa gaaggaggac gtctctgact acgagaactc ccagatacaag	3660
gagttcccttag tccccctctcc caacgagaag ctggccagag gtctctgtat gctggccgag	3720
ctgtcttgcg agggctctct ggccactggc gtagacttca agcagaccat tgatgttgc	3780
cgatccgacc cccgatgttgc ggttggatcc attggccaga accgaccaa gggcgactct	3840
gaggactggc ttattctgc cccgggggtt ggttgcgttgcg acaagggaga cgctctcgga	3900
cagcagttacc gaaactgttgc ggttgcgttgc tctaccggaa cggatcatat aattgtcg	3960
cgaggtctgt acggcccgaa cccgatgttgc attggggagg ccaagcgata ccagaaggct	4020
ggctggggagg cttaccagaa gattaactgt tagaggtagt actatggata tgtaattaa	4080
ctgtgtatata agagagcgtg caagtatggaa ggcgttgcg agcttgcgtatg atggatcg	4140
gacctgtctg atcgatgtatg tatgtatacg cacaacctgt gtatccgcat gatctgtcca	4200
atggggcatg ttgttgcgtt tctcgatcgc gagatgcgtt gtcacgttgc aatacgttga	4260

-continued

actacttata cttatatgag gctcgaagaa agctgacttg tgtatgactt aat 4313

<210> SEQ ID NO 71
<211> LENGTH: 15966
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pZKD2-5U89A2

<400> SEQUENCE: 71

gtacgttca tgaaggcggg cagaaagtac tcgatggtgg agatgattgc tcggaggtac 60
ttgttctgcg gccagtatct ctcagcaatc aggtgataact cctggacgtc cagagggttag 120
tatgtgtgcg tgggctccag atccaccgtc ttgtgcagag ttatgggaa gtagcggcca 180
aagagcttcc agatgaagaa gtttcttcaa ataggcggat atcgcttgac cactccctccg 240
ttggacgggg agtcgtcttt aacagcgtac actacatacg caatcacaaa tggccagagc 300
agtggaaattt cgcagccatag catgaaaattt gtgaggaaag tgggaatgtct gaaaatgtgc 360
cagaccagag agaagggttc acatcggtt agtaatggtg tcgatagcgg ggcataatcgg 420
atccccgcga ttttgggtgc cgtgtcgttt ttgtctgcg acttggatgtat ttgtgagtcg 480
atagtcatag cttttgtttt gtgtgacttg tctgttgccct gttgttagaa gaaaaagtgg 540
gagcttatca gtcacggtcc acgaacgatt tcgtacttgtt acgtaattgg tcgtgagaac 600
tggcagag ccgggtgtttt ttttgggtgc caagtcgaca ggtcgatttc ggcgtgtgc 660
gagggtgtctt ggtatgtgtctt gtttgggtgc caaatgtggg gaagatttca acctcgattt 720
tgacgtgtgtt agaggcgccgc cagctgcattt aatgaatcgg ccaacgcgcg gggagaggcg 780
gtttgcgtat tggggcgttcc tcggcttcctt cgctcactga ctcgcgtgcg tcggcggttc 840
ggctgcggcg agccgtatca gtcactcaa aggccgtaat acggttatcc acagaatcag 900
gggataacgc agggaaagaac atgtgagcaaa aaggccagca aaaggccagg aaccgtaaaa 960
aggccgcgtt gctggcggtt ttccatagggc tcggcccccc tgacgagcat cacaaaaatc 1020
gacgctcaag tcagagggtgg cggaaacccgc caggactata aagatacccg gcgtttcccc 1080
cttggaaagctc cctcggtgcgc tctcctgttcc cgaccctgccc gcttaccggatc tacctgtccg 1140
cctttctccc ttccggaaagc gtggcggtttt ctcatagctc acgctgttagg tatctcagtt 1200
cggtgttaggt cggtcgctcc aagctgggtt gttgtgcacga acccccccgtt cagccgcacc 1260
gctgcgcctt atccggtaac ttcgtttttt agtccaaaccc ggttaagacac gacttatcgc 1320
caactggcgc acgcacttgtt aacaggattt cggagccggag gtatgttaggc ggtgtacag 1380
agttcttggaa gttgggtgcgtt aactacggctt acactagaag aacagtatttt ggtatctgcg 1440
ctctgctgaa gcccgttacc ttccggaaaaa gagttggtag ctcttgcattcc ggcaaaacaaa 1500
ccacccgtgg tagccgggtt tttttttttt gcaaggcgcgca gattacgcgc agaaaaaaaag 1560
gatctcaaga agatccctttt atcttttcttta cgggggtctga cgctcagtgg aacgaaaact 1620
cacgttaagg gattttggtc atgagattt caaaaaggat cttcaccttag atccctttaa 1680
ataaaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 1740
accaatgcctt aatcagttag gcacccatct cagcgatctg tctatttcgt tcatccatag 1800
ttgcctgact ccccggtcgtagataacta cgatacggga gggcttacca tctggcccca 1860
gtgctgcaat gataccgcga gacccacgctt caccggctcc agatttatca gcaataaacc 1920

-continued

agccagccgg aaggcccggag	cgcagaagtgc	tcctgcacac	tttatccggcc	tccatccagt	1980	
ctattaattt	ttgccccggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	2040
ttgttgccat	tgctacaggc	atcgctgggt	cacgctcg	gtttggatg	gtttcattca	2100
gctccgggttcc	ccaacgatca	aggcgagtt	catgatcccc	catgttg	aaaaaagcg	2160
ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	2220
tggttatggc	agcaactgcat	aattcttctt	ctgtcatgcc	atccgtaaga	tgctttctg	2280
tgactggtga	gtactcaacc	aagtcttctt	gagaatagtg	tatgcggcga	ccgagttgt	2340
cttgcggcgc	gtcaatacgg	gataataccg	cgccacatag	cagaacttta	aaagtgtca	2400
tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	2460
gttcgatgt	accactcgt	gcacccaact	gatcttcagc	atctttact	ttcaccagcg	2520
tttctgggtg	agcaaaaaca	ggaaggcaaa	atgcccggaaa	aaagggaata	agggcgacac	2580
ggaaatgttg	aataactcata	cttccctt	ttcaatattt	ttgaaggatt	tatcagggtt	2640
attgtctcat	gagcggatac	atatttgaat	gtattttagaa	aaataaaacaa	atagggttc	2700
cgcgcacatt	tccccggaaa	gtgccacctg	atgcgggttg	aaataccgca	cagatcgta	2760
aggagaaaaat	accgcacat	gaaattgtaa	gcgttaatat	tttggtaaaa	ttcgcgtaa	2820
attttggta	aatcagctca	ttttttaacc	aataggccga	aatcgccaaa	atcccttata	2880
aatcaaaaaga	atagaccgag	atagggttga	gtgttggccc	agtttggaaac	aagagtccac	2940
tattaaagaa	cgtggactcc	aacgtcaaa	ggcgaaaaac	cgtctatcag	ggcgatggcc	3000
cactacgt	accatcaccc	taatcaagtt	ttttgggtc	gaggtgcgt	aaagcactaa	3060
atcggaaaccc	taaaggggcgc	ccccgattt	gagcttgacg	gggaaagccg	gcgaaacgtgg	3120
cggaaaaagga	agggaagaaa	gcgaaaggag	cgggcgctag	ggcgctggca	agtgtacg	3180
tcacgctg	cgttaaccacc	acaccgcgc	cgcttaatgc	gccgctacag	ggcgctgtcc	3240
ttcgccatc	aggctgcgca	actgttggga	agggcgatcg	gtgcgggcct	cttcgttatt	3300
acgcacagctg	gcgaaagggg	gatgtgtgc	aaggcgat	agttggtaa	cgccagggtt	3360
ttcccagtc	cgacgttgta	aaacgacggc	cagtgaattt	taatacgact	cactataggg	3420
cgaattgggc	ccgacgtgc	atgcataaa	ggaagggtga	atccaaggaa	gttcttgaca	3480
aactgctgga	atcggtacag	cttggacgac	ttgtcggtc	taacctggc	atagaggtcg	3540
ttctcacc	aggccatgt	gggaacaagg	gacacattt	cgacccat	accaagtcg	3600
acaaaaccc	ttcgcttgag	tagcaccagg	tccatgacac	cggtctggc	cagaagactt	3660
tcctgtgtc	caccaacgac	aatgcagata	gactggttc	gcttgaggag	ggcccttgcag	3720
gacttcttgg	agacagaagc	gactcccaga	ctcatgaggt	actctctgt	gagaggact	3780
cggaaagg	ttgtgaggt	cataagagaa	acagggatgc	ccggaaagag	cttggaccat	3840
ccagctcc	cgggtggcaat	tccaccaaa	gctccatgc	cgataatgc	gtgggggtgg	3900
tagccgaaga	tgtat	ttgtgggg	ttgagttt	ttggcgacag	ctgtgggtcg	3960
tttcgcca	tgtatctgg	ggcgtaggag	ttgagggacc	cgttaagaag	cgtggaaatca	4020
gatgcagtgg	agccagcaga	ggcgacgac	aaaggtcg	ggttagtgg	gccatttttgc	4080
ccgttgc	taagttcgga	gcccggaggcg	tggccgttgg	agccagatga	ttctccacgg	4140
ctatatctgc	tgtcggtt	aattaactca	cctgcaggat	tgagactatg	aatggattcc	4200

-continued

cgtgcccgt	ttactctact	aatttgatct	tggaacgcga	aaatacg	ttt	ctaggactcc	4260		
aaagaatctc	aactcttgc	cttactaaat	atactacc	ca	tagttgatgg	tttacttgaa	4320		
cagagaggac	atgttca	ttt	gacccaa	agt	ttctcgcatc	tc	ttggat	ttgaacaacg	4380
gcgtccactg	accgtcagtt	atccagtcac	aaaacccca	cattcata	aca	ttccatgt	ta	4440	
cgtttacaaa	gttctcaatt	ccatcgt	gca	aatcaaaatc	acatctatc	attcata	attcata	4500	
tataaacc	tcatgtctac	taacact	ca	aactccat	ag	aaaacatcg	ctcagaacac	4560	
acgctccatg	cggccgctt	ggaatc	cctg	ga	gcgtc	ttga	cacagtga	ac	4620
ttgtgc	atgtgagg	gt	gaggt	ggt	ggaaat	tgat	ttgac	ttgat	4680
cgaactccgt	gtcg	ttcg	ca	ac	actctcg	g	acg	caagg	4740
gacgacat	c	gaggaa	agag	gt	gtatgt	tc	atgt	ggcc	4800
atggcaatgg	gtccacc	g	ttg	ga	agag	gt	ctcc	acc	4860
tgatcgg	ctt	caac	gtc	ttt	ctcg	tt	gggat	tc	4920
tccgagccat	cga	agg	ttgt	g	aca	agat	aaa	agaagg	4980
gtgggcacca	gag	gaat	gggt	gt	gat	ggc	ggat	cca	5040
gcgg	ttcgaa	agat	gaagaa	ag	tcg	ca	gggt	cgaga	5100
aaggcgttct	ctcg	cat	ggc	t	gtg	ac	atgg	atgg	5160
aagatgt	aga	gggtt	gt	acc	ttt	cc	tcg	atcg	5220
taccaggc	ctt	gga	atcg	gtt	aa	acc	actt	cg	5280
aacacaagga	atgg	ttct	gc	gg	act	cg	gg	acc	5340
gtgtgat	at	gt	gt	tc	gat	gt	gt	at	5400
atgc	cg	tt	ca	aa	ag	ac	ttt	tt	5460
tcgtgctgaa	tgg	ac	agg	cc	at	tc	at	gg	5520
accattccgg	tag	at	gccc	gt	ca	act	cg	ca	5580
gttgc	cage	cc	aa	at	cc	tg	tt	cg	5640
gttgc	ctt	gt	aa	agg	gg	at	gt	gg	5700
cggtc	gt	tc	gt	ca	act	gt	tt	cg	5760
gggtgc	at	gg	at	gg	at	gg	tt	ca	5820
cctccgggat	gg	ac	tt	gg	aa	ac	tt	cc	5880
agg	tc	gg	gg	ca	at	cg	tt	gg	5940
gat	at	gt	gt	ta	gg	tt	tt	gt	6000
caagg	ga	gg	gg	aa	gt	gg	gg	gg	6060
atgett	ttt	gt	ttt	gt	tt	gt	tt	gt	6120
cagacaat	gc	at	tt	tt	tt	tt	tt	tt	6180
ggtgc	ga	at	aa	tt	tt	tt	tt	tt	6240
aaacattt	gt	ca	gg	tt	tt	tt	tt	tt	6300
gtgcgt	ct	tc	gg	tt	tt	tt	tt	tt	6360
cgctagg	cc	tc	gg	tt	tt	tt	tt	tt	6420
tgtactgt	gg	ca	gg	gg	aa	aa	gg	gg	6480

