

(12)

Oversættelse af europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 12 N 15/09 (2006.01)** **C 12 N 1/19 (2006.01)** **C 12 N 9/20 (2006.01)** **A 23 C 9/152 (2006.01)** **C 12 N 1/21 (2006.01)** **C 12 N 1/15 (2006.01)** **C 12 N 5/10 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2019-04-29**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2019-03-27**

(86) Europæisk ansøgning nr.: **14869024.1**

(86) Europæisk indleveringsdag: **2014-12-08**

(87) Den europæiske ansøgnings publiceringsdag: **2016-10-19**

(86) International ansøgning nr.: **JP2014082415**

(87) Internationalt publikationsnr.: **WO2015087833**

(30) Prioritet: **2013-12-10 JP 2013255419**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Amano Enzyme Inc., 1-2-7 Nishiki , Naka-ku, Nagoya-shi, Aichi 460-8630, Japan**

(72) Opfinder: **ISHIGAKI, Yuki, c/o Gifu R & D Center, Amano Enzyme Inc., 1-6 Technoplaza, Kakamigahara-shi, Gifu 509-0109, Japan**
ISHIHARA, Satoru, c/o Gifu R&D Center, AMANO ENZYME INC., 1-6 Technoplaza, Kakamigahara-shi, Gifu 509-0109, Japan
TANAKA, Shun-ichi, c/o Gifu R & D Center, Amano Enzyme Inc., 1-6 Technoplaza, Kakamigahara-shi, Gifu 509-0109, Japan

(74) Fuldmægtig i Danmark: **Plougmann Vingtoft A/S, Strandvejen 70, 2900 Hellerup, Danmark**

(54) Benævnelse: **MODIFICERET LIPASE OG ANVENDELSE DERAFF**

(56) Fremdragne publikationer:
EP-A1- 1 130 100
EP-A2- 1 288 294
WO-A1-2010/102976
AKOH, C.C. ET AL.: 'Protein Engineering and Applications of Candida rugosa Lipase Isoforms' LIPIDS vol. 39, no. 6, 01 June 2004, pages 513 - 526, XP008050889 DOI: 10.1007/S11745-004-1258-7
LONGHI, S. ET AL.: 'CLONING AND NUCLEOTIDE SEQUENCES OF TWO LIPASE GENES FROM CANDIDA CYLINDRACEA 92' BIOCHIM. BIOPHYS. ACTA vol. 1131, no. 2, 15 June 1992, pages 227 - 232, XP023467778 DOI: 10.1016/0167-4781(92)90085-E
LOTTI, M. ET AL.: 'Cloning and analysis of Candida cylindracea lipase sequences' GENE vol. 124, 14 February 1993, pages 45 - 55, XP023540677 DOI: 10.1016/0378-1119(93)90760-Z
LEE, L.-C. ET AL.: 'Altering the Substrate Specificity of Candida rugosa LIP4 by Engineering the Substrate-Binding Sites' J. AGRIC. FOOD CHEM. vol. 55, no. 13, 01 June 2007, pages 5103 - 5108, XP055339783 DOI:

10.1021/JF0702949

SCHMITT, J. ET AL.: 'Blocking the tunnel: engineering of *Candida rugosa* lipase mutants with short chain length specificity' PROTEIN ENG. vol. 15, no. 7, 01 July 2002, pages 595 - 601, XP008142588 DOI: 10.1093/PROTEIN/15.7.595

LEE, G.-C.: 'Multiple mutagenesis of non- universal serine codons of the *Candida rugosa* LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in *Pichia pastoris*' BIOCHEM. J. vol. 366, no. 2, 01 September 2002, pages 603 - 611, XP001117787 DOI: 10.1042/BJ20020404

PIAMTONGKAM, R. ET AL.: 'Enantioselectivity of *Candida rugosa* Lipases (Lip1, Lip3, and Lip4) Towards 2-Bromo Phenylacetic Acid Octyl Esters Controlled by a Single Amino Acid' BIOTECHNOL. BIOENG. vol. 108, no. 8, 01 August 2011, pages 1749 - 1756, XP055348836 DOI: 10.1002/BIT.23124

YEN, C.-C. ET AL.: 'Site-Specific Saturation Mutagenesis on Residues 132 and 450 of *Candida rugosa* LIP2 Enhances Catalytic Efficiency and Alters Substrate Specificity in Various Chain Lengths of Triglycerides and Esters' J. AGRIC. FOOD CHEM. vol. 58, 01 January 2010, pages 10899 - 10905, XP055348837 DOI: 10.1021/JF1004034

GHOSH, D. ET AL.: 'Structure of uncomplexed and linoleate-bound *Candida cylindracea* cholesterol esterase' STRUCTURE vol. 3, no. 3, 01 March 1995, pages 279 - 288, XP004587841 DOI: 10.1016/S0969-2126(01)00158-7

MANCHENO, J.M. ET AL.: 'Structural Insights into the Lipase/esterase Behavior in the *Candida rugosa* Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97 Å Resolution' J. MOL. BIOL. vol. 332, no. 5, 03 October 2003, pages 1059 - 1069, XP004456072 DOI: 10.1016/J.JMB.2003.08.005

DESCRIPTION

TECHNICAL FIELD

[0001] The present invention relates to a modified lipase. Specifically, the present invention provides, for example, a modified lipase and a method for producing dairy products using such a modified lipase. The present application claims priority from Japanese Patent Application No. 2013-255419, filed on December 10, 2013.

BACKGROUND ART

[0002] Lipases have been used for formation and enhancement of the flavor of dairy products. Traditionally, there have been used preparations of lipases from kids, calves, or lambs. These ruminant lipases have a specificity that short-chain fatty acids (C₄ and C₆ fatty acids) are released from milk fat, and are suitable for the formation of the flavor of dairy products.

[0003] However, there is a strong industrial need for an alternative to animal-derived lipases because kosher or halal qualities are required for enzyme preparations utilized for food processing. To meet the need, proposals have been made, for example, to use microbial enzymes (for example, Patent Document 1) and recombinant enzymes (for example, Patent Document 2). In addition, attempts have also been made to modify lipases by genetic engineering, for application to particular purposes (for example, Patent Documents 3 to 5).

CITATIONS LIST

PATENT LITERATURES

[0004]

Patent Literature 1: JP 61-135541 A

Patent Literature 2: US 2004/0001819

Patent Literature 3: JP 2011-512809

Patent Literature 4: JP 2003-524386

Patent Literature 5: JP 2004-517639

NON PATENT LITERATURE

[0005] Non Patent Literature 1: J. Schmitt et al., Protein Engineering, vol. 15, no. 7, pp. 595-601, 2002

SUMMARY OF INVENTION

TECHNICAL PROBLEMS

[0006] Microbial lipases are more specific for long-chain fatty acids than for short-chain fatty acids, and thus their action on milk fat will give a profile that many of the fatty acids released from the milk fat have a long chain. Long-chain fatty acids, which are responsible for soap odor, are not favorable as the flavor of dairy products, particularly of cheeses.

[0007] Under this background, the present invention addresses a problem of providing a lipase derived from a microorganism that is specific for short-chain to medium-chain fatty acids, and a use of such a lipase.

SOLUTIONS TO PROBLEMS

[0008] In the course of the investigation to solve the above-mentioned problem, the inventors focused on a *Candida cylindracea* derived lipase (a lipase formerly referred to as a *Candida rugosa* derived lipase was used) and attempted its modification. After trial and error, the inventors succeeded in finding very useful mutation sites that can lead to the achievement of the goals of the present invention, from the amino acids which form the substrate pocket. Variants with a given amino acid substitution made at each of these mutation sites hydrolyzed milk fat so that short-chain to medium-chain fatty acids (C₄ to C₈ fatty acids) were selectively released as in the case of an animal lipase. These variants worked well on short-chain fatty acids (C₄ to C₆ fatty acids), and best on C₄ fatty acid. As just mentioned, the inventors succeeded, as a result of these amino acid mutations, in bringing the substrate specificities of lipases close to that of the animal lipase. In connection with this, for the *Candida cylindracea* derived lipase, there have been reported mutations (amino acid substitutions) considered to be effective for its substrate specificity (Non-Patent Document 1), but it was observed that the newly found mutations were more effective in modifying the substrate specificity (specificity for short-chain fatty acids).

[0009] In present invention, it is likely that mutagenesis procedures similar to those as described herein can also be applied to other enzymes having a high degree of amino acid

sequence identity relative to LIP1 used in Examples, in light of common general technical knowledge that enzymes having a high degree of amino acid sequence identity (typically isozymes) have a high degree of similarity in their three-dimensional structure, particularly in sites involved in their activity, such as active site and substrate pocket, and that it is highly probable that a similar mutation in such enzymes gives rise to a similar effect.

[0010] The inventions described below are based mainly on the above-described results and observation. The present invention relates to the embodiments as characterized in claims.

1. [1] A modified lipase consisting of an amino acid sequence with a substitution made in the amino acid sequence of a *Candida cylindracea* derived lipase, wherein the substitution is:
 1. (1) a substitution of asparagine for an amino acid corresponding to the amino acid at position 428 in the amino acid sequence set forth in SEQ ID NO: 1; or
 2. (2) a substitution of phenylalanine, methionine, or isoleucine for an amino acid corresponding to the amino acid at position 429 in the amino acid sequence set forth in SEQ ID NO: 1,wherein the amino acid sequence of the *Candida cylindracea* derived lipase is an amino acid sequence that is 70% or more identical to the amino acid sequence of SEQ ID NO: 2 and wherein the substitution is the substitution represented in (1) or wherein the amino acid sequence of the *Candida cylindracea* derived lipase is an amino acid sequence that is 90% or more identical to the amino acid sequence of SEQ ID NO: 2 and wherein the substitution is the substitution represented in (2).
2. [2] The modified lipase according to [1], wherein the amino acid sequence of the *Candida cylindracea* derived lipase is an amino acid sequence of any one of SEQ ID NOs: 2 to 7.
3. [3] The modified lipase according to [1], consisting of the amino sequence set forth in any one of SEQ ID NOs: 8 to 11.
4. [4] A gene encoding the modified lipase according to any one of [1] to [3].
5. [5] The gene according to [4], comprising the base sequence set forth in any one of SEQ ID NOs: 12 to 19.
6. [6] A recombinant DNA comprising the gene according to [4] or [5].
7. [7] A microorganism carrying the recombinant DNA according to [6].
8. [8] The microorganism according to [7], wherein the host is *Escherichia coli*, *Candida cylindracea*, *Aspergillus oryzae*, *Bacillus subtilis*, or *Pichia pastoris*.
9. [9] An enzyme preparation comprising the modified lipase according to any one of [1] to [3].
10. [10] A method for improving the flavor of a food product or food raw material, characterized in that the enzyme according to any one of [1] to [3] or the enzyme preparation according to [9] is allowed to act on the food product or food raw material.
11. [11] A method for producing a food product, characterized in that the enzyme according to any one of [1] to [3] or the enzyme preparation according to [9] is allowed to act on a food raw material or intermediate product.
12. [12] The method according to [10] or [11], wherein the food product is a dairy product.

13. [13] A flavor-improving agent that is allowed to act on a food product or food raw material, comprising the enzyme according to any one of [1] to [3] or the enzyme preparation according to [9].
14. [14] A food product or food raw material obtained by treatment with the enzyme according to any one of [1] to [3] or the enzyme preparation according to [9].

BRIEF DESCRIPTION OF DRAWINGS

[0011]

Fig. 1 shows the composition of released fatty acids after treatment with a wild-type enzyme. A *Candida cylindracea* derived wild-type lipase LIP1 was allowed to act on cheese (used as a substrate) and the composition of the released fatty acids was analyzed.

Fig. 2 shows the composition of released fatty acids after treatment with modified enzymes. Various modified lipases (variants) were allowed to act on cheese (used as a substrate) and a comparison was made for the compositions of the released fatty acids. The upper left panel shows results when a calf sublingual gland derived lipase was used. The lower panels show results when modified lipases were used (variant 1: L428N; variant 2: G429F, variant 3: G429M; and variant 4: G429I). The upper right panel shows results when a modified lipase (L428F) that had previously been reported was used.

Fig. 3 shows a comparison of the sequences of *Candida cylindracea* derived wild-type lipases LIP1 (SEQ ID NO: 2), LIP1' (SEQ ID NO: 3), LIP2 (SEQ ID NO: 4), LIP3 (SEQ ID NO: 5), LIP4 (SEQ ID NO: 6), and LIP5 (SEQ ID NO: 7).

Fig. 4 is a continuation of Fig. 3.

Fig. 5 is a continuation of Fig. 4.

DESCRIPTION OF EMBODIMENTS

[0012] For convenience of description, some of the terms used in relation to the present invention are defined as follows.

(Terminology)

[0013] The term "modified lipase" refers to an enzyme obtained by modification or mutation of

a particular lipase (which is referred to as a "reference lipase" for convenience of description). The reference lipase is a *Candida cylindracea* derived lipase or a *Candida rugosa* derived lipase. The terms "*Candida cylindracea* derived lipase" and "*Candida rugosa* derived lipase" are used interchangeably.

[0014] The term "*Candida cylindracea* derived lipase" is a lipase that is obtained from a strain of *Candida cylindracea* as the source, and includes lipases produced by *Candida cylindracea*, lipases produced by mutated strains of *Candida cylindracea* (variant strains), lipases expressed, for example, in other microorganism, using the genetic information of such enzymes, or the like. Similarly, the term "*Candida rugosa* derived lipase" is a lipase that is obtained from a strain of *Candida rugosa* as the source, and includes lipases produced by *Candida rugosa*, lipases produced by mutated strains of *Candida rugosa* (variant strains), lipases expressed, for example, in other microorganism, using the genetic information of such enzymes, or the like.

[0015] In the present invention, an "amino acid substitution" is carried out as modification or mutation. Therefore, some amino acid residues are found to be different when a modified lipase and the reference lipase therefor are compared. In the specification, a modified lipase is also referred to as a modified enzyme or as a variant.

[0016] In the specification, amino acids are designated according to the common practice, as their single letters as described below:

methionine: M; serine: S; alanine: A; threonine: T; valine: V; tyrosine: Y; leucine: L; asparagine: N; isoleucine: I; glutamine: Q; proline: P; aspartic acid: D; phenylalanine: F; glutamic acid: E; tryptophan: W; lysine: K; cysteine: C; arginine: R; glycine: G; and histidine: H.

[0017] In the specification, the positions of amino acids in an amino acid sequence are specified by assigning the numbers from the N-terminus toward the C-terminus of the amino acid sequence, wherein according to customary practice, the methionine corresponding to the translation initiation site is assigned to 1, i.e., the first amino acid. Therefore, in the case of the sequence of a mature protein in which the signal peptide has been removed, the amino acid numbers are decreased by the number of the amino acids of the signal peptide.

[0018] In the specification, an amino acid residue at a mutation site (an amino acid residue to be substituted with another amino acid) is expressed in a combination of the above-described single letter representing the kind of the amino acid residue and the figure representing the position of the amino acid residue. For example, if proline at position 428 is a mutation site, then the amino acid is designated as "G428."

