(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 02/31652 Al

(43) International Publication Date

18 April 2002 (18.04.2002)

(51) International Patent Classification’: GO6F 9/45 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(21) International Application Number: PCT/US01/42610 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KZ, LC, LK,

(22) International Filing Date: 10 October 2001 (10.10.2001) LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,

MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK,

(25) Filing Language: English SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

(30) Priority Data: patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), OAPI

60/239,298 10 October 2000 (10.10.2000) US patent (BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
09/687,777 13 October 2000 (13.10.2000) US MR, NE, SN, TD, TG).

EEE;US]; 220 Laurelwood Road, Santa Clara, CA 95054 with international search report

(72) Inventor: PATEL, Mukesh; 787 Boar Circle, Fremont For two-letter codes and other abbreviations, refer to the "Guid-
CA 945 3.9 (US) ’ ’ ’ " ance Notes on Codes and Abbreviations” appearing at the begin-

ning of each regular issue of the PCT Gazette.
(74) Agents: KREBS, Robert, E. et al.; Burns, Doane,

Swecker & Mathis, LLP, P.O. Box 1404, Alexandria, VA
22313-1404 (US).

(54) Title: JAVA HARDWARE ACCELERATOR USING MICROCODE ENGINE

Q
]
c
o
S
z
o
I

Pl
__________________________________ |
I
a2 | TAKEN" :
i 281 26a | b1 I Lo
JAVA 1 sl R i 2] %)
INSTRUCTION ACCELERATOR } ,
CACHE INSTRUCTION INSTRUCTION +INSTRUCTION ! JJEXECUTE | ') MEMORY | I |
TRANSLATION I FETCH | LOGIC LOGIC :
t | t
|)
! !
O i
i
"Q‘éA Hr ROWARE TAVA i
JAVA STACK i
REGISTERS
52 -
-4 ’ 48
N [
PC JAVACPU
REGISTER| | REGISTER
54 T T T FILE FILE
i I %
JAVA oIU
ACCELERATOR “BRANCH MEMORY
CONTROLLER | TAKEN" ARBITER
(CO-PROCESSOR
UNIT)
Ny

(57) Abstract: A hardware Java Accelerator (42) is comprised of a decode stage (26b) and a microcode stage. Separating into the
decode and microcode stage allows the decode stage to implement instruction level parallelism while the microcode stage allows the
conversion of a single Java bytecode into multiple native instructions. A reissue buffer (82) is provided which stores the converted
instructions and reissues them when the system returns from an interrupt. In this manner, the hardware accelerator (42) need not be
flushed upon an interrupt. A native PC monitor (54) is also used. While the native PC (54) is within a specific range, the hardware
g accelerator is enabled to convert the Java bytecodes into native instructions. When the native PC is outside the range, the hardware
accelerator is disabled and the CPU (25) operates on naive instructions obtained from the memory.

0 02/31652 Al

WO 02/31652

10

15

20

25

PCT/US01/42610

-1-

JAVA HARDWARE ACCELERATOR USING
MICROCODE ENGINE

Background of the Invention

Java™ is an object-orientated programming language
developéd by Sun Microsystems. The Java language is small, simple
and portable across platforms and operating systems, both at the
source and at the binary level. This makes the Java programming

language very popular on the Internet.

Java’s platform independence and code compaction are the
most significant advantages of Java over conventional programming
languages. In conventional programming languages, the source code
of a program is sent to a compiler which translates the program into
machine code or processor instructions. The processor instructions
are native to the system’s processor. If the code is compiled on an
Intel-based system, the resulting program will only run on other Intel-
based systems. If it is desired to run the program on another system,
the user must go back to the original source code, obtain a compiler
for the new processor, and recompile the program into the machine

code specific to that other processor.

Java operates differently. The Java compiler takes a Java
program and, instead of generating machine code for a particular
processor, generates bytecodes. Bytecodes are instructions that look
like machine code, but aren’t specific to any processor. To execute a
Java program, a bytecode interpreter takes the Java bytecode converts

them to equivalent native processor instructions and executes the

WO 02/31652

10

15

20

25

PCT/US01/42610

Java program. The Java bytecode interpreter is one component of the

Java Virtual Machine.

Having the Java programs in bytecode form means that
instead of being specific to any one system, the programs can run on
any platform and any operating system as long a Java Virtual
Machine is available. This allows a binary bytecode file to be

executable across platforms.

The disadvantage of using bytecodes is execution speed.
System specific programs that run directly on the hardware from
which they are compiled, run significantly faster that Java bytecodes,
which must be processed by the Java Virtual Machine. The processor
must both convert the Java bytecodes into native instructions in the

Java Virtual Machine and execute the native instructions.

One way to speed up the Java Virtual Machine is by
techniques such as the “Just in Time” (JIT) interpreter, and even
faster interpreters known as “Hot Spot JITs” interpreters. The JIT
versions all result in a JIT compile overhead to generate native
processor instructions. These JIT interpreters also result in additional

memory overhead.

The slow execution speed of Java and overhead of JIT
interpreters have made it difficult for consumer appliances requiring
local-cost solutions with minimal memory usage and low energy
consumption to run Java programs. The performance requirements
for existing processors using the fastest JITs more than double to
support running the Java Virtual Machine in software. The processor
performance requirements could be met by employing superscalar

processor architectures or by increasing the processor clock

WO 02/31652

10

15

20

25

PCT/US01/42610

3-

frequency. In both cases, the power requirements are dramatically
increased. The memory bloat that results from JIT techniques, also
goes against the consumer application requirements of low cost and

low power.

It is desired to have an improved system for implementing
Java programs that provides a low-cost solution for running Java

programs for consumer appliances.

Summary of the Invention
The present invention generally relates to Java hardware

accelerators used to translate Java bytecodes into native instructions
for a central processing unit (CPU). One embodiment of the present
invention comprises a reissue buffer, the reissue buffer associated
with a hardware accelerator and adapted to store converted native
instructions issued to the CPU along with associated native program
counter values. When the CPU returns from an interrupt the reissue
buffer examines the program counter to determine whether to reissue
a stored native instruction value from the reissue buffer. In this way,
returns from interrupts can be efficiently handled without reloading
the hardware accelerator with the instructions to convert.

Another embodiment of the present invention comprises a
hardware accelerator to convert stacked-base instructions into
register-based instructions native to a central processing unit. The
hardware accelerator includes a native program counter monitor. The
native program counter monitor checks whether the native program
counter is within a hardware accelerator program counter range.
When the hardware accelerator program counter is within the

hardware accelerator program counter range, the hardware accelerator

WO 02/31652

10

15

20

25

PCT/US01/42610

is enabled and converted native instructions are sent to the CPU from
the hardware accelerator, the native program counter is not used to

determine instructions to load from memory.

In this manner, the hardware accelerator can spoof the native
program counter to be within a certain range which corresponds to
the program counter range in which the stacked-base instructions are
stored. By monitoring the program counter, the hardware accelerator
can always tell when it needs to be operating and needs to not
operate. Thus if a interrupt occurs, causing the data program counter
to move to a range outside of the hardware accelerator program
counter range, there need be no explicit instruction to the hardware
accelerator from the CPU handling the interrupt to stall the hardware

accelerator.

Yet another embodiment of the present invention comprises a
hardware accelerator operably connected to a central processing unit,
the hardware accelerator adapted to convert stack-based instructions
into register-based instructions native to the central processing unit.
The hardware accelerator includes a microcode stage. The
microcode stage includes microcode memory. The microcode
memory output includes a number of fields, the fields including a
first set of fields corresponding to native instruction fields and a
control bit field which affects the interpretation of the first set of
fields by the microcode controlled logic to produce a native
instruction. Use of a microcode portion allows the same general
hardware accelerator architecture to work with a variety of central
processing units. In a preferred embodiment, the microcode portion

is separate from a decode portion.

WO 02/31652 PCT/US01/42610

Brief Description of the Drawings

The present invention may be further understood from the

following description in conjunction with the drawings.

5 Figure 1 is a diagram of the system of the parent invention

including a hardware Java accelerator.

Figure 2 is a diagram illustrating the use of the hardware Java

accelerator of the parent invention.

Figure 3 is a diagram illustrating some the details of a Java

10 hardware accelerator of one embodiment of the parent invention.

Figure 4 is a diagram illustrating the details of one
embodiment of a Java accelerator instruction translation in the system

of the parent invention.

Figure S is a diagram illustration the instruction translation

15 operation of one embodiment of the parent invention.
Figure 6 is a diagram illustrating the instruction translation
system of one embodiment of the parent invention using instruction

level parallelism.

Figure 7 is a table of exception bytecodes for one embodiment

20 of the parent invention.

