ITALIAN PATENT OFFICE

Document No.

102011901987133A1

Publication Date

20130413

Applicant

INGLASS S.P.A.

Title

SISTEMA DI CANALE CALDO AD OTTURAZIONE COMPRENDENTE ATTUATORI A MOLLA E RELATIVA UNITA' DI CONTROLLO **DESCRIZIONE** dell'invenzione industriale dal titolo:

"Sistema di canale caldo ad otturazione comprendente attuatori a molla e relativa unità di controllo"

di: Inglass S.p.A., nazionalità italiana, Via Piave 4 - 31020 San Polo di Piave (TV)

Inventori designati: ROSSI Massimo, MODENA Giancarlo

Depositata il: 13 ottobre 2011

* * * *

TESTO DELLA DESCRIZIONE

Campo dell'invenzione

La presente invenzione si riferisce ad una attrezzatura di stampaggio ad iniezione di materie plastiche, del tipo comprendente un sistema di distribuzione a canale caldo, relativi ugelli ad otturazione e un controllo associato e a un metodo di stampaggio ad iniezione usando un sistema di canale caldo ad otturazione e controllo associato.

Stato della tecnica anteriore

Sistemi ad iniezione che usano ugelli ad otturazione sono conosciuti e già descritti ampiamente nello stato dell'arte, come ad esempio nel documento US-6638050, inventore Bazzo.

Con lo scopo di semplificare il progetto dei sistemi ad otturazione ed eliminare la necessità di realizzare attuatori a fluido, in particolare pistoni idraulici o pneumatici, ovvero attuatori elettrici o magnetici controllati da segnali forniti da un controllore dedicato connesso a ciascun attuatore, sono stati usati sistemi di movimentazione puramente meccanica dell'otturatore attraverso delle molle di comando. Siffatti sistemi fanno

uso di una molla accoppiata allo stelo di un otturatore a spina per movimentare lo stesso in entrambe le direzioni, avvicinandolo od allontanandolo dall'orifizio di ingresso nella cavità dello stampo. In alcune applicazioni, tali otturatori sono posizionati solo all'interno della parte terminale dell'ugello e la molla è a sua volta posizionata all'interno dell'ugello. Siffatto sistema viene ad esempio descritto nel documento US-4010903 inventore Saito, che mostra un sistema di otturazione corto localizzato sulla punta dell'ugello e una molla di comando posizionata all'interno dell'ugello.

Altre configurazioni prevedono l'uso di attuatori comando a molla sulla testa o all'esterno dell'ugello di fa camera calda. Si riferimento per esempio alle applicazioni descritte in US-3023458 di Seymour, US-3252184 Ninneman, US-4088271 di Flygenring, US-4378963 di Schouenberg, US-5049062 di Gellert, DE-2613173, JP2002-370256, CN-201291566, SE-529080, US-7374418 tutti di Saito e ad alcune configurazioni descritte nel brevetto US-7559762 di quest'ultima Dewar. In applicazione, l'otturatore a spina movimentato dalla molla di comando controlla solo la durata e la quantità di materiale fuso che fluisce da ciascun canale del distributore in ciascun corrispondente ugello della camera calda.

Nell'applicazione descritta in US-3491408 di Natkins si fa riferimento ad un sistema di canale caldo aventi una moltitudine di ugelli ad otturazione, in cui gli otturatori a spina sono allontanati o avvicinati all'orifizio della cavità dello stampo dalla pressione di iniezione sviluppata all'interno del canale dell'ugello, per mezzo di una molla di comando accoppiata all'otturatore a spina. Il brevetto

US'408 mostra una ghiera accoppiata a ciascuna molla di comando su cui imprime una forza di precarico e limita la corsa di ciascun otturatore, assicurando che ciascun otturatore faccia fluire la medesima quantità di materiale per riempire la corrispondente cavità dello stampo. Per consentire la regolazione manuale della posizione di ciascuna ghiera rispetto alla relativa molla di comando, l'attrezzatura ed il metodo descritto in US'408 necessita di interrompere il processo di stampaggio e con una conseguente perdita di produzione.

Un sistema similare di regolazione del precarico della molla di comando rispetto all'otturatore per assicurare un riempimento sincronizzato di ciascuna cavità, secondo quanto descritto nell'applicazione US'408 di Natkins, è usato nei sistemi di camera calda sviluppati da Fisa con il nome commerciale SIMGATE™ che è parzialmente descritto anche nel brevetto US-7374418 di Saito.

Un ulteriore aspetto dei sistemi di camera calda con ugelli ad otturazione è la fisiologica problematica del trafilamento del materiale plastico fuso attraverso i gioco infinitesimo presente tra il foro calibrato di dell'otturatore a spina e l'otturatore stesso, ristagnando in prossimità della zona di scorrimento, degrada per la prolungata permanenza allo stato fuso e subisce una variazione delle proprietà chimico-fisiche, giungendo in alcuni casi alla completa carbonizzazione. Questo materiale ostacola o addirittura impedisce il dell'otturatore stesso, compromettendo contemporaneità dell'apertura della chiusura 0 dell'orifizio della cavità dello stampo e il relativo bilanciamento del riempimento delle cavità. Riferimenti a

soluzioni che fanno uso di canali di spurgo nei sistemi ad otturazione con comando pneumatico o idraulico, possono essere trovati nei documenti US-4433969 di Gellert, US-4740151 di Schmidt o US-7407380 di Tabassi.

Nel caso però di attuazione con molla, tale materiale degradato può riempire la cavità di alloggiamento della molla di comando ed ostacolarne il movimento.

C'è quindi la necessità di migliorare il processo di stampaggio ad iniezione e di ottimizzare il bilanciamento del riempimento delle cavità nei sistemi a camera calda che utilizzano una moltitudine di ugelli, ciascuno avente un otturatore a spina movimentato dalla pressione di iniezione sviluppata in ciascun ugello in coordinamento con una molla di comando accoppiata a ciascun otturatore a spina.

C'è inoltre la necessità di migliorare l'attrezzatura del sistema di camera calda che fa uso di una moltitudine di ugelli, ciascuno avente un otturatore movimentato dalla pressione di iniezione sviluppata all'interno dell'ugello e da molla di una comando accoppiata a ciascun otturatore.