1. Modified lipases

[0019] A first aspect of the present invention is directed to a modified lipase (modified enzyme). The modified enzyme of the present invention has an amino acid sequence with a

substitution made in the amino acid sequence of a *Candida cylindracea* derived lipase, wherein the substitution is:

1. (1) a substitution of asparagine for an amino acid corresponding to the amino acid at position 428 in the amino acid sequence set forth in SEQ ID NO: 1; or
2. (2) a substitution of phenylalanine, methionine, or isoleucine for an amino acid corresponding to the amino acid at position 429 in the amino acid sequence set forth in SEQ ID NO: 1.

[0020] The sequence of SEQ ID NO: 1 is the amino acid sequence of a *Candida cylindracea* derived lipase LIP1, which comprises the signal peptide. In the substitution represented in (1), an amino acid corresponding to the amino acid at position 428 in this amino acid sequence is a target to be substituted with a given amino acid and is substituted with asparagine, resulting in an alteration of the substrate specificity of the lipase. In the substitution represented in (2), an amino acid corresponding to the amino acid at position 429 in the sequence of SEQ ID NO: 1 is a target to be substituted with a given amino acid and is substituted with phenylalanine, methionine, or isoleucine, resulting in an alteration of the substrate specificity of the lipase. Lipases after these amino acid substitutions, *i.e.*, modified enzymes have an increased specificity for short-chain to medium-chain fatty acids (C₄ to C₈ fatty acids), and when allowed to act on milk fat, typically give a composition of the released fatty acids that is similar to that of a calf sublingual gland derived lipase. Preferably, these modified enzymes work well on short-chain fatty acids (C₄ to C₆ fatty acids), and best on C₄ fatty acid.

[0021] Herein, the term "corresponding" when used for an amino acid residue in the present specification means contributing equally to exhibition of functions among proteins (enzymes) being compared. For example, when an amino acid sequence for comparison to the base amino acid sequence (that is, the amino acid sequence set forth in SEQ ID NO: 1) is aligned while considering partial homology of the primary structure (that is, an amino acid sequence) so that the most appropriate comparison can be achieved (in this event, the alignment may be optimized by introducing gaps if necessary), an amino acid located at a position corresponding to a specific amino acid in the base amino acid sequence can be specified as a "corresponding amino acid". The "corresponding amino acid" can also be specified by comparison between conformations (three-dimensional structures) in place of or in addition to the comparison between primary structures. Utilization of conformational information can give highly credible comparison results. In this case, a technique of performing an alignment with comparing atomic coordinates of conformations of a plurality of enzymes can be adopted. Conformational information of an enzyme to be mutated is available from, for example, the Protein Data Bank (<http://www.pdbj.org/indexj.html>).

[0022] One example of a method for determination of a protein conformation by the X-ray crystal structure analysis will be shown below.

1. (1) A protein is crystallized. Crystallization is essential to determine a conformation, and

in addition, crystallization is industrially useful as a purification method of a protein at high purity and a stable preservation method of a protein at high density. In this case, a protein to which a substrate as a ligand or its analogous compound is bound may be preferably used for crystallization.

2. (2) The prepared crystal is irradiated with X ray to collect diffraction data. There are many cases that a protein crystal is damaged due to X ray irradiation and the diffraction ability is deteriorated. In such cases, a low-temperature measurement technique of rapidly cooling the crystal to about -173°C and collecting diffraction data in the state has been recently prevailed. In addition, ultimately, synchrotron orbit radiation having high luminance is utilized to collect high resolution data that is used for structural determination.
3. (3) In addition to the diffraction data, phase information is necessary in order to perform the crystal structure analysis. When a crystal structure of an analogous protein to a desired protein is unknown, it is impossible to determine the structure in a molecular substitution method, and a phase problem has to be solved by a heavy-atom isomorphous replacement method. The heavy-atom isomorphous replacement method is a method in which a metallic atom having a high atomic number such as mercury or platinum is introduced into a crystal and contribution of a large X ray scattering ability of such a metallic atom to X ray diffraction data is utilized to collect phase information. The determined phase is possibly improved by smoothing an electron density of a solvent region in the crystal. Since a water molecule in the solvent region has large fluctuation, the electron density is hardly observed, and thus adjusting the electron density in this region to close to 0 makes it possible to approach the real electron density, which results in improving a phase. When plural molecules are contained in an asymmetrical unit, equation of electron densities of these molecules makes it possible to more significantly improve a phase. A model of a protein is fit to an electron density map calculated using the phase improved as described above. This process is performed on computer graphics using a program such as QUANTA made by MSI Co. (USA). After the process, structural precision is performed using a program such as X-PLOR made by MSI Co. to complete the structure analysis. When a crystal structure of an analogous protein to a desired protein is known, it can be determined in a molecular substitution method using the atomic coordinate of the known protein. Molecular substitution and structure refinement can be performed using a program such as CNS_SOLVE ver.11.

[0023] As *Candida cylindracea* derived lipases, there are known five enzymes (LIP1, LIP2, LIP3, LIP4, and LIP5). In addition, the applicant has found an enzyme (referred to as LIP1') that exhibits a high homology to LIP1, from lipase-producing mutant strains. For these six enzymes, the amino acid sequences without the signal peptide, *i.e.*, the amino acid sequences of the mature enzymes are set forth in SEQ ID NOs: 2 (for LIP1), 3 (for LIP1'), 4 (for LIP2), 5 (for LIP3), 6 (for LIP4), and 7 (for LIP5). Typically, one of these enzymes will be used as a reference lipase (which is subjected to amino acids substitutions, resulting in the generation of modified enzymes). Therefore, specific examples of the amino acid sequence of a reference

lipase are the amino acid sequences of SEQ ID NOs: 2 to 7. The identity to the amino acid sequence of *Candida cylindracea* derived lipase LIP1 (SEQ ID NO: 2) is 99% for the amino acid sequence of SEQ ID NO: 3, 79% for the amino acid sequence of SEQ ID NO: 4, 88% for the amino acid sequence of SEQ ID NO: 5, 81% for the amino acid sequence of SEQ ID NO: 6, and 82% for the amino acid sequence of SEQ ID NO: 7 (Figs. 3 to 5).

[0024] For the substitution represented in (1) (a substitution for an amino acid corresponding to the amino acid at position 428 in the amino acid sequence of SEQ ID NO: 1), an enzyme consisting of an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 2 may be used as a reference lipase. For example, any of LIP1, LIP1', LIP2, LIP3, LIP4, and LIP5 can be the reference lipase. As a reference lipase, use is preferably made of an enzyme that has an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity), more preferably an enzyme that has an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity), even more preferably an enzyme that has an amino acid sequence having 95% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity), and most preferably an enzyme that has an amino acid sequence having 99% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity).

[0025] In LIP1 having the amino acid sequence of SEQ ID NO: 2, the amino acid corresponding to the amino acid at position 428 in the amino acid sequence of SEQ ID NO: 1 is leucine (L) at position 413. Therefore, when LIP1 having the amino acid sequence of SEQ ID NO: 2 is used as a reference lipase, this amino acid is a target to be substituted with a given amino acid. On the other hand, when LIP1' having the amino acid sequence of SEQ ID NO: 3 is used as a reference lipase, the amino acid to be substituted with a given amino acid is leucine (L) that is an amino acid located at position 413 in SEQ ID NO: 3. When LIP2 having the amino acid sequence of SEQ ID NO: 4 is used as a reference lipase, the amino acid to be substituted with a given amino acid is leucine (L) that is an amino acid located at position 413 in the amino acid sequence of SEQ ID NO: 4. When LIP3 having the amino acid sequence of SEQ ID NO: 5 is used as a reference lipase, the amino acid to be substituted with a given amino acid is leucine (L) that is an amino acid located at position 413 in SEQ ID NO: 5. When LIP4 having the amino acid sequence of SEQ ID NO: 6 is used as a reference lipase, the amino acid to be substituted with a given amino acid is leucine (L) that is an amino acid located at position 413 in the amino acid sequence of SEQ ID NO: 6. When LIP5 having the amino acid sequence of SEQ ID NO: 7 is used as a reference lipase, the amino acid to be substituted with a given amino acid is leucine (L) that is an amino acid located at position 413 in the amino acid sequence of SEQ ID NO: 7.

[0026] In the meanwhile, for the substitution represented in (2) (a substitution for an amino acid corresponding to the amino acid at position 429 in the amino acid sequence of SEQ ID NO: 1), an enzyme consisting of an amino acid sequence 90% or more identical to the amino acid sequence of SEQ ID NO: 2 may be used as a reference lipase. For example, any of LIP1

and LIP1' can be the reference lipase. As a reference lipase, use is preferably made of an enzyme that has an amino acid sequence having 95% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity), more preferably an enzyme that has an amino acid sequence having 98% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity), and most preferably an enzyme that has an amino acid sequence having 99% or more identity to the amino acid sequence of SEQ ID NO: 2 (with the proviso that the enzyme exhibits lipase activity).

[0027] In LIP1 having the amino acid sequence of SEQ ID NO: 2, the amino acid corresponding to the amino acid at position 429 in the amino acid sequence of SEQ ID NO: 1 is glycine (G) at position 414. Therefore, when LIP1 having the amino acid sequence of SEQ ID NO: 2 is used as a reference lipase, this amino acid is a target to be substituted with a given amino acid. On the other hand, when LIP1' having the amino acid sequence of SEQ ID NO: 3 is used as a reference lipase, the amino acid to be substituted with a given amino acid is glycine (G) that is an amino acid located at position 414 in SEQ ID NO: 3.

[0028] Here, specific examples of the amino acid sequences of modified enzymes are represented in SEQ ID NOs: 8 to 11. A modified enzyme having the amino acid sequence of SEQ ID NO: 8 (variant 1) is obtained by making a substitution of asparagine for an amino acid at position 413 on LIP1 having the amino acid sequence of SEQ ID NO: 2 (that is, a substitution represented in (1)); a modified enzyme having the amino acid sequence of SEQ ID NO: 9 (variant 2) is obtained by making a substitution of phenylalanine for an amino acid at position 414 on LIP1 having the amino acid sequence of SEQ ID NO: 2 (that is, one of the substitution represented in (2)); a modified enzyme having the amino acid sequence of SEQ ID NO: 10 (variant 3) is obtained by making a substitution of methionine for an amino acid at position 414 on LIP1 having the amino acid sequence of SEQ ID NO: 2 (that is, one of the substitution represented in (2)); and a modified enzyme having the amino acid sequence of SEQ ID NO: 11 (variant 4) is obtained by making a substitution of isoleucine for an amino acid at position 414 on LIP1 having the amino acid sequence of SEQ ID NO: 2 (that is, one of the substitution represented in (2)).

[0029] In cases where a portion of the amino acid sequence of a given protein has been subjected to mutagenesis, a mutated version of the protein may have a function equivalent to the original unmutated protein. That is, it is sometimes observed that a mutation in a given amino acid sequence does not lead to substantial effects on the function of the protein, which is maintained between before and after introducing the mutation. Taking this common general technical knowledge into account, it can be considered that when compared to an above-described modified enzyme (any of variants 1 to 4), a modified enzyme which has a slight difference in the amino acid sequence (wherein the difference in the amino acid sequence is located at a position(s) other than the position at which the above-described amino acid substitution has been performed), but which nevertheless does not have substantial differences in properties is an enzyme that is substantially the same as the above-described modified enzyme. The "slight difference in the amino acid sequence" in this context typically

refers to the occurrence of a mutation(s) (change(s)) in the amino acid sequence resulting from deletion or substitution of one to several amino acids (for example, up to three, five, seven, or ten amino acids) contained in the amino acid sequence, or addition or insertion of one to several amino acids (for example, up to three, five, seven, or ten amino acids), or combinations thereof. The identity (%) between the amino acid sequences of "an enzyme that is substantially the same" and an above-described modified enzyme that is used as the reference is, for example, 90% or more, preferably 95% or more, more preferably 98% or more, most preferably 99% or more. Differences in the amino acid sequence may occur at more than one position. A "slight difference in the amino acid sequence" preferably results from conservative amino acid substitution.

2. Nucleic acid coding for modified lipase, etc.

[0030] The second aspect of the present invention provides a nucleic acid relating to the modified enzyme of the invention. That is, provided are a gene coding for the modified enzyme, a nucleic acid that can be used as a probe for identifying a nucleic acid coding for the modified enzyme, and a nucleic acid that can be used as a primer for amplifying or mutating a nucleic acid coding for the modified enzyme.

[0031] The gene coding for a modified enzyme is typically used in preparation of the modified enzyme. According to a genetic engineering procedure using the gene coding for a modified enzyme, a modified enzyme in a more homogeneous state can be obtained. Further, the method can be a preferable method also in the case of preparing a large amount of a modified enzyme. Note that uses of the gene coding for a modified enzyme are not limited to preparation of a modified enzyme. For example, the nucleic acid can also be used as a tool for an experiment intended for clarification of action mechanisms of a modified enzyme or a tool for designing or preparing a further modified form of an enzyme.

[0032] The "gene coding for a modified enzyme" herein refers to a nucleic acid capable of obtaining the modified enzyme when it is expressed, and includes, as a matter of course of a nucleic acid having a base sequence corresponding to the amino acid sequence of the modified enzyme, also a nucleic acid obtained by adding a sequence that does not code for an amino acid sequence to such a nucleic acid. Degeneracy of a codon is also considered.

[0033] Examples of the (base) sequence of the gene encoding a modified enzyme are represented in SEQ ID NOs: 12 to 15. These sequences encode variants described in the Examples section which follows, as indicated below.

SEQ ID NO: 12: variant 1 (L428N)

SEQ ID NO: 13: variant 2 (G429F)

SEQ ID NO: 14: variant 3 (G429M)

SEQ ID NO: 15: variant 4 (G429I)

[0034] In *Candida cylindracea*, the CTG codon encodes serine. If a gene is recombinantly expressed using other yeasts and the like as a host, then it is necessary that depending on the host to be used, the CTG codon is changed to another codon encoding serine (TCT, TCC, TCA, ATG, or AGC). The present invention also provides, as the sequence of a gene for use in heterologous expression, a sequence in which a codon substitution of this type is made for the sequence of any one of SEQ ID NOs: 12 to 15. Examples of sequences with a codon substitution are as follows.

SEQ ID NO: 16, which is a sequence with a codon substitution in the sequence of SEQ ID NO: 12;

SEQ ID NO: 17, which is a sequence with a codon substitution in the sequence of SEQ ID NO: 13;

SEQ ID NO: 18, which is a sequence with a codon substitution in the sequence of SEQ ID NO: 14; and

SEQ ID NO: 19, which is a sequence with a codon substitution in the sequence of SEQ ID NO: 15.

