(21) 申请号 201110050288.X
(22) 申请日 2011.02.28
(71) 申请人 樊华轩
 地址 332400 江西省修水县城凤凰山路35号第一人民医院
(72) 发明人 曾幼淼 樊华轩
(51) Int. Cl.
 A23L 1/217 (2006.01)
 A23L 1/308 (2006.01)

(54) 发明名称
 一种薯渣食品及其制作方法
(57) 摘要
 本发明涉及一种薯渣食品及其制作方法，以薯渣为原料，通过挤压膨化制成具有规则形态、适
味可口、高膳食纤维的即食食品，其制作工艺简单，成本低廉。
1. 一种薯渣食品，其特征在于：通过挤压膨化将薯渣制成具有规则形态的即食薯渣食品。

2. 根据权利要求 1 所述的薯渣食品，其特征在于：所述薯渣包括甘薯、马铃薯、木薯中的一种薯类提取淀粉后所剩下的下脚渣料，或其中二种至三种下脚渣料任意比例的混合料。

3. 一种薯渣食品的制作方法，其特征在于：将薯渣通过挤压机挤压膨化成形，得到具有规则形态的即食薯渣食品。

4. 根据权利要求 3 所述的薯渣食品的制作方法，其特征在于：将薯渣通过挤压机挤压膨化、切割成型，即得到具有规则形态的即食薯渣食品。

5. 根据权利要求 3 所述的薯渣食品的制作方法，其特征在于：薯渣通过挤压机挤压膨化、切割成型、干燥和 / 或油炸，即得到具有规则形态的即食薯渣食品。

6. 根据权利要求 3 所述的薯渣食品的制作方法，其特征在于：薯渣通过挤压机挤压膨化前，进行调味和 / 或调色。

7. 根据权利要求 3 所述的薯渣食品的制作方法，其特征在于：薯渣通过挤压机挤压膨化、切割成型后，进行调味和 / 或调色。

8. 根据权利要求 3 所述的薯渣食品的制作方法，其特征在于：薯渣通过挤压机挤压膨化、切割成型、干燥和 / 或油炸后，进行调味和 / 或调色。
一种薯渣食品及其制作方法

技术领域
[0001] 本发明涉及一种薯渣的开发利用，特别涉及一种薯渣食品及其制作方法。

背景技术
[0002] 薯渣，是甘薯、马铃薯、木薯等薯类提取淀粉后所剩下的下脚渣料，含有丰富的膳食纤维，膳食纤维含量可高达 28%以上，且薯类的块根生长于地下，不易受农药污染。但因薯渣能量低，适口性差，传统上薯渣只当作饲料或作废弃物。近年来，对薯渣的综合利用研究也多局限于利用薯渣发酵生产单细胞蛋白、酿酒、制醋与生产柠檬酸、乳酸、酱油，或从薯渣中提取膳食纤维、β-胡萝卜素等。

[0003] 发明专利 CN101240310 公开了一种酶法水解甘薯渣制备抗性淀粉的方法；CN101313758 公开了一种马铃薯渣的改性方法而获得可做为含功能性膳食纤维的改性马铃薯渣；CN100988393 公开了一种来源于马铃薯渣的膳食纤维的制备方法和应用；CN101455420 公开了一种高膳食纤维保健板栗超微粉及其加工工艺，其配比为：板栗超微粉 65~80 份、甘薯渣膳食纤维 30~15 份、白砂糖 4.5 份、食盐 0.5 份，再添加适量的增稠剂和乳化剂，制成高膳食纤维保健板栗超微粉；CN100333666C 公开了一种甘薯粉渣膳食纤维的制备方法，通过发酵去杂、碱化水解、脱色，挤压烘干，将烘干的粗纤维用双螺杆挤压膨化机挤压膨化，粉碎等工序制得所需膳食纤维，所制取的膳食纤维可以直接服用，也可以与其他原料配合制取富含膳食纤维的保健食品。

[0005] 以薯渣为主要原料制作食品的现有技术，例如发明专利 CN100333666C 和文献“薯渣膳食纤维的开发价值研究”，均要经过水解及粉碎等多道工序，造成水溶性膳食纤维和淀粉的丢失，并对环境有污染，且产品为粉末状，非即食食品，需冲泡后才能食用。

发明内容
[0006] 本发明的目的在于提供一种以薯渣为原料，通过挤压膨化制成具有规则形态、适口可口、高膳食纤维的即食食品。本发明的另一个目的还在于提供一种制作工艺简单，不造成水溶性膳食纤维和淀粉丢失的制作即食薯渣食品的方法。