Figure 8 is a diagram of one embodiment of a hardware

WO 02/31652

10

15

PCT/US01/42610

-6-

accelerator used with one embodiment of the present invention.

Figure 9 is a diagram that illustrates the decode stage for use

in the hardware accelerator of the present invention.

Figure 10 is a diagram that illustrates one embodiment of an

instruction decode unit used with the decode stage of Figure 9.

Figure 11 is a diagram that illustrates one embodiment of a

microcode stage for use with the embodiment of Figure 8.

Figure 12 is a diagram of a microcode address logic used with

the microcode stage of Figure 11.

Figure 13 is a diagram of a native instruction composer unit

used with the embodiment of Figure 11.

Figure 14 is a diagram of a register selection logic used with

the native instruction composer unit of Figure 13.

Figure 15 illustrates a stack-and-variable-register manager of

one embodiment of the present invention.

Figure 16 illustrates a stack-and-variable-register manager of

an alternate embodiment of the present invention.

Figure 17 is a diagram of the native PC monitor used with one

embodiment of the present invention.

WO 02/31652 PCT/US01/42610

-

Figure 18 is a diagram of a reissue buffer used with one

embodiment of the present invention.

Figures 19 and 20 are diagrams that illustrate the operation of

one embodiment of the present invention.

Detailed Description of the Preferred Embodiments
Figures 1-7 illustrate the operation of the parent application.

Figure 1 is a diagram of the system 20 showing the use of a
hardware Java accelerator 22 in conjunction with a central processing
10 unit 26. The Java hardware accelerator 22 allows part of the Java
Virtual Machine to be implemented in hardware. This hardware
implementation speeds up the processing of the Java bytecodes. In
particular, in a preferred embodiment, the translation of the Java
bytecodes into native processor instructions is at least partially done
15 in the hardware Java accelerator 22. This translation has been part of
a bottleneck in the Java Virtual Machine when implemented in
software. In Figure 1, instructions from the instruction cache 24 or
other memory is supplied to the hardware Java accelerator 22. If
these instruction are Java bytecode, the hardware Java accelerator 22
20 can convert these bytecodes into native processor instruction which
are supplied through the multiplexer 28 to the CPU. If a non-Java
code is used, the hardware accelerator can be by-passed using the
multiplexer 26. The Java stack includes the frame, the operand stack,

the variables, etc.

25 The Java hardware accelerator can do some or all of the

following tasks:

WO 02/31652

10

15

20

25

PCT/US01/42610

1. Java bytecode decode;

2. identifying and encoding instruction level parallelism (ILP), wherever

possible;

3. translating bytecodes to native instructions;

4. managing the Java stack on a register file associated with the CPU or as a
separate stack;

5. generating exceptions on instructions on predetermined Java bytecodes;
6. switching to native CPU operation when native CPU code is provided;

7. performing bounds checking on array instructions; and

8. managing the variables on the register file associated with the CPU.

In a preferred embodiment, the Java Virtual Macin'ne functions of
bytecode interpreter, Java register, and Java stack are implemented in the
hardware Java accelerator. The garbage collection heap and constant pool
area can be maintained in normal memory and accessed through normal
memory referencing. In one embodiment, these functions are accelerated in

hardware, e.g. write barrier.

The major advantages of the Java hardware accelerator is to increase
the speed in which the Java Virtual Machine operates, and allow existing
native language legacy applications, software base, and development tools to
be used. A dedicated microprocessor in which the Java bytecodes were the

native instructions would not have access to those legacy applications.

Although the Java hardware accelerator is shown in Figure 1 as
separate from the central processing unit, the Java hardware accelerator can
be incorporated into a central processing unit. In that case, the central
processing unit has a Java hardware accelerator subunit to translate Java

bytecode into the native instructions operated on by the main portion of the

WO 02/31652

10

15

20

PCT/US01/42610

CPU.

Figure 2 is a state machine diagram that shows the operation of one
embodiment of the parent invention. Block 32 is the power-on state. During
power-on, the multiplexer 28 is set to bypass the Java hardware accelerator.
In block 34, the native instruction boot-up sequence is run. Block 36 shows
the system in the native mode executing native instructions and by-passing

the Java hardware accelerator.

In block 38, the system switches to the Java hardware accelerator
mode. In the Java hardware accelerator mode, Java bytecode is transferred
to the Java hardware accelerator 22, converted into native instructions then

sent to the CPU for operation.

The Java accelerator mode can produce exceptions at certain Java
bytecodes. These bytecodes are not processed by the hardware accelerator 22
but are processed in the CPU 26. As shown in block 40, the system operates
in the native mode but the Java Virtual Machine is implemented in the
accelerator which does the bytecode translation and handles the exception

created in the Java accelerator mode.

The longer and more complicated bytecodes that are difficult to handle
in hardware can be selected to produce the exceptions. Figure 7 is a table
showing one possible list of bytecodes which can cause exceptions in a

preferred embodiment.

Figure 3 is a diagram illustrating details of one embodiment of the
Java hardware accelerator of the parent invention. The Java hardware

accelerator includes Java accelerator instruction translation hardware 42.

WO 02/31652

10

15

20

25

PCT/US01/42610

-10-

The instruction translation Unit 42 is used to convert Java bytecodes to
native instructions. One embodiment of the Java accelerator instruction
translation hardware 42 is described in more detail below with respect to
Figure 4. This instruction translation hardware 42 uses data stored in
hardware Java registers 44. The hardware Java Registers store the Java
Registers defined in the Java Virtual Machine. The Java Registers contain
the state of the Java Virtual Machine, affect its operation, and are updated at
runtime. The Java registers in the Java virtual machine include the PC, the
program counter indicating what bytecode is being executed; Optop, a
pointer to the top-of the operand stack; Frame, a pointer to the execution
environment of the current method; and Java variables (Vars), a pointer to
the first local variable available of the currently executing method. The
virtual machine defines these registers to be a single 32-bit word wide. The
Java registers are also stored in the Java stack which can be implemented as
the hardware Java stack 50 or the Java stack can be stored into the CPU

associated register file.

In a preferred embodiment, the hardware Java registers 44 can include
additional registers for the use of the instruction translation hardware 42.
These registers can include a register indicating a switch to native
instructions configuration and control registers and a register indicating the

version number of the system.

The Java PC can be used to obtain bytecode instructions from the
instruction cache 24 or memory. In one embodiment the Java PC is
multiplexed with the normal program counter 54 of the central processing
unit 26 in multiplexer 52. The normal PC 54 is not used during the operation
of the Java hardware bytecode translation. In another embodiment, the

normal program counter 54 is used as the Java program counter.

WO 02/31652

10

15

20

25

PCT/US01/42610

-11-

The Java registers are a part of the Java Virtual Machine and should
not be confused with the general registers 46 or 48 which are operated upon
by the central processing unit 26. In one embodiment, the system uses the
traditional CPU register file 46 as well as a Java CPU register file 48. When
native code is being operated upon the multiplexer 56 connects the
conventional register file 46 to the execution logic 26¢ of the CPU 26. When
the Java hardware accelerator is active, the Java CPU register file 48
substitutes for the conventional CPU register file 46. In another

embodiment, the conventional CPU register file 46 is used.

As described below with respect to Figures 3 and 4, the Java CPU
register file 48, or in an alternate embodiment the conventional CPU register
file 46, can be used to store portions of the operand stack and some of the
variables. In this way, the native register-based instructions from the Java
accelerator instruction translator 42 can operate upon the operand stack and
variable values stored in the Java CPU register file 48, or the values stored in
the conventional CPU register file 46. Data can be written in and out of the
Java CPU register file 48 from the data cache or other memory 58 through
the overflow/underflow line 60 connected to the memory arbiter 62 as well
as issued load/store instructions. The overflow/underflow transfer of data to
and from the memory can be done concurrently with the CPU operation.
Alternately, the overflow/underflow transfer can be done explicitly while the
CPU is not operating. The overflow/underflow bus 60 can be implemented
as a tri-state bus or as two separate buses to read data in and write data out of

the register file when the Java stack overflows or underflows.

The register files for the CPU could alternately be implemented as a
single register file with native instructions used to manipulate the loading of

operand stack and variable values to and from memory. Alternately,

WO 02/31652

10

15

20

25

PCT/US01/42610

-12-

multiple Java CPU register files could be used: one register file for variable
values, another register file for the operand stack values, and another register

file for the Java frame stack holding the method environment information.

The Java accelerator controller (co-processing unit) 64 can be used to
control the hardware Java accelerator, read in and out from the hardware
Java registers 44 and Java stack 50, and flush the Java accelerator instruction
translation pipeline upon a “branch taken” signal from the CPU execute logic

26¢.