[0035] When a gene according to the present invention is to be expressed in a host, the gene will usually be inserted into the host in the form of a gene construct in which the above-described sequence has a signal peptide-coding sequence (a signal sequence) added thereto at the 5' end. The signal sequence of wild-type LIP1 is represented in SEQ ID NO: 21. The amino acid sequence encoded by this signal sequence (that is, the signal peptide) is represented in SEQ ID NO: 22. The signal sequence may be selected depending on the host to be used. Any signal sequence that can express a variant of interest can be used in the present invention. Examples of the signal sequence that can be used in the present invention can be illustrated by the following: a sequence encoding the signal peptide of the α -factor (Protein Engineering, 1996, vol. 9, p. 1055-1061), a sequence encoding the signal peptide of the α -factor receptor, a sequence encoding the signal peptide of the SUC2 protein, a sequence encoding the signal peptide of the PHO5 protein, a sequence encoding the signal peptide of the BGL2 protein, a sequence encoding the signal peptide of the AGA2 protein, a sequence encoding the signal peptide of *Bacillus subtilis* derived PhoD (phosphoesterase), a sequence encoding the signal peptide of *Bacillus subtilis* derived LipA (lipase), a sequence encoding the signal peptide of *Aspergillus oryzae* derived Taka-amylase (JP 2009-60804 A), a sequence encoding the signal peptide of *Bacillus amyloliquefaciens* derived α -amylase (Eur. J. Biochem. 155, 577-581 (1986)), a sequence encoding the signal peptide of *Bacillus subtilis* derived neutral protease (APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1995, p. 1610-1613, Vol.

61, No. 4), and a sequence encoding the signal peptide of *Bacillus* derived cellulase (JP 2007-130012 A).

[0036] The nucleic acid of the present invention can be prepared in an isolated state by use of a standard genetic engineering technique, molecular biological technique, biochemical technique, and the like in reference to the present specification or the sequence information disclosed in the appended sequence listing.

[0037] Another embodiment of the present invention provides a nucleic acid different in a base sequence in a part (hereinafter also referred to as a "homologous nucleic acid", and a base sequence defining a homologous nucleic acid is also referred to as a "homologous base sequence") as compared to the base sequence of the gene coding for the modified enzyme of the invention, although functions of a protein coded by the nucleic acid are equal. An example of the homologous nucleic acid includes a DNA composed of a base sequence containing substitution, deletion, insertion, addition or inversion of 1 to several bases on the basis of the base sequence of the nucleic acid coding for the modified enzyme of the present invention and coding for a protein having activity which is characteristic to the modified enzyme (i.e. lipase activity). Substitution or deletion of bases may occur in a plurality of sites. The "plurality" herein depends on positions or kinds of amino acid residues in a conformation of a protein coded by the nucleic acid but means, for example, 2 to 40 bases, preferably 2 to 20 bases, and more preferably 2 to 10 bases.

[0038] Such a homologous nucleic acid as described above can be obtained by, for example, a restriction enzyme treatment, a treatment with exonuclease, DNA ligase, etc., and introduction of mutation by a site directed mutation introduction method (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York), and random mutation introduction method (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York). The homologous nucleic acid can be obtained also in other methods such as exposure to ultraviolet radiation.

[0039] Another embodiment of the present invention relates to a nucleic acid having a base sequence complementary to the base sequence of the gene coding for the modified enzyme of the invention. Another embodiment of the present invention provides a nucleic acid having a base sequence with an identity of at least about 60%, 70%, 80%, 90%, 95%, 99%, or 99.9% to the base sequence of the gene coding for the modified enzyme of the invention or a base sequence complementary to the base sequence.

[0040] Another embodiment of the present invention relates to a nucleic acid having a base sequence hybridizing to a base sequence complementary to the base sequence of the gene coding for the modified enzyme of the invention or its homologous base sequence under stringent conditions. The "stringent conditions" herein refer to conditions wherein a so-called specific hybrid is formed and a nonspecific hybrid is not formed. Such stringent conditions are known by a person skilled in the art and can be set in reference to, for example, Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols

in molecular biology (edited by Frederick M. Ausubel et al., 1987). Examples of the stringent conditions include conditions of using a hybridization liquid (50% formamide, 10 × SSC (0.15 M NaCl, 15 mM sodium citrate, pH 7.0), a 5 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 µg/ml of modified salmon sperm DNA, and a 50 mM phosphate buffer (pH7.5)) and incubating at about 42°C to about 50°C, thereafter washing with 0.1 × SSC and 0.1% SDS at about 65°C to about 70°C. Examples of more preferable stringent conditions include conditions of using 50% formamide, 5 × SSC (0.15 M NaCl, 15 mM sodium citrate, pH 7.0), a 1 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 µg/ml of modified salmon sperm DNA, and a 50 mM phosphate buffer (pH 7.5) as a hybridization liquid.

[0041] Another embodiment of the present invention provides a nucleic acid (nucleic acid fragment) having a part of the base sequence of the gene coding for the modified enzyme of the invention or a base sequence complementary to the base sequence. Such a nucleic acid fragment can be used in detection, identification, and/or amplification of a nucleic acid having the base sequence of the gene coding for the modified enzyme of the present invention. For example, the nucleic acid fragment is designed so as to at least contain a part being hybridized to a sequential nucleotide moiety (for example, about 10 to about 100 bases length, preferably about 20 to about 100 bases length, more preferably about 30 to about 100 bases length) in the base sequence of the gene coding for the modified enzyme of the invention. When used as a probe, the nucleic acid fragment can be labeled. Examples such as fluorescent substances, enzymes, and radioactive isotopes can be used for the labeling.

[0042] Another aspect of the present invention relates to a recombinant DNA containing the gene of the present invention (the gene coding for a modified enzyme). The recombinant DNA of the invention is provided in, for example, a form of a vector. The term "vector" in the present specification refers to a nucleic acid molecule that can transfer a nucleic acid inserted in the vector to a target such as a cell.

[0043] A suitable vector is selected according to its intended use (cloning, expression of a protein) and in consideration of a kind of a host cell. Examples include a M13 phage or an altered form thereof, a λ phage or an altered form thereof, and pBR322 or an altered form thereof (e.g., pB325, pAT153, pUC8), etc. as a vector having *Escherichia coli* as a host, pYEpSec1, pMFA, and pYES2 as a vector having a yeast as a host, pAc, pVL, etc. as a vector having an insect cell as a host, and pCDM8, pMT2PC, etc. as a vector having a mammal cell as a host.

[0044] The vector of the present invention is preferably an expression vector. The "expression vector" refers to a vector capable of introducing a nucleic acid inserted in the expression vector into a target cell (host cell) and expressing it in the cell. The expression vector generally contains a promoter sequence necessary for expression of a nucleic acid inserted, an enhancer sequence for promoting expression, and the like. An expression vector containing a selective marker can also be used. When such an expression vector is used, presence or absence (and its degree) of introduction of the expression vector can be confirmed using a selective marker.

[0045] Insertion of the nucleic acid of the present invention into the vector, insertion of a selective marker gene (if necessary), insertion of a promoter (if necessary), and the like can be performed in a standard recombinant DNA technique (for example, a known method of using a restriction enzyme and a DNA ligase, which can be referred in Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New York).

[0046] As host cells, there can be employed, for example, microbial cells of koji mold (for example, *Aspergillus oryzae*), bacilli (for example, *Bacillus subtilis*), *Escherichia coli*, and *Saccharomyces cerevisiae*, in terms of easy handling; however, any host cell in which a recombinant DNA can be replicated and a gene encoding a modified enzyme can be expressed can be utilized. Preferably, *Escherichia coli* and *Saccharomyces cerevisiae* can be employed as a host organism. *Candida* yeasts such as *Candida cylindracea* can also be used as a host organism. In addition, *Pichia* yeasts such as *Pichia pastoris* can also be used as a host organism. Strains of *Escherichia coli* can be *Escherichia coli* strain BL21 (DE3)pLysS in cases of using a T7-based promoter, and *Escherichia coli* strain JM109 in other cases. Strains of *Saccharomyces cerevisiae* can be *Saccharomyces cerevisiae* strain SHY2, AH22, or INVSc1 (Invitrogen).

[0047] Another aspect of the present invention relates to a microorganism having the recombinant DNA of the invention (that is, a transformant). The microorganism of the invention can be obtained by transfection or transformation using the vector of the invention described above. The transfection or transformation can be performed in, for example, the calcium chloride method (J. Mol. Biol., 53, 159 (1970)), the Hanahan method (J. Mol. Biol., 166, 557 (1983)), the SEM method (Gene, 96, 23 (1990)), a method by Chung, et al. (Proc. Natl. Acad. Sci. U.S.A. 86, 2172 (1989)), the calcium phosphate coprecipitation method, electroporation (Potter, H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165 (1984)), and lipofectin (Felgner, P.L. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7413-7417 (1984)). The microorganism of the present invention can be used for producing the modified enzyme of the invention.

3. Enzyme preparation containing modified lipase

[0048] The modified enzyme of the present invention is provided, for example, in the form of an enzyme preparation. The enzyme preparation may contain an excipient, a buffer agent, a suspending agent, a stabilizer, a preservative, an antiseptic, saline and the like besides the active ingredient (the modified enzyme of the present invention). As the excipient, starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, white soft sugar, glycerol and the like can be used. As the buffer agent, phosphates, citrates, acetates and the like can be used. As the stabilizer, propylene glycol, ascorbic acid and the like can be used. As the preservative, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like can be used. As the antiseptic, ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.

4. Uses of modified lipases

[0049] A further aspect of the present invention is directed to uses of modified enzymes and enzyme preparations. A modified enzyme according to the present invention has a substrate specificity similar to that of an animal lipase, that is, a selectivity for short-chain to medium-chain fatty acids. Taking advantage of this property, the present invention utilizes such a modified enzyme or a preparation thereof for flavor improvement of food products or food raw materials. "Flavor improvement" refers to providing a given product or raw material with a more favorable flavor than its original flavor (that is, the flavor of the given product or raw material to which the present invention is not applied) by increasing or adding its particular flavor component(s). Typically, flavor improvement results in the enhancement of a flavor characteristic of a given food product or food raw material. The flavor may be improved by masking an unfavorable flavor component(s).

[0050] Food products or food raw materials to which the present invention can be applied can be illustrated by the following: dairy products, margarine-based products (margarines, fat spreads), shortenings, ice cream-based products (ice creams, gelati, frozen yogurts, sundaes, smoothies, soft creams, etc.), ices, mousses, Bavarian creams, snacks, dressings, soups, various vegetable oils (soybean oil, rapeseed oil, corn oil, palm oil, palm kernel oil, coconut oil, sunflower oil, cottonseed oil, etc.).

[0051] For example, by allowing a modified enzyme or enzyme preparation of the present invention to act on a food product or food raw material, its flavor can be improved. On the other hand, if a modified enzyme or enzyme preparation of the present invention is added to or mixed to a raw material or intermediate product in a step for producing the food product, then a food product with an improved flavor can be produced. Alternatively, the flavor of a food product or food raw material may be improved, for example, by addition or mixing of a composition that is obtained using a modified enzyme or enzyme preparation of the present invention.

[0052] A modified enzyme or enzyme preparation of the present invention is suitable particularly for the production of dairy products. The flavor of dairy products, particularly the cheese flavor, can be increased or improved by applying to them a modified enzyme or enzyme preparation of the present invention.

[0053] Examples of dairy products to which a modified enzyme or enzyme preparation of the present invention can be applied can include various types of cheese (Cheshire cheese, Cheddar cheese, Edam cheese, Gouda cheese, Emmental cheese, Parmesan cheese, Pecorino cheese, etc.), processed cheese (process cheese), EMC (Enzyme modified cheese), cheese foods (which are produced by processing one or more kinds of natural or process cheese and have a cheese weight of 51% or higher in the product), butters, yogurts, creams, spreads, modified milk powders, and seasonings (to be used, for example, for snacks,

dressings, and soups). Milks that are used as the main raw material for dairy products are ones from cows, sheep, goats, and others.

[0054] A modified enzyme or enzyme preparation of the present invention is added, for example, to a raw material or intermediate product during the course of producing the food product. This allows the enzyme to act on the milk fat present in the raw material or intermediate product, thereby leading to the release of fatty acids. The modified enzyme or enzyme preparation of the present invention can be added at various stages in the course of producing the dairy product. Amounts (concentrations) of enzyme to be used, temperature conditions, reaction time, and others may be determined through preliminary experiments.

EXAMPLES

A. Generation of new lipases

[0055] The inventors carried out the investigation described below, with aiming at the generation of new lipases.

1. Objectives and investigation strategy

[0056] The inventors made investigations, paying attention to:

1. (1) Aiming at acquiring a microbial lipase that provides a similar composition of released fatty acids to that provided by a calf sublingual gland derived lipase when the microbial lipase is allowed to act on cheese. In particular, attempts were made to change the fatty acid specificity from long-chain to short-chain fatty acids.
2. (2) Making the substrate pocket of an enzyme protein small, thereby to change the substrate specificity.
3. (3) Replacing an amino acid in the substrate pocket with a more bulky amino acid, thereby to making the substrate pocket smaller.

2. Methods

(1) Selection of mutation sites

[0057] Amino acids that interact with substrates were selected based on the sequence of

Candida cylindracea derived lipase LIP1 (its amino acid sequence including the signal peptide is represented in SEQ ID NO: 1, and the sequence of the gene encoding the amino acid sequence in SEQ ID NO: 20, and the amino acid sequence of the mature lipase without the signal peptide in SEQ ID NO: 2) and on the three dimensional structures deposited in public databases. Specifically, proline at position 261 (P261), leucine at position 319 (L319), and leucine at position 428 (L428) were selected. These amino acid residues correspond to P246, L304, and L413, respectively, in the literature by Schmitt *et al.* (Non Patent Document 1: J. Schmitt *et al.*, Protein Engineering, vol. 15, no. 7, pp. 595-601, 2002).

[0058] At the same time, mutation sites were searched by computer analysis with taking note of the increase of the hydrophobicity in the pocket to improve the ability to synthesize esters. Serine at position 380 (S380) and glycine at position 429 (G429), which are neutral amino acids, were selected.

(2) Acquirement of DNA sequences encoding mutated amino acid sequences

[0059] A *Pichia pastoris* host expression system (Invitrogen, *Pichia* Expression Kit) was used. As a plasmid, pPIC3.5k was used. The gene for *Candida cylindracea* derived LIP1 that was used as a template was an LIP1-encoding sequence codon-optimized for *Saccharomyces cerevisiae*. Mutations were introduced by Inverse PCR method (TOYOBO, KOD-Plus-Mutagenesis Kit), thereby preparing genes encoding various variants with an amino acid substitution occurring at selected sites for mutation. A plasmid carrying a mutated LIP1 gene was transformed into *E. coli* strain DH5a. Subsequently, the plasmid carrying the mutated LIP1 gene was extracted from transformed *E. coli* cells.

(3) Acquirement of transformants expressing mutated amino acid sequences

[0060] The plasmid carrying the mutated LIP1 gene was transformed into *Pichia pastoris* strain GS115 (Invitrogen, *Pichia* Expression Kit). A resulting *Pichia pastoris* transformant was cultured and the enzyme (variant lipase) was collected from the cultured supernatant.