-continued

cgttaggtaag	gcgttactag	actgaaaagt	ggcacattc	ggcgtgccaa	agggtcctag	6540
gtgcgtttcg	cgagctggc	gccaggccaa	gcccgtccaa	aacgcctc	cgactccctc	6600
cagcggcctc	catatcccc	tccctctcca	cagcaatgtt	gttaagcctt	gcaaacgaaa	6660
aaatagaaag	gctaataagc	ttccaatatt	gtggtgtacg	ctgcataacg	caacaatgag	6720
cgccaaacaa	cacacacaca	cagcacacag	cagcattaac	cacgatgaac	agcatgaatt	6780
ctctctcttg	agcttttcca	taacaagttc	ttctgcctcc	aggaagtcca	tgggtggttt	6840
gatcatggtt	ttggtgttagt	ggtagtgcag	tggtggattt	gtgactgggg	atgttagttga	6900
gaataagtca	tacacaagtc	agcttttcc	gagcctcata	taagtataag	tagtcaacg	6960
tattagcact	gtacccagca	tctccgtatc	gagaaacaca	acaacatgcc	ccattggaca	7020
gatcatgcgg	atacacaggt	tgtgcagttat	catacatact	cgatcagaca	ggtcgtctga	7080
ccatcatata	agctgaacaa	gchgctccata	cttgcacgct	ctctatatac	acagttaaat	7140
tacatatcca	tagtctaacc	tctaacagg	aatcttctgg	taagcctccc	agccagcctt	7200
ctggtatcgc	ttggcctct	caataggata	tgggttctgg	ccgtacagac	ctggccgac	7260
aattatgata	tccgttccgg	tagacatgac	atcctcaaca	gttcggta	gtgtccgag	7320
agcgtctccc	ttgtcgtcaa	gacccacccc	gggggtcaga	ataagccagt	cctcagagtc	7380
gcccttaggt	cgggtctggg	caatgaagcc	aaccacaaac	tgggggtcgg	atcgccaaag	7440
ctcaatggtc	tgcttggagt	actcgccagt	ggccagagag	cccttgc	acagtcggc	7500
cagcatgagc	agacctctgg	ccagcttctc	gttgggagag	gggacttagga	actccttgc	7560
ctgggagttc	tcgttagtcag	agacgtcctc	cttcttctgt	tcagagacag	tttcctcggc	7620
accagctcgc	aggccagcaa	tgattccgg	tccgggtaca	ccgtggcg	tggtgatatac	7680
ggaccactcg	gcgattcgg	gacaccgta	ctgggtgttg	acagtgtgc	caatatctgc	7740
gaactttctg	tcctcgaaca	ggaagaaacc	gtgcttaaga	gcaagttct	tgagggggag	7800
cacagtgcgg	gcgttaggtga	agtcgtcaat	gatgtcgata	tgggttttga	tcatgcacac	7860
ataaggtccg	accttategg	caagctaat	gagtccttg	gtgggtggtaa	catccagaga	7920
agcacacagg	ttggttttct	tggctgccac	gagcttgagc	actcgagcgg	caaaggcgg	7980
cttggggacg	ttagctcgc	cttcgttagga	gggcattttt	gtggtaaga	gggactgaa	8040
ataaaatttag	tctgcagaac	tttttatcgg	aaccttatct	ggggcagtga	agtatatgtt	8100
atggtaatag	ttacgagtt	gttgaactta	tagatagact	ggactatacg	gtatcggtc	8160
caaatttagaa	agaacgtcaa	tggctctcg	ggcgtcgc	ttggccacaa	aaatgtgatc	8220
atgatgaaag	ccagcaatga	cgttgcagct	gatattgttg	tccggcaacc	gcccggaaaa	8280
cgcagctg	agacccacag	cctccaaacga	agaatgtatc	gtcaaagtga	tccaaacaca	8340
ctcatagtt	gagtcgtact	ccaaaggcgg	caatgaacgag	tcagacagat	actcgac	8400
ctttccctg	ggaaccacca	ccgtcagccc	ttctgactca	cgtattgttag	ccacccgacac	8460
aggcaacagt	ccgtggatag	cagaatatgt	cttgcggc	catttctc	caactttagg	8520
cgtcaagtga	atgttgcaga	agaagtatgt	gccttcattt	agaatcggtg	ttgctgattt	8580
caataaaagtc	ttgagatcag	tttggccagt	catgttgtgg	ggggtaattt	gattgagtt	8640
tcgcctacag	tctgtacagg	tatactcgct	gcccacttta	tacttttga	ttccgctgca	8700
cttgaagcaa	tgtcgtttac	caaaagttag	aatgctccac	agaacacaccc	ccagggtatg	8760

-continued

gttgagcaaa	aaataaacac	tccgatacgg	ggaatcgaac	cccggtctcc	acggttctca	8820
agaagtattc	ttgatgagag	cgtatcgata	gttggagcaa	gggagaaatg	tagagtgtga	8880
aagactcact	atggtccggg	cttatctcg	ccaatagcc	aagtctggag	tttctgagag	8940
aaaaaggcaa	gatacgatg	taacaaagcg	acgcatggta	caataatacc	ggaggcatgt	9000
atcatagaga	gttagtggtt	cgatgatggc	actggtgct	ggtatgactt	tatacggtc	9060
actacatatt	tgtcctcaga	catacaatta	cagtcaagca	cttacccttg	gacatctgt	9120
ggtacccccc	ggccaagacg	atctcagcgt	gtcgatgtc	ggattggcgt	agctccctcg	9180
ctcgtcaatt	ggctccatc	tacttttctc	tgcttggcta	cacccagcat	gtctgtatg	9240
gctcgtttcc	gtgccttatac	tatcctccca	gtattaccaa	ctctaaatga	catgatgtga	9300
ttgggtctac	actttcatat	cagagataag	gagtagcaca	gttgcataaa	aagcccaact	9360
ctaattcagct	tcttccttcc	ttgttaattag	tacaaagggt	attagcgaaa	tctggaaagt	9420
tagttggccc	taaaaaaaatc	aaaaaaagca	aaaaacgaaa	aacgaaaaac	cacagttttg	9480
agaacaggga	ggtaacgaag	gatcgatat	atatatata	atatatatac	ccacggatcc	9540
cgagaccggc	ctttgattct	tccctacaac	caaccattct	caccacccct	attcacaacc	9600
atggctgccc	tcatcgaggt	ggccaacgag	ttcgctcgta	tcactgcccga	gacccttccc	9660
agggtggact	atcagcgact	ctggcgagac	atctactct	gcgagctct	gtacttctcc	9720
attgccttcc	tcatcctcaa	gtttaccctt	ggcgagctct	cggattctgg	caaaaagatt	9780
ctcgagatgc	tgttcaagtg	gtacaacccct	ttcatgtcgg	tctttctct	ggtgtcttc	9840
ctctgtatgg	gttacgccc	ctacaccgtt	ggactgtact	ccaacgaatg	cgacagagct	9900
ttcgacaaca	gcttggcc	atttgcacc	aaaggcttct	actattccaa	gtttctggag	9960
tacatcgact	ctttctacat	teccctcatg	gccaagcc	tgtccttct	gcagttcttt	10020
catcaacttgg	gagctccat	ggacatgtgg	ctttcgtgc	agtactctgg	cgaatcatt	10080
tggatcttgc	tgttccctgaa	cggattcatt	cactttgtca	tgtacggcta	ctattggaca	10140
cggctgatga	agttcaactt	teccatgcc	aaggcgtca	ttaccgcaat	gcagatcacc	10200
cagttcaacg	ttggcttcta	cctcgtgtgg	tggtacaagg	acatccctg	ttacgaaag	10260
gatcccatgc	gaatgctggc	ctggatcttc	aactactgg	acgtcggtac	cgttctctg	10320
ctttcatca	acttcttgc	caagtctac	gtgttccca	agcctaagac	tgccgacaaa	10380
agggtccagt	ageggccgca	tgtacataca	agattattt	tagaaatgaa	tcgcgatcga	10440
acaaagagta	cggatgtacg	agttagggat	gatgataaaa	gtggaaagag	ttccgcatct	10500
ttggatcttgc	caacgtgtac	gacgatactt	cctgtaaaaa	tgcaatgtct	ttaccatagg	10560
ttctgtgtac	gatgttattt	actaccat	acatgtctac	ttgtacagtt	gcagaccagt	10620
tggagatag	aatggatcac	ttacaaaaaa	gtgttgc	ttgtactac	gatataaaa	10680
actgttgc	ggatctgtat	attcggtaa	atataattt	tgggtttta	gtgggttta	10740
aacaccacta	aaaccccaaca	aaatataatct	taccgaat	acagatctac	tatagaggaa	10800
caattgcccc	ggagaagacg	gccaggccgc	ctagatgaca	aattcaacaa	ctcacagct	10860
actttctgcc	attgccacta	ggggggggcc	tttttatatg	gccaaggccaa	gctctccacg	10920
tcgggtggc	tgcacccaaac	aataatggg	taggggtgca	ccaacaagg	gatggatgg	10980
ggggtagaag	atacgaggat	aacggggctc	aatggcaca	ataagaacga	atactgccc	11040

-continued

taagactcgt gatccagcga ctgacaccat tgcacatcatct aaggccctca aaactacctc 11100
 ggaactgctg cgctgatctg gacaccacag aggttccgag cacttttagt tgccacaaat 11160
 gtcccaccag gtgcaggcag aaaacgctgg aacagcgtgt acagttgtc ttaacaaaaa 11220
 gtgagggcgc tgaggtcggag cagggtggt tgactttgtta tagcctttag agctcgaaa 11280
 gcgctatgg atttggctca tcaggccaga ttgagggtct gtggacacat gtcacatgttag 11340
 tgtacttcaa tcgccccctg gatataggccc cgacaataagg ccgtggccctc attttttgc 11400
 cttccgcaca tttccattgc tcggtaccca caccttgctt ctcctgcact tgccaaacctt 11460
 aataactggtt tacattgacc aacatcttac aagcgggggg cttgtctagg gtatataaa 11520
 acagtggctc tcccaatcgg ttgccagtct cttttttctt ttctttcccc acagattcga 11580
 aatctaaact acacatcaca caatgcgtt tactgacgtc cttaagcgaa agtccgggtgt 11640
 catcgtcgcc gacgatgtcc gagccgtgag tatccacgac aagatcaagt tcgagacgac 11700
 gcgtttgtt taatgacaca atccgaaagt cgctagcaac acacactctc tacacaaaact 11760
 aacccagctc tccatggtga aggcttctcg acagggctcg cccctcgta tcgacggaaa 11820
 ggtgtacgac gtctccgctt gggtaactt ccaccctggt ggagctgaaa tcattgagaa 11880
 ctaccaggga cgagatgcta ctgacgcctt catggttatg cactctcagg aagccttcga 11940
 caagctcaag cgaatgccca agatcaacca ggcttccgag ctgcctcccc aggctgccgt 12000
 caacgaagct caggaggatt tccgaaagct ccgagaagag ctgatcgcca ctggcatgtt 12060
 tgacgcctct cccctctggt actcgtacaaat gatcttgacc accctgggtc ttggcggtct 12120
 tgccttcttc atgctggtcc agtaccacat gtacttcatt ggtgctctcg tgctcggtat 12180
 gcactaccag caaatggat gggtgtctca tgacatctgc caccaccaga ccttcaagaa 12240
 ccgaaaactgg aataaacgtcc tgggtctggt ctttggcaac ggactccagg gcttcccggt 12300
 gacctgggtgg aaggacagac acaacgccccca tcattctgtt accaacgttc agggtcacga 12360
 tcccgacatt gataacctgc ctctgctcgc ctggcccgag gacgatgtca ctcgagctt 12420
 tcccatctcc cgaaagctca ttcaagttcca acagttactat ttccctggtca tctgtattct 12480
 cctgcgatcc atctgggttt tccagttctgt gctgaccgtt cgatccctca aggacogaga 12540
 caaccagttc taccgatctc agtacaagaa agaggccatt ggactcgctc tgcaactggac 12600
 tctcaagacc ctgttccacc ttttctttat gccctccatc ctgacctcgat tgctgggttt 12660
 ctttgggttcc gagctcgctcg gtggcttccg aattggccatc gtggcttca tgaaccacta 12720
 ccctctggag aagatcggtg attccgtctg ggacggacat ggcttctcg tgggtcagat 12780
 ccatgagacc atgaacatcc gacgaggccat cattactgac tggttctttg gaggectgaa 12840
 ctaccagatc gagcaccatc tctggcccac cctgcctcgat cacaacctca ctgccttc 12900
 ctaccagggtg gaacagctgtt ggcagaagca caacccccc taccgaaacc ctctgcccc 12960
 tgaaggcttc gtcacatctgc tccgataacctt gtcccagttc gtcgaatgg ccgagaagca 13020
 gcccgggtgcc aaggctcagt aagcggccgc atgagaagat aaatataaa atacatttag 13080
 atattaaatg cgctagatta gagagctca tactgctcgg agagaagcca agacgagttac 13140
 tcaaaaggga ttacaccatc catatccaca gacacaagct gggaaaggt tctatataca 13200
 ctttccggaa taccgttagtt tccgatgtta tcaatggggg cagccaggat ttcaggcact 13260
 tcgggtctc ggggtgaaat ggcgttcttg gcctccatca agtcgtacca tgcgttccatt 13320