[0007] 本发明的目的可通过实施下述技术方案达到。

[0008] 通过挤压膨化制成具有规则形态的即食薯渣食品。

[0009] 所述薯渣包括甘薯、马铃薯、木薯中的一种薯类提取淀粉后所剩下的下脚渣料，或其中二种至三种下脚渣料任意比例的混合料。
所述一种薯渣食品的制作方法是，将薯渣通过挤压机挤压膨化、切割成型，或再干燥，或再油炸，或再干燥、油炸，即得到具有规则形态的即食薯渣食品。

所述的薯渣食品制作方法，其特征在于：薯渣通过挤压机挤压膨化前，进行调味和/或调色。

所述的薯渣食品制作方法，其特征在于：薯渣通过挤压机挤压膨化后，进行调味和/或调色。

所述的薯渣食品制作方法，其特征在于：薯渣通过挤压机挤压膨化、切割成型后，干燥和/或油炸后，进行调味和/或调色。

本发明的优点在于薯渣不需要通过水解等复杂工艺，只需通过挤压机挤压膨化，就可将薯渣直接制成具有规则形态、适口、高膳食纤维的即食食品；其制作工艺简单，省去了水解等步骤，大大降低了生产成本、不会对环境造成污染，而且还避免了水解时造成的水溶性膳食纤维和淀粉的丢失，同时通过挤压膨化能将部分非水溶性膳食纤维转变成水溶性膳食纤维，从而能更好、更充分利用薯渣膳食纤维。本发明的优点还在于本发明产品是一种即食食品，服用十分方便，没有粉末状类食品需冲泡后才能食用的弊病。

具体实施方式

下面将本发明的具体实施方式作详细说明。

实施例 1
将洁净的甘薯渣，调节水分含量至 16%，在 180℃温度下挤压膨化、切割成型，即得。

实施例 2
将洁净的马铃薯渣，调节水分含量至 18%，在 170℃温度下挤压膨化、切割成型、干燥，即得。

实施例 3
将洁净的木薯渣，调节水分含量至 16%，在 180℃温度下挤压膨化、切割成型、油炸，即得。

实施例 4
将洁净的甘薯渣、马铃薯渣、木薯渣各一份，混合均匀，调节水分含量至 20%，在 160℃温度下挤压膨化、切割成型、干燥、油炸，即得。

实施例 5
取食盐 100 克和谷氨酸钠 8 克，用 300 毫升温水溶解后，加入到 10 公斤洁净的马铃薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型，即得。

实施例 6
取食盐 120 克，谷氨酸钠 6 克，柠檬黄 1.8 克，用少量温水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型，即得。

实施例 7
取柠檬黄 1.8 克，用少量温水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型，即得。

实施例 8
取甜叶菊苷 8 克、谷氨酸钠 5 克、柠檬黄 1.2 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣和 2.5 公斤大 米粉的混合物中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、干燥，即得。

取甜叶菊苷 10 克、谷氨酸钠 5 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、干燥，即得。

取柠檬黄 1.2 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣和 2.5 公斤大米粉的混合物中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、干燥，即得。

取食盐 60 克和谷氨酸钠 10 克，用少量温水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、油炸，即得。

取食盐 60 克、谷氨酸钠 10 克和柠檬黄 1.2 克，用少量温水溶解后，加入到 10 公斤洁净的马铃薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、油炸，即得。

取柠檬黄 1.2 克，用少量温水溶解后，加入到 10 公斤洁净的马铃薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、油炸，即得。

取食盐 60 克、谷氨酸钠 10 克和柠檬黄 1.2 克，用少量温水溶解后，加入到 10 公斤洁净的马铃薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、油炸，即得。

取阿斯巴甜 10 克、柠檬黄 1 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、干燥、油炸，即得。

取阿斯巴甜 10 克、鸡精 5 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分至 20%，在 140℃温度下挤压膨化、切割成型、干燥、油炸，即得。

取柠檬黄 1 克，用少量水溶解后，加入到 10 公斤洁净的木薯渣中，混合均匀，调节水分，通过挤压机挤压膨化、切割成型、干燥、油炸，即得。
[0055] 取洗净的甘薯渣 8 公斤，木薯渣 8 公斤，混合均匀，调节水分，通过双螺杆挤压机挤
压膨化，切割成型，干燥，再采用由食盐 200 克、谷氨酸钠 10 克、食用油 800 克、辣椒粉末 50 克、胡椒粉末 40 克、肉桂粉末 20 克、柠檬黄 2 克组成的混合浆料进行涂抹调味调色，即得。