Sintesi dell'invenzione

Lo scopo della presente invenzione è quello di migliorare la produzione di particolari plastici aventi una tolleranza di peso determinata all'interno di un lotto di produzione e all'interno di lotti di produzione successivi usando un sistema di camera calda ad otturazione in stampi provvisti di una moltitudine di cavità, dove gli otturatori a spina sono movimentati da una prima posizione ad una seconda posizione durante il ciclo di iniezione dall'interazione tra la pressione istantanea che si

sviluppa all'interno del condotto dell'ugello per effetto della pressione di iniezione e la forza esercitata da una molla di comando precaricata accoppiata all'otturatore a spina.

Secondo un aspetto peculiare dell'invenzione, delle termocoppie, associate a ciascun ugello, sono utilizzate per determinare la temperatura istantanea del materiale plastico fuso che fluisce verso e all'interno dell'ugello, prima entrare nella cavità dello di stampo. Le dei termocoppie forniscono segnali ad una unità di controllo di camera calda che confronta i di temperatura istantanea forniti da ciascuna termocoppia. Il confronto è fatto rispetto ad una temperatura impostata precedentemente o rispetto alle temperature misurate per ciascun ugello per determinare la variazione istantanea di temperatura. Come risultato di questo confronto, l'unità di può mantenere, incrementare controllo 0 ridurre la temperatura del fuso in ciascun ugello di camera calda in modo tale che la forza esercitata da ciascuna molla di comando su ciascun corrispondente otturatore assicuri che tutti gli otturatori siano movimentati contemporaneamente il ciclo di iniezione indipendentemente dalla variazioni istantanee di temperatura, pressione e viscosità del materiale plastico fuso che fluisce in ciascun ugello di camera calda.

La temperatura del fuso all'interno di ciascun ugello può essere regolata manualmente dall'operatore o automaticamente attraverso un blocco logico aggiuntivo dell'unità di controllo.

La temperatura del fuso può essere controllata attraverso la lettura dei segnali provenienti da

termocoppie posizionate in prossimità della punta dell'ugello o della foro calibrato di guida dell'otturatore, posizionata sulla testa dell'ugello.

La molla di comando può essere posizionata all'interno o all'esterno dell'ugello.

La molla di comando può essere posizionata in un blocco specifico, eventualmente riscaldato indipendentemente e disposto tra ugello e distributore, o all'interno del distributore di camera calda stesso.

Secondo un ulteriore aspetto dell'invenzione, in cui la di comando è posizionata all'interno distributore di camera calda o all'interno di un blocco specifico disposto tra ugello e distributore, la camera di alloggiamento della molla di comando è messa in comunicazione con l'esterno, tramite opportuni canali di spurgo, in modo da fare defluire il materiale plastico fuso trafilato il attraverso foro calibrato di dell'otturatore a spina. Si viene quindi a formare flusso di materiale plastico di piccola entità tale attraversare le componenti del sistema meccanico senza farlo raggiungere lo stato degradato o carbonizzato. sistema meccanico composto quindi dalla molla di comando, dalla parte terminale dell'otturatore a spina a cui la molla è accoppiata ed eventualmente da un flangia, immerso in un fluido plastico che omogeneizza le velocità di movimentazione dell'otturatore nelle fasi di apertura o di chiusura dell'orifizio. In questo modo si garantiscono prestazioni costanti nel tempo, con consequente sincronizzazione dei movimenti di tutti gli otturatori ed un riempimento bilanciato di tutte le cavità.

Il foro di uscita dalla camera della molla di comando può essere opportunamente posizionata in prossimità del lato opposto a quello del foro calibrato di guida dell'otturatore a spina in modo che la camera si riempia completamente di materiale fuso trafilato.

I canali di spurgo del materiale plastico trafilato possono essere collegati ad ulteriori canali di deflusso ricavati nel distributore riscaldato della camera calda, in modo da trasportarlo in opportune camere di raccolta posizionate ad esempio in basso stampo.

Breve descrizione dei disegni

L'invenzione verrà ora descritta dettagliatamente con riferimento ai disegni annessi, forniti a puro titolo di esempio non limitativo, nei quali:

la figura 1 è una vista schematica che mostra un sistema a camera calda per il riempimento di una moltitudini di cavità, e

le figure 2a e 2b mostrano due viste dettagliate in sezione ortogonali dell'ugello rappresentato in figura 1,

le figure 3a e 3b mostrano due viste dettagliate in sezione ortogonali dell'ugello secondo una variante dell'invenzione,

la figura 4 illustra una ulteriore variante dell'ugello di figura 2,

la figura 5 illustra la variante in cui la cavità della molla è realizzata all'interno del distributore, con gli ugelli in configurazione contrapposta.

Descrizione dettagliata dell'invenzione

In figura 1 è rappresentata l'attrezzatura di stampaggio (1) comprendente un distributore (10) di camera ugelli ad otturazione (20). Ciascun comprende un otturatore a spina (26) movimentato tra almeno due posizioni relativamente all'orifizio (6) dello stampo dalla combinazione della pressione del materiale fuso e una molla di comando (30) che agiscono sull'otturatore a spina (26). Questa attrezzatura (1) è progettata e utilizzata per la produzione di particolari plastici aventi una tolleranza di peso determinata all'interno di lotti di produzione e lotti all'interno di di produzione successivi. particolari devo avere un peso e una dimensione uguali ed entro una determinata tolleranza. A causa del tipo di progetto e delle variazioni delle condizioni di processo relative a pressione, temperatura, viscosità e sforzi di taglio, che inducono una distribuzione non uniforme della portata attraverso ciascun ugello della camera calda, necessario correggere il riempimento di tutte le cavità in modo da stampare in modo omogeneo particolari plastici che rientrano nelle tolleranze di peso e di dimensione.