-continued

tgcctgtcaa agtaaaacag aagcagatga agaatgaact tgaagtgaag gaatttaat 13380
 agttggagca agggagaaat gtagagtgtg aaagactcac tatggtccgg gcttatctcg 13440
 accaatagcc aaagtctgga gtttctgaga gaaaaaggca agatacgtat gtaacaaagc 13500
 gacgcatggt acaataatac cggaggcatg tatcatagag agtttagtggt tcgatgatgg 13560
 cactggtgcc tggtatgact ttatacggct gactacataat ttgtcctcag acatacaatt 13620
 acagtcaagc acttaccctt ggacatctgt aggtacccccc cggccaagac gatctcagcg 13680
 tgcgtatgt cggattggcg tagtcctcctc gtcgtcaat tggctccat ctactttctt 13740
 ctgcttggct acacccagca tgcgtatgt ggctcgcccc cgtgccttat ctatccccc 13800
 agtattacca actctaaatg acatgatgtg attgggtcta cactttcata tcagagataa 13860
 ggagtagcac agttgcataa aaagcccaac tctaattcagc ttcttcctt cttgtaattt 13920
 gtacaaaggt gattagcgaa atctggaagc ttagttggcc ctaaaaaaat caaaaaaaagc 13980
 aaaaaacgaa aaacgaaaaa ccacagttt gagaacaggg aggtacgaa ggatcgata 14040
 tataatatata tataatatata cccacggatc cccagacccgg cctttgatcc ttccctacaa 14100
 ccaaccatc tcaccaccc aattcacaac catggcctcc acctcggctc tgcccaagca 14160
 gaaccctgcc ctccgacgaa ccgtcacttc caccactgtg accgactcgg agtctgctgc 14220
 cgtctctccc tccgattctc ccagacactc ggctcctct acatcgctgt ctccatgtc 14280
 cgaggtggac attgccaagc ccaagtcgaa gtacggtgcc atgctggata cctacggcaa 14340
 ccagttcgaa gttcccgact tcaccatcaa ggacatctac aacgcttaccc ccaagoactg 14400
 cttaaagcga tctgctctca agggatacgg ctacattttt cgagacattt tccctctgac 14460
 taccacttcc agetatctggt acaactttgt gacacccggag tacattccctt ccactctgc 14520
 tcgagccggt ctgtgggtgt tgcgtacccgt ttttcaggaa ctcttcggta ctggactgtg 14580
 gtcattgcc cacgagtgtg gacatggtgc tttctccgt tcccgaatca tcaacgacat 14640
 tactggctgg gtgcttcact ctccctgtc ttttccttac ttcagctggc aatctccca 14700
 ccggaagcat cacaaggcaca ctggaaacat ggagcgagac atggcttcg ttcctctgac 14760
 ccgagagcag caagctactc gactcggcaa gatgacccac gaactcgccc atcttaccga 14820
 gaaaaactccct gcttcaccc tgcgtatgtc tgcgttccatc caactggtgc gttggccaa 14880
 ctatctcatt accaacgtta ctggacacaa ctaccatgag cggcagcggag aggggtcgagg 14940
 caaggaaag cacaacggtc ttggccgggtt agttaccat ttcgatcccc gatctctct 15000
 gtacgagaac agcgacgcca agtcgtatcg gtcgtccggac attggcattt gtcttatggc 15060
 cacggctctg taatcttcgt ttcagaaggat cggattctac aacatggcca ttcggacttt 15120
 cgtccctac ttgtgggtta accactggct cgtcgccatt acctttctgc agcacacaga 15180
 tcctactctt ccccaactaca ccaacgacga gtggaaactt gtgcggaggtt ccgcgtcaac 15240
 ctcgtacccgaa gagatgggtt tcattggacg tcatctgtc cacggcatta tcgagactca 15300
 cgtctctgtc cactacgtct ctccattcc cttctacaat cggcggacaa ctaccggagg 15360
 catcaaacct atcatggcaca agcactatcg agctgtatgtc caggacggtc ctcgaggatt 15420
 cattcgagcc atgttaccgtat ctgcacgaaat gtgcggatgtt gttgaaccct ccgcgttgc 15480
 cgagggagct ggcaagggtt tccgttctt tcgaaaccga aacaatgtgg gcactctcc 15540
 cgctgtcatc aagcccgttgc cctaageggc cgcgtatccat cactcttac aacttctacc 15600

-continued

tcaactatct acttataataa atgaatatcg tttattctct atgattactg tataatgcgtt 15660
 cctctaagac aaatcgaaac cagcatgtga tcgaatggca tacaaaagtt tcttccgaag 15720
 ttgatcaatg tcctgatagt caggcagctt gagaagattt acacagggtgg agggcgtagg 15780
 gaaccgatca acctgtctac cagcgatc aatggcaa at gacgggttca aagccttcaa 15840
 tccttgcata ggtgccttgg atactgtatgt cacaactta agaagcagcc gcttgcctc 15900
 ttcctcgatc gatggtcata gctgtttctt gtgtgaaatt gttatccgct cacaattccaa 15960
 cacaac 15966

<210> SEQ ID NO 72
 <211> LENGTH: 2119
 <212> TYPE: DNA
 <213> ORGANISM: Yarrowia lipolytica
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (291)..(1835)
 <223> OTHER INFORMATION: DGAT2 opening reading frame, comprising 2 smaller internal opening reading frames
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (291)..(293)
 <223> OTHER INFORMATION: initiation codon ('ATG')
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (456)..(458)
 <223> OTHER INFORMATION: initiation codon ('ATG')
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (768)..(770)
 <223> OTHER INFORMATION: initiation codon ('ATG')
 <300> PUBLICATION INFORMATION:
 <302> TITLE: ACYLTRANSFERASES FOR ALTERATION OF POLYUNSATURATED FATTY ACIDS AND OIL CONTENT IN OLEAGINOUS YEASTS
 <310> PATENT DOCUMENT NUMBER: U.S. Patent 7,267,976
 <311> PATENT FILING DATE: 2004-07-01
 <312> PUBLICATION DATE: 2007-09-11
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(2119)

<400> SEQUENCE: 72

aaacgcaccc actgctcgtc ctcccttgctc ctcgaaacccg actcccttac acacgtcaaa	60
tccgagggtt aaatcttccc cacatttggc agccaaacca gcacatccca gcaacctcgc	120
acagcgccga aatcgacctg tcgacttggc cacaaaaaaa agcaccggct ctgcaacagt	180
tctcacgacc aattacgtac aagtacgaaa tcgttcgtgg accgtgactg ataagctccc	240
actttttctt ctaacaacag gcaacagaca agtcacacaa aacaaaagct atg act Met Thr 1	296
atc gac tca caa tac tac aag tcg cga gac aaa aac gac acg gca ccc Ile Asp Ser Gln Tyr Tyr Lys Ser Arg Asp Lys Asn Asp Thr Ala Pro 5 10 15	344
aaa atc gcg gga atc cga tat gcc ccg cta tcg aca cca tta ctc aac Lys Ile Ala Gly Ile Arg Tyr Ala Pro Leu Ser Thr Pro Leu Leu Asn 20 25 30	392
cga tgt gag acc ttc tct ctg gtc tgg cac att ttc agc att ccc act Arg Cys Glu Thr Phe Ser Leu Val Trp His Ile Phe Ser Ile Pro Thr 35 40 45 50	440
ttc ctc aca att ttc atg cta tgc tgc gca att cca ctg ctc tgg cca Phe Leu Thr Ile Phe Met Leu Cys Cys Ala Ile Pro Leu Leu Trp Pro 55 60 65	488
ttt gtg att gcg tat gta gtg tac gct gtt aaa gac gac tcc ccg tcc	536

-continued

Phe Val Ile Ala Tyr Val Val Tyr Ala Val Lys Asp Asp Ser Pro Ser			
70	75	80	
aac gga gga gtc aag cga tac tcg cct att tca aga aac ttc ttc			584
Asn Gly Gly Val Val Lys Arg Tyr Ser Pro Ile Ser Arg Asn Phe Phe			
85	90	95	
atc tgg aag ctc ttt ggc cgc tac ttc ccc ata act ctg cac aag acg			632
Ile Trp Lys Leu Phe Gly Arg Tyr Phe Pro Ile Thr Leu His Lys Thr			
100	105	110	
gtg gat ctg gag ccc acg cac aca tac tac cct ctg gac gtc cag gag			680
Val Asp Leu Glu Pro Thr His Thr Tyr Tyr Pro Leu Asp Val Gln Glu			
115	120	125	130
tat cac ctg att gct gag aga tac tgg ccg cag aac aag tac ctc cga			728
Tyr His Leu Ile Ala Glu Arg Tyr Trp Pro Gln Asn Lys Tyr Leu Arg			
135	140	145	
gca atc atc tcc acc atc gag tac ttt ctg ccc gcc ttc atg aaa cgg			776
Ala Ile Ile Ser Thr Ile Glu Tyr Phe Leu Pro Ala Phe Met Lys Arg			
150	155	160	
tct ctt tct atc aac gag cag gag cag cct gcc gag cga gat cct ctc			824
Ser Leu Ser Ile Asn Glu Gln Glu Gln Pro Ala Glu Arg Asp Pro Leu			
165	170	175	
ctg tct ccc gtt tct ccc agc tct ccg ggt tct caa cct gac aag tgg			872
Leu Ser Pro Val Ser Pro Ser Pro Gly Ser Gln Pro Asp Lys Trp			
180	185	190	
att aac cac gac aga tat agc cgt gga gaa tca tct ggc tcc aac			920
Ile Asn His Asp Ser Arg Tyr Ser Arg Gly Glu Ser Ser Gly Ser Asn			
195	200	205	210
ggc cac gcc tcg ggc tcc gaa ctt aac ggc aac ggc aac aat ggc acc			968
Gly His Ala Ser Gly Ser Glu Leu Asn Gly Asn Gly Asn Asn Gly Thr			
215	220	225	
act aac cga cga cct ttg tcg tcc gcc tct gct ggc tcc act gca tct			1016
Thr Asn Arg Arg Pro Leu Ser Ser Ala Ser Ala Gly Ser Thr Ala Ser			
230	235	240	
gat tcc acg ctt ctt aac ggg tcc ctc aac tcc tac gcc aac cag atc			1064
Asp Ser Thr Leu Leu Asn Gly Ser Leu Asn Ser Tyr Ala Asn Gln Ile			
245	250	255	
att ggc gaa aac gac cca cag ctg tcg ccc aca aaa ctc aag ccc act			1112
Ile Gly Glu Asn Asp Pro Gln Leu Ser Pro Thr Lys Leu Lys Pro Thr			
260	265	270	
ggc aga aaa tac atc ttc ggc tac cac ccc cac ggc att atc ggc atg			1160
Gly Arg Lys Tyr Ile Phe Gly Tyr His Pro His Gly Ile Ile Gly Met			
275	280	285	290
gga gcc ttt ggt gga att gcc acc gag gga gct gga tgg tcc aag ctc			1208
Gly Ala Phe Gly Gly Ile Ala Thr Glu Gly Ala Gly Trp Ser Lys Leu			
295	300	305	
ttt ccg ggc atc cct gtt tct ctt atg act ctc acc aac aac ttc cga			1256
Phe Pro Gly Ile Pro Val Ser Leu Met Thr Leu Thr Asn Asn Phe Arg			
310	315	320	
gtg cct ctc tac aga gag tac ctc atg agt ctg gga gtc gct tct gtc			1304
Val Pro Leu Tyr Arg Glu Tyr Leu Met Ser Leu Gly Val Ala Ser Val			
325	330	335	
tcc aag aag tcc tgc aag gcc ctc ctc aag cga aac cag tct atc tgc			1352
Ser Lys Lys Ser Cys Lys Ala Leu Leu Lys Arg Asn Gln Ser Ile Cys			
340	345	350	
att gtc gtt ggt gga gca cag gaa agt ctt ctg gcc aga ccc ggt gtc			1400
Ile Val Val Gly Gly Ala Gln Glu Ser Leu Leu Ala Arg Pro Gly Val			
355	360	365	370
atg gac ctg gtg cta ctc aag cga aag ggt ttt gtt cga ctt ggt atg			1448

-continued

Met Asp Leu Val Leu Leu Lys Arg Lys Gly Phe Val Arg Leu Gly Met			
375	380	385	
gag gtc gga aat gtc gcc ctt gtt ccc atc atg gcc ttt ggt gag aac	1496		
Glu Val Gly Asn Val Ala Leu Val Pro Ile Met Ala Phe Gly Glu Asn			
390	395	400	
gac ctc tat gac cag gtt agc aac gac aag tcg tcc aag ctg tac cga	1544		
Asp Leu Tyr Asp Gln Val Ser Asn Asp Lys Ser Ser Lys Leu Tyr Arg			
405	410	415	
ttc cag cag ttt gtc aag aac ttc ctt gga ttc acc ctt cct ttg atg	1592		
Phe Gln Gln Phe Val Lys Asn Phe Leu Gly Phe Thr Leu Pro Leu Met			
420	425	430	
cat gcc cga ggc gtc ttc aac tac gat gtc ggt ctt gtc ccc tac agg	1640		
His Ala Arg Gly Val Phe Asn Tyr Asp Val Gly Leu Val Pro Tyr Arg			
435	440	445	450
cga ccc gtc aac att gtg gtt ggt tcc ccc att gac ttg cct tat ctc	1688		
Arg Pro Val Asn Ile Val Val Gly Ser Pro Ile Asp Leu Pro Tyr Leu			
455	460	465	
cca cac ccc acc gac gaa gaa gtg tcc gaa tac cac gac cga tac atc	1736		
Pro His Pro Thr Asp Glu Glu Val Ser Glu Tyr His Asp Arg Tyr Ile			
470	475	480	
gcc gag ctg cag cga atc tac aac gag cac aag gat gaa tat ttc atc	1784		
Ala Glu Leu Gln Arg Ile Tyr Asn Glu His Lys Asp Glu Tyr Phe Ile			
485	490	495	
gat tgg acc gag gag ggc aaa gga gcc cca gag ttc cga atg att gag	1832		
Asp Trp Thr Glu Glu Gly Lys Gly Ala Pro Glu Phe Arg Met Ile Glu			
500	505	510	
taa ggaaaactgc ctgggttagg caaatagcta atgagtattt tttttagggc	1885		
aaccaaatgt agaaaagaaaa aaaaaaaaaa agaaaaaaaaa aagagaatat tatatctatg	1945		
taattctatt aaaagctctg ttgagtggc ggaataaata ctgttgaaga ggggattgtg	2005		
tagagatctg ttactcaat ggcaaaactca totggggag atccttccac tgtggaaagc	2065		
tcctggatag ctttgcatac ggggttcaag aagaccattt tgaacagcccc ttga	2119		

<210> SEQ ID NO 73
 <211> LENGTH: 514
 <212> TYPE: PRT
 <213> ORGANISM: Yarrowia lipolytica

