(21) 申请号 201410440301.6
(22) 申请日 2014.09.01
(71) 申请人 上海爱数软件有限公司
 地址 201112 上海市闵行区联航路 1188 号 8
 楼第 2 层 A-1 单元
(72) 发明人 罗强
(74) 专利代理机构 上海科盛知识产权代理有限公司 31225
 代理人 赵志远
(51) Int.Cl.
 G06F 17/30 (2006.01)
 G06F 11/14 (2006.01)
(54) 发明名称
 Oracle 数据库库的一致性数据保护与捕获一致性状态的方法
(57) 摘要
 本发明涉及一种 Oracle 数据库库的一致性数据保护与捕获一致性状态的方法，包括以下步骤：1) 在 CDP 实时备份和存储快照时，将数据从缓存中刷入磁盘，并将 Oracle 数据库状态为静态状态，然后查询一致性时间段并做时间点快照切割；2) 在完成时间点快照切割之后，再将数据库状态为非静态状态，恢复正常 Oracle 生产状态。与现有技术相比，本发明可以在不影响用户 Oracle 数据库正常运行的前提下，保证 CDP 实时备份和存储快照任意时间点都是满足 Oracle 一致性的，从而成功恢复以达到业务连续且尽可能精确挽回业务丢失的目的；能有效降低用户 Oracle 数据库的运行风险，提升效率并减轻维护压力。
1. 一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，包括以下步骤：

1) 在 CDP 实时备份和存储快照时，将数据从缓存中刷入硬盘，并将 Oracle 数据库置为静默状态，然后查询一致性时段并做时间点快照切割；

2) 在完成时间点快照切割之后，将数据库置为非静默状态，恢复正常 Oracle 生产状态。

2. 根据权利要求 1 所述的一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，所述的步骤 1) 具体如下：

11) 捕获 CDP 实时备份和存储快照开始时的时间点；

12) 通过 Oracle 数据库提供的 OCI 接口，连接到捕获时间点的对应数据库中；

13) 查询 Oracle 数据库的版本；

14) 判断 Oracle 数据库是否处于静默状态，若为是，根据不同版本采用不同指令将 Oracle 数据库解除静默状态，并执行步骤 15)，否则，直接执行步骤 15)；

15) 将 buffer cache 中的脏数据块写入到 disk 中，并执行步骤 16)；

16) 将 Oracle 数据库置为静默状态，并执行步骤 17)；

17) 查询捕获 Oracle 数据库的一致性时段，并做时间点快照切割；

18) Oracle 数据库达到一致性之后，通过 Oracle CDP 或者存储快照模块捕获时间点做数据保护。

3. 根据权利要求 2 所述的一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，所述的根据不同版本采用不同指令将 Oracle 数据库解除静默状态具体为：

对于 Oracle9i: 执行命令”alter tablespace T01 end backup;”;
Oracle10g&11g：执行命令”alter database end backup;”;
即可将数据库解除静默状态。

4. 根据权利要求 2 所述的一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，所述的将 Oracle 数据库置为静默状态具体为：

对于 Oracle9i: 依次执行命令”alter tablespace T01 begin backup;””alter tablespace T02 begin backup;”，对 Oracle 服务的各个表空间依次冻结，置为静默状态；

对于 Oracle10g&11g：执行命令”alter database begin backup;”对整个 Oracle 数据库冻结，置为静默状态。

5. 根据权利要求 2 所述的一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，所述的步骤 2) 具体为：

21) Oracle CDP 和存储快照捕获完时间点之后，开始执行解除静默状态；

22) 通过 Oracle 数据库提供的 OCI 接口，连接到做时间点捕获的对应数据库中；

23) 查询 Oracle 数据库的版本；

24) 判断 Oracle 是否处于静默状态，若为是，根据不同版本对其进行静默状态解除，并执行步骤 25)，否则直接执行步骤 25)；

25) 校验控制文件和各个数据文件头的 scn 号，使各个文件的 scn 号都一致性，并将 buffer cache 中的脏数据块输入到 disk 中去；
26) Oracle数据库已经解除了静默状态，将数据库恢复成数据一致性处理之前的生产状态。

