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Data processing device and method

The present invention relates to reconfigurable computing. In
particular, the present invention relates to improvements in
the architecture of reconfigurable devices.

Reconfigurable data procesing arrays are Kknown in the art. Re-
ference is being made to the previous applications and/or pub-
lications of the present applicant/assignee all of which are
encorporated herein by way of reference. Accordingly, the de-
vices described hereinafter may be multidimensional (n>l) ar-
Tays comprinsing coarse grained computing and/or data opera-
tion elements allowing for runtime reconfiguration of the en-
tire array or parts thereof, preferably in response to a sig-
nal indicating reconfigurability to a loading unit (CT, OM or
the like).

Now, several of these data procesing arrays have been built
(i.e. Xppl, XPP128, XPP2, XPP64). It is however desirable to
improve the known device further as well as to improve methods
of its operation.

Accordingly, in order to achieve this object there will be de-
scribed a number of improvements allowing separately or in
commem to improve the performance and /or power consumption
and /or cost of the device.

A first way to improve the known devices is to improve the
functionability of each single processor element. It has been
previously suggested to include a ring-memory (RINGSPEICHER)
in the array, to store instructions in the ring-memory and to
provide a pointer that points to one of the ring-memory adres-
ses so as to select an instruction to be carried out next.
Furthermore, it has been suggested to provide at least one
»Shadow configuration" and to switch over between several con-
figurations /shadow configurations. Anotrher or additional
suggestions has been designated as ,wave reconfiguration®.

While these known methods improve the performance of a recon-
figurable device, there seems to be both a need and a possi-
bility for further improvements.

It iz to be understood that while in the following descrip-
tion, a detailed example is given, for example with respect to
the number of registers given agsociated with eachj PAE, it is
not deemed necessary to provide an ALU with exactly this num-
ber of registers. Rather, it will be understood by the average
skilled person that deviations from the explicitly described
embodiment are easily feasible and that the detailed level of
description stems from an effort to provide an examplary PAE
and not from the wish to restrict the scope of invention.-

SUBBTITUTE SHEET (RULE 28)
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1 Overview of changes vs. XPP XPP-II
1.1 ALU~PAE Architecture

In the suggested improved architecture, a PAE might e.g. com-
prise 4 input ports and 4 output ports. Embedded with each PAE
is the_FREG -path newly named DF with its dataflow capabili-
ties, like MERGE, SWAP, DEMUX as well as ELUT.

2 input ports Ri0 and Ril are directly connected to the ALU.
Two output ports receive the ALU results.

Ri2 and Ri3 are typically fed to the DF path Wthh output is
Ro2 and Ro3.

Alternatively Ri2 and Ri3 can serve as inputs for the ALU as
well. This extension is needed to provide a suitable amount of
ALU inputs i1f Function Folding (as described later) is used.
In this mode Ro2 and Ro3 serve as additional outputs.

Associated to each data register (Ri or Ro) is-an event port
(Ei or Eo).

It is possible, albeit not necessary to implement an addi-
tional data and event bypass BRiO-1, BEiO-. The decision de-
pends on how often Function Folding will be used and how many
inputs and outputs are required in average.

uio | Ui | vi2 | uis N ! . Bui0 | Buit . | Bui2 | Bui3
vio | vi1 | viz | via RiO Rit Ri2 Ri3 BRIO| BRIt | guio | Buit ? BRI2|BRI3| oo | poie ?
1 1
1 1
' Y { y v |
1 1 1 1 [ Il 1 1 1 1
1 | { 1 { | ! 1 1
| | | | 1 1 | ] ] ]
.......... ' I
TR0 ! !
LLReT
L Rd0 Rd1
P
i Rd2 Rd3
Rpp
‘ 'FUO Fu1 \ ‘. 1  J
Rlc . Lur ’
Fu2 | Fu3 . 4:8
Rijb -
FvO | Fv1
A vy Y A
Fv2 'Fv3 OF oF
y y A A A y A
Uo0 | Uo1 | Uo2 | Uo3 BRo | BRo | BucO | Buot BRo | BRo | Buo2 | Buo3
Vo0 | Vo1 | Vo2 | vo3 | . R® Roi | Re2 Ra3 6. | 1 |Bvoo|Buot 2 | 3 |Bvo2|Bvo3
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1.1.1 Other extensions

SIMD operation is implemented in the ALUs to support 8 and 16
bit wide data words for i.e. graphics and imaging.

Saturation is supported for ADD/SUB/MUL instructions for i.e.
voice, video and imaging algorithms.

1.2 Function Folding
1.2.1 Basics and input/output paradigms

Within this chapter the basic operation paradigms of the XPP
architecture are repeated for a better understanding based on
Petri-Nets. In addition the Petri-Nets will be enhanced for a
better understanding of the subsequently described changes of
the current XPP architecture.

In most arrays each PAE operates as a data flow node as de-
fined by Perti-Nets. (Some arrays might have parts that have
other functions and should thus be not considered as a stan-
dard PAE). A Petri-Net supports a calculation of multiple in-
puts and produces one single output. Special for a Perti-Net
is, that the operation is delayed until all input data is
available.

For the XPP technology this means:

1. all necessary data is available

2. all necessary events are availlable
The quantity of data-and events is defined by the data and
control flow, the availability is displayed at runtime by the
handshake protocol RDY/ACK.

il
|

The thick arbor indicates the operation, the dot on the right
side indicates that the operation is delayed until all inputs
are available. '

Enhancing the basic methodology function folding supports mul-
tiple operations - maybe even sequential - instead of one, de-
fined as a Cycle. It is important that the basics of Petri-
Nets remain unchanged.



WO 2005/045692 PCT/EP2004/009640

]
- «——
<—_.
| ®
R—

Typical PAE-like Petri-Nets consume one input packet per one
operation. For sequential operation multiple reads of the same
input packet are supported. However, the interface model again
keeps unchanged.

Data duplication occurs in the output path of the Petri-Net,
which does not influence the operation basics again.

O
XX

1.2.2 Method of Function Folding

One of the most important extensions is the capability to fold
multiple PAE functions onto on PAE and execute them in a se-
quential manner. It is important to understand that the inten-
tion is not to support sequential processing or even microcon-
troller capabilities at all. The intention of Function Folding
is just to take multiple dataflow operations and map them on a
single PAE, using a register structure instead of a network
between each function.

One goal may be to save silicon area by rising to clock fre-
quency locally in the PAEs. An additional expectation is to
save power since the busses operate at a fraction of the clock
frequencies of the PAEs. Data transfers over the busses, which
consume._much. power, are reduced.
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Ri0 Ri1 Ri2Ri3 Ri0-3
Reo | | Rc0 —L RS
. [Ri0o | Ri1 | Ri2 | Ri3 | l
, v
Ro0-
Ret Re1 ] 00-3
Rc0 Rd0'

L————- Rat’ R:1 ) Rd1'
. v Rc2 g Rd2
Re2 Rc2 Rc3 Rd3'

Rd21 |Rd3' ___I
A A A
A
Re3 " | Re3 [Ro0 [ Ro1 | Ro2 | Ro3 |
\L l v l Just one PAE (not drawn to scale)
Ro0 Ro1 Ro2 PAE Frequency 200MHz
Bus Frequency 50MHz
XPP V2 Rcunction .
PAE Frequency 50MHz Rez&:‘r“;‘l’;ﬁ‘;‘ion
Bus Frequency 50MHz
STEP 1 STEP 2 STEP 3a STEP 3b

- The internal registers can be implemented in different ways,
e.g. in one of the following two:

1. dataflow model A

Each register (r’) has a valid bit which is set as soon as
data has-been written into the register and reset after the
data has been read. Data cannot be written if valid is set,
data can not be read if valid is not set. This approach imple-
ments a 100% compatible dataflow behaviour.

2. sequencer model

The registers have no assoclated valid bits. The PAE operates
as a sequencer, whereas at the edges of the PAE (the bus con-
nects) the paradigm is changed to the XPP-like dataflow behav-
iour.

Even if at first the dataflow model seems preferable, it has
major down sides. One is that a high amount of register is
needed to implement each data path and data duplication is
‘quite complicated and not efficient. Another is that sometimes
a limited sequential operation simplifies programming and
hardware effort.

Therefore it is assumed consecutively that sequencer model is
‘implemented. Since pure dataflow can be folded using automatic
tools the programmer should stay within the dataflow paradigm
and not be confused with the additional capabilities. Auto-
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matic tools must take care i.e. while register allocation that
the paradigm is not violated.

The following figure shows that using sequencer model only 2
registers (instead of 4) are required:

l 1 Ri0 Ri1 Ri2Ri3 Ri0-3
Rc0 Rc0 . Rg?
RS | [Ri0 [Ri1 | Rz [Ri3B] - -
: v
Ret Re1 | Ro0-3
Rb RcD L Rd0
Ret Rd1
; v« Rc2 o Rd2
Rc2 Re2 Rc3 Rd3
o Rdo[ [Rd1 L7
v v v !
Re3 Re3 | RoD | Ro1 | Ro2 | Ro3 |
v l v l Just one PAE (not drawn to scale)
Ro0 Ro1  Ro2 PAE frequency 200MHz
Bus frequency 50MHz
XPP V2 function .
IfO allocation
PAE frequency 50MHz . .
Bus frequency 50MHz Register allocation
STEP 1 STEP 2 STEP 3a STEP 3b

For allowing complex function like i.e. address generation as
well as algorithms like “IMEC”-like data stream operations the
PAE has not only 4 instruction registers  implemented but 8,
whereas the maximum bus-clock vs. PAE-clock ration is limited
to a factor of 4 for usual function folding.

It is expected that the size of the new PAE supporting Func-
tion Folding will increase by max. 25%. On the other hand 4
PAEs are reduced to 1. :

Assuming that in average not the optimum but only about 3
functions can be folded onto a single PAE a XPP64 cbuld be re-
placed by a XPP21l. Taking the larger PAEs into account the
functionality of a XPP64 XPP-II should be executable on a XPP
XPP-III with an area of less than half.
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The function folding method and apparatus as well as otrher
further improvements will be described in even more detailed

hereinafter.

Equality of internal data registers and bus transfers

The function fold concept realises two differenpAmodels of

data processing:

a) Sequential model, wherein within the PAE the same rules ap-
ply as in von-Neuman- and Harvard-processors.

b) PACT VPU-model, wherein data are calculated or operated upon
in arbitrary order according to the PETRI-Net-Model (data

flow + synchronisation).

Due to the unpredictability of the arrival of data at the in-
put registers (IR) a deadlock or at a least significant reduc-
tion in performance could occur if the commands in RCO...RCn
were to be performed in a linear manner. In particular, if
feed~backs of the PAE outputs to the inputs of the PAE are
present, deadloéks might occur. This can be avoided if the in-
structioné are not to be processed in a given order but rather
according to the possibility of their processing, that is, one
instruction can be carried out as soon as all conditions of
the VPU-model are fulfilled. Therefore, for example, once all
RDY-handshakes of incoming data, ACK-handshakes of outgoing
data and, if necessary, triggers (including their handshakes)
are valid, then the instruction can be carried out._As the FF
PAE has data additionally stored in internal registé:s, their
validityvénd status has to be checkable as well in a preferred
embodiment. Therefor, every internal data register (RDO...RDn)
is separately assigned a valid bit indicating whether or not
‘valid data are present in the register. When writing data into

the register, valid is set, when reading, valid is reset. Data
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can be read only if ”valid” is set and‘can be written only if
“valid” is not set. Accordingly, the valid flag corresponds
most closely to the status that is produced in the state ma-
chines of Bus systems by the transmittal of RDY/ACK-
handshakes. It is a preferred embodiment and considered to be

inventive to provide a register with a status bit in that way.

It is therefore possible to carry out instructiédns at the time
when all conditions for the execution - again very similar to

PETRI-nets are fulfilled.

Basically, there are two methods available for selection of
instruction and control of their execution described herein

after.

Method A: FF PAE Program Pointer
(Finite State Machine & Program Pointer-Approach)

o
Inputs RDY Outputs ACK s =
P P valid bits &
5 —\\ mi! 52
. —— — Vv TS
g S5
@ — — v E 2
g — — v (L=
[ ond

ke — — v 3 g
© x4
2 m ! Y g2
2 — 3 N 0
Instruction Out §
or enable w

Fig. 1

According to the control principle of sequential pfocessors, a
program counter is used to select a certain instruction within
the instruction memory. A finite state machine controls the

program counter. This finite state machine now checks whether

or not all conditions for the instruction in RC (PC), that is
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the instruction, onto which the PC (Program Counter) points,
are fulfilled. To do so, the respective RDY- and/or ACK-
handshakes of the in- and/or outputs needed for the execution
of the instructions are checked. Furthermore, the valid-flags
of the internal registers to be read (RDO..RDn) are checked so
as to control whether or not they are set, and the valid-flags
of those internal registers (RDO..RDn) into which is to be
written, are checked whether they are not set.-if one of the
conditions is not fulfilled, the instructions will not be car-
ried out. PC is controlled to count further, the instruction
is skipped and the next instruction is selected and checked as

described.

The advantage of this method is the compatibility with sequen-
tial processor models. The disadvantage resides in the neces-
sity to test and to skip instructions. Both of which might re-
sult in significant losses of performance under certain cir-

cumstances.

Method B: FF PAE Program Pointer
(Enabler & Arbiter-Approach)
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- em v
Eﬁ em v
I1Sel
Fig. 2

Event Registers Re0..Ren / Rv0..Rvn

This method is based upon the possibility to test all instruc-

tions in Rc0..Rcn in parallel. In order to save the expense of

the complete decoding of array instructions, each RC is as-

signed an entry in an evaluation mask field, the length of

which corresponds to the maximum number of states to be

tested; therefore, for every possible RDY- or ACK-trigger-

signal (as well the RDY/ACKs of the triggers) as well as for

every valid bit in RDO...RDn two bits are available indicating

whether or not the respective signal is to be set or not set;

or, whether the state of the signal is unimportant for the

execution of the instruction.