The CPU 26 is divided into pipeline stages including the instruction
fetch 26a, instruction decode 26b, execute logic 26¢, memory access logic
26d, and writeback logic 26e. The execute logic 26¢ executes the native
instructions and thus can determine whether a branch instruction is taken and
issue the “branch taken” signal. In one embodiment, the execute logic 26¢
monitors addresses for detecting branches. Figure 4 illustrates an
embodiment of a Java accelerator instruction translator which can be used
with the parent invention. The instruction buffer 70 stores the bytecode
instructions from the instruction cache. The bytecodes are sent to a parallel
decode unit 72 which decodes multiple bytecodes at the same time. Multiple
bytecodes are processed concurrently in order to allow for instruction level
parallelism. That is, multiple bytecodes may be converted into a lesser

number of native instructions.

The decoded bytecodes are sent to a state machine unit 74 and
Arithmetic Logic Unit (ALU) 76. The ALU 76 is provided to rearrange
the bytecode instructions to make them easier to be operated on by the state
machine 74 and perform various arithmetic functions including computing

memory references. The state machine 74 converts the bytecodes into

WO 02/31652

10

15

20

25

PCT/US01/42610

-13-

native instructions using the lookup table 78. Thus, the state machine 74
provides an address which indicates the location of the desired native
instruction in the microcode look-up table 78 . Counters are maintained to
keep a count of how many entries have been placed on the operand stack,
as well as to keep track of and update the top of the operand stack in
memory and in the register file. In a preferred embodiment, the output of
the microcode look-up table 78 is augmented with indications of the
registers to be operated on in the native CPU register file at line 80. The
register indications are from the counters and interpreted from bytecodes.
To accomplish this, it is necessary to have a hardware indication of which
operands and variables are in which entries in the register file. Native
Instructions are composed on this basis. Alternately, these register
indications can be sent directly to the Java CPU register file 48 shown in

Figure 3.

The state machine 74 has access to the Java registers in 44 as well as
an indication of the arrangement of the stack and variables in the Java CPU
register file 48 or in the conventional CPU register file 46. The buffer 82

supplies the translated native instructions to the CPU.

The operation of the Java hardware accelerator of one embodiment
of the parent invention is illustrated in Figures 5 and 6. Figure 5, section I
shows the instruction translation of the Java bytecode. The Java bytecode
corresponding to the mnemonic iadd is interpreted by the Java virtual
machine as an integer operation taking the top two values of the operand
stack, adding them together and pushing the result on top of the operand
stack. The Java translating machine translates the Java bytecode into a
native instruction such as the instruction ADD R1, R2. Thisis an

instruction native to the CPU indicating the adding of value in register R1

WO 02/31652

10

15

20

25

PCT/US01/42610

-14-

to the value in register R2 and the storing of this result in register R2 . R1
and R2 are the top two entries in the operand stack.

As shown in Figure 5, section II, the Java register includes a PC
value of “Value A” that is incremented to “Value A+1". The Optop value
changes from “Value B” to “Value B-1" to indicate that the top of the
operand stack is at a new location. The Vars base value which points to the
start of the variable list is not modified. In Figure 5, section III, the
contents of a native CPU register file or a Java CPU register file, 48 in
Figure 3, is shown. The Java CPU register file starts off with registers RO-
R5 containing operand stack values and registers R6-R7 containing
variable values. Before the operation of the native instruction, register R1
contains the top value of the operand stack. Register R6 contains the first
variable. Hardware is used to detect the availability of the Vars in the
register file. If the Var is not available, the hardware in conjunction with
microcode issue load instructions to the native CPU. Once the value of a
Var has been updated in the RF, that entry is marked as being modified so
when doing method calls, only the updated Vars in memory are written
back to memory. This results in significantly higher performance methods.

After the execution of the native instruction, register R2 now contains
the top value of the operand stack. Register R1 no longer contains a valid
operand stack value and is available to be overwritten by a operand stack

value.

Figure 5, section IV, shows the memory locations of the operand
stack and variables which can be stored in the data cache 58 or in main
memory. For convenience, the memory is illustrated without illustrating
any virtual memory scheme. Before the native instruction executes, the

address of the top of the operand stack, Optop, is “Value B”. After the

WO 02/31652

10

15

20

25

PCT/US01/42610

-15-

native instruction executes, the address of the top of the operand stack is
“Value B-1" containing the result of the native instruction. Note that the
operand stack value “4427" can be written into register R1 across the
overflow/underflow line 60. Upon a switch back to the native mode, the

data in the Java CPU register file 48 should be written to the data memory.

Consistency must be maintained between the Hardware Java
Registers 44, the Java CPU register file 48 and the data memory. The
CPU 26 and Java Accelerator Instruction Translation Unit 42 are pipelined
and any changes to the hardware java registers 44 and changes to the
control information for the Java CPU register file 48 must be able to be
undone upon a “branch taken” signal. The system preferably uses buffers
(not shown) to ensure this consistency. Additionally, the Java instruction
translation must be done so as to avoid pipeline hazards in the instruction

translation unit and CPU.

Figure 6 is a diagram illustrating the operation of instruction level

parallelism with the parent invention. In Figure 6 the Java bytecodes

.iload_n and iadd are converted by the Java bytecode translator to the single

native instruction ADD R6, R1. In the Java Virtual Machine, iload n
pushes the top local variable indicated by the Java register Var onto the

operand stack.

In the parent invention the Java hardware translator can combine the
iload_n and iadd bytecode into a single native instruction. As shown in
figure 6, section II, the Java Register, PC, is updated from “Value A” to
“Value A+2". The Optop value remains “value B”. The value Var remains

at “value C”,

WO 02/31652

10

15

20

25

PCT/US01/42610

-16-

As shown in Figure 6, section III, after the native instruction ADD
R6, R1 executes the value of the first local variable stored in register R0,
“1221", is added to the value of the top of the operand stack contained in
register R1 and the result stored in register R1. In Figure 6, section IV, the
Optop value does not change but the value in the top of the register
contains the result of the ADD instruction, 1371. This example shows the
present invention operating with a native CPU supporting only two
operands. The invention can also support three operands and Very Long

Instruction Word (VLIW) CPU's.

For some byte codes such as SiPush, BiPush, etc., the present
invention makes available sign extended data for the immediate field of the
native instruction being composed (120) by the hardware and microcode.
This data can alternatively be read as a coprocessor register. The
coprocessor register read/write instruction can be issued by hardware
accelerator as outlined in the present invention. Additionally, the

microcode has several fields that aid in composing the native instruction.

The Java hardware accelerator of the parent invention is particularly
well suited to a embedded solution in which the hardware accelerator is
positioned on the same chip as the existing CPU design. This allows the
prior existing software base and development tools for legacy applications
to be used. In addition, the architecture of the present embodiment is
scalable to fit a variety of applications ranging from smart cards to desktop
solutions. This scalability is implemented in the Java accelerator
instruction translation unit of Figure 4. For example, the lookup table 78
and state machine 74 can be modified for a variety of different CPU
architectures. These CPU architectures include reduced instruction set

computer (RISC) architectures as well as complex instruction set computer

WO 02/31652

10

15

20

25

PCT/US01/42610

-17-

(CISC) architectures. The present invention can also be used with

superscalar CPUs or very long instruction word (VLIW) computers.

Figures 8-20 illustrate the operation of the present invention. Figure
8 is a diagram that shows a system 100 of one embodiment of the present
invention. The system includes a CPU 101 and a hardware accelerator.
The hardware accelerator portion includes a decode stage 102 for receiving
the Java bytecode from the memory. Decode stage 102 preferably uses
instruction level parallelism in which more than one Java bytecode can be
converted into a single native instruction. In a preferred embodiment, the
system 100 includes a microcode stage 104 which receives signals from the
decode stage 102 and is used to construct the native instructions. The
microcode stage 104 allows for the production of multiple native
instructions from a single bytecode. The reissue buffer 106 stores a copy
of the converted instructions in the reissue buffer 106 as they are sent to the

CPU 101.

The reissue buffer 106 monitors the native PC value 110. Ina
preferred embodiment, when the hardware accelerator is active, the
hardware accelerator does not use the native PC value to determine the
memory location to load the instructions from memory. The native PC
value is instead maintained within a spoofed range which indicates that the
hardware accelerator is active. In a preferred embodiment, the native PC
monitor 110 detects whether the native PC value is within the spoofed
range. If so, the multiplexer 112 sends the converted instructions from the
hardware accelerator to the CPU 101. If not, the native instructions from
memory are loaded to the CPU 101. When in the spoofed range, the
addresses sourced to memory are the Java PC from the accelerator.

Otherwise the native PC is sourced to memory.