6. 根据权利要求5所述的一种Oracle数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，所述的根据不同版本对其进行静默状态解除具体为：

Oracle9i：对数据文件对应的表空间执行“alter tablespace T01end backup;”将表空间解除静默状态；

Oracle10g&11g：在sqlplus中执行命令“alter database end backup;”将数据库解除静默状态。
说明 书

Oracle 数据库用的一致性数据保护与捕获一致性状态的方法

技术领域
[0001] 本发明涉及一种 Oracle 数据库维护技术,尤其是涉及一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法。

背景技术
[0002] 根据最具权威的 IT 研究与顾问咨询公司 Gartner 公司公布的 2012 年全球关系型数据库市场调查报告,以软件总收入计算,Oracle 以 48.3%继续占据着第一的位置,且收入份额大于四个最接近的竞争对手 (SQL Server、Sybase、DB2、PostgreSQL) 的总和。由此可看出作为数据库之王的 Oracle 在全球的用户仍然是最多的。

[0003] Oracle 数据库存放于计算机的存储设备中,绝大多数是存储于硬盘中,少数存放于磁带中。由于计算机本身的物理特性决定,保存在其中的数据会因为各种外部原因的冲击而不可用。比如存储设备的物理损坏和使用寿命、电力突然中断、火灾、地震等都可能导致存储在计算机上的数据丢失,以致 Oracle 数据库用户的生产业务中断,造成的损失无法估量。面对数据丢失导致业务中断的挑战,合适且高效的 Oracle 数据保护技术是必不可少的。为了保证 Oracle 用户数据持续可用,最好的办法就是数据多机存储,将 Oracle 中的数据高效的、快速地备份到备份设备中形成多个数据副本,当出现生产业务中断的时候,马上对其进行恢复继续生产。

[0004] 目前数据保护领域存在的 Oracle 数据保护方案主要分为服务器定时备份、服务器实时备份和存储层的存储快照备份这三种。这三种数据保护方案概念和原理如下:
[0005] (1).Oracle 定时备份:利用 Oracle 提供的第三方备份恢复接口,设置计划触发做物理备份或者逻辑备份。
[0006] (2).Oracle 服务器层 CDP 实时备份:利用磁盘 I/O 读写驱动监控 Oracle 对应的数据文件、控制文件、日志文件的 I/O 读写情况,并将 I/O 请求包 IRP 打包发送到备份服务器中。
[0007] (3).Oracle 存储快照备份:利用磁盘存储厂商提供的快照接口,对 Oracle 数据库文件所在的卷 volume 对应的磁盘做快照备份。
[0008] 综上所述,相比与 Oracle 的定时备份,CDP 实时备份为满足用户更短的 RTO (灾难恢复时间) 和更小的 RPO (灾难数据丢失量) 需求提供不间断的持续数据保护;存储快照作为存放级的快照备份,备份时间相当短以秒为单位,缩小了备份窗口和减少了服务器层的资源开销。已经成为数据保护领域新的发展趋势。

发明内容
[0009] 本发明的目的就是为了克服现有技术存在的缺陷而提供一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法,通过 oci 连接到 Oracle 数据库中,将 buffer cache 中的数据写入 DISK 中,然后将数据库置为备份状态对其进行冻结处理,使
其处于静默状态，此时对数据库的 v$backup 视图进行查询，捕获一致性状态，做完对应的 Oracle 数据保护之后再对其取消备份状态进行解冻处理，恢复正常运行的生产状态；在触发 Oracle 进行一致性数据保护的过程中，不影响用户 Oracle 生产数据库的正常运行。

[0010] 本发明的目的可以通过以下技术方案来实现：
[0011] 一种 Oracle 数据库用的一致性数据保护与捕获一致性状态的方法，其特征在于，包括以下步骤：
[0012] 1）在 CDP 实时备份和存储快照时，将数据从缓存中刷入磁盘，并使 Oracle 数据库
 置为静默状态，然后查询一致性时间段并做时间点快照切割；
[0013] 2）在完成时间点快照切割之后，再将数据库置为非静默状态，恢复正常 Oracle 生产状态。