Example mask
InData-RDY |[OutData- InTrigger OutTrig- Rd Data
ACK ger-ACK Valid
Rdy |don’ |Ack |don’ |trig |rdy |don’ |ack |don” |va- |don’
va- |t va- |t ger va- |t va- |t lid |t
lue care |lue care |va- lue |{care |[lue care |va- care
' lue lue
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The mask shows only some entries. At In-Trigger, both the
state of the trigger (set, not set) as well as the value of

the trigger (trigger value) can be tested via RDY-value.

A test logic testing via for example the Line Control de-
scribed herein affer all instructions in parallel. Using an
arbiter, an instruction of the set of all executables is se-
lected. The arbiter controls the instruction mulfiplexer via
ISel accorﬁing to the transferral of the selected instructions

to the PAE.

The Line Control has one single line of Boolean test logic for
every single instruction. By means of an ExOR-gate (e) the
value of the‘signal to be tested against the setting in em of
the . line is checked. By means of an OR-gate (+) respectively,
a selection is carried out, whether the checked signal is
relevant (don’t care). The results of all checked signals are
ANDed. A logic 1 at ﬁheroutput of the AND-gates (&) shows an
executable instruction. For every RC, a different test-line
exists. All test-lines are evaluated in parallel. An arbiter
having one of a number of possible implementations such as a
priority arbiter, Round-Robin-Arbiter and so forth, selects
one instruction for execution out of all executable instruc-
tions. There are further implementations possible obvious to
the average skilled person. Those variants might be widely
equivalent in the way of operation and function. In particu-
lar, the possibility of using “negative logic” is to‘be men-—

tioned.
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The foliowing figure gives an overview of the entire cir-

cuitry:



Ainstruction Out

lnTmTﬁo sTre RD..Ren

WO 2005/045692 PCT/EP2004/009640

13

o

—
em0val[0]
IRDYO
emOen|
emOval
IRDY1
emOen[1}
emOvailk]
emo0val[m}
validbitd
emOen{m}
em0val[n]
validbitn

Inputs RDY  Outputs ACK

valid bits

Testlogic RcO (em0)

em
em
em
em
em
em
em
em

\

\

Testlogic

Testlogic Rc1(em1) —t—

Arbiter

Testlogic Re2(em2) -

\
<<<<<\<<
\

Data Registers Rd0.
Event Registers Re0..Ren /Rv0..Rvn

1Sel

Testlogic Ren (emn) —

Fig. 4

Advantages of the method arer

Significantly fast, in view of the fact that one instruc-
tion can be carried out in every single clock

Reduced power consumption, since no energy is wasted on
disgarded-cycles which is in particular advantageous to the
static power dissipation.

Similar hardware expense as in the sequential solution when
using small and medium sized configuration memories (RC)

therefor similar costs.

Disadvantages:

Likely to be significantly more expensive on large RC;
therefore, an optimisation is suggested for.a given set of
applications.

In order to implement the sequencer mode (cémpare other
parts of the application) the program counter having an FSM
must be provided for. The FSM then is restricted to the
tasks of the sequencer so that the additional expenses and

the additional costs are relatively low.

B
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Depopulated Busses according to the State of the Art

All busses assigned to a certain PAE are connected to the in-
put registers (IR) or the output registers of the PAE are con-
nected to all busses respectively (compare for example DE 100

50 442.6 or the XPP/VPU-handbooks of the applicant).

It has been realised that PAEs, in particular FF PAEs, allow
for a depopulation of bus interconnects, in paftfcular, if
more IR/OR will be available compared to the State of the Art
of the XPP as previously known. The depopulation, that is the
reductions~of'the.possibilities to connect the IR or ER onto
the busses can be symmetrically or asymmetrically. The depopu-
lation will typically amount to 20 to 70 %. It is significant
that the depopulation will not or not significantly effect the
interconnectability and/or the routability of aﬁ algorithm in

a negative way.

The method of depopulation is particularly relevant in view of
the fact that several results can be achieved. The hardware-
expense and. thus the costs of the bus sygtems can be reduced
significantly; the speed of the busées is increased since the
gate delay is reduced by the minimisation of connecting
pointsf simultaneously, the power consumption of the busses is

reduced.

A preferred depopulation according to the VPU-architecture ac-
cording to the State of the Art, however, with more IR/OR is

shown in the following figure.



WO 2005/045692 PCT/EP2004/009640
15

: e I optional direct horizontal

e : o ' next-neighbor connect’ :
I e e ST (4x DEMUX atoutput (OR),
.- n. e g 40 amesne 4. :.. T 'v P 4)( MUXa}mput”(lR)) ‘-

|

9o ¢ |

910 ¢ |

9180 !
—OHOHD OO OO HD— 910

o
g0 !

pgmm————l
C) e —

]
s
I

1| e e ae
|

]

i

: 1
’ )
1

:énﬂ“ Y

bt
DD \xﬁx

“DHOTOHPHOHOHOHD,
Ceng

->§< :

TYYYY

\

4000

In particular, reference is being made to an optional exten-
sion of the bus architecture allowing for a direct next neigh-
bour data transfer of two adjacent PAEs, in particular two
PAEs placed one onto the other. Here, the outputs (OR) of one
PAE are directly connected to a dedicated bus which is then
directly connected to the inputs (IR) of a neighbouring PAE
(compare next figure). The figure only shows an horizontal
next neighbour bus, however, in general, vettical busses are

possible as well.

In the figure, the shaded circles stand for possible bus con-
nects: MUX. Double circuits stand for a connection from the

bus: DeMUX.
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Changes of the PAE 10
The following figure shows the State of the Art of a PAE im-

plementation as known from XPU128, XPP64A and described in DE
100 50 442:6

The known PAE has a main data flow in the direction from top
to bottom to the main ALU in the PAE-core. At the left and
right side, data channels are placed additionaliy transmitting
data along the main data flow direction, once the same direc-
tion as the main data flow (FREG) and once in the reverse di-
rection (BREG). On both sides of the PAE, data busses are pro-
vided that run in the reverse direction of the main data flow
of the PAE and onto which the PAE as well as FREG and BREG are
connected. The architecture of the State of the Art requires
eight data busses for each PAE side as well as four transfer

channels for FREG/BREG for typical applications.

Bus=8
FREG, BREG = 4

|
Y

\/

2
)

-t

—» ———BREG——» —-»

[ +—O43

Fig. 6

The bus system of the State of the Art has switching elements,
register elements (R), each at the side of the PAEs. The
switching elements allow for the disruption of a bus segmeﬁt
or disconnection to é neighbouring bus, the register elements
allow the construction of an efficient pipelinihg by transfer-
ring data through the register, so as to allow for higher
transferral band-width. The typical latency in vertical direc-
tion for next—neighbourftransmitting is 0 per segment, however
is 0,5-1 in horizontal direction per segment and higher fre-

quencies.
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Now, a modified PAE structure is suggested, wherein two ALUs,
each having a different main data flow direction are provided
in each PAE, allowing for significantly improved routability.
On one hand, the tools used for routing are better and sim-
pler, on the other hand, a significant reduction in hardware
resources is achieved. First tests shows that the number of
busses necessary in horizontal direction is reduced by about
25 % over the State of the Art. The vertical connects in
FREG/BREG (= BYPASS) can even be reduced by about 50 %. Also,
it is no more neceésary to distinguish between FREG and BREG

as was necessary in DE 100 50 442.6.
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The double-ALU structure has been further developed to an ALU-PAE having
inputs and outputs in both directions. Using automatic routers as well as
hand-routed applications, further additional significant improvements of
the network topology can be shown. The number of busses necessary seems to
be reduced to about 50 % over the State of the Art, the number of vertical
connects in the FREG/BREG (= BYPASS) can be reduced by about 75 %.
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Fig. 9

For this preferred embodiment which can be used for conven-
tional as well as for function fold ALUs, it is possible to

place register and switching elements in the busses in the
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middle of the PAE instead of at the sides thereof (see Fig.

below) .
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In this way, it is possible even for high frequencies to
transmit data in horizontal direction to the respective neigh-
bouring PAE without having to go through a register element.
Accordingly, it is possible to‘set,up next neighbour connec-
tions in vertical and horizontal directions which are latency
free (compare State of the Art and drawings referring to de-
populated busses). The example of the interconnections shown
in the respective figure allows transferral having zero la-
tency in.vertical direction and horizontally from left to
right. Using an optimisation of PAE interface structure a la-
tency free next neighbouring transmission in both horizontal
directions can be achieved. If in every corner of the PAE in-
put register (IR, arrow of bus into PAE) from bus aﬁd'output
register (OR, arrow from PAE té bus) to the bus are imple-
mented, each neighbouring PAE can exchange data without la-

tency (see Fig).
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It is possible to further optimise the above disclosed PAE ar-
Arangement. This can be done by using no separate bypass at all
in all or some of the PAEs. The perferred embodiment comprises
two ALUs, one of these being “complete” and having all neces-
sary functions, for example-multiplication and BarrelShift
while the second has a reduced instruction set eliminating
functions that require larger arrays such as multiplication
and BarrelShift. The second ALU is in a way replacing BYPASS
(as drawn). There are several possible positions for the reg-
ister in switching elements per bus system, and. two of the
preferred positions per bus are shown in Fig. 12 below in dot-

ted lines.
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Both ALUs comprise additional circuits to transfer data be-
tween the busses so as to implement the function of the by-
pass. A number of possible ways of implementations exist and

two of these shall be explained as an example.

a)Multipiexei
Configurable multiplexers within the ALU are connected so that
ALU inputs are bypassing the ALU and are directly connected to
their putputs.

b) MOVE instruction

A MOVE instruction, stored in RcO..Rcn is transferiing within
the respective processing clock of the function fold the data
according to the input specified within the instruction to the

specified output.

Superscalarlty/ Pipelining
It is possible and suggested as first way of improving per-
formance to provide roughly superscalar FF ALU-PAEs which cal-
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culate for example 2,4,8 operations per bus clock @ FF=2,4,8,
even while using the MUL opcode.

The basic concept is to make use of the VALID-flags of each
internal register. MUL is implemented as one Single opcode
which is pipelined over two stages.

MUL takes its operands from the input reglsters Ri and stores
the results into internal data registers Rd. VALID is set if
data is stored into Rd. ADD (or any other Opcode, such as
BSFT) uses the result in Rd if VALID is set; if not the execu-
tion is skipped according to the specified VALID behaviour.

In addition the timing changes for all OpCodes, if the MUL in-
struction is used inside a PAE configuration. In this case all
usually single cycle OpCodes will change to pipelined 2 cycle
OpCodes. The change is achieved by inserting a bypass able
multiplexer into the data stream as well as into control.

The following program will be explained in detail:
MUL (Rd0, Rdl), RiO, Ril;
ADD Ro0, Rdl, RiZ2;

In the first bus-cycle after configuration (to) MUL is executed
(assuming the availability of data at Ri0O/1). The register
pair Rd0/1 is invalid during the whole bus-cycle, which means
during both FF-PAE internal clock cycles. Therefore ADD is not
executed in the 2miclock cycle. After to the result of MUL is

. written into the register pair, which VALID flags are set at
the same time.

In t; new data is multiplied. Since the VALID is set for Rd0O/1
now the ADD command is executed in the 2°* clock cycle, but
takes 2 clock cycles for over all execution. Therefore operand
read and result write is inline for both operations, MUL as
well as ADD.

The result of a MUL-ADD combination is available with 2 clocks
latency in a FF=2 ALU-PAE. For FF >= 6 no latency is inserted.
However since multiplication and all other commands are proc-
essed in parallel the machine streams afterwards without any
additional delays.
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If there are OpCodes besides MUL which require 2 clock cycles
for execution (e.g. BSTF) the architecture must be modified to
allow at least 3 data writes to registers after the second in-
ternal clock cycle.

The data path output multiplexer gets 2 times larger as well
as the bus system to the output registers (OR) and the feed-
back path to the internal data registers (Rd).

If accordingly defined for the OpCodes, more than 4 internal
registers can be used without increasing the complexity by us-
ing enables (en) to select the specific register to write in
the data. Multiple registers are connected to the same bus,
e.g. RdO, Rd4, Rd8, Rdl2. However not all combinations of reg-
ister transfers are possible with this structure. If e.g. MUL
uses Rd0 and Rdl the following registers are blocked for the
OpCode executed in parallel: Rd4,5,8,9,12,13.

Register map:

"|Rd0 |Rd4 |RdS8 Rd12
Rdl {Rd5 |Rd9 Rd13
Rd2 |Rd6 |Rd10 |Rdl4
Rd3 [Rd7 |Rdll {Rdl5

Datapath architecture:

i | ﬂ}
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The Sequencer PAEs

Since there is a need to be able to run control flow dominated
applications on the XPP III as well, Sequencer PAEs will be
introduced. Such a PAE can be thought of as a very simple kind
of processor which is capable to run sequential code within
the XPP. This allows the efficient implementation of control
flow oriented applications like the H.264 Codec on the array
whereas with SEQ-PAEs missing the realization would be more
difficult and resource consuming. ’

The SEQ-PAEs are not build from scratch. Instead such a tile
will be build up by a closely coupling of a ALU-PAE and neigh-
boring RAM-PAE, which can be seen in Figure 1.

% %

% RAM-PAE

ALU-PAE

configurable
Sequencer

Figure 1 : Configurabel Sequencer

Therefore the functionality of the ALU- as well as RAM-PAE has
to be enhanced to be able to fulfill the requirements of such
a SQE-PAE. This information will be given next.

ALU~-PAE Enhancements

The extended version of the ALU-PAE is given in Figure 2. To
the right border the registers which are controlling the dif-
ferent modules can be seen. Those registers will be used in
normal- as well as in SEQ-mode. Therefore the appropriate con-
trol signals from the local configuration manager &nd the RAM-
PAE are first merged by OR-Gates and then are forwarded to the
register whereas it has to be ensured that in normal mode the
signals from the RAM-PAE are 0 and vice versa.