WO 02/31652

10

15

20

25

PCT/US01/42610

-18-

If an interrupt occurs, the native PC value will go to a value outside
the spoofed range. The PC monitor 110 will then stall the hardware
accelerator. When a return from interrupt occurs, the CPU 101 will be
flushed, and upon return from interrupt, the native PC value 108 returned
to the PC value prior to the interrupt. The reissue buffer 106 will then
reissue stored native instructions flushed from CPU 101 to the CPU 101
that corresponds to this prior native PC value. With the use of this system,
the hardware accelerator does not need to be flushed upon an interrupt, nor
do previously converted Java bytecodes need to be reloaded into the
hardware accelerator. The use of the reissue buffer 106 can thus speed the

operation and recovery from interrupt.

The CPU 101 is associated with a register file 113. This register file
is the native CPU's normal register file, operably connected to the CPU's
AILU but is shown separately here for illustration. The register file 113
stores Stack and Var values which can be used by the converted
instructions. The Stack- and Variable-managers 114 keep track of any
information stored in the register file 113 and use it to help the microcode
stage operations. As described below, in one embodiment there are a
fixed number of registers used for Stack values and Variable value. For
example, six registers can be used for the top six Stack values and six

registers used for six Variable values.

In another embodiment of the present invention, the Stack and
Variable manager assigns Stack and Variable values to different registers in
the register file. An advantage of this alternate embodiment is that in
some cases the Stack and Var values may switch due to an Invoke Call and

such a switch can be more efficiently done in the Stack and Var manager

WO 02/31652

10

15

20

PCT/US01/42610

-19-

114 rather than producing a number of native instructions to implement

this.

In one embodiment a number of important values can be stored in
the hardware accelerator to aid in the operation of the system. These
values stored in the hardware accelerator help improve the operation of the
system, especially when the register files of the CPU are used to store

portions of the Java stack.

The hardware accelerator preferably stores an indication of the top of
the stack value. This top of the stack value aids in the loading of stack
values from the memory. The top of the stack value is updated as
instructions are converted from stack-based instructions to register-based
instructions. When instruction level parallelism is used, each stack-bases
instruction which is part of a single register- based instruction needs to be

evaluated for its effects on the Java stack.

In one embodiment, an operand stack depth value is maintained in
the hardware accelerator. This operand stack depth indicates the dynamic
depth of the operand stack in the CPU's register files. Thus, if four stack
values are stored in the register files, the stack depth indicator will read
"4," Knowing the depth of the stack in the register file helps in the loading

and storing of stack values in and out of the register files.

In a preferred embodiment, a minimum stack depth value and a maximum

stack depth value are maintained within the hardware accelerator. The stack depth

value is compared to the maximum and minimum stack depths. When the stack

value goes below the minimum value, the hardware accelerator composes load

25 instructions to load stack values from the memory into the register file of the CPU.

WO 02/31652 PCT/US01/42610

10

15

20

25

-20-

When the stack depth goes above the maximum value, the hardware accelerator

composes store instructions to store stack values back out to the memory.

In one embodiment, at least the top four (4) entries of the operand stack in
the CPU register file operated as a ring buffer, the ring buffer maintained in the

accelerator and operably connected to a overflow/underflow unit.

The hardware accelerator also preferably stores an indication of the
operands and variables stored in the register file of the CPU. These indications
allow the hardware accelerator to compose the converted register-based instructions

from the incoming stack-based instructions.

The hardware accelerator also preferably stores an indication of the
variable base and operand base in the memory. This allows for the composing of
instructions to load and store variables and operands between the register file of the
CPU and the memory. For example, When a Var is not available in the register file,
the hardware issues load instructions. The hardware adapted to multiply the Var
number by four and adding the Var base to produce the memory location of the Var.
The instruction produced is based on knowledge that the Var base is in a temporary
native CPU register. The Var number times four can be made available as the
immediate field of the native instruction being composed, which may be a memory
access instruction with the address being the content of the temporary register
holding a pointer to the Vars base plus an immediate offset. Alternatively, the final
memory location of the Var may be read by the CPU as an instruction saved by the

accelerator and then the Var can be loaded.

In one embodiment, the hardware accelerator marks the variables as
modified when updated by the execution of Java byte codes. The hardware

accelerator

WO 02/31652 PCT/US01/42610

10

15

20

25

21-

can copy variables marked as modified to the system memory for some bytecodes.

In one embodiment, the hardware accelerator composes native instructions
wherein the native instructions operands contains at least two native CPU register
file references where the register file contents are the data for the operand stack and

variables.

Figure 9 illustrates a decode stage of one embodiment of the present
invention. This decode stage 102'is divided into the prefetch stage 116 and the
instruction decode 118. The prefetch stage 116 includes a bytecode buffer and
alignment prefetch stage unit 120 which receives the raw bytecodes from a memory
(not shown). The Java bytecode buffer control element 122 provides instructions to
determine when to load additional bytecodes from the memory. The address unit
124 uses the Java program counter 126 to determine the location of the next
bytecode to load. As described above, while the hardware accelerator is active, the
Java program counter is used to get the next word from memory containing Java
bytecode. The native PC is maintained within a spoofed region and is not used to
get the next instruction while the hardware accelerator is active. The bytecode
buffer alignment unit 120 contains a number of bytecodes from the memory. When
the instructions are passed on from the instruction decode unit 118, a number of
bytes are removed from the bytecode buffer alignment unit 120. A signal on line
128 indicates the number of bytecodes which are used by the instruction decode unit
118. In one embodiment, the decoded data on line 130 is sent to the microcode
stage. This data can include the microcode Start Address data 130a,
Index/Address and Vars data 130b, and Var Control data 130c.

Figure 10 shows an instruction decode unit 118'. In this embodiment, a
number of bytes are sent to an Instruction Decode unit. Individual Decode units

132, 134, 136, 138 and 140 receive and decode the bytes. Note that the value of

WO 02/31652 PCT/US01/42610

10

15

20

25

22-

adjacent byteé affects how the byte is decoded. For example, if byte A is the start of
a two-byte instruction, the value of byte B is interpreted as the second half of the
two-byte instruction. The instruction level parallelism logic 142 receives the
decoded information and then determines the microcode start address for the primary
byte-code. Secondary byte codes can be combined with the primary bytecode by
the selection of registers accessed by the converted instruction. One example of this

embodiment is described below with respect to Figures 19 and 20.

The accelerator ALU 144 is used to calculate index addresses and the like.
The accelerator ALU is connected to the register pool. The use of the accelerator
ALU allows certain simple calculations to be moved from the CPU unit to the
hardware accelerator unit, and thus allows the Java bytecodes to be converted into
fewer native instructions. The Variable Selection + Other Control unit 146
determines which registers are used as Vars. The Var control line from the ILP
Logic unit 142 indicates how these Vars are interpreted. A Var and associated Var
control line can be made available for each operand field in the native CPU's

instruction.

In one embodiment, the hardware accelerator issues native load
instructions when a variable is not present in the native CPU register file, the

memory address being computed by the ALU in the hardware accelerator.

The microcode stage 104" shown in Figure 11 includes a microcode
address logic 148 and microcode memory 150. The microcode address logic sends
microcode addresses to the microcode memory 150. The microcode memory 150
then sends the contents of that address to the Native Instruction Composer Logic 152
which produces the native instruction. Each microcode memory line includes a
main instruction portion on line 154, control bits on line 156 and update stack

pointer bits on line 158. Both the microcode address logic 148 and the microcode

WO 02/31652 PCT/US01/42610

10

15

20

25

23

150 can produce a string of native instructions until the update stack Bit is sent to
the microcode address logic 148. At that point, the microcode address logic obtains
another start address from the decode logic (not shown). The native instruction
composer receives the main instruction portion on line 154, the control bits from the
decode, the index address, Vars, and the Var controls. These inputs allow the native
instruction composer 152 to construct the native instructions which are sent to the

reissue buffer and the native CPU.

Figure 12 shows a microcode address logic 148' of one embodiment of the
present invention. Start address coming from the decode logic goes to multiplexer
154. The multiplexer 154 can either send the start address or an incremental or
calculated value to the microcode RAM. In a preferred embodiment, while the
update stack bit is not set, the address of the next element in the microcode is
calculated by the ALU 156 and provided to the multiplexer 154 for sending to the
microcode memory (not shown). Space in the microcode RAM memory can be
conserved by including jumps to other areas of the microcode memory. These
jumps can be done by calculation in unit 158 or by providing the address on line

160.

Figure 13 illustrates an embodiment of a native instruction composer unit
for use with the present invention. In this embodiment a number of register
selection logic units 162, 164 and 166 are provided. Each register selection logic
unit can be used to select a register used with a native instruction. Special resources

logic unit 168 and selection logic 170 allow the selection of special instructions.