[0014] 所述的步骤 1）具体如下：
[0015] 11）捕获 CDP 实时备份和存储快照开始时的时间点；
[0016] 12）通过 Oracle 数据库提供的 OCI 接口，连接到捕获时间点的对应数据库中；
[0017] 13）查询 Oracle 数据库的版本；
[0018] 14）判断 Oracle 数据库是否处于静默状态，若为是，根据不同版本采用不同指令
 将 Oracle 数据库解除静默状态，并执行步骤 15），否则，直接执行步骤 15）；
[0019] 15）将 buffer cache 中的脏数据块写入到 disk 中，并执行步骤 16）；
[0020] 16）将 Oracle 数据库置为静默状态，并执行步骤 17）；
[0021] 17）查询捕获 Oracle 数据库的一致性时间段，并做时间点快照切割；
[0022] 18）Oracle 数据库达到一致性之后，通过 Oracle CDP 或者存储快照模块捕获时间点做数据保护。

[0023] 所述的根据不同版本采用不同指令将 Oracle 数据库解除静默状态具体为：
[0024] 对于 Oracle9i: 执行命令“alter tablespace T01end backup;”；
[0025] Oracle10g&11g: 执行命令“alter database end backup;”；
[0026] 即可将数据库解除静默状态。
[0027] 所述的将 Oracle 数据库置为静默状态具体为：
[0028] 对于 Oracle9i: 依次执行命令“alter tablespace T01begin backup;”“alter
tablespace T02begin backup;”，对 Oracle 附属的各个表空间依次冻结，置为静默状态；
[0029] 对于 Oracle10g&11g: 执行命令“alter database begin backup;”对整个 Oracle
dATABASE 冻结，置为静默状态。

[0030] 所述的步骤 2）具体为：
[0031] 21）Oracle CDP 和存储快照捕获完时间点之后，开始执行解除静默状态；
[0032] 22）通过 Oracle 数据库提供的 OCI 接口，连接到做时间点捕获的对应数据库中；
[0033] 23）查询 Oracle 数据库的版本；
[0034] 24）判断 Oracle 是否处于静默状态，若为是，根据不同版本对其进行静默状态解
 冻，并执行步骤 25）, 否则直接执行步骤 25）；
[0035] 25）校验控制文件和各个数据文件的 SCN 号，使各个文件的 SCN 号都一致性，并
 将 buffer cache 中的脏数据块输入到 disk 中去；
[0036] 26）Oracle 数据库已经解除了静默状态，将数据库恢复成做一致性处理之前的生
产状态。
[0037] 所述的根据不同版本对其进行静默状态解除具体为：
[0038] Oracle9i对数据文件对应的表空间执行“alter tablespace T01end backup;”
将表空间解除静默状态；
[0039] Oracle10g&llg;在sqlplus中执行命令“alter database end backup;”将数据
库解除静默状态。
[0040] 与现有技术相比，本发明通过提供在CDP 实时备份和存储快照将数据刷入磁盘，
将 Oracle 数据库处于静默状态、查询一致性时间区间后，做时间点快照切割，产生完备份
时间点之后再将 Oracle 数据库解除静默状态恢复正常运行状态的技术方案，可以在不影
响用户 Oracle 数据库正常运行的前提下，保证 CDP 实时备份和存储快照任意时间点都是满
足 Oracle 一致性的，都能成功恢复以达到业务连续且尽可能精确挽回数据丢失的目的，能
有效降低用户 Oracle 数据库的运行风险，提升效率并减轻维护压力。

附图说明
[0041] 图 1 为 Oracle 写数据原理流程图；
[0042] 图 2 为本发明处理 Oracle 一致性将数据库置为静默状态具体流程图；
[0043] 图 3 为本发明再在完成时间点快照捕获完之后再将数据库置为非静默状态具体
流程图。