Further more, since the ALU-PAE marks the execution part of
the tiny processor, there is a need to transfer values to and
from the internal register directly to the RAM. Therefore a
additional multiplexer AM1 is inserted in the multiplexer hi-
erarch of section 2. In the normal mode this multiplexer feeds
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the word from its predecessor to the next stage whereas in the
SEQ mode an immediate value provided by the Imm. Register will
be delivered. In addition in SEQ mode a wvalue of one of the
internal registers can be delivered to the RAM-PAE via the
output of the multiplexer. However, it has also to be consid-
ered to provide a “LOAD reg, imm"“ since this is not much slo-
wer than ,ADD reg, reg, imm"“

To enable the RAM-PAE to write data to the internal register
of the ALU-PAE another multiplexer is inserted in the multi-
plexer chain of section 4. Similar to the scenario given above
this multiplexer will only be activated in SEQ mode whereas in
normal mode this multiplexer will just forward the data of its
predecessor. In one preferred embodiment, it is suggested to
place RS2 behind BSFT-Mux in view of the delay. Data could be
written into the internal registers via this. (LOAD reg, imm)]
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Figure 2 : Enhanced Version of the ALU-PAE
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As it has already been discussed, data can be processed during
one or two cycles by the ALU-PAE depending on the selected
arithmetic function. Due to the auto synchronization feature
of the XPP and due to the fact that in normal mode a succes-
sive operation will not start before the previous one is fin-
ished, it does not really care 1f an operation lasts one or
two clock cycles. Whereas the tile is working in SEQ mode
there is a difference since we assume to have a pipeline char-
acter. This means that a one cycle operation could run in par-
allel with a two cycle module where the operation would be
executed in stage two at this time. Due to the 1imited multi-
plexing capacities of a word - 16 Bit - only one result could
be written to the connected registers whereas the other one
would be lost. In general there are three possibilities to
solve this problem.

The first one could be that the compiler is capable to handle
this problem. This would mean that it has to know about the
pipeline structure of the whole SEQ-PAE as well as of a tile
in detail. To prohibit a parallel execution the compile would
have to add a NOP to every two cycle instruction for the
structure given above. However this idea seems not to be con-
venient due to the strong relation between the hardware struc-
ture and the compiler. The drawback would be that every time
changes are made to the hardware the compile would most likely
have to be trimmed to the new structure.

The second idea could be to recognize such a situation in the
decode stage of the pipeline. If a two cycle instruction is
directly followed by an instruction accessing a one stage
arithmetic unit it has to be delayed by one clock cycle as
well.

The last possibility is to make the complete ALU-PAE look like
a two stage execution unit. Therefore only one register has to
be included in the multiplexer chain of section four right af-
ter the crossover from the multiplexer separating the one
stage of the two stage modules. Obviously, this is preferred.

Comparing the last to ideas the third one seems to be the best
one since only one register has to be inserted. If we a closer
look to the second solution special logic would be needed for-
analyzing the disallowed combination of instructions as well
as logic for stopping the program counter (PC) and the in-
struction retardation. It has to be assumed that* this logic
would require much more area than the registers as well as the
fact that the delay of the logic would possibly increase the
critical path.

Since it has to be dlstlngulshed between the SEQ and the nor-
mal mode where a one cycle execution should still be avail-
able. This possibility is given by a multiplexer which allows
to bypass the RS2 Register as shown in the corresponding fig-
ure. (Figure 2)
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The RAM-PAE

A short description of the .stages

To get the SEQ-PAE working there still has to be provided more
functionality. Right now the RAM-PAE will take care of it. As
a first approach for realizing the sequencer a four stage
pipeline has been chosen. The stages are, as it can be seen in
Figure 3:

The fetch stage
The decode stage
The execution stage 1
The execution‘stage 2

In the fetch stage the program counter for the next clock cy-
cle will be calculated. This means that it will be either in-
cremented by 1 via a local adder or one of the program count-
ers from the decode or execution stage 2 will be selected. The
program counter of the execution stage thereby provides the
address if a call instruction occurred whereas the program
counter of..the execution stage provides the PC if there has
been a conditional Jjump. Right now the branch address can'ei-
ther be calculated out of the current PC and a value which ei-
ther be an immediate value or a value from a internal regis-
ters of the ALU-RAM - indirect addressing mode - or an abso-
lute value. This e.g. is necessary if there is return from a
subroutine to the previous context whereas the according abso-
lute PC will be provided by the stack bank.

In the decode stage the instruction coming from the code bank
will be decoded. Necessary control signals and, if needed, the
immediate wvalue for the internal execution stage 1 as well as
for the execution stage 1 of the ALU-PAE will be generated.
The signals include the control information for the multiplex-
ers and gating stages of section two of the ALU-PAE, the op-
eration selection of the ALU’s tiles, e.g. signed or unsigned
multiplication, and the information whether the stack pointer
(SP) should be in/decremented or kept unchanged in the next
stage depending on the fact if the instruction is either a
call or jump. In case a call instruction occurred a new PC
will be calculated in parallel and delivered to the fetch
stage.

Furthermore the read address and read enable signal to the
data bank will be generated .in case of a load instruction.

In the executionvstagé 1, which by the way 1is the first stage
available on the ALU as well as on the RAM-PAE, the control
signals for execution stage 2 of the ALU-PAE are generated.
Those..signal will take care that the correct output of one of
the arithmetical tiles will be .selected and written to the en-
abled registers. If the instruction should be a conditional
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jump or return the stack pointer will be modified in this
stage. In parallel the actual PC will be saved to the stack
bank at the address give by the Rsp EX1l register in case of a
branch. Otherwise, in case of a return, the read address as
well as the read enable signal will be applied to the stack
bank.

In execution stage 2 the value of the PC will be calculated
and provided to the multiplexer in the fetch stage in case of
a jump. At the time write address and write enable signal to
the data bank are generated if data from the ALU have to be
saved.

Instead of two adders, it is possible to provide only one in

the rpp path.
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section a short overview of the actions that

are taking place in the four stages will be given for some ba-

sic instructions.

of the pipeline.

It should "help to understand the behaviour
Since the instruction which is going to be

discussed will be available at the instruction register the
actins of the fetch stage will be omitted in this representa-

tion.- ‘

IR: Instruction Register

DR: Data Register

DB: Data Bank

SBR : Store/Branch Register

Instruction: Load value from data bank to R{n]

ALU-PAE

| RAM-PAE

decode stage

IR exl <- IR ex2

Control Registerset EXS1 <- 0x0
Imm. EXSI <- 0x0

Rpp_exl <~ Rpp de

DB radr <- imm

Execution stage 1

IR ex2 <- IR exl

Control Registerset EXS2 <~ enable R, set
mux section 4

Rpp_ex2 <- Rpp_exl

DR <- DB radr [imm]

Rsp ex2 <- Rsp exl

Executinon stage 2

R[n] <- DR.

Instruction: Sore value from R[n] to data bank

ALU-PAE

| RAM~PAE

decode stage

IR _exl <- IR _ex2

Control Registerset EXS1 <- enable mux sec-
tion 2

Imm. EXSI <- 0x0

Rpp exl <- Rpp de

Execution stage 1

SBR <~ R[n]

IR ex2 <- IR exl

Control Registerset EXS2 <- 0x0
Rpp_ex2 <- Rpp_exl

Rsp ex2 <- Rsp exl

Executinon stage 2

DB_wradr <- imm
DB wrdata <- SBR




WO 2005/045692 PCT/EP2004/009640
- 31

1.3 Array Structure

First advantages over the prior art are obtained by using
function folding PAEs. These as well as other PAEs can be im-
proved.

- The XPP-II structure of the PAEs consumes much area for FREG
and BREG and their associated bus interfaces. In addition feed
backs through the FREGs require the insertion of registers
into the feedback path, which result not only in an increased
latency but also in a negative impact onto the throughput and
performance of the XPP.

A new PAE structure and arrangement is proposed with the ex-
pectation to minimize latency and optimize the bus intercon-
nect structure to achieve an optimized area.

The XPP-III PAE structure does not include BREGs any more. As
a replacement the ALUs are alternating flipped horizontally
which leads to improved placement and routing capabilities es-
pecially for feedback paths i.e. of loops.

Each PAE contains now two ALUs and two BP paths, one from top
to bottom and one flipped from bottom to top.

rio | A | rbo ;Jh AY | el FALUSE: AT VI AUDE: JF

AP R & || &[] (&[] ¢ [

PAE Structure and ‘ PAE Structure and
arrangement V2.0 ) arrangement V2.2

1.4 Bus modifications

Within this chapter optimizations are described which might
reduce the required area and the amount of busses. However,
those modifications comprise several proposals, since they
have to be evaluated based on real algorithms. It is possible
to e.g. compose a questionnaire to collect the necessary input
from the application programmes.

1.4.1 Next neighbour
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In XPP-IT architecture a direct horizontal data rath between
two PAEs block a vertical data bus. This effect increases the
required vertical busses within a XPP and drives cost unneces-
sarily. Therefore in XPP-III a direct feed path between hori-
zontal PAEs is proposed.

{

In addition horizontal busses. of different length are pro-
posed, i.e. next neighbour, crossing 2 PAEs, crossing 4 PAEs. -

1.4.2 Removal of registers in busses

In XPP-II registers are implemented in the vertical busses
which can be switched on by configuration for longer paths.
This registers can furthermore be preloaded by configuration
which requires a significant amount of silicon area. It is
proposed to not implement registers in the busses any more,
but to use an enhanced DF or Bypass (PB) part within the PAEs
which is able to reroute a path to the same bus using the DF
or BP internal registers instead:

-
uUio | Uit | Ui2 | Ui3 . . Bulo | Bui1 8 .~ | BUI2 | Bui3
vio | vit | viz | viz Ri0 Ri1 Ri2 Ri3 BRIO | BRIt Bvi0 | Buit ? BRi2 | BRi3 Bvi2 | Bvis ?
1 I
1 t
l Y 1 1 y | y vy |
1 ] i 1 ] 1 ] 1 1 1
1 { 11 1 ! ] 1
I T 1 11 — 11 ]
. 1 1
TR T 1 i
o
LLReT
Y RdD Rd1
!
i Rd2 Rd3 ACC
Rpp”
‘J Fuo | Fu1 y 14 1 Y
Rlc - LuT LUT
Fu2 } Fu3 4:5 4:5
Rib
FvO | Fv1
Y _ ¥ ' R
Fv2 | Fv3 DF DF
. ] y. .y ' y y ' y
Uo0 | Uo1 | Uo2 | Uo3 BRo | BRo | Buo0 | Buo1 BRo | BRo | Buo2 | Buo3
Vo0 | Vo1 | Vo2 [vos | ReO Ro1 Ro2 Ro3 0 | 1 |Bvo0|Bvot 2 | 3 |Bvo2|Bvo3

Here, it might be to decide how many resources are saved for
the busses and how many are needed for the PAEs and /or how

- often must registers be inserted, are 1 or max. 2 paths enough
per PAE (limit is two since DF/BP offers max. 2 inputs

1.4.3 shifting n:1, 1:n capabilities from busses to PAEs
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In XPP-II n:1 and 1l:n transitions are supported by the busses
which requires a significant amount of resources i.e. for the
sample-and-hold stage of the handshake signals.

Depending on the size of n two different capabilities are pro-
vided with the new PAE structure:
n <2 The required operations are done within the
DF path of the PAE '
2 <n < 4 The ALU path is required since 4 ports are nec-

essary )
n > 4 Multiple ALUs have to be combined

This method saves a significant amount of static resources in
silicon but requires dedicated PAE resources at runtime.

Here, it might be worthwhile to evaluate how much silicon area
is saved per bus how often occurs n=2, 2 <n <4, n > 4 the ra-
tio between saved silicon area and required PAE resource and

to decide on the exact bus structure in repsonse to one or all
of said criteria.

1.5 FSM in RAM-PAEs

In the XPP-II architecture implementing control structures is
very costly, a lot of resources are required and programming
is quite difficult.

However memories can be used for a simple FSMs implementation.
The following enhancement of the RAM-PAEs offers a cheap and
easy to program solution for many of the known control issues,
including HDTV.

data trigger
current address ) carry
4
7/
Yy
FF SRAM CNT
\
N
L \
muxsel
/ z
7 L 7
next address step/reload
trigger"
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Basically the RAM-PAE is enhanced by an feedback from the data
output to the address input through a register (FF) to supply
subsequent address within each stage. Furthermore additional
address inputs from the PAE array can cause conditional jumps,
data output will generate event signals for the PAE array.
Associated counters which can be reloaded and stepped by the
memory output generate address input for conditional jumps
(i.e. end of line, end of frame of a video picture).

A typical-RAM-PAE implementation has about 16-32 data bits but
only 8-12 address bits. To optimize the range of input vectors
it is therefore suggested to insert some multiplexers at the
address inputs to select between multiple vectors, whereas the
multiplexers are controlled by some of the output data bits.

One implementation for an XPP having 24bit wide data busses is
sketched in the next figure. 4 event inputs are used as input,
as well as the lower for bits of input port RiO. 3 counters
are implemented, 4 events are generated as well as the lower
10 bits of the Ro0O port.

The memory organisation suggested here may be as follows:
8 address bits
24 data bits (22 used)
4 next address
8 multiplexer selectors
6 counter control (shared with 4 additional next ad-
dress)
4 output
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Ei0 | Ei1 Rio Ri1 Ri2 Ri3 Ei2 | Ei3
—] carry
) K ' K3 /}
\M+ / \ +
current address
a % muxsel
1 4x2
Y
i ¥ }
FF SRAM CNTj CNT2 CNT3
4 next address [} 1 1
4 ] I |
£ ya
next address (shared). steplreload’ (shared)
4 3x2
Y v C v

Eo0

Eo1

Ro0

Ro1

Ro2

Ra3

Eo2

Eo3

It is to be noted that the typical memory mode of the RAM-PAE
is not sketched in the block diagram above.