Ιl (1)sistema di iniezione consiste di sottosistemi principali che lavorano assieme, la calda (2) e la parte fredda (3) che sono montati sul piano fisso e sul piano mobile (non rappresentati) di una pressa iniezione. La parte calda (2) comprende tutti i componenti disposti a monte delle cavità (5) dello stampo, come le piastre dello stampo, il distributore (10), gli ugelli di iniezione (20), gli attuatori a molla (30) e sensori di processo (29) che possono essere termocoppie o trasduttori di pressione. I sensori di processo (29) sono posizionati lungo i canali di trasporto della massa fusa del distributore e degli ugelli e sono connessi ad una

unità di controllo multizona (90) per sistemi di camera Secondo un aspetto dell'invenzione, i segnali istantanei forniti dai sensori di processo (29) sono usati dall'unità di controllo (90) per regolare la temperatura di ciascuna resistenza (28) degli ugelli in modo da alterare la temperatura, la viscosità, la pressione e la portata del materiale fuso all'interno di ciascun ugello. fornisce apertura е chiusura sincronizzata una dell'orifizio dello stampo di tutti gli otturatori a spina che sono movimentati dall'azione combinata tra pressione di iniezione che agisce sull'otturatore e la contropressione esercitata da ciascuna molla di comando (30) accoppiata (26). In alcune all'otturatore а spina dell'applicazione, i sensori di processo (29)collocati sulla punta di ciascun ugello o in prossimità dell'orifizio (6) di ciascuna cavità della parte calda (10) dello stampo.

In una variante dell'applicazione, i sensori di processo (29) possono essere del tipo rilevante la sola pressione, ovvero rilevanti la sola temperatura, ovvero sensori che rilevano sia la pressione che la temperatura e i cui segnali vengono elaborati dall'unità di controllo (90) per correggere la temperatura delle resistenze di ciascun ugello per sincronizzare il movimento di tutti gli otturatori a spina.

I sensori di processo (29) possono essere disposti in almeno una tra sei differenti posizioni, in modo individuale o combinato, lungo il flusso del materiale plastico fuso attraverso i canali del distributore (12, 13) o dell'ugello (24,25) e prima di entrare nella cavità dello stampo. Queste posizioni sono:

- i. in prossimità delle uscite dai canali del distributore (13)
- ii. in prossimità dell'ingresso nei canali degli ugelli(25)
- iii. in prossimità del foro calibrato (35) di guida dell'otturatore a spina
- iv. in prossimità della resistenza (28) di riscaldamento dell'ugello
- v. in prossimità della punta dell'ugello (23)
- vi. in prossimità dell'orifizio (6) della cavità dello stampo ma esterno alla stessa.

Altre posizioni nella parte calda (2) dello stampo possono essere usate per disporre questi sensori.

Secondo นท ulteriore aspetto dell'invenzione, trasduttori di posizione sono usati per raccogliere dati sull'effettiva posizione e tempo di movimento di ciascun otturatore a spina (26) dalla posizione chiusa a quella dell'orifizio della cavità. Α causa sbilanciamento del flusso causato dal distributore o dagli ugelli, alcuni otturatori (26) saranno alzati prima di altri dalla pressione di iniezione ed alcuni saranno spinti in chiusura prima rispetto ad altri dalla molla di comando Questo (30).fenomeno può non essere previsto anticipatamente e può cambiare nel tempo a causa di fattori conosciuti e non. I trasduttori di posizione possono rilevare queste variazioni delle posizioni degli otturatori (26). L'informazione sulla posizione degli otturatori rilevata da ciascun sensore è inviata all'unità controllo multizona (90). Questa unità, incrementerà,

ridurrà 0 manterrà costante la temperatura delle corrispondenti resistenze (28) degli ugelli, in modo tale da variare la viscosità, la pressione, la portata o gli sforzi di taglio indotti dal calore del materiale fuso all'interno dei canali e sincronizzerà il movimento degli otturatori (26) in modo da riempire ciascuna cavità minime stesso tempo o con differenze influiscono sulle tolleranze di dimensione e di peso dei particolari stampati.

Secondo una variante dell'invenzione, la combinazione di più distributori di materiale plastico fuso, ciascuno connesso a uno o più ugelli con otturatore a spina azionata dalla pressione del fuso e dalla molla di comando possono essere usati per iniettare lo stesso materiale o diversi materiali differenti, nella medesima cavità. Questa configurazione fornisce un miglior controllo di pressione e temperatura del fuso all'interno dei distributori e conseguente ottimizzazione del riempimento delle cavità.

Secondo una ulteriore variante dell'invenzione gli ugelli (20) aventi un otturatore a spina comandato dalla pressione di iniezione e dalla molla di comando sono usati in stampi di accoppiati, chiamati anche "stack mold", per aumentare la produttività del processo di stampaggio.

L'attrezzatura di stampaggio ad iniezione (1), come mostrato in figure 1 e 2, include un distributore (10) avente una moltitudine di canali (12) di trasporto del materiale fuso, riscaldato da una o più resistenze (14) connesse ad una termocoppia (15). L'attrezzatura di stampaggio ad iniezione (1) include inoltre una moltitudine di ugelli (20), ciascun ugello avente un canale di trasporto del materiale fuso (24), e riscaldato da una

resistenza (28) controllata da una termocoppia (27). Il trasferimento del materiale dal distributore all'ugello può essere fatto mediante un canale di connessione ricavato in un blocco distanziale (41) fissato alla testa dell'ugello (22) e solidale allo stesso. Un otturatore a spina (26) è accoppiato ad una molla di comando (30) che movimenta automaticamente l'otturatore (26) avvicinandolo o allontanandolo dall'orifizio (6) della cavità dello stampo per mezzo della pressione del materiale fuso che insiste sull'otturatore (26) ed in particolare sulla troncoconica (34) localizzata a valle del foro calibrato di quida (35). Il movimento dell'otturatore (26) controlla la quantità di materiale fuso iniettato da ciascun ugello entro la relativa cavità (5) dello stampo. L'otturatore a (26) si estende dalla punta dell'ugello adiacente alla cavità (5) dello stampo, fino almeno alla dell'ugello (22), oppure per l'intera lunghezza dell'ugello. La molla di comando (30) è posizionata vicino alla testa (22) dell'ugello, all'interno di una cavità dedicata (31), che può essere ricavata nel blocco (41), ed è accoppiata alla parte retrostante dell'otturatore a spina (30) o ad una flangia (32) di connessione. La molla di comando è scelta in modo tale da mantenere l'otturatore (26) in posizione chiusa e avvicinata alla cavità (5) dello stampo per interrompere il flusso del materiale plastico fuso che fluisce dalla punta dell'ugello (23) entro la cavità dello stampo (5) attraverso un orifizio all'inizio della fase di iniezione del materiale plastico. Quando la pressione di iniezione all'interno dei canali (24)di ciascun ugello raggiunge la pressione riempimento della cavità, gli otturatori sono alzati nella posizione aperta. In funzione del numero di cavità, che