(4) Decomposition of milk fat using variant lipases

[0061] As a substrate, natural cheese (young Cheddar cheese) was used which was suspended and dispersed in phosphate buffer (pH 6.8) at a weight ratio of 1 : 1. The reaction was carried out under conditions at 50 °C for 16 hours. The amount of each variant lipase to be added was 0.1 mg protein per 1 g of cheese. After the reaction was completed, the released fatty acids in the cheese were extracted with diethyl ether and subjected to gas chromatography.

[0062] From the results of evaluation on more than ten variant lipases, it was found that several of the variant lipases gave a composition of the released fatty acids that, unlike that in the case of a wild-type lipase (Fig. 1), was similar to that in the case of a calf sublingual gland derived lipase (variant 1: L428N, variant 2: G429F, variant 3: G429M, and variant 4: G429I; Fig. 2). Accordingly, the inventors have succeeded in obtaining variant lipases that selectively release short-chain to medium-chain fatty acids (C₄ to C₈ fatty acids). When allowed to act on milk fat, these variant lipases work well on short-chain fatty acids (C₄ to C₆ fatty acids), and best on C₄ fatty acid. Among these variant lipases, variant 3 is remarkable in that it is more specific for short-chain fatty acids than the calf sublingual gland derived lipase. For comparison, the result for the variant L428F reported in the above-mentioned literature (which is referred to therein as L413F) is shown (Fig. 2, upper right panel). Variant L428F releases long-chain fatty acids in relatively large amounts. The amino acid sequences of these variants and the sequences of the genes encoding them (wherein codons characteristic of *Candida* yeasts are used so as to correspond to wild type lipase) are as follows:

<Variant 1>

[0063]

Amino acid sequence: SEQ ID NO: 8

Gene sequence: SEQ ID NO: 12

<Variant 2>

[0064]

Amino acid sequence: SEQ ID NO: 9

Gene sequence: SEQ ID NO: 13

<Variant 3>

[0065]

Amino acid sequence: SEQ ID NO: 10

Gene sequence: SEQ ID NO: 14

<Variant 4>**[0066]**

Amino acid sequence: SEQ ID NO: 11

Gene sequence: SEQ ID NO: 15

B. Expression of a variant lipase in various hosts**(1) Expression of a variant lipase in *Escherichia coli***

[0067] A gene for a variant lipase (G429M) was inserted into a plasmid pET20b. The variant lipase was expressed using *Escherichia coli* Origami B (DE3) as a host. A resulting transformant was cultured under conditions at 15°C for 40 hours to obtain bacterial cells. The bacterial cells were disrupted with a Bead Shocker, and lipase activity of the resultant extract was measured. For measuring the lipase activity for short-chain fatty acids, a Lipase Kit S (DS Biopharma Medical) was used. For measuring the lipase activity for long-chain fatty acids, a fat-digesting capacity LMAP method was used. The results revealed that the lipase activity of the cell extract was 1.85 u/mL when the Lipase Kit S was used and 0 u/mL when the LMAP method was used.

[0068] A gene for a variant lipase (G429M) was inserted into a plasmid pCold-TF. The variant lipase was expressed using *Escherichia coli* Origami B (DE3) as a host. A resulting transformant was cultured in LB medium under conditions at 15°C for 40 hours to obtain bacterial cells. The bacterial cells were disrupted with a Bead Shocker, and lipase activity of the resultant extract was measured. The results revealed that the lipase activity of the cell extract was 3.95 u/mL when the Lipase Kit S was used and 0 u/mL when the LMAP method was used.

[0069] As mentioned above, a variant lipase (G429M) specific for short-chain fatty acids was able to be expressed.

(2) Expression of a variant lipase in a yeast (*Candida cylindracea*) strain

[0070] A variant lipase (G429M) was expressed using as a host a strain of *Candida cylindracea* that had been made auxotrophic by mutagenesis. A resulting transformant was

cultured under conditions at 25°C for 48 hours, and lipase activity of the cultured supernatant was measured. For measuring the lipase activity for short-chain fatty acids, an FCCIII method was used. For measuring the lipase activity for long-chain fatty acids, a fat-digesting capacity LMAP method was used. The results revealed that the lipase activity of the cultured supernatant of the *Candida cylindracea* strain in which the variant lipase (G429M) was allowed to be expressed was 470 u/mL when the FCIII method was used and 155 u/mL when the LMAP method was used (a ratio of short-chain to long-chain fatty acids = 3 : 1). For comparison, when a measurement was made of the lipase activity of the cultured supernatant of the parent host strain into which the variant lipase gene had been not introduced, the activity was 267 u/mL when the FCIII method was used and 599 u/mL when the LMAP method was used (a ratio of short-chain to long-chain fatty acids = 2 : 5).

[0071] As mentioned above, a variant lipase (G429M) specific for short-chain fatty acids was able to be expressed.

(3) Expression of a variant lipase in a filamentous fungus (*Aspergillus oryzae*) strain

[0072] A variant lipase (G429M) was expressed using as a host a strain of *Aspergillus oryzae* that had been made auxotrophic by mutagenesis and by means of using an amylase promoter. A resulting transformant was cultured under conditions at 30°C for 76 hours, and lipase activity of the cultured supernatant was measured. For measuring the lipase activity for short-chain fatty acids, an FCCIII method was used. For measuring the lipase activity for long-chain fatty acids, a fat-digesting capacity LMAP method was used. The results revealed that the lipase activity of the cultured supernatant of the *Aspergillus oryzae* strain in which the variant lipase (G429M) was allowed to be expressed was 39 u/mL when the FCIII method was used and 0 u/mL when the LMAP method was used.

[0073] As mentioned above, a variant lipase (G429M) specific for short-chain fatty acids was able to be expressed.

(4) Expression of a variant lipase in a *Bacillus subtilis* strain

[0074] Into a plasmid pHY300PLK was inserted a variant lipase (G429M) gene having a pullulanase promoter added thereto. The variant lipase was expressed using a *Bacillus subtilis* strain as a host. Lipase activity of the cultured medium of a resulting transformant was measured. For measuring the lipase activity for short-chain fatty acids, a Lipase Kit S (DS Biopharma Medical) was used. For measuring the lipase activity for long-chain fatty acids, a fat-digesting capacity LMAP method was used. The results revealed that the lipase activity of the cultured medium was 0.3 u/mL (and 0.1 u/mL for a control strain transformed with an empty vector) when the Lipase Kit S was used and 0 u/mL when the LMAP method was used.

[0075] As mentioned above, a variant lipase (G429M) specific for short-chain fatty acids was able to be expressed.

INDUSTRIAL APPLICABILITY

[0076] The modified lipase according to the present invention exhibits specificity for short-chain to medium-chain fatty acids. The modified lipase according to the present invention has a great deal of potential, in particular, in the production of dairy products having a cheese flavor, such as cheeses or cheese products.

SEQUENCE LISTING

[0077]

<110> AMANO ENZYME INC.

<120> MODIFIED LIPASE AND USE FOR THE SAME

<130> AE13003P

<150> JP P2013-255419

<151> 2013-12-10

<160> 22

<170> PatentIn version 3.5

<210> 1

<211> 549

<212> PRT

<213> Candida cylindracea

<400> 1

Met Glu Leu Ala Leu Ala Leu Ser Leu Ile Ala Ser Val Ala Ala Ala
1 5 10 15

Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn Ala
20 25 30

Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro Val
35 40 45

Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu Asp
50 55 60

Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn Pro
65 70 75 80

Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu Val
85 90 95

Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp Cys
100 105 110

Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala Asn
115 120 125

Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Val Gly Gly
130 135 140

Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala Met
145 150 155 160

Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser Trp
165 170 175

Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn Ala
180 185 190

Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn Ile
195 200 205

Ala Ala Phe Gly Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu Ser
210 215 220

Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly Asp
225 230 235 240

Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln Ser
245 250 255

Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn Glu
260 265 270

Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser Asp
275 280 285

Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Leu Glu Asp Ala
290 295 300

Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu Ser
305 310 315 320

Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr Ala
325 330 335

Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly Asp
340 345 350

Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val Thr
355 360 365

Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His Ala
 370 375 380

Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp Ile
 385 390 395 400

Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr Pro
 405 410 415

Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Gly Phe Thr Leu
 420 425 430

Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr Ser
 435 440 445

Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe His
 450 455 460

Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser Leu
 465 470 475 480

Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro Asn
 485 490 495

Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser Gln
 500 505 510

Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr Gly
 515 520 525

Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn Pro
 530 535 540

Pro Ser Phe Phe Val
 545

<210> 2

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 2

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu

65

70

75

80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Gly Phe Glu Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn
 165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Ala Phe Gly Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
 210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
 245 250 255

Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
 260 265 270

Asp Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Leu Glu Asp
 275 280 285

Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
 290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320

Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
 340 345 350

Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
 355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp
 370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
 385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Gly Phe Thr
 405 410 415

Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
 435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser
 450 455 460

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 3

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 3

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Gly Phe Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn
 165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Ala Phe Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
 210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
 245 250 255

Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
 260 265 270

Asp Lys Leu Ala Cys Leu Arg Ser Val Ser Ser Asp Thr Leu Glu Asp
 275 280 285

Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
 290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320

Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
 340 345 350

Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
 355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gln Asp
 370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
 385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Gly Phe Thr
 405 410 415

Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
 435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser
 450 455 460

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 4

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 4

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Val Asn Glu Lys Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Thr Leu Arg Phe Lys Pro Pro Val Pro Tyr Ser Ala Ser Leu
 35 40 45

Asn Gly Gln Gln Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Met Asn
 50 55 60

Pro Met Gly Ser Phe Glu Asp Thr Leu Pro Lys Asn Ala Arg His Leu
 65 70 75 80

Val Leu Gln Ser Lys Ile Phe Gln Val Val Leu Pro Asn Asp Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Ile Arg Pro Pro Gly Thr Arg Ala Ser Ala
 100 105 110

Gly Leu Pro Val Met Leu Trp Ile Phe Gly Gly Gly Phe Glu Leu Gly
 115 120 125

Gly Ser Ser Leu Phe Pro Gly Asp Gln Met Val Ala Lys Ser Val Leu
 130 135 140

Met Gly Lys Pro Val Ile His Val Ser Met Asn Tyr Arg Val Ala Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Pro Asp Ile Gln Asn Glu Gly Ser Gly Asn
 165 170 175

Ala Gly Leu His Asp Gln Arg Leu Ala Met Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Gly Phe Gly Gly Asp Pro Ser Lys Val Thr Ile Tyr Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Thr Phe Val His Leu Val Trp Asn Asp Gly
 210 215 220

Asp Asn Thr Tyr Asn Gly Lys Pro Leu Phe Arg Ala Ala Ile Met Gln
 225 230 235 240

Ser Gly Cys Met Val Pro Ser Asp Pro Val Asp Gly Thr Tyr Gly Thr
 245 250 255

Glu Ile Tyr Asn Gln Val Val Ala Ser Ala Gly Cys Gly Ser Ala Ser
 260 265 270

Asp Lys Leu Ala Cys Leu Arg Gly Leu Ser Gln Asp Thr Leu Tyr Gln
 275 280 285

Ala Thr Ser Asp Thr Pro Gly Val Leu Ala Tyr Pro Ser Leu Arg Leu
 290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Thr Phe Ile Thr Asp Asp Met Tyr
 305 310 315 320

Ala Leu Val Arg Asp Gly Lys Tyr Ala His Val Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Thr Leu Phe Gly Leu Ser Ser Leu Asn Val
 340 345 350

Thr Thr Asp Ala Gln Ala Arg Ala Tyr Phe Lys Gln Ser Phe Ile His
 355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Ala Ala Tyr Thr Ser Asp
 370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Phe Asn Ala Ile Thr
 385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Leu Leu Gly Asp Leu Ala Phe Thr
 405 410 415

Leu Ala Arg Arg Tyr Phe Leu Asn Tyr Tyr Gln Gly Gly Thr Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
 435 440 445

His Gly Asn Asp Ile Ile Trp Gln Asp Tyr Leu Val Gly Ser Gly Ser
 450 455 460

Val Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Asn Asp Leu Asp Pro
 465 470 475 480

Asn Lys Ala Gly Leu Trp Thr Asn Trp Pro Thr Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Gln Ile Asn Gly Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Pro Asp Ala Tyr Ser Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 5

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 5

Ala Pro Thr Ala Lys Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asn Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Phe Glu Glu Asn Leu Gly Lys Thr Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Gln Ala Val Leu Pro Gln Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Ile Gly
 115 120 125

Ser Pro Thr Ile Phe Pro Pro Ala Gln Met Val Thr Lys Ser Val Leu
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ala Val Asn Tyr Arg Val Ala Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Asp Asp Ile Lys Ala Glu Gly Ser Gly Asn
 165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Gly Phe Gly Gly Asp Pro Ser Lys Val Thr Ile Phe Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Val Leu Cys His Leu Ile Trp Asn Asp Gly
 210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Pro Val Asp Gly Thr Tyr Gly Asn
 245 250 255

Glu Ile Tyr Asp Leu Phe Val Ser Ser Ala Gly Cys Gly Ser Ala Ser
 260 265 270

Asp Lys Leu Ala Cys Leu Arg Ser Ala Ser Ser Asp Thr Leu Leu Asp
 275 280 285

Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
 290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Lys Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320

Lys Leu Val Arg Asp Gly Lys Tyr Ala Ser Val Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Thr Ile Phe Gly Leu Ser Ser Leu Asn Val
 340 345 350

Thr Thr Asn Ala Gln Ala Arg Ala Tyr Phe Lys Gln Ser Phe Ile His
 355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Ala Ala Tyr Pro Gln Asp
 370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Phe Asn Ala Ile Thr
 385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Ala Phe Ile
 405 410 415

His Ala Arg Arg Tyr Phe Leu Asn His Phe Gln Gly Gly Thr Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Ile Met Gly Thr Phe
 435 440 445

His Ala Asn Asp Ile Val Trp Gln Asp Tyr Leu Leu Gly Ser Gly Ser
 450 455 460

Val Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Asn Trp Pro Lys Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Met Thr Asn
 515 520 525

Pro Ser Ser Phe Phe Val
 530

<210> 6

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 6

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Gln Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Pro Pro Val Pro Tyr Ser Ala Ser Leu
 35 40 45

Asn Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Met Asn
 50 55 60

Pro Leu Gly Asn Trp Asp Ser Ser Leu Pro Lys Ala Ala Ile Asn Ser
 65 70 75 80

Leu Met Gln Ser Lys Leu Phe Gln Ala Val Leu Pro Asn Gly Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Ser Gly Thr Lys Pro Gly Ala
 100 105 110

Asn Leu Pro Val Met Val Trp Ile Phe Gly Gly Phe Glu Val Gly
 115 120 125

Gly Ser Ser Leu Phe Pro Pro Ala Gln Met Ile Thr Ala Ser Val Leu
 130 135 140

Met Cys Tyr Dns Tla Tla His Val Ser Met Asn Thr Asn Val Ala Ser

Met Gly Lys Pro Ile Ile His Val Ser Met Asn Tyr Arg Val Ala Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Pro Asp Ile Lys Ala Glu Gly Ser Gly Asn
 165 170 175

