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명 세 서

청구범위

청구항 1 

방법이며,

나노결정 합금을 형성하기 위해 복수의 나노결정 미립자를 소결하는 단계를 포함하고,

나노결정 미립자 중 적어도 일부는 제1 금속 재료와 제2 금속 재료를 포함하는 비 평형 페이즈를 포함하고,

제1 금속 재료는 제2 금속 재료에 용해성이고,

상기 소결은 비가압 소결을 포함하는 방법.

청구항 2 

제1항에 있어서, 제1 금속 재료는 텅스텐과 크로뮴 중 적어도 하나를 포함하는 방법.

청구항 3 

제1항에 있어서, 제2 금속 재료는 Pd, Pt, Ni, Co, Fe, Ti, V, Cr 및 Sc 중 적어도 하나를 포함하는 방법.

청구항 4 

제1항에 있어서, 비 평형 페이즈는 고용체를 포함하는 방법.

청구항 5 

제1항에 있어서, 제1 금속 재료와 제2 금속 재료를 포함하는 분말을 기계적으로 가공함으로써 나노결정 미립자

중 적어도 일부를 형성하는 단계를 더 포함하는 방법.

청구항 6 

제1항에 있어서, 제1 금속 재료와 제2 금속 재료를 포함하는 분말을 볼 밀링함으로써 나노결정 미립자 중 적어

도 일부를 형성하는 단계를 더 포함하는 방법.

청구항 7 

제1항에 있어서, 나노결정 미립자 중 적어도 일부는 50 nm 이하의 입자 크기를 갖는 방법.

청구항 8 

제1항에 있어서, 비 평형 페이즈는 소결 동안 분해되는 방법.

청구항 9 

제1항에 있어서, 나노결정 미립자 중 적어도 일부는 40 at% 이하인 제2 금속 재료를 포함하는 방법.

청구항 10 

제1항에 있어서, 나노결정 합금을 제3 금속 재료와 합금화하는 단계를 더 포함하는 방법.

청구항 11 

제1항에 있어서, 나노결정 합금은 적어도 90%의 상대 밀도를 가지는 방법.

청구항 12 

제1항에 있어서, 나노결정 합금은 완전히 조밀한 방법.
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청구항 13 

제1항의 방법에 의해 제조된 나노결정 합금.

청구항 14 

방법이며,

나노결정 합금을 형성하도록 복수의 나노결정 미립자를 소결하는 단계를 포함하고,

나노결정 미립자 중 적어도 일부는 제1 금속 재료와 제2 금속 재료를 포함하는 비 평형 페이즈를 포함하고,

제1 금속 재료는 제2 금속 재료 내에 용해성이며, 나노결정 합금은 적어도 90%의 상대 밀도를 갖고,

상기 소결은 비가압 소결을 포함하는 방법.

청구항 15 

제14항에 있어서, 제1 금속 재료는 텅스텐과 크로뮴 중 적어도 하나를 포함하는 방법.

청구항 16 

제14항에 있어서, 제2 금속 재료는 Pd, Pt, Ni, Co, Fe, Ti, V, Cr 및 Sc 중 적어도 하나를 포함하는 방법.

청구항 17 

제14항에 있어서, 비 평형 페이즈는 고용체를 포함하는 방법.

청구항 18 

제14항에 있어서, 제1 금속 재료와 제2 금속 재료를 포함하는 분말을 기계적으로 가공함으로써 나노결정 미립자

중 적어도 일부를 형성하는 단계를 더 포함하는 방법.

청구항 19 

제14항에 있어서, 제1 금속 재료와 제2 금속 재료를 포함하는 분말을 볼 밀링함으로써 나노결정 미립자 중 적어

도 일부를 형성하는 단계를 더 포함하는 방법.

청구항 20 

제14항에 있어서, 나노결정 미립자 중 적어도 일부는 50 nm 이하의 입자 크기를 갖는 방법.

청구항 21 

제14항에 있어서, 비 평형 페이즈는 소결 동안 분해되는 방법.

청구항 22 

제14항에 있어서, 나노결정 미립자 중 적어도 일부는 40 at% 이하인 제2 금속 재료를 포함하는 방법.

청구항 23 

제14항에 있어서, 나노결정 합금을 제3 금속 재료와 합금화하는 단계를 더 포함하는 방법.

청구항 24 

제14항에 있어서, 나노결정 합금은 적어도 90%의 상대 밀도를 가지는 방법.

청구항 25 

제14항에 있어서, 나노결정 합금은 완전히 조밀한 방법.

청구항 26 

등록특허 10-2570879

- 4 -



제14항의 방법에 의해 제조된 나노결정 합금.

청구항 27 

삭제

청구항 28 

삭제

청구항 29 

삭제

발명의 설명

기 술 분 야

관련 출원[0001]

본 출원은 본 명세서에 그 전문이 참조로 통합되어 있는 2013년 3월 14일자로 출원된 미국 가출원 제61/784,743[0002]

호에 대한 우선권을 주장한다.

연방 지원 연구에 관한 선언[0003]

본 발명은 미군 연구소에 의해 수여된 승인 번호 제W911NF-09-1-0422호와 방위성의 국가 위협 감소국(DTRA)에[0004]

의해 수여된 승인 번호 제HDTRA 1-11-1-0062호 하에 정부 지원으로 이루어진 것이다.  미국 정부는 본 발명에

대한 소정 권리를 갖는다.

배 경 기 술

나노결정 재료는 결정 성장이 발생하기 쉽다.  이러한 민감성은 기존 소결 기술을 사용하여 높은 상대 밀도와[0005]

작은 입자 크기를 갖는 대형 나노결정을 제조하기 어렵게 할 수 있다.  또한, 이 민감성은 소결된 나노결정 재

료가 원치 않는 결정 성장을 겪지 않고 소결후 처리 기술을 받을 수 있게 하는 능력을 제한할 수 있다.

발명의 내용

해결하려는 과제

상술한 견지에서, 본 발명자들은 제어된 결정 크기를 갖는 나노결정 합금의 장점을 인지 및 인식하였다.  제어[0006]

된 결정 크기를 갖는 나노결정 합금은 복수의 나노결정 미립자를 소결함으로써 생성될 수 있다.

과제의 해결 수단

따라서, 일 실시예에서, 복수의 나노결정 미립자를 소결하여 나노결정 합금을 형성하는 단계를 포함하는 방법이[0007]

제공된다.  나노결정 미립자의 적어도 일부는 제1 금속 재료와 제2 금속 재료를 포함하는 비균형 페이즈(phas

e)를 포함할 수 있다.  제1 금속 재료는 제2 금속 재료 내에 용해될 수 있다.

다른 실시예에서, 복수의 나노결정 미립자를 소결하여 나노결정 합금을 형성하는 단계를 포함하는 방법이 제공[0008]

된다.  나노결정 미립자의 적어도 일부는 제1 금속 재료와 제2 금속 재료를 포함하는 비균형 페이즈를 포함할

수 있다.  소결은 제1 소결 온도를 수반하고, 제1 소결 온도는 제2 금속 재료의 부재시 제1 금속 재료를 소결하

기 위해 필요한 제2 소결 온도보다 낮을 수 있다.

다른 실시예에서, 텅스텐 및 크로뮴 중 적어도 하나를 포함하는 소결 나노결정 합금이 제공되며, 이 나노결정[0009]

합금은 적어도 약 90%의 상대 밀도를 갖는다.  일 실시예에서, 이 소결 나노결정 합금은 텅스텐을 포함한다.

다른 실시예에서, 이 소결 나노결정 합금은 텅스텐과 크로뮴 양자 모두를 포함한다.

따라서, 일 실시예에서, 복수의 나노결정 미립자를 소결하여 나노결정 합금을 제조하는 단계를 포함하는 방법이[0010]

제공된다.  나노결정 미립자 중 적어도 일부는 제1 금속 재료와 제2 금속 재료를 포함하는 비균형 페이즈를 포

함할 수 있다.  제1 금속 재료는 제2 금속 재료 내에 용해될 수 있다.  나노결정 합금은 적어도 약 90%의 상대
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밀도를 갖는다.

상술한 개념과, 더 상세히 후술된 추가적 개념의 모든 조합(이런 개념들이 서로 불일치하지 않는 경우)은 본 명[0011]

세서에 설명된 본 발명의 주제의 일부인 것으로 고려된다는 것을 인지하여야 한다.  특히, 본 내용의 말미에 나

타나는 청구된 주제의 모든 조합은 본 명세서에 개시된 본 발명의 주제의 일부로서 고려된다.  참조로 통합된

모든 내용에서 나타날 수도 있는 본 명세서에 명시적으로 사용되는 용어는 본 명세서에 개시된 특정 개념과 가

장 일치하는 의미에 준하여야 한다는 것을 인지하여야 한다.

도면의 간단한 설명

본 기술 분야의 숙련자들은 도면은 주로 예시의 목적이며, 본 명세서에 설명된 본 발명의 주제의 범주를 제한하[0012]

고자 하는 것은 아니라는 것을 이해할 것이다.  도면은 반드시 실척대로 그려진 것은 아니며, 일부 경우에, 본

명세서에 개시된 본 발명의 주제의 다양한 양태는 다양한 특징에 대한 이해를 돕기 위해 도면에서 과장 또는 확

대되어 도시될 수 있다.  도면에서, 유사 참조부호는 유사 특징부(예를 들어, 기능적 유사 및/또는 구조적 유사

요소)를 나타낸다.

도 1a 및 도 1b는 각각 입자 크기의 함수로서의 일 실시예의 나노결정 Ni-W 합금의 경도와 일 실시예의 나노결

정 Ni-W 합금의 변형에 대한 활성화 체적을 도시한다.

도 2의 (a) 내지 (d)는 일 실시예의 Ni-W 합금 시편의 SEM 이미지를 도시한다.

도 3a 및 도 3b는 각각 일 실시예의 용질 편석으로부터 발생하는 자유도 및 고전적 자유 에너지 곡선과, 일 실

시예의 입자 크기의 함수로서의 합금내의 입자 경계 에너지의 일반적 형태를 도시한다.

도 4는 일 실시예의 가변적 용질 농도와 도펀트 크기에 대한 잉여 엔탈피의 플롯을 도시한다.

도 5는 일 실시예의 다양한 어닐링 온도에서 텅스텐 분말의 입자 크기를 도시한다.

도 6a 및 도 6b는 일 실시예에서 변하는 온도의 함수로서 첨가제의 4개 단층을 갖는 다양한 텅스텐의 선형 수축

과 일 실시예의 가변적 수의 층을 위한 3개 전이 금속 액티베이터를 갖는 텅스텐 콤팩트의 선형 수축을 도시한

다.

도 7a 및 도 7b는 Ti-W의 페이즈 다이어그램 및 V-W의 페이즈 다이어그램을 각각 도시한다.

도 8a 및 도 8b는 Sc-W의 페이즈 다이어그램 및 Cr-W의 페이즈 다이어그램을 각각 도시한다.

도 9a 및 도 9b는 Ni-Ti의 페이즈 다이어그램 및 Pd-Ti의 페이즈 다이어그램을 각각 도시한다.

도 10a 및 도 10b는 Ni-V의 페이즈 다이어그램 및 Pd-V의 페이즈 다이어그램을 각각 도시한다.

도 11a 및 도 11b는 Cr-Pd의 페이즈 다이어그램 및 Cr-Ni의 페이즈 다이어그램을 각각 도시한다.

도 12a 및 도 12b는 Pd-Sc의 페이즈 다이어그램 및 Ni-Sc의 페이즈 다이어그램을 각각 도시한다.

도 13은 1477℃에서 W-Ti-Ni의 삼원 페이즈 다이어그램을 도시한다.

도 14a 및 도 14b는 Fe-Ni의 페이즈 다이어그램과 1465℃에서 W-Fe-Ni의 삼원 페이즈 다이어그램을 각각 도시한

다.

도 15는 일 실시예의 1460℃에서 소결된 W-Ni 1 at%-Fe 1 at%의 파괴 표면을 도시한다.

도 16a 및 도 16b는 일 실시예의 서로 다른 밀링 시간에서의 텅스텐의 X선 회절 패턴 및 일 실시예의 서로 다른

밀링 시간에서의 입자 크기를 각각 도시한다.

도 17은 일 실시예의 서로 다른 밀링 시간에서의 W-Cr 20 at%의 X선 회절 패턴을 도시한다.

도 18은 일 실시예의 밀링 시간의 함수로서 W 내의 Cr의 양, 입자 크기 및 격자 파라미터를 도시한다.

도 19는 일 실시예의 소걸 거동에 대한 밀링 시간의 영향을 도시한다.

도 20은 일 실시예에서 7시간 동안 1300℃에서 유지된 W-Cr 20 at% 재료의 소결 거동을 도시한다.

도 21은 일 실시예의 서로 다른 밀링 시간에서의 W-Cr 15 at% 재료의 X선 회절 패턴을 도시한다.

도 22는 일 실시예의 소결 거동에 대한 밀링 시간의 영향을 도시한다.
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도 23은 일 실시예의 서로 다른 가열율에서 W-Cr 15 at% 재료의 소결 활성화 에너지를 도시한다.

도 24는 일 실시예에서 밀링된 W, W-Cr 20 at% 및 W-Ti 20 at% 재료의 소결 거동을 도시한다.

도 25는 일 실시예에서 소결 공정에서 1000℃에서의 W-Cr 20 at% 재료의 입자 크기를 도시한다.

도 26은 일 실시예의 소결 공정에서 1100℃에서의 W-Cr 20 at% 재료의 입자 크기를 도시한다.

도 27은 일 실시예의 소결 공정에서1200℃에서의 W-Cr 20 at% 재료의 입자 크기를 도시한다.