<400> SEQUENCE: 73

Met Thr Ile Asp Ser Gln Tyr Tyr Lys Ser Arg Asp Lys Asn Asp Thr			
1	5	10	15
Ala Pro Lys Ile Ala Gly Ile Arg Tyr Ala Pro Leu Ser Thr Pro Leu			
20	25	30	
Leu Asn Arg Cys Glu Thr Phe Ser Leu Val Trp His Ile Phe Ser Ile			
35	40	45	
Pro Thr Phe Leu Thr Ile Phe Met Leu Cys Cys Ala Ile Pro Leu Leu			
50	55	60	
Trp Pro Phe Val Ile Ala Tyr Val Val Tyr Ala Val Lys Asp Asp Ser			
65	70	75	80
Pro Ser Asn Gly Gly Val Val Lys Arg Tyr Ser Pro Ile Ser Arg Asn			
85	90	95	
Phe Phe Ile Trp Lys Leu Phe Gly Arg Tyr Phe Pro Ile Thr Leu His			
100	105	110	
Lys Thr Val Asp Leu Glu Pro Thr His Thr Tyr Tyr Pro Leu Asp Val			
115	120	125	

-continued

Gln Glu Tyr His Leu Ile Ala Glu Arg Tyr Trp Pro Gln Asn Lys Tyr
 130 135 140
 Leu Arg Ala Ile Ile Ser Thr Ile Glu Tyr Phe Leu Pro Ala Phe Met
 145 150 155 160
 Lys Arg Ser Leu Ser Ile Asn Glu Gln Glu Gln Pro Ala Glu Arg Asp
 165 170 175
 Pro Leu Leu Ser Pro Val Ser Pro Ser Pro Gly Ser Gln Pro Asp
 180 185 190
 Lys Trp Ile Asn His Asp Ser Arg Tyr Ser Arg Gly Glu Ser Ser Gly
 195 200 205
 Ser Asn Gly His Ala Ser Gly Ser Glu Leu Asn Gly Asn Gly Asn Asn
 210 215 220
 Gly Thr Thr Asn Arg Arg Pro Leu Ser Ser Ala Ser Ala Gly Ser Thr
 225 230 235 240
 Ala Ser Asp Ser Thr Leu Leu Asn Gly Ser Leu Asn Ser Tyr Ala Asn
 245 250 255
 Gln Ile Ile Gly Glu Asn Asp Pro Gln Leu Ser Pro Thr Lys Leu Lys
 260 265 270
 Pro Thr Gly Arg Lys Tyr Ile Phe Gly Tyr His Pro His Gly Ile Ile
 275 280 285
 Gly Met Gly Ala Phe Gly Gly Ile Ala Thr Glu Gly Ala Gly Trp Ser
 290 295 300
 Lys Leu Phe Pro Gly Ile Pro Val Ser Leu Met Thr Leu Thr Asn Asn
 305 310 315 320
 Phe Arg Val Pro Leu Tyr Arg Glu Tyr Leu Met Ser Leu Gly Val Ala
 325 330 335
 Ser Val Ser Lys Lys Ser Cys Lys Ala Leu Leu Lys Arg Asn Gln Ser
 340 345 350
 Ile Cys Ile Val Val Gly Gly Ala Gln Glu Ser Leu Leu Ala Arg Pro
 355 360 365
 Gly Val Met Asp Leu Val Leu Leu Lys Arg Lys Gly Phe Val Arg Leu
 370 375 380
 Gly Met Glu Val Gly Asn Val Ala Leu Val Pro Ile Met Ala Phe Gly
 385 390 395 400
 Glu Asn Asp Leu Tyr Asp Gln Val Ser Asn Asp Lys Ser Ser Lys Leu
 405 410 415
 Tyr Arg Phe Gln Gln Phe Val Lys Asn Phe Leu Gly Phe Thr Leu Pro
 420 425 430
 Leu Met His Ala Arg Gly Val Phe Asn Tyr Asp Val Gly Leu Val Pro
 435 440 445
 Tyr Arg Arg Pro Val Asn Ile Val Val Gly Ser Pro Ile Asp Leu Pro
 450 455 460
 Tyr Leu Pro His Pro Thr Asp Glu Glu Val Ser Glu Tyr His Asp Arg
 465 470 475 480
 Tyr Ile Ala Glu Leu Gln Arg Ile Tyr Asn Glu His Lys Asp Glu Tyr
 485 490 495
 Phe Ile Asp Trp Thr Glu Glu Gly Lys Gly Ala Pro Glu Phe Arg Met
 500 505 510
 Ile Glu

-continued

```

<210> SEQ ID NO 74
<211> LENGTH: 1434
<212> TYPE: DNA
<213> ORGANISM: Fusarium moniliforme
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1434)
<223> OTHER INFORMATION: synthetic delta-12 desaturase (codon-optimized
    for Yarrowia lipolytica)
<300> PUBLICATION INFORMATION:
<302> TITLE: DELTA-12 DESATURASES SUITABLE FOR ALTERING LEVELS OF
    POLYUNSATURATED FATTY ACIDS IN OLEAGINOUS YEAST
<310> PATENT DOCUMENT NUMBER: WO 2005/047485
<311> PATENT FILING DATE: 2004-11-12
<312> PUBLICATION DATE: 2005-05-26
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(1434)
<300> PUBLICATION INFORMATION:
<302> TITLE: DELTA-12 DESATURASES SUITABLE FOR ALTERING LEVELS OF
    POLYUNSATURATED FATTY ACIDS IN OLEAGINOUS YEAST
<310> PATENT DOCUMENT NUMBER: US 2005-0216975-A1
<311> PATENT FILING DATE: 2004-11-10
<312> PUBLICATION DATE: 2005-09-29
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(1434)

<400> SEQUENCE: 74

atg gcc tcc acc tcg gct ccc aag cag aac cct gcc ctc cga cga        48
Met Ala Ser Thr Ser Ala Leu Pro Lys Gln Asn Pro Ala Leu Arg Arg
1           5           10          15

acc gtc act tcc acc act gtg acc gac tcg gag tct gct gcc gtc tct        96
Thr Val Thr Ser Thr Val Thr Asp Ser Glu Ser Ala Ala Val Ser
20          25          30

ccc tcc gat tct ccc aga cac tcg gcc tcc tct aca tcg ctg tct tcc        144
Pro Ser Asp Ser Pro Arg His Ser Ala Ser Ser Thr Ser Leu Ser Ser
35          40          45

atg tcc gag gtg gac att gcc aag ccc aag tcc gag tac ggt gtc atg        192
Met Ser Glu Val Asp Ile Ala Lys Pro Lys Ser Glu Tyr Gly Val Met
50          55          60

ctg gat acc tac ggc aac cag ttc gaa gtt ccc gac ttc acc atc aag        240
Leu Asp Thr Tyr Gly Asn Gln Phe Glu Val Pro Asp Phe Thr Ile Lys
65          70          75          80

gac atc tac aac gct att ccc aag cac tgc ttc aag cga tct gct ctc        288
Asp Ile Tyr Asn Ala Ile Pro Lys His Cys Phe Lys Arg Ser Ala Leu
85          90          95

aag gga tac ggc tac att ctt cga gac att gtc ctc ctg act acc act        336
Lys Gly Tyr Gly Tyr Ile Leu Arg Asp Ile Val Leu Leu Thr Thr Thr
100         105         110

ttc agc atc tgg tac aac ttt gtg aca ccc gag tac att ccc tcc act        384
Phe Ser Ile Trp Tyr Asn Phe Val Thr Pro Glu Tyr Ile Pro Ser Thr
115         120         125

cct gct cga gcc ggt ctg tgg gct gtg tac acc gtt ctt cag gga ctc        432
Pro Ala Arg Ala Gly Leu Trp Ala Val Tyr Thr Val Leu Gln Gly Leu
130         135         140

ttc ggt act gga ctg tgg gtc att gcc cac gag tgg gta cat ggt gct        480
Phe Gly Thr Gly Leu Trp Val Ile Ala His Glu Cys Gly His Gly Ala
145         150         155         160

ttc tcc gat tcc cga atc atc aac gac att act ggc tgg gtg ctt cac        528
Phe Ser Asp Ser Arg Ile Ile Asn Asp Ile Thr Gly Trp Val Leu His
165         170         175

tct tcc ctg ctt gtt ccc tac ttc agc tgg caa atc tcc cac cgg aag        576
Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Gln Ile Ser His Arg Lys
180         185         190

cat cac aag gcc act gga aac atg gag cga gac atg gtc ttc gtt cct        624
His His Lys Ala Thr Gly Asn Met Glu Arg Asp Met Val Phe Val Pro

```

-continued

195	200	205	
cga acc cga gag cag caa gct act cga ctc ggc aag atg acc cac gaa Arg Thr Arg Glu Gln Gln Ala Thr Arg Leu Gly Lys Met Thr His Glu	210	215	672
220			
ctc gcc cat ctt acc gag gaa act cct gct ttc acc ctc atg ctt Leu Ala His Leu Thr Glu Glu Thr Pro Ala Phe Thr Leu Leu Met Leu	225	230	720
235	240		
gtg ctt cag caa ctg gtc ggt tgg ccc aac tat ctc att acc aac gtt Val Leu Gln Gln Leu Val Gly Trp Pro Asn Tyr Leu Ile Thr Asn Val	245	250	768
255			
act gga cac aac tac cat gag cgg cag cga gag ggt cga ggc aag gga Thr Gly His Asn Tyr His Glu Arg Gln Arg Glu Gly Arg Gly Lys Gly	260	265	816
270			
aag cac aac ggt ctt ggc ggt gga gtt aac cat ttc gat ccc cga tct Lys His Asn Gly Leu Gly Gly Val Asn His Phe Asp Pro Arg Ser	275	280	864
285			
cct ctg tac gag aac agc gac gcc aag ctc atc gtg ctc tcc gac att Pro Leu Tyr Glu Asn Ser Asp Ala Lys Leu Ile Val Leu Ser Asp Ile	290	295	912
300			
ggc att ggt ctt atg gcc acc gct ctg tac ttt ctc gtt cag aag ttc Gly Ile Gly Leu Met Ala Thr Ala Leu Tyr Phe Leu Val Gln Lys Phe	305	310	960
315	320		
gga ttc tac aac atg gcc atc tgg tac ttc gtt ccc tac ttg tgg gtt Gly Phe Tyr Asn Met Ala Ile Trp Tyr Phe Val Pro Tyr Leu Trp Val	325	330	1008
335			
aac cac tgg ctc gtc gcc att acc ttt ctg cag cac aca gat cct act Asn His Trp Leu Val Ala Ile Thr Phe Leu Gln His Thr Asp Pro Thr	340	345	1056
350			
ctt ccc cac tac acc aac gac gag tgg aac ttt gtg cga ggt gcc gct Leu Pro His Tyr Thr Asn Asp Glu Trp Asn Phe Val Arg Gly Ala Ala	355	360	1104
365			
gca acc atc gac cga gag atg ggc ttc att gga cgt cat ctg ctc cac Ala Thr Ile Asp Arg Glu Met Gly Phe Ile Gly Arg His Leu Leu His	370	375	1152
380			
ggc att atc gag act cac gtc ctg cat cac tac gtc tct tcc att ccc Gly Ile Ile Glu Thr His Val Leu His His Tyr Val Ser Ser Ile Pro	385	390	1200
395	400		
ttc tac aat gcg gac gaa gct acc gag gcc atc aaa cct atc atg ggc Phe Tyr Asn Ala Asp Glu Ala Thr Glu Ala Ile Lys Pro Ile Met Gly	405	410	1248
415			
aag cac tat cga gct gat gtc cag gac ggt cct cga gga ttc att cga Lys His Tyr Arg Ala Asp Val Gln Asp Gly Pro Arg Gly Phe Ile Arg	420	425	1296
430			
gcc atg tac cga tct gca cga atg tgc cag tgg gtt gaa ccc tcc gct Ala Met Tyr Arg Ser Ala Arg Met Cys Gln Trp Val Glu Pro Ser Ala	435	440	1344
445			
ggt gcc gag gga gct ggc aag ggt gtc ctg ttc ttt cga aac cga aac Gly Ala Glu Gly Ala Gly Lys Gly Val Leu Phe Phe Arg Asn Arg Asn	450	455	1392
460			
aat gtg ggc act cct ccc gct gtc atc aag ccc gtt gcc taa Asn Val Gly Thr Pro Pro Ala Val Ile Lys Pro Val Ala	465	470	1434
475			

<210> SEQ ID NO 75

<211> LENGTH: 477

<212> TYPE: PRT

<213> ORGANISM: Fusarium moniliforme

-continued

<400> SEQUENCE: 75

```

Met Ala Ser Thr Ser Ala Leu Pro Lys Gln Asn Pro Ala Leu Arg Arg
1           5           10          15

Thr Val Thr Ser Thr Val Thr Asp Ser Glu Ser Ala Ala Val Ser
20          25          30

Pro Ser Asp Ser Pro Arg His Ser Ala Ser Ser Thr Ser Leu Ser Ser
35          40          45

Met Ser Glu Val Asp Ile Ala Lys Pro Lys Ser Glu Tyr Gly Val Met
50          55          60

Leu Asp Thr Tyr Gly Asn Gln Phe Glu Val Pro Asp Phe Thr Ile Lys
65          70          75          80

Asp Ile Tyr Asn Ala Ile Pro Lys His Cys Phe Lys Arg Ser Ala Leu
85          90          95

Lys Gly Tyr Gly Tyr Ile Leu Arg Asp Ile Val Leu Leu Thr Thr Thr
100         105         110

Phe Ser Ile Trp Tyr Asn Phe Val Thr Pro Glu Tyr Ile Pro Ser Thr
115         120         125

Pro Ala Arg Ala Gly Leu Trp Ala Val Tyr Thr Val Leu Gln Gly Leu
130         135         140

Phe Gly Thr Gly Leu Trp Val Ile Ala His Glu Cys Gly His Gly Ala
145         150         155         160

Phe Ser Asp Ser Arg Ile Ile Asn Asp Ile Thr Gly Trp Val Leu His
165         170         175

Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Gln Ile Ser His Arg Lys
180         185         190

His His Lys Ala Thr Gly Asn Met Glu Arg Asp Met Val Phe Val Pro
195         200         205

Arg Thr Arg Glu Gln Gln Ala Thr Arg Leu Gly Lys Met Thr His Glu
210         215         220

Leu Ala His Leu Thr Glu Glu Thr Pro Ala Phe Thr Leu Leu Met Leu
225         230         235         240

Val Leu Gln Gln Leu Val Gly Trp Pro Asn Tyr Leu Ile Thr Asn Val
245         250         255

Thr Gly His Asn Tyr His Glu Arg Gln Arg Glu Gly Arg Gly Lys Gly
260         265         270

Lys His Asn Gly Leu Gly Gly Val Asn His Phe Asp Pro Arg Ser
275         280         285

Pro Leu Tyr Glu Asn Ser Asp Ala Lys Leu Ile Val Leu Ser Asp Ile
290         295         300

Gly Ile Gly Leu Met Ala Thr Ala Leu Tyr Phe Leu Val Gln Lys Phe
305         310         315         320

Gly Phe Tyr Asn Met Ala Ile Trp Tyr Phe Val Pro Tyr Leu Trp Val
325         330         335

Asn His Trp Leu Val Ala Ile Thr Phe Leu Gln His Thr Asp Pro Thr
340         345         350

Leu Pro His Tyr Thr Asn Asp Glu Trp Asn Phe Val Arg Gly Ala Ala
355         360         365

Ala Thr Ile Asp Arg Glu Met Gly Phe Ile Gly Arg His Leu Leu His
370         375         380

Gly Ile Ile Glu Thr His Val Leu His His Tyr Val Ser Ser Ile Pro
385         390         395         400