essere geometricamente bilanciate o meno, il fuso fluisce da un ingresso (11)distributore, attraverso i canali (12,13), accumulando una distribuzione non uniforme di calore, temperatura e del di viscosità (se misurata profilo su una trasversale a ciascun ramo del distributore, a ciascun canale е parte terminale degli ugelli). distribuzione non uniforme delle proprietà fisiche del materiale crea una differenza di portata all'interno di ciascun canale, ma anche tra un canale e l'altro, causando un riempimento non uniforme delle cavità dello stampo. Nel caso di sistema di camera calda secondo la presente invenzione, che fa uso di molle di comando (30) accoppiate a flange (32) o alla parte terminale degli otturatori (33), la portata variabile di materiale plastico verso ciascuna cavità (5) può essere controllata tramite la sincronizzazione degli otturatori a spina (26) movimentati dalla pressione di iniezione e dalla molla di comando (30). In funzione del numero di cavità e del percorso del materiale attraverso il distributore e gli ugelli, la viscosità e la portata rilevata all'interno degli ugelli è variabile e causa una differente pressione di iniezione nell'ugello ed un ritardo nell'apertura e nella chiusura dell'otturatore tra tutti gli ugelli. Come mostrato in figura 1, durante la fase di iniezione le termocoppie sul distributore (15), i sensori sugli ugelli (29) e ciascuna resistenza degli ugelli (28) scambiano segnali con una di controllo multizona (90). Questa controllo (90) è connessa alle resistenze degli ugelli (28) e alle termocoppie degli ugelli (27), ed è composto da una (90a) atto a ricevere i segnali primo componente sensori (29), da un secondo componente (90b) atto a

regolare le resistenze (28), ed eventualmente comprendente ulteriore blocco logico е funzionale temperatura di ciascun ugello è incrementata o ridotta per ridurre o incrementare la viscosità e la portata e sincronizzare il materiale fuso movimento otturatori in modo che durante ciascun ciclo di iniezione gli otturatori si alzino e chiudano nel medesimo istante, o entro limitate differenze, e ottenere un riempimento di ciascuna cavità con la stessa quantità di materiale plastico. La correzione della temperatura di ciascuna resistenza può essere eseguita in modo manuale direttamente sull'unità di controllo (90) oppure in automatico dal blocco logico (91).

Come menzionato precedentemente, sensori di pressione possono essere usati per fornire i segnali alle resistenze attraverso l'unità di controllo (90). I sensori di pressione possono essere posizionati lungo il flusso del materiale fuso nella parte calda (2) dello stampo e sul retro delle molle di comando (30). Allo stesso modo possono essere usati sensori di posizione per fornire i segnali alle resistenze degli ugelli sempre attraverso l'unità di controllo (90).

La figura 3 è una rappresentazione dello stesso ugello (20) secondo una variante dell'invenzione in due viste in sezione. L'ugello (20) include un blocco superiore (340) avente un canale di apporto (347) del materiale plastico ed una resistenza di riscaldamento indipendente (341). L'ugello (20) può essere accoppiato ad un distributore in modo similare al distributore (10) di figura 1, oppure in modo indipendente. Ciascun ugello include un otturatore a spina (26) simile all'otturatore (26). Una cavità (31) che

accoglie la molla è posizionata sopra la testa dell'ugello (22). Una flangia (32) è fissata alla parte terminale posteriore dell'otturatore a spina (26). La cavità (31) della molla include delle pareti laterali (42) e una parete soprastante (43). Quando la pressione di iniezione solleva l'otturatore (26), la molla di comando (30) è compressa dallo stato iniziale di precarico a quello di orifizio aperto in cui la molla è tenuta in pressione dalla flangia (118) e limitata nella corsa dalla parete soprastante (43). materiale fuso in pressione trafila attorno all'otturatore a spina (26) e al foro calibrato di guida (35) durante la fase di iniezione, l'accumulo di materiale nella camera della molla è limitato e controllato da un canale di spurgo (45) che è utilizzato per evacuare il fuso dalla cavità (31). Il blocco superiore (340) include una riscaldamento (341) indipendente dalla resistenza di resistenza dell'ugello (28) e da quella del distributore (14). Inoltre può essere provvisto di termocoppia (348) o di altro sensore atto a determinare le proprietà del materiale fuso.

In figura 4 è rappresentato un ugello (420) secondo un altro aspetto dell'invenzione di figura 1, in una vista dettagliata in sezione laterale. L'ugello (420) comprende un otturatore a spina (426) ed una bussola guida otturatore (441) che include la cavità (431) di alloggiamento della molla di comando. Una porzione (452) della bussola di guida (441) è alloggiata all'interno del distributore (410). La bussola di guida (441) è composta inoltre da una porzione (449) a forma di flangia che ha le caratteristiche di una molla ed è in contatto con le altre piastre dello stampo (404). La conformazione a molla permette di applicare carichi di spinta sul distributore e contrastare la spinta

di iniezione. La piastra stampo (404), include delle cavità (450) per alloggiare la porzione della bussola che contiene camera di alloggiamento (431)della molla che (442) costituita da una parete laterale ed un superiore (451). La cavità nello stampo (450) è più grande diametro rispetto alla camera della molla L'allungamento termico laterale della camera (410) produce a sua volta uno spostamento laterale della bussola di guida (441) assieme alla flangia (449) e alla cavità della molla (431). Progettando le cavità nello stampo con dimensione superiore rispetto alla camera della molla, la piastra stampo (404) non impedirà lo scorrimento laterale della bussola, e manterrà l'otturatore a spina in allineamento con l'orifizio (406) della cavità dello stampo prevenendo la flessione ed il danneggiamento dell'otturatore (426).

In questa configurazione, il materiale che trafila attorno all'otturatore e al foro calibrato sulla bussola, viene convogliato attraverso dei canali di spurgo (445) in un canale di deflusso (446) ricavato nel distributore, per il materiale plastico raccogliere fuso in opportune vaschette di raccolta. Nel caso ulteriore materiale trafilasse lungo l'otturatore, giungendo sino alla camera (431) della molla, ulteriori fori di spurgo (444) ricavati sulla parete laterale (442), permettono l'evacuazione del materiale verso il retro dello stampo.

