



US 20060000803A1

(19) United States

(12) Patent Application Publication

Koshiishi et al.

(10) Pub. No.: US 2006/0000803 A1

(43) Pub. Date:

Jan. 5, 2006

(54) PLASMA PROCESSING METHOD AND APPARATUS

(76) Inventors: **Akira Koshiishi**, Nirasaki-shi (JP); **Jun Hirose**, Nirasaki-shi (JP); **Masahiro Ogasawara**, Nirasaki-shi (JP); **Taichi Hirano**, Nirasaki-shi (JP); **Hiromitsu Sasaki**, Kurihara-gun (JP); **Tetsuo Yoshida**, Nirasaki-shi (JP); **Michishige Saito**, Nirasaki-shi (JP); **Hiroyuki Ishihara**, Nirasaki-shi (JP); **Jun Ooyabu**, Nirasaki-shi (JP); **Kohji Numata**, Kyoto-shi (JP)

Correspondence Address:  
**OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT, P.C.**  
**1940 DUKE STREET**  
**ALEXANDRIA, VA 22314 (US)**

(21) Appl. No.: 11/137,673

(22) Filed: May 26, 2005

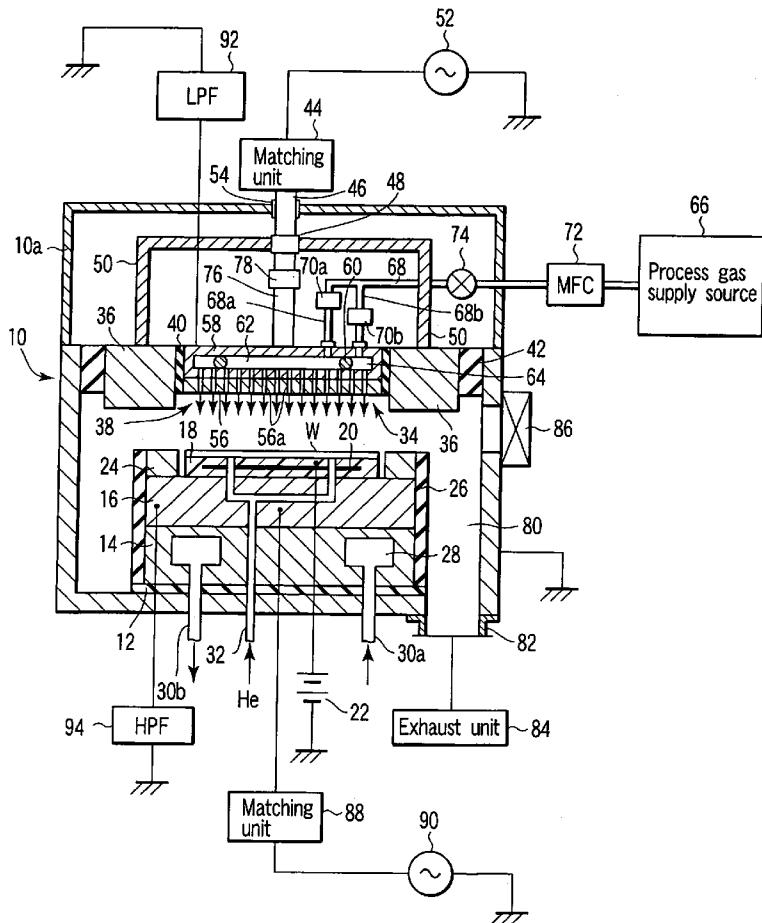
Related U.S. Application Data

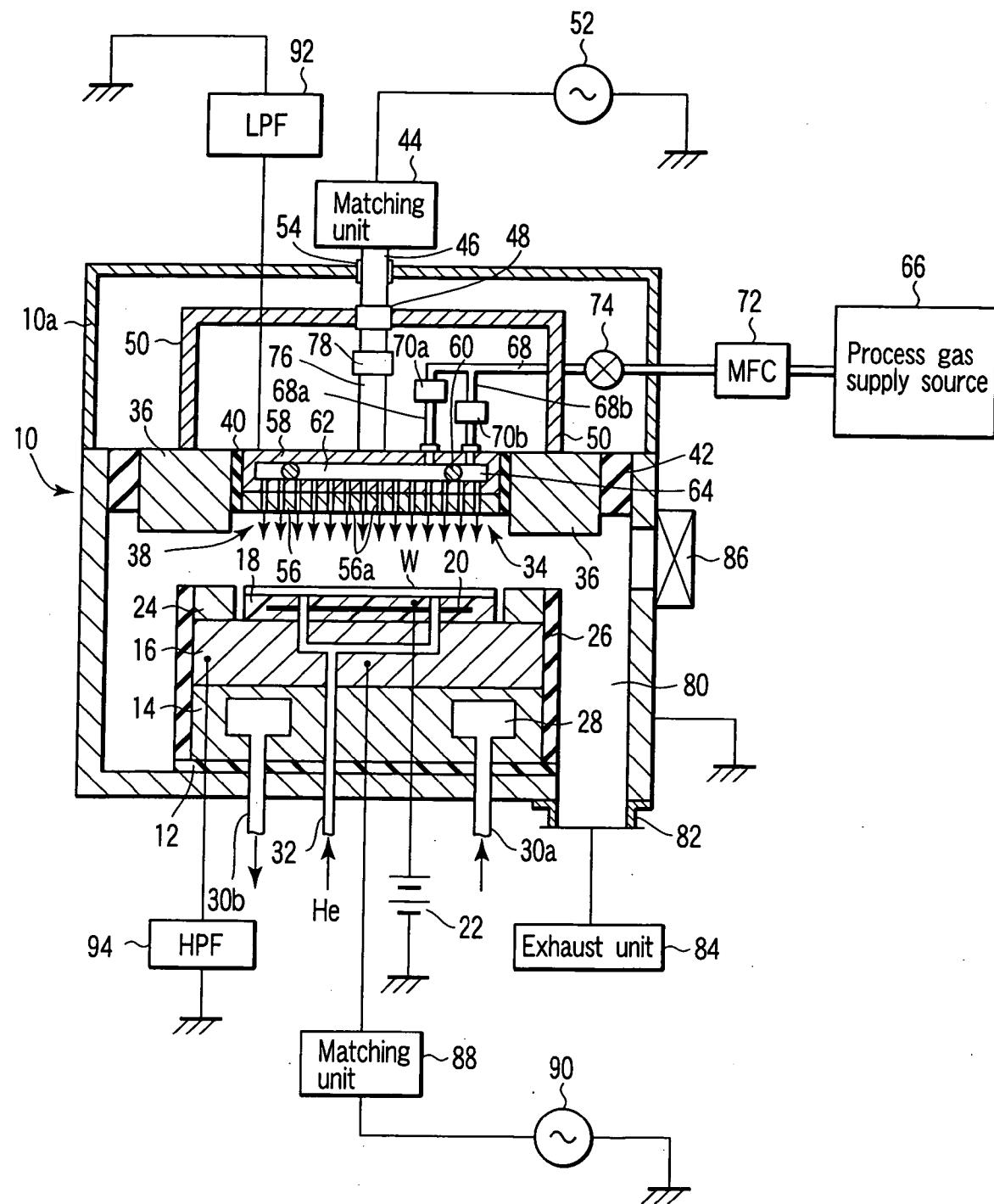
(63) Continuation of application No. PCT/JP03/15029, filed on Nov. 25, 2003.

(30) Foreign Application Priority Data

Nov. 26, 2002 (JP) ..... 2002-341949  
Oct. 17, 2003 (JP) ..... 2003-358432

Publication Classification


(51) Int. Cl.


C23F 1/00 (2006.01)

(52) U.S. Cl. ..... 216/67; 156/345.47

(57) ABSTRACT

A plasma processing method is arranged to supply a predetermined process gas into a plasma generation space in which a target substrate is placed, and turn the process gas into plasma. The substrate is subjected to a predetermined plasma process by this plasma. The spatial distribution of density of the plasma and the spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate by a facing portion opposite the substrate to form a predetermined process state over the entire target surface of the substrate.