具体实施方式
[0044] 下面结合附图和具体实施例对本发明进行详细说明。
[0045] 实施例
[0046] 根据背景技术中的介绍，作为数据保护领域新发展趋势的 CDP 实时备份和存储快
照，日益受到用户的欢迎。
[0047] 但是在 Oracle 数据库中写日志和写数据文件是消耗 I/O 最大的两种操作，在有数
据修改的 commit 操作之后日志同步记录到 redo 在线日志文件中，但是数据不会立即写入
到磁盘中，作为脏块保存在 buffer cache 中，只有当触发 checkpoint 通知 DBWR 进程写才
会将脏块写入到磁盘。如下面图 1 所示 Oracle 写数据原理流程图：
[0048] 因此在数据还未写入磁盘的时候做时间点快照切割，当出现 Oracle 数据库损
坏需要用此时间点做恢复的情况下，会造成因为恢复后数据库不一致无法启动的问题。
[0049] 本发明通过提供在 CDP 实时备份和存储快照将数据刷入磁盘，将 Oracle 数据库
处于静默状态、查询一致性时间区间做时间点快照切割，产生完备份时间点之后再将
Oracle 数据库解除静默状态恢复正常运行状态的技术方案。可以在不影响用户 Oracle 数
据库正常运行的前提下，保证 CDP 实时备份和存储快照任意时间点都是满足 Oracle 一致
性的，都能成功恢复以达到业务连续且尽可能精确挽回数据丢失的目的。能有效降低用户
Oracle 数据库的运行风险，提升效率并减轻维护压力。
[0050] 本发明 Oracle CDP、存储快照下的数据保护技术，在解决 Oracle 一致性问题时主
要分为两个部分：
[0051] 一、在做时间点快照捕获的时候首先要处理 Oracle 一致性将数据库置为静默状
态。
[0052] 二、再在完成时间点切片捕获完之后再将数据库置为非静默状态,恢复正常
Oracle 生产状态。
[0053] 如图 2 所示,上述第一部分的具体内容如下:
[0054] (1). Oracle CDP 和存储快照数据保护方案开始执行时间点捕获。
[0055] (2). 通过 Oracle 官方提供的 OCI 接口,连接到做时间点捕获的对应数据库中。
[0056] (3). 通过”select version from v$instance;”查询 Oracle 的版本,目前主流的
10g、11g 和 9i 的处理一致性原理不一样,因此处理方案也就不相同。
[0057] (4). 在 sqlplus 中通过”select file#,status from v$backup;”查询 Oracle 是否处于静默状态,如果处于静默状态,则分版本处理:
[0058] 例如查询各个数据文件对应的静默状态:
[0059] SQL > select file#,status from v$backup;
[0060]
FILE# STATUS

1 NOT ACTIVE
2 NOT ACTIVE
3 NOT ACTIVE
4 NOT ACTIVE
5 NOT ACTIVE
6 NOT ACTIVE
7 NOT ACTIVE
8 NOT ACTIVE
9 NOT ACTIVE
10 NOT ACTIVE
11 ACTIVE

[0061]
FILE# STATUS

12 NOT ACTIVE
13 NOT ACTIVE

[0062] 发现 11 号文件对应的表空间 TO1 是非静默静态,则执行:
[0063] Oracle9i: ”alter tablespace TO1end backup;”
[0064] Oracle10g&11g: 在 sqlplus 中执行命令”alter database end backup;”将数据
库解除静默状态。
[0065] (5).Oracle 9i: 执行”alter system set events = ‘immediate trace name flush_cache’;”
[0066] Oracle 10g&11g: 执行”alter system flush buffer_cache;”通知Oracle的DBWR
data写进程将现在之前的buffer cache中的脏数据块写入到disk中。
[0067] (6). 将数据库置为静默状态,不同版本的Oracle处理原理不一致,分版本处理:
[0068] Oracle 9i: ”alter tablespace T01 begin backup;” ”alter tablespace T02 begin backup;” 执行操作依次对Oracle 附属的各个表空间冻结,置为静默状态。
[0069] Oracle 10g&11g: 执行命令”alter database begin backup;” 对整个Oracle数据库冻结,置为静默状态。
[0070] (7). 执行”select file#, status from v&backup;”查询捕获Oracle一致性时
间段。
[0071] SQL > select file#, status from v$backup;
[0072]

```
FILE# STATUS
------------
  1 NOT ACTIVE
  2 NOT ACTIVE
  3 NOT ACTIVE
  4 NOT ACTIVE
  5 NOT ACTIVE
  6 NOT ACTIVE
  7 NOT ACTIVE
  8 NOT ACTIVE
```