Figure 14 shows the register selection logic 161’ of one embodiment of the
present invention. The register determination logic 172 determines from the variable
control bits, the microcode control bits and the Stack and Vars register manager

information which register to use. For example, if the instruction is to load the top

WO 02/31652 PCT/US01/42610

10

15

20

25

24

of stack and then use this top of stack value in next bytecode register determination
logic 172 can be used to determine that register R10 contains the top of stack value

and so Register R10 is used in the converted instruction.

Register remapping unit 174 does register remapping. In conventional
CPUs, some registers are reserved. Register remapping unit 174 allows the decoder
logic to assume that the Stack and Var registers are virtual, which simplifies the
calculations. Multiplexer 176 allows the value on line 171 to be passed without

being modified.

Figure 15 illustrates an embodiment of a stack-and-variable-register
manager 114'. The stack-and-variable-register manager maintains indications of
what is stored in the variable and stack registers of the register file of the CPU. This
information is then provided to the decode stage and microcode stage in order to
help in the decoding of the Java bytecode and generating appropriate native

instructions.

In a preferred embodiment, one of the functions of the Stack-and-Var
register manager is to maintain an indication of the top of the stack. Thus, if for
example registers R1-R4 store the top 4 stack values from memory or by executing
byte codes, the top of the stack will change as data is loaded into and out of the
register file. Thus, register R2 can be the top of the stack and register R1 be the
bottom of the stack in the register file. When a new data is loaded into the stack
within the register file, the data will be loaded into register R3, which then becomes
the new top of the stack, the bottom of the stack remains R1. With two more items
loaded on the stack in the register file, the new top of stack in the register file will be
R1 but first R1 will be written back to memory by the accelerators
overflow/underlfow unit, and R2 will be the bottom of the partial stack in the CPU

register file

WO 02/31652 PCT/US01/42610

10

15

20

25

-25-

Figure 16 illustrates an alternate stack-and-variable-register manager 114",
In this alternate embodiment, a register assignment table 172 is maintained. The
register assignment table maintains an indication of which Vars and stack variables
are stored in which registers. When an instruction is decoded it is checked whether a
Var or stack value is stored in the register file using the register assignment table
172. If there is a match to the incoming stack or Var value, the values within the
register file of the CPU are used. If there is no match, the value can be loaded into
the register file from the memory and the register assignment table updated. In one
embodiment, an invoke assignment logic unit 174 is operably conected with the
register assignment table. When an invoke occurs, typically the values of some of
the stack and the Vars are switched. By reassigning the values within the register
assignment table 172 using reassignment logic 174, the operation of the invoke can
be speeded up.

Figure 17 shows one embodiment of a native PC monitor 110'. The native
PC value is compared to a high range register and a low range register. If the native
PC value is within this range, the hardware accelerator is enabled using line 178.
Otherwise the hardware accelerator is disabled. The element 180 tests whether the
native PC value is coming close to the high end of the spoof range. If so, the system

induces a jump to a lower value of the native PC unit.

Figure 18 illustrates an embodiment of a reissue buffer 106'. The reissue
buffer receives the converted instructions and stores them along with the associated
native PC value. As long as there is no interrupt, the native PC value will continue
to increment, and the next instruction and current native PC is stored in the reissue
buffer and instruction issued to the CPU. When an interrupt occurs, the CPU
pipeline is flushed, including non-executed instructions, of which there is a copy in
the reissue buffer. When a return from an interrupt occurs, the CPU is flushed and

the native PC value before the interrupt is restored. This restored native PC value

WO 02/31652 PCT/US01/42610

10

15

20

25

26-

matches anative PC stored in the PC value store 184, causing a buffered
instruction in the old instruction store 186 to be provided to the CPU. The old
instruction store and the PC value store are synchronized. Once all of the old
instructions are provided to the CPU 102, the native PC value will be outside of the
range of all of the old PC values in store 184, and new converted instructions will be
provided. The depth of the reissue buffer depends upon the number of pipeline
stages in the CPU 102 (not shown). Under certain conditions such as branches, the
reissue buffer is flushed. As described above, the reissue buffer eases the operation
of the hardware accelerator. The hardware accelerator need not know the details of
the return from interrupt operation of the CPU. Thus the hardware accelerator can
operate with a variety of different CPUs without requiring major modification of the
hardware accelerator architecture. Changes to the microcode stage are sufficient to

change the hardware accelerator so that it could be used with different CPUs.

Figures 19 and 20 illustrate the operation of one embodiment of the system
of the present invention. In Figure 19, multiple instructions are shown being
received by the decoder stage. The top two instructions are integer loads and the
bottom instruction is an integer add. The ideal combination of these bytecodes by
the system would be the main op code being an add and the two loads combined
together. The system tests whether each of the Vars is in memory. In this example,
the iload 31 is not a Var which is stored in memory. Thus the value of the Var 31
needs to be loaded from memory into a free register. In this example, the Var base
stored in the stack manager is loaded into temp register R10. The word is put into

the top of the stack, or in this case in the register file indicating the top of the stack.

Figure 20 illustrates an example when iload_3 and iload 5 are used. In this
example, both of these Vars are stored within the register file. Thus, the add can be
combined with the two loads. In this example, Var H is indicated as being a 3, Var

L is indicated as being a 5. The op type is indicated as being iadd. The Var H

WO 02/31652 PCT/US01/42610

10

15

20

25

27-

Control and Var L Control indicate that the Vars are load types and in the register
file. The top of the stack modification is + 1. This is because two values are loaded
upon the stack for the two loads, and one value is removed from the stack as a result

of the main add operation.

In actuality, as can be understood with respect to the figures described
above, the Var 3 and Var 5 are already stored within the two register files. The
value of these register files is determined by the system. The instructions iload 3,
iload 5 and iadd are done by determining which two registers store Var 3 and Var 5
and also determining which register is to store the new top of the stack. If Var 3 is
stored in register R9 and Var 5 is stored in register R11 and the top of the stack is to
be stored in register R2, the converted native instruction is an add of the value
within register R9 to the value within register R11 and store the value into register
R2. This native instruction thus does the operation of three bytecodes at the same

time, resulting in the instruction level parellelism as operated on a native CPU.

Additionally within the hardware accelerator a ALU is deployed where the
decoded byte code instructions for bytecodes such as GOTO and GOTO_ W, the
immediate branch offset following the bytecode instruction is sign extended and
added to the Java PC of the current bytecode instruction and the result is stored in
the Java PC register. JSR and JSR_W bytecode instructions also do this in addition

to pushing the Java PC of the next byte code instruction on the operand stack.

The Java PC is incremented by a value calculated by the hardware
accelerator. This increment value is based on the number of bytes being disposed of
during the current decode which may include more than one byte code due to ILP.
Similarly, SiPush and BiPush instructions are also sign extended and fnade available
in the immediate field of the native instruction being composed. In some processors,

the immediate field of the native instruction has a smaller bit width than is desired

WO 02/31652 PCT/US01/42610

10

15

28-

for the offsets or sign extended constants so this data may be read as memory

mapped or I/O mapped reads.

While the present invention has been described with reference to thé above
embodiments, this description of the preferred embodiments and methods is not
meant to be construed in a limiting sense. For example, the term Java in the
specification or claims should be construed to cover successor programming
languages or other programming languages using basic Java concepts (the use of
generic instructions, such as bytecodes, to indicate the operation of a virtual
machine). It should also be understood that all aspects of the present invention are
not to be limited to the specific descriptions, or to configurations set forth herein.
Some modifications in form and detail the various embodiments of the disclosed
invention, as well as other variations in the present invention, will be apparent to a
person skilled in the art upon reference to the present disclosure. It is therefore
contemplated that the following claims will cover any such modifications or
variations of the described embodiment as falling within the true spirit and scope of

the present invention.

WO 02/31652 PCT/US01/42610

10

15

20

25

-29-

Claims

1. A system comprising:

a pipelined central processing unit with associated native program
counter; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
including a reissue buffer, the reissue buffer adapted to store converted native
instructions issued to the CPU along with an indication of the order of the
instructions, the system is such that when the CPU returns from an interrupt, the
reissue buffer examines the indication to determine whether to reissue a stored

native instruction value.

2. A system comprising:

a central processing unit; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
including a microcode stage, the microcode stage including a microcode memory,
the microcode memory output including a number of fields, the fields including a
first set of fields corresponding native instruction fields and control bits field that
affects the interpretation of the first set of fields by microcode controlled logic to

produce a native instruction.

3.A system comprising:
a central processing unit; and
a hardware accelerator operably connected to the central processing unit,

the hardware accelerator adapted to receive stack-based instructions, the hardware

WO 02/31652 PCT/US01/42610

-30-

accelerator including a microcode generating unit adapted to receive stack-based
instructions and to produce therefrom microcode instructions, the hardware
accelerator also including microcode interpretation logic adapted to receive the
microcode and to produce therefrom native instructions which are sent to the central

5 processing unit.