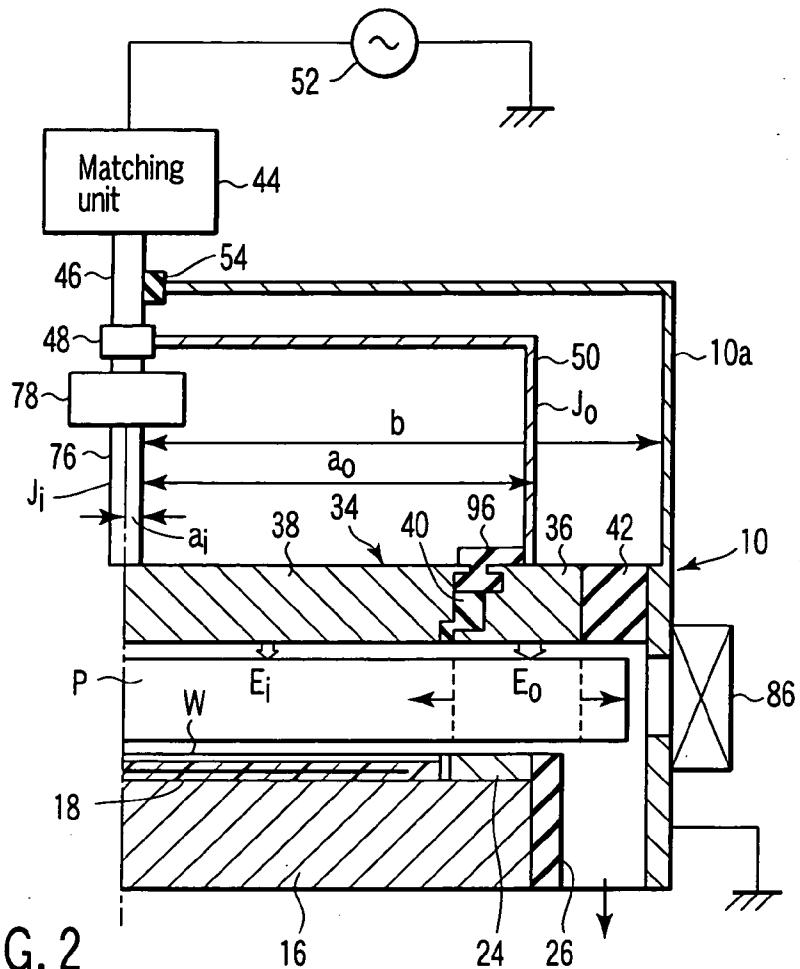



FIG. 2

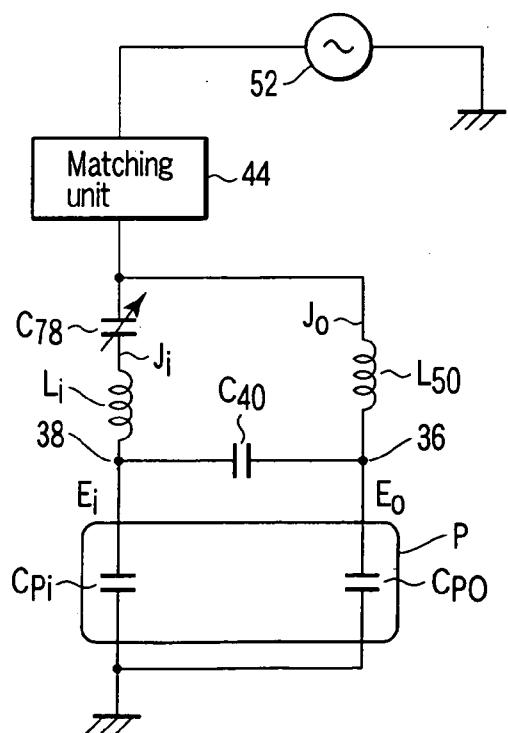



FIG. 3

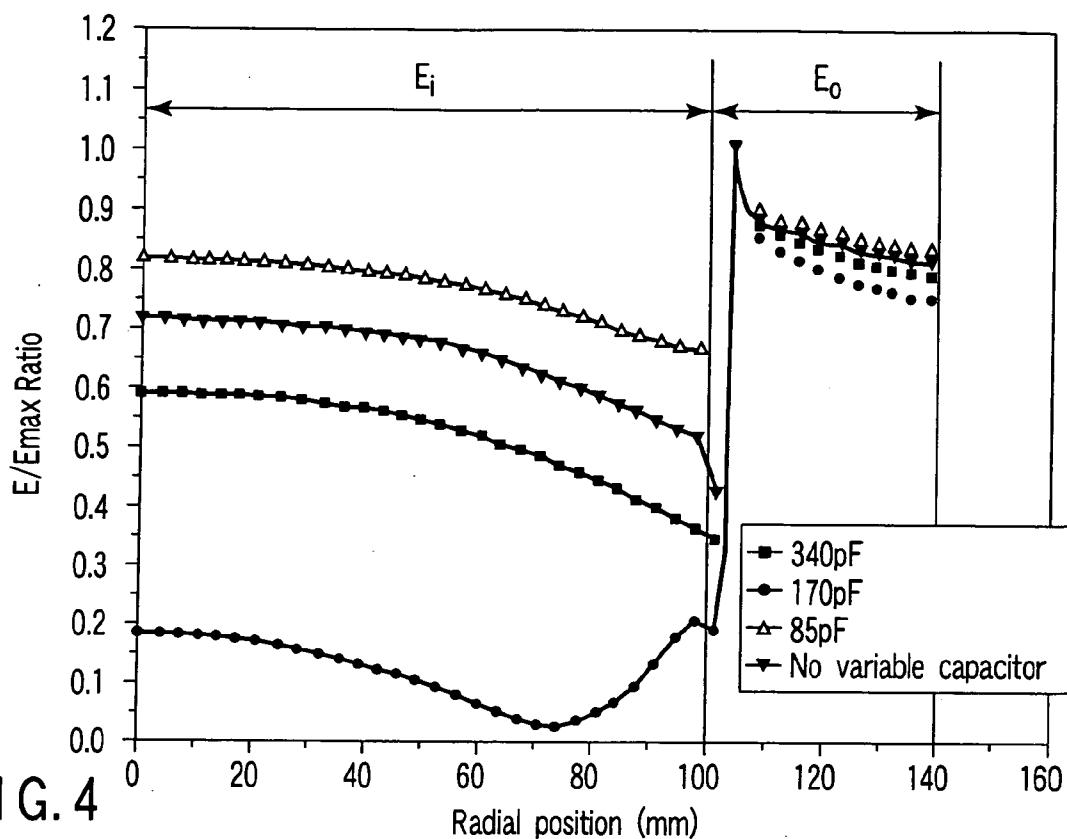



FIG. 4

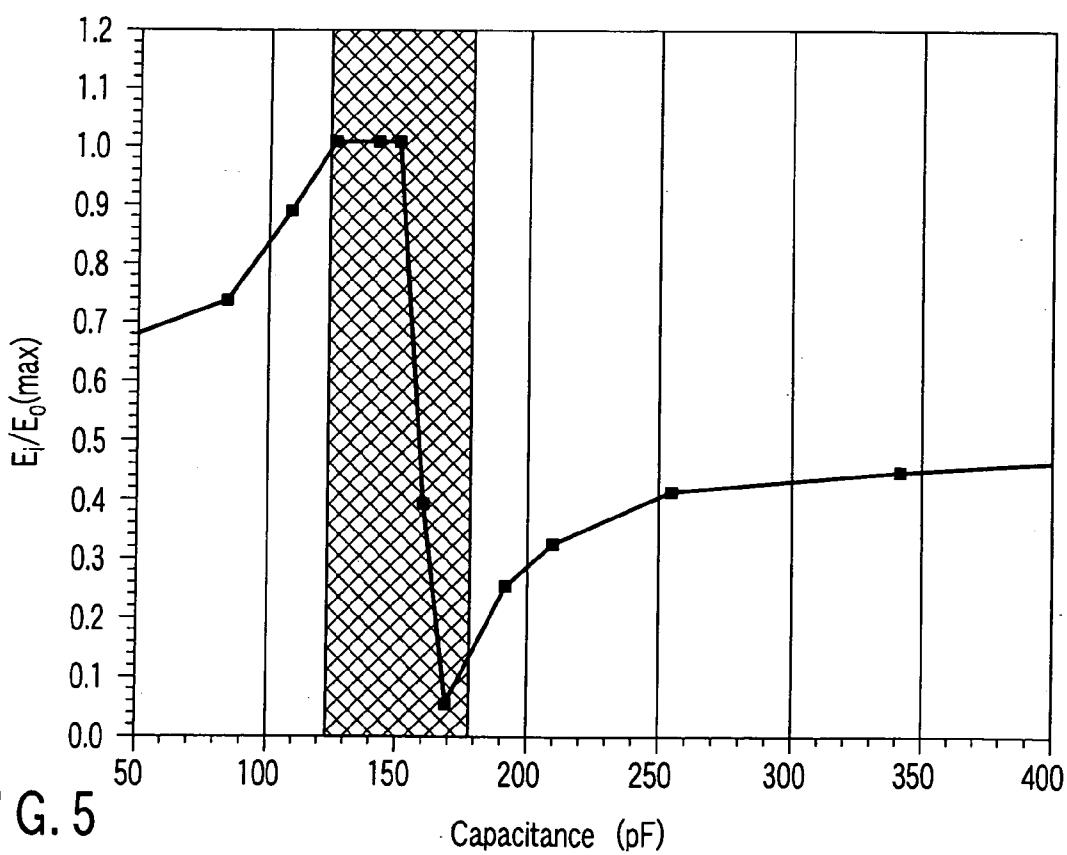



FIG. 5

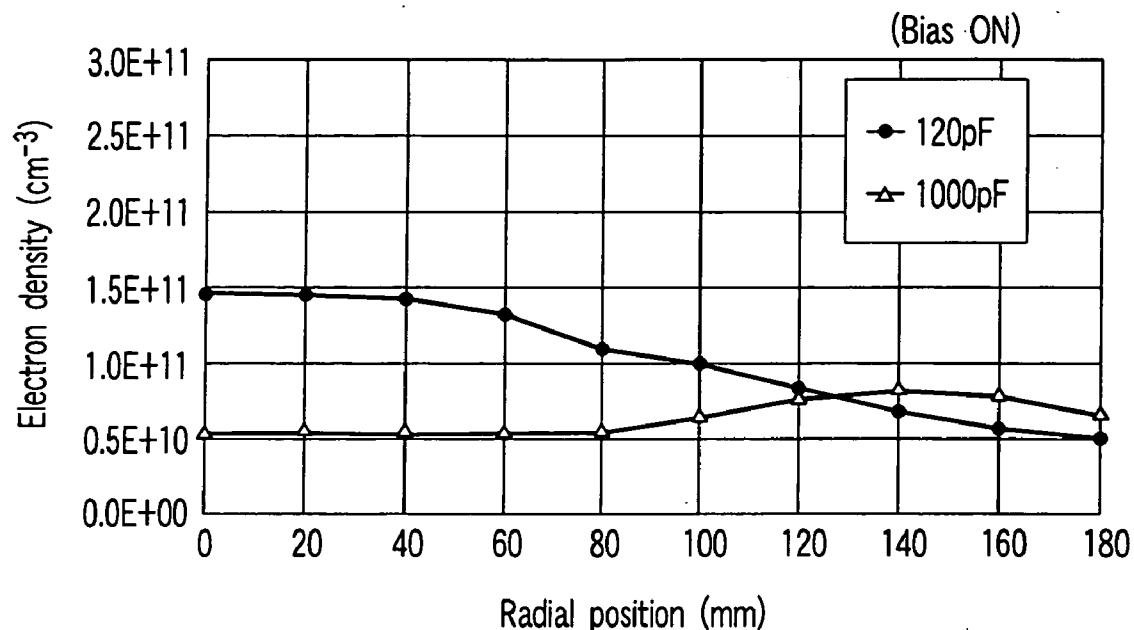



FIG. 6A

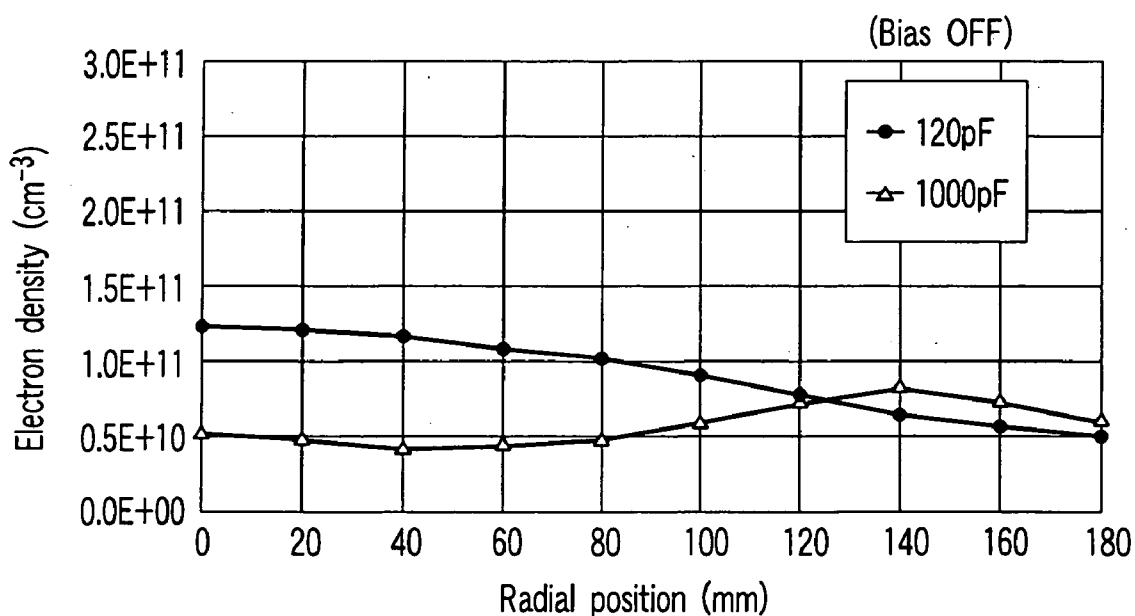



FIG. 6B

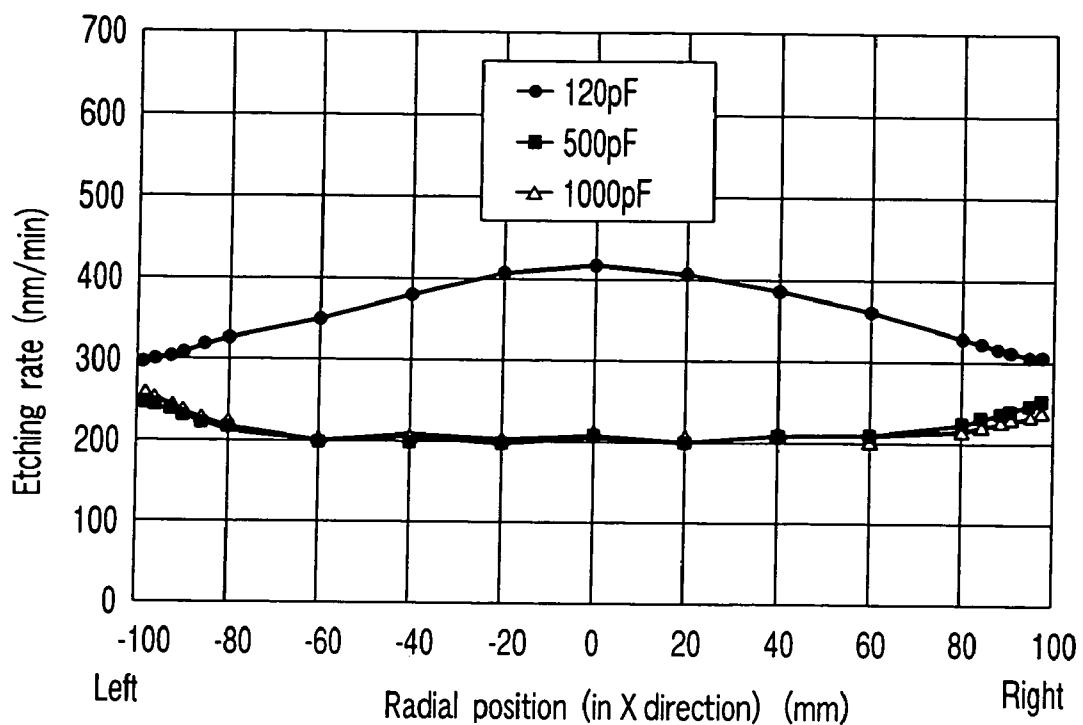



FIG. 7A

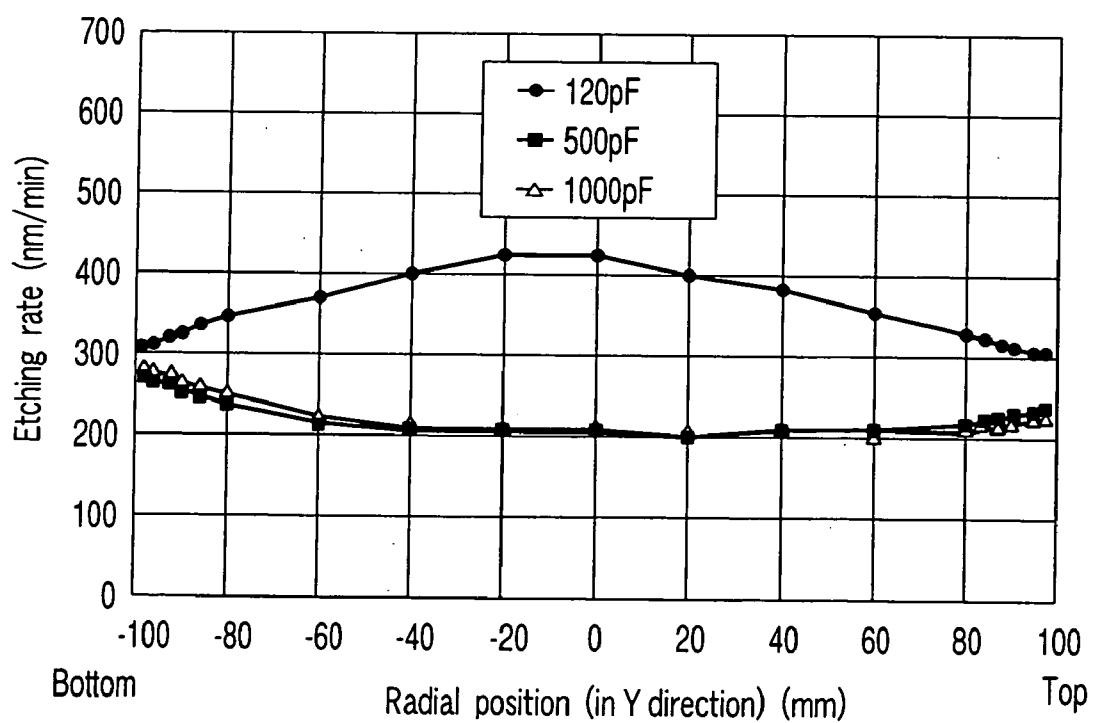



FIG. 7B

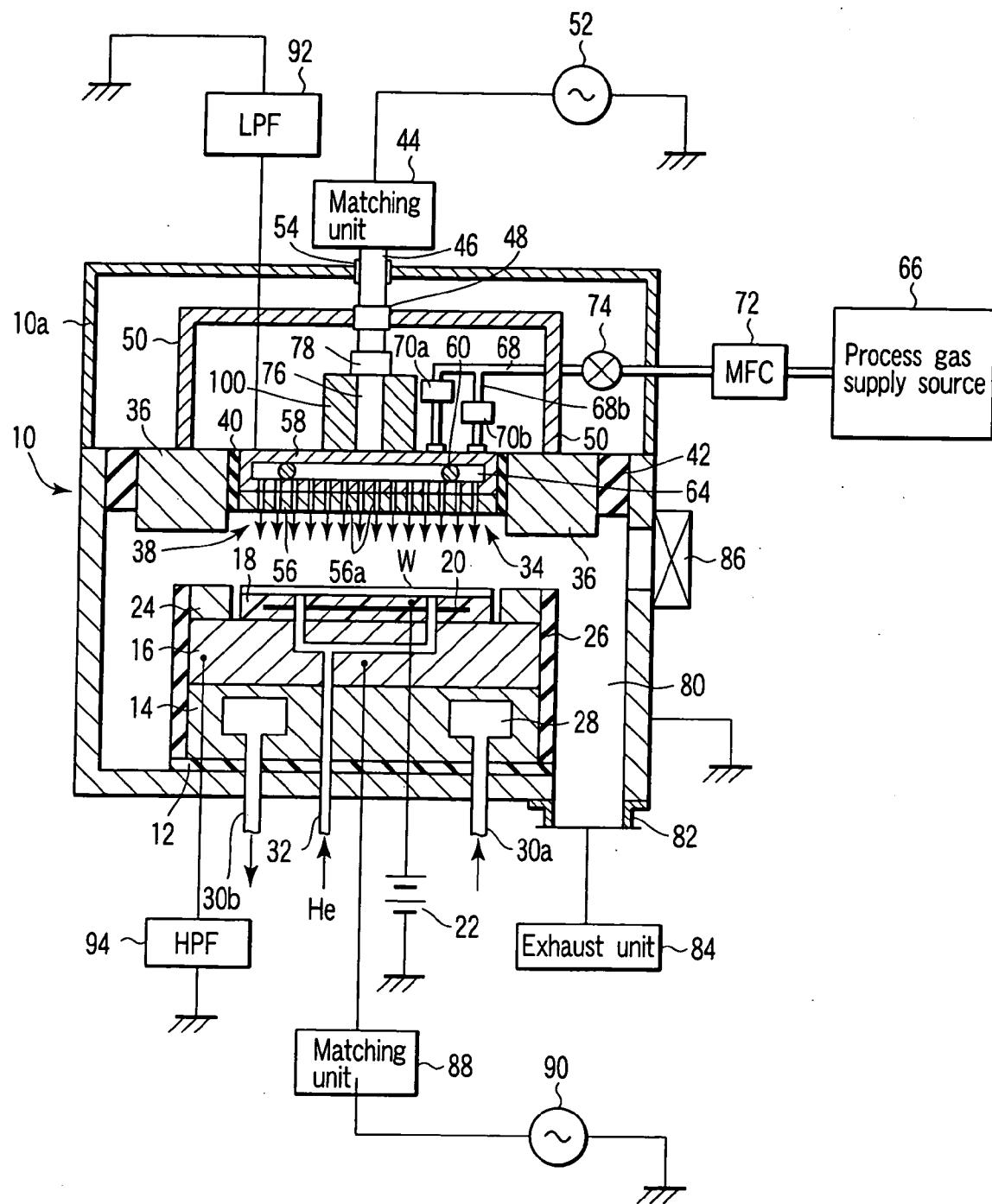



FIG. 8

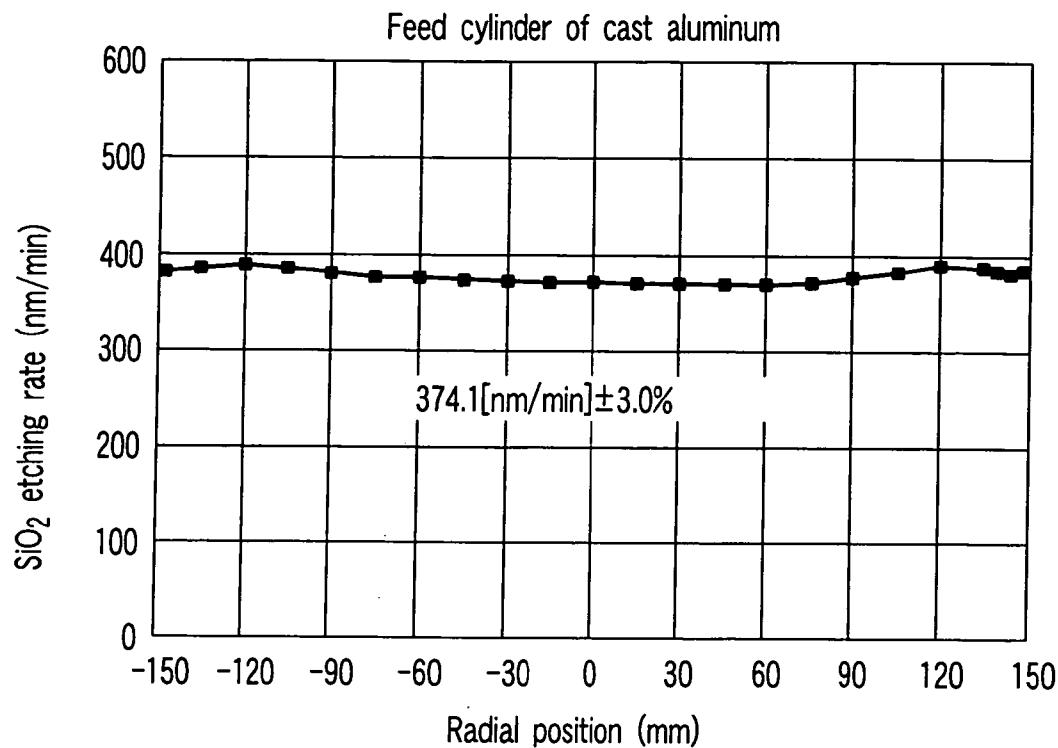



FIG. 9A

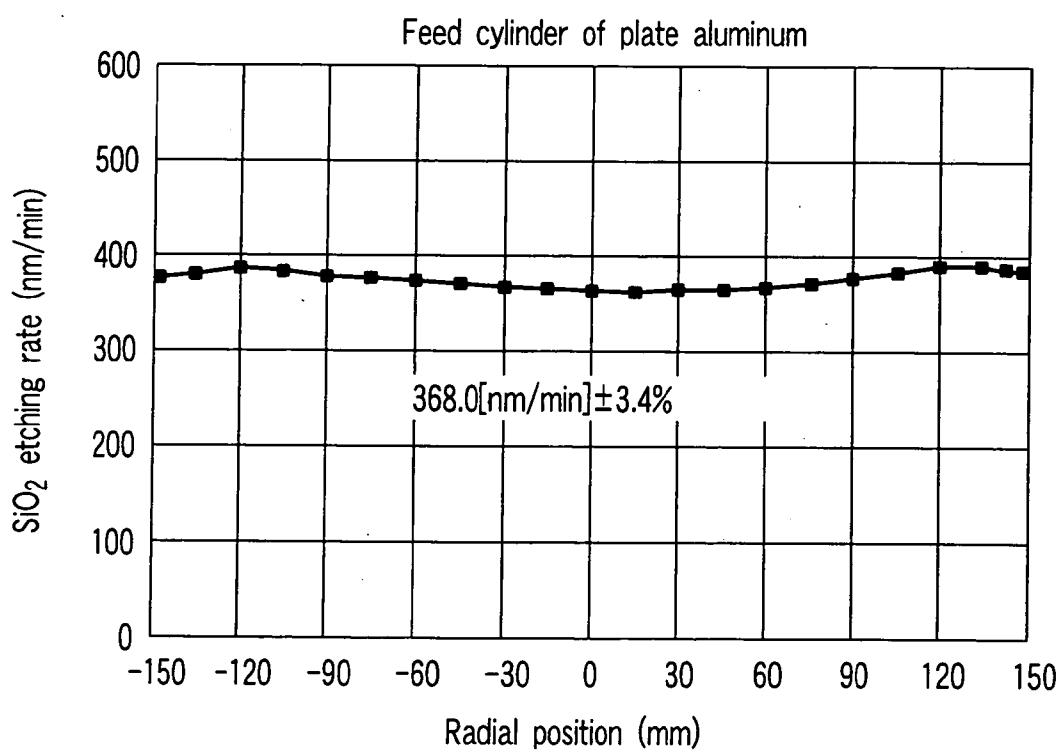



FIG. 9B

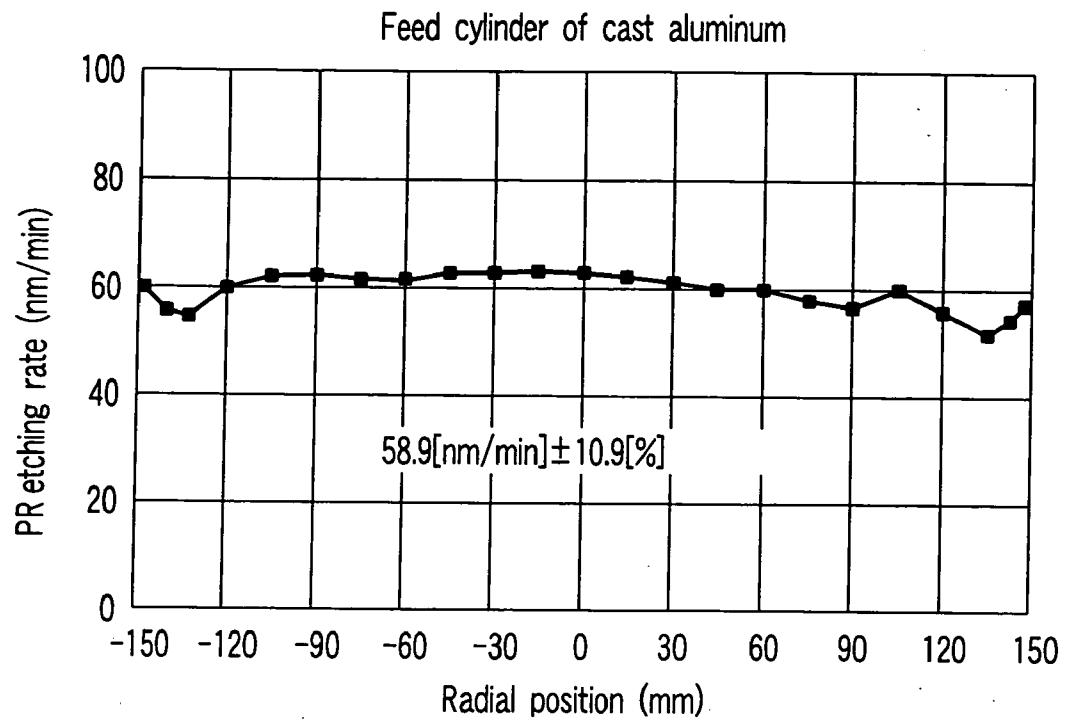



FIG. 10A

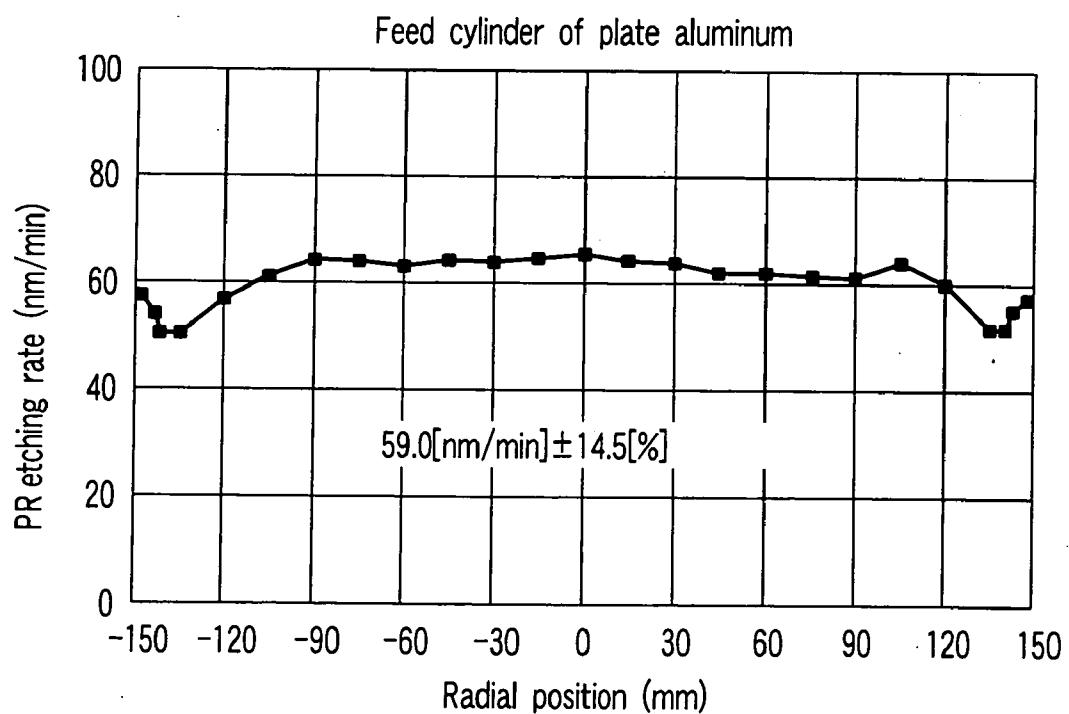



FIG. 10B

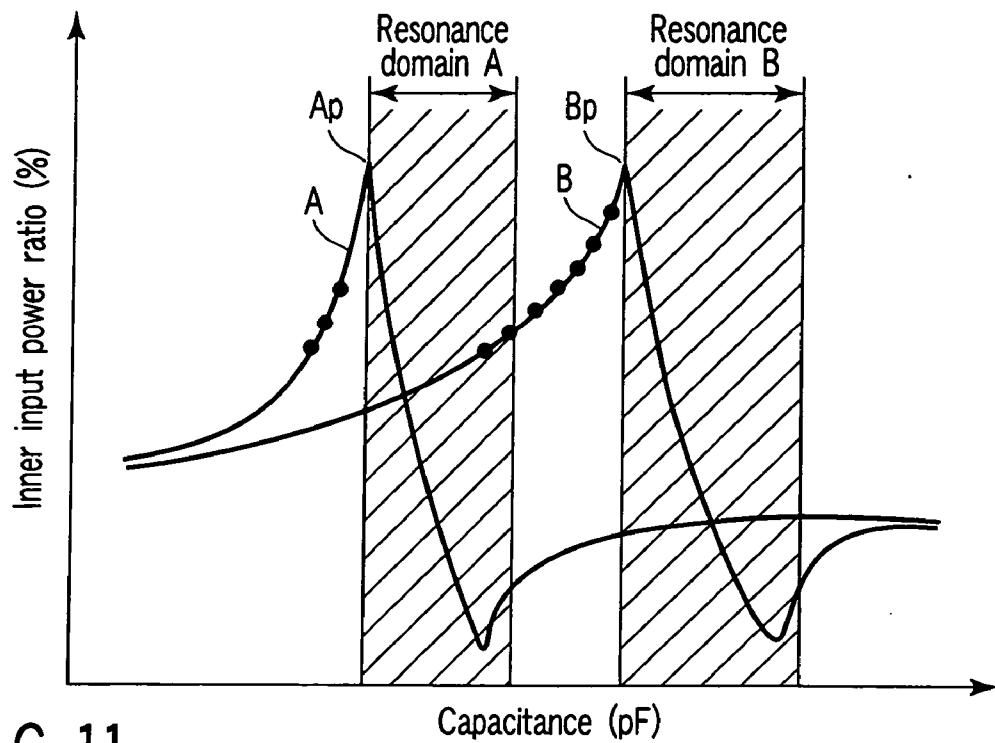



FIG. 11

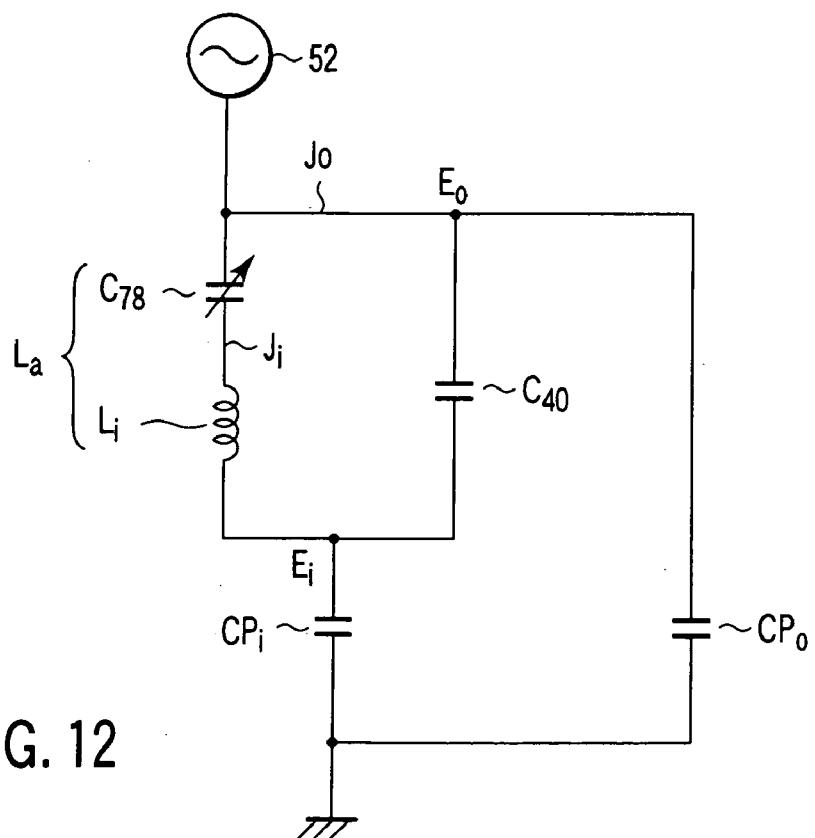



FIG. 12

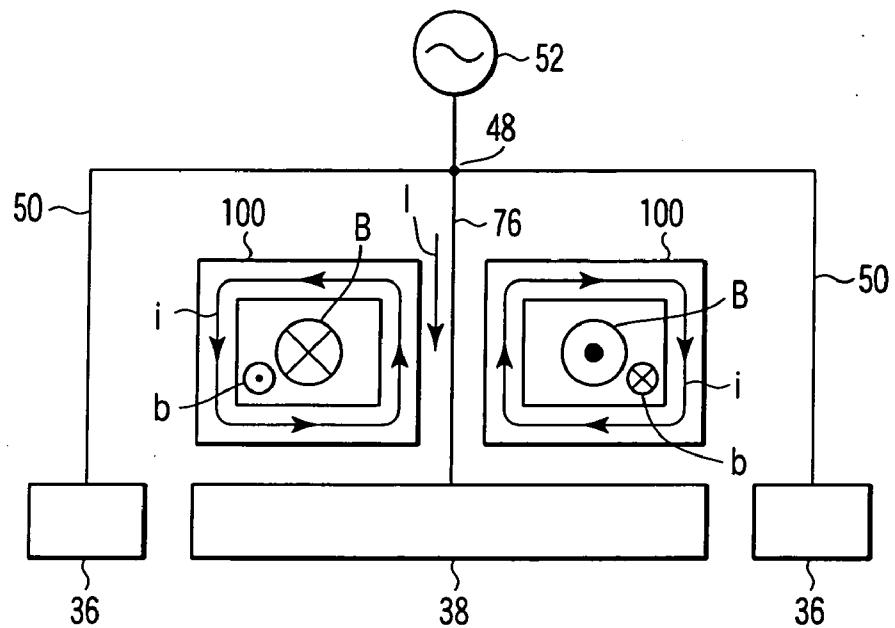



FIG. 13

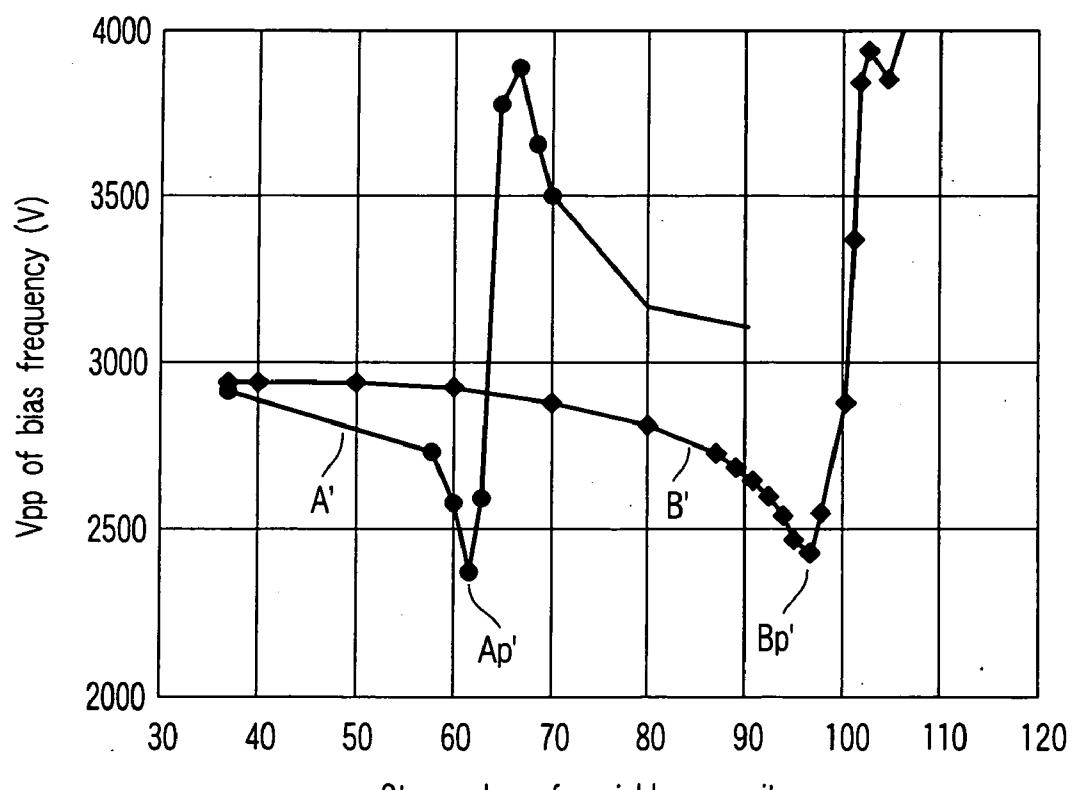



FIG. 14

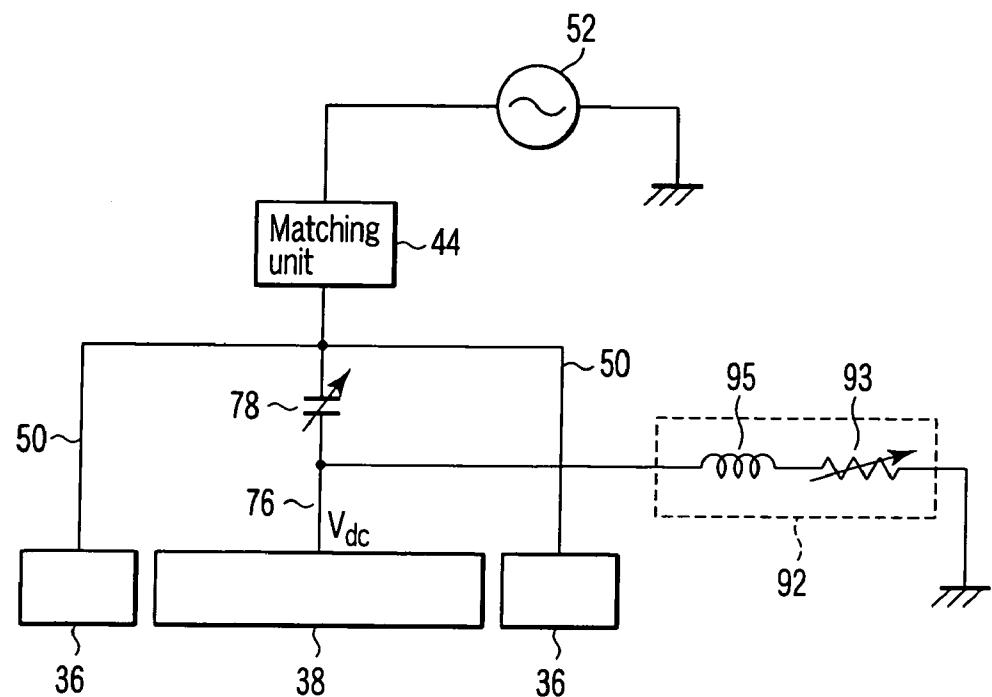



FIG. 15A

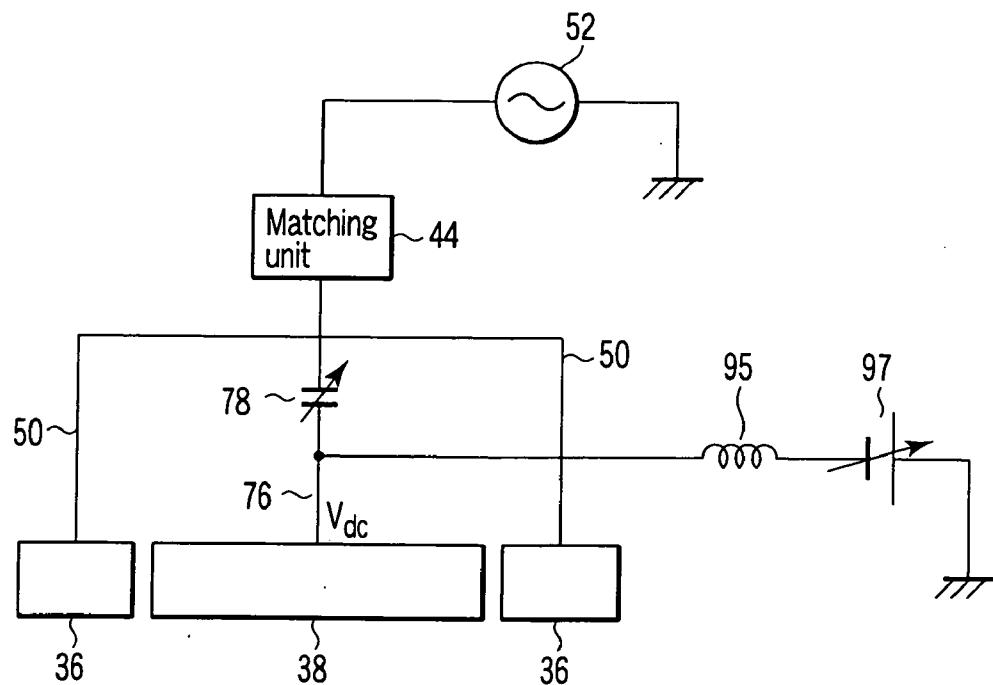



FIG. 15B

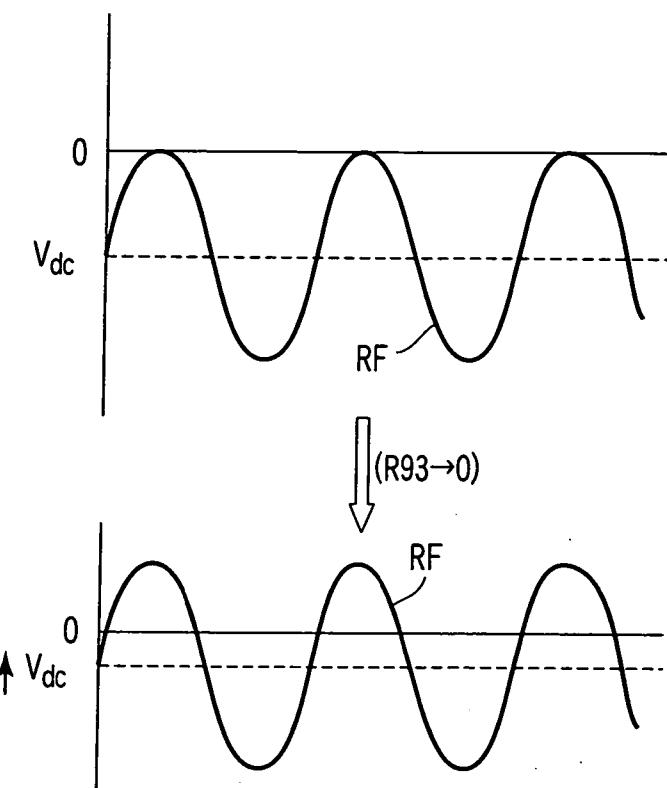



FIG. 16

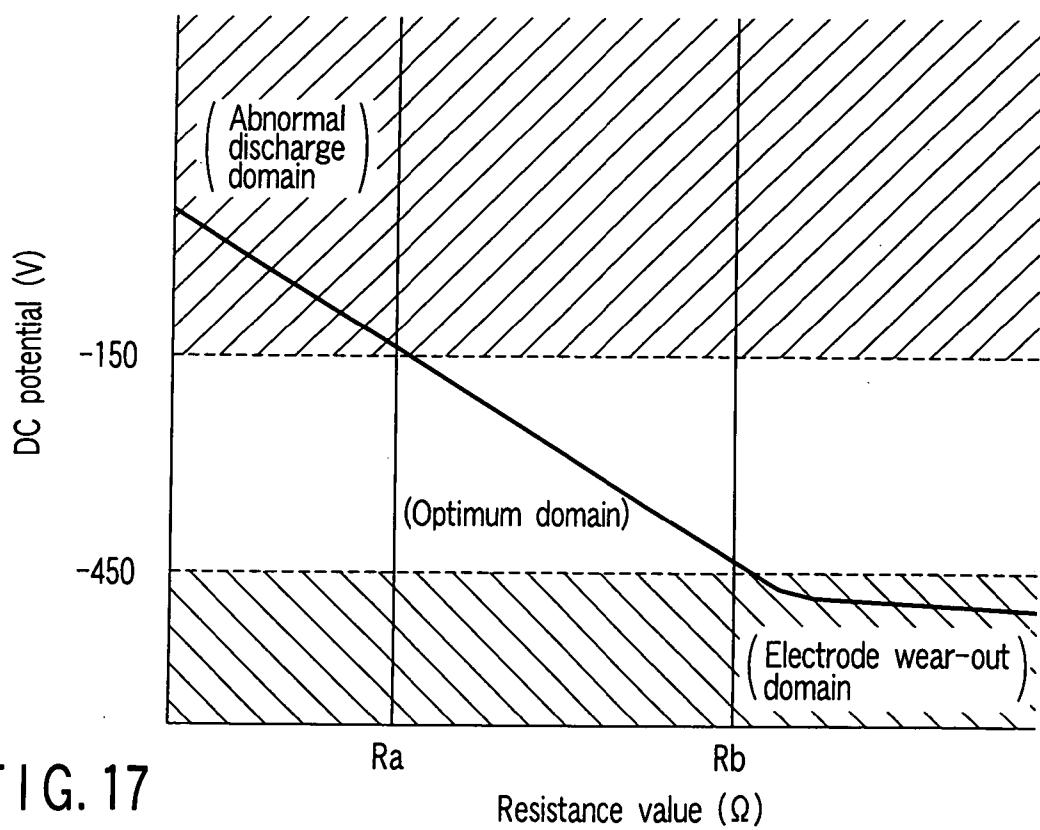



FIG. 17

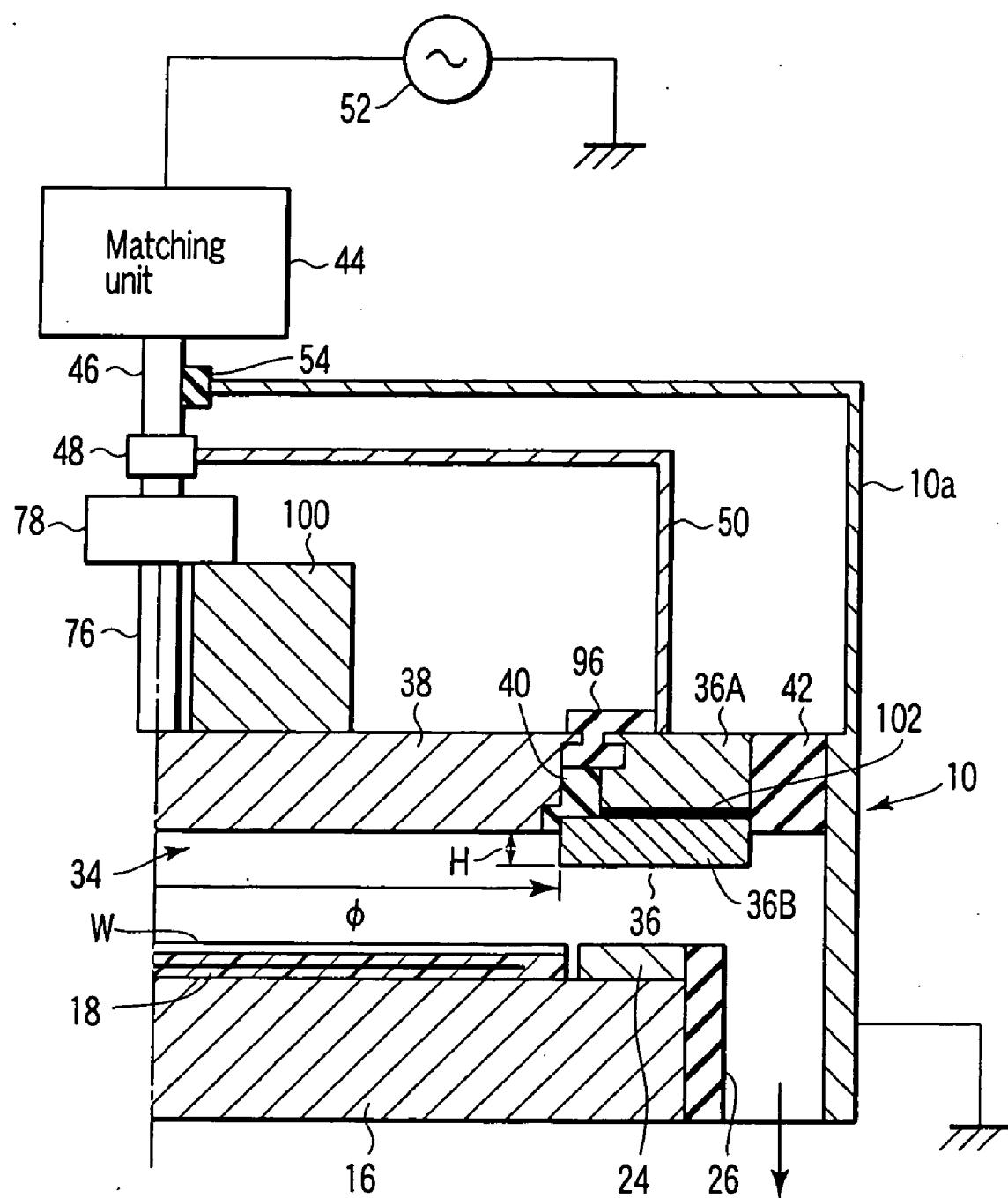



FIG. 18




FIG. 19A

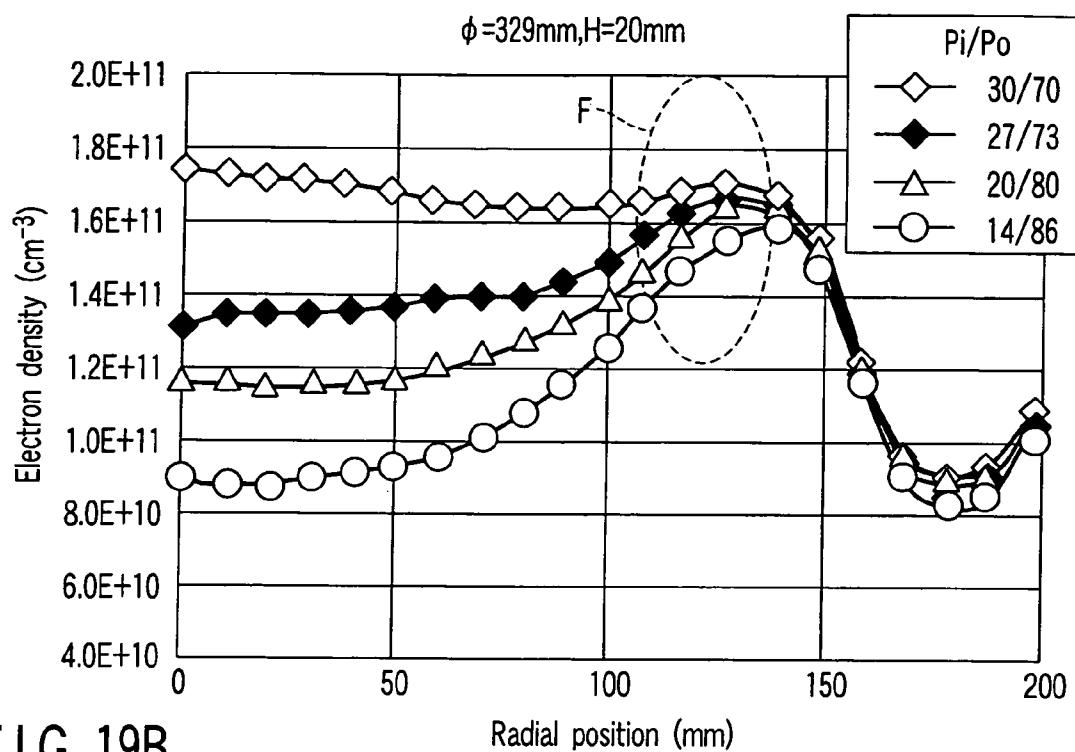



FIG. 19B

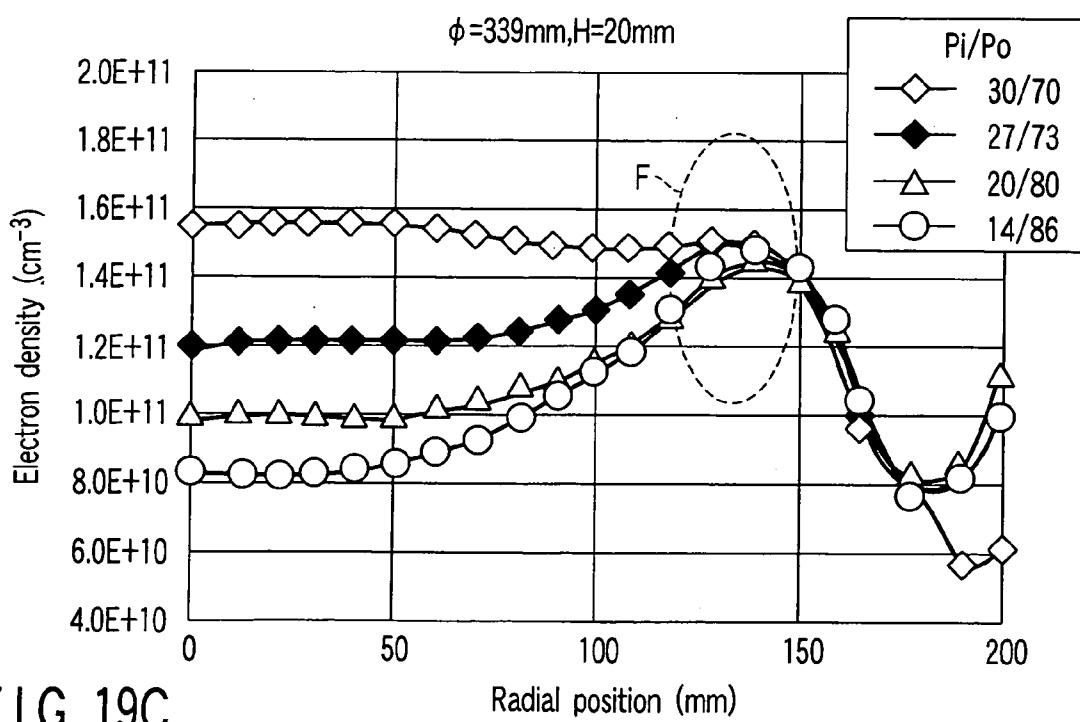



FIG. 19C

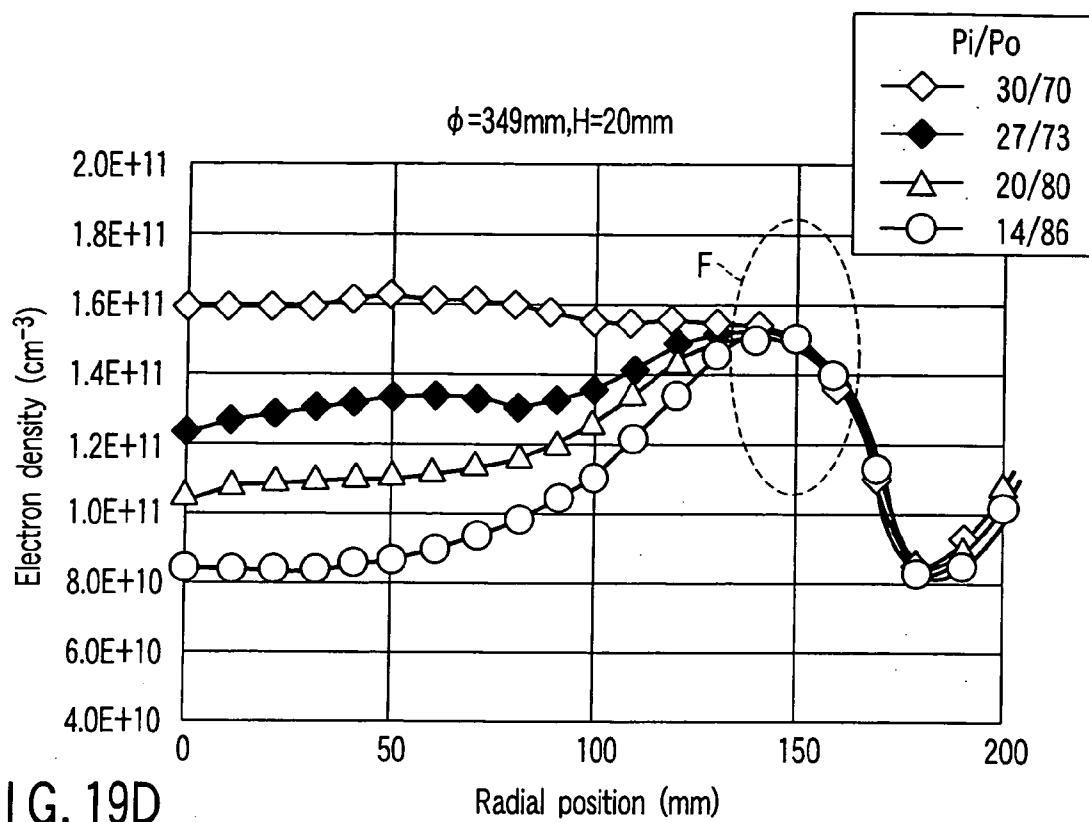



FIG. 19D

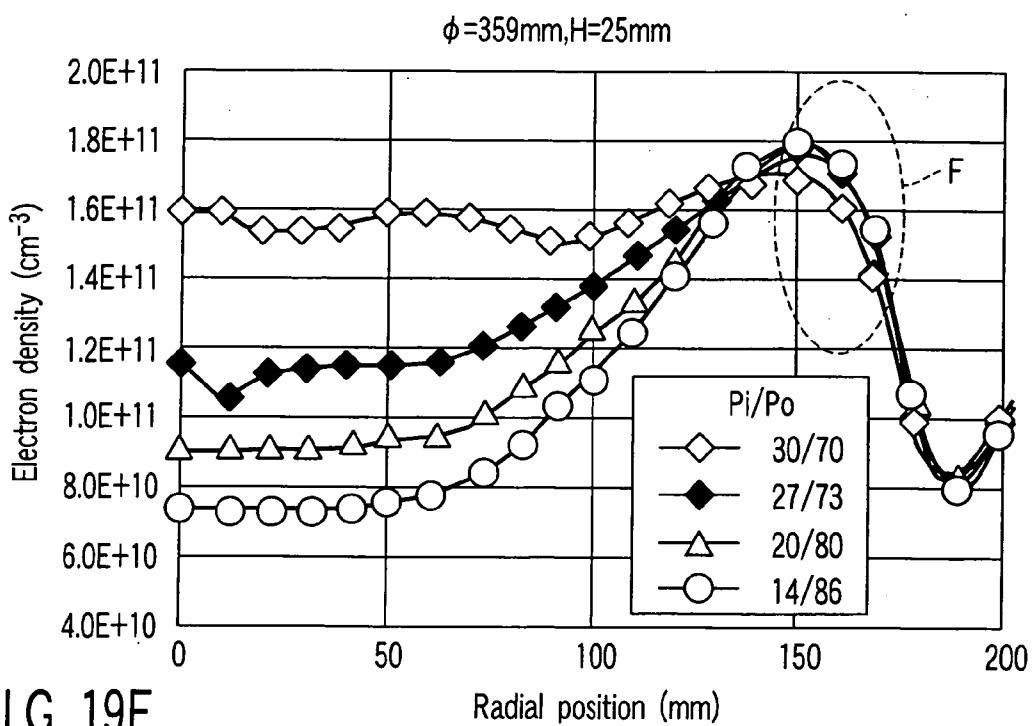



FIG. 19E

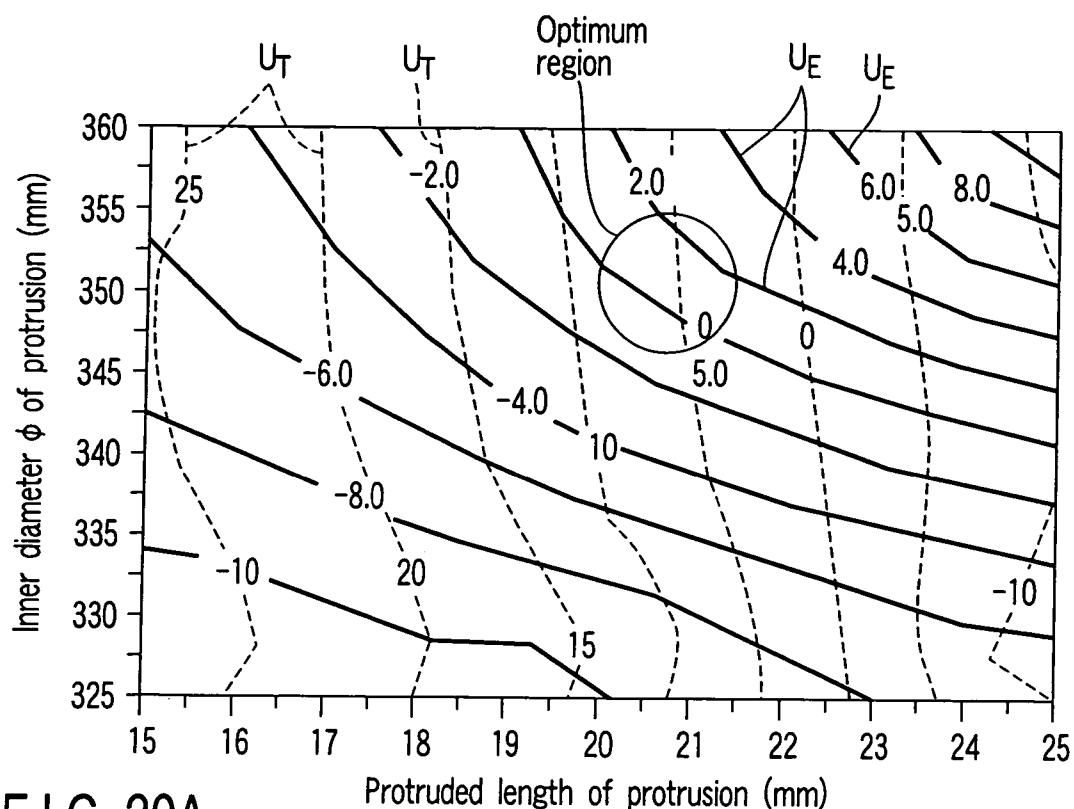



FIG. 20A

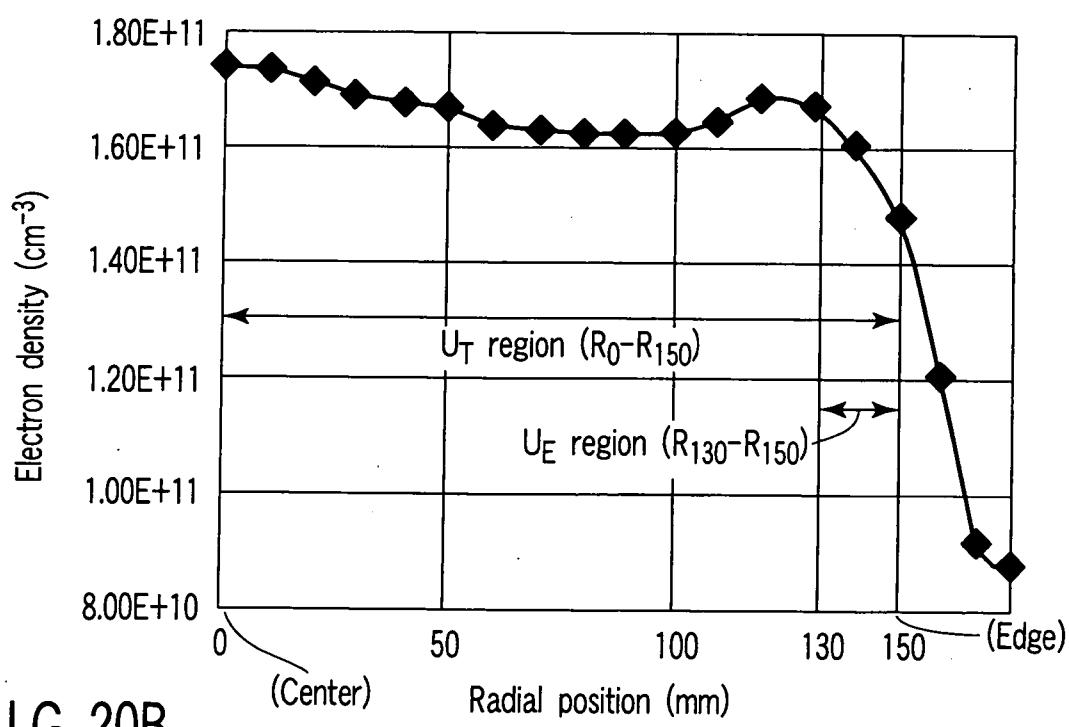



FIG. 20B

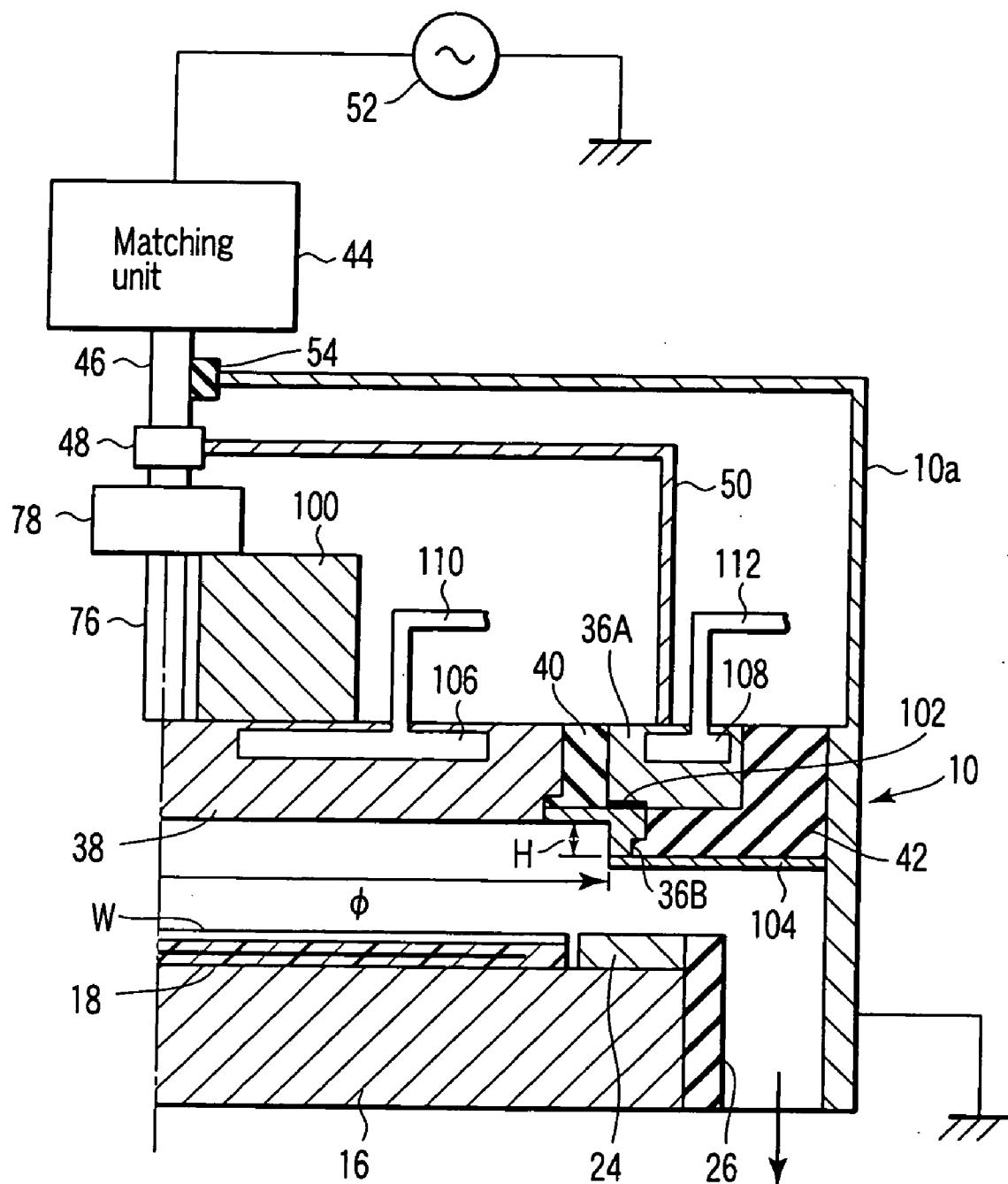



FIG. 21

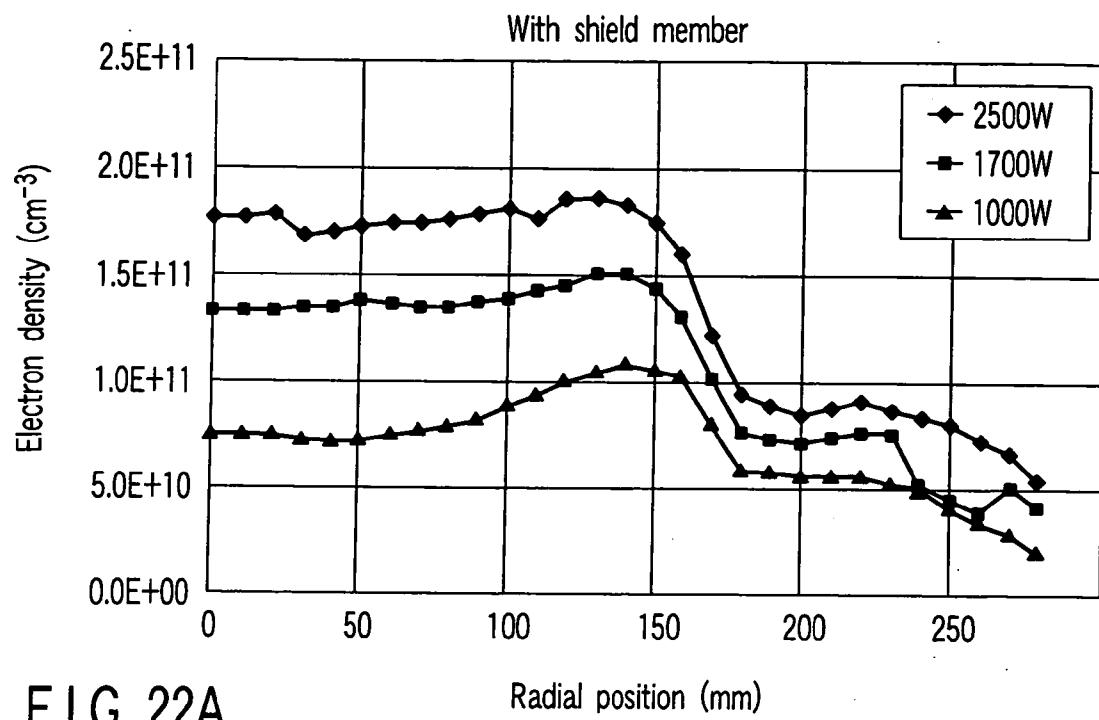



FIG. 22A

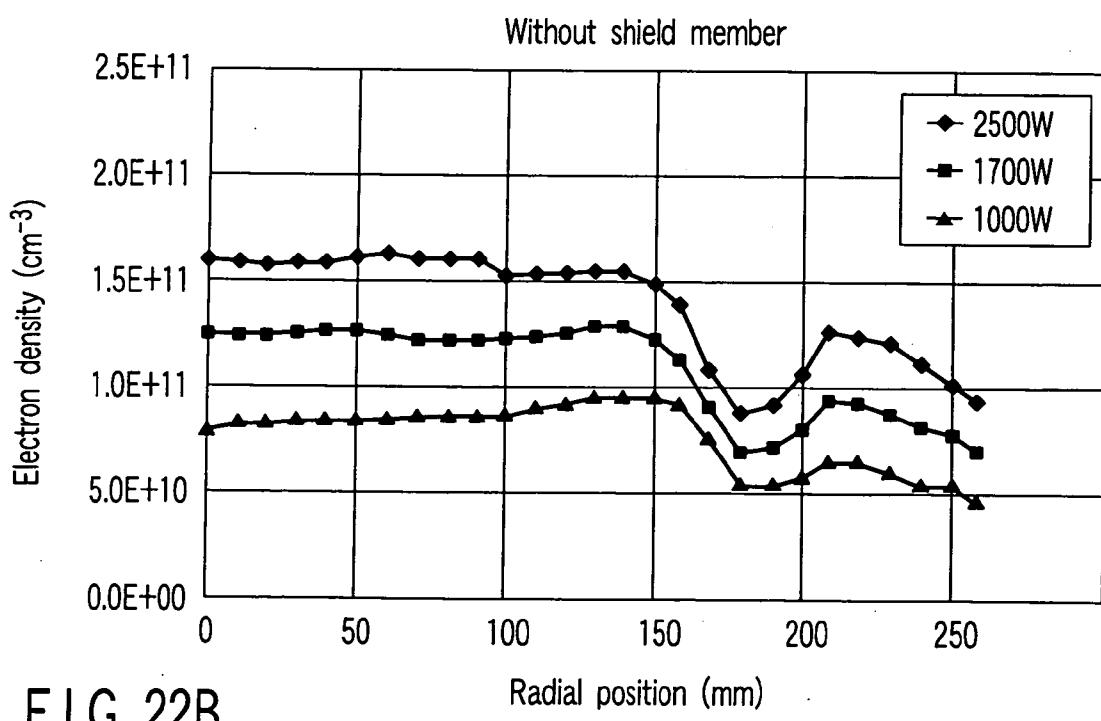



FIG. 22B

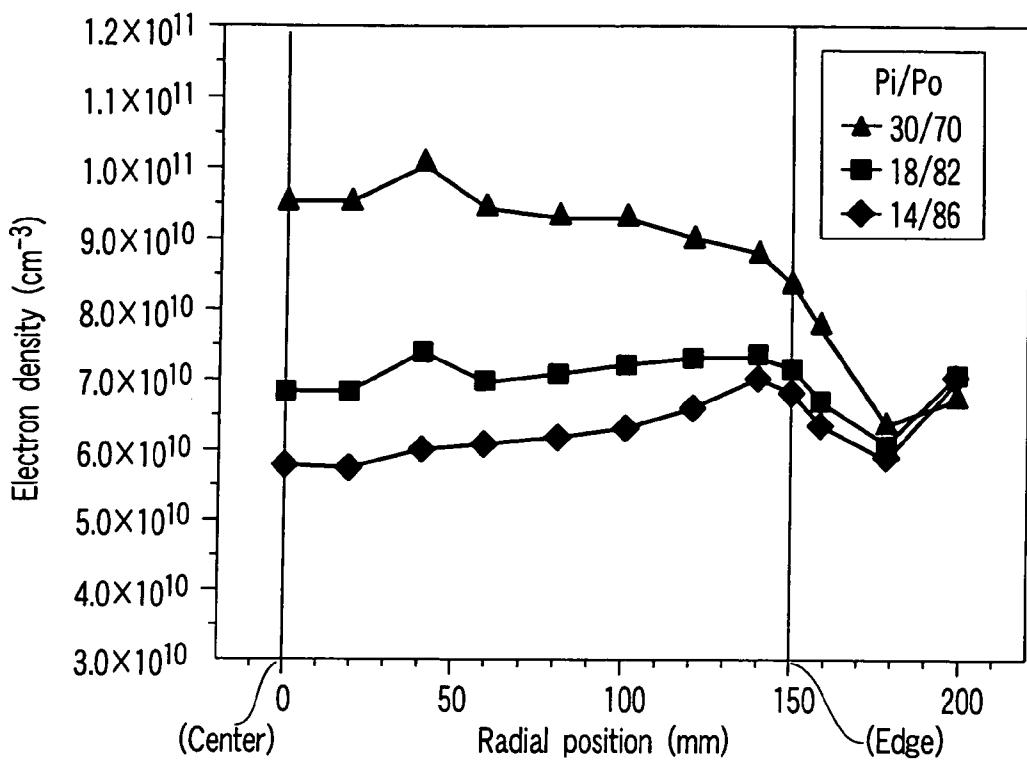



FIG. 23

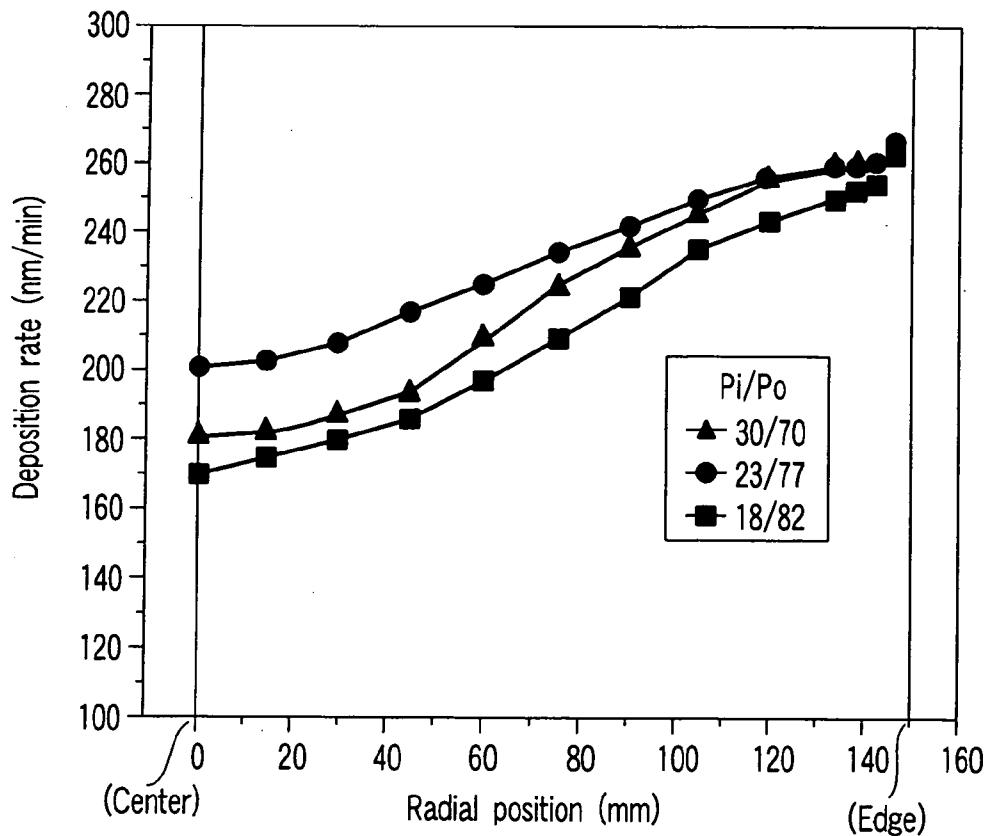



FIG. 24

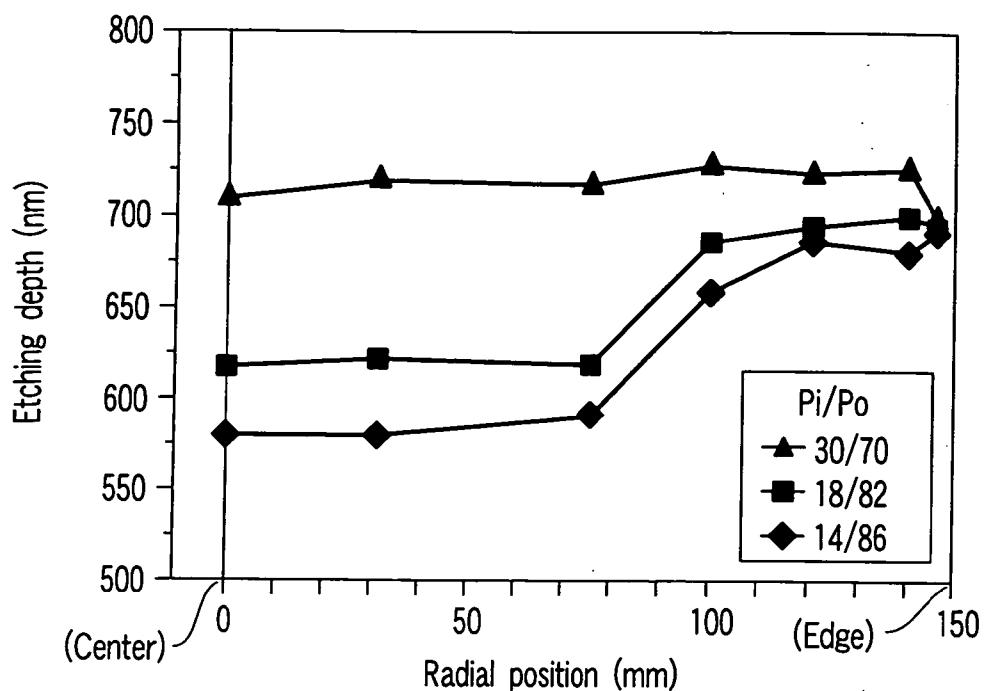



FIG. 25

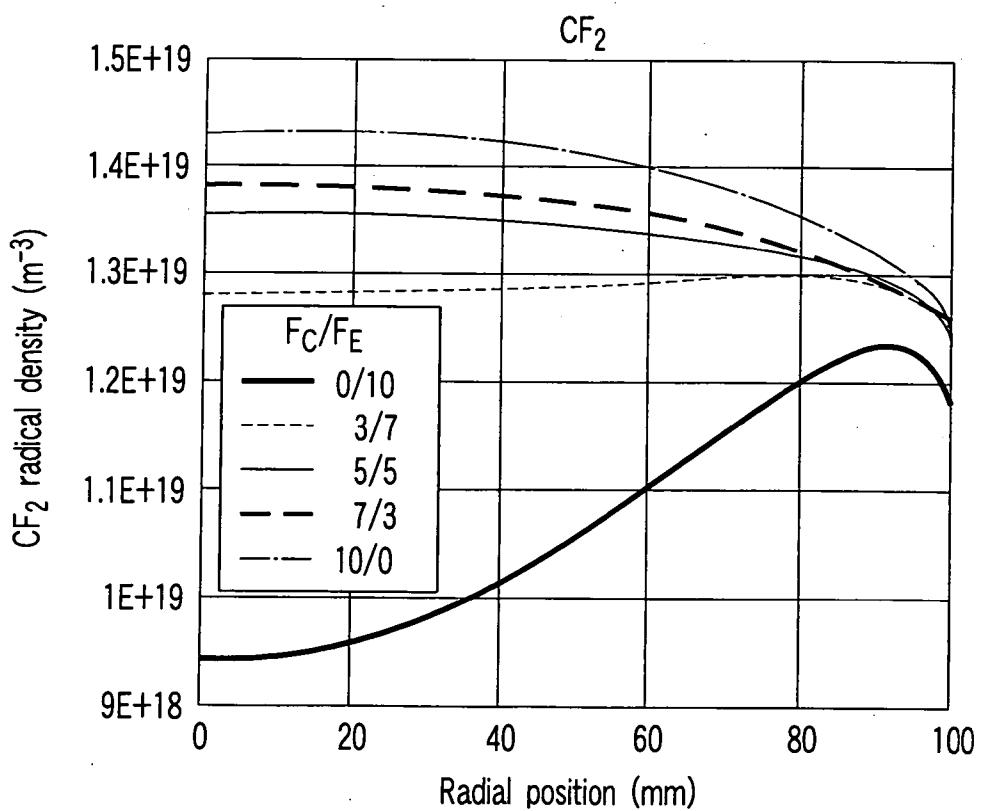



FIG. 26

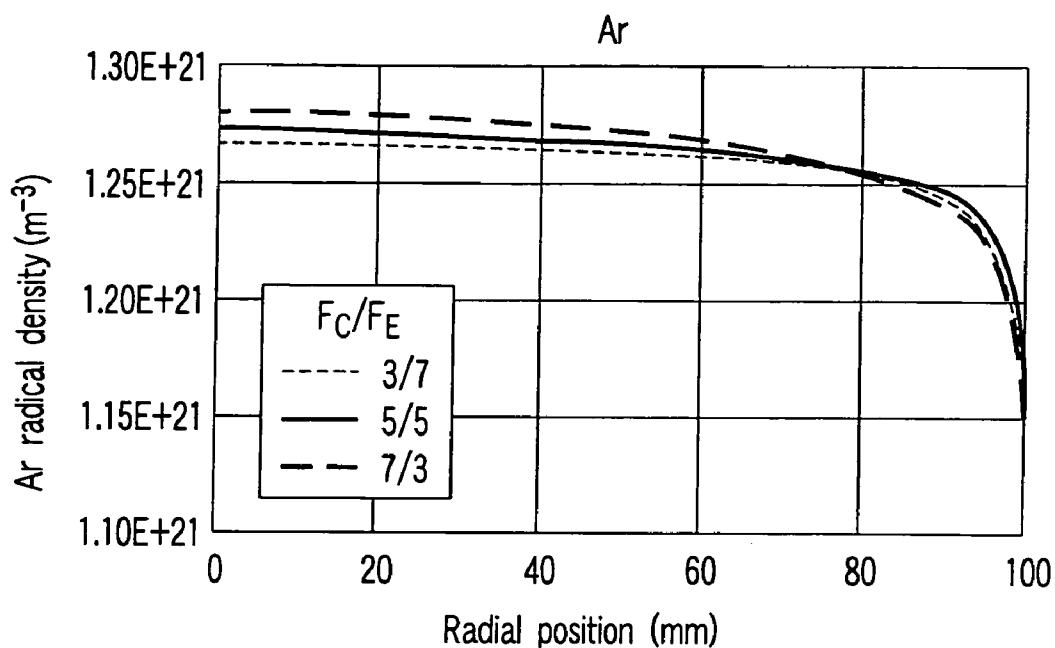



FIG. 27

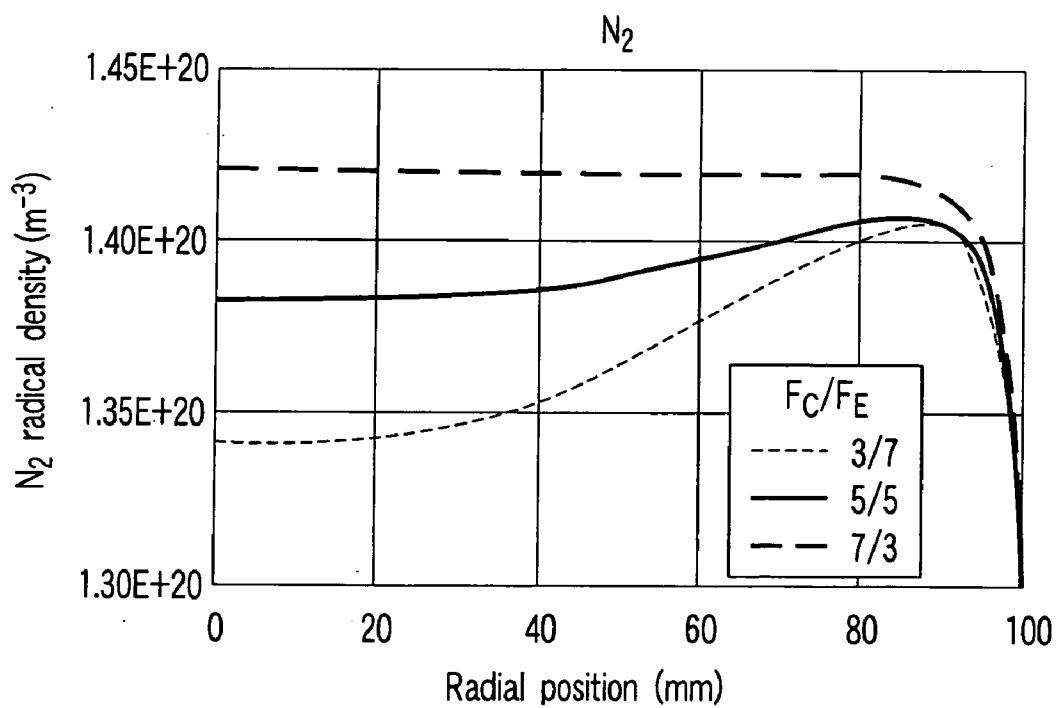



FIG. 28

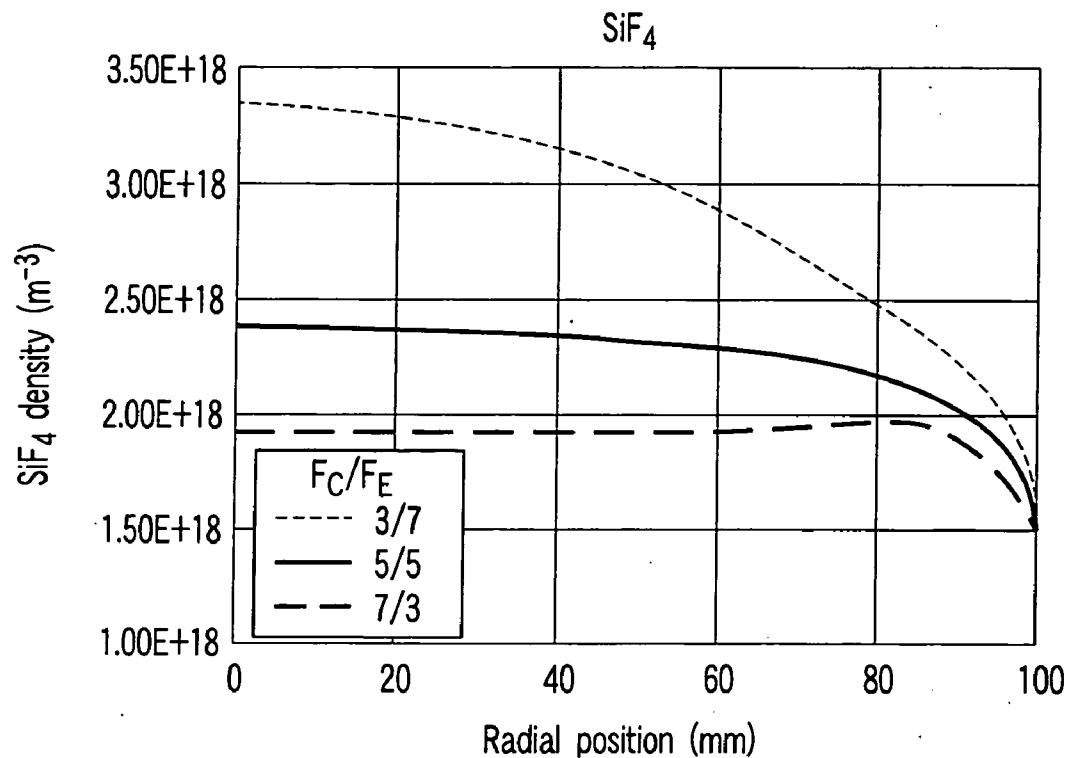



FIG. 29

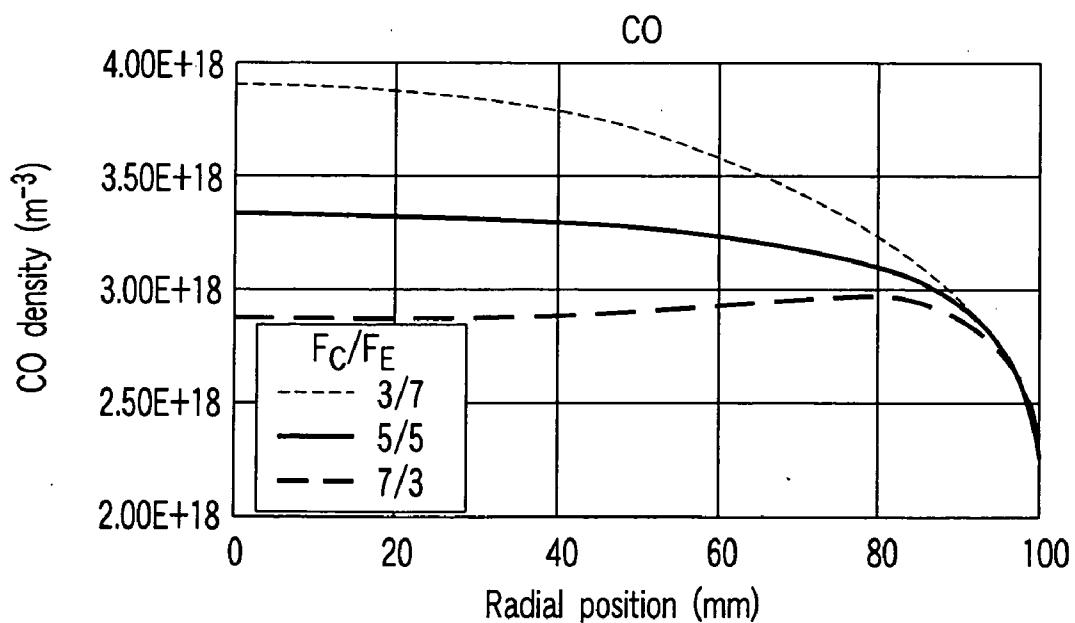



FIG. 30

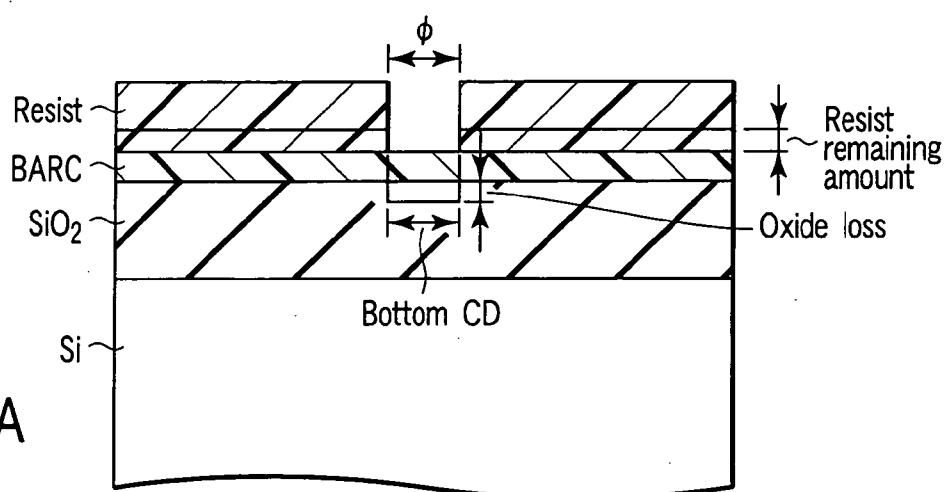
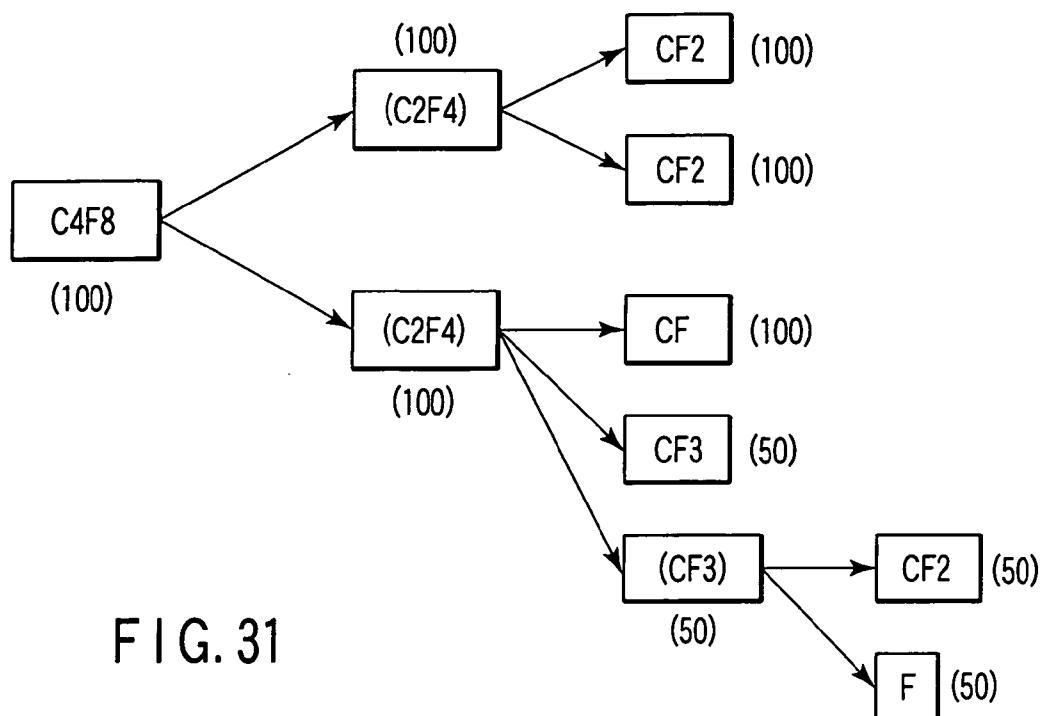




FIG. 32A

|        | Oxide loss (nm) | Bottom CD (nm) | Resist remaining amount (nm) |
|--------|-----------------|----------------|------------------------------|
| Center | 45.2            | 127.4          | 123.3                        |
| Edge   | 39              | 199            | 216                          |

FIG. 32B

$$F_C/F_E = 50/50$$

$F_C/F_E = 70/30$ 

|        | Oxide loss (nm) | Bottom CD (nm) | Resist remaining amount (nm) |
|--------|-----------------|----------------|------------------------------|
| Center | 39              | 125.3          | 216                          |
| Edge   | 39              | 125.3          | 216                          |

FIG. 32C

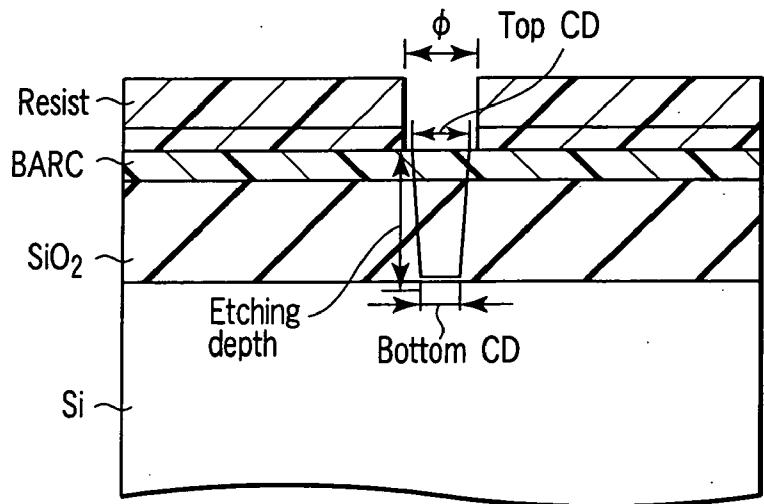



FIG. 33A

 $F_C/F_E = 50/50$ 

|        | Etching depth (nm) | Top CD ( $\mu\text{m}$ ) | Bottom CD ( $\mu\text{m}$ ) | Bottom/top ratio (%) |
|--------|--------------------|--------------------------|-----------------------------|----------------------|
| Center | 861                | 0.186                    | 0.107                       | 57.5                 |
| Edge   | 762                | 0.181                    | 0.110                       | 60.8                 |

FIG. 33B

$$F_C/F_E=10/90$$

|        | Etching depth (nm) | Top CD ( $\mu\text{m}$ ) | Bottom CD ( $\mu\text{m}$ ) | Bottom/top ratio (%) |
|--------|--------------------|--------------------------|-----------------------------|----------------------|
| Center | 770                | 0.173                    | 0.130                       | 75.1                 |
| Edge   | 758                | 0.161                    | 0.122                       | 75.8                 |