The width of the counters is accordlng to the bus width of the
data busses

For a 16 bit implementation it is suggested to. use the carry
signal of the counters as their own reload signal (auto re-
load), also some of the multiplexers are not driven by the
memory but “hard wired” by the configuration.

The proposed memory organisation is as follows:
8 address bits
16 data bits (16 used)
4 next address
4 multiplexer selectors
3 counter control (shared with 3 additional next ad-
dress) '
4 output
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Ei0 | Eit Ri0 Rit Ri2 Ri3 Ei2 | Ei3
— carry
+ / + y 1 y
select by
config
current address
Pa | muxsel
Vd . + 4 N 2x2
‘ I }
FF SRAM CNT1 CNT2 CNT3
4  nextaddress ' A 4 [
4 | |
Z .
next address (shared) step(sKared)
3 : 3
vy r v ¥
Eo0 | Eo1 Ro0 Ro1 Ro2 Ro3 Eo2 | Eo3

It is to be noted that actually the RAM-PAEs typically will
not be scaleable any more since the 16-bit implementation is
different from the 24-bit implementation. It is to decide
whether the striped down 16-bit implementation is used for
24-bit als :

1.6 IOAG interface
1.6.1 Address Generators and bit reversal addressing

Implemented within the IO interfaces are address generators to
support e.g. 1 to 3 dimensional addressing directly without
any ALU-PAE resources. The address generation is then done by
3 counters, each of them has e.g. configurable base‘ address,
length and step width. , .
The first counter (CNT1l) has a step input to be controlled by
the array of ALU-PAEs. Its carry is connected to the step in-
put of CNT2,.which carry again is connected to the step input
of CNT3.

Each counter generates carry if the value is equal to the con-
figured length. Immediately with carry the counter is reset to
its configured base address.



WO 2005/045692 PCT/EP2004/009640
37 )

One input is dedicated for addresses from the array of ALU-
PAEs which can be added to the values of the counters. If one
or more counters are not used they are configured to be zero.

In addition CNT1 supports generation of bit reversal address-
ing by supplying multiple carry modes.

!

+

PN

CNT3 CNT2 CNT1*

1.6.2 Support for different word width

In general it is necessary to support multiple word width
within the PAE array. 8 and 16 bit wide data words are pre-
ferred for a lot of algorithms i.e. graphics. In addition to
the already described SIMD operation, the IOAG allows the
split and merge of such smaller data words.

Since the new PAE structure allows 4 input and 4 output ports,
the IOAG can support word splitting and merging as follows:

I/0 0 I/0 1 I/0 2 I3
16/24/32-bit address
data word.
16-bit data 16-bit data address
word word .
8-bit data word|8-bit data word|8-bit data word|address

Inpﬁt ports are merged within the IOAG for word writes to the
I0. '

For output ports the read word is split according to the con-
figured word width.

1.7 Multi-Voltage Power Supply and Frequency Stepping

PAEs and busses are build to perform depending on the work-
load. Therefore the clock frequency is configurable according
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to the data bandwidth, in addition clock gating for registers
is supported, busses are decoupled using row of AND gates.
Dynamically clock pulses are gated, whenever no data can be
processed.

Depending on the clock frequency in the PAEs and the required
bandwidth for the busses the voltage is scaled in an advanced
architecture. Within the 4S project such methods are evaluated
and commercially usable technologies are researched.

1.8 XPP / pP coupling

For a closed coupling of a pP and a XPP a cache and register
interface would be the preferable structure for high level
tools like C-compilers. However such a close coupling is ex--
pected not to be doable in a very first step.

Yet, two different kind of couplings may be possible for a
tight coupling:

a) memory coupling for large data streams: The most conven-
ient method with the highest performance is a direct
cache coupling, whereas an AMBA based memory coupling
will be sufficient for the beginning (to be discussed
with ATAIR)

b) register coupling for small data and irregular MAC opera-
tions: Preferable is a direct coupling into the proces-
sors registers with an implicit synchronisation in the
OF-stage of the processor pipeline. However coupling via
load/store~- or in/out-commands as external registers is
acceptable with the penalty of a higher latency which
causes some performance limitation.

2 Specification of ALU-PAE
2.1 Overview
In a preferred embodiment, the ALU-PAE comprises 3 paths:
ALU arithmetic, logic and data flow handling
BP bypass
Then, each of the paths contains 2 data busses and 1 event
bus. The busses of the DF path can be rerouted to the ALU path
by configuration.
2.2 ALU path Registers
The ALU path comprises 12 data registers:

Ri0-3 Input data register 0-3 from bus
Rv0-3 Virtual output data register 0-3 to bus
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Rd0-3 Internal general purpose register 0-3

Vi0-3 V event input 0-3 from bus

Ui0-3 U event input 0-3 from bus

Ev0-3 Virtual V event output register 0-3 to bus

Eu0-3 Virtual U event output register 0-3 to bus

Fu0-3

Fv0-3 Internal Flag u and v registers accordlng to the
XPP-IT PAE’s event busses

Acc Accumulator

Eight instruction registers are implemented, each of them is
24 bit wide according to the opcode format.
Rc0-7 Instruction registers

Three special purpose registers are implemented:

Rlc Loop Counter, configured by CM, not accessible
through ALU-PAE itself. Will be decremented accord-
ing to JL opcode. Is reloaded after value 0 is

. reached.

Rjb Jump-Back register to define the number of used en-
tries in Rc[0..7]. It is not accessible through
ALU-PAE itself.

If Rpp is equal to Rjb, Rpp is 1mmed1ately reset to
0. The jump back can be bound to a condition i.e. an
incoming event. If the condition is missing, the
jump back will be delayed

Rpp Program pointer

2.3 Data dublication and multiple input reads

Since Function Folding can operate in a purely data stream
mode as well as in a sequential mode (see 1.2) it is useful to
support Ri reads in dataflow mode (single read only) and se-
quential mode (multiple read). The according protocols are de-
scribed below: ‘

Fach input register Ri can be configured to work in: one of two
different modes \

Dataflow Mode

This is the standard protocol of the XPP-II implementation:

A data packet is taken read from the bus if the register is

empty, an ACK handshake is generated. If the register is not
empty ACK the data is not latched and ACK is not generated..
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If the register contains data, it can be read once. Immedi-
ately with the read access the register is marked as empty. An
empty register cannot be read.

Slmpllfled the protocol is deflned as follows:
RDY & empty - full
- ACK
. RDY & full - notACK

READ & empty - stall
READ & full - read data
- empty

Please note: pipeline effects are not taken into account in
this description and protocol.

Sequencer Mode

The input interface is according to the bus protocol defini-
tion: A data packet is taken read from the bus if the register
is empty, an ACK handshake is generated. If the register is
.not empty ACK the data is not latched and ACK is not gener-
ated.

If the register contains data it can be read multiple times
during a sequence. A sequence is defined from Rpp = 0 to Rpp =
Rjb. During this time no new data can be written into the reg-
ister. Simultaneously with the reset of Rpp to 0 the register
content is cleared an new data is accepted from the bus.

Simplified the protocol is defined as follows:
RDY & empty - full
- ACK
RDY & full — notACK

READ & empty - stall
READ & full - read data

(Rpp == Rjb) -~ empty

Please note: pipeline effects are not taken into account 1n
this description and protocol.

2.4 Data register and event handling .

Data registers are directly addressed, each data reglster can

be individually selected. Three address opcode form is used, r:
~ Isi, rsg. An virtual output reglster is selected by adding ‘o’
behind the register. The result will be stored in r: and copied '
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to the virtual output register r, as well according to the rule
op out (ry, rc ) « Isi, Iso-

Please note, accessing input and (virtual) output registers
follow the rules defined in chapter 2.3.

Nota-

sourc |re
e tion
000 0 RdO
001 1 |Rd1
010 2. Rd2

1011 3 Rd3
100 0 RiO
101 1 Ril
110 2 . |Ri2
111 3 Ri3
tar- |r: Iy Nota-
get tion
000 0 - RdO
001 |1 - Rdl
010 2 - Rd2
011 3 - Rd3
100 0 0 Ro0
101 1 1 Rol"
110 2 2 Ro2
111 3 3 Ro3

Events are used equal to data registers. All input and inter-
nal events can be addressed directly, output events are used
whenever an ‘o’ is added behind the event.

etp ept - |{epy |Notation
000 0 - Fu0, FvO
001 1 - Ful, Fvl
010 2 - Fu2, Fv2
011r |3~ |- Fu3, Ev3. |
100 0 0 Eou0, EovO0.
101 1 1 Eoul, Eovl
110 2 2 Eou2, Eov2
111 3 3 Eou3, Eov3
esd/e |et ey Nota-

t4 - |tion

0000 0 - v0

0001 1. - vl

0010 2 - v2

0011 3. - v3
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0100 0 0 vol
0101 1 1 vol
0110 2 2 Vo2
0111 3 3 vo3
1000 O - ul
1001 1 - ul
1010 2 - u2
1011 3 - u3
1100 0 0 uo0
1101 1 1 uol
1110 2 2 uo2
1111 3 3 uo3

2.4.1 ACCumulator‘Mbde

To achieve low power consumptidn and for better supporting
DSP-like algorithms an accumulator register is available which
can be addressed by just one set bit for the result register
(ao) and: operand register (ai).

For commutative operations always operand register 1 is re-
placed by ai. For non commutative operations as SUBtract oper-
and register 1 selects, whether ai is the first or second op-
erand. Operand register 2 defines the accordingly other oper-
and. "

It is to be noted that it has to be clarified whether a real
ACCumulator mode makes sense or just a MAC-command should be
implemented to handle the multiply accumulate in a single com-
mand consuming two clock cycles with an implicit hidden accu-
mulator access.

2.4.2 Parameter Stack Mode (PSTACK)

Unused entries in the Opcode Registers Rc can operate as stack
for constants and parameters. At Rpp == 0000 the Rps PStack

registers points to Rjb +1, which means the PStack area starts
immediately behind the last entry in the Opcode register file.

To access the PStack, thé FF-PAE must be in the Fast-Parameter
Mode. Each read access to Ri3 is redirected to read from the
PStack, whereas after each read access the pointer incremented’
with one. There is no check for an overflow of the PStack
pointer implemented, an overflow is regarded as a program bug.
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0000/Base —>
code
ib —_
Reset PStack
pop
W
Overflow ->
Programming
Error

2.4.3 n:1 Transitions

n:1 transitions are not supported within the busses any more.
Alternatively simple writes to multiple output registers Ro
and event outputs Eo are supported. The Virtual Output regis-
ters (Rv) and Virtual Event (Ev) are translated to real Output
registers (Ro) and real Events (Eo), whereas a virtual regis-
ter can be mapped to multiple output registers.

To achieve this a configurable translation table is imple-
mented for both data registers and event registers:

Rv ~ |Ro0 |Rol |Ro2 {Ro3
Ev Eo0 |Eol |Eo2 |Eo3
O .
1
2
3

Example:.

Rv0 mapped to Ro0, Rol
Rvl mapped to Ro2

Rv2 mapped to Ro3

Rv3- unused

[Rv . [Ro0 [Rol |Ro2 |Ro3 |
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0 1 1 0 0
1 0 0 1 0
2 0 0 0 1
3 0 0 0 0

2.4.4 Accessing input and output registers (Ri/Rv) and events -
(Ei/Ev)

Independently -from the opcode accessing input or output regis-
ters or events is defined as follows:

Reading an input register:

Register: Operation

status :

empty : wait for data

full read data and continue’
operation

Writing to an output register:

Register Operation

status .

empty write data to register

full wait until register is cleared and can
accept new data

2.4.5 Multi-Config Mode

" The Multi-Config Mode allows for selecting 1 out of maximum 4
stored configurations. Incoming events .on Fui(0,l1 and FviO,1l
select one of the 4 configurations. Only one Event shall be
active at a clock cycle.

The selection is done by a simple translation, each event
points to a specific memory address.
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Wait for Event
uio >
code
vio
code
—_— . ~
Ul —— 4
code
Vit >
code
—_—

Long configurations may use more than 3 opcode by using the
next code segments as well. In this case, the according events
can not be used.

Wait for Event

Uio, —>

jp—>

Overflow ->
Programming __ it ——,
Error

code

jp—>

2.5 Opcode format

24 bit wide 3 address opcodes are used in a preferred embodi-
ment: ‘

OP It « Xa, Yyp
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Source registers can be Ri and Rd, target registers are Rv and
Rd. A typical operation targets only Rd registers. If the
source register for r, is Ri[x] the target register will be
-RA[x].

The translation is shown is the following table:

Tar—- |Source
get ra

RdO RdO
Rd1l Rd1
Rd2 Rd2
Rd3 Rd3
RdO Ri0
Rd1l Ril
Rd2 Ri2
Rd3 Ri3

Each operation can target a Virtual Output Register Rv by add-
ing an out tag ‘o’ as a target identifier to the opcode:

op (re, rot) « Tra, Ip

Data is transferred to the virtual output register and to the
according internal register as well:

Rv Rd
RvO RdO
Rvl Rdl
Rv2 Rd2
Rv3 - |Rd3

2.5.1 Conditional Exécution

The SKIPE command supports conditional execution. Either an
event or ALU flag is tested for a specific value. Depending on
the check either the next two addresses are executed (Rpp + 1)
or skipped (Rpp + 3). If an incoming event is checked, the
program execution stops until the event is arrived at the
event port (RDY handshake set).

SKIPE supports conditional execution of any OpCode whlch is
not larger than two memory entries.

In SEQ-PAEs, which support CALL and.RET OpCodes, also stack
based subroutine calls are supported.

2.6 Clock

The PAE can operate at a configurable clock frequency of
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1x Bus Clock
2x Bus Clock
4x Bus Clock
[8x Bus Clock]

2.7 The DF path

The DataFlow path comprises the data registers Bri0..3 and
Bro0..3 as well as the event register Bui/Bvi0..3 and
Buo/Bvo0..3. ’

The main purpose of the DF path is to establish bus connec-
tions in the vertical direction. In addition the path includes
a 4 stage FIFO for each of the data and event paths.