4. A system comprising:
a central processing unit; and
a hardware accelerator operably connected to the central processing unit,
10 the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
storing an indication of the top of operand stack pointer, the top of operand stack
being stored and updated in hardware, wherein when more than one stack-based
instruction is translated into a single register-based instruction, the top of stack
15 pointer is modified so as to reflect the effects of each register-based instruction,

stack based instruction and instruction level parallelism.

5. A system comprising:
a central processing unit with associated register file; and
20 a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
storing an indication of the depth count of the portion of the operand stack stored in
the central processing units register file, the depth count being updated during the

25 translation process.

6. A system comprising:
a central processing unit; and

a hardware accelerator operably connected to the central processing unit,

WO 02/31652 PCT/US01/42610

-31-

the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
storing an indication of the depth count of the portion of the operand stack stored in
the central processing units register file, the depth count being updated during the

5 translation process, the hardware accelerator checking to see if the stack depth is
below a minimum or above a maximum depth, wherein if the depth is below the
minimum depth the hardware accelerator generates load instructions to load operand
stack data from external memory to the register file, and wherein if the depth is
above the maximum depth the hardware accelerator generates store instructions to |

10 move operand stack data from register file to the external memory .

7. A system comprising:
a central processing unit with associated register file; and
a hardware accelerator operably connected to the central processing unit,
15 the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
storing an indication of the operands and variables stored in the register file of the
central processing unit, the stored indications being used during the conversion
process and being updated by the hardware accelerator.
20
8. A system comprising:
a central processing unit with associated register file; and
a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
25 based instructions native to the central processing unit, the hardware accelerator
storing at least the top four (4) entries of the operand stack in the native CPU register
file as a ring buffer, the ring buffer maintained in the accelerator and operably

connected to a overflow/underflow unit.

WO 02/31652 PCT/US01/42610

10

15

20

25

232

9. A system comprising:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, the hardware accelerator
storing Java variables in the native CPU register file and an indication of which

variables are in the native CPU register file.

10. A system comprising:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator composes native instructions based on the availability of variables and

operands in the native CPU register file.

11. A system comprising:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator marks the variables in the native CPU register file as modified when

updated by the execution of Java byte codes.

12. A system compﬂsiné:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-

based instructions native to the central processing unit, where the hardware

WO 02/31652 PCT/US01/42610

-33-

accelerator issues native load instructions when a variable is not present in the native
CPU register file, the memory address being computed by an ALU in the hardware

accelerator.

5 13. A system comprising:
a central processing unit with associated register file; and
a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
10 accelerator composes native instructions wherein the native instructions operands
contains at least two native CPU register file references where the register file

contents are the data for the operand stack and variables.

14. A system comprising:
15 a central processing unit with associated register file; and
a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator generates a new Java PC due to a “GOTO” or “GOTO_W” byte code.
20
15. A system comprising:
a central processing unit with associated register file; and
a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
25 based instructions native to the central processing unit, where the hardware
accelerator generates a new Java PC due to a “JSR” or “JSR_W?” byte code,

computes the return Java PC and pushes the return Java PC on to the operand stack.

16. A system comprising:

WO 02/31652 PCT/US01/42610

34

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator sign extends the SiPush and Bipush byte codes and appends to the

immediate filed of the native instruction being composed.

17. A system comprising:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator sign extends the SiPush and Bipush byte codes and made available to be

read by the native CPU.

18. A system comprising:

a central processing unit with associated register file; and

a hardware accelerator operably connected to the central processing unit,
the hardware accelerator adapted to convert stack-based instructions into register-
based instructions native to the central processing unit, where the hardware
accelerator increments the Java PC within the hardware accelerator by generating an
increment value based on the number of byte codes being disposed, wherein the Java
PC is incremented in the correct manner if multiple bytecodes are disposed at the

same time .

19. The system of Claims 1-18, wherein the stack-based instructions are

Java bytecodes.

20. The system of Claims 1-18, wherein the hardware accelerator is not

WO 02/31652 PCT/US01/42610

-35-

flushed upon an interrupt.

21. The system of Claims 1-18, wherein the hardware accelerator includes

a native PC monitor which monitors the value of the native PC.

22. The system of Claim 21, wherein the native PC monitor enables the
hardware accelerator when the native program counter is within a hardware

accelerator program counter range.

23. The system of Claim 22, wherein an interrupt causes the native PC to
leave the hardware accelerator program counter range, causing the hardware

accelerator to stall.

24, The system of Claim 23, wherein the return from interrupt causes the
native PC to go back within the hardware accelerator program counter range,

enabling the hardware accelerator.

25. The system of Claim 1, wherein the reissue buffer provides stored

converted instructions when the system returns from an interrupt.

26. The system of Claims 1-18, wherein at least portions of the hardware

accelerator are part of the CPU.

27. The system of Claims 2 and 3, wherein the microcode stage includes a

microcode address logic portion and a microcode memory portion.

28. The system of Claim 27, wherein the microcode address logic includes
logic to step through addresses so that multiple native instructions can be produced

from fewer stack-based instructions.

WO 02/31652 PCT/US01/42610

-36-

29. The system of Claims 2-18, further including a reissue buffer, the
reissue buffer adapted to store converted native instructions issued to the CPU along
with associated native program counter values, the system being such that when the
CPU returns from interrupt, the reissue buffer examines the program counter value

to determine whether to reissue a stored native instruction value.

30. The system of Claims 2 and 3, wherein the microcode includes fields

for native instruction portion and fields for additional control bits.

31. The system of Claim 30, wherein the control bits control the

interpretation of fields for the native instruction.

32. The system of Claims 2 and 3, further comprising a decoding unit, the
decoding unit being a part of the microcode generating unit, the decoding unit
producing additional control signals which are provided to the native instruction

composer unit to produce the native instructions.

33. The system of Claims 1-18, further comprising a stack manager unit
used to control which elements in the stack are stored within the register file and to

produce data which is used to compose the native instructions.

34. The system of claim 11, wherein the hardware accelerator

copies the variables marked as modified to the system memory for some bytecodes.

35. The system of Claim 34, wherein at least portions of the hardware
accelerator are part of the CPU.

36. The system of claim 1, wherein the indication of the order of the

instructions is the native program counter value.

WO 02/31652 PCT/US01/42610

37-

37. The system of claim 6, wherein if the stack depth is above the

maximum depth an overflow flag is generated.

38. The system of claim 6, wherein if the stack depth is below the

minimum depth an underflow flag is generated.

WO 02/31652

1/19

20
-\\ . DATA

PCT/US01/42610

» BUS
24~ | |28 30\
: HARDWARE »
INSTRUCTION ~JAVA cru [
ACCELERATOR
NP _26

NO JUM

40
36
' NATIVE
RESET m;g/éz Jum [NATIE
»\ B \ JUM
EXCEPTION
RESET
38 INSTRUCTION
EXCEPTION
JAVA
ACCEL-

FIG._2 ERATOR

ERROR

PCT/US01/42610

WO 02/31652

2/19

r N
3HOVD »9
ViVQ 2
“" /(mm Ezm)
¥0SSIO0Hd-00
NENET B 09~ NDIVL o 1 " y37708.N0D
AONIW |™ . aso HONvS, MOLVYTIO0V
N@M, « \ A (_x <\(M.% b
3714 3714 ™
NETSENE I REETSBER L
71 N YAYF od
or N
bb
T —— | oS || SHR S0 4
| ——¢] Jova | ML FuvmayvH | Od
_ Yol 3tEm | YAVP
| L
_ 09z — | \»
|
| JERE _ | !
y _
| et} 019071 | 1| 2101 | 1| 300030 i HOL13d ! _\u NOLLY ISNvaL !
|1 | AMOWIWN 777} 31N03X3 [747| NOILONYLSNI[™ I |NOLLONMISNI |, - NOILONYLSNI 3HOVO
= | — | ~— — | HOLv43 1300V NOILONYLSNI
|1 poz 1992 F q9z | B9z . VAVT —
_ NINVL - | Nw..\
| HONVYS, Ndo |

£ Ol
A

PCT/US01/42610

WO 02/31652

3/19

SNOILONYLSNI

JAILYN

SY31SI93d
VAVP

I INIHOVIN

1
1 | 3VLS
[

_ ¥ 318vL {

niv
Vivdad

dN-X007 [
NOILONYLSNI
I JAILYN OL
i 300031A49
| VAVE
!