FIG. 33C

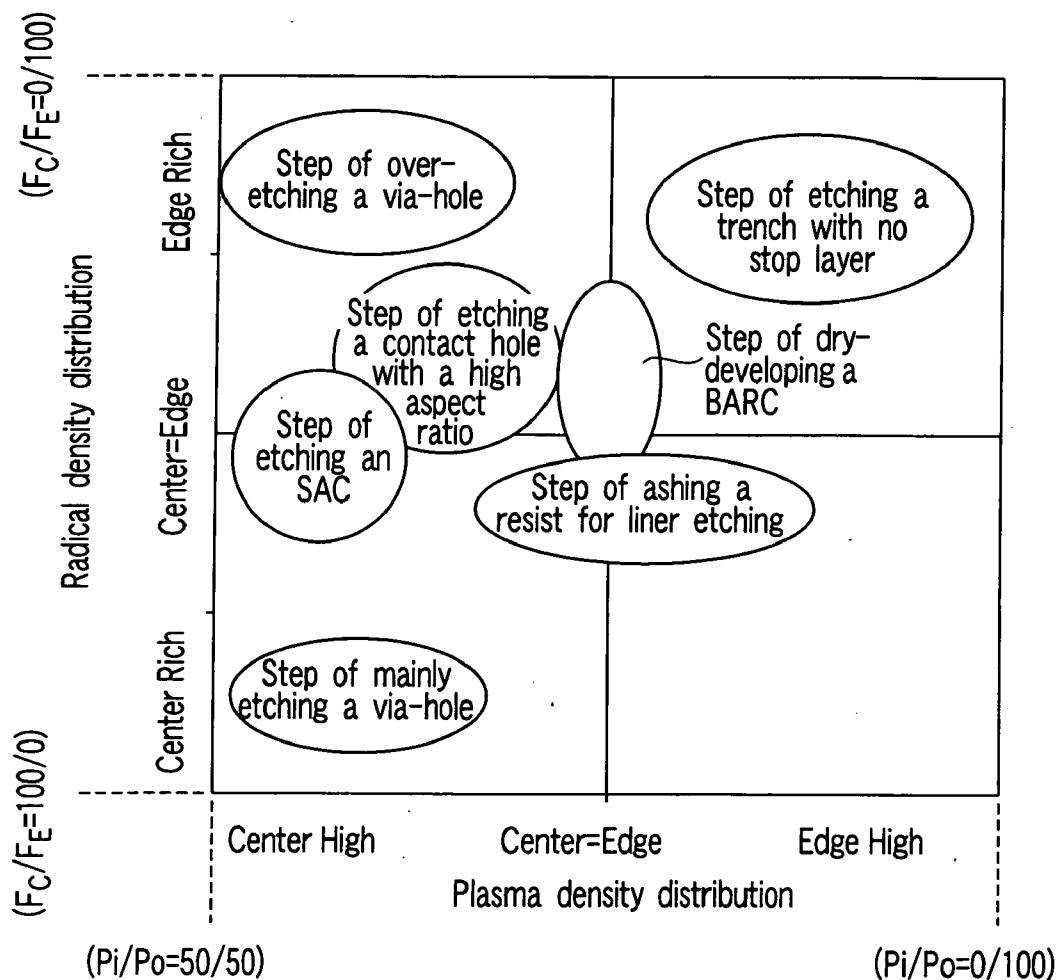



FIG. 34

## PLASMA PROCESSING METHOD AND APPARATUS

### CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This is a Continuation Application of PCT Application No. PCT/JP03/15029, filed Nov. 25, 2003, which was published under PCT Article 21(2) in Japanese.

[0002] This application is based upon and claims the benefit of priority from prior Japanese Patent Applications No. 2002-341949, filed Nov. 26, 2002; and No. 2003-358432, filed Oct. 17, 2003, the entire contents of both of which are incorporated herein by reference.

### BACKGROUND OF THE INVENTION

#### [0003] 1. Field of the Invention

[0004] The present invention relates to a technique for subjecting a target substrate to a plasma process, and specifically to a plasma processing technique for processing a substrate, using radicals and ions derived from plasma. Particularly, the present invention relates to a plasma processing technique utilized in a semiconductor process for manufacturing semiconductor devices. The term "semiconductor process" used herein includes various kinds of processes which are performed to manufacture a semiconductor device or a structure having wiring layers, electrodes, and the like to be connected to a semiconductor device, on a target substrate, such as a semiconductor wafer or a glass substrate used for an LCD (Liquid Crystal Display) or FPD (Flat Panel Display), by forming semiconductor layers, insulating layers, and conductive layers in predetermined patterns on the target substrate.

#### [0005] 2. Description of the Related Art

[0006] In manufacturing semiconductor devices and FPDs, plasma is often used for processes, such as etching, deposition, oxidation, and sputtering, so that process gases can react well at a relatively low temperature. Parallel-plate plasma processing apparatuses of the capacitive coupling type are in the mainstream of plasma processing apparatuses of the single substrate type.

[0007] In general, a parallel-plate plasma processing apparatus of the capacitive coupling type includes a process container or reaction chamber configured to reduce the pressure therein, and an upper electrode and a lower electrode disposed therein in parallel with each other. The lower electrode is grounded and configured to support a target substrate (semiconductor wafer, glass substrate, or the like) thereon. The upper electrode and/or lower electrode are supplied with RF voltage through a matching unit. At the same time, a process gas is delivered from a showerhead provided on the upper electrode side. Electrons are accelerated by an electric field formed between the upper electrode and lower electrode and collide with the process gas, thereby ionizing the gas and generating plasma. Neutral radicals and ions derived from the plasma are used to perform a predetermined micro-fabrication on the surface of the substrate. In the process described above, the two electrodes function to form a capacitor.

[0008] The majority of ions in the plasma are positive ions, and the number of positive ions is almost the same as

that of electrons. The density of the ions or electrons is far smaller than the density of neutral particles or radicals. In general, plasma etching is arranged to cause radicals and ions to act on the substrate surface at the same time. Radicals perform isotropic etching on the substrate surface by means of chemical reactions. Ions are accelerated by an electric field and vertically incident on the substrate surface, and perform vertical (anisotropic) etching on the substrate surface by means of physical actions.