The DF path supports numerous instructions, whereas the in-
struction is selected by configuration and only one of them
can be performed during a configuration, function folding is
not available.

The following instructions are implemented in the DF .path:

1. ADD, SUB

2. NOT, AND, OR, XOR

3. SHL, SHR, DSHL,.DSHR, DSHRU
4. EQ, CMP, CMPU

5. MERGE, DEMUX, SWAP

6. SORT, SORTU

7. ELUT

2.9 Parameter Broadcast and Update

Parameters and constants can be updated fast and synchronous
using input register Ri3 and event input Ei7.
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uio
vio

Uit
Vil

ui2
vi2

Ri0

Ri1 Ri2
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Bvi0

Buit

BRit Buit
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1 | BvoO | Bvol

BRo
3

Buo2
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Bvo3

Depending on the update mode, data packets at the input regis-

ter Ri3 are copied subsequently into Rd3, Rd2 and Rdl at each

access of the according register by the PAE, if the event Ei7

is set. Afterwards all input data at Ri3 is propagated to the
output register Ro3, also the Eo7 event output is set, to in-

dicate following PAEs the occurrence of a fast parameter up-

date, which allows to chain PAEs together

(i.e.

FIR filter) and updating all parameters in the chain.

regis- |Ei7 |UPM1 UPM2 UPM3
ter upmcfg = upmcfg = upmcfg =
access 0100 1000 1100
- 0 - . -
read 1 Ri3 -> Rd3 Ri3 -> Rd3 Ri3 -> Rd3
Rd3 :
read 1 Ri3 -> Ro3 Ri3 <> Rd2 ‘Ri3 =-> Rd2
Rd2 1 -> Eo7
read 1 Ri3 -> Ro3 Ri3 -> Ro3 Ri3 -> Rdl
Rd1l’ 1 -> Eo7 1 -> Eo7 .
- 1 Ri3 -> Ro3 Ri3 -> Ro3 Ri3 -> Ro3
1 -> Eo7 1 -> Eo7 1 => Eo7

Also the OpCode UPDATE updates all registers subsequently if
Ei7 is set, depending on the Update Parameter Mode (upmcfg =

nnl0) .

Also the register update can be configured to occur whenever
Rpp == 0 and Ei7 is set by upmcfg = nnOl.

in a multi-TAP
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In both cases nn indicates the number of registers to be up-
dated (1-3).

Ei7 must be 0 for at least one clock cycle to indicate the end
of a running parameter update and the start of a new update.

3 Input Output Address Generators (IOAG)

The IOAGs are located in the RAM-PAEs and share, the same reg-
isters to the busses. An IOAG comprises 3 counters with for-
warded carries. The values of the counters and an immediate
address input from the array are added to generate the ad-
dress.

One counter offers reverse carry capabilities.

3.1 Adressing modes

Several addressing modes are supported by the IOAG to support
typical DSP-like addressing:

Mode Description
Immediate Address generated by the PAE array
xD counting Multidimensional addressing using

IOAG internal counters
‘ xD means 1D, 2D, 3D
xD circular Multidimensional addressing using
IOAG internal counters, after over-
flow counters reload with base ad-—

) dress

xD plus immedi- xD plus a value from the PAE array

ate

Stack decrement after “push” operations
increment after “read” operations

Reverse carry Reverse carry for applications such
as FFET

3.1.1 Immediate Addressing

The address is generated in the array and directly fed through
the adder to the address output. All counters are. disabled and
set to O.

3.1.2 xD counting

Counters are enabled depending on the required dimension (x-
dimensions require X counters). For each counter a base ad-
dress and the step width as well as the maximum address are
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configured. Each carry is forwarded to the next higher and en-
abled counter; after carry the counter is reloaded with the
start address.

A carry at the highest enabled counter generates an event,
counting stops.

3.1.3 xD circular

The operation is exactly the same as for xD counting, with the
difference that a carry at the highest enabled counter gener-
ates an event, all counters are reloaded to their base address
and continue counting. '

3.1.4 Stack

One counter (CNT1l) is used to decrement.after data writes and
increment after data reads. The base value of the counter can
either be configured (base address) or loaded by the PAE ar-
ray.

3.1.5 Reverse carr&

Typically carry is forwarded from LSB to MSB. Forwarding the
carry to the opposite direction (reverse carry) allows gener-
ating address patterns which are very well suited for applica-
tions like FFT and the like. The carry is discarded at MSB.

For using reverse carry a value larger than LSB must be added
to the actual value to count, wherefore the STEP register is
used.

Example:
BASE = Oh
STEP = 1000b

Step |Counter

Value
1 b0...00000
12 b0...01000
3 b0...00100
4 b0...01100
5 b0...00010.

16 . b0...01111
17 b0...00000
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The counter is implemented to allow reverse carry at least for
STEP values of -2, -1, +1, +2.

4. ALU/RAM Sequencers ~ SEQ-PAEs

Each ALU-PAE at the left or right edge of the array can be
closely coupled to the neighbouring RAM-PAEs as an IP option,
thus allowing for configure a sequencer. For compatibility
reasons, the data and opcode width of the sequencer is 16ébits.

A

Y, 7
7 7,

//// RAM-PAE

ALU-PAE

N

~
~

configurable
Sequencer

The ALU-PAEs can operate exactly as array internal ALU-PAEs
but have several extensions. Operation is Sequencer mode the
register file is 8 data registers wide, Fu and Fv flags are
used as carry, sign, null, overflow and parity ALU flag word.

Event Registers FF- | Processor Registers SEQ-
Mode Mode
Fu0 carry
Ful sign
Fu2 null
Fu3 overflow
Fv0 parity

"The address width is accordingly 16bit. However since the RAM-
PAE size is limited it is segmented into 16 segments. Those
segments are used for code, data and stack and must be indi-
vidually preloaded by the compiler.

4 segment registers point to the specific segments:
CodeBank Points to the actual code segment
DataBank Points to the actual data segment

 StackBank Points to the actual stack segment
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AuxiliaryBank Points to any segment (but code), allowing

[ —"——

copy operations between segments
uio | Ui | ui2 | uis . . ] | " -, | Buio | Buit . - | Bui2 | Bui3
vio | vit | viz | via Ri0 Ri1 Ri2 Ri3 BRIO | BRi1 8vio | Buit ? BRi2 | BRi3 Bvi2 | Bvia
[}
1
\ A y y | Y v 4 1
1 1 1 1 1 Il 1 1
I I I ] [ [ i T
S ! e M R
H
Rpp
Rspe Rspi RdO | Rd1 | Rd2 | Rd3 | ACC
Rd4 | Rd5 | Rd6 | Rd7
Code '
Bank ] carry | sign Y v Y '
Data Data o | over l:tus IAUS
Banke | Banki flow = -
Stack | Stack arity
Banke | Banki P
Auxiliary | Auxiliary v S |
Banke | Banki DF DF
l Y Y Y ¥ y ' y Y
Uo0 | Uo1 | Uo2 | Uo3 BRo | BRo | Buo0 | Buo1 BRo | BRo | Buo2 | Buo3
Voo | Vo1 | voz2 | vo3 | RO Ro1 Ro2 Ro3 0 { 1 |Bveo|Bvot 2 | 3 |Bvoz|Bvoz

The compiler has to take care that necessary data segments are
For cost reasons there is no auto-

preloaded and available.

matic . TLB installed. :
Also segments have to be physically direct addressed due to
the absence of TLBs. This means that the compiler has to im-
plement range checking functions for according addresses.

Code segments behave accordingly to data segments. The com-
piler has to preload them before execution jumps into them.
Also jumps are physically direct addressed, due to the absence
of TLBs again.

A relocation of any segments is not possible, the mapping is
fixed by the compiler.

-

The memory layout is shown below. A simple chéck mechanism is
implemented to validate or invalidate memory segments.
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segment
address

64 lines
64 lines
64 lines
64 lines
64 lines
64 lines
64 lines validate

64 lines invalidate_)
64 lines
64 lines
64 lines
64 lines
64 lines
64 lines
64 lines
64 lines

——OK/WAIT

—

/
reset:

CB = 0000
SB = 1111

At least the CodeBank (CB) and StackBank (SB) must be set. The
first CodeBank must start at location 0000h. For all other
banks 0000h is an illegal entry. Loading segments to the mem-
ory validates them, accordingly flushing invalidates them.

Memory banks are updates in terms of loaded or flushed in the
background by a DMA engine controlled by the following opcodes

LOADDSEG Loads and validates a data/auxiliary/stack
bank , , o

STOREDSEG Stores and invalidates a data/auxiliary/stack
bank : ‘

LOADCSEG Loads and validates a code bank

The address generators in the IOAG interfaces can be reused as
DMA engine. : !

Memory banks can be specifically validated or invalidated as
follows:

VALIDATESSEG Validates a bank

INVALIDATESEG Invalidates a bank

The bank pointers are added to the address of any memory ac-
cess. Since the address pointer can be larger than the 6 bits
addressing a 64 line range, segment -boarders are not “sharp”,
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which means, can be crossed without any limitation. However
the programmer or compiler has to take care that no damage oc-
curs while crossing them. If an invalid segment is reached a
flag or trap is generated indicating the fault, eventually
just wait states are inserted if a segment preload is running
already in the background.

CB

DB

SB

AB | adr

o

7]
28l (2%
o« an
a3 e
n @ n 9
n 2 m%

- Alternatively a more advanced valid checking scheme can be im-
plemented as shown below:

segment
2938 d‘l
ololo]1}
olofofo
olojo]o}H
0/0[0{0—
olofojlo
‘ 0{0(0}0}— |
validate 0jo0joj0 OKMVAIT/
invaiidats > [0]0]0l0l—| [ ERROR
ojlofo[o}—
0{0[0[0
0/0{0]0
olojo]o}H
olofolo}l—
o|lofo]ol—
0/0{0]|0}—
o[1]ojo}—/~
reset:
CB = 0000

SB=1111
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In difference to PAEs which require 24-bit instructions se-
quencers use 16-bit instructions only. To use the same in-
struction set and to keep the decoders simple, just the last 8
bits are discarded in sequencer mode. :

4.1 IOAGs

IOAGs may comprise a 4-8 stage data output buffer to balance
external latency and allow reading the same data address di-
rectly after the data has been written, regardless of external
bus or memory latencies (up to the number of buffer stages).

In the follwoing, a number of OpCodes and their meanings is
suggested:

ADD

ADD

Description:
Add rsl and rsZ2.

Action:

Input Il =
rsl
Onn -|Rd[nn]
lnn |Ri[nn]

Input I2 =
rs2 Lo
Onn |[(Rd[nn]
Inn |Ri[nn]

Qutput O =
rt ‘
Onn |{Rd[nn]
1nn - |Ro[nn]

Event output Eo =
etd
Onnn |F[nnn],
F[nnn]
lnnn |Eo[nnn],
Eo[nnn]
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I1, 12 -> O
Rpp++

rs: source register
rt: target register
etd: target event

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:
F, Ei

Output Flags:
Mode
SEQ carry, sign, null, parity
FF carry -> Fu / Euo

ADDC

ADD with Carry

Description:
Add rsl and rs2 with Carry.

Action:

Input Il =
rsl
Onn |[Rd[nn]
1nn |Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]

1nn |Ri[nn]

Event Input E=
es4
Onnn |F[nnn]
lnnn |Ei [nnn

]

Output O =
rt .
Onn |Rd{nn]
1nn |Ro[nn]
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Event output Eo =
etp
Onn |Ful[nn],
Fv [nn]
Inn |Euo[nn],
Evo[nn]

I1, 12 -> O
Rpp++

rs: source register

rt: target register

esd: source event

etp: target event pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:
F, Ei

Output Flags:
Mode ‘
SEQ carry, sign, null, parity, over-
flow o

FF carry -> Fu / Euo, overflow -> Fv
/ Evo

AND

Logical AND

Description: '
Logical AND operation

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |[Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
Inn |Ri[nn].
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Qutput O =
rt
Onn |Rd[nn]
lnn |Ro[nn]

Event output Eo

58

etd

Onnn |F[nnn],
Flnnn]

Innn |Eo[nnn],
Eo[nnn]

I1, I2 -> O
Rpp++

rs: source
rt: target

Input Registers:

register
register

Ri / Rd

Output Registers:

Rd / Ro

Input Flags:

Output Flags

Mode

parity

SEQ - |zero, sign ,

/ Eo

FF zero, sign -> F

BSHL

PCT/EP2004/009640

Barrel SHift Lef

Description:

t

Shift rsl left by rs2 positions and fill with zeros.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri[nn]

Input I2 =
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rs2
Onn |[Rd[nn]
11lnn |[Ri[nn]
OQutput O =-
rtp
On Rd{(n*2)],
RA[ (n*2)+1]
in Ro[ (n*2)],
Ro[(n*2)+1]
I1, 12 -=> O
Rppt++
rs: source register
rtp: target register pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Output Flags:

BSHR

Barrel SHift Right

Description:
Shift rsl right by rs2 positions, sign bit is duplicated.

Action:

Input Il =
rsl '
Onn |Rd[nn]
11lnn |Ri[nn]

Input I2 =
rs2
Onn |[Rd[nn]
Inn {Ri[nn]

Output O =
lrtp |

»




WO 2005/045692
60

On Rd[ (n*2) ],
RA[ (n*2)+1]
1n RO[(H*Z)]I
Ro[ (n*2)+1]

I1, 12 => O
Rpp++

rs: source register

rtp: target register pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

.Input Flags:

Qutput Flags:

BSHRU

PCT/EP2004/009640

Barrel SHift Right Unsigned

Description: ‘
Shift rsl right by rs2 positions

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |(Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
Inn |Ri[nn]

Qutput O =
rtp |
On RdA[ (n*2)],
RdA[(n*2)+1]
In Ro[(n*2)],
Ro[ (n*2)+1]

I1, 12 -> O

and

£fill with zeros.
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Rpp++
rs: source register

rtp: target register pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

OQutput Flags:

CLZ

Count Leading Zeros

Description:

Count the amount of leading zeros if the number is positive,
accordingly, count the amount of leading ones if the number is
negative.