```

-continued

Phe Tyr Asn Ala Asp Glu Ala Thr Glu Ala Ile Lys Pro Ile Met Gly
 405 410 415

Lys His Tyr Arg Ala Asp Val Gln Asp Gly Pro Arg Gly Phe Ile Arg
 420 425 430

Ala Met Tyr Arg Ser Ala Arg Met Cys Gln Trp Val Glu Pro Ser Ala
 435 440 445

Gly Ala Glu Gly Ala Gly Lys Gly Val Leu Phe Phe Arg Asn Arg Asn
 450 455 460

Asn Val Gly Thr Pro Pro Ala Val Ile Lys Pro Val Ala
 465 470 475

<210> SEQ ID NO 76
 <211> LENGTH: 1272
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: mutant EgD8M delta-8 desaturase (also
 designated as "EgD8S-23")
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (2)..(1270)
 <300> PUBLICATION INFORMATION:
 <302> TITLE: MUTANT DELTA-8 DESATURASE GENES ENGINEERED BY TARGETED
 MUTAGENESIS AND THEIR USE IN MAKING POLYUNSATURATED FATTY ACIDS
 <310> PATENT DOCUMENT NUMBER: WO 2008/073271
 <311> PATENT FILING DATE: 2007-12-05
 <312> PUBLICATION DATE: 2008-06-19
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(1272)
 <300> PUBLICATION INFORMATION:
 <302> TITLE: MUTANT DELTA-8 DESATURASE GENES ENGINEERED BY TARGETED
 MUTAGENESIS AND THEIR USE IN MAKING POLYUNSATURATED FATTY ACIDS
 <310> PATENT DOCUMENT NUMBER: US 2008-0138868-A1
 <311> PATENT FILING DATE: 2006-12-07
 <312> PUBLICATION DATE: 2008-06-12
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(1272)

<400> SEQUENCE: 76

c atg gtg aag gct tct cga cag gct ctg ccc ctc gtc atc gac gga aag	49
Met Val Lys Ala Ser Arg Gln Ala Leu Pro Leu Val Ile Asp Gly Lys	
1 5 10 15	
gtg tac gac gtc tcc gct tgg gtg aac ttc cac cct ggt gga gct gaa	97
Val Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu	
20 25 30	
atc att gag aac tac cag gga cga gat gct act gac gcc ttc atg gtt	145
Ile Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val	
35 40 45	
atg cac tct cag gaa gcc ttc gac aag ctc aag cga atg ccc aag atc	193
Met His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile	
50 55 60	
aac cag gct tcc gag ctg cct ccc cag gct ggc aac gaa gct cag	241
Asn Gln Ala Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln	
65 70 75 80	
gag gat ttc cga aag ctc cga gaa gag ctg atc gcc act ggc atg ttt	289
Glu Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe	
85 90 95	
gac gcc tct ccc ctc tgg tac tcg tac aag atc ttg acc acc ctg ggt	337
Asp Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Leu Thr Thr Leu Gly	
100 105 110	
ctt ggc gtg ctt gcc ttc atg ctg gtc cag tac cac ctg tac ttc	385
Leu Gly Val Leu Ala Phe Phe Met Leu Val Gln Tyr His Leu Tyr Phe	
115 120 125	

-continued

att ggt gct ctc gtc ctc ggt atg cac tac cag caa atg gga tgg ctg Ile Gly Ala Leu Val Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu 130 135 140	433
tct cat gac atc tgc cac cac cag acc ttc aag aac cga aac tgg aat Ser His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn 145 150 155 160	481
aac gtc ctg ggt gtc ttt ggc aac gga ctc cag ggc ttc tcc gtc Asn Val Leu Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val 165 170 175	529
acc tgg tgg aag gac aga cac aac gcc cat cat tct gct acc aac gtt Thr Trp Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val 180 185 190	577
cag ggt cac gat ccc gac att gat aac ctg cct ctg ctc gcc tgg tcc Gln Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser 195 200 205	625
gag gac gat gtc act cga gct tct ccc atc tcc cga aag ctc att cag Glu Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln 210 215 220	673
ttc caa cag tac tat ttc ctg gtc atc tgg att ctc ctg cga ttc atc Phe Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile 225 230 235 240	721
tgg tgt ttc cag tct gtc acc gtt cga tcc ctc aag gac cga gac Trp Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp 245 250 255	769
aac cag ttc tac cga tct cag tac aag aaa gag gcc att gga ctc gct Asn Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala 260 265 270	817
ctg cac tgg act ctc aag acc ctg ttc cac ctc ttc ttt atg ccc tcc Leu His Trp Thr Leu Lys Thr Leu Phe His Leu Phe Phe Met Pro Ser 275 280 285	865
atc ctg acc tcg atg ctg gtc ttc ttt gtt tcc gag ctc gtc ggt ggc Ile Leu Thr Ser Met Leu Val Phe Phe Val Ser Glu Leu Val Gly Gly 290 295 300	913
ttc gga att gcc atc gtc ttc atg aac cac tac cct ctg gag aag Phe Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys 305 310 315 320	961
atc ggt gat tcc gtc tgg gac gga cat ggc ttc tct gtc ggt cag atc Ile Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile 325 330 335	1009
cat gag acc atg aac att cga cga ggc atc att act gac tgg ttc ttt His Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe 340 345 350	1057
gga ggc ctg aac tac cag atc gag cac cat ctc tgg ccc acc ctg oct Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro 355 360 365	1105
cga cac aac ctc act gcc gtt tcc tac cag gtc gaa gag ctg tgc cag Arg His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln 370 375 380	1153
aag cac aac ctc ccc tac cga aac cct ctg ccc cat gaa ggt ctc gtc Lys His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val 385 390 395 400	1201
atc ctg ctc cga tac ctg tcc cag ttc gct cga atg gcc gag aag cag Ile Leu Leu Arg Tyr Leu Ser Gln Phe Ala Arg Met Ala Glu Lys Gln 405 410 415	1249
ccc ggt gcc aag gct cag taa gc Pro Gly Ala Lys Ala Gln 420	1272

-continued

<210> SEQ ID NO 77
<211> LENGTH: 422
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 77

Met Val Lys Ala Ser Arg Gln Ala Leu Pro Leu Val Ile Asp Gly Lys
1 5 10 15

Val Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu
20 25 30

Ile Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val
35 40 45

Met His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile
50 55 60

Asn Gln Ala Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln
65 70 75 80

Glu Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe
85 90 95

Asp Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Leu Thr Thr Leu Gly
100 105 110

Leu Gly Val Leu Ala Phe Phe Met Leu Val Gln Tyr His Leu Tyr Phe
115 120 125

Ile Gly Ala Leu Val Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu
130 135 140

Ser His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn
145 150 155 160

Asn Val Leu Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val
165 170 175

Thr Trp Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val
180 185 190

Gln Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser
195 200 205

Glu Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln
210 215 220

Phe Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile
225 230 235 240

Trp Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp
245 250 255

Asn Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala
260 265 270

Leu His Trp Thr Leu Lys Thr Leu Phe His Leu Phe Phe Met Pro Ser
275 280 285

Ile Leu Thr Ser Met Leu Val Phe Phe Val Ser Glu Leu Val Gly Gly
290 295 300

Phe Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys
305 310 315 320

Ile Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile
325 330 335

His Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe
340 345 350

-continued

Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro
 355 360 365

Arg His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln
 370 375 380

Lys His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val
 385 390 395 400

Ile Leu Leu Arg Tyr Leu Ser Gln Phe Ala Arg Met Ala Glu Lys Gln
 405 410 415

Pro Gly Ala Lys Ala Gln
 420

<210> SEQ ID NO 78
 <211> LENGTH: 792
 <212> TYPE: DNA
 <213> ORGANISM: *Eutreptiella* sp. CCMP389
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (1)..(792)
 <223> OTHER INFORMATION: synthetic delta-9 elongase (codon-optimized for
Yarrowia lipolytica)
 <300> PUBLICATION INFORMATION:
 <302> TITLE: DELTA-9 ELONGASES AND THEIR USE IN MAKING POLYUNSATURATED
 FATTY ACIDS
 <310> PATENT DOCUMENT NUMBER: WO 2007/061742
 <311> PATENT FILING DATE: 2006-11-16
 <312> PUBLICATION DATE: 2007-05-31
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(792)
 <300> PUBLICATION INFORMATION:
 <302> TITLE: DELTA-9 ELONGASES AND THEIR USE IN MAKING POLYUNSATURATED
 FATTY ACIDS
 <310> PATENT DOCUMENT NUMBER: US 2007-0117190-A1
 <311> PATENT FILING DATE: 2006-11-16
 <312> PUBLICATION DATE: 2007-05-24
 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(792)

<400> SEQUENCE: 78

atg gct gcc gtc atc gag gtg gcc aac gag ttc gtc gct atc act gcc	48
Met Ala Ala Val Ile Glu Val Ala Asn Glu Phe Val Ala Ile Thr Ala	
1 5 10 15	
gag acc ctt ccc aag gtg gac tat cag cga ctc tgg cga gac atc tac	96
Glu Thr Leu Pro Lys Val Asp Tyr Gln Arg Leu Trp Arg Asp Ile Tyr	
20 25 30	
tcc tgc gag ctc ctg tac ttc tcc att gct ttc gtc atc ctc aag ttt	144
Ser Cys Glu Leu Leu Tyr Phe Ser Ile Ala Phe Val Ile Leu Lys Phe	
35 40 45	
acc ctt ggc gag ctc tcg gat tct ggc aaa aag att ctg cga gtg ctg	192
Thr Leu Gly Glu Leu Ser Asp Ser Gly Lys Lys Ile Leu Arg Val Leu	
50 55 60	
ttc aag tgg tac aac ctc ttc atg tcc gtc ttt tcg ctg gtg tcc ttc	240
Phe Lys Trp Tyr Asn Leu Phe Met Ser Val Phe Ser Leu Val Ser Phe	
65 70 75 80	
ctc tgt atg ggt tac gcc atc tac acc gtt gga ctg tac tcc aac gaa	288
Leu Cys Met Gly Tyr Ala Ile Tyr Thr Val Gly Leu Tyr Ser Asn Glu	
85 90 95	
tgc gac aga gct ttc gac aac agc ttg ttc cga ttt gcc acc aag gtc	336
Cys Asp Arg Ala Phe Asp Asn Ser Leu Phe Arg Phe Ala Thr Lys Val	
100 105 110	
ttc tac tat tcc aag ttt ctg gag tac atc gac tct ttc tac ctt ccc	384
Phe Tyr Tyr Ser Lys Phe Leu Glu Tyr Ile Asp Ser Phe Tyr Leu Pro	
115 120 125	
ctc atg gcc aag cct ctg tcc ttt ctg cag ttc ttt cat cac ttg gga	432
Leu Met Ala Lys Pro Leu Ser Phe Leu Gln Phe Phe His His Leu Gly	

-continued

130	135	140	
gct cct atg gac atg tgg ctc ttc gtg cag tac tct ggc gaa tcc att			480
Ala Pro Met Asp Met Trp Leu Phe Val Gln Tyr Ser Gly Glu Ser Ile			
145	150	155	160
tgg atc ttt gtg ttc ctg aac gga ttc att cac ttt gtc atg tac ggc			528
Trp Ile Phe Val Phe Leu Asn Gly Phe Ile His Phe Val Met Tyr Gly			
165	170	175	
tac tat tgg aca cgg ctg atg aag ttc aac ttt ccc atg ccc aag cag			576
Tyr Tyr Trp Thr Arg Leu Met Lys Phe Asn Phe Pro Met Pro Lys Gln			
180	185	190	
ctc att acc gca atg cag atc acc cag ttc aac gtt ggc ttc tac ctc			624
Leu Ile Thr Ala Met Gln Ile Thr Gln Phe Asn Val Gly Phe Tyr Leu			
195	200	205	
gtg tgg tgg tac aag gac att ccc tgt tac cga aag gat ccc atg cga			672
Val Trp Trp Tyr Lys Asp Ile Pro Cys Tyr Arg Lys Asp Pro Met Arg			
210	215	220	
atg ctg gcc tgg atc ttc aac tac tgg tac gtc ggt acc gtt ctt ctg			720
Met Leu Ala Trp Ile Phe Asn Tyr Trp Tyr Val Gly Thr Val Leu Leu			
225	230	235	240
ctc ttc atc aac ttc ttt gtc aag tcc tac gtg ttt ccc aag cct aag			768
Leu Phe Ile Asn Phe Phe Val Lys Ser Tyr Val Phe Pro Lys Pro Lys			
245	250	255	
act gcc gac aaa aag gtc cag tag			792
Thr Ala Asp Lys Lys Val Gln			
260			