1901

llnllm

9/

NOLLYISNYHL NOILONYLSNI HOLYHITIODV VAVI

-
|
:
]
300030 || wa3ddna |
TETIVEVA [~ [NOILSNELSNI
21— oL~

dHOVO -
NOILONYLSNI
NOY4

WO 02/31652 PCT/US01/42610
4/19

1. INSTRUCTION TRANSLATION

JAVA NATIVE
BYTECODE :{) INSTRUCTION
iadd ADD R1, R2

1. JAVAREGISTER

PC = VALUE A ‘#> PC = VALUEA+1

OPTOP = VALUE B OPTOP = VALUE B - 1
(R1) (R2)

VAR = VALUE C VAR = VALUE C

1. JAVA CPU REGISTER FILE

RO 0001 NOT A VALID RO 0001
CONTAINS VALUE —R1 0150 . STACK VALUE —R1 0150.
OF TOPOF R2 1210 cO V. —R2 1360
OPERAND STACK pq 4007 OF THE TOF OF R3 0007
R4 0005 OPERAND STACK o4 0005
: R5 0006 R5 0006
CONTAINS FIRST —R6 1221 R6 1221
VARIABLE Ry 1361 R7 1361
IV. MEMORY

OPTOP = VALUEB —» - 0150 : ‘ - 0150
(VALUEB-1) - 1210 ,:'l> OPTOP =VALUEB-1 - 1360
- 0007 - 0007
- 0005 - 0005
- 0006 - 0006
- 0001 - 0001
- 4427 - 4427

/_/\/-\/ T N
VAR =VALUE C - 1221 VAR = VALUE C - 1221
- 1361 - 1361
- 1101 - 1101

_ J

FIG. 5

WO 02/31652 PCT/US01/42610
5/19

[INSTRUCTION TRANSLATION

JAA NATIVE
BYTECODE | INSTRUCTION
iload_n L‘_D

iadd ADD R6, R1

II. JAVAREGISTER

PC = VALUEA |:{> PC = VALUEA +2

OPTOP = VALUE B OPTOP = VALUE B
(R1) (R1)

VAR = VALUE C VAR = VALUE C

III. JAVACPU REGISTERFILE

RO 0001 RO 0001
C\;/gwgélgls: —>R1 0150 E> CONJéIN'S: —R1 1371
VALUE O
TOP OF R2 1210 TOP OF R2 1210
OPERAND STACK ~ R3 0007 STACK ~ R3 0007
R4 0005 R4 0005
R5 0006 - R5 0006
CONTAINS FIRST —R6 1221 CONTAINS —>R6 1221
VARIABLE R7 1361 FIRST R7 1361
VARIABLE
V. MEMORY
OPTOP =VALUEB — - 0150 OPTOP =VALUEB - 137
- 1210 - 1210
- 0007 C> - 0007
- 0005 - 0005
"~ 0006 - 0006
- 0001 - 0001
- 4427 - 4427
Y . N4 T e
Y e 4 S
VAR = VALUE C - 1221 VAR = VALUE C - 1221
- 1361 - 1361
- 1101 ' - 1101
N J

FIG._6

WO 02/31652 PCT/US01/42610
6/19

Opcodes Mnemonic | Opcode xHH | Excep Gen

nop 0x00
aconst_null x01
iconst_m1 x02
iconst_n(0-5) x03 - x08
lconst_n(Q-1) x09 - x0a
fconst_n(0-2) -x0c¢ - x0d
dconst_n(0-1) x0e -x0f
bipush x10
sipush x11
ldc x12 y
idc_w x13 y
dc2 w x14 y
iload x15
lload x16
fload x17
dload , x18
aload x19
iload_n(0-3) x1a-x1id
lload_n(0-3) - xie - x21
fload_n(0-3) x22 - x25
dload_n(0-3) x26 -x29
aload_n{0-3) x2a - x2d
iaload X2e
laload x2f
faload x30
daload %31
aaload A x32
baload x33
caload x34
saload x35
istore x36
Istore ‘ x37
fstore x38
dstroe x39

" |astroe x3a
istore_n(0-3) x3b - x3e
Istore_n(0-3) x3f - x42
fstore_n(0-3) x43 - x46
dstore_n(0-3) X47 - x4a
astore_n(0-3) x4b - xde
iastore x4f
lastore x50
fastroe x51
dastore x52
bastore x53
aastore x54
castroe x55)
sastore %56 F l G. — 7A

WO 02/31652

7/19

pop x57

pop2 x58

dup x59

dup_x1 x5a

dup_x2 x5b

dup2 - x5¢

dup2_x1 x5d

dup2_x2 x5e

swap x5f

iadd x60

ladd x61

fadd x62 y
dadd x63 y
isub - x64

Isub x65

fsub x66 Yy
dsub x67 y
imul x63

Imul x69

fmul x6a y
dmul x6b y
idiv x6¢c y
idiv x6d y
fdiv x6e y
ddiv x6f y
irem X70 y
Irem X71 y
frem. - X712 y
drem X73 y
ineg X74

ineg X75

fneg X76 y
dneg X77 y
ishi X78

ishl X79

ishr X7a

ishr X7b

jushr X7c

jushr x7d

iand x7e

land X7t

ior x80

lor x81

ixor x82

Ixor x83

iinc x84

i2l X85 y
i2f x86 y
i2d x87 y
12i x88 y
12f x89 y
i2d x8a y

PCT/US01/42610

FIG._7B

WO 02/31652 PCT/US01/42610

8/19
f2i x8b y
f21 x8c y
f2d x8d Yy
dzi . x8e y -
dzl x8f y
d2f x90 y
izh x91
i2c x92
i2s . x93
lcmp x94 y
fempl x95 y.
fempg x96 y
dempl x87 y
dempg %98 y
ifeq x99
ime - x9a
ifit x3b
ifge x9¢
ifgt ' x9d
ifle x9e
if_icmpeq x9f
if_icmpne xal
if_icmplt xai
if_acmpge xa2
it_cmpgt xa3
if_icmple Xa4
if_acmpeq xab
if_acmpne xab
goto xa?
jst xa8
ret xag
tableswitch Xaa y
lockupswitch xab y
ireturn xac
lretum , xad
fretumn xae
dretum xaf
areturn : xb0
retum xb1
getstatic xb2 y
putstatic xb3 y
getfield xb4 y
putfield xb5 y
invokevirtual ‘ xb6 y
invokespecial - xb7 y
invokestatic xb8 y
invakeinterface xbg y
xxunsedxxx xba y
new xbb y
newarray xbec y
anewarray xbd y FIG_ 7C
arraylength xbe y -

WO 02/31652 PCT/US01/42610

9/19
athrow, xbf y
checkcast XCo y
instanceof xc1 y
monitorenter xc2 y
‘monitorexit xc3 y
wide . Xc4 y
multianewarray XcS y
ifnull © XcB y
ifmonnull - Xcl y
goto_w XcB-
sr_wW xc9
Idc_quick xcb y
ldc_w_quick Xce y
lde2_w_quick ' xcd y
| getfield_quick xce y
putfield_quick xcf y
‘| getfield2_guick xd0 y
putfield2_quick xd1 y
getstatic_quick xd2 y
putstatic_quick xd3 y
gtestatic2_quick xd4 y
putstatic2_gquick | Xas y
invokevirtual_quick xd6 y
invokenonvirtual_quick xd7 y
invokesuper_gquick xd8 y
invokestatic_quick xdS y
invokeinterface_quick xda y
invokevirtualobject_quick xdb y
new_quick xdc y
anewarray_quick xde .Y
multinewarray _guick xdf y
checkeast_quick xe0 y
instanceof_quick xe1 y
invokevirtual_quick_w xe2 y
getfield_quick_w xe3 y
putfield_quick_w xe4 y
breakpoint " Xxca y
impdep1) xfe y

PCT/US01/42610

WO 02/31652

10/19

Iyyed

SVA

HOVLS

EN/E]
HILSTOFY

8 Old

[y

L

_

101

801~ 2
NLLYN

-

Nndo

v

FOVASILNI
HOSSHI04d09

II907
Ndd

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

vH~ sy79vNYN Ewmwmmk
75VNT 1 ae ovis [|poLvemaooy
0Ll YOI VETTIOOV vAYI
\ TAVMOYVH 7
VAV
HOLINOW
Id TIVLS
INILVN J9VIS
300030
A \ A YyYYY VY
~
5
M.
A <
Y v n.d
~
ﬂ | d3na | 1S, . .
~—|3nssi3y S3000 3IAG
\ S VAV
90! S
Zll A FIVLS FOVLS
2 FA020HIIN 3do0o3a
\ . L
0Z1 140! c0!
SNOILONHLSNI FAILYN AN
MOLVYHTTIOOV 00!