Action:

Input Il =
rsl
Onn [Rd[nn]
lnn |Ri[nn]

Qutput O =
rt
Onn |Rd[nn]
Inn {Rolnn]

Event output Eo =
etp
Onn |Ful[nn],
Fvinn]
Inn |[Euo[nn],
Evo[nn]

I1 -> 0O
Rpp++

rs: source register
rt: target register
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etp: target event pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Output Flags:

Mode

SEQ |sign, parity,
Zero

FF sign, zero -> F
/ Eo

CLZU

Count Leading Zeros Unsigned

Description:
Count the amount of leading zeros of an unsigned number.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri[nn]

Output O =
rt
Onn |(Rd[nn]

Inn |Ro[nn]

Event output Eo =
etd
Onnn |[F[nnn]
1nnm |{Eo[nnn]

I1 -> 0
Rpp++

rs: source register
rt: target register

etd: target event

Input Registers:
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Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

OQutput Flags:
Mode
SEQ sign, parity,
Zero

FF zero -> F / Eo

CMP

CoMPare

Description:
Compare two values

Action:

Input Il =
rsl
Onn |Rd[nn]
lnn |[Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
Inn |Ri[nn]

Event output Eo =
etp
Onn |(Fulnn],
Fv[nn]
lnn |(Euo[nn],
Evo[nn]

Rpp++

rs: source register
etp: target event pair

- Input Registers:
Ri / Rd

Output Registers:
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Input Flags:

Output Flags:

Mode

SEQ sign, zero

FF sign, zero -> F
/ Eo

CMPU

64
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CoMPare Unsigned

Description:

Compare two unsigned values.

Action:

Input Il =

‘rsl

Onn |Rdinn]

Inn |Ri[nn]

Input I2 =

rs2

Onn |Rd[nn]

1nn |Ri[nn]

Event output Eo =

etp

Onn |Fulnn],
Fv[nn]

lnn |Euo[nn],
Evo[nn]

Rpp++
rs: source register
etp:

target event pair

Input Registers:
Ri / Rd '

Output Registers:

Input Flags:
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Output Flags:
Mode
SEQ sign, zero

FE sign, zero -> F
/ Eo-

DEMUX

PCT/EP2004/009640

FF

DEMUltipleX data stream

Description:

Moves input to one of two outputs, depending on flag.

Action:

Input I =
rs
Onn |[Rd[nn]
Inn |Ri[nn]

‘Output 01 =
rtl
Onn |[Rd[nn]
Inn |Ro[nn]

Output 02 =
rt2
Onn |Rd[nn]
1lnn -|Ro[nn]

Event E=
esd
Onnn |F[nnn]
Innn |Ei[nnn

E

0 jol =
I

1 |02 =
I

Rpp++

rt: target register
rs: source register
esd: source event

Input Registers:
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Ri / Rd

Qutput Registers:
Rd / Ro, Rd / Ro

Input Flags:
Ei / F

Output Flags:

DIV : - SEQ
DIVide '

Description:
Divide rsl by rs2. Result in rtp, reminder in rtp+1.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri[nn]

Input I2 =
rs2

Onn |Rd[nn]
Inn |Ri[nn]

rs: source register
rtp: target register pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Inpﬁt Flags:
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OQutput Flags:

DIVU

67
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SEQ

DIVide Unsigned

Description:

Divide unsigned rsl by rs2. Result in rtp, reminder in rtp+l.

Action:

Input Il =

rsl

Onn |Rd[nn]

Inn |[Ri[nn]

Input I2 =

rs2

Onn |Rd[nn]

1lnn |Ri[nn]

Output O =

rtp

On Rd[ (n*2)],
RA[ (n*2)+1]

In |Ro[(n*2)],
Ro[(n*2)+1]

I1, 12 -=> O

Rpp++
rs: source register
rtp:

Input Registers:

Ri / Rd

Output Registers:

Rd / Ro

Input

Flags:

VOutput Flags:

target register pair
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DSHL

Double SHift Left

Description:
Shift rsl and rs2 left. LSB is filled with event.

Action:

Input Il =
rsl
Onn |Rd[nn]
1lnn (Ri[nn]

Input I2 =
rs2
Onn (Rd[nn]

lnn |Ri[nn]

Event Input E=
es4
Onnn | F[nnn]
innn |Ei{nnn

]

Output O =

rtp |

On RA[{(n*2)1,
RA[ (n*2)+1]

1n Ro[(n*2)1,
Ro[(n*2)+1]

Event output Eo =

etp

Onn |Fulnnl,
Fvinn]

inn |[Euolnn],
Evo[nn]

I1, 12 -> 0O

Rpp++
rs: source register
rtp: ~ target register pair
etp: target event pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro
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Input Flags:
F, Ei

Output Flags:

Mode

sign

SEQ MSB(rsl) =-> carry, MSB(rs2)

->

Fv / Evo

FF MSB(rsl) -> Fu / Euo, MSB(rs2) ->

DSHR

PCT/EP2004/009640

Double SHift Right

Description:
Shift rsl and rs2 right, sign bit

Action:

Input Il =
rsl
Onn |Rd[nn]
1nn [Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
lnn |Ri[nn]

OQutput O =

rtp ,

On Rd[ (n*2)1],
RA[ (n*2) +1]

in Ro[(n*2) ],
Ro[ (n*2)+1]

Event output Eo =

etp

Onn |Ful[nn],

' Fvinn]

inn |Buol[nn},
Evo[nn]

I1, 12 -> O
Rpp++

rs: source register

is duplicated.

rtp: target register pair

etp: target event pair
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Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:
Ei, F

Output Flags:
Mode
SEQ ISB(rsl) -> carry, LSB(rs2) ->
sign

FF LSB(rsl) -> Fu / Euo, LSB(rs2) ->
Fv / Evo

DSHRU

Double SHift Right Unsigned

Description:
Shift rsl and rs2 rlght and £ill with event.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri{nn]

Input I2 =
rs2
Onn |Rd[nn]

lnn |Ri[nn]

Event Input E=
esd
Onnn | F[nnn]
lnnn |Ei[nnn

]

Output O =

rtp

On RA[(n*2)],
Rd[(n*2)+l]

In |Ro[(n*2)],
Ro[(n*2)+1]

Event output Eo =
Letp :
Onn |[Fulnn],
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Fvnn]

lnn |Euo[an],
Evo[nn]

11, I2
Rpp++

r

r
e

Input

-> 0

s: source register
tp: target register pair
tp: target event pair

Registers:

Ri / Rd

Output Registers:

Rd / Ro

Input

Flags:

Ei, F

Output Flags:

PCT/EP2004/009640

Mode
SEQ LSB(rsl) -> carry, LSB(rs2) ->
sign
FF LSB(rsl) -> Fu / Euo, LSB(rs2) ->
Fv / Evo
EQ
EQual
Description:
Check whether two values are equal.
Action:
Input Il =
rsl
Onn |Rd[nn]
lnn |Ri[nn]
Input 12 =
rs2
Onn |Rd[nn]
Inn -|Ri[nn]
Event output Eo =

letd |
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Onnn | F[nnn]
1nnn |Eo[nnn]

Rpp++

rs: source register
etd: target event

Input Registers:
Ri / Rd

Output Registers:

Input Flags:

Output Flags:
Mode
SEQ Zero
FF zero =-> F
/ Eo

JMP : SEQ
JuMP immediate

Description:

Jump to address defined by immediate constant. CodeBank is
changed according to constant.

Action:
const[0..3] -> CodeBank
const[4..15] -> Rpp

Input Registers:

Output Registers:

Iﬁput Flagsf

Qutput Flags:

JRI ' SEQ
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-Jump Relative Immediate
Description:

~Jump relative to Rpp according to immediate signed constant.
CodeBank is not influenced.

Action:
Rpp + const -> Rpp

Input Registers:

Output Registers:

Input Flags:

Qutput Flags:

JRR ‘ SEQ

Jump Relative Register

Description:
Jump relative to Rpp according to signed content of register.
CodeBank is not influenced.

Action: ‘
Rpp + Rd[rbs] -> Rpp

Input Registers:

Output Registers:

Input Flags:

OQutput Flags:

LOAD

LOAD data register with constant

Description:
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Loads internal data register or output register with an imme-

diate constant

Action:
rt .
Onn |const ->
Rd [nn]
lnn. |const ->
Ro[nn]

Rpp++

rt: target register

Input Registers:

Output Registers:
Rd /Ro

Input Flags:

Output Flags:

MERGE

FF

MERGE data streams

Description:

Moves one of two inputs to output, depending on flag.

Action:

Input Il =
rsl
Onn {Rdinn]
1nn {Ri[nn]

Input I2 =
rs2 '
Onn {Rd[nn]

Inn |Ri[nn]

Output O =
rt
Onn {Rd[nn]
1nn {(Ro[nn]

Event E=
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esd
Onnn |F[nnn]
1nnn |Ei[nnn

]

E

0 |0 =
Il

1 |0 =
I2

Rpp++

rt: target register
rs: source register
es: source event

Input Registers:
Ri / Rd, Ri / Rd

Output Registers:
Rd / Ro

Input Flags:
Ei / F

Output Flags:

MOVE

MOVE internal data register

Description:
Moves content of a register bank register to another internal
register. ‘ '

Action:

Rd[rbs] => rd[rbt]

Rpp++
rbs: register bank source
rbt: register bank target

Input Registers:
Rd

Output Registers: .
Rd
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Input Flags:

-

Output Flags:

-

MOVEE

MOVE flag register

Description:
Moves content of a flag register to another flag register.

Action:
F[{fs] =-> F[ft]
Rpp++

fs: flag source

ft: flag target

Input Registers:

Output Registers:

Input Flags:
F

Output Flags:
F

MUL

MULtiply

Description:
Multiply rsl and rs2.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri[nn]

Input I2 =
[rs2 | |
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Onn |Rd4[nn]

lnn |Ri[nn]

Output O =

rtp -

On RA[ (n*2) 1,
RA[ (n*2)+1]

1n Ro[(n*2)],
Ro[ (n*2)+1]

I1, 12 -> O
Rpp++

rs: source register

rtp: target register pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Output Flags:

MULU

MULtiply Unsigned

Description:
Multiply unsigned rsl and rs2.

Action:
Input Il =
rsl
Onn |{Rd[nn]
lnn |Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
1nn {Ri[nn]

Output O =
rtp
On Rd[ (n*2) 1],
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RA[ (n*2)+1]

1n Ro[(n*2) ],
Ro[(n*2)+1]

Rpp++

rs: source register

rtp: target register pair

Input Registers:
Ri / Rd

Output Registers::
Rd / Ro

Input Flags:

Output Flags:

NOP

PCT/EP2004/009640

No Operation

Description:‘
No Operation, Rpp is

Action:
Rpp++

Input Registers:

Output Registers:

Input Flags:

OQutput Flags:

NOT

incremented

Logical inverse

Description:
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Inverts register logically

Action:

Input I =
rs .
Onn |Rd[nn]
1nn |(Ri[nn]

Output O =
rt
Onn |Rd[nn]

1nn |Ro[nn]

I ->0
Rpp++

rs: .source register

rt: target register

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Output Flags:
Mode ,
SEQ Zero

FF F / Eo

OR

Logical OR

Description:
Logical OR operation

Action:

Input Il =
rsl
Onn |Rd[nn]
lnn (Ri[nn]

Input I2 =
rs2
Onn |Rd[nn}-
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[inn [Ri[nn] |

Output O =
rt -
Onn |Rd[nn]
Inn |Ro[nn]

I1, I2 -=> O
Rpp++

rs: source register

rt: target register |

- Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Output Flags:

‘Mode

SEQ zero, sign ,
parity

FF zero -> F / Eo

READ .

READ data input registe

Description:

Read specified data input register and write to internal reg-
ister bank or output register. READ waits until data is avail-
able at the input register.

Action:

rt

Onn |Ri[ri] ->
Rd[nn]

Inn |Ri[ri] ->
Ro [nn]

Rpp++

rt: target register
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ri: input register

Input Registers:
Ri .

Output Registers:
Rd / Ro

Input Flags:

Output Flags:

READE

READ event input register

Description:

Read specified event input register and write to internal flag
bank or event output register. READE waits until event is
available at the input register.

Action:
et4
Onnn |Ei[ei] ->

Flnnn]
lnnn [|Eif[ei] ->

Eo[nnn]
Rpp++

etd: target event

ei: input event

Input Registers:

Oufput Registers:

Input Flags:
Ei

Output Flags:
F / Eo

SAT
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SATurate

Description:
Saturates register depending on carry (Fu0O) flag and satura-
tion mode. -

Action:

Input T =
rs
Onn |Rd[nn]
lnn |Ri[nn]

OQutput O =
rt
Onn |Rd{nn]
1Inn |Ro[nn]

Event E=
Mode |[es4
SEQ |don’t carry
care
FF Onnn Flnnn}
FFE 1nnn Ei[nnn
1
E as
0 don’t I ->0
care
1 0 Oh -> ©
1 1 ffffh -
>0
Rpp++

rs: source register
rt: target register
as: add/substract mode
esd: event source

Input Registers:
Rd

Output Registers:
Rd / Ro

es4Input . Flags:
SEQ-Mode : carry
FF-Mode: Ei/F
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OQutput Flags:

SETF

SET Flag with constant

Description:
Loads flag register or output event with an immediate constant

Action:
etd
Onnn jconst ->
F[nnn]
Ilnnn |const ->
Eo[nnn]
Rpp++
etd: event target

Input Registers:

Output Registers:

Input Flags:

Output Flags:
F /Eo

SHL

SHift Left

Description:
Shift rsl left. LSB is filled with event.