Ala Gly Leu His Asp Gln Arg Leu Gly Leu Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Gly Phe Gly Asp Pro Ser Lys Val Thr Ile Phe Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Val Met Cys Gln Leu Leu Trp Asn Asp Gly
 210 215 220

Asp Asn Thr Tyr Asn Gly Lys Pro Leu Phe Arg Ala Ala Ile Met Gln
 225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Pro Val Asp Gly Pro Tyr Gly Thr
 245 250 255

Gln Ile Tyr Asp Gln Val Val Ala Ser Ala Gly Cys Gly Ser Ala Ser
 260 265 270

Asp Lys Leu Ala Cys Leu Arg Ser Ile Ser Asn Asp Lys Leu Phe Gln
 275 280 285

Ala Thr Ser Asp Thr Pro Gly Ala Leu Ala Tyr Pro Ser Leu Arg Leu
 290 295 300

Ser Phe Leu Pro Arg Pro Asp Gly Thr Phe Ile Thr Asp Asp Met Phe
 305 310 315 320

Lys Leu Val Arg Asp Gly Lys Cys Ala Asn Val Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Thr Val Phe Ala Leu Ser Ser Leu Asn Val
 340 345 350

Thr Thr Asp Ala Gln Ala Arg Gln Tyr Phe Lys Glu Ser Phe Ile His
 355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Ala Ala Tyr Pro Ser Asp
 370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Phe Asn Ala Ile Thr
 385 390 395 400

Pro Gln Phe Lys Arg Ile Ala Ala Val Leu Gly Asp Leu Ala Phe Thr
 405 410 415

Leu Pro Arg Arg Tyr Phe Leu Asn His Phe Gln Gly Gly Thr Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Ile Gly Thr His
 435 440 445

His Ala Asn Asp Ile Val Trp Gln Asp Phe Leu Val Ser His Ser Ser
 450 455 460

Ala Val Tyr Asn Asn Ala Phe Ile Ala Phe Ala Asn Asp Leu Asp Pro
 465 470 475 480

Asn Lys Ala Gly Leu Leu Val Asn Trp Pro Lys Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Leu Gln Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Thr Asn
 515 520 525

Pro Ser Ser Phe Phe Val
 530

<210> 7

<211> 534

<212> PRT

<213> Candida cylindracea

<400> 7

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Arg Gly Ser Leu
 35 40 45

Asn Gly Gln Ser Phe Thr Ala Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Val Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Gln Ala Val Leu Pro Asn Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Ile Gly
 115 120 125

Ser Pro Thr Ile Phe Pro Pro Ala Gln Met Val Ser Lys Ser Val Leu
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ala Val Asn Tyr Arg Leu Ala Ser
 145 150 155 160

Phe Gly Phe Leu Ala Gly Pro Asp Ile Lys Ala Glu Gly Ser Ser Asn
 165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190

Ile Ala Gly Phe Gly Gly Asp Pro Ser Lys Val Thr Ile Phe Gly Glu
 195 200 205

Ser Ala Gly Ser Met Ser Val Leu Cys His Leu Leu Trp Asn Gly Gly
 210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Pro Val Asp Gly Thr Tyr Gly Thr
 245 250 255

Gln Ile Tyr Asp Thr Leu Val Ala Ser Thr Gly Cys Ser Ser Ala Ser
 260 265 270

Asn Lys Leu Ala Cys Leu Arg Gly Leu Ser Thr Gln Ala Leu Leu Asp
 275 280 285

Ala Thr Asn Asp Thr Pro Gly Phe Leu Ser Tyr Thr Ser Leu Arg Leu
 290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Ala Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320

Lys Leu Val Arg Asp Gly Lys Tyr Ala Ser Val Pro Val Ile Ile Gly
 325 330 335

Asp Gln Asn Asp Glu Gly Phe Leu Phe Gly Leu Ser Ser Leu Asn Thr
 340 345 350

Thr Thr Glu Ala Asp Ala Glu Ala Tyr Leu Arg Lys Ser Phe Ile His
 355 360 365

Ala Thr Asp Ala Asp Ile Thr Ala Leu Lys Ala Ala Tyr Pro Ser Asp
 370 375 380

Val Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
 385 390 395 400

Pro Gln Leu Lys Arg Ile Asn Ala Val Leu Gly Asp Leu Thr Phe Thr
 405 410 415

Leu Ser Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Pro Lys Tyr
 420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Ile Leu Gly Thr Phe
 435 440 445

His Ala Asn Asp Ile Val Trp Gln His Phe Leu Leu Gly Ser Gly Ser
 450 455 460

Val Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Ser Val Gln Trp Pro Lys Ser Thr Ser Ser Ser
 485 490 495

Gln Ala Gly Asp Asn Leu Met Gln Ile Ser Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asn Ala Leu Phe Ala Asp
 515 520 525

Pro Ser His Phe Phe Val
 530

<210> 8

<211> 534

<212> PRT

<213> Artificial Sequence

<220>

<223> Mutant enzyme 1

<400> 8

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser
 145 150 155 160

Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn

165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
180 185 190

Ile Ala Ala Phe Gly Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
195 200 205

Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
245 250 255

Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
260 265 270

Asp Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Leu Glu Asp
275 280 285

Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
305 310 315 320

Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
325 330 335

Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
340 345 350

Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp
370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Asn Gly Phe Thr
405 410 415

Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser
450 455 460

400

400

400

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 9

<211> 534

<212> PRT

<213> Artificial Sequence

<220>

<223> Mutant enzyme 2

<400> 9

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp

85

90

95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Glv Lvs Pro Ile Ile His Val Ser Val Asn Tyr Arc Val Ser Ser

145 150 155 160
 Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn
 165 170 175
 Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190
 Ile Ala Ala Phe Gly Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
 195 200 205
 Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
 210 215 220
 Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240
 Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
 245 250 255
 Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
 260 265 270
 Asp Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Leu Glu Asp
 275 280 285
 Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
 290 295 300
 Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320
 Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
 325 330 335
 Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
 340 345 350
 Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
 355 360 365
 Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp
 370 375 380
 Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
 385 390 395 400
 Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Phe Phe Thr
 405 410 415
 Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
 420 425 430
 Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
 435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser
 450 455 460

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 10

<211> 534

<212> PRT

<213> Artificial Sequence

<220>

<223> Mutant enzyme 3

<400> 10

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn

1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser
 145 150 155 160

 Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn
 165 170 175

 Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
 180 185 190

 Ile Ala Ala Phe Gly Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
 195 200 205

 Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
 210 215 220

 Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
 225 230 235 240

 Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
 245 250 255

 Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
 260 265 270

 Asp Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Ile Glu Asp
 275 280 285

 Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
 290 295 300

 Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
 305 310 315 320

 Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
 325 330 335

 Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
 340 345 350

 Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
 355 360 365

 Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp
 370 375 380

 Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
 385 390 395 400

 Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Met Phe Thr
 405 410 415

 Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
 420 425 430

 Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
 435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser
 450 455 460

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 11

<211> 534

<212> PRT

<213> Artificial Sequence

<220>

<223> Mutant enzyme 4

<400> 11

Ala Pro Thr Ala Thr Leu Ala Asn Gly Asp Thr Ile Thr Gly Leu Asn
 1 5 10 15

Ala Ile Ile Asn Glu Ala Phe Leu Gly Ile Pro Phe Ala Glu Pro Pro
 20 25 30

Val Gly Asn Leu Arg Phe Lys Asp Pro Val Pro Tyr Ser Gly Ser Leu
 35 40 45

Asp Gly Gln Lys Phe Thr Ser Tyr Gly Pro Ser Cys Met Gln Gln Asn
 50 55 60

Pro Glu Gly Thr Tyr Glu Glu Asn Leu Pro Lys Ala Ala Leu Asp Leu
 65 70 75 80

Val Met Gln Ser Lys Val Phe Glu Ala Val Ser Pro Ser Ser Glu Asp
 85 90 95

Cys Leu Thr Ile Asn Val Val Arg Pro Pro Gly Thr Lys Ala Gly Ala
 100 105 110

Asn Leu Pro Val Met Leu Trp Ile Phe Gly Gly Phe Glu Val Gly
 115 120 125

Gly Thr Ser Thr Phe Pro Pro Ala Gln Met Ile Thr Lys Ser Ile Ala
 130 135 140

Met Gly Lys Pro Ile Ile His Val Ser Val Asn Tyr Arg Val Ser Ser
145 150 155 160

Trp Gly Phe Leu Ala Gly Asp Glu Ile Lys Ala Glu Gly Ser Ala Asn
165 170 175

Ala Gly Leu Lys Asp Gln Arg Leu Gly Met Gln Trp Val Ala Asp Asn
180 185 190

Ile Ala Ala Phe Gly Asp Pro Thr Lys Val Thr Ile Phe Gly Glu
195 200 205

Ser Ala Gly Ser Met Ser Val Met Cys His Ile Leu Trp Asn Asp Gly
210 215 220

Asp Asn Thr Tyr Lys Gly Lys Pro Leu Phe Arg Ala Gly Ile Met Gln
225 230 235 240

Ser Gly Ala Met Val Pro Ser Asp Ala Val Asp Gly Ile Tyr Gly Asn
245 250 255

Glu Ile Phe Asp Leu Leu Ala Ser Asn Ala Gly Cys Gly Ser Ala Ser
260 265 270

Asp Lys Leu Ala Cys Leu Arg Gly Val Ser Ser Asp Thr Leu Glu Asp
275 280 285

Ala Thr Asn Asn Thr Pro Gly Phe Leu Ala Tyr Ser Ser Leu Arg Leu
290 295 300

Ser Tyr Leu Pro Arg Pro Asp Gly Val Asn Ile Thr Asp Asp Met Tyr
305 310 315 320

Ala Leu Val Arg Glu Gly Lys Tyr Ala Asn Ile Pro Val Ile Ile Gly
325 330 335

Asp Gln Asn Asp Glu Gly Thr Phe Phe Gly Thr Ser Ser Leu Asn Val
340 345 350

Thr Thr Asp Ala Gln Ala Arg Glu Tyr Phe Lys Gln Ser Phe Val His
355 360 365

Ala Ser Asp Ala Glu Ile Asp Thr Leu Met Thr Ala Tyr Pro Gly Asp
370 375 380

Ile Thr Gln Gly Ser Pro Phe Asp Thr Gly Ile Leu Asn Ala Leu Thr
385 390 395 400

Pro Gln Phe Lys Arg Ile Ser Ala Val Leu Gly Asp Leu Ile Phe Thr
405 410 415

Leu Ala Arg Arg Tyr Phe Leu Asn His Tyr Thr Gly Gly Thr Lys Tyr
420 425 430

Ser Phe Leu Ser Lys Gln Leu Ser Gly Leu Pro Val Leu Gly Thr Phe
435 440 445

His Ser Asn Asp Ile Val Phe Gln Asp Tyr Leu Leu Gly Ser Gly Ser

450

455

460

Leu Ile Tyr Asn Asn Ala Phe Ile Ala Phe Ala Thr Asp Leu Asp Pro
 465 470 475 480

Asn Thr Ala Gly Leu Leu Val Lys Trp Pro Glu Tyr Thr Ser Ser Ser
 485 490 495

Gln Ser Gly Asn Asn Leu Met Met Ile Asn Ala Leu Gly Leu Tyr Thr
 500 505 510

Gly Lys Asp Asn Phe Arg Thr Ala Gly Tyr Asp Ala Leu Phe Ser Asn
 515 520 525

Pro Pro Ser Phe Phe Val
 530

<210> 12

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 1

<400> 12

gccccccaccc	ccacgctcgc	caacggcgac	accatcaccc	gtctcaacgc	catcatcaac	
gaggcggtcc	tccggattcc	ctttggcgag	ccggccggtg	gcaacccctcg	tttcaaggac	1
cccggtccgt	actccggctc	gctcgatggc	cagaagttca	cgctgtacgg	cccgctgtgc	1
atgcagcaga	accccgaggg	cacctacgag	gagaacctcc	ccaaggcagc	gctcgacttg	2
gtgtatgcagt	ccaagggttt	tgaggcggtg	ctggcgctga	gcgaggactg	tctcaccatc	3
aacgtggtgc	ggccgcgggg	caccaaggcg	ggtgccaacc	tcccggtat	gctctggatc	3
tttggcgccg	ggtttggatgt	gggtggcacc	agcaccttcc	ctcccgccca	gatgatcacc	4
aagagcattt	ccatgggcaa	gccccatcatc	cacgtgagcg	tcaactaccg	cgtgtcgatcg	4
tgggggttct	tggctggcga	cgagatcaag	gccgaggggca	gtgccaacgc	cggtttgaag	5
gaccagcgct	tgggcatgca	gtgggtggcg	gacaacattt	cggtgtttgg	cggtcgaccgg	6
accaagggtga	ccatctttgg	cgagctggcg	ggcagcatgt	cggtcatgtg	ccacattctc	6
tggAACGACG	gcgacaacac	gtacaagggc	aagccgctct	tccgcgcggg	catcatgcag	7
ctggggggcca	tggtgccgct	ggacgcccgt	gacggcatct	acggcaacga	gatctttgac	7
ctcttggcggt	cgAACGCGGG	ctggcgccgc	gccagcgaca	agcttgcgtg	cttgcgcgg	840
gtgtcgatcg	acacgttgaa	ggacgcccacc	aacaacaccc	ctgggttctt	ggcgtaactcc	900
tgtttggcggt	tgtgtaccc	cccccgcccc	gacggcggtga	acatcaccga	cgacatgtac	960
gccttgggtgc	gcgaggggcaa	gtatgccaac	atccctgtga	tcatcgccga	ccagaacgac	1020
gagggcacct	tctttggcac	cctgctgttg	aacgtgacca	cgatgcccc	ggcccgccgag	1080
tacttcaagg	ggcttattttt	ccacccggcc	gacccggccaa	tccacacattt	catggccccc	1140

.....
taccccgccg acatcaccca gggcctgccc ttcgacacgg gtattctcaa cgccctcacc	1200
cgcgcgttca agagaatcct ggcggtgctc ggcgacaacg gctttacgct tgctcgctgc	1260
tacttcctca accactacac cggccgcacc aagtactcat tcctcctgaa gcagctcctg	1320
ggcttgcggg tgctcggaac gttccactcc aacgacattg tcttccagga ctacttgg	1380
ggcagcggct cgctcatcta caacaacgcg ttcattgcgt ttgccacgga ctggacccc	1440
aacaccgcgg ggttgggtt gaagtggccc gactacacca gcagcctgca gctggcaac	1500
aacttcatgtga tgcataacgc cttggcttg tacaccggca aggacaactt ccgcaccgca	1560
ggctacgacg ctttttttca accccggcg ctgttcttgcgttgt	1605