도 28은 일 실시예의 1300℃에서의 다양한 양의 Cr을 갖는 텅스텐의 수축을 도시한다. 

도 29는 일 실시예에서 W-Ti 20 at% 재료 및 W-Ti 20 at%-Cr 5 at% 재료의 소결 거동을 도시한다.

도 30a 내지 도 30f는 일 실시예의 W-Ti 20 at%-Cr 5 at% 소결 재료의 명시야 TEM 이미지, 일 실시예의 W-Ti

20  at%-Cr  5  at%  소결 재료의 암시야 STEM  이미지, 일 실시예의 Cr  페이즈가 하이라이팅되어 있는 W-Ti  20

at%-Cr 5 at% 소결 재료의 암시야 STEM 이미지, 일 실시예의 W 페이즈가 하이라이팅되어 있는 W-Ti 20 at%-Cr

5 at% 소결 재료의 암시야 STEM 이미지, 일 실시예의 Ti 페이즈가 하이라이팅되어 있는 W-Ti 20 at%-Cr 5 at%

소결 재료의 암시야 STEM 이미지, 일 실시예의 Cr, W 및 Ti가 하이라이팅되어 있는 W-Ti 20 at%-Cr 5 at% 소결

재료의 암시야 STEM 이미지를 각각 도시한다.

도 31은 일 실시예의 소결 공정의 종점에서의 W-Cr 20 at% 재료를 도시한다.

도 32는 일 실시예의 W-Cr 20 at% 재료의 소결 활성화 에너지를 도시한다.

도 33은 일 실시예의 1400℃로의 가열 이후의 W-Cr 20 at% 재료의 후방 산란 SEM 이미지를 도시한다.

도 34는 일 실시예에서 1100℃로의 가열 및 2시간 동안 유지 이후의 연마된 W-Cr 20 at% 재료의 후방 산란 SEM

이미지를 도시한다.

도 35는 일 실시예에서 1100℃로의 가열 및 2시간 동안의 유지 이후의 연마된 W-Cr 20 at% 재료의 후방 산란

SEM 이미지를 도시한다.

도 36은 일 실시예에서 다양한 가열 프로파일에 대한 수축 데이터로부터 계산된 W-Cr 20 at% 재료의 소결 활성

화 에너지 곡선 및 서로 다른 활성화 에너지 값에서 곡선이 수렴하는 정도를 도시한다.

도 37은 일 실시예에서 약 357 kJ의 활성화 에너지에서 수렴하는 다양한 가열 프로파일을 위한 수축 데이터로부

터 계산된 W-Cr 15 at% 재료의 활성화 에너지 곡선을 도시한다.

도 38은 일 실시예의 활성화 에너지의 함수로서 도 37에 도시된 활성화 에너지 곡선의 평균 잔차 제곱값의 플롯

을 도시한다.

도 39의 (a) 내지 (d)는 일 실시예의 재료의 선택 영역 회절 패턴이 삽입되어 있는, 밀링상태 20시간 W-Cr 15

at% 재료의 명시야 TEM 이미지, 일 실시예에서 1100℃로의 가열 이후 초포화 텅스텐으로부터 석출된 크롬 농후

페이즈의 후방 산란 SEM 이미지, 일 실시예에서, 1200℃로의 가열 이후 미립자 사이에 형성된 네크(neck)의 후

방 산란 SEM 이미지 및 W-농후 미립자에 인접한 Cr-농후 네크의 명시야 TEM 이미지를 각각 도시한다.

도 40은 일련의 대조 실험을 위한 온도의 함수로서의 상대 밀도와 일 실시예의 온도의 함수로서 W-농후 페이즈

의 상대 밀도, W 내의 Cr 양 및 BCC 격자 파라미터를 도시한다.

도 41은 일 실시예에서, 다양한 가열율에서 W-Cr 15 at%의 가열 프로파일 및 마스터 소결 곡선을 도시한다.

도 42a 내지 도 42d는 일 실시예에서 나노-페이즈 소결, 활성화 소결 및 액체 페이즈 소결을 위한 상대 밀도의

함수로서의 입자 크기, 일 실시예의 액체 페이즈 소결 미소구조, 활성화 소결 미소구조 및 나노-페이즈 소결 미

소구조를 각각 도시한다.

도 43a 및 도 43b는 일 실시예의 온도의 함수로서 Cr-Ni 시스템의 상대 밀도 변화 및 일 실시예의 에너지 분산

스펙트로스코피(EDS)에 의해 생성된 Ni 원소 맵이 삽입되어 있는 1200℃에서의 소결 이후의 Cr-Ni 15 at%의 후

방 산란 SEM 이미지를 각각 도시한다.

도 44의 (a) 및 (b)는 일 실시예에서 30°와 130° 사이의 2θ 범위 및 일 실시예의 44°와 45° 사이의 2θ 범

위에서 W-Cr 15 at%의 X선 회절 패턴을 각각 도시한다.
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도 45는 일 실시예의 다양한 가열율에서 온도의 함수로서 W-Cr 15 at%의 상대 밀도를 도시한다.

도 46의 (a) 및 (b)는 각각 일 실시예의 다양한 가열율에서의 온도의 함수로서의 Cr-Ni 15 at%의 상대 밀도 및

일 실시예의 Cr-Ni 15 at%이 마스터 소결 곡선을 각각 도시한다.

도 47은 다양한 소결 텅스텐 합금을 위한 상대 밀도의 함수로서 입자 크기를 도시한다.

발명을 실시하기 위한 구체적인 내용

이하는 본 발명의 소결 방법 및 소결 나노결정 합금에 관한 다양한 개념과 그 실시예에 대한 더 상세한 설명이[0013]

다.  개시된 개념은 임의의 특정 구현 방식에 한정되지 않으므로, 앞서 소개되고 더 상세히 후술되어 있는 다양

한 개념은 임의의 다수의 방식으로 구현될 수 있다는 것을 유의 하여야 한다.  특정 실시예 및 용례의 예는 주

로 예시의 목적을 위해 제공되어 있다.

서론[0014]

높은 강도와 증가된 내성 같은 바람직한 특성은 대체로 100 nm 미만의 평균 입자 크기를 갖는 나노결정 금속에[0015]

서 현저한 연구가 이루어져 왔다.  이들 특성은 높은 수의 입자 경계로부터 발생할 수 있으며, 입자 크기의 작

은 변동으로도 매우 크게 변한다.  도 1a 및 도 1b는 나노결정 Ni-W 합금에 대한 기계적 시험 데이터를 제시한

다.  10 nm으로부터 100 nm으로의 입자 크기 변화는 약 50%의 경도 감소와 활성화 체적의 4배를 초과한 증가를

유발할 수 있다(비율 민감도는 활성화 체적의 역수로서 표시될 수 있음).  따라서, 입자 크기의 제어는 나노결

정 금속의 재료 특성을 맞춤화하는 데 중요할 수 있다.

추가적으로, 특정 입자 크기(또는 크기 범위)는 원하는 기계적 특성에 대응할 수 있다.  도 1a에 도시된 바와[0016]

같이, 경도는 약 10 nm의 입자 크기에서 피크가되고, 그후, 추가적 입자 정련(refinement)과 함께 감소한다.

활성화 체적도 감소하고, 그후, 도 1b에 도시된 바와 같이 입자 크기가 더 작아짐에 따라 증가한다.  전단 밴드

는 도 2의 (a) 내지 (d)에 도시된 바와 같이, 12 nm 미만의 입자 크기를 갖는 Ni-W 합금에서 두드러질 수 있다.

결과적으로, 원하는 특성값을 초래하는 유한한 입자 크기가 존재할 수 있다.  따라서, 입자 크기에 대한 스케일

링가능한 제어는 원하는 특성을 갖는 나노결정 금속 재료 제조의 중요한 특징일 수 있다.

나노결정 재료[0017]

나노결정 재료는 일반적으로 나노미터 범위의, 즉, 약 1000nm보다 작은, 예를 들어, 약 900 nm, 약 800 nm, 약[0018]

700 nm, 약 600 nm, 약 500 nm, 약 400 nm, 약 300 nm, 약 200 nm, 약 150 nm, 약 100 nm, 약 50 nm, 약 30

nm, 약 20 nm, 약 10 nm, 약 5 nm, 약 2 nm 또는 그보다 더 작은 값 이하인 크기를 갖는 입자를 포함하는 재료

를 지칭한다.  본 명세서의 일부 실시예에서, 다양한 입자 크기 영역을 추가로 구분하기 위해, 용어 "초미세 입

자"는 약 100 nm보다 크고 약 1000 nm보다 작은 입자 크기를 나타내기 위해 사용되며, 용어 "나노결정 입자"는

약 100nm이하의 입자 크기를 나타내기 위해 사용된다.  일 실시예에서, 나노결정 재료는 다결정 재료일 수

있다.  다른 실시예에서, 나노결정 재료는 단결정 재료일 수 있다.

일 실시예에서, 입자 크기는 입자의 초대 치수를 지칭할 수 있다.  이 치수는 그 형상에 따라 입자의 직경, 길[0019]

이, 폭 또는 높이를 지칭할 수 있다.  일 실시예에서, 입자는 구형, 입방체형, 원추형, 원통형, 바늘형 또는 임

의의 다른 적절한 형상일 수 있다.

일 실시예에서, 나노결정 재료는 미립자의 형태일 수 있다.  미립자의 형상은 구형, 입방체형, 원추형, 원통형,[0020]

바늘형, 불규칙형 또는 임의의 다른 적절한 형상일 수 있다.

일 실시예에서, 나노결정 재료는 제1 금속 재료와 제2 금속 재료를 포함할 수 있는 나노결정 합금일 수 있다.[0021]

제1 및 제2 금속 재료는 각각 제1 및/또는 제2 금속 원소를 포함할 수 있다.  용어 "원소"는 본 명세서에서 주

기율표에서 발견될 수 있는 화학 기호를 지칭한다.  제1 금속 재료는 금속 원소일 수 있다.  금속 원소는 주기

율표의 그룹 3-14의 원소 중 임의의 것을 포함할 수 있다.  일 실시예에서, 금속 원소는 내화 금속 원소일 수

있다.  다른 실시예에서, 금속 원소는 전이 금속(주기율표의 그룹 3-12의 것들 중 임의의 것)이다.  아래에서

다수 실시예의 설명을 제공하기 위해 텅스텐을 사용하지만, 임의의 적절한 제1 금속 재료가 텅스텐 대신 사용될

수 있다.  다른 실시예에 따라서, 제1 금속 재료는 크로뮴을 포함할 수 있다.  다른 실시예에서, 제1 금속 재료

는 텅스텐과 크로뮴 중 적어도 하나를 포함할 수 있다.

일 실시예에서, 제2 금속 원소는 제1 금속 재료에 대한 활성화제 재료를 포함할 수 있거나 활성화제 재료일 수[0022]

있다.  다른 실시예에서, 제2 금속재료는 제1 금속 재료에 대한 안정화 재료를 포함할 수 있거나 안정화 재료일
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수 있다.  일 실시예에서, 제2 금속 재료는 제1 금속 재료와 동일하거나 그와 다른 금속 원소를 포함할 수

있다.  예로서, 제2 금속 재료의 금속 원소는 전이 금속일 수 있다.  일 실시예에서, 제2 금속 재료는 Cr, Ti

또는 양자 모두를 포함할 수 있다.  다른 실시예에 따라서, 제2 금속 재료는 Ni를 포함할 수 있다.

나노결정 재료는 재료에 따라서 임의의 값의 상대 밀도를 가질 수 있다.  상대 밀도는 나노결정 재료의 이론적[0023]

밀도와 나노결정 재료의 실험적으로 측정된 밀도 사이의 비율을 지칭할 수 있다.

일 실시예에서, 나노결정 재료는 벌크 나노결정 합금일 수 있다.  벌크 나노결정 합금은 얇은 필름의 형태가 아[0024]

닌 재료일 수 있다.  예로서, 일 실시예의 벌크 나노결정 합금은 적어도 약 1 미크론, 예를 들어, 적어도 약 10

미크론, 약 25 미크론, 약 50 미크론, 약 75 미크론, 약 100 미크론, 약 250 미크론, 약 500 미크론, 약 1 mm,

약 5 mm, 약 10 mm 또는 그보다 큰 최소 치수를 갖는 재료를 지칭할 수 있다.  다른 실시예에서, 나노결정 합금

은 코팅의 형태가 아닐 수 있다.

나노결정 구조의 안정화[0025]

높은 표면-대-체적 비율을 갖는 나노결정 미소구조는 이를 불안정하게 할 수 있는 많은 수의 계면 영역 또는 입[0026]

자 경계를 가질 수 있다.  일 실시예에서, 불안정성은 시스템 내의 높은 양의 잉여 에너지를 나타낼 수 있으며,

실온에서도  순수  나노구조  재료에서  현저한  입자  성장이  관찰될  수  있다.   임의의  특정  이론에  얽메이지

않지만, 이러한 현상은 열역학적 관점으로부터 이해될 수 있다.  깁스(Gibbs) 자유 에너지(G)는 입자 경계 면적

(A)으로 승산된 입자 경계 에너지(γ)에 비례한다.  따라서, 입자 성장의 결과로서 발생하는 입자 경계 면적의

감소는 시스템을 더 낮은 에너지 상태가 되게 할 수 있다.  이러한 현상은 일 실시예에서 도 3a에 예시되어 있

다.