[0073]

```
  9 NOT ACTIVE
 10 NOT ACTIVE
 11 NOT ACTIVE
```

```
FILE# STATUS
------------
 12 NOT ACTIVE
 13 NOT ACTIVE
```

[0074] 11号文件对应的表空间T01已经处于静默状态,处于一致性状态了。如果捕获不
到一致性时间段则返回到步骤 4 顺序执行。

(8) Oracle 达到一致性之后，通过 Oracle CDP 或者存储快照模块捕获时点做数据保护。

(9) 如图 3 所示，上述第二部分的具体内容如下：

(1) Oracle CDP、存储快照捕获完时点之后开始执行解除静默状态，恢复生产状态操作。

(2) 通过 Oracle 官方提供的 OCI 接口，连接到做时点捕获的对应数据库中。

(3) 通过 “select version from v$instance;” 查询 Oracle 的版本，目前主流的 10g、11g 和 9i 的解除一致性处理原理不一样，因此处理方案也就不相同。

(4) 在 sqlplus 中通过 “select file#,status from v$backup;” 查询 Oracle 是否处于静默状态，如果处于不处于静默状态，则分版本处理：

```
SQL > select file#,status from v$backup;
```

<table>
<thead>
<tr>
<th>FILE# STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NOT ACTIVE</td>
</tr>
<tr>
<td>2 NOT ACTIVE</td>
</tr>
<tr>
<td>3 NOT ACTIVE</td>
</tr>
<tr>
<td>4 NOT ACTIVE</td>
</tr>
<tr>
<td>5 NOT ACTIVE</td>
</tr>
<tr>
<td>6 NOT ACTIVE</td>
</tr>
<tr>
<td>7 NOT ACTIVE</td>
</tr>
<tr>
<td>8 NOT ACTIVE</td>
</tr>
<tr>
<td>9 NOT ACTIVE</td>
</tr>
<tr>
<td>10 NOT ACTIVE</td>
</tr>
<tr>
<td>11 ACTIVE</td>
</tr>
</tbody>
</table>

```
FILE# STATUS
```

```
<table>
<thead>
<tr>
<th>FILE# STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 NOT ACTIVE</td>
</tr>
<tr>
<td>13 NOT ACTIVE</td>
</tr>
</tbody>
</table>
```

(10) Oracle 9i 对 11 号数据文件对应的表空间 T01 执行 “alter tablespace T01 end backup;” 将表空间 T01 解除静默状态。
[0085] Oracle10g&11g:在sqlplus中执行命令"alter database end backup:" 将数据库解除静默状态。

[0086] (5). 执行"alter system checkpoint:" 校验控制文件和各个数据文件的scn号（系统改变号），使各个文件的scn号都一致性。

[0087] Oracle9i: 执行"alter system set events = 'immediate trace name flush_cache';"

[0088] Oracle10g&11g: 执行"alter system flush buffer_cache;"

[0089] 通知DBWR数据写进程将buffer cache中的脏数据块输入到disk中去。

[0090] (6). 此时Oracle数据库已经解除了静默状态，将数据库恢复成做一致性处理之前的生产状态。

[0091] 本发明通过以上技术方案，可实现：

[0092] 1. 保证Oracle CDP持续数据保护和存储快照捕获的任意时间点都是完整、可用的。

[0093] 2. 在做Oracle一致性处理和捕获Oracle一致性状态时，不影响Oracle自身的正常读写查询操作。

[0094] 3. 整个恢复过程无需停止或干扰生产库的正常生产。

[0095] 4. 整个一致性处理过程是程序全自动的无须过多人工干预，大大降低了用户操作麻烦。
图 1
图 2
图 3