<210> 13

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 2

<400> 13

gcacccaccc ccaacgctcgc caacggcgac accatcacccg gtctcaacgc catcatcaac	60
gaggcggttcc tcggcattcc ctttgcggag ccggccgggtgg gcaacacctcg cttcaaggac	120
cccggtccgt actccggctc gtcgtatggc cagaagttca cgctgtacgg cccgtgtgc	180
atgcagcaga accccggagg cacctacgag gagaacactcc ccaaggcagc gctcgacttg	240
gtgatgcagt ccaagggttt tgaggcggtg ctgcccgtga gcgaggactg tctcaccatc	300
aacgtggtgc ggccgcgggg caccaaggcg ggtgccaacc tccgggtat gctctggatc	360
tttggcggcg ggttgggtt gggtggcacc agcaccttcc ctcccgccca gatgtatcacc	420
aagagcattt ccatggccaa gcccattatc cacgtgagcg tcaactaccg cgtgtcgatcg	480
tgggggttct tggctggcga cgagatcaag gcccggggca gtgccaacgc cggtttaag	540
gaccagcgct tggccatgca gtgggtggcg gacaacattt cggcggttgg cggcgaccgg	600
accaagggtga ccatctttgg cgagctggcg ggcagcatgt cggtcatgtt ccacatttctc	660
tggaaacgacg gcgacaacac gtacaaggcc aagccgctct tccggcgccgg catcatgcag	720
ctggggggcca tgggtggcgct ggacgcccgtg gacggcatct acggcaacga gatctttgac	780
ctcttggcggt cgaacgcggg ctggcgccgc gccagcgaca agcttgcgtg ctggcgccgt	840
gtgctgagcg acacgttggc ggacgcccacc aacaacaccc ctgggttctt ggcgtactcc	900
tcgttgcgggt tgctgtacct ccccccggccca gacggcgatgtca acatcaccga cgacatgtac	960
gccttggtgc gcgaggccaa gtatgccaac atccctgtga tcatggcgatcc ccagaacgc	1020
gaggccaccc tctttggcac cctgctgttg aacgtgacca cgatgcccggccgg	1080
tacttcacgc agctgtttgtt ccacgcgcgc gacggggaga tcgacacgtt gatgacggcg	1140
taccccgccg acatcaccca gggcctgccc ttcgacacgg gtattctcaa cgccctcacc	1200
cgcgcgttca agagaatcct ggcggtgctc ggcgacccctt tcttacgct tgctcgctgc	1260

tacttcctca accactacac cggcggcacc aagtactcat tcctcctgaa gcagctcctg	1320
ggcttgcgg tgctcggAAC gttccactcc aacgacatttgc tcttccagga ctacttgg	1380
ggcagcggct cgctcatcta caacaacgcg ttcattgcgt ttgccacgga cttggacccc	1440
aacaccgggg ggttgggtt gaagtggccc gactacacca gcagcctgca gctggcaac	1500
aacttgcgttga tgatcaacgc cttggcttgc tacaccggca aggacaactt ccgcaccgccc	1560
ggctacgacg cgttggcttc caaccggccg ctgttcttgc tgtga	1605

<210> 14

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 3

<400> 14

gcacccacccg ccacgctcgc caacggcgac accatcacccg gtctcaacgc catcatcaac	60
gaggcgttcc tcggcattcc ctttggcgag ccggccgggg gcaacccctccg cttcaaggac	120
cccggtccgt actccggctc gctcgatggc cagaagttca cgctgtacgg cccgctgtgc	180
atgcagcaga acccccgaggg cacctacgag gagaacctcc ccaaggcgcg gctcgacttg	240
gtgatgcagt ccaagggttt tgaggcggtg ctggcgctga gcgaggactg tctaccatc	300
aacgtggtgc ggccgcgggg caccaggcg ggtgccaacc tcccggtat gctctggatc	360
tttggcggcg ggtttgaggt gggggcacc agcacccctcc cttccggccca gatgatcacc	420
aagagcatttgc ccatgggcaa gcccacatc acgtgagcg tcaactaccg cgtgtcg	480
tgggggttct tggctggcga cgagatcaag gcccggggca gtgccaacgc cgggttgaag	540
gaccaggcgct tgggcatttgc gttgggtggcg gacaacatttgc cggcggttgg cggcgaccgg	600
accaagggtga ccatcttgg cgagctggcg ggcagcatgtt cggcatgttgc ccacatttcc	660
tggaaacgacg ggcacaacac gtacaaggc aagccgcttc tccggcgccc catcatgcag	720
ctggggggccca tgggtggcgct ggacggcggtg gacggcatct acggcaacga gatctttgac	780
ctatggcggtt cgaacgcggg ctggcgccgc gccaggcaca agcttgcgttgc cttggcggtt	840
gtgctgagcg acacgttggaa ggacggccacc aacaacaccc ctgggttctt ggcgtactcc	900
tagttggcggt tgctgttacctt ccccccggccca gacggcggttgc acatcaccga cgacatgtac	960
gccttggtgc gcgaggggcaa gtatgccaac atccctgttgc tcacggcgatcc ccagaacgc	1020
gaggggcacctt tctttggcac cctgtgttgc aacgtgacca cggatgccc ggcggcgag	1080
tacttcacgc agctgtttgtt ccacggccaggc gacggcgaggaa tcgacacgtt gatgacggcg	1140
taccccgccgg acatcacccca gggcgttgcgg ttcgacacgg gtattcttca cgcacccatcc	1200
ccgcagggttca agagaatccctt ggcgggtgttgc ggcgacccatcc ttgtttacgtt tgctcgatgc	1260
tacttcctca accactacac cggcggcacc aagtactcat tcctcctgaa gcagctcctg	1320
ggcttgcgggg tgctcggAAC gttccactcc aacgacatttgc tcttccagga ctacttgg	1380

ggcagcggct cgctcatcta caacaacgcg ttcattgcgt ttgccacgga cttggacccc	1440
aacaccgcgg ggttgttgtt gaagtggccc gagtacacca gcagcctgca gctggcaac	1500
aacttcatgtga tgatcaacgc cttggcttg tacaccggca aggacaactt ccgcaccgccc	1560
ggctacgacg cggttgttctc caaccggcgg ctgttctttg tgtga	1605

<210> 15

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 4

<400> 15

ccccccaccg ccacgctcgcaacggcgac accatcacccg gtctcaacgc catcatcaac	60
gaggcggttcc tcggcattcc ctttgcggag ccggccgggtgg gcaacctccg cttaaggac	120
cccggtccgt actccggctc gtcgtatggc cagaagttca cgctgtacgg cccgctgtgc	180
atgcagcaga accccggaggg cacctacgag gagaacctcc ccaaggcagc gctcgacttg	240
gtgatgcagt ccaaggtgtt tgaggcggtg ctggcgctga gcgaggactg tctcaccatc	300
aacgtggtgc ggccggccggg caccaggcg ggtgccaacc tcccggtgat gctctggatc	360
tttggcgccgg ggtttgaggt gggtggcacc agcaccttcc ctcccgccca gatgatcacc	420
aagagcatttgc ccatgggcaa gcccattatc cacgtgagcg tcaactaccg cgtgtcgatcg	480
tgggggttct tggctggcga cgagatcaag gcccggggca gtgccaacgc cggtttgaag	540
gaccagcgct tgggcatttgc gttggcggtg gacaacatttgc cggcgatggccg	600
accagggtga ccatttttgc cgagctggcg ggcagcatgtt cggcatgttcc acatttctc	660
tggaaacgacg gcgacaacac gtacaaggcg aagccgctct tccggcgccgg catcatgcag	720
ctggggggccca tggcgccgtt ggacggccgtg gacggcatct acggcaacga gattttgcac	780
ctttggcggtt cgaacggccgg ctggcgccgtg gccaggcgaca agcttgcgtt cttggcggtt	840
gtgctgagcg acacgttggc ggacgcccacc aacaacaccc ctgggttctt ggcgtactcc	900
tgttgcgtt tgctgtaccc ccccgccccc gacggcggttga acatcaccga cgacatgtac	960
gccttggtgc gcgaggccaa gtatgccaac atccctgttga tcatcgccga ccagaacgc	1020
gagggcacct tcttggcac cctgtgttgc aacgtgacca cggatgccc ggcggcgag	1080
tacttcaaggc agctgtttgtt ccacggccgcg gacgcggaga tcgacacgtt gatgacggcg	1140
tacccggcg acatcacccca gggcctgccc ttcgacacgg gtattctcaa cgccctcacc	1200
cggcgttca agagaatccct ggcggcggttgc ggcgacccctt tttttacgct tgctcgatcg	1260
tacttccatca accactacac cggccggcacc aagtactcat tccctcttgc gcaatccctg	1320
ggcttggcggtt gtcgtggaaac gttccactcc aacgacatttgc tcttccagga ctacttgcgtt	1380
ggcagcggctt cgctcatcta caacaacgcg ttcattgcgt ttgccacgga cttggacccc	1440
aacaccgcgg ggttgttgtt gaagtggccc gagtacacca gcagcctgca gctggcaac	1500
aacttcatgtga tgatcaacgc cttggcttg tacaccggca aggacaactt ccgcaccgccc	1560

ggctacgacg cgttgttctc caacccgccc ctgttctttg tgtga 1605

<210> 16

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 1

<400> 16

gccccccaccc	ccacgctcgc	caacggcgac	accatcacccg	gtctcaacgc	catcatcaac	60
gaggcggtcc	tcggcattcc	ctttgccgag	ccgcccgggtgg	gcaacccctccg	cttcaaggac	120
ccacgtgcagt	actccggctc	gctcgatggc	cagaagttca	cgtcttacgg	cccgcttgc	180
atgcagcaga	accccgaggg	cacctacgag	gagaacctcc	ccaaggcage	gctcgacttg	240
gtgatgcagt	ccaagggttt	tgaggcggtg	tctccgtcta	gcgaggactg	tctcaccatc	300
aacgtggtgc	ggccgcgggg	caccaaggcg	ggtgccaaacc	tcccggtgat	gctctggatc	360
tttggcggcg	ggtttggaggt	gggtggcacc	agcacccctcc	ctcccgccca	gatgatcacc	420
aagagcattg	ccatggcaa	gcccatcatc	cacgtgagcg	tcaactaccg	cgtgtcgctg	480
tgggggttct	tggctggcga	cgagatcaag	gccgagggca	gtgccaaacgc	cggtttgaag	540
gaccagcgct	tgggcatgca	gtgggtggcg	gacaacattg	cggcggttgg	cgcgaccccg	600
accaagggtga	ccatcttgg	cgagtctgct	ggcagcatgt	cggtcatgtg	ccacattctc	660
tggAACGACG	gcgacaacac	gtacaagggc	aagccgctct	tccgcgcggg	catcatgcag	720
tctggggcca	tgggccgtc	tgacgccgtg	gacggcatct	acggcaacga	gatctttgac	780
ctcttggcgt	cgaacgcggg	ctgcggcagc	gccagcgaca	agcttgcgtg	cttgcgcgg	840
gtgtctagcg	acacgttgg	ggacgccacc	aacaacaccc	ctgggttctt	ggctgtactcc	900
tcgttgcgtt	tgtcttacct	ccccggccc	gacggcgtga	acatcaccga	cgacatgtac	960
gccttggtgc	gcgagggcaa	gtatgccaac	atccctgtga	tcatcgccga	ccagaacgac	1020
gagggcacct	tctttggcac	ctcttctttg	aacgtgacca	cgatgcccc	ggcccgcgag	1080
tacttcaaga	agtctttgt	ccacgcccgc	gacgcggaga	tgcacacgtt	gatgacggcg	1140
taccccgccg	acatcaccca	gggtctccg	tgcacacgg	gtattctcaa	cgccctcacc	1200
cocgagttca	agagaatctc	tgcggtgctc	ggcgacaacg	gttttacgct	tgctcgctgc	1260
tacttcctca	accactacac	cgccggcacc	aagtactcat	tcctctctaa	gcagctctct	1320
ggcttgcgg	tgcggaaac	gttccactcc	aacgacattg	tctccagga	ctacttgg	1380
ggcagcggct	cgctcatcta	caacaacgcg	ttcattgcgt	ttgccacgg	cttggacccc	1440
aacacccgggg	ggttgttgg	gaagtggccc	gagttacacca	gcagctctca	gtctggcaac	1500
aacttgatga	tgtcaacgc	cttggcttg	tacaccggca	aggacaactt	ccgcacccgccc	1560
ggctacgacg	cgttgttctc	caacccgccc	tctttctttg	tgtga		1605

<210> 17

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 2

<400> 17

ccccccaccc	ccacgctcgc	caacggcgac	accatcacccg	gtctcaacgc	catcatcaac	60
gaggcggtcc	tcggcattcc	cttgcgcag	ccgcccggtg	gcaacctccg	cttcaaggac	120
cccggtccgt	actccggctc	gtcgatggc	cagaagttca	cgtcttacgg	cccgtttgc	180
atgcagcaga	accccgaggg	cacccatcgag	gagaacctcc	ccaaggcagc	gctcgacttg	240
gtgtatgcagt	ccaagggttt	tgaggcggtg	tctccgtcta	gcgaggactg	tctaccatc	300
aacgtggtgc	ggccgccccg	caccaaggcg	ggtgcacacc	tcccggtgat	gctctggatc	360
tttggcggcg	ggtttgaggt	gggtggcacc	agcacccctcc	ctcccgcccc	gatgatcacc	420
aagagcattt	ccatgggcaa	gcccatcatc	cacgtgagcg	tcaactacccg	cgtgtcgctg	480
tgggggttct	tggctggcga	cgagatcaag	gccgaggggca	gtgcacacgc	cgggttgaag	540
gaccagcgct	tggcatgca	gtgggtggcg	gacaacattt	cggcggttgg	cgcgaccgg	600
accaagggtga	ccatctttgg	cgagtctgcg	ggcagcatgt	cggcatgtg	ccacattctc	660
tggaaacgacg	gcgacaacac	gtacaaggc	aagccgctct	tccgcgcggg	catcatgcag	720
tctggggcca	tggcgccgtc	tgacggcg	gacggcatct	acggcaacga	gatctttgac	780
ctcttggcg	cgaacgcggg	ctgcggcagc	gccagcgaca	agcttgcgtg	cttgcgcgg	840
gtgtctagcg	acacgttgg	ggacgccacc	aacaacaccc	ctgggttctt	ggctactcc	900
tagttgcgtt	tgtcttacct	ccccggccc	gacggcgtga	acatcaccga	cgacatgtac	960
gccttggtgc	gcgaggggcaa	gtatgccaac	atccctgtga	tcatcgccga	ccagaacgac	1020
gagggcacct	tctttggcac	ctcttcttt	aacgtgacca	cgatgcccc	ggcccgcgag	1080
tacttcaagg	agtctttgt	ccacgcccgc	gacgcggaga	tcgacacgtt	gatgacggcg	1140
taccccgccg	acatcacca	gggctctccg	ttcgacacgg	gtattctcaa	cgccctcacc	1200
cgcagttca	agagaatctc	tgcggtgtc	ggcgcacctt	tcttacgt	tgctcgctgc	1260
tacttctca	accactacac	cgccggcacc	aagtactcat	tccctctctaa	gcagctctct	1320
ggcttgcgg	tgctcggaac	gttccactcc	aacgacattt	tcttccagga	ctacttgtt	1380
ggcagcggct	cgctcatcta	caacaacgcg	ttcattgcgt	ttgccacgg	cttggacccc	1440
aacacccggg	ggttgttgg	gaagtggccc	gagtacacca	gcagctctca	gtctggcaac	1500
aacttgcgt	tgtcaacgc	cttggcttg	tacaccggca	aggacaactt	ccgcaccggc	1560
ggctacgacg	cgttgttctc	caacccggcc	tcttctttt	tgtga		1605