 (1)[0027]

입자 성장을 위한 높은 구동력은 순수 나노구조 재료의 추가적 기술적 응용을 제한할 수 있으며, 그 이유는 재[0028]

료의 사용 수명 동안의 입자 크기의 작은 변화도 재료 특성에 극적인 변화를 초래할 수 있기 때문이다.  추가적

으로, 입자 성장을 위한 특성은 응고 및 형상 성형을 포함하는 나노결정 재료가 받게 될 수 있는 후처리의 양을

제한할 수 있다.

일 실시예에서, 2가지 기본적 접근법이 사용되어 나노결정 재료를 안정화한다: 운동역학적 접근법 및 열역학적[0029]

접근법.  운동역학적 접근법은 입자 성장을 감소시키기 위해 입자 경계 이동도를 최소화하기를 시도한다.  예로

서, 입자 경계 이동도는 제2 페이즈 항력, 용질 항력 및 화학적 정렬을 포함하는 방법에 의해 제한될 수 있다.

이들 전략은 입자 성장이 발생하는 시간을 지연시킬 수 있다.  그러나, 이들 방법은 입자 성장을 위한 구동력을

감소시키지 않을 수 있다.  따라서, 운동역학적으로 안정화된 생성물은 입자 성장을 겪을 수 있으며, 서비스 수

명 전반에 걸쳐 일정한 성능을 제공하지 못할 수 있다.

대조적으로, 열역학적 접근법은 용질 원자를 편석시킴으로써 입자 경계 에너지를 감소시켜 입자 성장을 위한 구[0030]

동력을 감소시키기를 시도한다.  어떠한 특정 이론에도 얽메이지 않지만, 합금 시스템에서, 결정 경계 에너지

(γ)는 깁스 흡착 방정식에 의해 용질 농도(cs)에 관하여 설명될 수 있다.

 (2)[0031]

여기서, T는 온도이고, R은 가스 상수이며, Γs는 용질 원자의 계면 잉여량이다.  편석의 경우, Γs > 0이고, 따[0032]

라서, γ는 용질 농도(cs)가 증가함에 따라 감소한다.  나노결정 합금은 특정 용질 농도에서 γ가 0에 근접한

경우 메타안정 상태일 수 있다.  수학식 (2)로부터 총 입자 경계 에너지는 다음과 같이 주어진다.

(3)[0033]

여기서, γ0는 순수 원소의 특정 입자 경계 에너지이고, △Hseg는 용질 원자의 편석 엔탈피이고, k는 볼츠만 상수[0034]

이며, X는 입자 경계의 용질 농도이다.  용질 편석에 의한 나노결정 재료 입자 크기의 안정화는 특히 Ni-P

합금, Y-Fe 합금, Nb-Cu 합금, Pd-Zr 합금 및 Fe-Zr 합금에 대해 수행될 수 있다.

용질 편석에 의해 생성된 깁스 자유 에너지에 대한 새로운 자유도가 고전적 입자 경계 에너지에 대한 상반된 경[0035]

향을 나타내는 도 3a에 그려져 있다.  용질 편석 효과에 의해 변경된 고전적 입자 경계 에너지가 도 3b에 도시

되어 있다.  일 실시에에서, 이 곡선은 고전적 입자 경계 에너지 곡선과는 다르며, 그 이유는 이는 단순히 감소
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하는 것이 아니라 대신 특정 입자 크기에서 최소치를 나타내기 때문이다.  따라서, 미세 입자 크기를 갖는 안정

화된 나노구조 재료는 용질 편석으로 입자 성장을 위한 구동력을 감소시킴으로써 생성될 수 있다.

나노결정 텅스텐[0036]

일 실시예에서, 나노결정 체심 입방 금속이 바람직하며, 그 이유는 이들 금속이 고속하중(high rate loading)[0037]

하에서 국지적 전단을 포함하는, 바람직한 특성을 나타내기 때문이다.  고속하중 하에서의 전단 밴드의 형성은

운동역학적 에너지 침투기 장치에 활용되는 재료에 유익할 수 있으며, 그 이유는 이것이 침투기의 소성 변형의

결과로서 소산되는 에너지를 감소시킴으로서 침투 대상 대상물에 더 많은 에너지가 전달될 수 있게 하기 때문이

다.  일 실시예에서, 텅스텐은 그 높은 밀도와 강도에 기인하여 운동역학적 에너지 침투기 용례에서 소진된 우

라늄을 위한 유망한 대체물로서 바람직할 수 있다.  또한, 더 큰 입자 크기를 갖는 텅스텐과는 달리, 나노결정

텅스텐은 고속하중 하에서 전단 밴드를 나타낼 수 있다.

나노결정 재료 제조를 위해 두 가지 방법이 사용될 수 있다: 버텀-업 및 탑-다운.  탑-다운 전략은 벌크 조립질[0038]

입자 재료를 나노스케일 체계로 정련할 수 있다.  버텀-업 방법은 나노크기 미립자를 사용하고, 고온에서의 통

합이 후속된다.

텅스텐의 입자 크기를 정련하기 위한 일 예시적 탑-다운 방법은 고도 소성 변형(SPD)이다.  적어도 두 개의 전[0039]

형적 SPD 기술이 존재한다: 등통로각압축(ECAP) 및 고압 비틀림(HPT).  ECAP 공정은 1000℃ 정도의 높은 처리

온도의 결과로서 동적 재결정화 및 결정 성장을 개시시킴으로써 수 미크론의 텅스텐 입자 크기를 도출할 수 있

다.  따라서, 온간 압연 공정이 ECAP 공정에 후속되어 초미세 입자 체계를 취득할 수 있다.  다른 SPD 가공 방

법인 HPT는 텅스텐 디스크에 높은 압력과 비틀림을 인가한다.  결과적 소성 변형은 약 100 nm의 입자 크기를 갖

는 재료를 산출한다.  어떠한 변형 경화도 갖지 않는 완벽히 소성적일 수 있으면서 감소된 변형률 민감성을 나

타낼 수 있고 및/또는 고속하중하에서 국지화된 전단을 나타낼 수 있는 초미세 입자 크기 텅스텐이 이들 SPD 기

술에 의해 생성될 수 있다.

일부 경우에, 초미세 입자 크기 텅스텐(또는 심지어 더 미세한 입자)을 생성하기 위해 SPD 기술을 사용할 때 문[0040]

제가 존재할 수 있다.  첫 번째로, SPD 기술을 통해서는 큰 규모의 제품이 생성될 수 없다.  일 실시예에서,

SPD 기술은 가공되는 재료의 단위 체적 당 다량의 에너지를 사용한다.  또한, 제조된 재료의 미세한 입자 크기

는 재료가 후속 처리(예를 들어, 형상 성형)에 노출되는 경우 소실될 수 있다.  추가적으로, SPD 기술은 입자

크기를 정밀하게 제어할 수 있는 스케일링가능한 방식을 제공할 수 없으며, 따라서, 특정 용례에 요구되는 특정

입자 크기를 갖는 재료를 생성할 수 없다.  일 실시예에서, SPD 기술은 입자 성장을 위한 구동력을 감소시키지

못한다.

버텀-업 방법의 일 실시예에서, 재료의 나노크기 입자를 포함하는 미립자가 합성되고, 그후, 이 미립자가 통합[0041]

된다.  따라서, 일 실시예에서, 이 방법은 본 명세서에서 "2-단계" 공정이라 지칭될 수 있다.  통합은 소결 공

정에 의해 달성될 수 있다.  그러나, 버텀-업 방법을 사용하여 생성된 재료는 통합 단계 동안 제거되지 않는 체

적 결함의 결과로서 열악한 연성을 나타낼 수 있다.  이들 체적 결함은 잔류 공극, 열악한 입자간 결합 및 불순

물 오염을 포함할 수 있다.

버텀-업 공정은 나노결정 텅스텐을 제조하기 위해 사용될 수 있다.  이들 공정은 볼 밀링 및/또는 고 에너지 밀[0042]

링을 포함하는 기계적 가공을 통해 합성된 나노결정 텅스텐 분말의 제조를 포함할 수 있다.  일부 경우에,약 5

nm 내지 약 15 nm의 나노크기 입자를 갖는 텅스텐이 제조될 수 있지만, 결과적 나노구조는 불안정해질 수 있으

며, 열적 활성화 입자 성장에 민감할 수 있다.  일 실시예에서, 안정한 나노구조를 갖는 텅스텐 재료를 제조하

기 위해, 첨가 원소가 사용되어 열적 활성화 결정 성장에 대한 민감성을 감소시킨다.  본 명세서의 임의의 위치

에서 설명된 바와 같이, 일 실시예의 첨가 원소는 나노결정 합금의 텅스텐에 관하여 안정화제, 활성화제 또는

양자 모두일 수 있다.

나노결정 합금을 안정화하기 위한 원소[0043]

나노크기 입자를 갖는 텅스텐 재료를 안정화하기 위한 원소 선택시, △Hseg가 중요할 수 있다.  수학식 3에 나타[0044]

난 바와 같이, 큰 값의 △Hseg는 입자 경계 에너지를 감소시킬 수 있다.  용체의 △Hseg는 용체의 탄성 변형 에너

지에 직결될 수 있으며, 용체의 탄성 변형 에너지는 원자 반경 불일치로 스케일링될 수 있다.  따라서, 일 실시

예에서, 원자 반경 불일치가 증가할 때, 입자 경계 에너지가 감소될 수 있다.

도 4에 도시된 바와 같이, 호스트 원자의 것에 대한 용질의 원자 반경의 비율이 증가할 때 잉여 엔탈피의 구배[0045]
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가 더 음이됨으로써 원자 반경 불일치가 증가함에 따라 입자 경계 에너지 감소의 증가된 가능성을 나타낼 수 있

다.  텅스텐의 안정화를 위한 원소 선택시 고려될 수 있는 다른 인자는 화학적 상호작용 및 입자 경계 에너지

편차를 포함한다.  양의 혼합열을 갖는 원소의 경우에, 용해도는 화학적 상호작용에 직결될 수 있고, 호스트 원

자와 높은 불혼화성을 갖는 용질은 입자 경계로 편석되기가 더 쉬울 수 있다.

양의 혼합 열을 갖는 텅스텐 합금의 편석강도의 고려시, 원소 Ti, V, Sc 및 Cr이 그 혼합의 엔탈피에 관하여 양[0046]

호한 편석 강도를 가질 수 있다.  일 실시예에서, 바나듐은 낮은 혼합 열을 나타내고, 따라서, 특정 용례에는

바람직하지 못할 수 있다.

합금의 열적 안정성은 임의의 적절한 기술에 의해 결정 및/또는 확인될 수 있다.  예로서, 일 실시예에서, W-Ti[0047]

합금의 열적 안정성은 다양한 온도에서 현장 수집된 x선 회절(XRD) 데이터에 의해 확인될 수 있다.  합금 샘플

은 다양한 사전결정된 시간 주기에 대해 다양한 온도에서 어닐링되어 있을 수 있다.  도 5는 다양한 온도에서

1.5 시간 동안 어닐링된 이후 W-Ti 합금의 XRD 데이터를 도시한다.  도 5에 도시된 바와 같이, 순수 텅스텐의

입자 크기가 1000℃에서 증가할 수 있지만, W-17.5 at% Ti 합금의 입자 크기 증가는 억제될 수 있다.  따라서,

어떠한 이론에도 얽메이지 않지만, 적어도 본 실시예에서, Ti는 입자 경계 에너지를 감소시킴으로써 입자 성장

을 억제하는 역할을 할 수 있다.

텅스텐의 활성화 소결[0048]

텅스텐이 3422℃의 높은 융점을 갖기 때문에, 텅스텐은 내화 금속 재료로서 사용될 수 있다.  일 실시예에서,[0049]

소결 기술에서도, 충분한 밀도로 소결된 텅스텐 재료를 취득하기 위해서는 약 2400℃ 내지 약 2800℃의 높은 온

도가 필요할 수 있다.  소량의 추가 원소가 텅스텐에 추가됨으로써 소결 운동역학을 개선시키고, 따라서, 소결

온도를 저하시킬 수 있다.  추가 원소는 상술한 것들 중 임의의 것을 포함하는 금속 원소일 수 있다.  일 실시

예에서, 추가 원소는 Pd, Pt, Ni, Co 및 Fe 중 적어도 하나일 수 있다.  이들 추가 금속 원소는 텅스텐 입자를

둘러쌀 수 있으며, 텅스텐을 위한 비교적 높은 수송 확산 경로를 제공함으로써 텅스텐 확산의 활성화 에너지를

감소시킨다.  일 실시예에서, 이 기술은 활성화 소결이라 지칭된다.

활성화 소결은 다른 메커니즘에 의해 설명될 수 있다.  이는 전위 상승(dislocation climb), 추가 원소로부터[0050]

텅스텐의 d-궤도로의 전자 전달 및 입자 경계 확산율의 향상에 기인할 수 있다.  텅스텐의 소결 운동역학에 대

한 전이 금속 원소인 추가 원소의 영향은 도 6a 및 도 6b에 도시되어 있다.  이들 도면에서, 소결 정도는 상승

된 온도에서 일정한 힘 하에서 텅스텐 콤팩트의 수축 정도에 의해 반영될 수 있으며, 수축은 발생한 소결양과

상관된다.  도 6a는 텅스텐 미립자 상의 다양한 추가 원소 단층을 위한 수축양을 나타내고, 도 6b는 다양한 온

도에서 다양한 추가 원소의 4개 단층을 갖는 텅스텐 미립자의 수축을 보여준다.  일 실시예에서, 추가 원소로서

Pd 및 Ni의 사용은 텅스텐의 활성화 소결을 초래할 수 있다.  다른 실시예에서, 추가 원소 Cu는 소결 운동역학

에 대한 미소한 영향을 가질 수 있으며, 도 6b에 도시된 바와 같이 순수 텅스텐과 동일한 선형 수축을 초래할

수 있다.  어떠한 이론에도 얽메이지 않지만, 이는 Cu 내에서 텅스텐의 낮은 용해도를 초래할 수 있으며, 이 낮

은 용해도는 소결 동안 Cu가 텅스텐 원자로의 신속 수송 경로를 제공하는 것을 방지할 수 있다.

