WO 02/27997 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 April 2002 (04.04.2002)

(10) International Publication Number

WO 02/27997 A2

(51) International Patent Classification’: HO04L

(21) International Application Number: PCT/US01/30488

(22) International Filing Date:

28 September 2001 (28.09.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/675,708 29 September 2000 (29.09.2000) US
(71) Applicant (for all designated States except US): INOVIE
SOFTWARE, INC. [US/US]; Suite 121, 4901 Morena

Boulevard, San Diego, CA 92117 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MCMULLAN,

(74)

@81

84)

Scott, R. [US/US]; Suite 121, 4901 Morena Boulevard,
San Diego, CA 92117 (US). MEAGHER, David, M.
[US/US]; Suite 121, 4901 Morena Boulevard, San Diego,
CA 92117 (US).

Agent: WOYCECHOWSKY, David, B.; Luce, Forward,
Hamilton & Scripps LLP, Suite 2600, 600 West Broadway,
San Diego, CA 92101 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, T], TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: COMPUTER PROGRAM FOR MAINTAINING PERSISTENT FIREWALL-COMPLIANT CONNECTIONS

-\10

(oL ASRRATIVE
apsLicaTel!
L3 ToARE

|

sepueR COMPOTER

GATENAT
SOFTWARE

5%

GATew AT
ComPOTER

(|’1$

CLIENT & 4
ComfuTER

(1S

(57) Abstract: Computer architecture and software
for computer network communication such that data
is at least partially converted between distinct transport
protocols in order to optimize transmission of the data,
and preferably to allow persistent connections to be
maintained across different firewalls. As a preferred
embodiment, the transport protocol conversion may
cause the data to be converted between HTTP 1.1
protocol, to allow a persistent connection originated
across port 80 of a first firewall, and a different
protocol, to allow a persistent connection across
a second firewall. The protocol conversion of the
present invention is especially useful in connection
with collaborative application software, wherein the
collaborative server and its associated clients are
respectively more amenable to different transport
protocols.

w0 02/27997 A2 D00 OR O ROV A

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, For two-letter codes and other abbreviations, refer to the "Guid-
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

ance Notes on Codes and Abbreviations” appearing at the begin-
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, ning of each regular issue of the PCT Gazette.
TG).

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

WO 02/27997 PCT/US01/30488

COMPUTER PROGRAM FOR MAINTAINING

PERSISTENT FIREWALL-COMPLIANT CONNECTIONS

The present invention is directed to computer networks, such as the Internet, and more
particularly to manipulation of network communication protocols and data format of data

communicated over a computer network for the purposes of real-time collaboration.

BACKGROUND OF THE INVENTION

Computer networks have turned out to be an important communication tool for
business, pleasure and governmental purposes. For example, employees of a large business
may communicate over an intranet of networked computers. There are also computer
networks with wider scope. Of course, the Internet is currently the most prevalent computer
network these days. The Internet serves as a sort of meta-network to connect a great many
individual computers, intranets and other, smaller-scale networks into a vast global network.
While the technical specifics of the Internet may change or evolve over time, there will
probably continue to be small-scale computer networks, as well as one or more computer
networks that are global in scope.

Much data communication over the Internet, and other computer networks, is
performed through transmission control protocol ("TCP") virtual circuit connections. In a
virtual circuit connection, two computers that are communicating over the computer network
send and receive data as though they were connected by a single, static communication path,

such as a telephone wire. However, the communication does not, in fact, generally take place

10

15

20

WO 02/27997 PCT/US01/30488
2-

over any single dedicated wire or wireless path. Instead there is a complex system of packet
switching that sends various portions of a data communication over various paths, depending
primarily on what paths are most readily available to transmit the data. Virtual circuit
connections are characterized by the reliable, in-order delivery of all data they carry.

In the Internet world of virtual circuit connections, there are generally two types of
communications, intermittent and persistent. In intermittent communication, two
communicating computers intermittently establish, break and reestablish multiple virtual
connections over time. In persistent communication, a single virtual circuit connection is
maintained even during lulls when no substantive data is being communicated in either
direction.

There are advantages to this intermittent communication. Basically, in the intermittent
communication context, the computers at either end of the communication conserve their
resources by not maintaining a persistent connection. This can be especially important at the
server computer side of things, because a server computer may need to handle many
overlapping request from numerous client computers that are connected (all over the world)
to the Internet.

However, intermittent communication has some shortcomings. For example, if two or
more individuals want to communicate in real-time this can theoretically be done with quick
successive intermittent connections. One example of this is called polling, where the a client
computer continually and consecutively establishes short-duration connections with a server
computer to confirm that there is no new data at the server end which the client may wish to

access.

10

15

20

WO 02/27997 PCT/US01/30488

-3-

However, the numerous, successive intermittent communications are required to
ensure that any new data added at the server eﬁd is quickly requested and received at the
client end (to facilitate real-time collaboration) can cause a large drain oﬁ the computer
system resources of the individual client computer systems, as well as on network resources
(e.g., Internet bandwidth). This problem is exacerbated when any new, relevant server data
must get to the client system(s) with sufficient speed so that users of the client computer
system(s) perceive that they are receiving data in real-time. The magnitude of these problems
greatly increases as the number of mutually communicating communicators goes up.

The limitations of conventional, intermittent network communication has been
addressed in various ways. For example, a streaming feed from a server computer to a client,
over the Internet, may be provided to persistently transmit data (e.g., audio-video data) from
the server to the client. As a different example, dedicated software, such as Internet Relay
Chat ("IRC"), is used to set up chat rooms, wherein a multiplicity of remote computers can
mqtually send text-based messages in real time in the setting of a chat room, and the server
calls back to the clients to distribute new chat data input into the system by a give participant.

Some types of connections, such as audio-video streaming and chat rooms, have their
own shortcomings. For example, these types of communication may not be consistent wi;ch
the use of a firewall due to their use of non-standard network ports and/or their initiation of
connections from server to client (server call-backs) and/or the protocol under which they
communicate data. These potential solutions also have limitations on the type of data that
can be communicated. These potential solutions are thought to be especially unsuited for
computer network application collaboration over the Internet, wherein two or more mutually-

remote clients concurrently and simultaneously access and control an application (e.g., a

10

15

20

WO 02/27997 PCT/US01/30488
4-

word processing application on a remote server machine) over a computer network across one

or more firewalls.

SUMMARY OF THE INVENTION

The present application deals with manipulation of computer network transport
protocols so that transport protocols are optimized for purposes of effective network
communication, especially with a view to network communication necessary to allow
collaborative use of applications by mutually-remote users.

This optimization sometimes involves being sensitive to the way client computers and
firewalls operate so that persistent connections, blocking-on-a-read communications, keep-
alive communications, stateful communications and the like can be effected through various
types of firewalls. This optimization can also involve sensitivity to transport protocols in
order to facilitate quick and efficient communication within a network of server computers.
In many cases, the best transport protocol for the client computer subsystems is not the same
as the best transport protocol for the server computer subsystem.