<210> 18

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 3

<400> 18

ccccccaccc	ccacgctcgc	caacggcgac	accatcacccg	gtctcaacgc	catcatcaac	60
gaggcgttcc	tcggcattcc	cttgcgcag	ccgcccgtgg	gcaacctccg	cttcaaggac	120
ccatgtccgt	actccggcgc	gtatcgatggc	cagaagttca	cgtcttacgg	cccgctttgc	180
atgcagcaga	accccgaggg	cacccatcgag	gagaacctcc	ccaaggcagc	gctcgacttg	240
gtgatgcagt	ccaagggttt	tgaggcggtg	tctccgtcta	gcgaggactg	tctcaccatc	300
aacgtggtgc	ggccggccgg	caccaaggcg	gtgtccaaacc	tcccggtat	gctctggatc	360
tttggccggcg	ggtttgggtt	gggtggcacc	agcacccctcc	ctcccgccca	gatgatcacc	420
aagagcattt	ccatgggcaa	gccccatcatc	cacgtgagcg	tcaactaccg	cgtgtcgctcg	480
tgggggttct	tggctggcga	cgagatcaag	gcccggggca	gtgccaacgc	cgggttgaag	540
gaccagcgct	tgggcatgca	gtgggtggcg	gacaacattt	cgccgtttgg	cgccgaccgg	600
accaaggta	ccatctttgg	cgagtcgtcg	ggcagcatgt	cggtcatgtg	ccacattctc	660
tggAACGACG	gcgacaacac	gtacaaggcg	aagccgctct	tccgcgcggg	catcatgcag	720
tatggggccca	tggtgccgtc	tgacgcccgt	gacggcatct	acggcaacga	gatctttgac	780
ctcttggcggt	cgaacgcggg	ctgcggcage	gccagcgaca	agcttgcgtg	cttgcgcgg	840
gtgtctagcg	acacgttgg	ggacgccacc	aacaacaccc	ctgggttctt	ggcgtactcc	900
tagttgcgg	tgtcttaccc	ccccggcccc	gacggcgtga	acatcaccga	cgacatgtac	960
gccttggtgc	gcgaggggca	gtatgccaac	atccctgtga	tcatcgccg	ccagaacgac	1020
gagggcacct	tctttggcac	ctcttcttt	aacgtgacca	cgatgcccc	ggcccgccgag	1080
tacttcaago	agtctttgt	ccacgcccagc	gacgcggaga	tcgacacgtt	gatgacggcg	1140
taccccgccg	acatcaccca	gggcgtctccg	ttcgacacgg	gtattctcaa	cgccctcacc	1200
cogcagttca	agagaatctc	tgcggtgctc	ggcgcaccta	tgtttacgct	tgctcgctcg	1260
tacttcttca	accactacac	cgccggcacc	aagtactcat	tctctctaa	gcagctctct	1320
ggcttgcgg	tgcggaaac	gttccactcc	aacgacattt	tcttccagga	ctacttgg	1380
ggcagcggct	cgctcatcta	caacaacgcg	ttcattgcgt	ttgccacgga	cttggacccc	1440
aaacccgggg	ggttgttgtt	gaagtggccc	gagtagaccca	gcagctctca	gtctggcaac	1500
aacttgcgt	tgcgttacgc	cttggcttg	tacaccggca	aggacaactt	ccgcaccggc	1560
ggctacgacg	cggtgttctc	caacccggcg	tctttctttt	tgtga		1605

<210> 19

<211> 1605

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutant enzyme 4

<400> 19

gcccccaccg	ccacgctcgc	caacggcgac	accatcacccg	gtctcaacgc	catcatcaac	60
gaggcggttcc	tcggcattcc	cttgcgcag	ccgcccgtgg	gcaacctccg	cttcaaggac	120
cccggtccgt	actccggctc	gtcgatggc	cagaagttca	cgtcttacgg	cccggtttgc	180
atgcagcaga	accccggagg	cacccatcgag	gagaacctcc	ccaaggcagc	gtcgacttg	240
gtgatgcagt	ccaagggttt	tgaggcggtg	tctccgtcta	gcgaggactg	tctcaccatc	300
aacgtggtgc	ggccggccgg	caccaaggcg	ggtgccaacc	tcccggtgat	gctctggatc	360
tttggcggcg	ggtttgggtt	gggtggcacc	agcacccctcc	ctcccgccca	gatgatcacc	420
aagagcattt	ccatgggcaa	gccccatcatc	cacgtgagcg	tcaactaccg	cgtgtcgctg	480
tgggggttct	tggctggcga	cgagatcaag	gccgaggggca	gtgccaacgc	cgggttgaag	540
gaccagcgct	tgggcatgca	gtgggtggcg	gacaacattt	cggcggttgg	cgccgaccgg	600
accaagggtga	ccatctttgg	cgagtcgtcg	ggcagcatgt	cggtcatgtg	ccacattctc	660
tggaacgacg	gcaacaacac	gtacaaggcg	aagccgctct	tccgcgcggg	catcatcgag	720
tctggggcca	tggtgccgtc	tgacgcccgt	gacggcatct	acggcaacga	gatctttgac	780
ctcttggcgt	cgaacgcggg	ctgccccggc	gccagcgaca	agcttgcgtg	cttgcgcgg	840
gtgtctagcg	acacgttgg	ggacgcccacc	aacaacaccc	ctgggttctt	ggcgtactcc	900
tagttgcgg	tgtcttaccc	ccccggccc	gacggcgtga	acatcaccga	cgacatgtac	960
gccttggtgc	gcaaggggcaa	gtatgccaac	atccctgtga	tcatcgccga	ccagaacgac	1020
gagggcacct	tctttggcac	ctcttctttg	aacgtgacca	cgatgcccc	ggcccgccag	1080
tacttcaago	agtctttgt	ccacgcccgc	gacgcggaga	tgcacacgtt	gatgacggcg	1140
taccccgccg	acatcaccca	ggctctccg	ttcgacacgg	gtattctcaa	cgccctcacc	1200
cgcagttca	agagaatctc	tgcggtgtc	ggcgacctta	tgtttacgct	tgctcgctgc	1260
tacttctca	accactacac	cgccggcacc	aagtactcat	tctctctaa	gcagctctct	1320
ggcttgcgg	tgctcggaac	gttccactcc	aacgacattt	tcttccagga	ctacttgg	1380
ggcagcggct	cgctcatcta	caacaacgcg	ttcattgcgt	ttgccacgg	cttggacccc	1440
aacacccggg	ggttgttgtt	gaagtggccc	gagttacacca	gcagctctca	gtctggcaac	1500
aacttgcgt	tgtcaacgc	tttggcttg	tacaccggca	aggacaactt	ccgcaccggc	1560
ggctacgacg	cgttgttctc	caacccggcg	tctttctttt	tgtga		1605

<210> 20

<211> 1650

<212> DNA

<213> Candida cylindracea

<400> 20

atggagctcg	ctcttgcgtc	cctgctcatt	gcctcggtgg	ctgctgcccc	cacccggccacg	60
ctcgccaaacg	gcgacaccat	caccggcttc	aacgccccatca	tcaacgaggc	gttccctggc	120
atcccttttgc	ccgagccggcc	ggtggggcaac	ctccgcttca	aggaccccg	ggcgacttcc	180

ggctcgctcg atggccagaa gttcacgctg tacggcccg c tgtgcatgca gcagaacccc	240
gagggcacct acgaggagaa cctccccaag gcagcgctcg acttggtgat gcagtccaag	300
gtgtttgagg cggtgctgcc gctgagcgag gactgtctca ccatcaacgt ggtcgcccg	360
cggggcacca aggcgggtgc caaccccccgt gtgatgctct ggatcttgg cggcggttt	420
gaggtgggtg gcaccagcac cttccctccc gcccagatga tcaccaagag cattgccatg	480
ggcaagccca tcatccacgt gagcgtcaac taccgcgtgt cgtcggtgg gttcttgct	540
ggcgacgaga tcaaggccga gggcagtgcc aacgcccgtt tgaaggacca gcgcttggc	600
atgcagtggg tggcggacaa cattgcggcg tttggcggcg acccgaccaa ggtgaccatc	660
tttggcggcgc tggcgggcag catgtcggtc atgtgccaca ttctctggaa cgacggcgac	720
aacacgtaca agggcaagcc gctttccgc gcgggcatca tgcagctggg ggccatggtg	780
cgcgtggacg cgcgtggacgg catctacggc aacgagatct ttgaccttt ggctcgaaac	840
gogggctgctg cgcgcgcacg cgacaagctt gcgtgcttgc gcgggtgtct gagcgcacacg	900
ttggaggacg ccaccaacaa caccctggg ttcttggcgt actcctcggt ggcgttgctg	960
tacctccccc ggcccgacgg cgtgaacatc accgacgaca tgcgtgcgtt ggtgcgcgag	1020
ggcaagtatg ccaacatccc tgcgtatcatc ggcgaccaga acgacgaggg caccttctt	1080
ggcaccctgc tgcgtacgt gaccacggat gcccaggccc gcgcgtactt caagcagctg	1140
tttgcgtccacg ccagcgtacgc ggagatcgac acgttgcgttgcgttgcgttgcgttgcgtt	1200
accctggggcc tgcgttcga cacgggtatt ctcaacgccc tcaccccgca gttcaagaga	1260
atccctggggc tgcgtggcga ctttggcttt acgttgcgttgcgttgcgttgcgttgcgttgcgtt	1320
tacacccggcg gcaccaagta ctcatttcctc ctgaagcagc tccctggcgtt ggcgtgtc	1380
ggaaacgttcc actccaaacga cattgttcc caggactact tgcgtttgc acggacttgg accccaacac cgcgggggttg	1440
atctacaaca acgcgttcat tgcgtttgc acggacttgg accccaacac cgcgggggttg	1500
ttgggtgaagt ggcccggagta caccaggcgc ctgcagctgg gcaacaactt gatgtatgtac	1560
aacgccttgg gtttgcgttgc acggacttgg accccaacac cgcgggggttg	1620
ttctccaaacc cggcgctgtt ctttgcgttgc	1650

<210> 21

<211> 45

<212> DNA

<213> Candida cylindracea

<400> 21

atggagctcg ctcttgcgtt cctgtcatt gcctcggtgg ctgtc 45

<210> 22

<211> 15

<212> PRT

<213> Candida cylindracea

<400> 22

Met Glu Leu Ala Leu Ala Leu Ser Leu Ile Ala Ser Val Ala Ala
1 5 10 15

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [JP2013255419A \[0001\]](#)
- [JP61135541A \[0004\]](#)
- [US20040001819A \[0004\]](#)
- [JP2011512809A \[0004\]](#)
- [JP2003524386A \[0004\]](#)
- [JP2004517639A \[0004\]](#)
- [JP2009060804A \[0035\]](#)
- [JP2007130012A \[0035\]](#)
- [JPP2013255419B \[0077\]](#)

Non-patent literature cited in the description

- **J. SCHMITT et al.** Protein Engineering, 2002, vol. 15, 7595-601 [\[0005\]](#) [\[0057\]](#)
- Protein Engineering, 1996, vol. 9, 1055-1061 [\[0035\]](#)
- Eur. J. Biochem., 1986, vol. 155, 577-581 [\[0035\]](#)
- APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, vol. 61, 41610-1613 [\[0035\]](#)
- Molecular CloningCold Spring Harbor Laboratory Press [\[0038\]](#) [\[0038\]](#) [\[0040\]](#) [\[0045\]](#)
- Current protocols in molecular biology19870000 [\[0040\]](#)
- J. Mol. Biol., 1970, vol. 53, 159- [\[0047\]](#)
- J. Mol. Biol., 1983, vol. 166, 557- [\[0047\]](#)
- Gene, 1990, vol. 96, 23- [\[0047\]](#)
- **CHUNG et al.** Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, 2172- [\[0047\]](#)
- **POTTER, H. et al.** Proc. Natl. Acad. Sci. U.S.A., 1984, vol. 81, 7161-7165 [\[0047\]](#)
- **FELGNER, P.L. et al.** Proc. Natl. Acad. Sci. U.S.A., 1984, vol. 81, 7413-7417 [\[0047\]](#)

Patentkrav

1. Modificeret lipase bestående af en aminosyresekvens med en substitution i aminosyresekvensen af en lipase afledt af *Candida cylindracea*, hvor

5 substitutionen er:

(1) en substitution af asparagin med en aminosyre svarende til aminosyren i position 428 i aminosyresekvensen angivet i SEQ ID NO: 1; eller

(2) en substitution af phenylalanin, methionin eller isoleucin med en aminosyre svarende til aminosyren i position 429 i aminosyresekvensen

10 angivet i SEQ ID NO: 1, hvor aminosyresekvensen af lipasen afledt af *Candida cylindracea* er en aminosyresekvens, der er 70% eller mere identisk med aminosyresekvensen af SEQ ID NO: 2, og hvor substitutionen

15 er substitutionen repræsenteret i (1), eller hvor aminosyresekvensen af lipasen afledt af *Candida cylindracea* er en aminosyresekvens, der er 90% eller mere identisk med aminosyresekvensen af SEQ ID NO: 2, og hvor

substitutionen repræsenteret i (2).

2. Modificeret lipase ifølge krav 1, hvor aminosyresekvensen af lipasen afledt af *Candida cylindracea* er en aminosyresekvens ifølge en hvilken som helst af SEQ ID

20 NOs: 2 til 7.

3. Modificeret lipase ifølge krav 1, bestående af aminosekvensen angivet i en hvilken som helst af SEQ ID NOs: 8 til 11.

25 **4.** Gen der koder for den modificerede lipase ifølge et hvilket som helst af kravene 1 til 3.