[0009] Conventional plasma processing apparatuses are arranged to cause radicals and ions generated in plasma to act on the substrate surface with the same density distribution. In other words, where the radical density is higher at the substrate central portion than at the substrate peripheral portion, the ion density (i.e., electron density or plasma density) is also higher at the substrate central portion than at the substrate peripheral portion. Particularly, in parallel-plate plasma processing apparatuses described above, if the frequency of the RF applied to the upper electrode is set higher, when the RF is supplied from an RF power supply through a feed rod to the electrode backside, it is transmitted through the electrode surface by means of the skin effect and is concentrated at the central portion of the electrode bottom surface (plasma contact surface). As a consequence, the electric field intensity at the central portion of the electrode bottom surface becomes higher than the electric field intensity at the peripheral portion, so both the radical density and ion density (electron density) become higher at the electrode central portion than at the electrode peripheral portion. However, if radicals and ions are always limited or restricted to such a relationship that they have the same distribution in acting on the substrate surface, it is difficult to perform a predetermined plasma process on the substrate, and it is particularly difficult to improve the uniformity in process state or process result.

### BRIEF SUMMARY OF THE INVENTION

[0010] An object of the present invention is to provide a plasma processing apparatus and method, which can optimize a plasma process in which radicals and ions act on a target substrate at the same time.

[0011] According to a first aspect of the present invention, there is provided a plasma processing method comprising:

[0012] exposing a target substrate to plasma of a predetermined process gas; and

[0013] subjecting the substrate to a predetermined plasma process by the plasma,

[0014] wherein spatial distribution of density of the plasma and spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate to form a predetermined process state over an entire target surface of the substrate.

[0015] According to a second aspect of the present invention, there is provided a plasma processing apparatus arranged to turn a process gas into plasma in a plasma generation space within a process container configured to have a vacuum atmosphere therein, and subject a target substrate placed within the plasma generation space to a predetermined plasma process, the apparatus comprising:

[0016] a plasma density control section configured to control spatial distribution of density of the plasma relative to the substrate; and

[0017] a radical density control section configured to control spatial distribution of density of radicals in the plasma relative to the substrate independently of the plasma density spatial distribution.

[0018] According to the first and second aspects, the spatial distribution of plasma density (i.e., electron density or ion density) and the spatial distribution of radical density are controlled independently of each other relative to the target substrate to optimize the balance or synergy between radical base etching and ion base etching.

[0019] In order to achieve this, the facing portion opposite the target substrate may comprise first and second RF discharge regions configured to control the plasma density spatial distribution, and first and second process gas delivery regions configured to control the radical density spatial distribution, in layouts independently of each other. In this case, by adjusting the balance (ratio) of the RF electric field intensity or input power between the first and second RF discharge regions, the spatial distribution of plasma density (ion density) can be controlled. Further, by adjusting the balance (ratio) of the gas flow