Given these imperatives, some embodiments of the present invention have a computer
program for translating between protocols so that data communications manifest different and
optimal transport protocols at both the server and client ends of the computer system. For
example, some firewalls (usually client firewalls) are highly amenable to stateful, HTTP 1.1
keep-alive connections via port 80. Other types of firewalls (usually server firewalls) are
configured to allow stateful, persistent communication through non-reserved network ports

under other protocols, such as protocols for object serialization. The present invention can

10

15

20

WO 02/27997 PCT/US01/30488
-5-

help achieve persistent (and preferably real-time) communication over a computer network
that has these and/or other types of protocols by translating data between transport protocols,
such that the transport protocols chosen are suited for persistent communication through the
relevant firewalls.

Some embodiments of the present invention include a server that has multiple threads
and sends data over persistent connections to one or more client computer systems. For
example, server computer system for a real-time, collaborative application (e.g., a
collaborative scheduling program) may use multiple threads for multiple client-collaborator
computer systems, and send back data to these client collaborators under HTTP 1.1 protocol
in real-time through persistent, stateful, keep-alive connections which were originated
through port 80 of each client's firewall.

The present invention deals with computer network architecture and software for
facilitating real-time communications. The present invention is thought to be especially
helpful in the context of real-time communication in the context of a computer system
includinglone or more firewalls. The most preferred embodiments of the present invention
involve real-time application collaboration.

At least some embodiments of the present invention may exhibit one or more of the
following objects, advantages and benefits:

(1) real-time communication and/or collaboration over a computer network, such
as the Internet;

(2) highly scalable communication and/or collaboration over a computer network,

such as the Internet;

10

15

20

WO 02/27997 PCT/US01/30488
-6-

(3) collaboration and/or communication over a computer network in a way that is
highly amenable to security features and firewalls;

(4) decreased firewall configuration activities required to achieve computer
network communication and/or collaboration;

(5) decreased client computer resources necessary to effect persitent
communication and/or collaboration over a computer network;

(6) decreased server computer resources necessary to effect persistent
communication and/or collaboration over a computer network; and

(7) in the context of a collaborative network-based application, two mutually-
remote client-collaborators can truly work together in real-time on the subject matter of the
shared application.

According to one aspect of the present invention, a computer system includes a
computer network, a first computer subsystem, a second computer subsystem and a firewall.
The first computer subsystem includes application software comprising machine readable
instructions for generating a first network communication. The data of this first network
communication is structured and arranged according to a first transport protocol.

The second computer subsystem is remote from the first computer subsystem. The
second computer subsystem is structured to receive a second network communication through

a persistent connection across the firewall. The data of the second network communication is

~ structured and arranged according to a second transport protocol, which is suitable for

transmission through the persistent connection across the firewall. The second transport

protocol is different from the first transport protocol.

10

15

20

WO 02/27997 PCT/US01/30488
-7-

The first computer subsystem includes gateway software. The gateway software
includes machine readable instructions for converting at least a portion of the first network
communication into the second network communication and for sending the second network
communication to the second computer subsystem over the computer network.

Further applicability of the present invention will become apparent from a review of
the detailed description and accompanying drawings. It should be understood that the
description and examples, while indicating preferred embodiments of the present invention,
are not intended to limit the scope of the invention, and various changes and modifications

within the spirit and scope of the invention will become apparent to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed
description given below, together with the accompanying drawings which are given by way
of illustration only, and are not to be construed as limiting the scope of the present invention.
In the drawings:

Fig. 1 is a block diagram of a first embodiment of a computer éystem according to the
present invention;

Fig. 2 is a flowchart of exemplary process flow for establishing persistent connections
according to the present invention;

Fig. 3 is a flowchart of exemplary process flow of gateway software accordingto the
present invention;

Fig. 4 is a diagram of an exemplary transport protocol 0 data packet;

Fig. 5 is a diagram of an exemplary transport protocol 1 data packet; and

10

15

20

WO 02/27997

PCT/US01/30488

-8-

Fig. 6 is ablock diagram of a second embodiment of a computer system according to the

present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before commencing a description of the Figures, some terms will now be defined.

DEFINITIONS

gateway software:

computer network:

computer system:

computer subsystem:

transport protocol:

machine readable instructions for translating data (e.g. data
packets) between two different protocols; it is noted that
"gateway" is used here in its well-established nominative sense,
and does not refer to the goods, services or affiliations of any
particular commercial entity.

is inclusive of wired networks, wireless networks and hybrid
networks including wireless and wired portions.

computer or network of computers.

a computer or network of computers; usually part of a larger
system.

any computer data protocol that affects the manner in which |
data is handled at a firewall; it is noted that protocols are
conventionally organized according to a hierarchy of protocols
of several levels, such as transmission control level protocols,
internet level protocols, IP level data protocols, data packet

protocols and the like; however, transport protocols, as that

10

15

20

WO 02/27997

application:

collaborative application:

real-time:

persistent:

stateless and stateful:

PCT/US01/30488
-9-

term is used herein, does not necessarily refer to any one level
in this hierarchy; rather, transport protocol is protocol data at
any level that effects how data is handled at a firewall; now,
and in the future, firewalls may scrutinize protocols at more
than one level of the currently-existing hierarchy; transport
protocols, as that term is used herein is made up of protocols, or
portions of protocols, or combinations of portions of protocols
that are utilized by firewalls in determining how to handle data
attempting to get across the firewall.

a set of machine readable code including at least one machine
readable instruction.

an application capable of concurrently receiving input from and
providing output to at least two people at two different
computers.

characterized by data transmission delays sufficiently short (in
the aggregate) so that a reasonable person would perceive the
transmission as if it took place without any delay.

persistent virtual circuit connection.

stateful and stateless are words that denote whether or not a
computer network communication system is designed to
remember one or more preceding events in a given sequence of
interactions. Stateful means the system keeps track of the state

of interaction, usually by setting values in a storage field

10

15

20

WO 02/27997

first . . . communication:

thread:

PCT/US01/30488

-10-

designated for that purpose. Stateless means there is no record
of previous interactions and each interaction request has to be
handled based entirely on information that comes with it.
while the claims speak in terms of first communication, second
communication, third communication, and so on, labels of
"first," "second,” "third" and so on are not intended to imply
anything about the relative timing of the communications
(al?:hough any given claim, read as a whole, implicitly or
explicitly imply some relative timing of communications); in
other words, a "third network communication" may occur
earlier in time than a "first network communication," so long as
this relative timing is consistent with all of the rest of the claim
language; also, the phrase "first . . . communication" does not
imply that there have not been earlier communications in the
computer system; in many if not most embodiments of the
present invention, communications will occur prior to the "first
. . .communication" dealt with in any given claim.

a sequence of computer program instructions that are scheduled
for execution independently of other sequences of computer
program instructions within a single computer program; for
example, modern computer programming languages (eg., Java)

provide language support for threads in order to facilitate for

10

15

20

WO 02/27997 PCT/US01/30488
-41-

concurrent programming and improved appearance of program
multi-tasking.

communication software: software that helps control network communications located or
distributed anywhere in a computer system.