In figura 5a è rappresentato un sistema di tipo "stack-mold", con due ugelli (520,520') del tipo sprovvisto di resistenza indipendente, in configurazione contrapposta e fissati direttamente al distributore (510). In figura 5b un dettaglio della zona corrispondente alla camera di alloggiamento (531) della molla (530), dove è visibile il

foro di uscita (544) del materiale plastico fuso che trafila lungo il foro calibrato (535). Il foro (544) mette in comunicazione la camera della molla (531) con il canale di deflusso ricavato sul distributore in modo similare al canale (46) di figura 2b.

Il materiale plastico che giunge all'iniettore tramite i canali (512, 513) del distributore (510), attraversa i fori radiali (525) sull'ugello (520), raggiungendo una zona troncoconica (534) dell'otturatore, ove, l'azione della pressione di iniezione permette il movimento di apertura dell'otturatore (526), vincendo la forza esercitata dalla molla (530) accoppiata all'otturatore (526) tramite la flangia (532). Il precarico della molla (526) viene esercitato dalla testa dell'ugello (522) avvitata tramite la filettatura (553) realizzato sulla superficie esterna della testa (522) stessa.

In tutte le configurazioni descritte, una seconda o una terza molla di comando possono essere usate per migliorare il movimento dell'otturatore. Le molle possono essere coassiali o sovrapposte e possono essere di materiale uguale o differente. Nelle figure 2, 4 e 5 sono rappresentati esempi di uso di due molle coassiali accoppiate ad un solo otturatore a spina.

RIVENDICAZIONI

- 1. Metodo per lo stampaggio di particolari plastici aventi una tolleranza di peso determinata all'interno di un lotto di produzione e all'interno di lotti di produzione successivi usando un sistema di camera calda ad otturazione (1), tale metodo comprendente le fasi di:
- iniettare la massa plastica fusa entro una moltitudine di cavità (5) attraverso una moltitudine di canali (12) di un distributore (10), tali canali (12) con moltitudine di ugelli (20), comunicano una distributore essendo riscaldato da resistenze (14) connesse a termocoppie (15), ove ogni ugello (20) ha un canale (24) per il fuso che è riscaldato da una resistenza controllata da una termocoppia (27), tali ugelli di camera calda (20) portano il materiale fuso entro le cavità (5) dello stampo attraverso un orifizio (6), dove un otturatore spina (26) accoppiato direttamente ad una molla chiusura (30) è automaticamente allontanato o avvicinato all'orifizio (6) dalla pressione del fuso sull'otturatore a spina (26) per controllare la quantità di materiale fuso iniettato in ciascuna cavità (5),l'otturatore a spina (26) che si estende dalla punta dell'ugello (23) prossimo alla cavità dello stampo (5) fino ad almeno la testa dell'ugello (22) e dove la molla (30) è posizionata sopra la testa dell'ugello (22) all'interno di una camera (31) e dove la molla (30) è accoppiata alla parte retrostante (33) dell'otturatore a spina (26), e dove, durante la fase di iniezione le termocoppie (15) del distributore, ciascuna termocoppia (27) degli ugelli, le resistenze (14) del distributore e ciascuna resistenza (28)

degli ugelli, scambia dei segnali con una unità di controllo multizona (90) per sistemi di camera calda;

- regolare la viscosità e la portata del fuso attraverso ciascun canale (24) degli ugelli modificando la temperatura del fuso in ciascun canale (24) rilevata da ciascuna termocoppia (27) degli ugelli e attraverso ciascuna resistenza (28) degli ugelli, che sono connesse all'unità di controllo multizona (90), e dove, durante un ciclo di iniezione, la temperatura di tutte le resistenze (28) rilevata dalle termocoppie (27), è regolata in almeno due modi:
- i. la temperatura primo modo di tutte le resistenze (28) deali ugelli è impostata uquale in modo sostanzialmente da mantenere sostanzialmente uguale la viscosità e la portata e da pressione sostanzialmente una sull'otturatore a spina per vincere la forza della molla di chiusura (30) per aprire e chiudere gli otturatori a spina (26) sostanzialmente nel medesimo istante durante il ciclo di iniezione per produrre parti stampate di peso sostanzialmente uguale, e
- ii. in un secondo modo la temperatura di almeno due resistenze di ugelli (28) è impostata in modo da essere differente per incrementare o ridurre la viscosità e la portata del fuso all'interno dei canali degli ugelli (24) e cambiare la pressione del fuso contro l'otturatore a spina (26) per vincere la forza della molla di comando (30) per aprire e chiudere gli otturatori a spina (26) sostanzialmente nel medesimo istante durante il ciclo di iniezione

per produrre parti stampate di peso sostanzialmente uguale,

ed in cui le termocoppie degli ugelli (27) sono posizionate, individualmente o in combinazione, in almeno una tra sei differenti posizioni lungo il percorso del materiale fuso attraverso i canali della camera calda e degli ugelli, e prima dell'entrata nella cavità (5):

- in prossimità delle uscite dai canali del distributore
- in prossimità dell'ingresso nei canali degli ugelli
- in prossimità del foro calibrato di guida dell'otturatore a spina
- in prossimità della resistenza di riscaldamento dell'ugello
- in prossimità della punta dell'ugello
- in prossimità dell'orifizio della cavità dello stampo ma esterno alla stessa.
- 2. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui sensori di pressione sono previsti per variare la temperatura delle resistenze degli ugelli.
- 3. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui sensori di rilevamento della posizione dell'otturatore a spina sono previsti per variare la temperatura delle resistenze degli ugelli.
- 4. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui la pressione del materiale

fuso agisce su una superficie troncoconica dell'otturatore a spina, localizzata in prossimità del foro calibrato di quida dell'otturatore.

- 5. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui gli ugelli includono un blocco posizionato sopra la testa dell'ugello e una camera per alloggiare la molla di chiusura posizionata all'interno del suddetto blocco.
- **6.** Metodo per lo stampaggio di particolari plastici secondo rivendicazione 5 in cui un canale di spurgo ricavato nel blocco permette l'evacuazione del materiale plastico fuso che fuoriesce attorno all'otturatore a spina.
- 7. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 5 in cui la molla di chiusura aziona l'otturatore a spina quando la camera è riempita di materiale plastico fuso che fuoriesce attorno all'otturatore a spina.
- 8. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 7 in cui il materiale plastico fuso che trafila attorno all'otturatore viene convogliato in una vaschetta di raccolta.
- 9. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 7 in cui il materiale plastico fuso che trafila attorno all'otturatore viene espulso dalla camera di alloggiamento della molla.
- 10. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui la camera di alloggiamento della molla è ricavata all'interno del distributore.