rate between the first and second process gas delivery regions, the spatial distribution of radical density can be controlled. If the first and second RF discharge regions respectively agree with or correspond to the first and second process gas delivery regions, change in the input power ratio affects the spatial distribution of radical density, while change in the gas flow-rate ratio affects the spatial distribution of plasma density (ion density). By contrast, where the division layout of the RF discharge regions and the division layout of the process gas delivery regions are independent of each other, such an interlinking relationship is cut off, so that the plasma density distribution and radical density distribution can be controlled independently of each other.

[0020] In one design according to this independent type layout, the facing portion may be divided into two regions as the first and second RF discharge regions on a peripheral side and a central side, respectively, in a radial direction relative to a center through which a vertical line extending from a center of the target substrate passes. Further, the second RF discharge region on the facing portion may be divided into two regions as the first and second process gas delivery regions on a peripheral side and a central side, respectively, in the radial direction. More preferably, the first RF discharge region is disposed radially outside the outer peripheral edge of the target substrate.

[0021] With this layout, the control over the plasma density spatial distribution performed by adjusting the ratio of electric field intensity or input power between the first and second RF discharge regions does not have a substantial influence on the control over the radical density spatial distribution performed by adjusting the ratio of process gas flow rate between the first and second process gas delivery regions. Specifically, the process gas delivered from the first and second process gas delivery regions is dissociated within an area corresponding to the second RF discharge region. Thus, where the balance of electric field intensity or input power between the first and second RF discharge regions is changed, the balance of radical generation amount or density between the first and second process gas delivery regions is not substantially affected. As a consequence, the plasma density spatial distribution and radical density spatial distribution can be controlled independently of each other.

[0022] In one design, an RF output from a single RF power supply may be divided at a predetermined ratio, and thereby discharged from the first RF discharge region and the second RF discharge region. Further, a process gas supplied from a single process gas supply source may be divided at a predetermined ratio, and thereby delivered from the first process gas delivery region and the second process gas delivery region. In this case, the process gas may be delivered from the first and second process gas delivery regions at substantially different flow rates per unit area. Where the process gas is a mixture gas of a plurality of gases, the plurality of gases may be delivered from the first process gas delivery region at a first gas mixture ratio, and the plurality of gases may be delivered from the second process gas delivery region at a second gas mixture ratio different from the first gas mixture ratio.

[0023] In one design, processing rates at respective positions on the target surface of the target substrate may be mainly controlled in accordance with the plasma density spatial distribution. Further, one or both of processing selectivity and processing shapes at respective positions on the target surface of the target substrate may be mainly controlled in accordance with the radical density spatial distribution.