To the extent that the definitions provided above are consistent with ordinary, plain
and accustomed meanings (as generally evidenced, inter alia, by dictionaries and/or technical
lexicons), the above definitions shall be considered supplemental in nature. To the extent that
the definitions provided above are inconsistent with ordinary, plain and accustomed meanings
(as generally evidenced, inter alia, by dictionaries and/or technical lexicons), the above
definitions shall control. If the definitions provided above are broader than the ordinary,
plain and accustomed meanings in some aspect, then the above definitions will control at
least in relation to their broader aspects.

To the extent that a patentee may act as its own lexicographer under applicable law, it
is hereby further directed that all words appearing in the claims section, except for the above-
defined words, shall take on their ordinary, plain and accustomed meanings (as generally
evidenced, inter alia, by dictionaries and/or technical lexicons), and shall not be considered
to be specially deﬁnéd in this specification. Notwithstanding this limitation on the inference
of "special definitions," the specification may be used to evidence the appropriate ordinary,
plain and accustomed meanings (as generally evidenced, inter alia, by dictionaries and/or
technical lexicons), in the situation where a word or term used in the claims has more than
one alternative ordinary, plain and accustomed meaning and the specification is helpful in

choosing between the alternatives.

10

15

20

WO 02/27997 PCT/US01/30488
-12-

PREFERRED COMPUTER ARCHITECTURE

Fig. 1 shows an exemplary computer system 100 according to the present invention.
As shown in Fig. 1, server computer subsystem 102, client A computer subsystem 106 and
client B computer subsystem 108 are connected by wide area network ("WAN") 132. Server
computer subsystem 102 is a computer system designed to run business collaboration
software, allowing multiple users at multiple, mutually-remote locations to simultaneously
access and manipulate a single set of computer application data (e.g., a word processing
document). Preferably, manipulations of the various users will be effectively communicated
to the other users in real-time, in order to allow a kind and quality of business cornmunicaﬁon
and/or a level of teamwork that is not achievable by conventional voice communication (e.g.,
by telephone), email communication or computer file transfer.

Client A computer subsystem 106 and client B computer subsystem 108 are the
computer subsystems respectively utilized by two mutually-remote collaborators to do a
business collaboration. WAN 132 collaboratively connects the users to each other through
the intermediary of server computer subsystem 102. WAN 132 is preferably the Internet.
Alternatively, WAN 132 could be any other kind of computer network, capable of connecting
remote computers, that exists now, or may be developed in the future. WAN 132 may be
wire-based, wireless or a combination of these types.

The architecture of server computer subsystem 102 will now be discussed in detail.
Server computer subsystem 102 includes server computer 110, server firewall 120, local area
network ("LAN") 130, gateway computer 112 and gateway firewall 122.

Server computer 110 includes central processing unit (CPU) 140, collaborative

application software 150 and collaborative application database 160. While the server

10

15

20

WO 02/27997 PCT/US01/30488

17

13- 4
computer is shown as a single block in Fig. 1, in many alternative embodiments, server
computer 110 will be distributed over several interconnected computers. For example,
collaborative application database 160 may reside on a separate computer, preferably
equipped with database management software, such as‘ORACLE database software. It is
noted that the word ORACLE may be subject to trademark rights.

Generally speaking, server computer 110 hosts the application that will be
collaboratively used by the mutually remote users, such as client A and client B. The
application may be a word processor, a task scheduling tool, a graphics program, a
presentation program, a spreadsheet, a game, a music studio or any other type of computer
application that is conventional or may be developed. Whatéver the application, the present
invention can help client A and client B truly work together, preferably in real-time, on the
subject matter of the shared application. For example, the subject matter may be a text
document, a graphic, a game performance or a song.

Server computer 110 is preferably a conventional server or mini-server computer.

Preferably, the server computer utilizes "Java Distributed Oriented Technology" (or "JDOT")

wherein the application server is written completely in JAVA. It is noted that the words

JAVA and JDOT and/or the phrase "Java Distributed Oriented Technology" may be subject
to trademark rights.

From a high-level, a JDOT server provides a framework for fine-grained data security,
interfacing with secondary storage (both SQL databases and LDAP directories), transaction
management, caching, and a standard architectural framework for building specific business
logic services. Among the most important features of a JDOT server is the efficient,

real-time (e.g., sub-second) updating of multiple networked clients, ultimately facilitating

10

15

20

WO 02/27997 PCT/US01/30488

-14-

real-time network collaboration among multiple participants. According to JDOT,
collaborative data distribution services are based algorithmically at the highest level on the
Observer pattern, as described by "Design Patterns: Elements of Reusable Object-Oriented
Software" by Erich Gamma, et al. The JDOT server's services implement an efficient,
firewall-compliant, distributed observer system.

For present purposes, it is noted that JDOT servers, and other similar servers, are
often most amenable to persistent ne@ork communications using raw socket data, protocols
for object serialization and/or remote method invocation protocol. Often JDOT servers are
not very amenable to HTTP1.1 protocol data and associated persistent connections of the type
originated through port 80 of a firewall.

CPU 140 receives data from client A and client B, and uses this data to manipulate
collaborative application data, such as a text document that client A and client B are working
on together. CPU 140 performs the collaborative application work by following the machine
readable instructions of collaborative application software 150.

Collaborative application software 150 is the application. In other preferred
embodiments, there may be more thén one kind of application available in the server
computer subsystem 102, and these multiple applications may or may not be stored on
separate server computers connected by LAN 130. Collaborative application software may
be stored in read-only memory, random access memory, a data storage medium, or a
combination of these storage expedients, as is conventional. As will be discussed below,
collaborative application software 150 is designed to receive data from client A, client B, and

other clients, wherein the data is characterized by some predetermined transport protocol.

10

15

20

WO 02/27997 PCT/US01/30488
-15-

The identity of this predetermined transport protocol will become important as the remainder
of the architecture and the functionality of computer system 100 is discussed below.

Collaborative application database 160 is preferably a conventional computer
database, as discussed above. Collabc;rative application database 160 stores the data for the
collaborative application. For example, if the application is a collaborative word processor,
the word processor program would comprise collaborative application software 150, and the
word processing file (that is, machine readable data representing the actual document text and
formatting) would comprise collaborative application database 160. Collaborative
application database 160 may store other data related to the collaborative application
software, such as lists of remote computers and/or users who are properly authorized to use
collaborative application software 150.