<210> SEQ ID NO 79

<211> LENGTH: 263

<212> TYPE: PRT

<213> ORGANISM: Eutreptiella sp. CCMP389

<400> SEQUENCE: 79

Met Ala Ala Val Ile Glu Val Ala Asn Glu Phe Val Ala Ile Thr Ala			
1	5	10	15
Glu Thr Leu Pro Lys Val Asp Tyr Gln Arg Leu Trp Arg Asp Ile Tyr			
20	25	30	
Ser Cys Glu Leu Leu Tyr Phe Ser Ile Ala Phe Val Ile Leu Lys Phe			
35	40	45	
Thr Leu Gly Glu Leu Ser Asp Ser Gly Lys Ile Leu Arg Val Leu			
50	55	60	
Phe Lys Trp Tyr Asn Leu Phe Met Ser Val Phe Ser Leu Val Ser Phe			
65	70	75	80
Leu Cys Met Gly Tyr Ala Ile Tyr Thr Val Gly Leu Tyr Ser Asn Glu			
85	90	95	
Cys Asp Arg Ala Phe Asp Asn Ser Leu Phe Arg Phe Ala Thr Lys Val			
100	105	110	
Phe Tyr Tyr Ser Lys Phe Leu Glu Tyr Ile Asp Ser Phe Tyr Leu Pro			
115	120	125	
Leu Met Ala Lys Pro Leu Ser Phe Leu Gln Phe Phe His His Leu Gly			
130	135	140	
Ala Pro Met Asp Met Trp Leu Phe Val Gln Tyr Ser Gly Glu Ser Ile			
145	150	155	160
Trp Ile Phe Val Phe Leu Asn Gly Phe Ile His Phe Val Met Tyr Gly			
165	170	175	
Tyr Tyr Trp Thr Arg Leu Met Lys Phe Asn Phe Pro Met Pro Lys Gln			

-continued

180	185	190	
Leu Ile Thr Ala Met Gln Ile Thr Gln Phe Asn Val Gly Phe Tyr Leu			
195	200	205	
Val Trp Trp Tyr Lys Asp Ile Pro Cys Tyr Arg Lys Asp Pro Met Arg			
210	215	220	
Met Leu Ala Trp Ile Phe Asn Tyr Trp Tyr Val Gly Thr Val Leu Leu			
225	230	235	240
Leu Phe Ile Asn Phe Phe Val Lys Ser Tyr Val Phe Pro Lys Pro Lys			
245	250	255	
Thr Ala Asp Lys Lys Val Gln			
260			
<210> SEQ ID NO 80			
<211> LENGTH: 1350			
<212> TYPE: DNA			
<213> ORGANISM: Euglena gracilis			
<220> FEATURE:			
<221> NAME/KEY: CDS			
<222> LOCATION: (1)..(1350)			
<223> OTHER INFORMATION: synthetic delta-5 desaturase (codon-optimized for Yarrowia lipolytica)			
<400> SEQUENCE: 80			
atg gct ctc tcc ctt act acc gag cag ctg ctc gag cga ccc gac ctg	48		
Met Ala Leu Ser Leu Thr Thr Glu Gln Leu Leu Glu Arg Pro Asp Leu			
1	5	10	15
gtt gcc atc gac ggc att ctc tac gat ctg gaa ggt ctt gcc aag gtc	96		
Val Ala Ile Asp Gly Ile Leu Tyr Asp Leu Glu Gly Leu Ala Lys Val			
20	25	30	
cat ccc gga ggc gac ttg atc ctc gct tct ggt gcc tcc gat gct tct	144		
His Pro Gly Gly Asp Leu Ile Leu Ala Ser Gly Ala Ser Asp Ala Ser			
35	40	45	
cct ctg ttc tac tcc atg cac cct tac gtc aag ccc gag aac tcg aag	192		
Pro Leu Phe Tyr Ser Met His Pro Tyr Val Lys Pro Glu Asn Ser Lys			
50	55	60	
ctg ctt caa cag ttc gtg cga ggc aag cac gac cga acc tcc aag gac	240		
Leu Leu Gln Gln Phe Val Arg Gly Lys His Asp Arg Thr Ser Lys Asp			
65	70	75	80
att gtc tac acc tac gac tct ccc ttt gca cag gac gtc aag cga act	288		
Ile Val Tyr Thr Tyr Asp Ser Pro Phe Ala Gln Asp Val Lys Arg Thr			
85	90	95	
atg cga gag gtc atg aaa ggt cgg aac tgg tat gcc aca cct gga ttc	336		
Met Arg Glu Val Met Lys Gly Arg Asn Trp Tyr Ala Thr Pro Gly Phe			
100	105	110	
tgg ctg cga acc gtt ggc atc att gct gtc acc gcc ttt tgc gag tgg	384		
Trp Leu Arg Thr Val Gly Ile Ile Ala Val Thr Ala Phe Cys Glu Trp			
115	120	125	
cac tgg gct act acc gga atg gtg ctg tgg ggt ctc ttg act gga ttc	432		
His Trp Ala Thr Thr Gly Met Val Leu Trp Gly Leu Leu Thr Gly Phe			
130	135	140	
atg cac atg cag atc ggc ctg tcc att cag cac gat gcc tct cat ggt	480		
Met His Met Gln Ile Gly Leu Ser Ile Gln His Asp Ala Ser His Gly			
145	150	155	160
gcc atc agc aaa aag ccc tgg gtc aac gct ctc ttt gcc tac ggc atc	528		
Ala Ile Ser Lys Lys Pro Trp Val Asn Ala Leu Phe Ala Tyr Gly Ile			
165	170	175	
gac gtc att gga tgg tcc aga tgg atc tgg ctg cag tct cac atc atg	576		
Asp Val Ile Gly Ser Ser Arg Trp Ile Trp Leu Gln Ser His Ile Met			

-continued

180	185	190	
cga cat cac acc tac acc aat cag cat ggt ctc gac ctg gat gcc gag			624
Arg His His Thr Tyr Thr Asn Gln His Gly Leu Asp Leu Asp Ala Glu			
195	200	205	
tcc gca gaa cca ttc ctt gtg ttc cac aac tac cct gct gcc aac act			672
Ser Ala Glu Pro Phe Leu Val Phe His Asn Tyr Pro Ala Ala Asn Thr			
210	215	220	
gct cga aag tgg ttt cac cga ttc cag gcc tgg tac atg tac ctc gtg			720
Ala Arg Lys Trp Phe His Arg Phe Gln Ala Trp Tyr Met Tyr Leu Val			
225	230	235	240
ctt gga gcc tac ggc gtt tcg ctg gtg tac aac cct ctc tac atc ttc			768
Leu Gly Ala Tyr Gly Val Ser Leu Val Tyr Asn Pro Leu Tyr Ile Phe			
245	250	255	
cga atg cag cac aac gac acc att ccc gag tct gtc aca gcc atg cga			816
Arg Met Gln His Asn Asp Thr Ile Pro Glu Ser Val Thr Ala Met Arg			
260	265	270	
gag aac ggc ttt ctg cga cgg tac cga acc ctt gca ttc gtt atg cga			864
Glu Asn Gly Phe Leu Arg Arg Tyr Arg Thr Leu Ala Phe Val Met Arg			
275	280	285	
gct ttc ttc atc ttt cga acc gcc ttc ttg ccc tgg tat ctc act gga			912
Ala Phe Phe Ile Phe Arg Thr Ala Phe Leu Pro Trp Tyr Leu Thr Gly			
290	295	300	
acc tcc ctg ctc atc acc att cct ctg gtg ccc act gct acc ggt gcc			960
Thr Ser Leu Leu Ile Thr Ile Pro Leu Val Pro Thr Ala Thr Gly Ala			
305	310	315	320
ttc ctc acc ttc ttt atc ttg tct cac aac ttc gat ggc tcg gag			1008
Phe Leu Thr Phe Phe Ile Leu Ser His Asn Phe Asp Gly Ser Glu			
325	330	335	
cga atc ccc gac aag aac tgc aag gtc aag agc tcc gag aag gac gtt			1056
Arg Ile Pro Asp Lys Asn Cys Lys Val Lys Ser Ser Glu Lys Asp Val			
340	345	350	
gaa gcc gat cag atc gac tgg tac aga gct cag gtg gag acc tct tcc			1104
Glu Ala Asp Gln Ile Asp Trp Tyr Arg Ala Gln Val Glu Thr Ser Ser			
355	360	365	
acc tac ggt gga ccc att gcc atg ttc ttt act ggc ggt ctc aac ttc			1152
Thr Tyr Gly Pro Ile Ala Met Phe Phe Thr Gly Gly Leu Asn Phe			
370	375	380	
cag atc gag cat cac ctc ttt cct cga atg tcg tct tgg cac tat ccc			1200
Gln Ile Glu His His Leu Phe Pro Arg Met Ser Ser Trp His Tyr Pro			
385	390	395	400
ttc gtg cag caa gct gtc cga gag tgt tcg gaa cga cac gga gtt cgg			1248
Phe Val Gln Gln Ala Val Arg Glu Cys Cys Glu Arg His Gly Val Arg			
405	410	415	
tac gtc ttc tac cct acc att gtg ggc aac atc att tcc acc ctc aag			1296
Tyr Val Phe Tyr Pro Thr Ile Val Gly Asn Ile Ile Ser Thr Leu Lys			
420	425	430	
tac atg cac aaa gtc ggt gtg gtt cac tgt gtc aag gac gct cag gat			1344
Tyr Met His Lys Val Gly Val Val His Cys Val Lys Asp Ala Gln Asp			
435	440	445	
tcc taa			1350
Ser			

<210> SEQ ID NO 81

<211> LENGTH: 449

<212> TYPE: PRT

<213> ORGANISM: Euglena gracilis

<400> SEQUENCE: 81

-continued

Met Ala Leu Ser Leu Thr Thr Glu Gln Leu Leu Glu Arg Pro Asp Leu
 1 5 10 15
 Val Ala Ile Asp Gly Ile Leu Tyr Asp Leu Glu Gly Leu Ala Lys Val
 20 25 30
 His Pro Gly Gly Asp Leu Ile Leu Ala Ser Gly Ala Ser Asp Ala Ser
 35 40 45
 Pro Leu Phe Tyr Ser Met His Pro Tyr Val Lys Pro Glu Asn Ser Lys
 50 55 60
 Leu Leu Gln Gln Phe Val Arg Gly Lys His Asp Arg Thr Ser Lys Asp
 65 70 75 80
 Ile Val Tyr Thr Tyr Asp Ser Pro Phe Ala Gln Asp Val Lys Arg Thr
 85 90 95
 Met Arg Glu Val Met Lys Gly Arg Asn Trp Tyr Ala Thr Pro Gly Phe
 100 105 110
 Trp Leu Arg Thr Val Gly Ile Ile Ala Val Thr Ala Phe Cys Glu Trp
 115 120 125
 His Trp Ala Thr Thr Gly Met Val Leu Trp Gly Leu Leu Thr Gly Phe
 130 135 140
 Met His Met Gln Ile Gly Leu Ser Ile Gln His Asp Ala Ser His Gly
 145 150 155 160
 Ala Ile Ser Lys Lys Pro Trp Val Asn Ala Leu Phe Ala Tyr Gly Ile
 165 170 175
 Asp Val Ile Gly Ser Ser Arg Trp Ile Trp Leu Gln Ser His Ile Met
 180 185 190
 Arg His His Thr Tyr Thr Asn Gln His Gly Leu Asp Leu Asp Ala Glu
 195 200 205
 Ser Ala Glu Pro Phe Leu Val Phe His Asn Tyr Pro Ala Ala Asn Thr
 210 215 220
 Ala Arg Lys Trp Phe His Arg Phe Gln Ala Trp Tyr Met Tyr Leu Val
 225 230 235 240
 Leu Gly Ala Tyr Gly Val Ser Leu Val Tyr Asn Pro Leu Tyr Ile Phe
 245 250 255
 Arg Met Gln His Asn Asp Thr Ile Pro Glu Ser Val Thr Ala Met Arg
 260 265 270
 Glu Asn Gly Phe Leu Arg Arg Tyr Arg Thr Leu Ala Phe Val Met Arg
 275 280 285
 Ala Phe Phe Ile Phe Arg Thr Ala Phe Leu Pro Trp Tyr Leu Thr Gly
 290 295 300
 Thr Ser Leu Leu Ile Thr Ile Pro Leu Val Pro Thr Ala Thr Gly Ala
 305 310 315 320
 Phe Leu Thr Phe Phe Ile Leu Ser His Asn Phe Asp Gly Ser Glu
 325 330 335
 Arg Ile Pro Asp Lys Asn Cys Lys Val Lys Ser Ser Glu Lys Asp Val
 340 345 350
 Glu Ala Asp Gln Ile Asp Trp Tyr Arg Ala Gln Val Glu Thr Ser Ser
 355 360 365
 Thr Tyr Gly Gly Pro Ile Ala Met Phe Phe Thr Gly Gly Leu Asn Phe
 370 375 380
 Gln Ile Glu His His Leu Phe Pro Arg Met Ser Ser Trp His Tyr Pro
 385 390 395 400