Action:

Input Il =
rsl ‘
Onn |Rd[nn]
Inn |Ri[nn]

Event Input E=

lesd | B
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Onnn |F[nnn]
Innn |Ei[nnn

]

Qutput O =-
rt
Onn |Rd[nn]
1nn |Ro[nn]

Event output Eo =
etd |
Onnn |F[nnn]
innn {Eo[nnn]

I1 -> O
Rpp++

rs: source register

rt: target register pair
et4d: target event pair
esd: source event register

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:
F, Ei

Output Flags:
Mode
SEQ MSB (rsl) -> carry
FF MSB (rsl) -> Fu /

‘ Euo

SHR

PCT/EP2004/009640

SHift Right

Description:

Shift rsl right. MSB is filled with event.

Action:

Input Il =
rsl-
Onn |Rd[nn]
Inn |Ri[nn]
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Event

Input E=

esd

Onnn

Flnnn]

1nnn

Ei[nnn
1

Output O =

rt

Onn

Rd[nn]

1nn

Ro[nn]

Event output Eo

etd

Onnn

Flnnn]

1nnn

Eo[nnn]

I1 ->
Rpp++

rs:
rt:
etd:

0

source register

target register pair
target event pair

es4: source event register

Input Registers:

Ri /

Rd

Output Registers:

Rd /

Ro

Input Flags:

F, Ei

Output Flags:

Mode

SEQ

LSB(rsl)

-> carry

FF

LSB(rsl)
Euo

-> Fu /

SKIPE

85
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SKIP next two commands depending on Event

Description:

Next two commands are skipped based on event or

flag. If an

event is selected as source the execution stops until the
event is available.

Action:
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val value
0 0
1 1
Event E=
esd

Onnn |F[nnn]
innn |Ei[nnn

]

Skip next two addresses if event or flag is equél to val:

event/flag
not equal [Rpp++
val
equal val |Rpp + 3 ->
Rpp
val: value

esd: event source

Input Registers:

Output Registers:

Input Flags:
Ei / F

Output Flags:

SORT FF
SORT data stream '

Description:
Sort two inputs, depending on value.

Action:

Input Il =
rsl
Onn |Rd[nn]
Inn |Ri[nn]

Input I2 =
rs2

Onn |Rd[nn]
Inn |Ri[nn]
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Output 01 =
rtl
Onn |Rd[nn]
inn |Ro[nn]

OQutput 02 =
rt2
Onn |Rd[nn]
lnn |Ro[nn]

Event El=
etdl
Onnn |F[nnn]
innn |Eo[nnn

Event E2=
etd?2
Onnn | F[nnn]
innn |Eo{nnn

01 = smaller value of Il and I2
02 = larger value of Il and IZ2
El =1 if Il < I2 else O

E2 = 1 if I1 <= I2 else O
Rpp++
rt: target register

rs: source register
etd: © target event

Input Registers:
Ri / Rd, Ri / Rd

Output Registers:
Rd / Ro, Rd / Ro

Input Flags:

Output Flags:
Ei / F

PCT/EP2004/009640
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SORTU FF
SORT data stream Unsigned

Description:
Sort two unsigned inputs, depending on value.

Action:

Input Il =
rsl
Onn |(Rd[nn]
1nn |Ri[nn]

Input I2 =
rs2
Onn (Rd[nn]
1nn |Ri[nn]

Output 01 =
rtl
Onn |Rd[nn]

1nn |Ro[nn]

Output 02 =
rt2
Onn |Rd[nn]
lnn |Ro[nn]

Event El=
etdl
Onnn |F[nnn]
1nnn {EBo [nnn

]

Event E2=
etd?2
Onnn |F[nnn]
Innn |Eo[nnn

]

01 = smaller value,of I1 and 12
02 = larger value of Il and I2
El =1 if I1 < I2 else O

B2 =1 if I1 <= I2 else O

Rpp++

rt: target register
rs: source register
etd: target event
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Input Registers:
Ri / Rd, Ri / Rd

Output Registers:
Rd / Ro, Rd / Ro

Input Flags:

Output Flags:
EL / F

SUB

SUBtract

Description:
Subtract rs2 from rsl.

Action:

Input I1 =
rsl
Onn |Rd[nn]

inn |Ri[nn]
i

Input I2 =
rs2
Onn |Rd[nn]

‘Inn |{Ri[nn]

Output O =
rt
40nn |Rd[nn]

1nn |{Ro[nn]

Event output Eo =
etd
Onnn |F[nnn],
F[nnn]

1nnn {Eo[nnn],
Eo [nnn]

I1, I2 -> O
Rpp++

rs: source register
rt: target register
etd: target event
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Input Registers:
Ri / Rd

Ooutput Registers:
Rd / Ro

Input Flags:
F, Ei

Output Flags:
Mode '
SEQ carry, sign, null, parity
FE carry -> Fu / Euo

ADDC

ADD with Carry

Description:
Subtract rs2 from rsl with Carry.

Action:

Input Il =
rsl
Onn |Rd[nn]
1nn |[Ri[nn]

Input I2 = .
rs2
Onn |Rd[nnl]
1nn |Ri[nn]

Event Input E=
esd
Onnn | F[nnn]
lnnn |Ei[nnn

]

Output 0 =
rt
Onn |(Rd[nn]
Inn |Ro[nn]

Event output Eo =
etp
Onn |Fulnn],
Fvinn]
lnn |Euo[nn],
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[ |Evo[nn]

I1, 12 -> O
Rpp++

rs: source register

rt: target register

esd4: source event

etp: target event pair

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro :

Input Flags:
F, Ei

Output Flags:
Mode
SEQ carry, sign, null, parity, over-
' flow

FF carry -> Fu / Euo, overflow -> Fv
/ Evo

SWAP

SWAP data stream

Description:
Swap two inputs, depending on flag.

Action:

Input I1 =
rsl
Onn |Rd[nn]
1nn |Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
1nn |Ri[nn]

Output 01 =
rtl
Onn |Rd[nn]

1nn [Ro[nn]

Output 02 =
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rt2
Onn
1nn

Rd [nn]
Ro[nn]

Event E=

esd
Onnn

F[nnn]

Innn |Ei[nnn

0 |01 = I1,

02

I2,

02

Rpp++

rt:
rs:
esd:

target register
source register

source event

Input Registers:

Ri / Rd, Ri / Rd

Output Registers:

Rd / Ro,

Input Flags:
Ei / F

Output Flags:

UPDATE

Rd / Ro

92
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UPDATE parameters

Description:

Updates registers Rd3, Rd2, Rdl with value from Ri3.1f Ei7 1is
set. Moves subsequent data packet on Ri3 to Ro3 and sets Eo7.

Action:
Mode
1 Ri3 -> Rd3 set Eo7
Ri3 => Ro3
2 Ri3 -> Rd3 Ri2 -> Rd2 set Eo7
Ri3 -> Ro3
3 Ri3 -> Rd3 Ri2 -> Rd2 Ril -> Rdl set Eo7-
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[ ‘ " [Ri3 -> Ro3 |

Rpp++

mode: - update mode

Input Registers:
Ri3

Output Registers:
Rd3, Rd2, Rdl

Input Flags:
Ei7

Output Flags:
Eo7

WAITE . ,
 WAIT for incoming Event

Description:
_Stop execution and wait for incoming event of defined value.
Acknowledge incoming events.

Action:

valx |value

00 0

01 1

1x don’t care
Event E=.

es3

nnn |[Ei[nnn

]

Wait for incoming event of defined value. Acknowledge all in-
coming events.

valx: value
es3: event source

Rpp++

Input Registers:

OQutput Registers:
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Input Flags:
Ei

Output Flags:

WRITE

WRITE output register

Description:

Write data from input register or internal register bank to
output register. Wait for incoming ACK either before or after
writing. :

Action:

<sync0>

rs

Onn Ri[nn] ->
Rolro]

1lnn Rd[nn] ->
Ro{ro]

<syncl>

Rpp++

ro: output register
rs: regilster source

Synchronisation is handled according to sy:
sy = 0 |Wait only if previously sent event has not been
<sync0O0 |granted by ACK yet

>

sy = 1 [Wait until actual event is granted by ACK
<syncl

>

Input Registers:
Ri / Rd

Output Registers:
Ro

Input Flags:

Output Flags:
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WRITEE

WRITE Event output register

Description:
Write event from input register or flag to event output regis-
ter. Wait for incoming ACK either before or after writing.

Action:

<sync0>

es4

Onnn [Ei[nnn] ->
Eo[eo]

innn |(F[nann] ->
Eo[eo]

<syncl>

Rpp++

eo: output event
esd: event source

Synchronisation is handled according to sy:
sy = 0 |Wait only if previously sent event has not been
<sync0 |granted by ACK yet

>

sy = 1 |Wait until actual event is granted by ACK
<syncl

>

Input Registers:

Output Registers:

Input Flags:
Ei / F

Output Flags:
Eo

XOR

Logical XOR

Description:
Logical XOR operation
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Action:

Input Il =
rsl
Onn |Rd[nn]
lnn |Ri[nn]

Input I2 =
rs2
Onn |Rd[nn]
lnn |Ri[nn]

Output O =
rt
Onn |[Rd[nn]
1lnn |Ro[nn]

I1, 12 -=> 0O
Rpp++

rs: source register

rt: target register

Input Registers:
Ri / Rd

Output Registers:
Rd / Ro

Input Flags:

Qutput Flags:
Mode
SEQ zero, sign ,
parity

FF zero -> F / Eo

Appendix B

In the foilowing, an exaple for the use of function folding is
given:

Function Folding and Fast Parameter Update Example FIR

Ri0 = x
Ril = y
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3-folded FIR using acc
Fast parameter update for registers Rdl, Rd2, Rd3

PCT/EP2004/009640

example 1: UPM3, updates parameters with each access to

Rd3,2,1 (if Ei7 is set)

upmctfg = 1100

# stage 1
mul acc,
add RdO,

# stage 2
mul acc,
add RdO,

RiO,
acc,

Ri0,
acc,

Rd3;
Ril;

Rd2Z;
RdO;

# stage 3
mul acc, Ri0O, Rd1l;
add Rol, acc, Rd3;
write Ro0O, RiO;

Alternative using MAC opcode, parameter pop and looping
read Rd0O, Ril;

mac Rd0, Ri0, pop;

write Rol, Rd0; -
write Ro0O, Ri0;

1h,1t[3]:

example 2: UPM3, uses commandvUPDATE for parameter update
upmcfg = 1110
# stage 1

mul acc,
add RdO,
# stage 2
mul acc,
add RdO,
# stage 3
mul acc,
add Rol,

RiO,
acc,

RiO,
acc,

Ri0,
acc,

Rd3;
Ril;

Rd2;
RdO;

Rd1;
Rd3;

write Ro0, RiO;
update 3

example 3: UPM3, updates parameters at Rpp == 0
upmcfg = 1101

# stage 1
mul acc,
add RdO,

# stage 2
mul acc,
add RdO,

# stage 3
mul acc,
add Rol,

RiO,
acc,

RiO,
acc,

Rio,
acc,

Rd3;
Ril;

Rd2;
RdO;

Rdl;
Rd3;

write Ro0O, RiO;
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In the above; an improved data processor array has been de-
scribed. Although only in some instances, it has been pointed
out that reference to a certain number of registers, bit width
etc. is for explanation only, it is to be understood that this
also holds where such reference is not found.

If the array is to be very large or in case a real time
process is run where two different fragments of an array un-
known at compile time have to communicaté with each other so
as to enable data processing, it is advantageous to improve
the performance by ensuring that a communication path can be
set up. Several suggestions have been made already, e.g. Lee-
Routing and/or the method described in PACT 7. It is to be un-—
derstood that the following part of an improved array design
might result in an improved circuitry for certain applications
but that it is not deemed absolutely and inevitably necessary
to implement it with e.g. a function fold PAE. Rather, the
other suggestions for improvement will result in significant
improvements on their own as will be understood by the average

skilled person.
ROUTING IMPROVEMENT

The suggested improvement described hereinafter concerns the static routing
network for reconfigurable array architectures. Hereby this static network
is enhanced by implementing additional logic to adaptive runtime routing.
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Figure 1 depicts a cut-out of a reconfigurable array with a set of func-
+ional units (FU). Each functional unit encloses one routing unit (RU) and
additional functional modules (FMs). The enclosed functional modules are
used to manipulate data and characterize the type of the FU. The RU con-
tains an interconnect matrix which'is able to route each input port to any
desirable output ports. All FUs are connected through point-to-point links
whereas each is composed of two half-duplex links and able to transport the
data in both directions at the same time.

The routing technique described in this document is instruction based which
means that each routing process must be started by an instruction. If the
user wants to establish a routing between two cells, he has to bring a spe-
cific instruction into the source cell. The hardware within the array cal-
culates based on the instruction fields values the desired routing direc-
tion and establishes the logic stream. The routing process happens stepwise
from one functional unit to another whereby each cell decides which direc-
tion should be taken next. On the way to an established route we defined
three valuable states of the routing resources. The first state is the
physical route or link. This means that the resources of this route are not
used and available to routing processes. The second state is named temporal
route or link. This state describes the temporarily not available link,
which means that this link is in use for routing purposes but the mentioned
routing is not confirmed yet. The problem here is that this route can be
confirmed in the future or released if the successor cells are able to re-
alise the desired routing. The last  state is the logical route or link.
This state represents an established route on the array which is able to
transport calculation data.

This routing technique uses coordinates on the array to calculation
routings. Bach FU possesses unique coordinate’s und on the basis of this
information it is able to determine the routing direction to each desired
cell within the array. This concept is the basis for the adaptive runtime
routing described in this document. The needed control logic for adaptive
routing is implemented within the routing unit, especially within the rout-
ing controller which controls the interconnect matrix at runtime. Therefore
the routing controller is able to analyze the incoming data of all input
ports of the concerned FU and come to a decision what to do next.