As shown in Fig. 1, server computer 110 is positioned behind server firewall 120.
Server firewall 120 is a conventional hardware-based and/or software-based fire wall. To
provide some examples, server firewall 120 may take the form of software residing on server
computer 110, software on a dedicated computer, or it may take the form of a hardware
component.

As is conventional with firewalls, server firewall 120 is configured to have a plurality
of "ports." Each port has an associated set of rules for scrutinizing data packets attempting to
pass through the port. For example, a port may only let data of certain protocols through.
Also, the rules may require the firewall to extract the substantive data from the data packet, in
order to perform checks on the content of the data. As is common to many firewalls, server

firewall 120 applies different, and much stricter, rules to data packets coming into server 110

10

15

20

WO 02/27997 PCT/US01/30488
-16-

than to data packets emanating from server computer 110. However, if a persistent
connection is established, then data passage is persistent, fast and efficient in both directions.

It is noted that server firewall 120 stands between a local area network (LAN 130) and
a server computer (server computer 110). As a practical matter, this may have an effect on
how the operator of server computer subsystem 102 chooses to configure server firewall 120.
For example, since the firewall does not stand directly adjacent to the Internet, this can have
an effect on the preferred server firewall configuration. Also, because the data stored on
server computers (and their databases) can be extremely sensitive, this may also have an
effect on firewall configuration.

For present purposes, it is important to note that server firewall 122, for these types of
reasons, may be configured differently from other firewalls of computer system 100 shown in
Fig. 1, such as gateway firewall 122, client A firewall 124 and client B firewall 126. Because
server firewall 122 is differently configured, it may not be able to establish the same variety
of persistent connection as the other firewalls, which is one feason that transport protocol
conversion (or translation) is performed, as explained in more detail below.

Moving now to LAN 130, this component is formed as a conventional local area
network or intranet. This LAN 130, and the rest of server computer system 102, may be
maintained by a business that employs collaborators client A and client B, or alternatively, it
could be maintained by a third party computer services provider.

In this preferred embodiment, LAN 130 allows communication of data related to the
collaborative application to be communicated between server computer 110 and gateway
computer 112. In 6ther preferred embodiments, the LAN may allow communication between

gateway computer 112 and several server computers, which cooperatively share in

10

15

20

WO 02/27997 PCT/US01/30488
A7-

implementing a collaborative application. Other embodiments will not include a LAN at all.
For example, in some embodiments, the server computer subsystem 102 may take the form of
a single computer having both gateway software 152 and collaborative application software
150, which would obviate the need for networking on the server side.

Gateway computer 112 includes CPU 142 and gateway software 152. Preferably,
gateway computer 112 is implemented as a stand-alone computer, a server computer or a
mini-server computer. Gateway computer 138 is preferably a Web server with Web server
software supporting the HTTP protocol with keep-alive facilities.

Gateway software 152 is a set of machine readable instructions that are executed by
CPU 142. Gateway software 142 may be stored in read-only memory, random access
memory, a data storage medium, or a combination of these storage expedients, as is
conventional. Gateway software 152 routes and manipulates data packets coming into server
computer subsystem 102 from WAN 132, as well as data packets going out from server
computer subsystem 102 to WAN 132. First, the routing function will be briefly described,
followed by the manipulation of the incoming and outgoing data packets. Gateway software
142 is preferably arranged as a plug-in to Web server software (not separately shown) in
gateway computer 112,

The routing function of gateway software 152 primarily insures that data packets get
to the correct server computer. Of course, in the embodiment of Fig. 1 there is only one
server computer 112, so this routing function is trivial in this embodiment. However, if the
collaborative application database were stored on a separate computer from the collaborative
application software (as in many preferred embodiments), then gateway software 152 would

control the routing of data packets so that they would go to the appropriate computer. The

10

15

20

WO 02/27997 PCT/US01/30488

-18-

routing function is not described in great detail herein because it is highly dependent on the
e).(act server hardware and software setup, and because once the server setup is determined,
the routing function is then thought to be a matter of ordinary and routine skill.

Gateway software 152 also changes the transport protocol of both the incoming (from
WAN 132) and outgoing (from LAN 130) data packets. Because this transport protocol
translation is an important part of some embodiments of the .present invention, transport
protocols and the protocol translation of gateway software 152 will be discussed in more
detail in the process flow section of this specification.

For the time being, a specific preferred example of the transport protocol translation
effected by gateway software 152 will be explained. Gateway software 152 translates
incoming data packets having a transport protocol called hypertext transfer protocol 1.1
("HTTP 1.1") into corresponding data packets having a protocol for object serialization
(labeled OS in Fig. 1). After the incoming packets are translated, they are sent on to LAN
130, server firewall 120 and server computer 110, as appropriate. Gateway software 152 also
translates outgoing data packets in the protocol for object serialization OS into corresponding
data packets having an HTTP 1.1 transport protocol. After the outgoing packets are
translated, they are sent on to gateway firewall 122, WAN 132, and the clients, as
appropriate. As a result of the transport protocol translation, as shown in Fig. 1, data
transmission connections on the server computer side of gateway computer 112 are labeled
OS, while the data transmission connections on the client side of gateway computer 112 are
labeled HTTP 1.1.

One major reason for this protocol translation step is that different transport protocols

respectively work better on server and client sides of computer system 100, as will now be

10

15

20

WO 02/27997 PCT/US01/30488
19-

discussed. HTTP 1.1 data packets work better with gateway firewall 122, client A firewall
124 and client B firewall 126. The HTTP 1.1 packets work better in the sense that they can
be used in connection with a persistent, "keep-alive" connection originated through port 80
that many typical client firewalls are pre-configured to allow, without the need to reconfigure
the firewall. On the other hand, the protocol for object serialization OS works better with
much typical server hardware. For example, many server firewalls are configured to allow
OS transport protocol data packets to freely pass through an unreserved port (e.g., port 8899).
Also, much collaborative application software is compatible, or works more efficiently, with
OS data packets, or with data according to other transport protocols, such as raw sockets.

By performing transport protocol translation, especially in the context of collaborative
applications, data packets will be more amenable to persistent connections across the various
firewalls commonly observed in computer systems. These persistent connections can very
effectively be used to use threads at both the client and server sides that block on a read at the
socket. This blocking on a read, whether on the client side or on the server side, allows new
data to be received quickly without using a lot of resources of the client computers and the
server computer(s).