[0024] In the plasma processing apparatus according to the second aspect, the plasma density control section may comprise an RF distributor configured to divide and transmit an RF with a constant frequency, output from an RF power supply, at a predetermined ratio to the first and second RF discharge regions. The radical density control section may comprise a process gas distributor configured to divide and supply the process gas, output from a process gas supply source, at a predetermined ratio to the first and second process gas delivery regions. In this case, the RF distributor preferably includes an impedance control section configured to variably control one or both of an impedance of a first feed circuit from the RF power supply to the first RF discharge region, and an impedance of a second feed circuit from the RF power supply to the second RF discharge region. The first and second RF discharge regions may respectively comprise first and second electrodes electrically insulated from each other. The first and second process gas delivery regions preferably include a number of process gas delivery holes formed on the second electrode.

[0025] According to the first and second aspects, it is possible to optimize a plasma process arranged to cause radicals and ions to act on a target substrate at the same time.

[0026] Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.

#### BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

[0027] The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.

[0028] **FIG. 1** is a sectional side view showing a plasma etching apparatus according to a first embodiment of the present invention;

[0029] **FIG. 2** is an enlarged partial side view showing a main part of the plasma etching apparatus shown in **FIG. 1**;

[0030] **FIG. 3** is a circuit diagram showing an equivalent circuit of a main part of plasma generating means according to the first embodiment;

[0031] **FIG. 4** is a graph showing distribution characteristics of electric field intensity (relative value), obtained by a function of adjusting the balance of electric field intensity according to the first embodiment;

[0032] **FIG. 5** is a graph showing ratio characteristics of electric field intensity, obtained by a function of adjusting the balance of electric field intensity according to the first embodiment;

[0033] **FIGS. 6A and 6B** are graphs showing spatial distribution characteristics of electron density according to the first embodiment;

[0034] **FIGS. 7A and 7B** are graphs showing spatial distribution characteristics of etching rate according to the first embodiment;

[0035] **FIG. 8** is a sectional side view showing a plasma etching apparatus according to a second embodiment of the present invention;

[0036] **FIGS. 9A and 9B** are graphs showing spatial distribution characteristics of etching rate according to the second embodiment;

[0037] **FIGS. 10A and 10B** are graphs showing spatial distribution characteristics of etching rate according to the second embodiment;

[0038] **FIG. 11** is a graph showing characteristics of variable capacitance vs. inner input power according to the second embodiment;

[0039] **FIG. 12** is a circuit diagram showing an equivalent circuit of a plasma generation RF feed circuit according to the second embodiment;

[0040] **FIG. 13** is a view showing an effect of a conductive member disposed around an upper feed rod according to the second embodiment;

[0041] **FIG. 14** is a graph showing characteristics of variable capacitance vs. bottom self-bias voltage according to the second embodiment;

[0042] **FIGS. 15A and 15B** are circuit diagrams each showing the circuit structure of a low-pass filter according to the second embodiment;

[0043] **FIG. 16** is a diagram showing an effect of resistance provided in a low-pass filter according to the second embodiment;

[0044] **FIG. 17** is a graph showing the optimum range of resistance provided in a low-pass filter according to the second embodiment;

[0045] **FIG. 18** is a sectional side view showing a main part of the plasma etching apparatus according to the second embodiment;

[0046] **FIGS. 19A to 19E** are graphs showing spatial distribution characteristics of electron density, using as parameters the inner diameter and protruded length of an upper electrode protrusion according to the second embodiment;

[0047] **FIGS. 20A and 20B** are graphs showing characteristic lines of electron density uniformity, using as two-dimensional parameters the inner diameter and protruded length of an upper electrode protrusion according to the second embodiment;

[0048] **FIG. 21** is a sectional side view showing a plasma etching apparatus according to a third embodiment of the present invention;

[0049] **FIGS. 22A and 22B** are graphs showing spatial distribution characteristics of electron density to demonstrate an effect of a shield member according to the third embodiment;

[0050] **FIG. 23** is a graph showing spatial distribution characteristics of electron density, using inner/outer input power ratio as a parameter, according to a fourth embodiment of the present invention;

[0051] **FIG. 24** is a graph showing spatial distribution characteristics of polymer film deposition rate, using inner/outer input power ratio as a parameter, according to the fourth embodiment;

[0052] **FIG. 25** is a graph showing spatial distribution characteristics of etching depth, using inner/outer input power ratio as a parameter, according to the fourth embodiment;

[0053] **FIG. 26** is a graph showing spatial distribution characteristics of  $\text{CF}_2$  radical density, using center/periphery gas flow-rate ratio as a parameter, according to a fifth embodiment of the present invention;

[0054] **FIG. 27** is a graph showing spatial distribution characteristics of Ar radical density, using center/periphery gas flow-rate ratio as a parameter, according to the fifth embodiment;

[0055] **FIG. 28** is a graph showing spatial distribution characteristics of  $\text{N}_2$  radical density, using center/periphery gas flow-rate ratio as a parameter, according to the fifth embodiment;

[0056] **FIG. 29** is a graph showing spatial distribution characteristics of  $\text{SiF}_4$  reaction products, using center/periphery gas flow-rate ratio as a parameter, according to the fifth embodiment;

[0057] **FIG. 30** is a graph showing spatial distribution characteristics of CO reaction products, using center/periphery gas flow-rate ratio as a parameter, according to the fifth embodiment;

[0058] **FIG. 31** is a diagram showing a mechanism of radical generation (dissociation) obtained by a simulation according to the fifth embodiment;

[0059] **FIGS. 32A to 32C** are views showing an examination model for BARC etching and sets of measurement data according to a sixth embodiment of the present invention;

[0060] FIGS. 33A to 33C are views showing an examination model for  $\text{SiO}_2$  etching and sets of measurement data according to a seventh embodiment of the present invention; and

[0061] FIG. 34 is a diagram showing an application example of independent control over two systems for plasma density distribution and radical density distribution.

#### DETAILED DESCRIPTION OF THE INVENTION

[0062] Embodiments of the present invention will be described hereinafter with reference to the accompanying drawings. In the following description, the constituent elements having substantially the same function and arrangement are denoted by the same reference numerals, and a repetitive description will be made only when necessary.

##### First Embodiment

[0063] FIG. 1 is a sectional side view showing a plasma etching apparatus according to a first embodiment of the present invention. This plasma etching apparatus is structured as a parallel-plate plasma etching apparatus of the capacitive coupling type. The apparatus includes a cylindrical chamber (process container) 10, which is made of, e.g., aluminum with an alumite-processed (anodized) surface. The chamber 10 is protectively grounded.

[0064] A columnar susceptor pedestal 14 is disposed on the bottom of the chamber 10 through an insulating plate 12 made of, e.g., a ceramic. A susceptor 16 made of, e.g., aluminum is disposed on the susceptor pedestal 14. The susceptor 16 is used as a lower electrode, on which a target substrate, such as a semiconductor wafer W, is placed.

[0065] The susceptor 16 is provided with an electrostatic chuck 18 on the top, for holding the semiconductor wafer W by an electrostatic attraction force. The electrostatic chuck 18 comprises an electrode 20 made of a conductive film, and a pair of insulating layers or insulating sheets sandwiching the electrode 20. The electrode 20 is electrically connected to a direct-current (DC) power supply 22. With a DC voltage applied from the DC power supply 22, the semiconductor wafer W is attracted and held on the electrostatic chuck 18 by the Coulomb force. A focus ring made of, e.g., silicon is disposed on the top of the susceptor 16 to surround the electrostatic chuck 18 to improve etching uniformity. A cylindrical inner wall member 26 made of, e.g., quartz is attached to the side of the susceptor 16 and susceptor pedestal 14.

[0066] The susceptor pedestal 14 is provided with a cooling medium space 28 formed therein and annularly extending therethrough. A cooling medium set at a predetermined temperature, such as cooling water, is circulated within the cooling medium space 28 from a chiller unit (not shown) through lines 30a and 30b. The temperature of the cooling medium is set to control the process temperature of the semiconductor wafer W placed on the susceptor 16. Further, a heat transmission gas, such as He gas, is supplied from a heat transmission gas supply unit (not shown), through a gas supply line 32, into the interstice between the top surface of the electrostatic chuck 18 and the bottom surface of the semiconductor wafer W.

[0067] An upper electrode 34 is disposed above the susceptor 16 in parallel with the susceptor. The space between

the electrodes 16 and 34 is used as a plasma generation space. The upper electrode 34 defines a surface facing the semiconductor wafer W placed on the susceptor (lower electrode) 16, and thus this facing surface is in contact with plasma generation space. The upper electrode 34 comprises an outer upper electrode 36 and an inner upper electrode 38. The outer upper electrode 36 has a ring shape or doughnut shape and is disposed to face the susceptor 16 at a predetermined distance. The inner upper electrode 38 has a circular plate shape and is disposed radially inside the outer upper electrode 36 while being insulated therefrom. In terms of plasma generation, the outer upper electrode 36 mainly works for it, and the inner upper electrode 38 assists it.

[0068] FIG. 2 is an enlarged partial side view showing a main part of the plasma etching apparatus shown in FIG. 1. As shown in FIG. 2, the outer upper electrode 36 is separated from the inner upper electrode 38 by an annular gap (slit) of, e.g., 0.25 to 2.0 mm, in which a dielectric body 40 made of, e.g., quartz is disposed. A ceramic body may be disposed in this gap. The two electrodes 36 and 38 with the dielectric body 40 sandwiched therebetween form a capacitor. The capacitance  $C_{40}$  of this capacitor is set or adjusted to be a predetermined value, on the basis of the size of the gap and the dielectric constant of the dielectric body 40. An insulating shield member 42 made of, e.g., alumina ( $\text{Al}_2\text{O}_3$ ) and having a ring shape is airtightly interposed between the outer upper electrode 36 and the sidewall of the chamber 10.

[0069] The outer upper electrode 36 is preferably made of a conductor or semiconductor, such as silicon, having a low resistivity to generate a small Joule heat. The outer upper electrode 36 is electrically connected to a first RF power supply 52 through a matching unit 44, an upper feed rod 46, a connector 48, and a feed cylinder 50. The first RF power supply 52 outputs an RF voltage with a frequency of 13.5 MHz or more, such as 60 MHz. The matching unit 44 is arranged to match the load impedance with the internal (or output) impedance of the RF power supply 52. When plasma is generated within the chamber 10, the matching unit 44 performs control for the load impedance and the output impedance of the RF power supply 52 to apparently agree with each other. The output terminal of the matching unit 44 is connected to the top of the upper feed rod 46.

[0070] The feed cylinder 50 has a cylindrical or conical shape, or a shape close to it, and formed of a conductive plate, such as an aluminum plate or copper plate. The bottom end of the feed cylinder 50 is connected to the outer upper electrode 36 continuously in an annular direction. The top of the feed cylinder 50 is electrically connected to the bottom of the upper feed rod 46 through the connector 48. Outside the feed cylinder 50, the sidewall of the chamber 10 extends upward above the height level of the upper electrode 34 and forms a cylindrical grounded conductive body 10a. The top of the cylindrical grounded conductive body 10a is electrically insulated from the upper feed rod 46 by a tube-like insulating member 54. According to this design, the load circuit extending from the connector 48 comprises a coaxial path formed of the feed cylinder 50 and outer upper electrode 36 and the cylindrical grounded conductive body 10a, wherein the former members (36 and 50) function as a waveguide.

[0071] Returning to FIG. 1, the inner upper electrode 38 includes an electrode plate 56 having a number of gas

through-holes **56a**, and an electrode support **58** detachably supports the electrode plate **56**. The electrode plate **56** is made of a semiconductor material, such as Si or SiC, while the electrode support **58** is made of a conductor material, such as aluminum with an alumite-processed surface. The electrode support **58** has two gas supply cells, i.e., a central gas supply cell **62** and a peripheral gas supply cell **64**, formed therein and separated by an annular partition member **60**, such as an O-ring. The central gas supply cell **62** is connected to some part of a number of gas delivery holes **56a** formed at the bottom surface, so as to constitute a central showerhead. The peripheral gas supply cell **64** is connected to other part of a number of gas delivery holes **56a** formed at the bottom surface, so as to constitute a peripheral showerhead.

[0072] The gas supply cells **62** and **64** are supplied with a process gas from a common process gas supply source **66** at a predetermined flow-rate ratio. More specifically, a gas supply line **68** is extended from the process gas supply source **66** and divided into two lines **68a** and **68b** connected to the gas supply cells **62** and **64**. The branch lines **68a** and **68b** are provided with flow control valves **70a** and **70b** disposed thereon, respectively. The conductance values of the flow passages from the process gas supply source **66** to the gas supply cells **62** and **64** are equal to each other. Accordingly, the flow-rate ratio of the process gas supplied into the two gas supply cells **62** and **64** is arbitrarily adjusted by adjusting the flow control valves **70a** and **70b**. The gas supply line **68** is provided with a mass-flow controller (MFC) **72** and a switching valve **74** disposed thereon.

[0073] The flow-rate ratio of the process gas supplied into the central gas supply cell **62** and peripheral gas supply cell **64** is thus adjusted. As a consequence, the ratio (FC/FE) between the gas flow rate FC from the central showerhead and the gas flow rate FE from the peripheral showerhead is arbitrarily adjusted. As described above, the central showerhead is defined by gas through-holes **56a** at the electrode central portion corresponding to the central gas supply cell **62**, while the peripheral showerhead is defined by gas through-holes **56a** at the electrode peripheral portion corresponding to the peripheral gas supply cell **64**. Further, flow rates per unit area may be set different, for the process gas delivered from the central showerhead and peripheral showerhead. Furthermore, gas types or gas mixture ratios are independently or respectively selected, for the process gas delivered from the central showerhead and peripheral showerhead.

[0074] The electrode support **58** of the inner upper electrode **38** is electrically connected to the first RF power supply **52** through the matching unit **44**, upper feed rod **46**, connector **48**, and lower feed cylinder **76**. The lower feed cylinder **76** is provided with a variable capacitor **78** disposed thereon, for variable adjusting capacitance.

[0075] Although not shown, the outer upper electrode **36** and inner upper electrode **38** may be provided with a suitable cooling medium space or cooling jacket (not shown) formed therein. A cooling medium is supplied into this cooling medium space or cooling jacket from an external chiller unit to control the electrode temperature.

[0076] An exhaust port **80** is formed at the bottom of the chamber **10**, and is connected to an exhaust unit **84** through an exhaust line **82**. The exhaust unit **84** includes a vacuum

pump, such as a turbo molecular pump, to reduce the pressure of the plasma process space within the chamber **10** to a predetermined vacuum level. A transfer port for a semiconductor wafer **W** is formed in the sidewall of the chamber **10**, and is opened/closed by a gate valve **86** attached thereon.

[0077] In the plasma etching apparatus according to this embodiment, the susceptor **16** used as a lower electrode is electrically connected to a second RF power supply **90** through a matching unit **88**. The second RF power supply **90** outputs an RF voltage with a frequency of from 2 to 27 MHz, such as 2 MHz. The matching unit **88** is arranged to match the load impedance with the internal (or output) impedance of the RF power supply **90**. When plasma is generated within the chamber **10**, the matching unit **88** performs control for the load impedance and the internal impedance of the RF power supply **90** to apparently agree with each other.

[0078] The inner upper electrode **38** is electrically connected to a low-pass filter (LPF) **92**, which prevents the RF (60 MHz) from the first RF power supply **52** from passing through, while it allows the RF (2 MHz) from the second RF power supply **90** to pass through to ground. The low-pass filter (LPF) **92** is preferably formed of an LR filter or LC filter. Alternatively, only a single conductive line may be used for this, because it can give a sufficiently large reactance to the RF (60 MHz) from the first RF power supply **52**. On the other hand, the susceptor **16** is electrically connected to a high pass filter (HPF) **94**, which allows the RF (60 MHz) from the first RF power supply **52** to pass through to ground.

[0079] When etching is performed in the plasma etching apparatus, the gate valve **86** is first opened, and a semiconductor wafer **W** to be processed is transferred into the chamber **10** and placed on the susceptor **16**. Then, an etching gas (typically a mixture gas) is supplied from the process gas supply source **66** into the gas supply cells **62** and **64** at predetermined flow rates and flow-rate ratio. At the same time, the exhaust unit **84** is used to control the pressure inside the chamber **10**, i.e., the etching pressure, to be a predetermined value (for example, within a range of from several mTorr to 1 Torr). Further, a plasma generation RF (60 MHz) is applied from the first RF power supply **52** to the upper electrode **34** (**36** and **38**) at a predetermined power, while an RF (2 MHz) is applied from the second RF power supply **90** to the susceptor **16** at a predetermined power. Furthermore, a DC voltage is applied from the DC power supply **22** to the electrode **20** of the electrostatic chuck **18** to fix the semiconductor wafer **W** on the susceptor **16**. The etching gas delivered from the gas through-holes **56a** of the inner upper electrode **38** is turned into plasma by glow discharge between the upper electrode **34** (**36** and **38**) and susceptor **16**. Radicals and ions generated in this plasma are used to etch the target surface of the semiconductor wafer **W**.

[0080] In this plasma etching apparatus, the upper electrode **34** is supplied with an RF within a range covering higher frequencies (form 5 to 10 MHz or more at which ions cannot follow). As a consequence, the plasma density is increased with a preferable dissociation state, so that high density plasma is formed even under a low pressure condition.

[0081] In the upper electrode **34**, the inner upper electrode **38** is also used as a showerhead directly across the semi-

conductor wafer W, such that the flow-rate ratio of the gas delivered from the central showerhead (62 and 56a) and peripheral showerhead (64 and 56a) can be arbitrarily adjusted. As a consequence, the spatial distribution of gas molecular or radical density can be controlled in the radial direction, so as to arbitrarily control the spatial distribution of an etching characteristic on the basis of radicals.

[0082] Further, as described later, the upper electrode 34 is operated as an RF electrode for plasma generation, such that the outer upper electrode 36 mainly works for it, and the inner upper electrode 38 assists it. The ratio of electric field intensity applied to electrons below the RF electrodes 36 and 38 can be adjusted by these electrodes. As a consequence, the spatial distribution of plasma density can be controlled in the radial direction, so as to arbitrarily and finely control the spatial distribution of a reactive ion etching characteristic.

[0083] It should be noted here that the control over the spatial distribution of plasma density has substantially no influence on the control over the spatial distribution of radical density. The control over the spatial distribution of plasma density is performed by varying the ratio of electric field intensity or input power between the outer upper electrode 36 and inner upper electrode 38. On the other hand, the control over the spatial distribution of radical density is performed by varying the ratio of process gas flow rate, gas density, or gas mixture between the central showerhead (62 and 56a) and peripheral showerhead (64 and 56a).

[0084] The process gas delivered from the central showerhead (62 and 56a) and peripheral showerhead (64 and 56a) is dissociated in an area directly below the inner upper electrode 38. Accordingly, even if the balance of electric field intensity between the inner upper electrode 38 and outer upper electrode 36 is changed, it does not have a large influence on the balance of radical generation amount or density between the central showerhead (62 and 56a) and peripheral showerhead (64 and 56a), because both showerheads belong to the inner upper electrode 38 (within the same area). Thus, the spatial distribution of plasma density and the spatial distribution of radical density can be controlled substantially independently of each other.

[0085] Further, the plasma etching apparatus is arranged such that most or the majority of plasma is generated directly below the outer upper electrode 36, and then diffuses to the position directly below the inner upper electrode 38. According to this arrangement, the showerhead or inner upper electrode 38 is less attacked by ions from the plasma. This effectively prevents the gas delivery ports 56a of the electrode plate 56 from being progressively sputtered, thereby remarkably prolonging the service life of the electrode plate 56, which is a replacement part. On the other hand, the outer upper electrode 36 has no gas delivery ports at which electric field concentration occurs. As a consequence, the outer upper electrode 36 is less attacked by ions, and thus there arises no such a problem in that the outer upper electrode 36 shortens the service life in place of the inner upper electrode 38.

[0086] As described above, FIG. 2 shows a main part of the plasma etching apparatus (particularly, a main part of plasma generating means). In FIG. 2, the structure of the showerheads (56a, 62, and 64) of the inner upper electrode

38 is not shown. FIG. 3 is a circuit diagram showing an equivalent circuit of a main part of plasma generating means according to the first embodiment. In this equivalent circuit, the resistance of respective portions is not shown.

[0087] In this embodiment, as described above, the load circuit extending from the connector 48 comprises a coaxial path formed of the outer upper electrode 36 and feed cylinder 50 and the cylindrical grounded conductive body 10a, wherein the former members (36 and 50) function as a waveguide  $J_o$ . Where the radius (outer radius) of the feed cylinder 50 is  $a_o$ , and the radius of the cylindrical grounded conductive body 10a is b, the characteristic impedance or inductance  $L_o$  of this coaxial path is approximated by the following formula (1).

$$L_o = K \times \ln(b/a_o) \quad (1)$$

[0088] In this formula, K is a constant determined by the mobility and dielectric constant of a conductive path.

[0089] On the other hand, the load circuit extending from the connector 48 also comprises a coaxial path formed of the lower feed rod 76 and the cylindrical grounded conductive body 10a, wherein the former member (76) functions as a waveguide  $J_i$ . Although the inner upper electrode 38 is present on the extension of the lower feed rod 76, the impedance of lower feed rod 76 is dominant, because the difference in diameters between them is very large. Where the radius (outer radius) of the lower feed rod 76 is  $a_i$ , the characteristic impedance or inductance  $L_i$  of this coaxial path is approximated by the following formula (2).

$$L_i = K \times \ln(b/a_i) \quad (2)$$

[0090] As could be understood from the above formulas (1) and (2), the inner waveguide  $J_i$  for transmitting RF to the inner upper electrode 38 provides an inductance  $L_i$  in the same manner as a conventional ordinary RF system. On the other hand, the outer waveguide  $J_o$  for transmitting RF to the outer upper electrode 36 provides a very small inductance  $L_o$  because of a very large radius. As a consequence, in the load circuit extending from the connector 48 toward the side opposite to the matching unit 44, RF is transmitted more easily through the outer waveguide  $J_o$  having a lower impedance (a smaller voltage drop). The outer upper electrode 36 is thereby supplied with a larger RF power  $P_o$ , so the electric field intensity  $E_o$  obtained at the bottom surface (plasma contact surface) of the outer upper electrode 36 becomes higher. On the other hand, RF is transmitted less easily through the inner waveguide  $J_i$  having a higher impedance (a larger voltage drop). The inner upper electrode 38 is thus supplied with an RF power  $P_i$  smaller than the RF power  $P_o$  supplied to the inner upper electrode 38, so the electric field intensity  $E_i$  obtained at the bottom surface (plasma contact surface) of the inner upper electrode 38 becomes lower than the electric field intensity  $E_o$  on the outer upper electrode 36 side.

[0091] As described above, according to this upper electrode 34, electrons are accelerated by a stronger electric field  $E_o$  directly below the outer upper electrode 36, while electrons are accelerated by a weaker electric field  $E_i$  directly below the inner upper electrode 38. In this case, most or the majority of plasma P is generated directly below the outer upper electrode 36, while a subsidiary part of the plasma P is generated directly below the inner upper electrode 38. Then, the high density plasma generated directly below the

outer upper electrode 36 diffuses radially inward and outward, so the plasma density becomes more uniform in the radial direction within the plasma process space between the upper electrode 34 and susceptor 16.

[0092] Incidentally, in the coaxial path formed of the outer upper electrode 36 and feed cylinder 50 and the cylindrical grounded conductive body 10a, the maximum transmission power  $P_{max}$  depends on the radius  $a_0$  of the feed cylinder 50 and the radius  $b$  of the cylindrical grounded conductive body 10a, and is given by the following formula (3).

$$P_{max}/E_0^2 \max = a_0^2 [In(b/a_0)]^2/2Z_0 \quad (3)$$

[0093] In the above formula,  $Z_0$  is the input impedance of this coaxial path viewing from the matching unit 44, and  $E_0\max$  is the maximum electric field intensity of the RF transmission system.

[0094] In the formula (3), the maximum transmission power  $P_{max}$  takes on the maximum value when  $(b/a_0) \approx 1.65$ . In other words, when the ratio  $(b/a_0)$  of the radius of the cylindrical grounded conductive body 10a relative to the radius of the feed cylinder 50 is about 1.65, the power transmission efficiency of the outer waveguide  $J_0$  is best. Accordingly, in order to improve the power transmission efficiency of the outer waveguide  $J_0$ , the radius of the feed cylinder 50 and/or the radius of the cylindrical grounded conductive body 10a are selected so that the ratio  $(b/a_0)$  is preferably set to be at least within a range of from 1.2 to 2.0, and more preferably within a range of from 1.5 to 1.7.