Routing Establishment

For the purpose of incoming data analyzing and data buffering each input
port owns so called in-registers (InReg). Additional to those standard reg-
isters there are InReg-controllers implemented (InRegCtrl). Those finite
state machines (FSMs) have the job to store the actual state of the input
links and in dependency of the actual state to trigger routing requests or
release not required routings. To fulfil its job each InRegCtrl is con-
nected to an in-controller (InCtrl) which is implemented exactly once per
FU. Important requirement for requesting of new routings is that the men-
tioned input resource (InReg, InRegCtrl) are not used and so in the state
of physical link.

InCtrl gets requests of all InRegCtrls all over the time and forwards one
request after another to the routing controller (RoutCtrl).:The selection
which InRegCtrl should be served first is dependant on the routing priority
of the input link and/or which input link was served last. Based on the co-
ordinate information of the target cell and the coordinates of the actual
FU the RoutCtrl calculates the forward direction for the requested input
link. Thereby the RoutCtrl takes into account additional parameters like
optimum bit (will be described later), the network utilisation towards the
desired direction, etc.

If the direction calculation within the RoutCtrl was successful the
RoutCtrl forwards the request with additional information about the output
port to the interconnect matrix, which connects the input port with calcu-
lated output port. If this is done the RoutCtrl signals the successful
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routing operation to InCtrl. Because the actual reached routing state is
not final it is necessary to store the actual state. This happens within
the queue-request-registerfile (QueueRRF). Therefore the InCtrl is directly
connected to the QueueRRF and is able to store the desired information. At
this point the related input and output links reach the temporal link state
and are temporarily not available for other routing processes.

Due the fact that the QueueRRF is able to store more than one routing en-
try, the InCtrl is able to hold multiple routing processes at the same
time. But for the purpose of high hardware area consumption the direction
calculation is realized once within the RoutCtrl.

The established temporal routing stays stored within the QueueRRF till the
point the successor cell acknowledges the routing. In this case the InCtrl
clear the according entry in the QueueRRF and signals the-successful rout-
ing to the InCtrl. The InRegCtrl changes into the staté logical route and
signal the predecessor cell the successfully finished routing process.

The other case can happen if the successor cell is not able to establish
the desired route. In this case the InCtrl forwards a new request to the
RoutCtrl based on the QueueRRF-entry. This request leads to new routing
suggestion which will be stored within the QueueRRF.

If all available and expedient directions are checked and routing trials
failed the InCtrl signals to InRegCtrl the failed routing. The InCtrl sig-
nals the same routing miss to the predecessor cell and finishes the routing
process in the current cell.

Within the routing process there are two exceptions how the routing unit
establishes a desired routing. Those exceptions affect the source and the
target cell. The exception in both cases is that as well the source cell as
the target cell do not need to route the started/ending routing through the
interconnect matrix. To connect the FMs to the output links of cells simple
multiplexers are used. Those multiplexers are implemented after the inter-
connect matrix and have to be switched explicitly. This happens after the
routing process is finished. The exception lies in the finishing state.
Here the InReqgCtrl doesn’t have to acknowledge the successful routing the
predecessor it just has to consume the actual routing instruction in the
InReg instead. This happens after the InCtrl signals the successful rout-
ing. Additionally the InReg switches the output multiplexer associated to
the output port of the FM and finishes the routing establishment. The in=-
formation needed the SWltch the right output multiplexer gets the InCtrl
from the RoutCtrl.

Otherwise if the routing fails the InCtrl asserts cell specific interrupt
line and signals-the failure to the system.

The second exception concerns the target routing cell. Here it is important
to connect the new route with the input ports of the local FM. Therefore
simple multiplexers are used which are implemented before the interconnect
matrix. If an ongoing routing process reaches the target cell the InCtrl
identifies the target achievement and switches the associated input multi-
plexer to forward the incoming data to the input port of the FM. This is
the point where the successful route establishment signal is generated by
the InRegCtrl after InCtrl signals the success. Here the InRegCtrl has the
last job to finish the routing process by deleting the routing instruction
and going to logical state.

Releasing Established Routing

For releasing of the logically established routings we introduced special
instructions, so called end packets. The only purpose of those instructions
is the route-dissolving by inject the necessary end packet into the logic
established routing. There are two ways how the routings can be released.
The first possibility is the global releasing. This means that all routes
which are following the route where the end packet is injected will be re-
leased. This function is useful to delete whole configurations with one
single instruction. For this purpose it is important that the FMs are able
to forward the end packet unaltered through the internal datapaths.
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The second way for route releasing is the local route releasing. Here it is
possible to release single established routes between output and input
ports of FMs. The end packets are not propagated through the FMs. In this
case the end packet will be consumed by the last InRegCtrl.

The internal RU communication is similar to the routing process. If the In-
RegCtrl determines incoming end packet and the InRegCtrl is in the logic
route state, the InRegCtrl forwards the route release request to the
InCtrl. The InCtrl clears the entries either within the interconnect matrix
or within the input multiplexers registers or within the output multiplexer
registers. Meanwhile the InRegCtrl consumes (in case of the local end
packet and last cell in the chain) the instruction and goes to the idle
state. If the end packet was a global instruction the InRegCtrl forwards
alway the end packet to the successor. .
Additional Features

For the purpose of priority control, we introduced a priority system to in-
fluence the order in which the RU serves the incoming routing requests.
Therefore the instructions contain priority fields which describe the pri-
ority level. Higher values in this field result in higher priority und will
be preferred by the RU during the runtime routing. The priority field has
direct influence on the selection of the incoming routing requests from the
InRegCtrls to InCtrl.

Some inner configuration communication streams require strictly defined la-
tency to reach the desired performance. Therefore it is very important to
keep the maximum register chain length. To decrease the latency of the
routed streams its is necessary to ensure that the array chose always the
best routing between source and target, but this requirement may lead to
not routable streams if this feature will be always required. To ease this
problem we introduced a special bit within the routing instruction, so
called optimum bit (OptBit). This bit has to be activated if the optimum
routing is definitely required. In this case the array tries to reach this
requirement und delivers an\lnterrupt if fails.

The alternative to reach tpe required latency 1is the speed path counter.

This counter gives the possibility to bypass a specific number of registers
before buffering again. Therefore we defined a reference value and the
counter value. Both numbers are stored within the instruction field. Each
passed cell respective the RU compares the counter value and the reference
value. If both values are equal then the actual cell buffers the stream and
resets the counter. If the counter is smaller than the reference value the
current buffer will be bypassed and the counter incremented by one. In this
way it is possible to bypass a number of buffers which equals exactly to
reference value.

Multi-grained Communication Links

In addition to the coarse- grained point- to—p01nt links we introduced more
flexible multi-grained point-to-point links. Hereby one single point-to-
point link connects two neighbor cells respective the RUs within those
cells. One coarse-grained link consists of a set of wires, ‘e.g. 32 wires
for one 32 1link, and additionally protocol signals. The whole vector is
handled by a single set of control signals which makes this communication
resource not usable for multi-grained communication. *

To reach this requirement we divided the whole 32 bit vector into single
strips, e.g. with groups of 8 times 1 bit strips and 3 times 8 bit strips.
Each strip obtained separate control signals and is able to operate inde-
pendently from other strips.

The idea behind this division is to combine those strips to logical multi-
grained sub-links. If you have one multi-grained link you can use the whole
vector as one interrelated 32 bit vector or split the whole vector into
sub-channels. In this configuration each strip can be one single sub-
channel or a group of strips can be gathered to a single sub-channel of de-
sired bit-width. You just have - in respect of hardware costs - to consider
~ that one sub~-channel has to fit into one multi-grained link.

3
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Multi-grained Routing

In order to route multi-grained channels it’s necessary to use the coarse
grained links to support the routing process. The idea 1s to route two
links in parallel, one coarse—grained link to support multi-grained routing
and one multi-grained link, which will contain the final multi-grained
stream. Therefore we defined a two packet routing instruction with needed
data fields. The first instruction packet contains - compared to coarse-
grained routing instruction - additional bit mask to specify used multi-
grained sub-links and multi-grained link ID to identify the associated
multi-grained link. The other features like described above - optimum bit,
speed path, priority routing - are support in this routing mode as well.
The routing process within the RU is performed similaf to the coarse-
grained routing.

The first packet which arrives in a cell is analyzed by the InRegCtrl and a
request is generated and forwarded to the InCtrl. InCtrl forwards the re-
quest to the RoutCtrl and wait for the acknowledgement. If RoutCtrl finds
one possible routing direction, the InCtrl gets the successful acknowledge-
ment and the temporal routing will be established by the RoutCtrl. Next,
the actual job will be stored within the QueueRRP and the InCtrl waits for
the acknowledgement from the successor cell. If RoutCtrl is not able to
find a possible routing, the InCtrl gets negative acknowledgement and which
will be forwarded to the associated InRegCtrl, which generates the route
unable signal to the predecessor cell and quits the routing process within
this cell.

If the successor cell signals successful routing, the InRegCtrl clears the
related entry in the QueueRRP and finishes the routing. If the successor
cell is not able to establish a rout to the destination cell, it generates
negative acknowledgement signal. Hereupon, the InCtlr starts new request to
the RoutCtrl and handle the responses as described above.

The difference between the coarse-grained routing and multi-grained routing
lies in the handling of the multi-grained interconnect matrix. Each strip
of a multi-grained link is handled separately. The RoutCtrl forwards the
switch request to the strip matcher. Strip matcher has the job to analyze
the input strips and to match them to the output link according to already
used strips. What strip matcher is doing is to map the problem of strip
matching into the time domain and switches the needed switchboxes for each
strip separately one after another.

Routing packet for coarse-grained streamé:

=
[y
[y
—
o

Comments

instruction-packet

ID: Routing-packet for coarse-grained
streams "
Priority-level: higher value results in
higher priority

Speed path: Reference value

Speed path: Counter

Optimum bit (OptBit): 1 enabled; 0 disabled
FM output address within the source cell
FM input address within the destination
cell

Use fine-grained links: 1 = yes, 0 = no
Reserved

Destination cell coordlnates x~coordinate
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Destination cell coordinates: y-coordinate

End packet instruction:

XXXX
XXX

XXX

X.X

XXX

Comments

Instructions-packet

ID: Routing-instruction multi-grained
streams (first packet)

Priority-level: higher value results in
higher priority

Speed path: Reference value

Speed path: Counter

Optimum bit (OptBit): 1 enabled; 0 disabled
Reserved

ID of the input stream of the multi-grained
link

8 bit strips mask: 1 = selected; 0 = not se-
lected
1 bit strips mask: 1 = selected; 0 = not se-
lected

Destination cell coordinates: x-coordinate
Destination cell coordinates: y-coordinate

Comments

Instructions-packet

ID: Routing-instruction multi-grained
streams (first packet)

Reserved

Destination cell 8 bit strips mask: 1 = se-
lected; 0 = not selected

Destination cell 1 bit strips mask: 1
lected; 0 = not selected
Multi-grained FM input port address of the
destination cell

se-

Source cell 8 bit strips mask: 1 = selected;
0 = not selected ’
Source cell 1 bit strips mask: 1 = selected;

0 = not selected .
Multi-grained FM output port address of the
source cell
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Comment

Instruktions—-Paket

ID: End packet for logical stream releasing
Coarse-/fine—grained releasing: 1 coarse-
grained, 0 fine-grained

Local/global route release process: 1 = lo-
cal, 0 = global

Reserved

FM output address within the source cell
Reserved

Source cell 8 bit strips mask: 1 = selected;
0 = not selected i

Source cell 1 bit strips mask: 1 = selected;

0 = not selected
Multi-grained FM output port address of the
source cell

Data packet:

Value Comments

0 Data packet
X...X Application data

Figures relating to improved way of routing:
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Figures
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Claims

1. A data processing device comprising a multidimensional
array of coarse grained logic elements (PAEs) processing data .
and operating at a first clock rate and communicating with one
another and/or other elements via busses and/orscommunication
lines operated at a second clock rate, n

wherein the first clock rate is higher than the second and
wherein the coarse grained logic elements comprise storage me-

ans for storing data needed to be processed.

2. A data processing device according to claim 1 wherein the
data processing of the array is controlled in a data-flow-

like manner.

3. A data processing device according to claim 2, wherein the
data storage means is adapted for storage of operands and/or
intermediate results and wherein a valid bit is provided for

each entry.

4. A data processing device according to a previous claim
wherein data processing of a coarse grained iogic element of
the array is adapted to be effected in response to all valid

bits of data and/or triggers needed being valid.

5. A processing array in particular according to a previous
claim having a main data flow direction, said processing
array having coarse grained logic elements and said coarse
grained logic elements being adapted to effect data proces-

sing while allowing data to flow in said in one direction,
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in particular ALUs having an upstream input side and a data
downstream outrput side wherein at least some of said coar-
se grained logic elements have data processing means such

as second ALUs allowing data flow in a reverse direction.

6. A processing array according to the previous claim wherein a
the instruction set for the ALUs in one direction is diffe-
rent from the instruction set of the ALUs in-the reverse di-

rection.

7 .A processing array according to tone of the two previous
claims wherein at least one coarse grained logic element
comprises an ALU in one direction and an ALU in the reverse

direction.

8. A processing device wherein the coarse grained element is
connected to the busses and rows of coarse grained ele-
ments are provided interconnected via busses, wherein at
least one input is connected to an upper row and at least
one input is‘connected to a row below the cell and/or

where this holds for an output connect.

9. A proceséing device éccording to the previous claim
wherein the coarse grained element is connected to the
busses and at least two input/output bus connects are
provided in one row and wherein a switch in the bus
structure and/or a gate or buffer or multiplexer is pro-

vided in the segment between inpunt and/or output.

10. A method of routing a processing array adapted to auto-
matically connect separated fragments of a configuration
and /or configurations and to rip up nonconnectable tra-

ces in a stepwise manner.
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