There are also a couple of potential advantages achieved by performing transport
protocol translation in dedicated gateway computer 152, as opposed to performing this
translation in server computer 110. First, the gateway computer adds an extra layer of
security between WAN 132 and the sensitive information on server computer 110. Because
transport protocol is changed at gateway computer, it is thought that it will be considerably
more difficult for unauthorized parties (e.g., hackers) to aécess server computer 110 from

WAN 132. Second, server computer resources 110 do not need to be used to either translate

10

15

20

WO 02/27997 PCT/US01/30488
-20-

protocol or to otherwise deal with incoming data that does not exhibit a transport protocol
(e.g., OS) preferred by collaborative application software 150. Third, in embodiments where
there are several server computers, the necessary transport protocol translation is performed at
one central location (ie, gateway computer 152), rather than at several different places in the
server subsystem.

Gateway firewall 122 is interposed between WAN 132 and gateway computer 112.
Gateway firewall 122 is configured to allow a persistent, blocking on a read, keep-alive type
connection for HTTP 1.1 transport protocol data. This kind of persistent connection is
preferably originated through port 80 of a firewall. Gateway firewall 122 is a conventional
hardware-based and/or software based firewall. Gateway firewall 122 applies different, and
much stricter, rules to data packets coming into gateway computer 112 than to data packets
emanating from gateway computer 112. However, if a keep-alive connection is established
(for data with the appropriate transport protocol), then data passage is persistent, fast and
efficient in both directions.

Now, client A computer subsystem 106 will be discussed. Client A computer
subsystem 106 includes client A firewall 124, client A computer 114, display device 174 and
input device 184.

Client A firewall 124 is configured to allow a persistent, blocking on a read, keep-
alive connection, as long as the data exhibits the HTTP 1.1 transport protocol. This persistent
co'nnection is preferably originated through port 80 of the firewall. It is an important feature
of some collaborative application software system embodiments of the present invention to
have a persistent connection across the firewall. It is important for some embodiments of the

present invention that the persistent connection across the firewall allows the computer

10

15

20

WO 02/27997 PCT/US01/30488

-21-

behind the firewall to block on a read, instead of having to expend the resources necessary to
perform polling. In conventional collaborative application software applications, intermittent
connections, such as polling are used. These intermittent connections generally require a lot
of computing resources of the client computer, and do not scale well as more and more
remote users want to participate in the collaborative application. Client A firewall 124 also
does not allow connections to client A from computer systems outside of it, also known as a
call-back.

It is an important feature of some collaborative application software embodiments of
the present invention that a thread and an associated blocking on a read type connection is
used. This kind of connection saves computing resources system-wide, especially at client A
computer 114. This is because a blocking on a read connection allows a thread of client A
computer to "sleeb" unless and until there is new data to be received from server computer
subsystem 102 over WAN 132.

Client A 114 computer is preferably a conventional desktop or laptop personal
computer. Display device 174 preferably includes a monitor or LCD display, and may also
include other output devices, such as a printer, audio speakers and the like. Input device 184
preferably includes a keyboard and a mouse, and may include other input devices, such as a
scanner.

Client B computer system 108 includes client B firewall 126, client B computer 116,
display device 176 and input device 186. The components of client B computer system 108
are similar to the corresponding components of client A computer system and will therefore

not be further discussed.

10

15

20

WO 02/27997 PCT/US01/30488

-22-

Before leaving Fig. 1, the "happy face" displays at display device 174, display device
184 and in collaborative application database 160 will be discussed. In this exemplary
embodiment, the collaborative application software is a graphics program. Client A and
client B are collaborating in generating a new graphic, which is turning out to be a happy
face. At the time of Fig. 1, client A is working on adding a second eye to the happy face
using her input device 184.

After client A manipulates input device 184 to indicate the addition of the second eye,
client A computer 114 converts this input into appropriate HTTP 1.1 data packets. These
data packets include substantive application inéut data to be used by the collaborative
application software 150 and collaborative application database 160, and ultimately by other
collaborators present on WAN 132, These HTTP 1.1 packets travel unimpeded through the
keep-alive connection in client A firewall 124, through WAN 132, and (again unimpeded)
through a keep-alive connection in gateway firewall 122, before reaching gateway computer
112. Gateway computer has established a client thread ready to receive this communication
through a blocking on a read connection.

At gateway computer 112, gateway software 152 translates these data packets from
HTTP 1.1 transport protocol into OS protocol and send the corresponding OS packets on to
LAN 130, server firewall 120 and finally to server computer 110. As explained above, the
OS packets pass unimpeded through an unreserved port of server firewall 120. Server
computer has established a client A thread, ready to receive this communication by waking
up appropriate components in server computer 110 when the communication arrives. Server
computer also has other threads established for other collaborators, such as client B. These

threads, while standing ready to receive new application input data from various sources, do

10

15

20

WO 02/27997 PCT/US01/30488

-23-

not take up too much of the server computer's computing resources because they allow
components to sleep, unless and until new data comes in.

In server computer 110, collaborative application software 150 recognizes that the
data packets being received on the client A thread are designed to add a second eye to the
happy face image. As shown in Fig. 1 at reference numeral 190, the application data file
corresponding to the happy face image is updated in collaborative application database 160.
The happy face is complete, at least in the server computer subsystem 102.

However, the second eye data still needs to back to the computers of the collaborators,
client A and client B. Therefore, server computer 110 sends this data back, initially as OS
data packets. The OS data packets are converted to corresponding HTTP 1.1 data packets at
gateway computer 112, and then sent the rest of the way back to client A computer 114 and
client B computer 116. At the time of Fig. 1, the HTTP 1.1 packets have not yet reached
client A computer 114 and client B computer 116, so the second eye is not yet shown on
display device 174 and display device 184.

The second eye data packets preferably reach the client computers with sufficient
(e.g., sub-second) speed, such that client A and client B perceive that they are collaborating in
real-time. This fast, and preferably real-time, business collaboration is facilitated by the fact
that the client computers receive data through a persistent, keep-alive connection across their
respective firewalls and because gateway software 152 translates transport protocols so that
the necessary data transfers can be quickly made across the differently-configured firewalls
120, 122, 124 and 126 of computer system 100.

Also, the persistent and stateful connections allow the use of threads and of blocking

on a read type connections, which save on computing resources at all computers in computer

10

15

20

WO 02/27997 PCT/US01/30488
-24-

system 100. By making sure that data packets have an appropriate transport protocol at all
stages of the netwok communication, these persistent and stateful connections and the

associated use of threads and blocking on a read become possible.

PROCESS FLOW FOR SETTING UP PERSISTENT CONNECTIONS

As discussed above, there are persistent data transmission connections between the
client computers and the gateway, as well as between the gateway computer and the server
computer(s). Now exemplary process flow (as shown in the flowchart of Fig. 2) for
establishing these persistent connections will be discussed.

At step S1, client A computer 112 creates an application data thread in the client A
computer. Processing proceeds to step S2, where the application data thread in the client A
computer initiates an HTTP 1.1 GET with "setup" command, and sends this GET and setup
command to gateway computer 112, through WAN 132 and gateway firewall 122. Gateway
firewall 122 is configured to allow passage of such a GET and "setup" command. The GET
and setup command requests the connection be a keep-alive connection, suitable for
persistent data transmission originating through port 80 of client A firewall 124.