[0056] 实施例 21

[0057] 取洗净的甘薯渣 8 公斤，木薯渣 7 公斤，混合均匀，调节水分，通过双螺杆挤压机挤
压膨化，切割成型，干燥，再采用由食盐 180 克、谷氨酸钠 10 克、食用油 800 克、辣椒粉末 50 克、胡椒粉末 40 克、肉桂粉末 20 克组成的混合浆料进行涂抹调味，即得。

[0058] 实施例 22

[0059] 取洗净的甘薯渣 8 公斤、马铃薯渣 8 公斤，混合均匀，调节水分至 20%，在 140℃温
度下挤压膨化，切割成型，干燥，再采用由食用油 800 克、柠檬黄 2 克组成的混合浆料进行涂
抹调色，即得。

[0060] 实施例 23

[0061] 取洗净的马铃薯渣 8 公斤、木薯渣 7 公斤，混合均匀，调节水分，通过双螺杆挤压机
挤压膨化，切割成型，油炸，再采用由食盐 150 克、谷氨酸钠 10 克、食用油 600 克、辣椒粉末
70 克、肉桂粉末 30 克、柠檬黄 2.5 克组成的混合浆料进行涂抹调味调色，即得。

[0062] 实施例 24

[0063] 取洗净的马铃薯渣 8 公斤、木薯渣 7 公斤，混合均匀，调节水分，通过双螺杆挤压机
挤压膨化，切割成型，油炸，再采用由食盐 120 克、谷氨酸钠 8 克、食用油 600 克、辣椒粉末 70 克、肉桂粉末 30 克组成的混合浆料进行涂抹调味，即得。

[0064] 实施例 25

[0065] 取洗净的马铃薯渣 8 公斤、甘薯渣 7 公斤，混合均匀，调节水分，通过双螺杆挤压机
挤压膨化，切割成型，油炸，再采用由食用油 700 克、柠檬黄 3 克组成的混合浆料进行涂抹调
色，即得。

[0066] 实施例 26

[0067] 取洗净的甘薯渣 5 公斤、马铃薯渣 5 公斤、木薯渣 5 公斤，混合均匀，调节水分至 25%
%，在 150℃温度下挤压膨化、切割成型、干燥、油炸，再采用由食盐 100 克、谷氨酸钠 10 克、食用油 400 克、辣椒粉末 50 克、八角茴粉末 12 克组成的混合浆料进行涂抹调味，即得。

[0068] 实施例 27

[0069] 取洗净的甘薯渣 5 公斤、马铃薯渣 5 公斤、木薯渣 4 公斤和淀粉 1 公斤，混合均匀，
调节水分至 22%，在 145℃温度下挤压膨化、切割成型、干燥，再采用由食盐 80 克、谷氨酸钠
8 克、食用油 800 克、辣椒粉末 60 克、茴香粉末 30 克、番茄红 5 克组成的混合浆料进行涂抹调
味调色，即得。

[0070] 实施例 28

[0071] 取洗净的甘薯渣 5 公斤、马铃薯渣 4 公斤、木薯渣 5 公斤和淀粉 1 公斤，混合均匀，
调节水分至 22%，在 135℃温度下挤压膨化、切割成型、干燥，再采用由食用油 800 克、番茄红
5 克组成的混合浆料进行涂抹调色，即得。

[0072] 实施例 29

[0073] 取洗净的甘薯渣 5 公斤、马铃薯渣 5 公斤和小麦粉 2 公斤、蔗糖 900 克、食盐 100 克、奶
粉 200 克，混合均匀，调节水分 20%，再加入豆油 500 克、单甘油三酯 50 克，混合均匀，
在130℃温度下挤压膨化、切割成型、干燥，即得。

【0075】实施例30
取洁净的甘薯渣5公斤、木薯渣4公斤和玉米粉1公斤，混合均匀；将食盐50克、谷氨酸钠20克、乙基香兰素1.5克、赤藓红1克，用少量水溶解后，加入到薯渣混合料中，调节水分至30%，在125℃温度下挤压膨化、切割成型、焙烤，即得。

【0076】实施例31
取洁净的马铃薯渣5公斤、木薯渣5公斤，混合均匀，调节水分至20%，在200℃温度下挤压膨化、切割成型、油炸；油炸后的产品进入涂料机中，采用由食盐45克、谷氨酸钠20克、花生油300克与茴香油5克混合组成的混合浆料进行涂抹调味，即得。

【0077】实施例32
取洁净的木薯渣，调节水分，通过挤压机挤压、蒸煮、成型、切割、油炸，再用粉料调味品、食盐进行调味，即得。