JHYMALYH

PCT/US01/42610

WO 02/31652

11/19

e]
o |
| Y3LNNOD |
WYH90Hd
| VAV |
‘ A y _
_ T04LNOD 1INN ‘
o YI4NE —
N | 30003148 SSIAAV |
gzl
TS, S,
| ze! vzl |
(<~ | |
HISOINO /T04INOD SHVA | 4 |
mem.@@w%«&) MQE SYYA/ - A (| (F9VLS HOLIATHd) |
SUVA £ oISt [SSI¥aaY/XIaNI . @ JIAg! INIFNWNOITY e SI0097IA8
P qo¢ | 300030 [0 AL /4344ng vy |
 55340ay 14VISINOILONMLSNI|. 8 FIAE' 30023148
FA0204OIN OL <
3000080101] .f |
s,
0! gLl | 02i 39VIS HOLIA3dd|
S — VLS
201 9t 300030

PCT/US01/42610

WO 02/31652

12/19

ol Old

JFOVNYAN
SYVA 4+ MIVLS| 700d 471SI937Y
HOLYN8TTF00V Ol
. SS3yaav Py -~
SINVISNOD/XIGNI 1 sosvygTaooy
\
i L
TOHINOD
300030 |_
ST ﬁ\:ﬁ\:déf EREIVY:]
0%l
AT AT T 1+ T0MINOD 300030 |
~ dVA TVNOLLHO MIHIO 1 ol _YAGIAIANT N ET]
T S&VA + NOILOFTIS I gel
= dYA - 300030
H™SYVA N , TYNAIAIGNT | REIVY:]
NIYW N
9%l 4 9¢|
y 300230 |
TYNAIAIGNT [g JIAg
NIV
TOMINOD SHVA o%ﬁ i Y
300030
S534aay 18IS A ~ 7
Er ety Ni\ TRl IYNGIAIGNT R) VY|
300230 NOILONMLSNI
NOILdIOXT Yy -y G3SN SIA0DILAE 40 # —

gLl

PCT/US01/42610

WO 02/31652

13/19

I OId

SYFIVYNYIN FT1GYINVA SHYFOYNYA F1GVILV/

+ MOVLS WO

+ MOV.LS WOHS

HOLINOW Od 4
JALLYN WOH4 F19YNT OANI MOVLS
YOL YYTTTIOY + JVA TO4LNOD
Y344n4 _ SiIg SdvA
INSSIFY Wod4 TIVLS | | [T0dINoD
7
ndo + YISON0D =
yi44ng — %m\mmwhzmé NOTLONMLSNI | 951~ SS35AaY/X3GNT
INSSIFY 0l IALLYN | |
olel) LI HOVIS
N . 31vadn
ZG!
pGI— <118 TYNOLLIGaY
Y A
SS34aay
Adoman | davis | 22900 | 1S
JA0204IIN [FA0D0HIIN | socmomn | F000HIIA
051 f gr!
01 J9VIS

WO 02/31652 PCT/US01/42610

14/19

148

N
[WICROCODE |
| ADDRESS |
LOGIC 160
,___AW/ 154 |
| FROM 70 MICROCODE | _
| DECODE J755 } RAM 158 |
| | | [caccuLation||
| Q UNIT |
| Fxen ||
‘ — INCREMENT '
LOGIC
CONTROL
I Tf ______ |
Wi~ L ADDITIONAL
S a CONTROL
MIs LocIc
=S
D|Q

FIG. 12

PCT/US01/42610

WO 02/31652

15/19

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S
D=
A=
S
21907 N
NOILLDFTIS)
S
S —|=d
DB R =
0/l | & r=
21907 .
L S704N0S3FY |
899I~ IIDIdS

J1907
NOILLOFTIS

SEINYRES

0c—-9!

91907
NOILOF3S
qALSTOF

/

GlL—ll

'ci—0 i£—0

|
|

KNZD_.
EMWDQ§GQ_

NOILLONYLSNI

AILVYN

WO 02/31652

162’

PCT/US01/42610
16/19

Y

A

I_REGISTE‘%———————*;—T
, \SELECTION
N leoerc |
- REGISTER
FROM 172 174 [| numeer
MICROCODE| S
REGISTER
DETERMINATION |~ 00 1
LOGIC SNl
% M
Q

|
|

VAR
CONTROL
BITS

Y

—_]
C

ROCODE
CONTROL

FROM STACK +
VARS REGISTER

MANAGER FIG. 14

117
\ A {\
STACK + ‘ |
VARIABLE VARS STACK
REGISTER
R CHECK CHECK
LOGIC LOGIC
A A
y
VARS
VARS | | pEGISTER
L 104D |-
Lor0, VALID
| BIT
STACK
RIRvs | REGISTERS
LoAD. TOP OF STACK
STACK DEPTH

Fia. 15

PCT/US01/42610

WO 02/31652

17/19

9l Old

¥ ¥
91y = . £ Y/ 01907
u%m%m GlY =4 MOVIS | [LNIANIISSYIY
. L IHOANI,
SHY/ .
\N
21907 2o = ¥ MOVIS v
o [= IS SHYA
NOVLS F78Y1
INIANOISSY
I YILSIOFY | -2/l
J y
\ ‘r
714 ¥3LSI9FH NI |_
Hid3a Yovis [01907 01907 ‘
YOIHO ¥OFHO NET
714 HALSIOFN NI || Xovis S/
YOVLS 40 dOL i _, TEO
] Y /

JH 3 Ny TY

WO 02/31652

110°

N

18/19

PCT/US01/42610

naTVE]
| PC MONITOR |
RANGE LOW
| LOW RANGE |
NATIVE REGISTER| | comPARET |
fe-)
VALVE | RANGE | L[HieH ™ ENaBLE)
HIGH | | RANGE 178
| | | REGISTERI™ COMPARE |
| g |
JUMP TO
| | LowEr | INDUCE __
i
e] LOWER
VALVE
FIG. 17
703' ’
REISSUE
sTrucTION |BUFTER ,
186 70
™ OLD T " oPU
~ INSTRUCTION| A .
STORE |G i
TPTTE READ SELECT
ENABLE | | | FALUSH
ADDRESS =
LOGIC
184
™ 0D) | COMPARE]| STALL
STORE
$
NATIVE
PC FIG. 18

PCT/US01/42610

WO 02/31652

19/19

£=035N SIA00TLAE
| —|—|+,=NOILYIIJIJOW SO.
10=TOHLNOD T~ 4VA
L0=TOHLNOD H &VA

ppoi=3dil 40 V/N

G=T"SYVA S

C=HTSHVA S

oc Old

LSNOJ =—@—3sU0d! < (4 FUOIIIAE
d0 =<~——d0 = pPPOI<— 0 J0J0D3IAEH
J7 =~—— (J1 = G PPoll<~ g JU0JIIAE
J] ~—— (] =< ¢ PPOjl<VY J0U0J3IAL

1S3 7SYYA NOLLYNIGWOOD 3dAl

MOVILS FHL 40
dOl 3IHL OINI L7NS3FH LNd
(rX)ls + 18 GHOM avOoT

(o HILSIOFY dWHl
OLNI FOVNYW HOVLS
NI (3401S 3SvE VA avOT

AHONIN
WOH4 LS HVA
40 avOo1 0d

w4dI

6L Ol

“—— |G =g 8J0}S]

d0 <~—— d0 = PPOI

J] ~—— d1=~ G poojl

ON J1 ~— (Jd1=~ L PDOJI
1S3L NOILYNIGWNOO ddAl

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/42610

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 9/45
USCL :717/5

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 717/5, 717/1, 717/6,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN, WEST, EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 5,875,336 A (DICKOL et al) 23 February 1999, ABSTRACT,
col 1 line 50-55, Fig 5, col 4 line 42-50, col 3 line 20-22, col 4 line

47-51

A US 5,761,477 A (WAHBE et al) 02 June 1998, see entire document

document

document

US 6,167,488 A (KOPPALA) 26 December 2000, see entire

US 6,026,485 A (O'CONNOR et al) 15 February 2000, see entire

US 6,131,144 A (KOPPALA) 10 October 2000, see entire document

1-38

1-38

1-38

1-38

1-38

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents:

"AM document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document published on or after the international filing date

"L document which may throw doubts on priortty claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"o" document referring to an oral disclosure, use, exhibition or other
means

“p" document published prior to the international filing date but later

than the priority date claimed

" later document published atter the international filing date or priority
date and not in conilict with the application but cited to understand
the principle or theory underlying the invention

D document of particulav relevance; the claimed invention cannot be
considered navel or vannot be vonsidered to involve an inventive step
when the document s taken alone

"y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

02 NOVEMBER 2001

Date of mailing of the international search report

13 DEC 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (708) 746-7239

Authorized officer 7 ! z
Doaas K ﬂ/].a(i'm”'-n-ég'
KEVIN TESKA ~

Telephone No. (703) 305-9704

Form PCT/ISA/210 (second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/42610

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

page 1017-1030

Y KRALL et al, CACAO - A 64-bit VM just-in-time compiler 1-38
Concurrency: Practice and Experience, November 1997, vol 9(11),

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