Processing proceeds to step S3, where gateway computer 112 creates two threads in
response to the GET and "setup" command. Gateway computer 112 creates a client proxy
thread for communications with client A computer 114. Gateway computer 112 also creates
a server proxy thread for communications with server computer 110. At step S3, gateway
coﬁlputer 112 also initiates a TCP connection with "setup" command to server computer 110.

This TCP connection is a persistent data communication path for data according to the OS

10

15

20

WO 02/27997 PCT/US01/30488
-25-

protocol (as opposed to HTTP 1.1), because this transport protocol works better with server
computer 110.

Processing proceeds to step S4, where the client proxy thread in gateway computer
114 writes a handshake response to the client application data thread of client A computer
114 and then sleeps.

Processing proceeds to step S5, where server computer 126, after accepting the new
TCP connection with "setup" command from gateway computer 114, creates a client A synch
thread for communication with client A computer 114 (via gateway computer 112). Server
computer 110 preferably has one thread for each client. If client A is the only one working
on the collaborative application, then the server computer may have but one client synch
thread.

Of course, collaborative applications are designed to be worked on by more than one
client at a time, so server ;:omputer 110 will often need to set up and maintain more than one
client synch thread. By the expedients of threads and associated blocking on a read type
connections, the collaborative application becomes highly scalable, because the plurality of
client synch threads at the server computer will permit communication with many parties
without using too much of the server computer's computing resources. Finally at step S5,
server computer 110 writes a handshake back to the gateway computer's server proxy thread.

Processing proceeds to step S6, where the client A synch thread is put to sleep, to
await further communications and data that requires distribution to the client A computer
system. Because client synch threads can be put to sleep in the context of a persistent

connection, this conserves computing resources of the server computer.

10

15

20

WO 02/27997 PCT/US01/30488
-26-

Processing proceeds to step S7, where the client application data thread of client A
computer 114 receives the handshake response sent by gateway computer 112 at step S4.
Upon receiving the handshake response, client A computer 114 blocks on a read of the socket
used to send the initial HTTP 1.1 GET from Fig. S1. This allows a persistent, keep-alive
connection between gateway computer 114 (and ultimately server computer 110) and client A
computer 114, even though the client application data thread is put to sleep, to conserve
computing resources, when application data is not being received from gateway computer
114.

Processing proceeds to step S8, where the server proxy thread of gateway computer
114 blocks on a read of its TCP clmnection with server computer 110. This allows a
persistent OS connection between gateway computer 112 and server computer 110, even
though the server proxy thread is put to sleep, to conserve computing resources, when

application data is not being sent from the gateway to the server.

PROCESS FLOW FOR GATEWAY

Exemplary process flow of gateway software will now be discussed in connection
with Figs. 3 to 5. This process flow illustrates a well-known process called "protocol
tunneling, which is utilized in the present invention for maintaining different kinds of
persistent connections across different firewalls. At step S100, the gateway software receives
a connection and data from client A (via WAN 132). Processing proceeds to step s101.

At step S101, the gateway software verifies the transport protocol of the data packet
received from client A. In this simplified example, instead of using the relatively complex

preferred transport protocols of HTTP 1.1 and OS, hypothetical transport protocols protocol 0

10

15

20

WO 02/27997 PCT/US01/30488

-27-

and protocol 1 will be used for illustration purposes. According to the present invention,
translation between transport protocol 0 and transport protocol 1 would be especially
advantageous when: (1) the components on one side of the gateway software are designed to
permit a persistent connection with respect to transport protocol 0 data (but not transport
protocol 1 data); and (2) the components on the other side of the gateway software are
designed to permit a persistent, firewall-compliant connection with respect to transport
protocol 1 data (but not transport protocol 0 data).

Fig. 4 shows data packet 200, according to transport protocol 0. In this example,
transport protocol 0 is the transport protocol used for communication between gateway
computer 112 and client A computer 114. Transport protocol 0 data packets can be identified
because they have a 3-bit header 202 that has the value 000. Transport protocol 0 also has a
data portion 204 with substantive data, which can be extracted from the packet.

In this example, at step S101, gateway software 152 verifies that the transport
protocol of the data packet received from client A is transport protocol 0 by checking the
header to determine that its value is 000. If more complex transport protocols are used, the
process for verifying the transport protocol may be more complex, depending on the nature of
the transport protocol, but would be within ordinary and routine skill as long as the
characteristics of the transport protocol are known. At step S101, other aspects of the data
packet may be checked, such as source or routing information.

Processing then proceeds to step S102 where the data 204 is extracted from data
packet 200. This is done because the transport protocol of the packet is being changed to be
more amenable to the server side of gateway computer 112, but the substantive data should

remain true.

10

15

20

WO 02/27997 PCT/US01/30488
-28-

Processing then proceeds to step S103, where the transport protocol 0 data packet is
reformatted as a protocol 1 data packet 201, as shown in Fig. 5. As further shown in Fig. 5,
transport protocol 1 data packet 201 also has a three-bit headér 206. However, this header
takes the value 001 in order to identify packet 201 as a transport protocol 1 packet. Gateway
software 142 adds this header to the translated data packet at step S103. The substantive data
from data packet 200 is used as substantive data portion 208 of transport protocol 1 data
packet 201.

However, in this example, the data of packet 201 is in the reverse order as the data in
data packet 200 (compare Fig. 4 with Fig. 5). This is because the respective transport
protocols 0 and 1 happen to mandate different data ordering. This feature of this hypothetical
example demonstrates that other processing, besides merely changing the header, may need to
be performed by gateway software in order to keep the substantive data identical. Different
transport protocols may have profound effects on the structure of a data packet, as a whole.
Gateway software 152 must take care of effecting all of the necessary data packet structural
changes.

Processing proceeds to step S104, where the protocol 1 data packet is sent from
gateway computer 112 to server computer 110. The packet now has the appropriate transport
protocol 1 to be communicated by a persistent connection to server computer 100.

Processing then proceeds to step S105, where gateway software 152 block on a read
in order to receive response data packets from the server computer. When there is a data
packet from the server (via LAN 130), then processing proceeds to step S106.

In this example, at step S106, gateway software 152 verifies that the transport

protocol is transport protocol 1 by checking the header to determine that its value is 001. At

10

15

20

WO 02/27997 PCT/US01/30488
-29-

step S106, other aspects of the data packet may be checked, such as source or routing
information.

Processing then proceeds to step S107 where the data 208 is extracted from data
packet 201 (see Fig. 5). This is done because the transport protocol of the packet is being
changed to be more amenable to the client side of gateway computer 112, but the substantive
data should remain true.