-continued

Phe Val Gln Gln Ala Val Arg Glu Cys Cys Glu Arg His Gly Val Arg
 405 410 415

Tyr Val Phe Tyr Pro Thr Ile Val Gly Asn Ile Ile Ser Thr Leu Lys
 420 425 430

Tyr Met His Lys Val Gly Val Val His Cys Val Lys Asp Ala Gln Asp
 435 440 445

Ser

<210> SEQ ID NO 82

<211> LENGTH: 6356

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Plasmid pY157

<400> SEQUENCE: 82

ttgagaagcc	cattgtatata	tattaggatc	gtagcattat	tgtggcaaaa	aatattcaag	60
tgctcatgtg	aattgacacg	atcacgtaaa	tacctggta	aattgctagt	attcgtgatg	120
ttctaataca	actctgttca	atatttccgg	cgctcttgc	tatacaagag	cacaagacat	180
gcaccccccaca	ttaaccgagg	tcaagtgttt	atgtatgaaa	agtgcacata	atcgtc当地	240
aaaaagttagc	acatagttgt	atggctgtaa	gttatgtgat	tgtcagttct	tcggc当地	300
aactcctatg	cacogtcttc	aatcatctac	ccccgtgccc	cacaccccccgc	actatttagag	360
tttacacag	tcaagctaaac	tgc当地	tctacacc	tgactacacc	accatggatt	420
tcttcagacg	gcaccagaaa	aaggctgtgg	cactggtagg	tgtggc当地	agttccotacc	480
tgttatcga	ctatgtgaag	aaaaagttct	tgc当地	gggtc当地	agctcgaggc	540
gaaccgctaa	acagaatctc	cggc当地	ttgaacagaa	ccagcaggat	gcagat当地	600
caatcatggc	tctgtatcc	agttgacga	caccggtaat	ggagc当地	ccc当地	660
agatcaaggc	agagttacag	agcaagagac	ccccacaga	ccggg当地	gctctgaga	720
gctccaccc	gtctctagct	accgc当地	ccgtgccc	catgaca	ggc当地	780
aggagggcga	gaagttaaatt	aacttggc	ggc当地	tgc当地	ttc当地	840
tgtatgtat	acgaagttat	gaattctctc	tcttgc当地	ttccataaca	agttcttctg	900
cctccaggaa	gtccatgggt	ggttgc当地	tgg当地	gtatgtgg	tgc当地	960
gtatgtgac	tgggatgta	gttgagaata	agt当地	c当地	tcttc当地	1020
tcatataagt	ataagtagtt	caacgtat	gcactgtacc	cagcatctcc	gtatcgagaa	1080
acacaacaac	atgccc当地	ggacagatca	tgc当地	cagg	ttgc当地	1140
atactcgatc	agacaggctc	tctgaccatc	atacaagctg	aacaagc当地	ccataactgc	1200
acgctctcta	tatacacat	atccatagtc	taacctctaa	cagtaatct	1260	
tctggtaa	ctccageca	gecttctgg	atcgcttgc	ctc当地	ggatctcggt	1320
tctggccgt	cagacctegg	ccgacaatta	tgc当地	tccgg	atgacatc	1380
caacagttcg	gtactgctgt	ccgagagcgt	ctcccttgc	gtcaagaccc	acccgggg	1440
tcagaataag	ccagtcc	gagtc当地	tagtgc当地	ctggcaatg	aagcca	1500
caaactcg	gtc当地	gcaagctcaa	tggctgc当地	ggagtactcg	ccagtggcc	1560
gagagcc	gtc当地	gcaagacagc	tgc当地	tgc当地	ttctcg	1620
gagaggg	actcc	ttgtactggg	agttctcgta	gtc当地	actcc	1680

-continued

tctgttcaga	gacagttcc	tcggcaccag	ctcgcaggcc	agcaatgatt	ccggttccgg	1740
gtacaccgtg	ggcggttgggt	atatcgacc	actcggcgat	tcggtgacac	cggtactggt	1800
gcttgacagt	gttgcataa	tctgcgaact	ttctgtccctc	gaacaggaa	aaaccgtgct	1860
taagagcaag	ttccttgagg	gggagcacag	tgccggcgta	ggtgaagtgc	tcaatgatgt	1920
cgatatgggt	tttgatcatg	cacacataag	gtccgaccc	atcggcaagc	tcaatgagct	1980
ccttgggtgg	ggtaacatcc	agagaagcac	acagggtgg	tttcttggt	gccacgagct	2040
tgagcactcg	agcggcaaag	gcccggactgt	ggacgttagc	tcgagcttcg	taggaggca	2100
ttttgggtgg	gaagaggaga	ctgaaataaa	tttagtctgc	agaacttttt	atcggaacct	2160
tatctggggc	agtgaagttat	atgttatggt	aatagttacg	agttagttga	acttataagat	2220
agactggact	atacggttat	cggtccaaat	tagaaagaac	gtcaatggct	ctctggcggt	2280
cgccttgc	gacaaaaatg	tgatcatgat	gaaagccagc	aatgacgttg	cagctgat	2340
tgttgcggc	caaccgcgc	gaaaacgcag	ctgtcagacc	cacageccctc	aacgaagaat	2400
gtatcgtaa	agtgtatcaa	gcacactcat	agttggagtc	gtactccaa	ggcggcaatg	2460
acgagtcaga	cagataactcg	tcgactcattc	gatataactt	cgtataatgt	atgtatcacg	2520
aagttatcct	aggtatagat	cttgcacttc	ttatttctt	cacgcgttg	cagctcaaca	2580
ttcttaggacg	acgaaactac	gtcaacagt	ttgtcgctct	ggcgcagcag	ggccggagagg	2640
gtaatgccga	gggtcgagtg	gcccctcg	ttggtgatct	tgcagatatg	ggctatttcg	2700
gcccccttcc	aggctcgcc	agttcgag	aaactattgt	cgtcccgat	ctggacgaaac	2760
agtacccat	ctttcgtgg	tggctgtga	acgagggatg	ggtgtcgctg	agcgagcgag	2820
tggagggacg	gggtcgctga	gtgtggacc	ccgtgtcacc	caagggccaa	cttggatttg	2880
acgagttgtc	ggaactcatt	ggacgaacac	agatgtcat	tgcacact	ctcaatccct	2940
cgtcgccact	caacttctg	agccagtcg	tgccaccacg	ggagcaggag	gagtaatgtc	3000
ttgcccagaa	ccccagcgat	actgctgccc	ccattgttagg	acctaccctc	cgacggcttc	3060
tggacgagac	tgcgcacttc	atcgagtccc	ctaattccgc	agagggtatt	gagcgcatttgc	3120
ttcactccgg	tctctctgt	ttcatggaca	agctggctgt	cacgttttga	gccacacctg	3180
ctgattcggt	tgcgccttat	cctgtggcgc	tgcctactgc	aaaggtaa	ctgcctccaa	3240
ttcttgccaa	catggctega	caggctggag	gcatggccca	gggatcgccg	ggcgtggaaa	3300
acgagtagat	tgacgtgtat	aaccaagtgc	aggagctgac	ctccctttagt	gctgtggct	3360
attcatcttt	tgattggct	ctcttagggc	tcattcacga	aagacacgaa	gaacgaagat	3420
ggggactgaa	tacagcgctc	tcattttgtac	acaaatgatt	tatgacagag	taacttgcac	3480
atcatgtaga	gcatacatac	tgaagggtgt	atctcacggg	atatcttga	gaccactcg	3540
agctggaggc	ataggtagtg	ctagtaegg	tacttgcacc	gtatccaaca	taagtagagg	3600
agcctccctag	tggctattgg	tacaccgata	aagatacaca	tacatggcg	gccagctgca	3660
ttaatgaatc	ggccaacgcg	cgggggagg	cggtttgcgt	attgggcgt	cttccgttcc	3720
ctcgctact	gactcgctgc	gctcggtcg	tcggctgcgg	cgagcggtat	cagctcactc	3780
aaaggcggt	atacggttat	ccacagaatc	agggataac	gcaggaaaga	acatgtgagc	3840
aaaaggccag	caaaggccca	gaaaccgtaa	aaaggcccg	ttgctggcgt	ttttccatag	3900
gctccggcccc	cctgacgagc	atcacaaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	3960

-continued

gacaggacta	taaaagataacc	aggcgttcc	cccttggaaac	tccctcggtc	gctctccctgt	4020
tccgaccctg	ccgcttacccg	gatacctgtc	cgccttctc	ctttcgggaa	gcgtggcgct	4080
ttctcatagc	tcacgctgt	ggtatctcg	ttcgggtgt	gtcggtcgct	ccaagctgg	4140
ctgtgtgcac	gaaccccccgg	ttcagccgca	ccgctgcgcc	ttatccggta	actatcgct	4200
tgagtccaaac	ccggtaagac	acgacttatac	gccactggca	gcagccactg	gtaacaggat	4260
tagcagagcg	aggtatgttag	gccccgtcct	agagttcttg	aagtgggtggc	ctaaactacgg	4320
ctacactaga	agaacagttat	ttggtatctg	cgctctgtgt	aagccagtt	ccttcggaaa	4380
aagagtttgt	agctcttgat	ccggcaaaaca	aaccaccgt	ggtagcgggt	gtttttttgt	4440
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgtatctttc	4500
tacgggggtct	gacgctcagt	ggaacggaaa	ctcacgttaa	gggattttgg	tcatgagatt	4560
atcaaaaagg	atcttcaccc	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	4620
aagtatataat	gagtaaactt	ggctgtacag	ttaccaatgc	ttaatcgtg	aggcactat	4680
ctcagcgatc	tgtctatccc	gttcatccat	agttgcctga	ctcccccgtc	tgtagataac	4740
tacgatacgg	gagggcttac	catctggccc	cagtgtgc	atgataccgc	gagaccacg	4800
ctcacccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaaggggcg	agcgcagaag	4860
tggtcctgca	actttatccg	cctccatcca	gtctattaat	tgttgcgggg	aagcttaggt	4920
aagtagttcg	ccagtttaata	gtttgcgcaa	cgttgttgcc	attgctacag	gcacgttgt	4980
gtcacgctcg	tcggttggta	tggcttcatt	cagctccgt	tcccaacgat	caaggcggat	5040
tacatgatcc	cccatgttgc	gcaaaaaaggc	ggtagctcc	ttcggtcctc	cgatcggtgt	5100
cagaagtaag	ttggccgeag	tgttatca	catgggtatg	gcagcactgc	ataattctct	5160
tactgtcatg	ccatccgtaa	gatgttttc	tgtgactggt	gagtaactca	ccaagtcatt	5220
ctgagaatag	tgtatgcggc	gaccgagtt	ctcttgcggc	gcgtcaatac	gggataatac	5280
cgcgccacat	agcagaactt	taaaagtgc	catcattgga	aaacgttctt	cggggcgaaa	5340
actctcaagg	atcttacccgc	tgtttagatc	cagttcgatg	taaccactc	gtgcacccaa	5400
ctgatcttca	gcacatcttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	5460
aaatgcgcga	aaaaaggggaa	taagggcgac	acggaaatgt	tgaataactca	tactcttc	5520
ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatattga	5580
atgtattttag	aaaaataaaac	aaatagggg	tccgcgcaca	tttccccgaa	aagtgcacc	5640
tgtatgcgggt	tgaataaccgc	cacagatcg	taaggagaaa	ataccgcac	aggaaattgt	5700
aagegttaat	attttgttaa	aattcgcgt	aaattttgt	taatcagct	catttttaa	5760
ccaataggcc	gaaatcgca	aaatccctta	taaatcaaaa	gaatagaccc	agatagggtt	5820
gagttgtgtt	ccagtttgg	acaagagtc	actattaaag	aacgtggact	ccaaegtcaa	5880
agggcgaaaa	accgtctatc	agggcgatgg	cccactacgt	gaaccatcac	cctaatacg	5940
tttttgggg	tcgaggtgtc	gtaaaggact	aaatcggaaac	cctaaaggga	gcggccgatt	6000
tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaaga	aagcgaaagg	6060
agcggggcgct	agggcgctgg	caagtgtac	ggtcacgtc	cgcgtaaacc	ccacacccgc	6120
cgcgttaat	gcccgcgtac	agggcgctc	cattcgccat	tcaggctgc	caactgttg	6180
gaagggcgat	cggtgccggc	ctttcgct	ttacgcccgc	tggcgaaagg	gggatgtgt	6240

-continued

-continued

gcacacataa ggtccgacct tatcggaag ctcaatgagc tccttggtgg tggtaacatc	1920
cagagaagca cacaggttgg ttttcttggc tgccacgagc ttgagcactc gagcggcaaa	1980
ggcggacttg tggacgttag ctcgagcttc gtaggaggc attttggtgg tgaagaggag	2040
actgaaataa attagtctg cagaactttt tatcggaacc ttatctgggg cagtgaagta	2100
tatgttatgg taatagttac gagttagttg aacttataga tagactggac tatacggtta	2160
tccgtccaaa ttagaaagaa cgtcaatggc tctctggcg tcgccttgc cgacaaaaat	2220
gtgatcatga tgaagccag caatgacgtt gcagctgata ttgttgcgg ccaaccgcgc	2280
cgaaaacgca gctgtcagac ccacagcctc caacgaagaa tgtatcgta aagtgatcca	2340
agcacactca tagttggagt cgtactccaa aggccgcaat gacgagtcag acagataactc	2400
gtcgactcat cgatataact tcgtataatg tatgctatac gaagttatcc taggtataga	2460
tctcaccgtt cgtttcatga aggccggcag aaagtactcg atggtggaga tgattgctcg	2520
gaggtagttt tctctggcc agtatctctc agcaatcagg tgatactct ggacgtccag	2580
agggttagtat gtgtgcgtgg gtcagatc caccgttgc tgcaagatgg tggggaaatgt	2640
gcccccaaaag agttccaga tgaagaatgt tcttgaataa ggcgagttc gcttgcaccac	2700
tctccgttg gacggggagt cgtcttaac agcgtacact acatacgc当地 tcacaaatgg	2760
ccagagcagt ggaattgcgc agcatagcat gaaaattgtg aggaaatgtgg gaatgtgtgaa	2820
aatgtgccag accagagaga aggtctcaca tgggttgagt aatggtgc当地 atageggggc	2880
atatcggtt cccgcgattt tgggtgcgcgt gtcgttttg tctcgactc tgtagtattg	2940
tgagtcgata gtcatagtt ttgtttgtg tgacttgc当地 gttgcctgtt gttagaagaa	3000
aaagtgggag cttatcgac acggccacg aacgatttcg tacttgc当地 taattggc当地	3060
tgagaactgt tgcaagcccg gtgtttttt ttgtggccaa gtcgacaggc cgatttcggc	3120
gctgtgc当地 gagttgtggg tggctgtgg tggctgc当地 atgtggggaa gatttcaacc	3180
tggatttga cgtgtgtaga ggccgc当地 cactc当地 aatgc当地 acgc当地 ggggg	3240
agaggccgtt tgegtattgg ggc当地 ttc当地 gtc当地 tc当地 gtc当地 gtc当地	3300
gtcggttccgc tggccgc当地 ggtatcgact cactcaagg cgtaatc当地 gttatccaca	3360
gaatcaggggg ataacgc当地 aaagaacatg tggcaaaag gccagcaaaa ggccaggaaac	3420
cgtaaaaagg ccgc当地 ttc当地 cataggctcc gccccctga cgacatcac	3480
aaaaatcgac gctcaagtca gaggtggc当地 aacccgacag gactataag ataccaggcg	3540
tttccccctg gaagctccct cgtgc当地 cctgttccgc ccctgc当地 taccggatac	3600
ctgtccgc当地 ttctccctc gggaaatgtg ggc当地 ttc当地 atagctcaacg ctgttaggtat	3660
ctcagttcgg tggctgtgg tggctcaag ctggctgtg tgc当地 accccc当地 tccatc	3720
cccgaccgtt ggc当地 ttc当地 cggtaactat cgtcttgc当地 ccaaccggc当地 aagacacgc当地	3780
ttatcgccac tggc当地 cactggtaac aggattagca gagc当地 gaggttgc当地 tggtaggg	3840
gctacagatc tcttgc当地 atgtggggat gtc当地 ttc当地 atggctcaac tggctgtgg	3900
atctgc当地 gtc当地 agttacccctc ggaaaaagag ttggtagctc ttgatccggc当地	3960
aaacaaacca cc当地 ctcaagaaga tcccttgc当地 ttttctacgg ggtctgc当地 ctagtggaaac	4020
aaaaaaggat ctcaagaaga tcccttgc当地 ttttctacgg ggtctgc当地 tcaatgc当地 gagtggaaac	4080
aaaaactcactca gttaaaggat ttttgc当地 ttttctacgg agattatcaa aaaggatctt cacctagatc当地	4140