- 11. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 1 in cui l'ugello include ulteriormente una bussola di guida dell'otturatore che include la camera di alloggiamento della molla.
- 12. Metodo per lo stampaggio di particolari plastici secondo rivendicazione 10 in cui la bussola di guida dell'otturatore include una flangia che è in contatto con le altre piastre dello stampo.
- 13. Attrezzatura per la produzione di particolari plastici aventi un predeterminato peso e predeterminate tolleranze dimensionali all'interno di un lotto di produzione o all'interno di lotti di produzione successivi, tale attrezzatura comprendente:
- un distributore di camera calda avente una pluralità di canali per il trasporto del materiale fuso, tale distributore sia riscaldato da almeno una resistenza collegata ad almeno una termocoppia,
- una moltitudine di ugelli, ciascuno ugello avente un canale per il trasporto del materiale fuso, che è resistenza controllata da riscaldato da una termocoppia, e un otturatore a spina accoppiato ad una molla di chiusura per allontanare е avvicinare automaticamente l'otturatore all'orifizio dello attraverso la pressione del materiale fuso che agisce sull'otturatore a spina per controllare la quantità di materiale fuso iniettato in ciascuna cavità, l'otturatore che si estende dalla punta dell'ugello prossimo alla cavità dello stampo fino almeno alla testa dell'ugello, e dove la molla è posizionata in prossimità della testa dell'ugello all'interno di una cavità e dove la molla è accoppiata alla

parte retrostante dell'otturatore a spina e dove, durante la fase di iniezione la termocoppia del distributore, ciascuna termocoppia degli ugelli, la resistenza del distributore, e ciascuna resistenza degli ugelli, scambia dei segnali con una unità di controllo multizona per sistemi di camera calda,

- un controllo multizona per sistemi a camera calda collegato alle resistenze e alle termocoppie degli ugelli, avente un primo componente per ricevere segnali dalle termocoppie degli ugelli, ed eventualmente includente un blocco per confrontare le temperature tra le termocoppie degli ugelli, in cui il controllo opera in almeno due modi per sincronizzare l'apertura e la chiusura del flusso attraverso degli otturatori a spina mossi dalla pressione di iniezione e dalla molla di chiusura:
- i. in un primo modo a temperatura di tutte le resistenze degli ugelli è impostata sostanzialmente uguale in modo da mantenere sostanzialmente uguale la viscosità la generare una portata е da pressione sostanzialmente uquale sull'otturatore a spina per vincere la forza della molla di chiusura per aprire e chiudere gli otturatori a spina sostanzialmente nel medesimo istante durante il ciclo di iniezione per produrre parti stampate di peso sostanzialmente uguale, e
- ii. in un secondo modo la temperatura di almeno due resistenze di ugelli è impostata in modo da essere differente per incrementare o ridurre la viscosità e la portata del fluido all'interno dei canali degli ugelli e cambiare la pressione del fuso contro l'otturatore a spina per vincere la forza della molla

di comando per aprire e chiudere gli otturatori a spina sostanzialmente nel medesimo istante durante il ciclo di iniezione per produrre parti stampate di peso sostanzialmente uguale,

e in cui le termocoppie degli ugelli sono posizionate, individualmente o in combinazione, in almeno una tra sei differenti posizioni lungo il percorso del materiale fuso attraverso i canali della camera calda e degli ugelli, e prima dell'entrata nella cavità:

- in prossimità delle uscite dai canali del distributore
- in prossimità dell'ingresso nei canali degli ugelli
- in prossimità del foro calibrato di guida dell'otturatore a spina
- in prossimità della resistenza di riscaldamento dell'ugello
- in prossimità della punta dell'ugello
- in prossimità dell'orifizio della cavità dello stampo ma esterno alla stessa.
- 14. Attrezzatura per la produzione di particolari plastici secondo rivendicazione 13 includente le caratteristiche secondo una o più delle rivendicazioni 2-12.