Processing then proceeds to step S108, where the transport protocol 1 data packet is
reformatted as a transport protocol 0 packet (example shown in Fig. 4). Gateway software
152 adds the 000 header, identifying the new packet as a transport protocol 0 packet, at step
S108. The substantive data from data packet 201 is used as substantive data portion 206 of |
transport protocol 0 data packet 200, but (for reasons explained above) the order of the data is
reversed.

Processing proceeds to step S109, where the transport protocol 0 data packet is sent
from gateway computer 112 to client A computer 114 and client B computer 116. Because
the packet now has the appropriate transport protocol 0 for the client firewalls 124, 126 and
client computers 114, 116, it can travel by a persistent connection to client computers 114,
115. More particularly, it will travel back to the clients and will be recognized by the clients
asa cérrect protocol O response.

The foregoing exemplary process flow embodiment has been simplified to more
clearly illustrate the concept of transport protocol conversion. There are many other
processes for accomplishing transport protocol conversion. For example, data going from the

server to the client may be subject to transport protocol conversion (for the purpose of

10

15

20

WO 02/27997 PCT/US01/30488
-30-

maintaining persistent connections in the server-to-client direction), while data going from

client to server may not require transport protocol conversion or persistent connections.

ALTERNATIVE EMBODIMENT

Fig. 6 shows an alternative embodiment of a computer system 300 according to the
present invention. This alternative embodiment features a dual server computer architecture,
in order to demonstrate the server data routing and multiplexing function which can be
provided by the gateway software and also to demonstrate that data routed to different server
computers or from different server computers or different types of data routed to the same
server computer may be controlled by the gateway software to be structured according to
different transport protocols.

In computer system 300, components 306, 308, and 332 are respectively similar to
components 106, 108, and 132 discussed above in connection with the embodiment of Fig. 1
and will not further be discussed in connection with this alternative embodiment.

Gateway computer 312 includes CPU 342 and gateway software 352. On the server
side of gateway computer 312 are two server computers, server A computer 311 and server B
computer 313. Server A 311 stands behind server A's firewall 321. Server B 313 stands
behind server B's firewall 323.

In this exemplary embodiment, server A computer 311 handles connection control
data and server B computer 313 handles data transport data. Because of the way server A
computer 311 and server A firewall 321 are configured, the connection control data is best
structured according to the OS transport protocol (discussed above). On the other hand,

server B computer 313 and server B firewall 323 are configured to handle application data in

10

15

20

WO 02/27997 PCT/US01/30488
-31-

the form of raw socket transport protocol. More particularly, raw socket data is sometimes
considered to have no protocol whatsoever, but for purposes of this invention, raw socket data
is considered to be one type of transport protocol, because the fact that data is arranged as raw
sockets will generally have an impact on the way that data is handled at a firewall (see
definition of transport protocol above). Perhaps raw socket data is best considered as the
degenerate case of a transport protocol.

Server A firewall 321 is configured to allow a persistent connection, as long as the
data traveling through the persistent connection exhibits the OS transport protocol. On the
other hand, server B firewall 323 is configured such that a persistent connection is established
therethrough, so long as the data is in the form of raw sockets RS.

Because this embodiment has two server computers, gateway software includes code
that enables CPU 342 to determine whether data packets coming in from WAN 332 are
connection control data, to be sent to server A computer 311, or data transport data packets,
to be sent to server B computer 313. Gateway software 352 includes logic to route the data
packets as appropriate. Gateway software includes code that handles two server synch -
threads with persistent connections to server A computer 311 and server B computer 313.

In addition to routing these packets, gateway software 352 also does transport
protocol translation. However, instead of merely translating all data packets into OS
transport protocol form, gateway software translates data packets headed to server A
computer 311 from HTTP1.1 transport protocol to OS transport protocol, so that these
packets can pass through the persistent cqnnection at server A firewall 321. On the other
hand, gateway software 352 translates data packets headed for server B computer 313 from

HTTP1.1 transport protocol into raw sockets, so that this data can pass through a persistent

10

15

WO 02/27997 PCT/US01/30488
-32-

connection at server B firewall 323. These two persistent and stateful connections allow the
servers to establish multiple client threads and efficiently handle the intermittent receipt of
data from many different collaborators.

Of course, other transport protocols can be used now or in the future. One preferred
transport protocol for some embodiments of the present invention is JAVA object
serialization. Other preferred transport protocols are in the Common Object Request Broker
Architecture (CORBA) family of protocols. It is expected that other types and perhaps even
new hierarchies of protocols may be developed in the future, and this may have an effect on
how firewalls of the future handle the data. In effect, this means that there will be new
transport protocols in the future. However, it is thought that the present invention will still be
useful when one type of transport protocol can be used to establish a persistent, firewall-
compliant connection in one part of the computer network, and a different transport protocol
can be used to establish a persistent, firewall-compliant connection in a different part of the
computer system.

‘Many variations on the above-described computer system are possible. Such
variations are not to be regarded as a departure from the spirit and scope of the invention, but
rather as modifications intended to be encompassed within the scope of the following claims,

to the fullest extent allowed by applicable law.

10

11

12

13

14

15

16

17

WO 02/27997 PCT/US01/30488
-33-

What is claimed is:

1. A computer system comprising:
a first computer network;
a first computer subsystem comprises:
application software comprising machine readable instructions for generating a
first network communication comprising data structured and arranged according to a
first transport protocol; and
gateway software comprising machine readable instructions for converting at
least a portion of the first network communication into the second network
communication, with the second network communication being structured and
arranged according to a secbnd transport protocol, Wi1;h the first transport protocol
being different than the second transport protocol;
a second-subsystem firewall; and
a second computer subsystem located behind the second-subsystem firewall, the
second computer subsystem being remote from the first computer subsystem, and being
structured to receive the second network communication from the first computer subsystem
over the first computer network by a persistent connection across the second-subsystem

firewall.

2. The system of claim 1 wherein:
the second computer subsystem comprises a second-subsystem socket structured to

receive the second network communication from the first computer subsystem; and

WO 02/27997 PCT/US01/30488
-34-

the computer system comprises machine readable instructions for causing the second

computer subsystem to block on a read on the second-subsystem socket.

3. The system of claim 1 wherein the second network communication is stateful.

4. The system of claim 1 wherein:

the first computer comprises a second computer network, gateway computer and a
server computer;

the gateway computer comprises the gateway software;

the server computer comprises at least a portion of the application software; and

the second computer network is structured to send the ﬁrét network communication

from the server computer to the gateway computer.

5. The system of claim 4 wherein:

the gateway computer comprises a gateway socket structured to receive the first
network communication from the first computer subsystem; and

the gateway software comprises machine readable instructions for causing the

gateway computer to block on a read on the gateway socket.