소결 운동역학[0051]

추가 원소가 일부 경우에 바람직할 수 있지만, 너무 많은 추가 원소는 텅스텐의 조밀화를 저해할 수 있다.  어[0052]

떠한 특정 이론에도 얽메이지 않지만, 텅스텐의 활성화 소결은 확산 제어 공정일 수 있는 것으로 제시될 수 있

다.  추가 원소 Fe, Co, Ni 및 Pd의 활성화 에너지는 각각 480 kJ/mol, 370 kJ/mol, 280 kJ/mol 및 200 kJ/mol

이다.

순수 텅스텐 소결의 활성화 에너지는 약 380-460 kJ/mol이다.  어떠한 이론에도 얽메이지 않지만, 이 값은 초기[0053]

스테이지에서 순수 텅스텐의 소결 메커니즘은 입자 경계 확산이며, 그 이유는 순수 텅스텐 소결의 활성화 에너

지가 표 1에 나타난 바와 같이 텅스텐의 입자 경계 확산의 것과 비슷하기 때문이라는 것을 제시한다.

표 1

확산 유형[0054] 활성화 에너지(kJ/mol)

표면 확산 250-290

입자 경계 확산 380-460

체적 확산 500-590
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표 1: 텅스텐의 3개 물질 수송 메커니즘의 활성화 에너지조밀화를 위한 활성화 에너지[0055]

소결은 몇몇 서로 다른 확산 메커니즘의 결과로서 미소구조의 변경을 포함하는 복합 공정일 수 있다.  일 실시[0056]

예에서, 이 복합 소결 공정은 미소구조의 변화에 기초하여 3개 스테이지로 구별될 수 있다: 초기, 중간 및 최종

스테이지.  초기 스테이지는 미립자 사이에 네크가 생성될 때 낮은 온도에서 시작될 수 있다.  네크는 표면 확

산을 통해 생성되며 밀도의 작은 증가를 초래할 수 있다.  초기 스테이지는 3% 미만의 선형 수축에 상관될 수

있다.  중간 스테이지는 현저한 조밀화를 생성할 수 있다.  중간 스테이지에서의 조밀화는 93%의 상대 밀도까지

일 수 있다.  최종 스테이지 동안, 격리된 공극이 형성되고 그후 제거될 수 있다.  최종 스테이지에서, 체적 확

산이 주도적일 수 있다.

소결 거동은 기하학적 모델에 의해 설명될 수 있다.  이들 모델은 일부 경우에는 실험 결과와 비슷하지만, 비구[0057]

형 미립자의 사용 또는 미립자 크기의 다양성 같은 기하학적 모델로부터의 미소한 이탈이 기하학적 모델의 결과

를 비신뢰적이게 만들 수 있다.  또한, 초기 소결 공정에 기초한 기하학적 모델은 최초 5% 선형 수축을 초과하

여서는 정확할 수 없다.  추가로, 분말 콤팩트의 미소구조의 실제 변화는 기하학적 모델의 예측과는 다를 수 있

다.  결과적으로, 소결 운동역학을 정량적으로 예측하는 것은 곤란할 수 있다.

전체 소결 공정은 상기 3개 스테이지보다 많은 스테이지에 초점을 둔 접근법에서 설명될 수 있다.  소결 공정의[0058]

정확한 활성화 에너지를 평가하기 위해, 일반화된 소결 방정식이 사용될 수 있다.  어떠한 특정 이론에도 얽메

이지 않지만, 소결 동안의 순간 조밀화율은 수학식 4에 나타난 바와 같이 온도-의존 항, 입자 크기 의존 항 및

밀도 의존 항으로 표현될 수 있다.

 여기서 (4)[0059]

여기서, ρ는 벌크 밀도이고, d는 입자 또는 미립자 크기이고, γ는 표면 에너지이며, V는 몰 체적이고, R은 가[0060]

스 상수이고, T는 절대 온도이고, Q는 활성화 에너지이고, f(ρ)는 밀도만의 함수이다.  C는 수이고, A는 d, T

또는 ρ에 관련되지 않는 재료 파라미터이다.  마지막으로, 입자 경계 확산 또는 체적 확산 같은 확산 메커니즘

이 n의 값을 결정한다.  등방성 수축 상황에서, ρ는 단순한 수학적 관계와 수축 데이터에 기초하여 얻어질 수

있다.

(5)[0061]

수학식 4의 로그를 취하면 아래의 수학식이 얻어진다.[0062]

(6)[0063]

따라서, 활성화 에너지(Q)는 상수 ρ및 d에서, 1/T에 대해 ln(Tdρ/dt)를 그림으로써 구배를 통해 평가될 수 있[0064]

다.  또한, 수학식 (6)은 서로 다른 밀도값에서 서로 다른 Q를 생성한다.

편석을 통한 텅스텐 합금의 열역학적 안정화[0065]

일 실시예에서, 추가 합금 원소가 사용될 수 있다: 안정화제 원소 및/또는 활성화제 원소.  안정화제 원소는 입[0066]

자 경계에서의 편석에 의해 나노결정 텅스텐을 열역학적으로 안정화할 수 있다.  이러한 편석은 입자 경계 에너

지를 감소시킬 수 있으며, 따라서, 입자 성장을 위한 구동력을 감소시킬 수 있다.  일 실시예에서, 나노결정 텅

스텐 합금은 약 1000℃ 이상의 온도, 예를 들어, 약 1050℃, 약 1000℃, 약 1150℃, 약 1200℃, 약 1250℃, 약

1300℃, 약 1350℃, 약 1400℃, 약 1450℃, 약 1500℃ 또는 그 보다 높은 온도 이상의 온도에서 열역학적으로

안정하거나 실질적으로 열역학적으로 안정할 수 있다.

활성화제 원소는 텅스텐 원자를 위한 높은 확산 경로를 제공함으로써 텅스텐의 소결 운동역학을 향상시킬 수 있[0067]

다.  결과적으로, 일 실시예에서, 소결 온도는 약 1500℃ 이하, 예를 들어, 약 1450℃, 약 1400℃, 약 1350℃,

약 1300℃, 약 1250℃, 약 1200℃, 약 1150℃, 약 1100℃, 약 1050℃ 또는 그보다 낮은 온도 이하일 수 있다.
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일 실시예에서, 소결 온도는 약 1000℃일 수 있다.  소결 온도의 감소는 나노결정 텅스텐의 나노구조가 열역학

적으로 안정한 온도 범위에서 소결이 이루어질 수 있게 한다.  일 실시예에서, 소결 온도는 사용되는 가열율에

의해 영향을 받을 수 있다.

안정화제 원소[0068]

안정화제 원소는 소결된 재료의 입자 경계 에너지를 감소시킴으로써 입자 성장을 위한 구동력을 감소시킬 수 있[0069]

는 임의의 원소일 수 있다.

일반적으로, 안정화제 원소는 소결된 재료와 양의 혼합 열을 나타낼 수 있다.  일 실시예에서, 안정화제 원소는[0070]

상술한 금속 원소 중 임의의 것일 수 있는 금속 원소일 수 있다.

안정화제 원소는 약 2.5 at% 이상의 양, 예를 들어, 약 5 at%, 약 7.5 at%, 약 10 at%, 약 12.5 at%, 약 15[0071]

at%, 약 17.5 at%, 약 20 at%, 약 25 at%, 약 30 at%, 약 35 at%, 약 40 at%, 약 45 at%, 또는 그 보다 큰 값

이상의 양으로 존재할 수 있다.  일 실시예에서, 안정화제 원소는 약 2.5 at% 내지 약 45 at%, 예를 들어, 약 5

at% 내지 약 40 at%, 약 7.5 at% 내지 약 35 at%, 약 10 at% 내지 약 30 at%, 약 12.5 at% 내지 약 25 at% 또

는 약 15 at% 내지 20 at% 등의 양으로 존재할 수 있다.  일 실시예에서, 안정화제 원소는 약 2.5 at%, 약 5

at%, 약 7.5 at%, 약 10 at%, 약 12.5 at%, 약 15 at%, 약 17.5 at%, 약 20 at%, 약 25 at%, 약 30 at%, 약

35 at%, 약 40 at% 또는 약45 at%의 양으로 존재할 수 있다.

활성화제 원소[0072]

활성화제 원소는 소결된 재료의 소결 운동역학을 향상시킬 수 있는 임의의 원소일 수 있다.  활성화된 소결의[0073]

일 실시예에서, 활성화제 원소는 텅스텐의 확산을 위한 신속 캐리어 경로로서 작용할 수 있다.  결과적으로, 일

실시예에서, 활성화제 원소의 선택은 2개 조건에 기초할 수 있다.  먼저, 텅스텐 내에서 활성화제 원소의 용해

도 및 미립자간 계면에서의 편석이 낮을 수 있다.  추가적으로, 활성화제 원소는 텅스텐을 위한 비교적 높은 용

해도를 나타내어 텅스텐 원자를 위한 신속 확산 경로로서 작용할 수 있게 한다.  두 번째로, 활성화제 원소의

페이즈 농후상태에서 텅스텐의 확산율은 비교적 높을 수 있다.  추가적으로, 활성화제 원소 농후 페이즈의 텅스

텐의 확산율은 텅스텐 자체의 확산율보다 높아야 한다.  페이즈 내의 원소의 함량에 관하여 용어 "농후"는 일

실시예에서, 적어도 약 50 at%, 예를 들어, 적어도 약 60 at%, 약 70 at%, 약 80 at%, 약 90 at%, 약 99% 또는

그 이상의 페이즈 내의 원소 함량을 지칭한다.  용어 "페이즈"는 일 실시예에서, 물질의 상태를 지칭한다.  예

로서, 일 실시예에서, 페이즈는 페이즈 다이어그램 상에 도시된 페이즈를 지칭할 수 있다.

일 실시예에서, 텅스텐은 활성화제 원소 내에서 용해될 수 있다.  다른 실시예에서, 활성화제 원소의 텅스텐의[0074]

용해도는 온도 증가와 함께 증가한다.  일 실시예에서, 활성화제 원소의 용융 온도는 텅스텐의 용융 온도 미만

일 수 있다.

일반적으로, 활성화제의 양은 안정화제 원소와 상호작용을 위해 가용한 양이 감소되도록 최소화될 수 있다.  일[0075]

실시예에서, 활성화제 원소는 약 0.15 at% 이상, 예를 들어, 약 0.3 at%, 약 0.5 at%, 약 1 at%, 약 3 at%, 약

5 at%, 약 8 at%, 약 10 at%, 약 13 at%, 약 15 at%, 약 18 at%, 약 20 at%, 약 23 at%, 약 25 at%, 약 30

at%, 약 35 at%, 약 40 at%, 약 45 at% 또는 그 보다 큰 값 이상의 양으로 존재할 수 있다.  일 실시예에서,

활성화제 원소는 약 0.15 at% 내지 약 45 at%의 양, 예를 들어, 약 0.3 at% 내지 약 40 at%, 약 0.5 at% 내지

약 35 at%, 약 1 at% 내지 약 30 at%, 약 3 at% 내지 약 25 at%, 약 5 at% 내지 약 23 at%, 약 8 at% 내지 약

20 at%, 약 10 at% 내지 약 18 at%, 또는 약 13 at% 내지 약 15 at% 등의 양으로 존재할 수 있다.  일 실시예

에서, 활성화제 원소는 약 0.15 at%, 약 0.3 at%, 약 0.5 at%, 약 1 at%, 약 3 at%, 약 5 at%, 약 8 at%, 약

10 at%, 약 13 at%, 약 15 at%, 약 18 at%, 약 20 at%, 약 23 at%, 약 25 at%, 약 30 at%, 약 35 at%, 약 40

at%, 또는 약 45 at%의 양으로 존재할 수 있다.

일 실시예에서, 활성화제 원소는 금속 원소일 수 있으며, 상술한 금속 원소 중 임의의 것일 수 있다.  일 실시[0076]

예에서, 활성화제 원소는 Pd, Pt, Ni, Co 및 Fe 중 적어도 하나일 수 있다.

일 실시예에서, 활성화제 원소는 또한 안정화제 원소일 수 있다.  수학식 (3)에 도시된 바와 같이, 최대 Hseg는[0077]

최대 안정화 효과를 생성할 수 있으며, Hseg는 세 가지 인자에 관련할 수 있다: 원자 반경 불일치(탄성 변형 에

너지), 화학적 상호작용 및 입자 경계 에너지 편차.  Ni와 텅스텐 사이의 원자 반경 불일치는 Pd와 텅스텐 사이

의 불일치보다 더 크다.  따라서, Ni는 단지 탄성 변형 에너지만이 고려되는 경우 텅스텐을 안정화하기 위해 더

양호한 원소일 수 있다.  일 실시예에서, Ni 또는 Pd는 안정화제 원소 및 활성화제 원소 양자 모두로서 작용하

등록특허 10-2570879

- 13 -



여, W-Ni 및 W-Pd 나노결정 합금을 생성한다.