5. Genet ifølge krav 4, omfattende basesekvensen angivet i en hvilken som helst af SEQ ID NOs: 12 til 19.

30

6. Rekombinant DNA omfattende genet ifølge krav 4 eller 5.

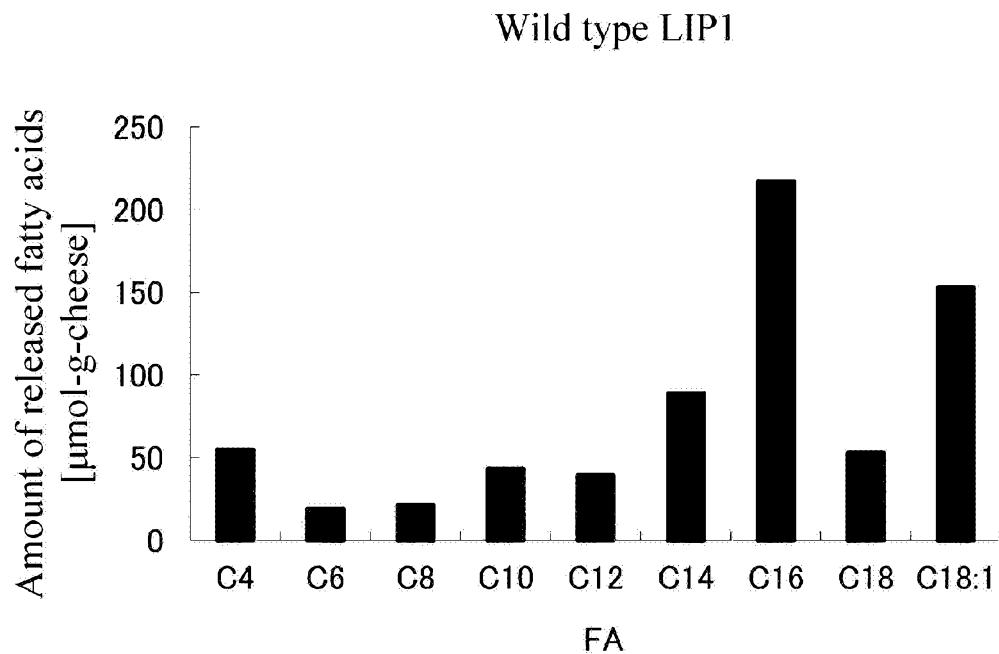
7. Mikroorganisme der bærer det rekombinante DNA ifølge krav 6.

8. Mikroorganisme ifølge krav 7, hvor værten er Escherichia coli, Candida cylindracea, Aspergillus oryzae, Bacillus subtilis eller Pichia pastoris.

9. Enzympræparat omfattende den modificerede lipase ifølge et hvilket som helst 5 af kravene 1 til 3.

10. Fremgangsmåde til at forbedre smagen af et fødevareprodukt eller fødevareråmateriale, hvor enzymet ifølge et hvilket som helst af kravene 1 til 3 eller enzympræparatet ifølge krav 9 får lov til at virke på fødevareproduktet eller 10 fødevareråmaterialet.

11. Fremgangsmåde til fremstilling af et fødevareprodukt, hvor enzymet ifølge et hvilket som helst af kravene 1 til 3 eller enzympræparatet ifølge krav 9 får lov til at virke på et fødevareråmateriale eller mellemprodukt.


15

12. Fremgangsmåde ifølge krav 10 eller 11, hvor fødevareproduktet er et mejeriproduct.

13. Smagsforbedrende middel der får lov til at virke på et fødevareprodukt eller 20 fødevareråmateriale, omfattende enzymet ifølge et hvilket som helst af kravene 1 til 3 eller enzympræparatet ifølge krav 9.

14. Anvendelse af enzymet ifølge et hvilket som helst af kravene 1 til 3 eller enzympræparatet ifølge krav 9 til fremstilling af et fødevareprodukt eller 25 fødevareråmateriale.

DRAWINGS

Fig. 1

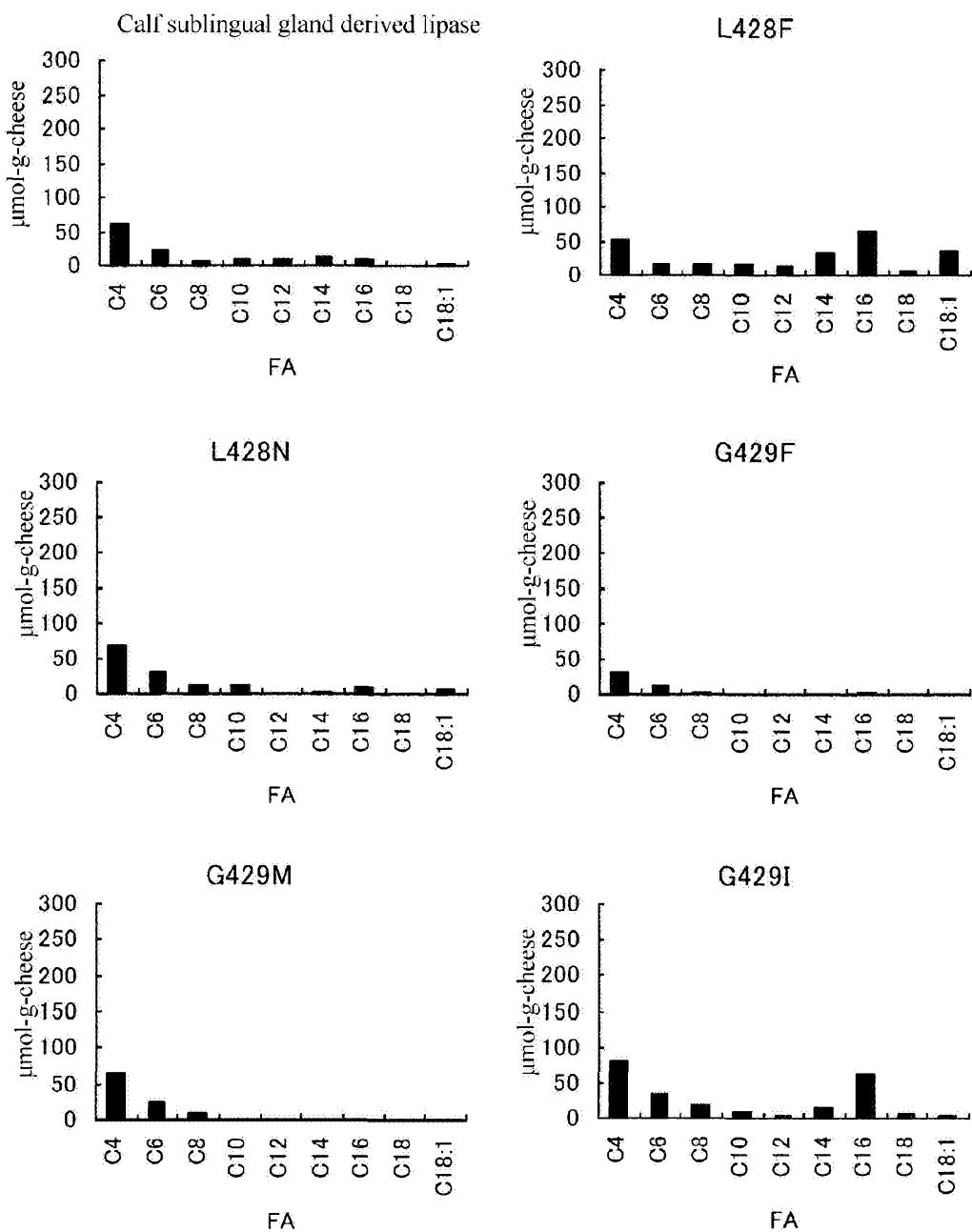


Fig. 2

	10	20	30	40	50
LIP1 (SEQ ID NO:2)	APTATLANGD	TITGLNAIN	EAFLGIPFAE	PPVGNLRFKD	PVPYSGSLDG
LIP1' (SEQ ID NO:3)	APTATLANGD	TITGLNAIN	EAFLGIPFAE	PPVGNLRFKD	PVPYSGSLDG
LIP2 (SEQ ID NO:4)	APTATLANGD	TITGLNAIVN	EKFLGIPFAE	PPVGLTRFKP	PVPYSASLNG
LIP3 (SEQ ID NO:5)	APTAKLANGD	TITGLNAIN	EAFLGIPFAE	PPVGNLRFKD	PVPYSGSLNG
LIP4 (SEQ ID NO:6)	APTATLANGD	TITGLNAIN	EAFLGIPFAQ	PPVGNLRFKP	PVPYSASLNG
LIP5 (SEQ ID NO:7)	APTATLANGD	TITGLNAIN	EAFLGIPFAE	PPVGNLRFKD	PVPYRGSLNG
Clustal Co	****, *****	*****(* * *****)	****, ****	****, **(*)	
	60	70	80	90	100
LIP1	QKFTSYGPSC	MQQNPEGTYE	ENLPKAALDL	VMQSKVFEAV	SPSSEDCLTI
LIP1'	QKFTSYGPSC	MQQNPEGTYE	ENLPKAALDL	VMQSKVFEAV	SPSSEDCLTI
LIP2	QQFTSYGPSC	MQMNPMSGFE	DTLPKNARHL	VLSQSKIFQVV	LPNDEDCLTI
LIP3	QKFTSYGPSC	MQQNPEGTFF	ENLGKTALDL	VMQSKVFOAV	LPQSEDCLTI
LIP4	QKFTSYGPSC	MQMNPGLNWD	SSLPKAAINS	LMQSKLFQAV	LPNGEDCLTI
LIP5	QSFTAYGPSC	MQQNPEGTYE	ENLPKVALDL	VMQSKVFOAV	LPNSEDCLTI
Clustal Co	*. **:*****	** * * . () . * * *	. ()***:*, * .	****:*, * .	****
	110	120	130	140	150
LIP1	NVVRPPGTKA	GANLPVMLWI	FGGGFEVG	STFPPAQMIT	KSIAMGKPII
LIP1'	NVVRPPGTKA	GANLPVMLWI	FGGGFEVG	STFPPAQMIT	KSIAMGKPII
LIP2	NVIRPPGTRA	SAGLPVMLWI	FGGGFELGGS	SLFPGDQMVA	KSVLMGKPVII
LIP3	NVVRPPGTKA	GANLPVMLWI	FGGGFEIGSP	TIFPPAQMV	KSVLMGKPII
LIP4	NVVRPSGTPK	GANLPVMWV	FGGGFEVGGS	SLFPQAQM	ASVLMGKPII
LIP5	NVVRPPGTKA	GANLPVMLWI	FGGGFEIGSP	TIFPPAQMV	KSVLMGKPII
Clustal Co	**:***.**	. *.****:*** ****:*, .	: ** * .	: * . ****	**
	160	170	180	190	200
LIP1	HVSVNRYVSS	WGFLAGDEIK	AEGSANAGLK	DQRLGMQWVA	DNIAAFGGDP
LIP1'	HVSVNRYVSS	WGFLAGDEIK	AEGSANAGLK	DQRLGMQWVA	DNIAAFGGDP
LIP2	HVSMMNRYVAS	WGFLAGPDIQ	NEGSGNAGLH	DQRLAMQWVA	DNIAGFGGGDP
LIP3	HVAVNRYVAS	WGFLAGDDIK	AEGSGNAGLK	DQRLGMQWVA	DNIAGFGGGDP
LIP4	HVSMMNRYVAS	WGFLAGPDIK	AEGSGNAGLH	DQRLGLQWVA	DNIAGFGGGDP
LIP5	HVAVNRYRLAS	FGFLAGPDIK	AEGSSNAGLK	DQRLGMQWVA	DNIAGFGGGDP
Clustal Co	**):****(* :*****)	(* :***, ****)	****, ****	****, ****, ****	****

Fig. 3

				
	210	220	230	240	250
LIP1	TKVTIFGEA GSMSVMCHIL WNDGDNTYKG KPLFRAGIMQ SGAMVPSDAV				
LIP1'	TKVTIFGEA GSMSVMCHIL WNDGDNTYKG KPLFRAGIMQ SGAMVPSDAV				
LIP2	SKVTIYGEA GSMSTFVHLV WNDGDNTYNG KPLFRAAIMQ SGCMVPSDPV				
LIP3	SKVTIFGEA GSMSVLCHLI WNDGDNTYKG KPLFRAGIMQ SGAMVPSDPV				
LIP4	SKVTIFGEA GSMSVMCQLL WNDGDNTYNG KPLFRAAIMQ SGAMVPSDPV				
LIP5	SKVTIFGEA GSMSVLCHLL WNGGDNTYKG KPLFRAGIMQ SGAMVPSDPV				
Clustal Co	*****:***** ***, : : : : **; *****: * *****. *** **, *****. *				
				
	260	270	280	290	300
LIP1	DGIYGNEIFD LLASNAGCGS ASDKLA CLR VSSDTLE DAT NNTPGFLAYS				
LIP1'	DGIYGNEIFD LLASNAGCGS ASDKLA CLRS VSSDTLE DAT NNTPGFLAYS				
LIP2	DGTYGTEIYN QVVASAGCGS ASDKLA CLR GSQDTLYQAT SDTPGVLA YP				
LIP3	DGTYGNEIYD LFVSSAGCGS ASDKLA CLRS ASSDTLL DAT NNTPGFLAYS				
LIP4	DGPYGTQIYD QVVASAGCGS ASDKLA CLRS ISNDKLFQAT SDTPGALAYP				
LIP5	DGTYGTQIYD TLVASTGCSS ASNKLA CLR LSTQALLDAT NDTPGFLSYT				
Clustal Co	** **, : * : : : : : : **, * **:*****. * : * : **, : *** *:*				
				
	310	320	330	340	350
LIP1	SLRLSYLPRP DGVNITDDMY ALVREGKYAN IPVIIGDQND EGTFFGTSSL				
LIP1'	SLRLSYLPRP DGVNITDDMY ALVREGKYAN IPVIIGDQND EGTFFGTSSL				
LIP2	SLRLSYLPRP DGTFITDDMY ALVRDGKYAH VPVIIGDQND EGTLFGLSSL				
LIP3	SLRLSYLPRP DGKNTDDMY KLVRDGKYAS VPVIIGDQND EGTIFGLSSL				
LIP4	SLRLSFLPRP DGTFITDDMF KLVRDGKCAN VPVIIGDQND EGTVFALSSL				
LIP5	SLRLSYLPRP DGANITDDMY KLVRDGKYAS VPVIIGDQND EGFLFGLSSL				
Clustal Co	*****:***** ** *****. ***:*** * :*****:*** ** , * , ***				
				
	360	370	380	390	400
LIP1	NVTTDAQARE YFKQSFVHAS DAEIDLMLTA YPGDITQGSP FDTGILNALT				
LIP1'	NVTTDAQARE YFKQSFVHAS DAEIDLMLTA YPQDITQGSP FDTGILNALT				
LIP2	NVTTDAQARA YFKQSFIHAS DAEIDLMLAA YTSDTQGSP FDTGIFNAIT				
LIP3	NVTTNAQARA YFKQSFIHAS DAEIDLMLAA YPQDITQGSP FDTGIFNAIT				
LIP4	NVTTDAQARQ YFKESFIHAS DAEIDLMLAA YPSDTQGSP FDTGIFNAIT				
LIP5	NTTTEADAE A YLRKSFIHAT DADITALKAA YPSDTQGSP FDTGILNALT				
Clustal Co	*.***:***, *: : : **:***. **: * : * : * . *:***** *****:***:*				

Fig. 4

Fig. 5