[0095] According to this embodiment, the lower feed rod 76 is provided with the variable capacitor 78 disposed thereon as means for adjusting the ratio or balance between the outer electric field intensity  $E_0$  directly below the outer upper electrode 36 (or the input power  $P_0$  into the outer upper electrode 36 side) and the inner electric field intensity  $E_i$  directly below the inner upper electrode 38 (or the input power  $P_i$  into the inner upper electrode 38 side), in order to arbitrarily and finely control the spatial distribution of plasma density. The capacitance  $C_{78}$  of the variable capacitor 78 is adjusted to increase or decrease the impedance or reactance of the inner waveguide  $J_i$ , thereby changing the relative ratio between the voltage drop through the outer waveguide  $J_0$  and the voltage drop through the inner waveguide  $J_i$ . As a consequence, it is possible to adjust the ratio between the outer electric field intensity  $E_0$  (outer input power  $P_0$ ) and the inner electric field intensity  $E_i$  (inner input power  $P_i$ ).

[0096] In general, the ion sheath impedance that causes an electric potential drop of plasma is capacitive. In the equivalent circuit shown in FIG. 3, it is assumed (constructed) that the sheath impedance capacitance directly below the outer upper electrode 36 is  $C_{po}$ , and the sheath impedance capacitance directly below the inner upper electrode 38 is  $C_{pi}$ . Further, the capacitance  $C_{40}$  of the capacitor formed between the outer upper electrode 36 and inner upper electrode 38 cooperates with the capacitance  $C_{78}$  of the variable capacitor 78 in changing the balance between the outer electric field intensity  $E_0$  (outer input power  $P_0$ ) and inner electric field intensity  $E_i$  (inner input power  $P_i$ ). The capacitance  $C_{40}$  can be set or adjusted to optimize the variable capacitor's 78 function of adjusting the balance of electric field intensity (input power).

[0097] FIGS. 4 and 5 show test examples (simulation data) in relation to the variable capacitor's 78 function of

adjusting the balance of electric field intensity according to this embodiment. FIG. 4 shows distribution characteristics of electric field intensity (relative value) in the radial direction of the electrode, using the capacitance  $C_{78}$  of the variable capacitor 78 as a parameter. FIG. 5 shows the relative ratio between the outer electric field intensity  $E_0$  and inner electric field intensity  $E_i$ , using the capacitance  $C_{78}$  of the variable capacitor 78 as a parameter.

[0098] In this simulation, the diameter of the semiconductor wafer W was set at 200 mm, the radius of the inner upper electrode 38 (with a circular plate shape) at 100 mm, and the inner radius and outer radius of the outer upper electrode 36 (with a ring shape) at 101 mm and 141 mm, respectively. In this case, the area of the semiconductor wafer W was 314 cm<sup>2</sup>, the area of the inner upper electrode 38 was 314 cm<sup>2</sup> the same as that of the wafer W, and the area of the outer upper electrode 36 was 304 cm<sup>2</sup> slightly smaller than that of the wafer W. Typically, on the face opposite the wafer W, the planar area of the outer upper electrode 36 is preferably set to be about 1/4 times to about 1 times the planar area of the inner upper electrode 38.

[0099] As shown in FIG. 4, the outer electric field intensity  $E_0$  directly below the outer upper electrode 36 is higher than the inner electric field intensity  $E_i$  directly below the inner upper electrode 38, and a large step of electric field intensity is thereby formed near the boundary between the electrodes 36 and 38. Particularly, the outer electric field intensity  $E_0$  directly below the outer upper electrode 36 is apt to take on the maximum value near the boundary abutting the inner upper electrode 38, and gradually decrease radially outward therefrom. In this example, as shown in FIG. 5, where the capacitance  $C_{78}$  of the variable capacitor 78 is changed within a range of from 180 to 350 pF, the ratio  $E_i/E_0$  between the electric field intensities  $E_i$  and  $E_0$  can be continuously controlled within a range of from about 10 to 40%. Where  $C_{78}$  falls within a range of from 125 to 180 pF, the load circuit produces resonance and thereby becomes uncontrollable. In principle, within a stable domain, where the capacitance  $C_{78}$  of the variable capacitor 78 is increased, the reactance of the inner waveguide  $J_i$  decreases. As a consequence, the inner electric field intensity  $E_i$  directly below the inner upper electrode 38 is relatively increased, so that the ratio  $E_i/E_0$  between the outer electric field intensity  $E_0$  and inner electric field intensity  $E_i$  is set to be higher.

[0100] According to this embodiment, the reactance of the outer waveguide  $J_0$  provided by the feed cylinder 50 can be very small, so the impedance reactance of the load circuit, viewing from the output terminal of the matching unit 44, takes on a capacitive negative value. This means that there is no resonance point at which reactance causes polar inversion from an inductive positive value to a negative value, on the waveguide extending from the output terminal of the matching unit 44 to the capacitive ion sheath. Since no resonance point is formed, no resonance electric current is generated, thereby reducing the RF energy loss and ensuring stable control of the plasma density distribution.

[0101] FIGS. 6A (bias in the ON-state), 6B (bias in the OFF-state), 7A (in the X direction), and 7B (in the Y direction) show examples (experimental data) concerning electron density distribution characteristics and etching rate distribution characteristics, obtained by the plasma etching apparatus according to this embodiment. In this experiment,

as in the electric field intensity distribution characteristics shown in **FIGS. 4 and 5**, the capacitance  $C_{78}$  of the variable capacitor **78** was used as a parameter. The electron density was measured at positions in the radial direction, using a plasma absorption probe (PAP). Further, a silicon oxide film disposed on a semiconductor wafer was etched, and the etching rate was measured at wafer positions in the radial direction. Also in this experiment, the radius of the inner upper electrode **38** was set at 100 mm, and the inner radius and outer radius of the outer upper electrode **36** (with a ring shape) at 101 mm and 141 mm, respectively. Principal etching conditions were as follows:

- [0102] Wafer diameter=200 mm;
- [0103] Pressure inside the chamber=15 mTorr;
- [0104] Temperature (upper electrode/chamber sidewall/lower electrode)=60/50/20° C.;
- [0105] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=15/25 Torr;
- [0106] Distance between the upper and lower electrodes=50 mm;
- [0107] Process gas ( $C_5F_8/Ar/O_2$ ) flow rate=20/380/20 sccm; and
- [0108] RF power (60 MHz/2 MHz)≈2200 W/1500 W ( $C_{78}=500$  pF, 1000 pF), 1800 W ( $C_{78}=120$  pF).

[0109] Referring to **FIGS. 6A and 6B**, the capacitance  $C_{78}$  of the variable capacitor **78** was set at 120 pF so that the ratio  $E_i/E_o$  between the outer electric field intensity  $E_o$  and inner electric field intensity  $E_i$  was set to be higher. In this case, the distribution characteristic of electron density or plasma density was formed such that the density took on the maximum value near the electrode center, and monotonously decreased radially outward therefrom. It is thought that, in this case, the plasma diffusion rate overcame the difference between the plasma generation rate directly below the outer upper electrode **36** or the main plasma generation section, and the plasma generation rate directly below the inner upper electrode **38** or sub plasma generation section. As a consequence, the plasma gathered to the central portion from all around, and the plasma density was thereby higher at the central portion than at the peripheral portion.

[0110] On the other hand, the capacitance  $C_{78}$  of the variable capacitor **78** was set at 1000 pF so that the ratio  $E_i/E_o$  between the outer electric field intensity  $E_o$  and inner electric field intensity  $E_i$  was set to be lower. In this case, the distribution characteristic of electron density was formed such that the density took on the maximum value on the outer side (near a position 140 mm distant from the center) of the wafer rather than the inner side in the radial direction, and became almost uniform on the inner side (0 to 100 mm) of the wafer. It is thought that, this was so because the plasma generation rate directly below the inner upper electrode **38** increased, and plasma diffusion radially outward was thereby enhanced. In any case, the spatial distribution characteristic of electron density or plasma density can be flexibly and finely controlled by finely adjusting the capacitance  $C_{78}$  of the variable capacitor **78** within a suitable range.

[0111] Further, the electron density at respective positions was higher to some extent in the case (**FIG. 6A**) with an RF

bias (2 MHz) applied to the lower electrode **16**, as compared to the case (**FIG. 6B**) without any RF bias applied to the lower electrode **16**. However, their distribution patterns were almost the same.

[0112] Referring to the experimental data shown in **FIGS. 7A and 7B**, different patterns of the spatial distribution characteristic of etching rate were formed by adjusting the capacitance  $C_{78}$  of the variable capacitor **78**, in accordance with the spatial distribution characteristics of electron density shown in **FIGS. 6A and 6B**. Accordingly, the spatial distribution characteristic of etching rate on the wafer surface can be flexibly and finely controlled by finely adjusting the capacitance  $C_{78}$  of the variable capacitor **78** within a suitable range.

[0113] Further, in the plasma etching apparatus according to this embodiment, the flow-rate ratio of the gas delivered from the central portion and peripheral portion can be adjusted by the showerhead mechanism of the inner upper electrode **36**, as described above. This function allows the spatial distribution characteristic of etching rate to be controlled on the basis of radicals.

#### Second Embodiment

[0114] **FIG. 8** is a sectional side view showing a plasma etching apparatus according to a second embodiment of the present invention. In **FIG. 8**, the constituent elements having substantially the same arrangement and function as those of the apparatus according to the first embodiment (**FIG. 1**) are denoted by the same reference numerals.

[0115] One of the features of the second embodiment resides in that the feed cylinder **50** or transmission path for transmitting the RF from the RF power supply **52** to the outer upper electrode **36** is made of a cast metal. This cast metal is preferably a metal having a high conductivity and workability, such as aluminum. As one of the advantages, cast metals can realize a low cost, and thus reduce the cost for the member to  $1/4$  or less of that provided by a plate material. As another advantage, cast metals can be easily integrated, and thus can reduce the number of RF connection surfaces in the member, thereby reducing the RF loss.

[0116] Further, even where the feed cylinder **50** is made of a cast metal, the RF transmission efficiency is not lowered. Specifically, referring to the experimental data shown in **FIGS. 9A** (cast metal), **9B** (plate), **10A** (cast metal), and **10B** (plate), there was no substantial difference in etching rate between the case where the feed cylinder **50** was made of a plate material, and the case where the feed cylinder **50** was made of a cast metal. **FIGS. 9A and 9B** show spatial distribution characteristics of etching rate over a silicon oxide film ( $SiO_2$ ). **FIGS. 10A and 10B** show spatial distribution characteristics of etching rate over a photo-resist (PR) film. In this test example, principal etching conditions were as follows:

- [0117] Wafer diameter=300 mm;
- [0118] Pressure inside the chamber=25 mTorr;
- [0119] Temperature (upper electrode/chamber sidewall/lower electrode)=60/60/20° C.;
- [0120] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=15/40 Torr;

[0121] Distance between the upper and lower electrodes=45 mm;

[0122] Process gas ( $C_5F_8/Ar/O_2$ ) flow rate=30/750/50 sccm;

[0123] RF power (60 MHz/2 MHz)≈3300 W/3800 W; and

[0124] Measurement time=120 seconds.

[0125] A second feature of the second embodiment resides in that a conductive ring member **100** is disposed around the feed rod **76** inside the feed cylinder **50**. The main role of the conductive member **100** is to reduce the inductance around the feed rod **76** so as to improve the range of the variable capacitor's **78** function of adjusting the balance between outer and inner input powers, as described below.

[0126] In this plasma processing apparatus, as described above, the ratio between the input power  $P_o$  into the outer upper electrode **36** and the input power  $P_i$  into the inner upper electrode **38** can be arbitrarily adjusted by adjusting the capacitance  $C_{78}$  of the variable capacitor **78**. In general, the capacitance  $C_{78}$  of the variable capacitor **78** is adjusted stepwise, using a step motor or the like. For this capacitance adjustment, it is necessary to avoid the uncontrollable resonance domain described above (in FIG. 5,  $125 \text{ pF} < C_{78} < 180 \text{ pF}$ ). For this reason, the experimental test examples described above according to the first embodiment (FIGS. 6A, 6B, 7A, and 7B) mainly used a stable domain ( $C_{78} \geq 180 \text{ pF}$ ) on the right side of the resonance domain. However, the stable domain on the right side has a limit in increasing the ratio of the inner input power  $P_i$ , and also entails a large power loss. On the other hand, as shown in FIGS. 4 and 5, a domain ( $C_{78} \leq 125 \text{ pF}$ ) on the left side of the resonance domain has an advantage in increasing the ratio of the inner input power  $P_i$ , as well as a smaller power loss. However, the domain on the left side of the resonance domain becomes closer to the resonance domain, as the ratio of the inner input power  $P_i$  is increased. In the case of a characteristic line with a large change rate (inclination), such as a characteristic line A shown in FIG. 11, it becomes very difficult to perform fine adjustment immediately before the resonance domain.

[0127] In order to solve this problem, it is effective to modify the characteristic line of capacitance vs. inner input power ratio, as indicated with a characteristic line B shown in FIG. 11, i.e., the change rate (inclination) in the domain on the left side of the resonance domain is set smaller so as to expand the adjusting range. Then, in order to obtain a characteristic line with a gentle and broader inclination as indicated with the characteristic line B shown in FIG. 11, it is effective to reduce the inductance  $L_i$  around the feed rod **76**, as described below.

[0128] FIG. 12 is a circuit diagram showing an equivalent circuit of a plasma generation RF feed circuit according to the second embodiment. The reactance  $\omega L_i$  around the feed rod **76** always takes on an absolute value larger than the reactance  $1/\omega C_{78}$  of the capacitor **78**, and thus the composite reactance  $X$  of the inner waveguide  $J_i$  is always inductive and can be expressed by  $X=\omega L_a$ . A parallel circuit formed of this apparent inductance  $L_a$  and the capacitance  $C_{40}$  falls in a resonance state, when the susceptance  $1/\omega L_a$  of the inductance  $L_a$  and the susceptance  $\omega C_{40}$  of the capacitance  $C_{40}$  cancel each other to be zero, i.e., when  $1/\omega L_a=1/(\omega L_i-1/\omega C_{78})=\omega C_{40}$  is satisfied. In this formula, with decrease in  $L_i$ ,

the value of  $C_{78}$  to establish the resonance condition described above increases, thereby approaching a characteristic line with a gentle and broader inclination immediately before the resonance domain, as indicated with the characteristic line B shown in FIG. 11. In the equivalent circuit shown in FIG. 12, the inductance  $L_o$  of the outer waveguide  $J_o$  is not shown, for the sake of simplicity of explanation. Even if the inductance  $L_o$  is included in this equivalent circuit, the principle is the same.

[0129] FIG. 13 shows an effect of the conductive member **100** according to this embodiment. When an electric current  $I$  varying with time flows through the feed rod **76**, a loop magnetic flux  $B$  is generated around the feed rod **76**, and an inductive electric current  $i$  interlinked with the magnetic flux  $B$  flows through the conductive member **100** due to electromagnetic induction. As a consequence, a loop magnetic flux  $b$  is generated inside and outside the conductive member **100** by the inductive electric current  $i$ , and the magnetic flux  $B$  is cancelled by that much corresponding to the magnetic flux  $b$  inside the conductive member **100**. Thus, the conductive member **100** disposed around the feed rod **76** can reduce the net magnetic flux generation amount around the feed rod **76**, thereby reducing the inductance  $L_i$ .

[0130] As regards the appearance structure of the conductive member **100**, a single ring shape continuous in an annular direction is preferably used, but a plurality of conductive members disposed in an annular direction may be used instead. As regards the inner structure of the conductive member **100**, a hollow ring body with a cavity shown in FIG. 13 may be used, but a solid block structure, as shown in FIG. 8, can provide a large inductance reduction effect. The volume of the conductive member **100** is preferably set larger, and is ideally or most preferably set to fill the space inside the feed cylinder **50**. In practice, however, it is preferable for the conductive member **100** to occupy  $1/10$  to  $1/3$  of the space surrounded by the feed cylinder **50** and outer upper electrode **36**. The conductive member **100** is made of an arbitrary conductor material, such as aluminum or a cast metal. The conductive member **100** is disposed while being electrically insulated from conductive bodies around it, such as the feed rod **76** and inner upper electrode **38**.

[0131] FIG. 14 shows experimental data of demonstration examples, in relation to the broadening effect described above of the conductive member **100** according to this embodiment. Referring to FIG. 14, a characteristic line B' was obtained by the apparatus structure according to this embodiment, and a characteristic line A' was obtained by the apparatus structure with no conductive member **100**. These characteristic lines A' and B' have upside-down shapes of the characteristic lines A and B shown in FIG. 11, respectively. Specifically, in a parallel-plate plasma apparatus of this type, as the ratio of the input power (inner input power  $P_i$ ) into the central portion of the upper electrode **34** is increased, the plasma density becomes higher near the substrate **W** on the susceptor **16**, and the bias frequency  $V_{pp}$  on the susceptor **16** (in inverse proportion to the plasma density) decreases. According to this relationship, measurement values of  $V_{pp}$  obtained by respective step values of the variable capacitor **78** (a control variable in proportion to the value of the capacitance  $C_{78}$ ) were plotted to obtain the characteristic lines A' and B', which thus have upside-down shapes of the characteristic lines A and B shown in FIG. 11, respectively.

According to this embodiment, thanks to the conductive member **100** disposed around the feed rod **76**, when the balance between the outer and inner input powers is adjusted by the variable capacitor **78**, the ratio of inner input power  $P_i$  can be stably and finely controlled to a value as high as possible immediately before the resonance domain, as demonstrated by the characteristic line B' shown in **FIG. 14**.

**[0132]** A third feature of the second embodiment relates to a low-pass filter **92** connected between the inner upper electrode **38** and ground potential. As shown in **FIG. 15A**, the low-pass filter **92** according to this embodiment is formed of a variable resistor **93** and a coil **95** connected in series, and arranged not to allow the plasma generation RF (60 MHz) to pass through, but to allow an alternating frequency of the bias RF (2 MHz) or less and DC to pass through. According to the low-pass filter **92**, the DC potential or self-bias voltage  $V_{dc}$  on the inner upper electrode **38** can be adjusted by adjusting the resistance value  $R_{93}$  of variable resistor **93**.

**[0133]** More specifically, as shown in **FIG. 16**, as the resistance value  $R_{93}$  of the resistor **93** is set lower, the voltage drop through the resistor **93** decreases, and the negative DC potential  $V_{dc}$  thereby becomes higher (closer to ground potential). Conversely, as the resistance value  $R_{93}$  of the resistor **93** is set higher, the voltage drop through the resistor **93** increases, and the DC potential  $V_{dc}$  becomes lower. If the DC potential  $V_{dc}$  is too high (in general, it is higher than -150V), the plasma potential increases, thereby causing abnormal discharge or arcing. On the other hand, if the DC potential  $V_{dc}$  is too low (in general, it is lower than -450V), the inner upper electrode **38** is intensely attacked by ions, thereby hastening wear-out of the electrode.

**[0134]** In another perspective, as shown in **FIG. 17**, the DC potential  $V_{dc}$  has an appropriate range (from -450V to -150V) to prevent or suppress both of abnormal discharge and electrode wear-out, and the resistance value  $R_{93}$  has a range (from  $R_a$  to  $R_b$ ) corresponding to this appropriate range. Accordingly, the DC potential  $V_{dc}$  can be adjusted to be within the appropriate range described above (from -450V to -150V) by setting or adjusting the resistance value  $R_{93}$  of the resistor **93** to be within the range described above (from  $R_a$  to  $R_b$ ). Further, depending on the value of an RF power applied to the entire upper electrode **34** (outer upper electrode **36** and inner upper electrode **38**), the appropriate range (from  $R_a$  to  $R_b$ ) of the resistance value  $R_{93}$  changes. For example, in one experiment, the lower limit resistance value  $R_a$ =about 1 MΩ was provided by an RF power of 3000 W.

**[0135]** Further, as shown in **FIG. 15B**, the inner upper electrode **38** may be connected to ground through a variable DC power supply **97** to directly control the DC potential  $V_{dc}$  by the voltage of the power supply. The variable DC power supply **97** is preferably formed of a bipolar power supply.

**[0136]** A fourth feature of the second embodiment resides in that, in the upper electrode **34**, the bottom surface of the outer upper electrode **36** is protruded downward, i.e., toward the susceptor **16**, more than the bottom surface of the inner upper electrode **38**. **FIG. 18** is a sectional side view showing a main part of the plasma etching apparatus according to the second embodiment. In this example, the outer upper electrode **36** is formed of two parts divided in the vertical direction, i.e., an upper first electrode member **36A** and a

lower second electrode member **36B**. The main body or first electrode member **36A** is made of, e.g., alumite-processed aluminum, and is connected to the feed cylinder **50**. The replacement part or second electrode member **36B** is made of, e.g., silicon, and is detachably fixed to and in close contact with the first electrode member **36A** by bolts (not shown). The second electrode member **36B** is protruded by a predetermined value  $H$ , relative to the bottom surface of the inner upper electrode **38**. A member **102** for enhancing thermal conductance, such as a silicone rubber sheet, is interposed between two electrode members **36A** and **36B**. The contact surfaces of the two electrode members **36A** and **36B** may be coated with Teflon™ to reduce thermal resistance.

**[0137]** In the outer upper electrode **36**, the protruded length  $H$  and inner diameter  $\Phi$  of the protrusion part **36B** can define the intensity or direction of an electric field provided from the outer upper electrode **36** or upper electrode **34** to the plasma generation space. Thus, they are important factors to thereby determine the spatial distribution characteristic of plasma density.

**[0138]** **FIGS. 19A** to **19E** show examples (experimental data) concerning spatial distribution characteristics of electron density, using as parameters the protruded length  $H$  and inner diameter  $\Phi$  of the protrusion part **36B**. Also in this experiment, the electron density was measured at positions in the radial direction, using a plasma absorption probe (PAP). The diameter of a semiconductor wafer was set at 300 mm. As regards the main parameters  $\Phi$  and  $H$ , the experimental examples shown in **FIG. 19A** employed  $\Phi=329$  mm and  $H=15$  mm, the experimental examples shown in **FIG. 19B** employed  $\Phi=329$  mm and  $H=20$  mm, the experimental examples shown in **FIG. 19C** employed  $\Phi=339$  mm and  $H=20$  mm, the experimental examples shown in **FIG. 19D** employed  $\Phi=349$  mm and  $H=20$  mm, and the experimental examples shown in **FIG. 19E** employed  $\Phi=359$  mm and  $H=25$  mm. As a secondary parameter, the ratio  $P_i/P_o$  (RF power ratio) between the inner input power  $P_i$  and outer input power  $P_o$  was set at four different values, i.e., (30/70), (27/73), (20/80), and (14/86).

**[0139]** In the experimental data shown in **FIGS. 19A** to **19E**, an inflection point  $F$  at which the electron density quickly drops was moved radially outward with increase in the inner diameter  $\Phi$  of the protrusion part **36B** of the outer upper electrode **36**, and was moved up with increase in the protruded length  $H$  of the protrusion part **36B**. The ideal distribution characteristic is a characteristic in which an inflection point  $F$  is located directly above the wafer edge (a position of 150 mm), and the density is flat at a high value between the center and edge. In light of this, one characteristic ( $\Phi=349$  mm and  $H=20$  mm) shown in **FIG. 19D** obtained by an RF power ratio  $P_i/P_o$  of 30/70 is closest to the ideal state.

**[0140]** **FIG. 20A** shows characteristics of total uniformity  $U_T$  and edge uniformity  $U_E$  in the spatial distribution of electron density, using  $\Phi$  and  $H$  as two-dimensional parameters. The total uniformity  $U_T$  stands for planar uniformity over the entire region in the radial direction from the wafer central position ( $R_0$ ) to the wafer edge position ( $R_{150}$ ), as shown in **FIG. 20B**. The edge uniformity  $U_E$  stands for planar uniformity over a region near the wafer edge, such as a region from a position of radius 130 mm ( $R_{130}$ ) to the wafer edge position ( $R_{150}$ ).

[0141] As understood from the characteristics shown in FIG. 20A, the protruded length  $H$  of the protrusion part 36B is remarkably influential on the total uniformity  $U_T$ , and also has a large effect on the edge uniformity  $U_E$ . On the other hand, the inner diameter  $\Phi$  of the protrusion part 36B is influential on the edge uniformity  $U_E$ , but is scarcely influential on the total uniformity  $U_T$ . In total, the protruded length  $H$  of the protrusion part 36B is preferably set at 25 mm or less, and most preferably set to be near 20 mm. The inner diameter  $\Phi$  of the protrusion part 36B is preferably set to be within a range of from 348 mm to 360 mm, and most preferably set to be near 349 mm. The range of from 348 mm to 360 mm means that the protrusion part 36B is disposed at a position 24 mm to 30 mm distant from the wafer edge radially outward.

[0142] It should be noted that the protrusion part 36B of the outer upper electrode 36 applies an electric field to the plasma generation space radially inward from around, thereby providing an effect of confining plasma. For this reason, the protrusion part 36B is disposed preferably or almost essentially at a position outside the wafer edge in the radial direction, in order to improve uniformity in the spatial distribution characteristic of plasma density. On the other hand, the width of the protrusion part 36B in the radial direction is not important, and thus can be arbitrarily set.