다른 실시예에서, 안정화제 원소는 또한 활성화제 원소일 수 있다.  안정화제 및 활성화제 원소 양자 모두로서[0078]

의 단일 원소의 사용은 활성화제와 안정화제 사이의 상호작용을 고려하는 것에 대한 필요성을 제거하는 추가된

이득을 갖는다.  일 실시예에서, 활성화제 및 안정화제 양자 모두로서 사용될 수 있는 원소는 금속 원소일 수

있으며, 이는 상술한 금속 원소 중 임의의 것일 수 있다.  일 실시예에서, Ti, V, Cr 및 Sc 또는 그 조합 중 적

어도 하나는 활성화제 및 안정화제 원소 양자 모두로서 사용될 수 있다.  다른 실시예에서, Cr, Ti 또는 양자

모두는 활성화제 및 안정화제 원소 양자 모두로서 사용될 수 있다.

Ti 및 V의 경우에, 고용체는 도 7a 및 도 7b의 페이즈 다이어그램에 도시된 바와 같이 소결 온도(1500℃ 미만)[0079]

에서 텅스텐으로 형성된다.  Sc의 경우에, Sc 및 W 페이즈는 도 8a의 페이즈 다이어그램에 도시된 바와 같이 예

상 소결 온도(1500℃ 미만)에서 별개로 존재한다.  따라서, 일 실시예에서, Sc는 텅스텐을 위한 확산 경로를 제

공할 수 있을 수 있다.  Cr의 경우에, Cr 농후 및 W 농후 페이즈는 도 8b의 페이즈 다이어그램에 도시된 바와

같이 예상 소결 온도(1500℃ 미만)에서 별개로 존재한다.  추가로, Cr은 다른 안정화제에 비해 비교적 높은 편

석 엔탈피를 가지며, Cr에서의 텅스텐의 확산은 텅스텐의 자가 확산도보다 높다.  일 실시예에서, Cr은 활성화

제 원소 및 안정화제 원소 양자 모두로서 작용함으로써 W-Cr 나노결정 합금을 생성할 수 있다.

활성화제와 안정화제의 상호작용[0080]

하나의 원소가 안정화제 및 활성화제 양자 모두로서 작용할 수 없을 때, 두 원소가 사용될 수 있다.  두 원소[0081]

사이의 상호작용은 활성화제와 안정화제 역할이 적절히 충족되는 것을 보증하기 위해 고려될 수 있다.  예로서,

활성화제와 안정화제가 금속간 화합물을 형성할 때, 원소 각각은 그 지정된 역할을 충족하는 것이 방지될 수 있

다.  결과적으로, 예상 소결 온도에서 금속간 화합물을 형성하기 위한 기능과 활성화제 및 안정화제 조합은 적

어도 일부 예에서 회피되어야 한다.  두 원소 사이의 금속간 화합물의 형성을 위한 잠재성은 페이즈 다이어그램

과 함께 분석될 수 있다.

각 첨가물의 양은 페이즈 다이어그램에 기초한 금속간 페이즈의 형성을 위한 잠재성을 결정하는 데 중요할 수[0082]

있다.  예로서, 도 5에 도시된 바와 같이, 17.5 at% Ti는 W에 관하여 바람직한 안정화제일 수 있다.  일 실시예

에서, 단순성을 위해, 20 at% 양의 안정화제가 도 5에 기초하여 고려될 수 있다.  다른 한편, 추가된 활성화제

의 양은 미립자 크기에 따라 변할 수 있다.  일 실시예에서, 텅스텐 미립자 크기의 분포를 측정할 때까지 추가

될 정확한 양의 활성화제가 알려져 있지 않을 수 있지만, 텅스텐에 비해 0.5 wt%로서 대략 근사화될 수 있다.

도 9a는 20 at% Ti 및 1.3 at% Ni의 양의 Ti 및 Ni(텅스텐에 비해 0.5 wt% Ni에 대응)가 추가되는 일 실시예를[0083]

예시한다.  도 9a에 도시된 바와 같이, Ti2Ni 금속간 페이즈와 Ti(HCP) 페이즈가 767℃ 미만의 온도에서 공존한

다.  더 중요하게, 활성화 소결의 목적을 위해, 두 개의 페이즈 영역 -Ti(HCP), 액체-가 이러한 농도에서 약

1200℃ 및 그를 초과한 온도에서 존재한다.

도 9b는 20 at% Ti 및 0.7 at% Pd의 양의 Ti 및 Pd(텅스텐에 비해 0.5 wt% Pd에 대응)가 추가되는 일 실시예를[0084]

예시한다.  도 9b에 도시된 바와 같이, Ti(HCP) 페이즈는 약 1500℃에서 존재한다.

도 10a는 20 at% V 및 1.3 at% Ni의 양의 V 및 Ni(텅스텐에 비해 0.5 wt% Ni에 대응)가 추가되는 일 실시예를[0085]

예시한다.  도 10a에 도시된 바와 같이, V3.1 0.9 금속간 화합물 및 V 페이즈가 약 800℃에서 공존하며, V 페이

즈는 고온에서 존재한다.

도 10b는 20 at% V 및 0.7 at% Pd의 양의 V 및 Pd(텅스텐에 비해 0.5 wt% Pd에 대응)가 추가되는 일 실시예를[0086]

예시한다.  도 10b에 도시된 바와 같이, 단지 V 페이즈만이 액 1900℃까지 존재한다.

도 11a는 20 at% Cr 및 0.7 at% Pd의 양의 Cr 및 Pd(텅스텐에 비해 0.5 wt% Pd에 대응)가 추가되는 일 실시예[0087]

를 예시한다.  도 11a에 도시된 바와 같이, Cr 페이즈 및 Pd 페이즈가 570℃를 초과하여 공존하고, Cr 페이즈와

액체 페이즈가 1304℃를 초과하여 공존한다.  비록, 삼원 다이아그램은 금속간 화합물이 형성될 수 있는지 여부

를 결정하는 데 중요할 수 있지만, 이원 페이즈 다이아그램은 Cr 및 Pd 페이즈가 공존할 수 있다는 것을 나타낸

다.  일 실시예에서, 소결 온도는 1300℃ 미만일 수 있고, Cr 및 Pd는 이원 페이즈 다이아그램에 기초한 별개의

페이즈로서 이 온도 범위에서 존재함으로써 서로 간섭 없이 Cr과 Pd가 활성화제 및 안정화제 각각의 역할을 충

족할 수 있게 한다.  다른 실시예에서, 처리 온도는 1300℃를 초과할 수 있고, 액체 소결 기술이 사용될 수 있

다.

도 11b는 20 at% Cr 및 1.3 at% Ni의 양의 Cr 및 Ni(텅스텐에 비해 0.5 wt% Ni에 대응한다)가 추가되는 일 실[0088]

등록특허 10-2570879

- 14 -



시예를 예시한다.  도 11b에 도시된 바와 같이, Cr 페이즈와 Ni 페이즈가 587℃를 초과하여 공존하며, 단지 Cr

페이즈만이 1000℃를 초과하여 존재한다.

도 12a는 20 at% Sc 및 0.7 at% Pd의 양의 Sc 및 Pd(텅스텐에 비해 0.5 wt% Pd에 대응)가 추가되는 일 실시예[0089]

를 예시한다.  도 12a에 도시된 바와 같이, Sc 페이즈 및 액체 페이즈는 1000℃를 초과하여 공존하고, 단지 액

체 페이즈만이 1400℃를 초과하여 존재한다.

도 12b는 20 at% Sc 및 1.3 at% Ni의 양의 Sc 및 Ni(텅스텐에 비해 0.5 wt% Ni에 대응)가 추가되는 일 실시예[0090]

를 예시한다.  도 12b에 도시된 바와 같이, Sc 페이즈 및 액체 페이즈가 960℃를 초과하여 공존하고, 단지 액체

페이즈만이 1400℃를 초과하여 존재한다.

텅스텐과의 활성화제-안정화제 조합의 삼원 페이즈 다이아그램은 액체 페이즈는 일부 안정화제-활성화제 조합과[0091]

함께 형성될 수 있다는 것을 나타낸다.  일 실시예에서, 액체 페이즈를 형성할 수 있는 안정화제-활성화제 조합

은 Ni-Ti, Sc-Ni, Sc-Pd 및 Cr-Pd일 수 있다.

1477℃를 위해 도 13에 도시된 바와 같은 W-Ti-Ni를 위한 삼원 페이즈 다이아그램은 조성 W-20 at% Ti-1.3 at%[0092]

Ni에서 액체 페이즈가 존재한다는 것을 나타낸다.  일 실시예에서, 액체 페이즈 소결 기술이 W-Ti-Ni를 위해 사

용될 수 있으며, 이는 활성화 소결 같이 소결 운동역학을 추가로 향상시킬 수 있다.

액체 페이즈 소결[0093]

액체 페이즈 소결의 적어도 하나의 실시예에서, 합금은 예상된 처리 온도에서 구성요소의 고상선 위의 하나보다[0094]

많은 성분을 포함하며, 액체 페이즈는 예상된 처리 온도에 존재한다.  조밀화율은 액체 페이즈의 높은 원자 확

산에 기인한, 고상 소결에 비해 액체 페이즈 소결에 대해 더 신속할 수 있다.  산업적 소결은 일반적으로 비용

및 생산성 장점에 기인하여 액체 페이즈의 존재하에 수행될 수 있다.  소결된 재료의 70% 초과는 액체 페이즈

소결 기술을 사용하여 처리될 수 있다.

일 실시예에서, W-Ni-Fe 합금 시스템은 액체 페이즈 소결 기술에 의해 소결되어 운동역학적 에너지 침투자 같은[0095]

용례에 사용되는 재료를 생성할 수 있다.  1460℃를 초과한 온도가 98 wt% W-l wt% Ni-1 wt% Fe의 액체 페이즈

소결을 위해 적용될 수 있다.  액체 페이즈는 도 14a 및 도 14b에 도시된 바와 같은 Ni 및 Fe의 이러한 농도 조

성에서 나타날 수 있다.  텅스텐에서의 Ni 및 Fe의 낮은 용해도는 텅스텐 분말 소결을 도울 수 있다.  이 시스

템은 W-Ni-Ti 합금 시스템과 유사할 수 있다.

일부 경우에, 액체 페이즈 소결 기술은 부수적 미소구조 조대화를 나타낼 수 있다.  나노결정 재료에서 Ti 같은[0096]

안정화제의 포함은 미소구조 조대화를 방지할 수 있다.  액체 페이즈 소결의 발생은 소결 공정 전반에 걸쳐 서

로 다른 온도에서 스캐닝 전자 현미경(SEM) 이미지를 통해 확인될 수 있다.  일 실시예에서, 액체 페이즈 소결

공정은 공극 충전 메커니즘의 결과일 수 있다.  공극 충전 메커니즘 및 성공적 액체 페이즈 소결은 도 15에 도

시된 바와 같은 소결된 입자를 둘러싸는 액체 충전된 분지부의 존재에 의해 결정될 수 있다.

소결된 나노결정 합금의 제조[0097]

일 실시예에서, 나노결정 합금의 제조를 위한 공정은 복수의 나노결정 미립자를 소결하는 단계를 포함한다.  나[0098]

노결정 미립자는 텅스텐 같은 제1 금속 재료와 활성화제 원소 같은 제2 금속 재료를 포함한다.  나노결정 미립

자는 제2 금속 재료가 제1 금속 재료 내에 용해되는 비평형 페이즈를 포함할 수 있다.  일 실시예에 따라서, 비

평형 페이즈는 초포화 페이즈일 수 있다.  용어 "초포화 페이즈"는 추가로 후술된다.  비평형 페이즈는 나노결

정 미립자의 소결 동안 분해를 받게 될 수 있다.  나노결정 미립자의 소결은 나노결정 미립자의 입자 경계 및

표면 중 적어도 하나에서 제2 금속 재료의 페이즈 농후상태(phase rich)의 형성을 유발할 수 있다.  제2 금속

재료의 페이즈 농후상태의 형성은 소결 동안 비 평형 페이즈의 분해의 결과일 수 있다.  제2 금속 재료의 페이

즈 농후상태는 제1 금속 재료를 위한 급속 확산 경로로서 작용하여 소결 운동역학을 향상시키고 나노결정 미립

자의 소결 속도를 가속시킬 수 있다.  일 실시예에 따라서, 나노결정 미립자의 소결 동안의 비평형 페이즈의 분

해는 나노결정 미립자의 소결 속도를 가속시킨다.  소결 공정의 결과로서 생성된 나노결정 합금은 벌크 나노결

정 합금일 수 있다.

일 실시예에서, 제2 금속 재료는 제1 금속 재료보다 낮은 용융 온도를 가질 수 있다.  다른 실시예에서, 제1 금[0099]

속 재료는 제2 금속 재료내에 용해성일 수 있다.  일 실시예에서, 제2 금속 재료 내의 제1 금속 재료의 용해도

는 온도 증가에 따라 증가할 수 있다.  다른 실시예에서, 제2 금속 재료의 페이즈 농후상태에서의 제1 금속 재

료의 확산도는 제1 금속 재료 자체의 확산도보다 크다.  구체적으로, 제1 금속 및 제2 금속 재료는 나노결정 합
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금 부분에서 상술한 원소를 포함할 수 있다.

일 실시예에서, 소결된 나노결정 합금은 약 75% 이상의, 예를 들어, 적어도 약 80%, 약 85%, 약 90%, 약 91%,[0100]

약 92%, 약 93%, 약 94%, 약 95%, 약 96%, 약 97%, 약 98%, 약 99%, 또는 약 99.9% 이상의 상대 밀도를 나타낼

수 있다.  용어 "상대 밀도"는 이미 상술하였다.  다른 실시예에서, 소결된 재료의 상대 밀도는 약 100%일 수

있다.  일 실시예에 따라서, 소결된 재료는 완전히 조밀할 수 있다.  본 명세서에서 사용될 때, 용어 "완전히

조밀" 또는 "완전 조밀도"는 적어도 98%, 예를 들어, 적어도 약 98%, 약 99%, 약 99.5% 또는 그 이상의 상대 밀

도를 갖는 재료를 지칭한다.   소결된 재료의 조밀도는 소결된 재료의 다른 재료 특성에 영향을 줄 수 있다.