-continued

cttttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	tatatgagta	aacttggct	4200
gacagttacc	aatgcttaat	cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	4260
tccatagttg	cctgactccc	cgtcgtag	ataactacga	tacgggaggg	cttaccatct	4320
ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	cggctccaga	tttatcagca	4380
ataaaccagc	cagccgaaag	ggccgagcgc	agaagtggtc	ctgcaacttt	atccgctcc	4440
atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	gttcgccagt	taatagttt	4500
cgcaacgttg	ttgccattgc	tacaggcata	gtgggtgtcac	gctcgtcggt	tggtatggct	4560
tcattcagct	ccggttccca	acgatcaagg	cgagttacat	gatccccat	gttgtgcaaa	4620
aaagcggta	gctccttcgg	tcctccgatc	gttgtcagaa	gtaagttggc	cgcagtgta	4680
tcactcatgg	ttatggcagc	actgcataat	tctcttactg	tcatgccatc	cgtaagatgc	4740
tttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	aatagtgtat	gcggcgaccg	4800
agttgcttctt	gccccggcgtc	aatacgggat	aataccgcgc	cacatagcag	aactttaaaa	4860
gtgtcatca	ttggaaaacg	ttttcgcccc	cgaaaaactct	caaggatctt	accgctgttg	4920
agatccagtt	cgtatgtacc	cactcgtgca	cccaactgat	cttcagatc	ttttactttc	4980
accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	ccgcaaaaaa	gggaaaaaagg	5040
gcgcacacgga	aatgttgaat	actcatactc	ttcccttttc	aatattattt	aagcatttat	5100
cagggttatt	gtctcatgag	cggatacata	tttgaatgta	tttagaaaaa	taaacaata	5160
ggggttccgc	gcacatttcc	cgaaaaatgt	ccacctgtat	cggtgtgaaa	taccgoacag	5220
atgcgttaagg	agaaaatacc	gcatcaggaa	attgttaagcg	ttaatatttt	gtttaaaattc	5280
gcgttaaatt	tttggtaat	cagctcattt	tttaaccaat	aggccgaaat	cggcaaaatc	5340
ccttataaat	caaaagaata	gaccgagata	gggttgagtg	ttgttccagt	ttggacaacaag	5400
agtccactat	taaagaacgt	ggactccaa	gtcaaaggc	aaaaaaccgt	ctatcaggc	5460
gatggccccac	tacgtgaacc	atcacccata	tcaagtttt	tggggtcgag	gtgcgttaaa	5520
gcactaaatc	ggaaccctaa	agggagcccc	cgattttagag	tttgacgggg	aaagecggcg	5580
aacgtggcga	gaaaggaagg	gaagaaagcg	aaaggagcgg	gctgtagggc	gctggcaagt	5640
gtagcggcgtca	cgtcgcgct	aaccaccaca	cccgccgcgc	ttaatgcgcc	gctacaggc	5700
gcgtccatc	gccattcagg	ctgcgcact	gttggaaagg	gctgatcggt	cgggcccttt	5760
cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gctgatcggt	ttggtaacgc	5820
cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattgtaa	tacgactcac	5880
tatagggcga	attggggcccg	acgtcgcatg				5910

<210> SEQ ID NO 84

<211> LENGTH: 34

<212> TYPE: DNA

<213> ORGANISM: Escherichia coli

<400> SEQUENCE: 84

ataaacttcgt ataatgtatg ctatacgaag ttat

34

<210> SEQ ID NO 85

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Primer UP 768

<400> SEQUENCE: 85

acccgtgtt cgtctaaaag

20

<210> SEQ ID NO 86
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer LP 769

<400> SEQUENCE: 86

ggtagataca agtggcaata ac

22

What is claimed is:

1. A method of increasing the weight percent of at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in an oleaginous eukaryotic organism having a total lipid content, a total lipid fraction and an oil fraction, comprising:

- a) providing an oleaginous eukaryotic organism comprising:
 - 1) genes encoding a functional polyunsaturated fatty acid biosynthetic pathway; and
 - 2) a disruption in a native gene encoding a peroxisome biogenesis factor protein, thereby providing a PEX-disrupted organism, and
- b) growing the PEX-disrupted organism under conditions as to increase the weight percent of at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction, when compared to the weight percent of the at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction in the oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

2. The method of claim 1, wherein the increase in the weight percent of the at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids is at least 1.3 fold, when compared to the weight percent of polyunsaturated fatty acids relative to the weight percent of total fatty acids in the total lipid fraction or in the oil fraction in an oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

3. The method of claim 1, wherein the at least one polyunsaturated fatty acid is selected from the group consisting of:

linoleic acid, conjugated linoleic acid, γ -linolenic acid, dihomo- γ -linolenic acid, arachidonic acid, docosatetraenoic acid, ω -6 docosapentaenoic acid, α -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, ω -3 docosapentaenoic acid, eicosadienoic acid, eicosatrienoic acid, docosahexaenoic acid, hydroxylated or epoxy fatty acids of these, a combination of C_{20} polyunsaturated fatty acids, a combination of C_{20-22} polyunsaturated fatty acids, and a combination of C_{22} polyunsaturated fatty acids.

4. The method of claim 1, wherein the at least one polyunsaturated fatty acid consists of a combination of polyunsatu-

rated fatty acids and wherein the weight percent of the combination is increased relative to the weight percent of total fatty acids.

5. The method of claim 4, wherein the combination of polyunsaturated fatty acids consists of any combination of two or more polyunsaturated fatty acids selected from the group consisting of:

linoleic acid, conjugated linoleic acid, γ -linolenic acid, dihomo- γ -linolenic acid, arachidonic acid, docosatetraenoic acid, ω -6 docosapentaenoic acid, α -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, ω -3 docosapentaenoic acid, eicosadienoic acid, eicosatrienoic acid, docosahexaenoic acid, hydroxylated or epoxy fatty acids of these, a combination of C_{20} polyunsaturated fatty acids, a combination of C_{20-22} polyunsaturated fatty acids, and a combination of C_{22} polyunsaturated fatty acids.

6. The method of claim 1, wherein the total lipid content in the PEX-disrupted organism is increased, when compared with the total lipid content in an oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

7. The method of claim 1, wherein the total lipid content in the PEX-disrupted organism is decreased, when compared with the total lipid content in an oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

8. The method of claim 1, wherein the PEX-disrupted organism is selected from the group consisting of: *Yarrowia*, *Candida*, *Rhodotorula*, *Rhodosporidium*, *Cryptococcus*, *Trichosporon*, *Lipomyces*, *Mortierella*, *Thraustochytrium*, *Schizochytrium*, and *Saccharomyces* having the property of oleaginity.

9. The method of claim 1, wherein the polyunsaturated fatty acid biosynthetic pathway comprises genes encoding enzymes selected from the group consisting of:

$\Delta 9$ desaturase, $\Delta 12$ desaturase, $\Delta 6$ desaturase, $\Delta 5$ desaturase, $\Delta 17$ desaturase, $\Delta 8$ desaturase, $\Delta 15$ desaturase, $\Delta 4$ desaturase, $C_{14/16}$ elongase, $C_{16/18}$ elongase, $C_{18/20}$ elongase, $C_{20/22}$ elongase and $\Delta 9$ elongase.

10. The method of claim 1, wherein the disruption in the native gene encoding a peroxisome biogenesis factor protein comprises a deletion selected from the group consisting of:

a deletion in a portion of the gene encoding the C-terminal portion of the protein and a gene knockout.

11. The method of claim 1, wherein the peroxisome biogenesis factor protein is selected from the group consisting of: Pex1p, Pex 2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex5Bp, Pex5Cp, Pex5/20p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex15p, Pex16p, Pex17p, Pex14/17p, Pex18p, Pex19p, Pex20p, Pex21p, Pex21Bp, Pex22p, Pex22p-like and Pex26p.

12. The method of claim 1, wherein the peroxisome biogenesis factor protein is selected from the group consisting of: peroxisome biogenesis factor 3 protein (Pex3p), peroxisome biogenesis factor 10 protein (Pex10p) and peroxisome biogenesis factor 16 protein (Pex16p), and wherein the disruption is a gene knockout.

13. The method of claim 1, wherein the peroxisome biogenesis factor protein is selected from the group consisting of: peroxisome biogenesis factor 2 protein (Pex2p), peroxisome biogenesis factor 10 protein (Pex10p) and peroxisome biogenesis factor 12 protein (Pex12p), and wherein the disruption is a deletion in a portion of the gene encoding the C-terminal portion of the C₃HC₄ zinc ring finger motif of the protein.

14. The oil fraction or the total lipid fraction in a PEX-disrupted organism having an increase in the weight percent of at least one polyunsaturated fatty acid relative to the weight percent of total fatty acids, wherein the increase was obtained by the method of claim 1.

15. Use as food, feed or in an industrial application of the at least one polyunsaturated fatty acid of a PEX-disrupted organism having been increased in weight percent relative to the weight percent of total fatty acids by the method of claim 1.

16. A PEX-disrupted *Yarrowia lipolytica*, wherein the disruption occurs in the native gene encoding a peroxisome biogenesis factor protein selected from the group consisting of Pex3p, Pex10p and Pex16p.

17. The *Yarrowia lipolytica* of claim 16 having ATCC designation ATCC PTA-8614 (strain Y4128).

18. A method of increasing the percent of at least one polyunsaturated fatty acid relative to the dry cell weight in an oleaginous eukaryotic organism, comprising:

- providing an oleaginous eukaryotic organism comprising:
 - genes encoding a functional polyunsaturated fatty acid biosynthetic pathway; and
 - a disruption in a native gene encoding a peroxisome biogenesis factor protein, thereby providing a PEX-disrupted organism, and
- growing the PEX-disrupted organism under conditions as to increase the percent of at least one polyunsaturated

fatty acid relative to the dry cell weight, when compared to the percent of the at least one polyunsaturated fatty acid relative to the dry cell weight in the oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

19. The method of claim 18, wherein the increase in the percent of the at least one polyunsaturated fatty acid relative to the dry cell weight is at least 1.3 fold, when compared to the percent of polyunsaturated fatty acids relative to the dry cell weight of an oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

20. The method of claim 19, wherein the at least one polyunsaturated fatty acid is selected from the group consisting of:

linoleic acid, conjugated linoleic acid, γ -linolenic acid, dihomo- γ -linolenic acid, arachidonic acid, docosatetraenoic acid, ω -6 docosapentaenoic acid, α -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, ω -3 docosapentaenoic acid, eicosadienoic acid, eicosatrienoic acid, docosahexaenoic acid, hydroxylated or epoxy fatty acids of these, C₁₈ polyunsaturated fatty acids, C₂₀ polyunsaturated fatty acids, and C₂₂ polyunsaturated fatty acids.

21. The method of claim 19, wherein the total lipid content in the PEX-disrupted organism is altered, when compared with the total lipid content in an oleaginous eukaryotic organism in which no native gene encoding a peroxisome biogenesis factor protein has been disrupted.

22. The method of claim 19, wherein the disruption in the native gene encoding a peroxisome biogenesis factor protein comprises a deletion selected from the group consisting of:

a deletion in a portion of the gene encoding the C-terminal portion of the protein, and a gene knockout; and wherein the peroxisome biogenesis factor protein is selected from the group consisting of:

Pex1p, Pex 2p, Pex3p, Pex3Bp, Pex4p, Pex5p, Pex5Bp, Pex5Cp, Pex5/20p, Pex6p, Pex7p, Pex8p, Pex10p, Pex12p, Pex13p, Pex14p, Pex15p, Pex16p, Pex17p, Pex14/17p, Pex18p, Pex19p, Pex20p, Pex21p, Pex21Bp, Pex22p, Pex22p-like and Pex26p.

* * * * *