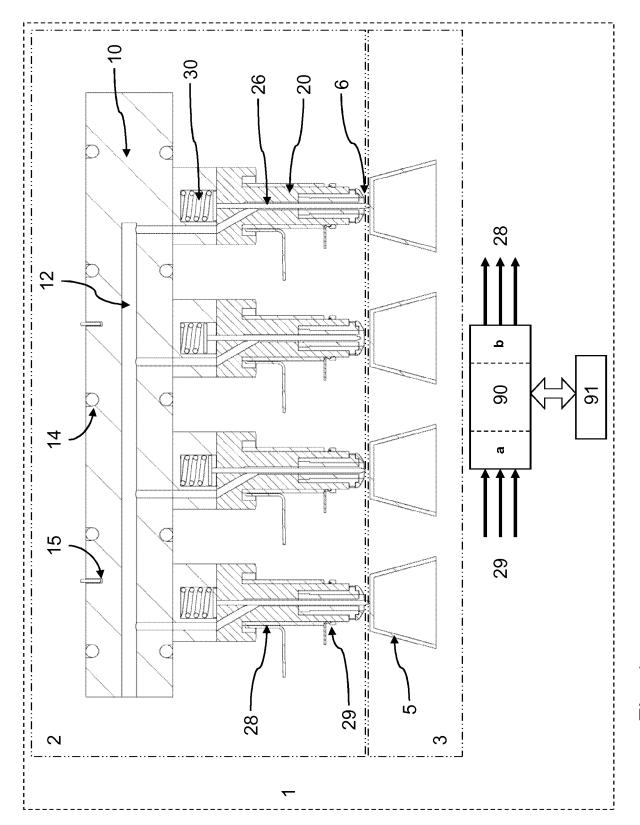
CLAIMS

- 1. A method of injection molding plastic parts having predetermined weight tolerances within a batch of molded parts and within subsequently batches of molded parts using a valve gated hot runner system (1), the method of injection molding comprising the following steps:
- injecting molten resin into a plurality of mold cavities (5) through a plurality of manifold melt channels (12) of an injection manifold (10) the manifold melt channels (12) communicating with a plurality of hot runner nozzles (20), the manifold being heated by manifold heaters (14) linked to manifold thermocouples (15), where each nozzle (20) having a nozzle melt channel (24) that is heated by a nozzle heater (28) controlled by a nozzle thermocouple (27), the hot runner nozzles (20) delivering melt into the mold cavities (5) through a mold gate orifice (6), where a valve pin (26) directly coupled to a biasing spring (30) is automatically actuated away and towards the mold gate orifice (6) by a melt pressure impinging on the valve pin (26) to control an amount of melt injected in each cavity (5), the valve pin (26) extended from a nozzle tip (23) adjacent the mold cavity (5) up to at least a nozzle head (22) and where the spring (30) is located over the nozzle head (22) inside a spring enclosure (31) and where the spring (30) is coupled to a back portion (33) of the valve pin (26), and where during the injection step the manifold thermocouples (15), each nozzle thermocouple (27), the manifold heater (14) and each nozzle heater exchange data with a multi zone hot runner controller (90);
- adjusting the viscosity and flow rate of the melt in each nozzle melt channel (24) by changing the temperature of the melt in each nozzle melt channel (24) detected by

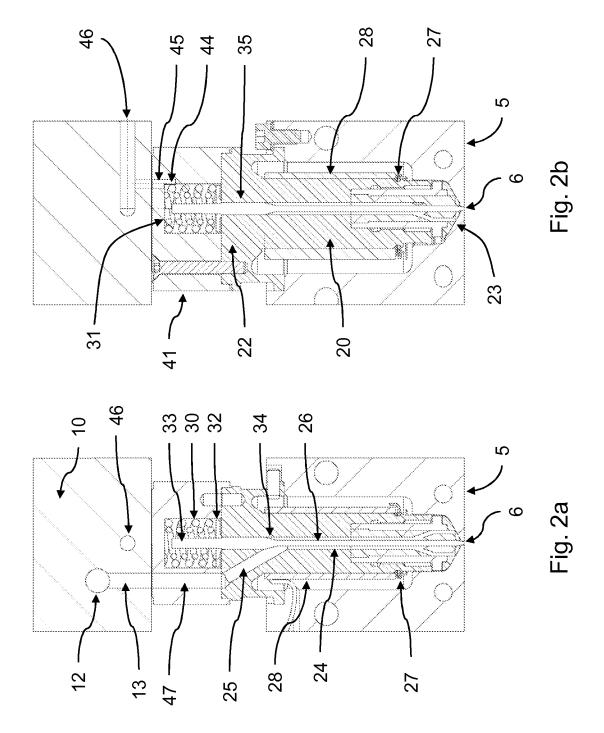
each nozzle thermocouple (27) and provided by each nozzle heater (28)) linked to the hot runner controller (90), and where during an injection cycle the temperature of all nozzle heaters (28) detected by the the nozzle thermocouples (27) is adjusted in at least two modes:

- i. in a first mode the temperatures of all the nozzle heaters (28) is set to be substantially equal in order to maintain substantially equal the viscosity and the flow rate and to generate a substantially equal pressure onto the valve pins to overcome the force of the biasing springs (30) to open and close the valve pins (26) at substantially the same time during an injection cycle to produce molded parts of substantially equal weight, and
- ii. in a second mode the temperatures of at least two nozzle heaters (28) is set to be unequal to either increase or decrease the viscosity and the flow rate of the melt in the nozzle melt channel (24) to change the pressure of the melt onto the valve pin (26) to overcome the force of the biasing springs (30) to open and close the valve pins (26) at substantially the same time during an injection cycle to produce molded parts of substantially equal weight,

and wherein the nozzle thermocouples (27) are positioned in at least one among six individual or combined locations along the flow of the molten material through the manifold and nozzle melt channels and before entering the mold cavity (5):


- in the proximity of the manifold melt channel outlets;
- in the proximity of the nozzle melt channels inlet;
- in the proximity of the valve pin bushing;
- in the proximity of the nozzle heater;

- in the proximity of the nozzle tip;
- in the proximity of the mold gate orifice and outside the mold cavity.
- 2. A method of injection molding as claimed in claim 1 wherein pressure sensors are used to alter the temperature of the nozzle heaters.
- 3. A method of injection molding as claimed in claim 1 wherein valve pin position sensors are used to alter the temperature of the nozzle heaters.
- 4. A method of injection molding as claimed in claim 1 wherein pressure of the molten material impinge on a truncated conical surface of the valve pin, located in proximity of the valve pin bushing.
- 5. A method of injection molding as claimed in claim 1 wherein the nozzle further includes a nozzle block located on top of the nozzle and a spring enclosure located inside of the nozzle block.
- **6.** A method of injection molding as claimed in claim 5 wherein a seepage channel located in the nozzle block allows for the evacuation of melt that escapes around the valve pin.
- 7. A method of injection molding as claimed in claim 5 wherein the biasing spring actuates the valve pin when the spring enclosure is filled with molten material that escaped around the valve pin.
- 8. A method of injection molding as claimed in claim 7 wherein the molten material that escaped around the valve pin is piped to a small collecting chamber.
- **9.** A method of injection molding as claimed in claim 7 wherein the molten material that escaped around the valve pin is ejected from the spring enclosure.


- 10. A method of injection molding as claimed in claim 1 wherein the spring enclosure is located inside the hot runner manifold.
- 11. A method of injection molding as claimed in claim 1 wherein the nozzle further includes a valve pin bushing that includes the spring.
- 12. A method of injection molding as claimed in claim 10 wherein the valve pin bushing further includes a flange that retains the mold plate.
- 13. An injection molding apparatus to produce plastic parts having predetermined weight and dimensional tolerances within a molded batch of parts and within subsequently molded batches of parts, the injection molding apparatus comprising:
- an injection manifold having a plurality of melt channels the manifold being heated by at least one manifold heater linked to at least one manifold thermocouple,
- a plurality of hot runner nozzles, each nozzle having a nozzle melt channel that is heated by a nozzle heater controlled by a nozzle thermocouple and a valve pin coupled to a biasing spring to automatically actuate the valve pin away and towards the mold gate by a melt pressure impinging on the valve pin to control an amount of melt injected in each cavity, the valve pin extended from a nozzle tip adjacent the mold cavity up to at least a nozzle head and where the spring is located adjacent the nozzle head inside a spring enclosure and where the spring is coupled to a back portion of the valve pin, during the injection step the manifold thermocouple, each nozzle thermocouple, the manifold heater, and each nozzle heater exchange data with a multi zone hot runner controller,