따라서, 소결된 재료의 조밀도를 제어함으로써, 다른 재료 특성이 제어될 수 있다.

일 실시예에서, 소결된 나노결정 합금의 입자 크기는 나노미터 범위일 수 있으며, 예를 들어, 약 1000nm이하일[0101]

수 있으며, 예를 들어, 약 900 nm, 약 800 nm, 약 700 nm, 약 600 nm, 약 500 nm, 약 450 nm, 약 400 nm, 약

350 nm, 약 300 nm, 약 250 nm, 약 200 nm, 약 150 nm, 약 125 nm, 약 100 nm, 약 75 nm, 약 50 nm, 약 40

nm, 약 30 nm, 약 25 nm, 약 20 nm, 약 15 nm, 약 10 nm 또는 그보다 작은 값 이하일 수 있다.  본 명세서의

일부 실시예에서, 다른 입자 크기 체계와의 추가적 구별을 위해, 용어 "초미세 입자"는 약 100 nm보다 크고 약

1000 nm보다 작은 입자 크기를 나타내기 위해 사용되고, 용어 "나노결정 입자"는 약 100 nm 이하의 입자 크기를

나타내기 위해 사용된다.  일 실시예에서, 소결된 나노결정 합금의 입자 크기는 약 1 nm 내지 약 1000 nm, 예를

들어, 약 10 nm 내지 약 900 nm, 약 15 nm 내지 약 800 nm, 약 20 nm 내지 약 700 nm, 약 25 nm 내지 약 600

nm, 약 30 nm 내지 약 500 nm, 약 40 nm 내지 약 450 nm, 약 50 nm 내지 약 400 nm, 약 75 nm 내지 약 350 nm,

약 100 nm 내지 약 300 nm, 약 125 nm 내지 약 250 nm 또는 약 150 nm 내지 약 200 nm 등일 수 있다.  일 실시

예에서, 소결된 나노결정 합금의 입자 크기는 제2 금속 재료의 부재시 제1 금속 재료를 포함하는 소결된 재료의

입자 크기보다 작을 수 있다.  일 실시예에서, 소결된 나노결정 합금의 입자 크기는 제2 금속 재료의 부재시 제

1 금속 재료를 포함하는 소결된 재료의 입자 크기와 대략 동일할 수 있다.  일 실시예에서, 소결된 나노결정 합

금의 입자 크기는 제2 금속 재료의 부재시 제1 금속 재료를 포함하는 소결된 재료의 입자 크기 이상일 수 있다.

일 실시예에서, 본 명세서에 설명된 소결 메커니즘은 열처리 동안 초미세 및 나노결정 구조를 유지하는 제2 페

이즈 및 합금 원소의 기능에 기인하여 초미세 및 나노결정 소결된 재료의 제조에 유용할 수 있다.

소결된 재료의 제조를 위한 소결 조건은 임의의 적절한 조건일 수 있다.  일 실시예에 따라서, 소결된 재료를[0102]

제조하기 위해 짧은 소결 시간을 위하여 높은 소결 온도가 사용될 수 있다.  대안적으로, 동일한 정도로 조밀화

되는 소결된 재료를 제조하기 위해 더 긴 소결 시간을 위하여 비교적 더 낮은 소결 온도가 사용될 수 있다.  일

실시예에서, 연장된 소결 시간은 결정 크기의 원치 않는 증가를 초래할 수 있다.  소결은 비가압 소결 공정일

수 있다.  본 명세서에 설명된 소결 메커니즘은 소결 공정 동안 외부적 압력이 인가되지 않는 경우에도 완전히

조밀한 소결된 초 미세 및 나노결정 재료의 제조를 가능하게 한다.

나노결정 미립자를 제조하기 위한 공정[0103]

일 실시예는 나노결정 텅스텐 미립자를 제조하기 위한 방법을 제공하며, 이 방법은 복수의 텅스텐 미립자와 제2[0104]

금속 재료를 포함하는 분말을 기계적으로 가공하는 단계를 포함한다.  일 실시예에서, 제2 금속 재료는 활성화

제 원소 또는 안정화제 원소일 수 있다.  기계적 가공은 볼 밀링 공정 또는 고 에너지 볼 밀링 공정일 수 있다.

예시적 볼 밀링 공정에서, 텅스텐 카바이드 또는 강철 밀링 용기가 사용되며, 약 2:1 내지 약 5:1의 볼 대 분말

비율과 약 0.01 wt% 내지 약 3 wt% 함량의 스테아르산 공정 제어 보조제가 사용된다.  다른 실시예에서, 기계적

가공은 약 1 wt%, 약 2 wt% 또는 약 3 wt%의 스테아르산 공정 제어 보조제 함량의 존재 하에 수행될 수 있다.

다른 실시예에 따라서, 기계적 가공은 공정 제어 보조제 없이 수행될 수 있다.  일 실시예에서, 볼 밀링은 초포

화 페이즈를 포함하는 나노결정 미립자를 생성하기에 충분한 임의의 조건 하에서 수행될 수 있다.

다른 실시예에 따라서, 임의의 적절한 기계적 분말 밀링 방법이 사용되어 분말을 기계적으로 가공하고 나노결정[0105]

미립자를 형성할 수 있다.  일 실시예에서, 마모 밀(attritor mill)의 고 에너지 볼 밀이 사용될 수 있다.  다

른 실시예에서, 다른 유형의 밀이 사용될 수 있으며, 이는 쉐이커 밀 및 플래네터리 밀을 포함한다.  일반적으

로, 기계적 합금 효과를 생성하는 임의의 기계적 밀링 방법이 사용될 수 있다.

나노결정 미립자의 평균 입자 크기는 x선 회절(XRD)을 통해 얻어지는 피크 확장 측정에 의해 계산될 수 있다.[0106]

도 16a에 도시된 바와 같이, XRD  패턴의 변화는 밀링 시간의 함수일 수 있다.  본 실시예에서 도시된 바와

같이, XRD 패턴의 피크는 약 6 시간의 밀링 시간 이후 확장되기 시작할 수 있다.  밀링된 재료의 입자 크기도

도 16b에 도시된 바와 같이 약 6 시간의 밀링 시간 이후 현저히 강하할 수 있다.
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일 실시예에서, 볼 밀링은 약 2 시간 이상의 시간, 예를 들어, 약 4 시간, 약 6 시간, 약 8 시간, 약 10 시간,[0107]

약 12 시간, 약 15 시간, 약 20 시간, 약 25 시간, 약 30 시간 또는 약 35 시간 이상의 시간 동안 수행될 수 있

다.  일 실시예에서, 볼 밀링은 약 1 시간 내지 약 35 시간, 예를 들어, 약 2 시간 내지 약 30 시간, 약 4 시간

내지 약 25 시간, 약 6 시간 내지 약 20 시간, 약 8 시간 내지 약 15 시간 또는 약 10 시간 내지 약 12 시간의

시간 동안 수행될 수 있다.  밀링 시간이 너무 긴 경우, 텅스텐 분말은 밀링 용기 재료에 의해 오염될 수 있다.

텅스텐  재료  내에  용해되는  제2  금속  재료의  양은  또한  밀링  시간  증가와  함께  증가할  수  있다.   일

실시예에서, 볼 밀링 단계 이후, 제2 금속 재료의 페이즈 농후상태가 관찰될 수 있다.

일 실시예에서, 생성된 나노결정 미립자의 입자 크기는 약 1000 nm보다 작을 수 있으며, 예를 들어, 약 900 nm,[0108]

약 800 nm, 약 700 nm, 약 600 nm, 약 500 nm, 약 400 nm, 약 300 nm, 약 200 nm, 약 150 nm, 약 100 nm, 약

50 nm, 약 30 nm, 약 20 nm, 약 10 nm, 약 5 nm, 약 2 nm, 또는 그보다 작은 값 이하일 수 있다.  일 실시예에

서, 생성된 나노결정 미립자의 입자 크기는 약 1 nm 내지 약 1000 nm, 예를 들어, 약 10 nm 내지 약 900 nm, 약

15 nm 내지 약 800 nm, 약 20 nm 내지 약 700 nm, 약 25 nm 내지 약 600 nm, 약 30 nm 내지 약 500 nm, 약 40

nm 내지 약 450 nm, 약 50 nm 내지 약 400 nm, 약 75 nm 내지 약 350 nm, 약 100 nm 내지 약 300 nm, 약 125

nm 내지 약 250 nm 또는 약 150 nm 내지 약 200 nm 등일 수 있다.  다른 실시예에서, 나노결정 미립자는 약 7

nm 내지 약 8 nm의 입자 크기를 가질 수 있다.

일 실시예에서, 나노결정 미립자는 다결정이며, 예를 들어, 나노결정 미립자는 복수의 입자를 포함한다.  다른[0109]

실시예에서, 나노결정 미립자는 단일 결정 재료이며, 예를 들어, 적어도 하나의 나노결정 미립자는 단일 입자를

포함한다.

적어도 하나의 실시예에서, 텅스텐 분말과 활성화제 원소의 볼 밀링은 비평형 페이즈를 생성할 수 있다.  비평[0110]

형 페이즈는 고용체를 포함할 수 있다.  비평형 페이즈는 초포화 페이즈일 수 있다.  "초포화 페이즈"는 평형

텅스텐 페이즈 내에 다른 방식에서 용해될 수 있는 활성화제 원소의 양을 초과한 양으로 텅스텐 내에 활성화제

원소가 강제로 용해되어 있는 비평형 페이즈일 수 있다.  일 실시예에서, 초포화 페이즈는 볼 밀링 공정 이후

존재하는 유일한 페이즈일 수 있다.  다른 실시예에서, 활성화제 원소의 제2 페이즈 농후상태가 볼 밀링 이후

존재할 수 있다.

적어도 하나의 실시예에서, 미립자 재료의 소결 거동은 일정한 힘 하에서 미립자 재료의 콤팩트를 가열함으로써[0111]

얻어질 수 있다.  콤팩트의 길이의 변화는 소결 및 조밀화를 나타낸다.  힘은 용례에 따라서 임의의 값일 수 있

다.  일 실시예에서, 가열 공정 전반에 걸쳐 콤팩트에 인가된 일정한 힘은 약 0.05 N 또는 약 0.1 N일 수 있다.

미립자 재료의 소결 온도는 콤팩트의 길이의 변화가 1%인 온도로서 규정될 수 있다.

일 실시예에 따라서, 소결은 액체 페이즈 소결 메커니즘을 포함할 수 있다.[0112]

마스터 소결 곡선[0113]

소결 동안의 순간적 선형 수축율의 적분은 다음과 같이 표현될 수 있다:[0114]

(7)[0115]

여기서, γ는 표면 에너지이고, 오메가는 원자 체적이고, R은 가스 상수이고, T는 온도이고, G는 평균 입자 크[0116]

기이고, t는 시간이고, Γ는 구동력, 평균 확산 거리 및 마이크로구조의 다른 형상 특징에 관련하는 파라미터이

며,  체적  확산에  대하여  이고,  입자  경계  확산에  대하여

이다.  약간의 재배열에 의해, 7은 두 개의 부분으로 나뉘어진다.

(8)[0117]

이는 활성화 에너지를 제외한 모든 마이크로구조 및 재료 특성을 포함한다.[0118]

(9)[0119]

이는 Q 및 가열 시간-온도 프로파일에만 의존한다.  활성화 에너지는 9를 연산함으로써 추산될 수 있고, 교정[0120]
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활성화 에너지(Q)는 9를 통해 연산된 데이터 모두를 단일 곡선에 접혀지게(collapse) 한다.  나노결정 W-Cr 15

at%의 소결 활성화 에너지를 평가하기 위해 9를 계산하기 위해 요구되는 도 45에 도시된 5, 10, 15, 20 ℃/min

을 갖는 그 가열 프로파일들이 사용되었다.  도 41에 도시된 바와 같이, 373 kJ/mol의 활성화 에너지는 W-Cr 15

at%의 소결 곡선이 단일 마스터 소결 곡선으로 접혀지게 한다.

비제한적 가공예[0121]

재료 및 방법[0122]

일 예에서, 약 1-5 um의 미립자 크기와 99.9%의 순도를 갖는 텅스텐 분말이 제1 금속 재료로서 사용되었다.[0123]

다른 예에서, 고 에너지 볼 밀이 사용되어 기계적 밀링을 통해 나노결정 텅스텐을 형성하였다.  볼 밀링은 글로[0124]

브 박스 내에서 아르곤 분위기에서 수행될 수 있다.  볼 밀링된 재료가 360 MPa의 압력에서의 콤팩팅에 의해 6

mm 직경과 약 3-4mm 높이를 갖는 그린 원통형 디스크 콤팩트로 성형되고, 초기 밀도는 약 11.1-11.2 g/cm3이다.

열팽창측정기가 사용되어 온도에 따른 샘플의 치수 변화를 측정한다.   열팽창측정기는 2/H2(4%)  형성 가스,[0125]

Ar/H2(3%) 또는 유동 아르곤 가스의 분위기에서 동작될 수 있다.  샘플 치수의 변화를 측정할 목적을 위해 소결

을 받은 펠릿상의 힘은 100 mN이었다.