6. The system of claim 4 wherein the first network communication is stateful.

7. The system of claim 1 further comprising:

a third-subsystem firewall; and

10

11

12

13

14

15

16

WO 02/27997 PCT/US01/30488
-35-

a third computer subsystem located behind the third-subsystem firewall, the third
computer subsystem being remote from the first and second computer subsystems;

wherein:

the application software is collaborative application software;

the application software further comprises machine readable instructions for
generating a third network communication comprising data structured and arranged according
to the first transport protocol; and

gateway software comprising machine readable instructions for converting at least a
portion of the third network communlication into a fourth network communication, with the
fourth network communication being structured and arranged according to the second
transport protocol; and

the third computer subsystem is structured to receive the fourth network
communication from the first computer subsystem over the first computer network by a

persistent connection across the third-subsystem firewall.

8. The system of claim 7 wherein:

the third computer subsystem comprises a third-subsystem socket structured to
receive the fourth network communication from the first computer subsystem; and

the computer system comprises machine readable instructions for causing the third

computer subsystem to block on a read on the third-subsystem socket.

9. The system of claim 7 wherein:

the third network communication is stateful; and

WO 02/27997 PCT/US01/30488
-36-

the fourth network communication is stateful.

10. The system of claim 7 wherein communication between the first computer

subsystem, the second computer subsystem and the third computer subsystem is in real-time.

11. The system of claim 7 wherein the collaborative application software
comprises at least one of the following functions: a word processor, a task scheduling tool, a

graphics program, a presentation program, a spreadsheet, a game, a music studio.
12. The method of claim 1 wherein:
the second transport protocol includes a facility for a keep-alive connection; and
the second-subsystem firewall is structured to communicate the second network

communication over a persistent connection.

13. The system of claim 12 wherein the second transpoit protocol is a hypertext

transfer protocol.
14. The system of claim 13 wherein the second transport protocol is HTTP 1.1.

15. The system of claim 1 wherein the first transport protocol is a protocol for

object serialization.

16. The system of claim 1 wherein the first transport protocol is raw sockets.

10

WO 02/27997 PCT/US01/30488

-37-

17. The system of claim 1 wherein:

the first computer subsystem comprises a first server computer and a second server
computer; and

the gateway software comprises machine readable instructions for selectively routing
communications received over the first computer network to at least the first and second

server.

18. A method for communicating data across a computer network, the method
comprising the steps of:

providing a server computer, a gateway computer, a first network structured to allow
data communication between the server computer and the gateway computer, a client
computer and a second network structured to allow data communication between the client
computer and the gateway computer;

creating a client proxy thread at the gateway computer reserved for communication
with the client computer over the second network; and

creating a server proxy thread at the server computer reserved for communication with

the server computer.

19. The method of claim 18 further comprising the steps of:

blocking on a read on a socket of the client computer that receives communications
from the gateway computer over the second network; and

blocking on a read on a socket of the gateway computer that receives communications

from the server computer over the first network.

10

11

12

13

14

WO 02/27997 PCT/US01/30488

-38-

20. The method of claim 18 further qomprising the steps of:

creating a client application data thread in the client computer;

initiating, by the client application data thread, a get with setup command to the
gateway computer;

initiating a TCP setup connection command to the server computer;

writing, by the client proxy thread, a first handshake response to the client application
data thread;

putting to sleep the client proxy thread;

creating, in the server computer in response to the TCP setup connection, a client
synch thread;

writing, by the server computer, a second handshake to the server proxy thread;

putting to sleep the client synch thread;

reading, by the application data thread, the first handshake;

blocking on a read on a socket of the client computer; and

blocking on a read on a socket of the gateway computer.

WO 02/27997 PCT/US01/30488
1/5

-\10

(o\-LABORATIVE
APPLICATION

\\- X A&RC

APPLIC AT
DATABAE

52 [GATE. uAT
SOFTWARE < P U GATE W AY

comFUTe&
(‘Q’J/ ' | l—-—_HTTP)
L‘T"TE- NAT FireEWALL | ﬁ

A
r—HTT?).\ |

7 |

o=

> HT1e0 WTTe 1.1

E\ﬁ

(06

(cué NT :{Fi&wﬂ 4
AL

HTTP L.

TCLIENT A ¥
CoMmPTER

Sl 184 -

WO 02/27997

ST~

Client A creates a
client application Data

L thread in client

computer

v

Client Application
Data thread in client
computer initiates an
http 1.1 get with
“Setup” cornmand to
gateway computer.

—y

Y

S3

Gateway computer
creates a client proxy
thread and a server
proxy thread resecved
for Client A and
initiates TCP
connection “Setup”
command to server
A

Gatewsy’s client
proxy thread writes a
handshake response to
client application data
thread and then sleeps.

2/5

PCT/US01/30488

In response to sztup
connection request,

synch thread an
writes hands

to Gateway's sc’rvct
proxy thread

server computc#)
creates a client F 1
e back

A A

I

Client

A synch

Thread of
Server Computet
Sleeps

. 4

Application data
thread of client
computer reads
handshake from

gateway and blocks on |

a read of the socket
used for the 1.1
get

s

v

Server proxy thread of
gateway comp

blocks on a read its
TCP connection W/
server computer

S35

Sé

S7

. S8

WO 02/27997

RECEWE DA PACKET

CL‘\\\(1\5{_-7 E &0 ™
"N /”\)

vemw PRW&D
p DATA PAKET
FROM WAN

’%TﬂﬁLT DATA
¢ Rom PRoTOCBL
2 DARTA PACKET
FROM N’\

PATA PAKET

seMd proTocsl 1
PrTA TACKET

| 0 SQ‘Q\IE R
CompuTeg

(¥4 ’FDRN\P\T
DATA AS 5105
PRDTOCDL'

PCT/US01/30488

T ReceNE pa~ 4
CACKET omING fM
SERNER (<MPuTEs

VeRiFy Pvﬁoméoc ?

Data FAckeT
From LAN

EXTRALT DATA
From FRoTocOL T ¢y
DATA TAKET
FROM L..Al\j
4

Re FoRMKT D XA

A4 PROToCOL ¥ o
DATR PackeT
{
Ly
ceND fRoroch S

ONTA PACKET |~
© ALl CLIENTS

WO 02/27997 PCT/US01/30488
4/5

WO 02/27997
5/5

!

" TERER A]
ComeLTER,

SERVER A TiREWALL 4721

PCT/US01/30488

Fe

— '
LSEWQQ % ?fﬁEwALLJA 322

gOu 5 s
T e |
N ,
53 |GATEWAY .
E CPU 34% GATEWAY
. compPuTER
| J@Q? &TLHW?L\
LévATe.WAT firREWALL *)
F—HTTP 1) —
/3007/
'//E» HTTe). |
<37‘! ‘

wﬂ

CLENT A FiRe
HTTE 1.1

CLIENT A

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