- a multizone hot runner controller linked to the nozzle heaters and the nozzle thermocouples having a first component to receive data from the nozzle thermocouples and possibly including a block to compare the temperature among the nozzle thermocouples, wherein the controller operates in at least two modes to synchronize the opening and closing of the flow by the valve pins actuated by the injection pressure and the biasing springs:
- i. in a first mode the temperatures of all the nozzle heaters is set to be substantially equal in order to maintain substantially equal the viscosity and the flow rate and to generate a substantially equal pressure onto the valve pins to overcome the force of the biasing springs to open and close the valve pins at substantially the same time during an injection cycle to produce molded parts of substantially equal weight, and
- ii. ii. in a second mode the temperatures of at least two nozzle heaters is set to be unequal to either increase or decrease the viscosity and the flow rate of the melt in the nozzle melt channel to change the pressure of the melt onto the valve pin to overcome the force of the biasing springs to open and close the valve pins at substantially the same time during an injection cycle to produce molded parts of substantially equal weight and wherein the nozzle thermocouples are positioned in at least one among six individual or combined locations along the flow of the molten material through the manifold and nozzle melt channels and before entering the mold cavity:
- in the proximity of the manifold melt channel outlets;

- in the proximity of the nozzle melt channels inlet;
- in the proximity of the valve pin bushing;
- in the proximity of the nozzle heater;
- in the proximity of the nozzle tip;
- in the proximity of the mold gate orifice and outside the mold cavity.
- 14. An injection molding apparatus to produce plastic parts as claimed in claim 13 further including the features according to one or more of claims 2-12.

. . .

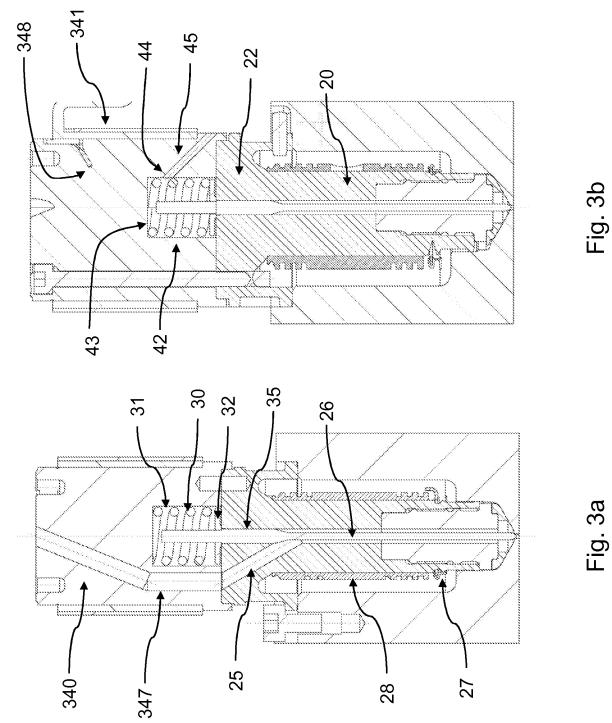


Fig. 3a

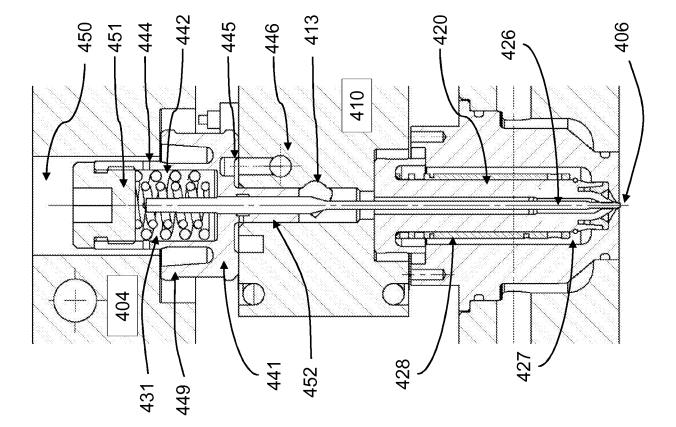
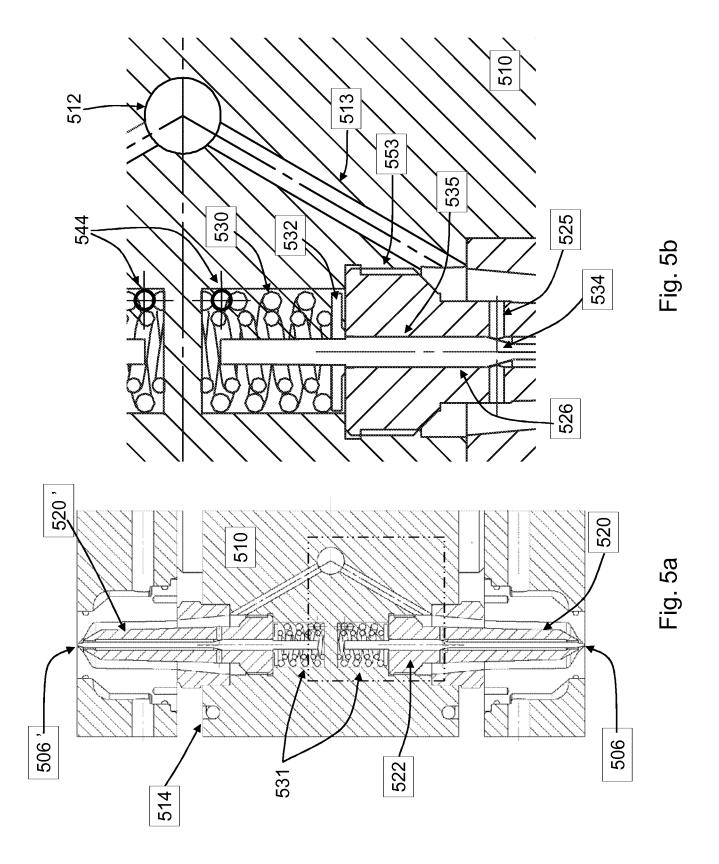



Fig. 4