일 실시예에서, 소결은 수소 포함 분위기, 진공, 공기 또는 불활성 가스 분위기에서 수행될 수 있다.  소결 분[0126]

위기는 텅스텐 분말의 소결성에 영향을 줄 수 있다.  수소 함유 분위기가 텅스텐 분말 소결을 위해 일반적으로

사용될 수 있다.  수소 함유 분위기는 비교적 높은 밀도의 재료를 생성할 수 있다.  진공 분위기는 중간 밀도를

갖는 소결된 재료를 생성할 수 있다.  일부 경우들에서, 아르곤 소결 환경이 사용될 때 제한 또는 비 조밀화가

검출될 수 있다.  특정 이론에 얽메이지 않지만, 텅스텐 미립자의 휘발성 증기 페이즈 산화물 하이드레이트

(W02(OH)2)가 진공 또는 아르곤 분위기에서의 소결 동안 발생될 수 있고, 텅스텐 미립자의 표면 상의 증기 페이

즈의 흡착은 낮은 소결성을 초래할 수 있다.

일 예에서, 비 등온 가열 기술이 소결 공정에 사용될 수 있다.  예로서, 정속가열(CRH) 기술이 사용될 수 있다.[0127]

일 실시예에서, 1 K/min, 3 K/min, 5 K/min, 7 K/min, 10 K/min, 12 K/min, 15 K/min 또는 20 K/min의 일정한

가열율이 사용될 수 있다.  다른 실시예에서, 등온 가열 방법이 사용될 수 있다.

이하의 비제한적 실험적 예가 제조 및 분석되었다.[0128]

예 1[0129]

20 at% Cr을 포함하는 텅스텐 분말이 밀링되어 나노결정 미립자를 생성하였다.  나노결정 미립자는 6시간, 10시[0130]

간 및 15시간의 볼 밀링 이후 분석되었다.  도 17에 도시된 바와 같이, XRD 피크는 볼 밀링 시간 증가에 따라

확장될 수 있다.  추가적으로, 도 18에 도시된 바와 같이 볼 밀링 시간 증가에 따라 텅스텐 내에 용해된 Cr의

양이 증가하는 것으로 판명되었으며, 입자 크기는 감소하는 것으로 밝혀졌다.  도 19에 도시된 바와 같이, 볼

밀링 시간 증가 및 텅스텐 내에 용해된 Cr의 양의 증가에 따라 나노결정 미립자의 소결 온도가 감소한다.  이는

Cr 활성화제 재료의 양의 증가는 소결 온도 및 소결 활성화 에너지의 추가적 감소를 초래한다는 것을 나타낸다.

W-20 at% Cr 나노결정 미립자의 소결 온도는 3 K/min 가열율이 사용될 때 약 1000℃였다.  텅스텐 내에 용해된

Cr의 양은 약 10 at% 였다.

W-20 at% Cr 나노결정 미립자가 1300℃의 등온 공정을 사용하여 소결될 때, 도 20에 도시된 바와 같이, 90%보다[0131]

큰, 구체적으로는 약 91%보다 큰 조밀화가 달성되었다.  W-20 at% Cr 재료는 도 25 내지 도 27에 도시된 바와

같이 소결 공정 전반에 걸쳐 1000℃ 에서 약 62 nm, 1100℃에서 약 100 nm 및 1200℃에서 100 nm보다 큰 입자

크기를 나타내었다.  소결 공정의 완료 이후 재료의 구조가 도 31에 도시되어 있다.

초기 저밀도 소결 메커니즘과 두 번째 고밀도 중간 소결 메커니즘 사이의 전이는 도 32에서 소결 길이 변화 곡[0132]

선의 경사의 소결중 변화에 기초하여 관찰될 수 있다.  소결 메커니즘의 전이는 텅스텐이 Cr 내로, 그리고, Cr

을 통해 확산하는 초기 메커니즘으로부터 중간 텅스텐 체적 확산 메커니즘으로 이루어질 수 있다.  W-20 at% Cr

미립자의 소결 활성화 에너지는 원 수축 데이터로부터 다양한 가열 프로파일에 대해 결정되고, 변환 인자로서

다양한 활성화 에너지를 사용하여 변환된 상태로 도 36에 도시되어 있다.  도 36의 소결 활성화 에너지 플롯은

적절한 활성화 에너지 변환 인자가 결정되는 경우 단일 플롯으로 수렴할 수 있다.

1400℃로의 가열 이후 W-20 at% Cr 재료의 미립자의 표면에서의 Cr 농후 페이즈의 형성이 도 33에 도시되어 있[0133]

다.  밝은 페이즈는 텅스텐 농후 페이즈이고, Cr 농후 페이즈는 도 33에 도시된 바와 같이 텅스텐 농후 페이즈
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미립자들 사이의 어두운 페이즈이다.  1100℃로의 가열 및 두 시간 동안의 유지 이후 W-20 at% Cr 재료의 미소

구조가 도 34 및 도 35에 도시되어 있다.  도 34 및 도 35에 도시된 이미지는 샘플 연마 이후 취득되었으며, 텅

스텐 농후 페이즈 미립자 사이의 Cr 농후 페이즈를 명료히 보여준다.

예 2[0134]

15 at% Cr을 포함하는 텅스텐 분말이 밀링되어 나노결정 미립자를 생성하였다.  나노결정 미립자는 20 및 30 시[0135]

간의 볼 밀링 이후 분석되었다.  W-15 at% Cr 나노결정 미립자는 도 21에 도시된 바와 같은 초포화 나노결정 페

이즈의 XRD 피크 확장 및 피크 이동 특성을 예시한다.  텅스텐에 용해된 Cr의 양은 대략 6.5 at% 였다.

나노결정 미립자는 10시간동안 볼 밀링된 W-20 at% Cr 나노결정 미립자에 비해 소결시 개선된 조밀화 거동을 나[0136]

타냈어고, 30 시간 동안 볼 밀링된 나노결정 미립자는 도 22에 도시된 바와 같은 20 시간 동안 볼 밀링된 나노

결정 미립자에 비해 미소하게 개선된 조밀화 성능을 나타내었다.

15 at% Cr 나노결정 미립자의 소결 활성화 에너지는 3 K/min, 5 K/min, 10 K/min, 15 K/min 및 20 K/min을 포[0137]

함하는 다양한 가열율에 대해 결정되었고 결과가 도 23에 도시되어 있다.  W-15 at% Cr 나노결정 미립자의 소결

온도는 3 K/min 가열율이 사용될 때 약 1000℃였다.  도 23에 도시된 가열율을 위한 활성화 에너지 곡선은 수축

데이터로부터 계산되었고, 도 37에 도시된 바와 같이, 곡선은 약 357 kJ의 활성화 에너지 값에서 수렴하였다.

약 357 kJ의 활성화 에너지에서의 도 37에 도시된 곡선의 수렴은 도 37의 활성화 에너지 값의 평균 자승근 값이

도 38에 도시된 바와 같이 약 357 kJ의 활성화 에너지에서 최소치를 나타낸다는 것을 결정하는 것에 의해 확인

되었다.

예 3[0138]

20 at% Ti를 포함하는 텅스텐 분말이 나노결정 미립자를 형성하도록 볼 밀링되고 그후 소결되었다.  나노결정[0139]

미립자는 도 24에 예시된 바와 같이 순수 텅스텐 나노결정 미립자 및 W-20 at% Cr 나노결정 미립자에 비해 열악

한 소결 거동을 나타내었다.

예 4[0140]

본 예에서, 약 5 at%, 약 10 at%, 약 20 at%, 약 30 at% 및 약 40 at%의 양으로 Cr을 함유하는 텅스텐 분말 혼[0141]

합물이 10시간 동안 볼 밀링되고 그후 1300 ℃에서 소결되었다.  도 28에 도시된 바와 같이 샘플의 수축은 텅스

텐의 소결 운동역학을 개선시키기 위한 최적의 Cr의 양이 존재하고, 최적 Cr 함량은 약 20 at%의 범위일 수 있

다는 것을 나타낸다.

예 5[0142]

본 예에서, W-Ti 20 at%-Cr 5 at% 분말 혼합물이 볼 밀링되고 그후 1300℃까지 가열함으로써 소결되었다.  소결[0143]

거동은 Cr이 도 29에 도시된 바와 같이 Ti의 존재시에도 활성화제로서 작용한다는 것을 나타낸다.  소결된 재료

의 나노구조는 도 30a 내지 도 30f에 도시되어 있다.  이 데이터는 W-Ti-Cr 소결된 재료가 나노결정 입자 크기

를 유지하면서 완전히 조밀화될 수 있다는 것을 나타낸다.

예 6[0144]

본 예에서, W-Cr 15 at% 혼합물이 볼 밀링되어 초포화 분말을 생성하였고, 이 초포화 분말에서 Cr은 W 내에 완[0145]

전히 용해되고, 도 39의 (a)에 도시된 바와 같이 약 13nm의 평균 입자 크기와 약 1미크론의 평균 미립자 직경을

갖는다.  도 39의 (a)의 삽입도에 도시된 바와 같이 분말의 Debye-Scherrer 링이 BCC 고용체로서 인덱싱되었다.

분말은 1100℃로 가열되었고, Cr 농후 페이즈는 초포화 W 농후 페이즈로부터 석출되었으며, 도 39의 (b)에 도시[0146]

된 바와 같이 미립자의 표면 상에 작은 Cr 도메인을 형성하였다.  분말은 그후 1200℃의 온도로 가열되었고, Cr

농후 페이즈의 네크가 도 39의 (c)에 도시된 바와 같이 미립자 사이에 형성되었다.  도 39의 (d)는 W 농후 미립

자에 인접한 Cr 농후 네크를 도시하며, W 및 Cr 원소 맵은 이미지 상에 중첩배설된 에너지 분산 분광법 동반 스

캐닝 투과 전자 현미경법(STEM-EDS)을 사용하여 생성되었다.

예 7[0147]

본 예에서, Cr-Ni 5 at% 및 Cr-Ni 15 at% 샘플들이 볼 밀링되고 그후 소결되었다.  도 43a는 5 at% Ni와 혼합[0148]

된 나노결정 Cr(nc-Cr+5 at% Ni), 나노결정 Cr (nc-Cr) 및 Cr과 5 at% Ni의 혼합물(Cr+5 at% Ni)의 비교예들에

추가로 샘플의 상대 밀도 변화를 도시한다.  도 43b는 Cr-Ni 15 at% 샘플의 나노구조가 Cr 네크 주변에 석출된
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Ni를 포함하고, 이는 1200℃에서의 소결 이후 급속 수송 층으로서 작용한다는 것을 보여주며, 삽입도는 국지적

Ni 함량을 도시하는 에너지 분산 분광법(EDS) 맵이다.

도 46의 (a)는 다양한 가열율과 함께 온도의 함수로서 Cr-Ni 15 at%의 상대 밀도를 도시한다.  도 46의 (b)에[0149]

도시된 바와 같이, 가열 프로파일은 258  kJ/mol의 소결 활성화 에너지에서 마스터 소결 곡선으로 접혀진다.

258 kJ/mol의 소결 활성화 에너지는 Ni내 Cr의 확산을 위한 활성화 에너지 272 kJ/mol과 일치하고, Cr의 자체

확산을 위한 활성화 에너지 442 kJ/mol와 거리가 있다.  결과적으로, 이 데이터는 Cr-Ni 15 at% 재료가 나노페

이즈 분리 소결을 받는다는 것을 나타낸다.

예 8[0150]

본 예에서, W-Cr 15 at%는 2 시간, 4 시간, 6 시간 및 20 시간 동안 볼 밀링되었다.  도 44의 (a) 및 (b)에 도[0151]

시된 바와 같이, 44.4°에서의 Cr의 주 회절 피크는 약 4 시간의 볼 밀링 이후 사라지며, Cr이 완전히 W에 용해

된 것을 나타낸다.  약 4 시간의 볼 밀링 이후, 밀링 매체의 마모로부터의 WC가 나타나기 시작하며, 20 시간의

볼 밀링 이후 WC의 양은 Rietveld 정련에 의해 측정된 바와 같이 약 1 내지 2 wt%이다.

비교예 1[0152]

(i) 나노결정도 및 (ii) 분말의 합금 초포화의 소결 거동에 대한 독립적 효과를 판정하기 위해 일련의 비교예가[0153]

연구되었다.  온도의 함수로서 비교예의 상대 밀도 변화가 도 40에 도시되어 있다.   도 40에 도시된 샘플은 조

밀화 사이클을 통해 부분적으로 켄칭되었다.  이 데이터는 본 명세서에 설명된 소결 메커니즘이 바람직하게는

분말이 나노결정 입자를 포함하는 것과 분말이 초포화 고용체를 포함하는 것을 필요로 한다는 것을 나타낸다.

비교예의 특정 조성 및 비교예가 (i) 나노결정도 및 (ii) 초포화 고용체를 포함하는지 여부가 후술된다.  재료

는 10℃/min의 속도로 가열되었다.  외부적 압력의 인가 없이 동일한 처리 조건 하에서의 W-Cr 15 at% 나노결정

초포화 분말 예는 약 950℃에서 뚜렷하게 조밀화되기 시작하고, 1500℃의 온도에 도달하는 시간에 거의 완전히

조밀화된다.

순수 나노결정 W (nc-W): 순수 텅스텐은 SPEX 8000 고 에너지 밀에서 텅스텐 카바이드 매체를 사용하여 20 시간[0154]

동안 기계적으로 밀링되었고, 볼-대-분말 비율은 5 대 1이고, 1 wt% 시트아르산이 공정 제어 보조제로서 구비되

었다.  결과적 샘플은 Reitveld 정련에 의해 드러난 바와 같은 10 nm의 입자 크기를 가지고, 어떠한 Cr도 없으

며, 본 샘플은 조건 (i)를 충족하지만 (ii)는 충족하지 않는다.  이 분말은 그후 6 mm 직경과 3-4mm 높이의

0.62 상대 밀도의 원통형 디스크로 콤팩팅되었다.