### Third Embodiment

[0143] FIG. 21 is a sectional side view showing a main part of a plasma etching apparatus according to a third embodiment of the present invention. The parts of this apparatus can be the same as those of the second embodiment except for the featuring parts. The third embodiment has a feature in that a shield member 104 is disposed along the protrusion part 36B of the outer upper electrode 36 according to the second embodiment.

[0144] For example, the shield member 104 is formed of an aluminum plate with an alumite-processed surface, and physically and electrically coupled to the sidewall of the process container 10. The shield member 104 extends essentially in the horizontal direction from the container sidewall to the position below the protrusion part 36B of the outer upper electrode 36 to cover the bottom surfaces of the protrusion part 36B and the ring-shaped shield member 42 in a non-contacting or insulated state. The second electrode member 36B of the outer upper electrode 36 has an L-shaped cross section with a peripheral portion extending downward in the vertical direction to form a protrusion. The protruded length  $H$  and inner diameter  $\Phi$  of this protrusion can be defined in accordance with the same numerical conditions as those of the second embodiment.

[0145] A function of the shield member 104 is to shield or seal RF discharge from the bottom surfaces of the protrusion part 36B of the outer upper electrode 36 and ring-shaped shield member 42, so as to suppress plasma generation directly below them. As a consequence, it is possible to primarily enhance the plasma confining effect directly above the wafer.

[0146] FIGS. 22A (with the shield member) and 22B (without the shield member) show experimental data concerning the plasma confining effect provided by the shield member 104. Where the shield member 104 was not used, as shown in FIG. 22B, the plasma electron density once

dropped and then increased again to form a peak outside the wafer edge position (150 mm) in the radial direction. This was so because RF power was discharged vertically downward from the bottom surfaces of the protrusion part 36B of the outer upper electrode 36 and ring-shaped shield member 42, whereby plasma was also generated directly below them and thus electrons and ions were present there. Since a certain amount of plasma was present in a space distant from the wafer edge position radially outward, the plasma density directly above the wafer decreased by that much.

[0147] On the other hand, where the shield member 104 was used according to this embodiment, as shown in FIG. 22A, the electron density (plasma density) essentially monotonously decreased radially outward outside the wafer edge position (150 mm), while it was higher directly above the wafer as a whole. This was so because the bottom surfaces of the protrusion part 36B of the outer upper electrode 36 and ring-shaped shield member 42 did not work as an RF path any more due to the presence of the shield member 104, whereby plasma generation directly below them was remarkably reduced. The plasma confining effect or plasma diffusion-preventing effect of the shield member 104 was enhanced, with increase in the RF power of the RF power supply 52.

[0148] Further, as a secondary effect, where plasma generation is remarkably reduced by the shield member 104 outside the wafer edge position, as described above, etching species, such as radicals and ions, are reduced. As a consequence, it is possible to effectively prevent undesirable polymer films from being deposited on portions inside the container (particularly near the shield member 104).

[0149] For example, conventionally, where a Low-k film (an inter-level insulating film with a low dielectric constant) is etched, a plasma etching is performed, and then ashing (resist removal) is performed using  $O_2$  gas within the same chamber. At this time, reactive species (such as  $CF$  and  $F$ ), which have been deposited as polymers inside the container during the previous plasma etching, are activated by active oxygen atoms in plasma, and cause damage to the Low-k film (Low-k damages), such that they etch the via-holes of the film into a bowing shape or invade the film and change its  $k$  value. According to this embodiment, however, the shield member 104 can effectively prevent undesirable deposition of reactive species during plasma etching, thereby solving problems concerning Low-k damages described above. The shield member 104 may be made of an arbitrary conductor or semiconductor (such as, silicon), or a combination of different materials.

[0150] FIG. 21 also shows an arrangement of cooling medium passages 106 and 108 formed in the upper electrode 34 (36 and 38). A cooling medium set at an adjusted temperature is circulated within each of the cooling medium passages 106 and 108 from a chiller unit (not shown) through lines 110 and 112. Specifically, the cooling medium passages 106 are formed in the first electrode member 36A of the outer upper electrode 36. Since the second electrode member 36B is coupled with the first electrode member 36A through a coating or sheet 102 for enhancing thermal conductance, it can also be effectively cooled by the cooling mechanism.

[0151] The electrodes are supplied with a cooling medium even when the RF power supplies 52 and 90 are in the

OFF-state. Conventionally, the plasma processing apparatus of this type employs an insulative cooling medium, such as Galden™. In this case, when the cooling medium flows through a cooling medium passage, it generates an electrostatic charge by friction, by which the electrode enters an abnormally high voltage state. If an operator's hand touches the electrode in this state during a maintenance operation or the like in which the RF power supplies are in the OFF-state, the operator may get an electric shock. However, the plasma processing apparatus according to this embodiment allows electrostatic charge generated in the inner upper electrode 38 to be released to ground through the resistor 93 of the low-pass filter 92 (see **FIG. 8**), whereby an operator is prevented from getting an electric shock.

#### Fourth Embodiment

[0152] Using the plasma etching apparatus according to the third embodiment (**FIGS. 8 and 21**), an experiment was conducted of etching a silicon oxide film ( $\text{SiO}_2$ ) to form a hole having a diameter ( $\Phi$ ) of  $0.22 \mu\text{m}$ . In this experiment, etching characteristics (particularly etching rate) were examined, using as a parameter the RF power input ratio ( $P_i/P_0$ ) between the outer upper electrode 36 and inner upper electrode 38. Other etching conditions are shown below. **FIGS. 23 to 25** show experimental result data.

[0153] Wafer diameter=300 mm;

[0154] Pressure inside the chamber=20 mTorr;

[0155] Temperature (upper electrode/chamber sidewall/lower electrode)=20/60/60° C.;

[0156] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=20/35 Torr;

[0157] Distance between the upper and lower electrodes=45 mm;

[0158] Protruded length (H) of the outer upper electrode=15 mm;

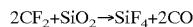
[0159] Process gas ( $\text{C}_5\text{F}_8/\text{CH}_2\text{F}_2/\text{N}_2/\text{Ar}/\text{O}_2$ ) $\approx$ 10/20/110/560/10 sccm;

[0160] RF power (60 MHz/2 MHz) $\approx$ 2300 W/3500 W; and

[0161] Etching time=120 seconds.

[0162] As shown in **FIG. 23**, as the ratio of the inner input power  $P_i$  increased, i.e., 14%, 18%, and 30%, the electron density or plasma density became higher in proportion to the  $P_i$  ratio near the wafer central portion, while it did not change near wafer edge portion. Accordingly, where the RF power input ratio ( $P_i/P_0$ ) is adjusted on the basis of this, the spatial distribution characteristic of plasma density can be controlled in the radial direction.

[0163] **FIG. 24** shows the measurement result of deposition rate of a polymer film, formed from reaction products and reactive species, at respective positions in the radial direction, wherein the deposition rate is in proportion to radical density. This experiment was conducted to see the effect of change in the RF power input ratio ( $P_i/P_0$ ) on the radical density. A bare silicon wafer was used as a sample substrate on which the polymer film was deposited. As indicated by the experimental data shown in **FIG. 24**, change in the RF power input ratio ( $P_i/P_0$ ) only had a very


small influence on the polymer film deposition rate i.e., the spatial distribution characteristic of radical density.

[0164] **FIG. 25** shows etching depth measured at respective positions of the wafer in the radial direction, obtained by the  $\text{SiO}_2$  etching described above. As shown in **FIG. 25**, as the ratio of the inner input power  $P_i$  increased, i.e., 14%, 18%, and 30%, the etching depth became larger in proportion to the  $P_i$  ratio near the wafer central portion, while it did not differ so much near wafer edge portion. This was similar to that of the electron density (**FIG. 24**).

[0165] As described above, judging from the experimental data shown in **FIGS. 23 to 25**, the following matters have been confirmed. Specifically, by adjusting the RF power input ratio ( $P_i/P_0$ ) between the outer upper electrode 36 and inner upper electrode 38, the spatial distribution characteristic of plasma density in the radial direction can be controlled without substantially affecting the spatial distribution characteristic of radical density, i.e., independently of the control over the spatial distribution of radical density. Accordingly, the uniformity of etching depth i.e., etching rate, can be improved by adjusting the RF power input ratio ( $P_i/P_0$ ). It should be noted that, if the plasma etching apparatus according to the first or second embodiment (**FIGS. 1, 8, and 18**) is used, the same experimental result as described above is obtained.

#### Fifth Embodiment

[0166] Using the plasma etching apparatus according to the third embodiment (**FIGS. 8 and 21**), a simulation was conducted of etching a silicon oxide film ( $\text{SiO}_2$ ) with a CF family process gas. In this experiment, the distributions of radicals or reaction products were examined, using as a parameter the ratio (FC/FE) between the flow rate FC of a process gas delivered from the central showerhead (62 and 56a) and the flow rate FE of the process gas delivered from the peripheral showerhead (64 and 56a). In this simulation, it was assumed that neither reaction nor absorption of reaction products or reactive species was caused on the wafer surface, but the following reaction was simply caused on the blanket  $\text{SiO}_2$  film.



[0167] Other principal etching conditions are shown below. **FIGS. 26 to 30** show simulation result concerning radicals and reaction products. **FIG. 31** shows the type and generation rate (denoted by a percentage value in brackets) of radicals generated by gradual dissociation from molecules of the main etching gas ( $\text{C}_4\text{F}_8$ ).

[0168] Wafer diameter=200 mm;

[0169] Pressure inside the chamber=50 mTorr;

[0170] Temperature (upper electrode/chamber sidewall/lower electrode)=20/60/60° C.;

[0171] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=10/35 Torr;

[0172] Distance between the upper and lower electrodes=30 mm;

[0173] Protruded length (H) of the outer upper electrode=15 mm;

[0174] Process gas ( $C_4F_8/N_2/Ar \approx 5/120/1000$  sccm; and

[0175] RF power (60 MHz/2 MHz)  $\approx 1200$  W/1700 W.

[0176] As shown in **FIG. 26**, the distribution characteristic of  $CF_2$  density, which is the main reactive species, was remarkably influenced by the gas flow-rate ratio (FC/FE) between the center and periphery. Specifically, as the ratio of the central gas flow rate FC was increased, the  $CF_2$  density became higher near the wafer central portion while it did not change so much near the wafer edge portion. As shown in **FIG. 28**, the distribution characteristic of CO radical density also showed a similar change with change in the gas flow-rate ratio (FC/FE) between the center and periphery. By contrast, as shown in **FIG. 27**, the distribution characteristic of Ar radical density scarcely changed with change in the gas flow-rate ratio (FC/FE) between the center and periphery.

[0177] As regards reaction products, as shown in **FIGS. 29 and 30**, either of  $SiF_4$  density and CO density was remarkably influenced by the gas flow-rate ratio (FC/FE) between the center and periphery. More specifically, as the ratio of the central gas flow rate FC was reduced, each of the  $SiF_4$  density and CO density became higher near the wafer central portion while it did not change so much near the wafer edge portion. Where the central gas flow rate FC was equal to the peripheral gas flow rate FE (FC/FE=50/50), the density became higher near the wafer central portion than near the wafer edge portion. As described above, reaction products tended to gather to the central side, because reaction products were less moved laterally by a fresh gas flow at the central portion, as compared with the peripheral portion.

[0178] If reaction products have a non-uniform distribution on a wafer, they not only affect the uniformity of process gas supply rate or chemical reaction among respective positions, but also may directly affect the etching shape or selectivity. According to this embodiment, as shown in **FIGS. 29 and 30**, where the central gas flow rate FC is set to be higher than the peripheral gas flow rate FE (FC/FE  $\approx 70/30$  in this shown example), the space density distribution of reaction products can become uniform. It should be noted that, if the plasma etching apparatus according to the first or second embodiment (**FIGS. 1, 8, and 18**) is used, the same simulation result as described above is obtained.

#### Sixth Embodiment

[0179] Using the plasma etching apparatus according to the third embodiment (**FIGS. 8 and 21**), an experiment was conducted of etching a BARC (antireflective film). In this experiment, the etching shape and selectivity were examined, using the gas flow-rate ratio (FC/FE) between the center and periphery as a parameter. A test sample shown in **FIG. 32A** was used. A mask having an opening diameter ( $\Phi$ ) of 0.12  $\mu m$ , a photo-resist film having a thickness of 350 nm, a BARC film having a thickness of 80 nm, and an  $SiO_2$  film having a thickness of 700 nm were used. "Oxide loss" and "resist remaining amount" were measured as examination items for the selectivity, and "bottom CD" was measured as an examination item for the etching shape or dimensional accuracy. **FIG. 32B** shows measurement values of the respective examination items at FC/FE=50/50. **FIG. 32C** shows measurement values of the respective examination items at FC/FE=70/30. As regards the measurement point,

"center" denotes a position at the wafer center, and "edge" denotes a position 5 mm distant from the wafer notch end toward the center. Principal etching conditions were as follows:

[0180] Wafer diameter=300 mm;

[0181] Pressure inside the chamber=150 mTorr;

[0182] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=10/25 Torr;

[0183] Distance between the upper and lower electrodes=30 mm;

[0184] Protruded length (H) of the outer upper electrode=15 mm;

[0185] Process gas ( $CF_4 \approx 200$  sccm;

[0186] RF power (60 MHz/2 MHz)  $\approx 500$  W/600 W; and

[0187] Etching time=30 seconds.

[0188] As regards the examination items for the BARC etching, the "oxide loss" is the etched depth of the underlying  $SiO_2$  film provided by over etching of the BARC etching. For this value, a smaller value is better, but a priority resides in that a smaller difference in this value over the wafer (particularly the difference between the center and edge) is better. The "resist remaining amount" is the thickness of the photo-resist remaining after the etching. For this value, a larger value is better, and a smaller difference in this value is also better. The "bottom CD" is the bottom diameter of a hole formed in the BARC. For this value, a value closer to the mask opening diameter  $\Phi$  is better, and a smaller difference in this value is also better.

[0189] As shown in **FIG. 32B**, where the central gas flow rate FC was equal to the peripheral gas flow rate FE (5:5), the differences between the center and edge were large in all the examination items, and particularly the difference was large in the "resist remaining amount". By contrast, as shown in **FIG. 32B**, where the central gas flow rate FC was larger than the peripheral gas flow rate FE (7:3), all the examination items stably took on better values and became uniform between the center and edge, i.e., the selectivity and etching shape were remarkably improved.

[0190] As described above, according to this embodiment, within the process container **10**, particularly within the plasma generation space defined between the upper electrode **34** and lower electrode **16**, the inner upper electrode **38** of the upper electrode **34** is used while the ratio (FC/FE) between the process gas flow rate FC delivered from the central showerhead (**62** and **56a**) and the process gas flow rate FE (**64** and **56a**) delivered from the peripheral showerhead is adjusted. As a consequence, the spatial distribution of radical density can be controlled to uniformize etching characteristics (such as the selectivity and etching shape) on the basis of radicals. It should be noted that, if the plasma etching apparatus according to the first or second embodiment (**FIGS. 1, 8, and 18**) is used, the same measurement result as described above is obtained.

#### Seventh Embodiment

[0191] Using the plasma etching apparatus according to the third embodiment (**FIGS. 8 and 21**), an experiment was conducted of etching an  $SiO_2$  film. In this experiment, the

etching shape was examined, using the gas flow-rate ratio (FC/FE) between the center and periphery as a parameter. A test sample shown in **FIG. 33A** was used. A mask having an opening diameter ( $\Phi$ ) of  $0.22\text{ }\mu\text{m}$ , a photo-resist film having a thickness of 500 nm, a BARC film having a thickness of 100 nm, and an  $\text{SiO}_2$  film having a thickness of  $1\text{ }\mu\text{m}$  were used. "Etching depth", "top CD", and "bottom CD" were measured as examination items for the etching shape. **FIG. 33B** shows measurement values of the respective examination items at  $\text{FC/FE}=50/50$ . **FIG. 33C** shows measurement values of the respective examination items at  $\text{FC/FE}=10/90$ . Principal etching conditions were as follows:

- [0192] Wafer diameter=300 mm;
- [0193] Pressure inside the chamber=20 mTorr;
- [0194] Temperature (upper electrode/chamber sidewall/lower electrode)= $20/60/60^\circ\text{ C}$ .
- [0195] Heat transmission gas (He gas) supply pressure (central portion/edge portion)=20/35 Torr;
- [0196] Distance between the upper and lower electrodes=45 mm;
- [0197] Protruded length (H) of the outer upper electrode=15 mm;
- [0198] Process gas ( $\text{C}_5\text{F}_8/\text{CH}_2\text{F}_2/\text{N}_2/\text{Ar}/\text{O}_2$ ) $\approx 10/20/110/560/10$  sccm;
- [0199] RF power (60 MHz/2 MHz) $\approx 2300\text{ W}/3500\text{ W}$ ;
- [0200] RF power ratio (inner input power  $P_i$ /outer input power  $P_o$ )=30:70; and
- [0201] Etching time=120 seconds.

[0202] As regards the examination items for the  $\text{SiO}_2$  etching, the "etching depth" is the depth of a hole formed in the  $\text{SiO}_2$  film by the etching time (120 seconds), i.e., it corresponds to the etching rate. The "top CD" and "bottom CD" are the top and bottom diameters of the hole formed in the  $\text{SiO}_2$  film, and, as these values are closer to each other, the vertical shape characteristic of the hole (anisotropy) is better. As a matter of course, for each of the examination items, it is more preferable that the difference between the center and edge is smaller.

[0203] As shown in **FIG. 33B**, where the central gas flow rate FC was equal to the peripheral gas flow rate FE (5:5), the difference was large in the "etching depth", and values of the ratio of bottom CD/top CD at respective positions were small, i.e., the holes were more tapered. By contrast, as shown in **FIG. 33B**, where the central gas flow rate FC was smaller than the peripheral gas flow rate FE (1:9), the "etching depth" i.e., etching rate became more uniform, and the vertical shape characteristic was improved and more uniform.

[0204] As described above, also in this embodiment, by adjusting the ratio (FC/FE) between the inner gas flow rate FC and the outer gas flow rate FE, the spatial distribution of radical density can be controlled to uniformize etching characteristics (particularly the etching shape) on the basis of radicals. It should be noted that, if the plasma etching apparatus according to the first or second embodiment (**FIGS. 1, 8, and 18**) is used, the same measurement result as described above is obtained.

[0205] According to the embodiments described above, the plasma density distribution and the radical density

distribution can be controlled independently of each other within the plasma generation space defined in the process container **10**. This independent control over two systems can be used to preferably deal with various plasma process applications, such as those shown in the map of **FIG. 34**.

[0206] The embodiments described above may be modified in various manners, in accordance with the technical ideas of the present invention. For example, only the outer upper electrode **36** may be supplied with an RF from the first RF power supply **52** through the matching unit **44** and feed cylinder **50**, while the inner upper electrode **38** being supplied with no RF. Also in this case, the inner upper electrode **38** can function as a showerhead or function as an electrode for an RF output from the second RF power supply **90** to flow to ground. Alternatively, the inner upper electrode **38** may be replaced with a single-purpose showerhead with no electrode function. In the embodiments described above, the outer upper electrode **36** is formed of one or single ring electrode, but it may be formed of a plurality of electrodes combined to form a ring as a whole. Further, the inner diameter of the outer upper electrode **36** may be set very small, or the outer upper electrode **36** may be formed of a circular plate. Depending on the application, the second RF power supply **90** may be omitted. The present invention can be applied not only to plasma etching, but also to various plasma processes, such as plasma CVD, plasma oxidation, plasma nitridation, and sputtering. As regards a target substrate, the present invention can be applied not only to a semiconductor wafer, but also to various substrates for a flat panel display, photo mask, CD substrate, and print substrate.

[0207] Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

1. A plasma processing method comprising:

supplying a predetermined process gas into a plasma generation space in which a target substrate is placed, and turning the process gas into plasma; and

subjecting the substrate to a predetermined plasma process by the plasma,

wherein spatial distribution of density of the plasma and spatial distribution of density of radicals in the plasma relative to the substrate are controlled independently of each other by a set of first and second RF discharge regions and a set of first and second process gas delivery regions, respectively, to form a predetermined process state over an entire target surface of the substrate, and

wherein the set of first and second RF discharge regions and the set of first and second process gas delivery regions are disposed in layouts independently of each other.

2. The method according to claim 1, wherein a facing portion opposite the substrate is divided into two regions as the first and second RF discharge regions on a peripheral side and a central side, respectively, in a radial direction relative to a center through which a vertical line extending from a center of the substrate passes; and

the second RF discharge region on the facing portion is divided into two regions as the first and second process gas delivery regions on a peripheral side and a central side, respectively, in the radial direction.

**3.** The method according to claim 2, wherein the first RF discharge region is disposed radially outside an outer peripheral edge of the substrate.

**4.** The method according to claim 1, wherein an RF output from a single RF power supply is divided at a predetermined ratio, and thereby discharged from the first RF discharge region and the second RF discharge region.

**5.** The method according to claim 1, wherein a process gas supplied from a single process gas supply source is divided at a predetermined ratio, and thereby delivered from the first process gas delivery region and the second process gas delivery region.

**6.** The method according to claim 5, wherein the process gas is delivered from the first and second process gas delivery regions at deferent flow rates per unit area.

**7.** The method according to claim 1, wherein the process gas is a mixture gas of a plurality of gases, the plurality of gases are delivered from the first process gas delivery region at a first gas mixture ratio, and the plurality of gases are delivered from the second process gas delivery region at a second gas mixture ratio different from the first gas mixture ratio.

**8.** A plasma processing method comprising:

exposing a target substrate to plasma of a predetermined process gas; and

subjecting the substrate to a predetermined plasma process by the plasma,

wherein spatial distribution of density of the plasma and spatial distribution of density of radicals in the plasma are controlled independently of each other relative to the substrate to form a predetermined process state over an entire target surface of the substrate, and

wherein processing rates at respective positions on the target surface of the substrate are mainly controlled in accordance with the plasma density spatial distribution, and one or both of processing selectivity and processing shapes at respective positions on the target surface are mainly controlled in accordance with the radical density spatial distribution.

**9.** The method according to claim 1, wherein the first and second RF discharge regions comprise an RF electrode to be supplied with an RF.

**10.** A plasma processing apparatus arranged to turn a process gas into plasma in a plasma generation space within a process container configured to have a vacuum atmosphere therein, and subject a target substrate placed within the plasma generation space to a predetermined plasma process, the apparatus comprising:

a plasma density control section configured to control spatial distribution of density of the plasma relative to the substrate; and

a radical density control section configured to control spatial distribution of density of radicals in the plasma relative to the substrate independently of the plasma density spatial distribution,

wherein the plasma density control section comprises a set of first and second RF discharge regions configured to control the plasma density spatial distribution,

the radical density control section comprises a set of first and second process gas delivery regions configured to control the radical density spatial distribution, and

the set of first and second RF discharge regions and the set of first and second process gas delivery regions are disposed in layouts independently of each other.

**11.** The apparatus according to claim 10, wherein a facing portion opposite the substrate and in contact with the plasma generation space is divided into two regions as the first and second RF discharge regions on a peripheral side and a central side, respectively, in a radial direction relative to a center through which a vertical line extending from a center of the substrate passes; and

the second RF discharge region on the facing portion is divided into two regions as the first and second process gas delivery regions on a peripheral side and a central side, respectively, in the radial direction.

**12.** The apparatus according to claim 11, wherein the first RF discharge region is disposed radially outside an outer peripheral edge of the substrate.

**13.** The apparatus according to claim 10, wherein the process gas is a mixture gas of a plurality of gases, the plurality of gases are delivered from the first process gas delivery region at a first gas mixture ratio, and the plurality of gases are delivered from the second process gas delivery region at a second gas mixture ratio different from the first gas mixture ratio.

**14.** The apparatus according to claim 10, wherein an RF power is discharged toward the plasma space from the first and second RF discharge regions at a predetermined ratio; and

the process gas is delivered toward the plasma space from the first and second process gas delivery regions at a predetermined ratio.

**15.** The apparatus according to claim 14, wherein the plasma density control section comprises an RF distributor configured to divide and transmit an RF with a constant frequency, output from an RF power supply, at a predetermined ratio to the first and second RF discharge regions; and

the radical density control section comprises a process gas distributor configured to divide and supply the process gas, output from a process gas supply source, at a predetermined ratio to the first and second process gas delivery regions.

**16.** The apparatus according to claim 15, wherein the RF distributor includes an impedance control section configured to variably control one or both of an impedance of a first feed circuit from the RF power supply to the first RF discharge region, and an impedance of a second feed circuit from the RF power supply to the second RF discharge region.

**17.** The apparatus according to claim 10, wherein the first and second RF discharge regions respectively comprise first and second electrodes electrically insulated from each other.

**18.** The apparatus according to claim 17, wherein the first and second process gas delivery regions include a number of process gas delivery holes formed on the second electrode.