15 at% Cr(비용해)을 갖는 나노결정 W(nc-W+15 at% Cr): 순수 Cr의 분말이 건식 혼합법으로 20시간 동안 밀링에[0155]

의해 생성된 순수 나노결정 W에 추가되었고, 15 at% Cr이 대략 15분 동안 밀링이나 기계적 합금화 없이 나노결

정 W와 혼합되었다.  결과적 샘플은 Reitveld 정련에 의해 드러나는 바와 같이 10 nm의 입자 크기를 갖는 W를

포함하고, 크롬을 포함하지만, 합금화 또는 초포화 상태는 아니며, 이는 조건 (i)를 충족하지만 (ii)는 충족하

지 않는다.  이 분말은 그후 6 mm 직경과 3-4mm 높이의 0.63 상대 밀도의 원통형 디스크로 콤팩팅되었다.

비합금화 및 비나노구조 W-15 at% Cr(W+15 at% Cr): 15 at% Cr은 기계적 합금화나 밀링 없이 대략 15분 동안 W[0156]

와 건식 혼합되었다.  결과적 샘플은 W-15at% Cr의 혼합물이지만 나노스케일 구조도 초포화도 갖지 않으며, 조

건 (i) 및 (ii) 어느쪽도 충족하지 않는다.  이 분말은 그후 0.67 상대 밀도의 6 mm 직경 및 3-4 mm 높이의 원

통형 디스크로 콤팩팅되었다.

초포화 W-15 at% Cr (W(Cr)): W-15 at% Cr 분말이 어떠한 공정 제어 보조제도 없이 텅스텐 카바이드 매체를 사[0157]

용하여 30분 동안 SPEX 8000 고 에너지 밀에서 기계적으로 밀링되었다.  결과적 분말은 그후 석영 튜브 내에 밀

봉되고, 최초 10
-6
 Torr로 터보 펌프를 사용하여 배기되고, 그후, 고 순도 아르곤 가스를 사용하여 120 Torr까지

백필링되었다.  밀봉된 분말은 20 시간 동안 1400 ℃ ±3℃ 이내로 제어될 수 있는 노 내에서 어닐링되었고, 그

후 켄칭되었다.  결과적 분말은 초포화(W(Cr)) 용체이지만, 1 미크론을 초과하는 조대 입자 크기를 가지며, 조

건 (ii)를 충족하지만 (i)는 충족하지 않는다.  이 텅스텐 고용체 분말은 그후 0.65 상대 밀도의 6 mm 직경 및

2-3 mm 높이 원통형 디스크로 콤팩팅되었다.

순수 Cr:  순수 크롬 분말이 0.67 상대 밀도의 6 mm 직경 및 3-4 mm 높이 원통형 디스크로 콤팩팅되었다.[0158]

비교예 2[0159]

표 1은 액체 페이즈 및 활성화 소결 공정을 받게 되는 W 합금의 다수의 비교예를 설명한다.  도 42a 및 도 47은[0160]
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상대 밀도의 함수로서 결과적 재료의 입자 크기를 도시한다.  이 데이터는 나노 페이즈 분리 소결이 다른 방법

과 비견할만한 밀도로 더 작은 입자 크기를 갖는 재료를 생성한다는 것을 나타낸다.  도 42b는 소결을 위한 급

속 이송 경로로서 작용하는 액체 매트릭스 내에 W 입자가 매설되어 있는 액체 페이즈 소결에 의해 생성된 W 합

금의 미소구조를 도시한다.  도 42c는 소결을 위한 활성화 이송 경로로서 작용하는 입자 경계 상에 막이 형성되

어 있는 활성화 소결 메커니즘에 의해 생성된 W 합금의 미소구조를 도시한다.  도 42d는 소결을 위한 급속 확산

경로로서 작용하는 제2 고체 페이즈를 갖는 미립자간 네크에 초포화 용체의 분리가 곁들여져 있는 나노 페이즈

분리 소결 메커니즘에 의해 생성된 W 합금의 미소구조를 도시한다.

표 2

[0161]

추가적 유의사항[0162]

특허, 출원, 문헌, 서적, 논문 및 웹페이지를 포함하지만 이에 한정되지 않는 본 출원에 인용된 모든 문헌과 유[0163]

사 자료는 이런 문헌 및 유사 자료의 형태에 무관하게 그 전문이 참조로 명시적으로 참조로 통합되어 있다.  정

의된 용어, 용어 용법, 설명된 기술 등을 포함하여, 그러나 이에만 한정되지 않고, 통합된 문헌 및 유사 자료
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중 하나 이상이 본 출원과 다르거나 상충되는 경우, 본 출원이 기준이다.

다양한 실시예 및 예와 결부하여 본 기술이 설명되었지만, 본 기술은 이런 실시예 또는 예에 한정되는 것을 의[0164]

도하지는 않는다.  반대로, 본 기술은 본 기술 분야의 숙련자가 알 수 있는 바와 같이, 다양한 대안, 변경 및

균등물을 포함한다.

다양한 본 발명의 실시예가 본 명세서에 설명 및 예시되었지만, 본 기술 분야의 통상적 숙련자는 본 명세서에[0165]

개시된 장점 중 하나 이상 및/또는 결과를 획득하고 및/또는 기능을 수행하기 위한 다른 수단 및/또는 구조를

쉽게 안출할 수 있으며, 이러한 변경 및/또는 변용 각각은 본 명세서에 설명된 본 발명의 실시예의 범주 내에

있는 것으로 간주된다.  더 일반적으로, 본 기술 분야의 숙련자는 본 명세서에 설명된 모든 파라미터, 치수, 재

료 및 구성이 예시적인 의미이며, 실제 파라미터, 치수, 재료 및/또는 구성은 본 발명의 교지가 활용되는 특정

용례나 용례들에 의존한다는 것을 쉽게 알 수 있다.  본 기술 분야의 숙련자들은 본 명세서에 설명된 특정 본

발명의 실시예에 대한 다수의 균등물을 인지할 수 있을 것이다.  따라서, 상술한 실시예는 단지 예로서 제시된

것이며, 첨부된 청구범위 및 그 균등물의 범주 내에서, 본 발명의 실시예는 특정하게 설명되고 청구된 바와 다

른 방식으로 실시될 수 있다는 것을 이해하여야 한다.

본 내용의 본 발명의 실시예는 본 명세서에 설명된 각 개별 특징, 시스템, 물품, 재료, 키트 및/또는 방법에 관[0166]

련한다.  추가적으로, 둘 이상의 이런 특징, 시스템, 물품, 재료, 키트 및/또는 방법의 임의의 조합은 이런 특

징, 시스템, 물품, 재료, 키트 및/또는 방법이 서로 불일치하지 않는다면 본 내용의 본 발명의 범주 내에 포함

된다.

본 명세서에서 정의 및 사용되는 모든 정의는 규정된 용어의 통상적 의미, 참조로 통합된 문헌에서의 정의 및/[0167]

또는 사전적 정의에 우선하는 것으로 이해되어야 한다.

부정 관사 "일"은 본 명세서 및 청구범위에서 사용될 때, 달리 상반되게 명시적으로 언급되지 않는 한, "적어도[0168]

하나"를 의미하는 것으로 이해되어야 한다.  본 명세서에 인용된 임의의 범위는 경계를 포함한다.

본 명세서 전반에서 사용되는 용어 "실질적으로" 및 "약"은 작은 변동을 고려 및 설명하기 위해 사용된다.  예[0169]

로서, 이들은 ±5% 이하, 예를 들어, ±2% 이하, 예를 들어, ±1% 이하, 예를 들어, ±0.5% 이하, 예를 들어,

±0.2% 이하, 예를 들어, ±0.1% 이하, 예를 들어, ±0.05% 이하를 지칭할 수 있다.

어구 "및/또는"은 본 명세서 및 청구범위에서 사용될 때, 관련된 요소의 "어느 하나 또는 양자 모두", 즉, 일부[0170]

경우에 결합적으로 존재하고 다른 경우에는 분리되어 존재하는 요소를 의미하는 것으로 이해되어야 한다.  "및/

또는"과 함께 나열된 다수의 요소는 동일한 형태, 즉, 관련된 요소 중 "하나 이상"으로 해석되어야 한다.  이들

명시적으로 나타내어진 요소에 유관하든 무관하든 "및/또는" 어구에 의해 명시적으로 나타내어지는 요소 이외에

다른 요소가 선택적으로 존재할 수 있다.  따라서, 비제한적 예로서, "A 및/또는 B"라는 언급은 "포함하는" 같

은 개방단 언어와 결부하여 사용될 때 일 실시예에서 A 단독(선택적으로 B 이외의 요소를 포함), 다른 실시예에

서 B 단독(선택적으로 A 이외의 요소를 포함), 또 다른 실시예에서 A 및 B 양자 모두(선택적으로 다른 요소를

포함) 등을 지칭할 수 있다.

본 명세서 및 청구범위에서 사용될 때, "또는"은 상술한 "및/또는"과 동일한 의미를 갖는 것으로서 이해되어야[0171]

한다.  예로서, 목록 내의 항목들을 분리하는 "또는" 또는 "및/또는"은 포함적인 것으로 해석되어야 하며, 즉,

다수의 또는 나열 요소 그리고, 선택적으로, 나열되지 않은 추가적 항목들 중 적어도 하나를 포함하지만 또한

하나보다 많은 수를 포함하는 것으로 해석되어야 한다.  "~ 중 단 하나" 또는 "~중 정확히 하나" 또는 청구항에

서 사용될 때 "~로 구성되는" 같은 반대로 명확히 표시된 용어만이 다수의 또는 목록의 요소 중 정확히 하나를

포함하는 것을 지칭한다.  일반적으로, 용어 "또는"은 본 명세서에서 사용될 때 "어느 하나", "~중 하나", "~중

단 하나" 또는 "~중 정확히 하나" 같은 배제적 용어가 선행될 때에만 배제적 대안(즉, "하나 또는 나머지, 양자

모두는 제외")을 나타내는 것으로 해석되어야 한다.  "~를 필수 구성요소로하여 구성"은 청구항에서 사용될 때

특허법의 범주에서 사용되는 바와 같은 그 통상적 의미를 갖는다.

명세서 및 청구범위에서 본 명세서에 사용될 때, 하나 이상의 요소의 목록에 관련한 어구 "적어도 하나"는 요소[0172]

의 목록 내의 요소 중 임의의 하나 이상으로부터 선택된 적어도 하나의 요소를 의미하지만 반드시 요소의 목록

내에 구체적으로 나열된 각각의 그리고 모든 요소 중 적어도 하나를 포함할 필요는 없으며 요소의 목록 내의 요

소의 임의의 조합을 배제하지 않는 것으로 이해되어야 한다.  이러한 정의는 또한 어구 "적어도 하나"가 언급하

는 요소의 목록 내에 명시적으로 표시된 요소 이외의 요소가 이들 명시적으로 표시된 요소와 유관하든 무관하든

선택적으로 존재할 수 있는 것을 허용한다.  따라서, 비제한적 예로서, "A 및 B 중 적어도 하나"(또는, 균등하
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게 "A 또는 B 중 적어도 하나" 또는 균등하게 "A 및/또는 B 중 적어도 하나)는 일 실시예에서, B가 존재하지 않

는, 선택적으로 하나보다 많은 수를 포함하는 적어도 하나의 A(그리고, 선택적으로 B 이외의 요소를 포함), 다

른 실시예에서, A가 존재하지 않는, 선택적으로 하나보다 많은 수를 포함하는 적어도 하나의 B(그리고, 선택적

으로 A 이외의 요소를 포함), 또 다른 실시예에서, 선택적으로 하나보다 많은 수를 포함하는 적어도 하나의 A

및 선택적으로 하나보다 많은 수를 포함하는 적어도 하나의 B(그리고, 선택적으로 다른 요소를 포함) 등을 지칭

할 수 있다.

본 명세서에서 사용될 때 "at%"는 원자 백분율을 지칭하고, "wt%"는 중량 백분율을 지칭한다.  그러나, 특정 실[0173]

시예에서, "at%"가 사용될 때, 설명된 값은 또한 "wt%"를 설명할 수 있다.  예로서, "20 at%"가 일 실시예에서

설명되는 경우, 다른 실시예에서, 동일 설명은 "20 wt%"를 지칭할 수 있다.  결과적으로, 모든 "at%" 값은 역시

일부 경우에 "wt%"를 또한 지칭하는 것으로 이해되어야 하고, 모든 "wt%" 값은 일부 경우들에서 "at%"를 지칭하

는 것으로 이해되어야 한다.

청구범위와 상술한 명세서에서, "포함하는", "내포하는", "소지하는", "구비하는", "함유하는", "수반하는", "[0174]

보유하는", "~로 조성된" 등 같은 모든 전이적 어구는 개방단형인 것으로, 즉, 포함하지만 이에 한정되지 않는

것을 의미하는 것으로 이해되어야 한다.  미국 특허청 특허 심사 지침서 섹션 2111.03에 기재된 바와 같이, 전

이적 어구 "~로 구성되는" 및 "~를 필수 구성으로 하여 구성되는" 만이 각각 폐쇄 또는 반폐쇄 전이 어구이다.

청구범위는 해당 효과를 위해 선언되어 있지 않은 한, 설명된 순서 또는 요소에 한정되는 것으로 해석되지 않아[0175]

야 한다.  본 기술 분야의 통상적 숙련자는 첨부된 청구범위의 개념 및 범주로부터 벗어나지 않고 형태 및 세부

사항의 다수의 변경을 안출할 수 있다는 것을 이해하여야 한다.  이하의 청구범위 및 그 균등물에 포함되는 모

든 실시예가 청구된다.
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