发明名称
5-硝基香兰素的制备方法

摘要
本发明公开了5-硝基香兰素的制备方法，制
备方法的具体步骤如下：香兰素与硝酸铈铵的物
质的量的比为1:0.6～1.6，溶在体积分数5%～
90%的醋酸中，依与香兰素的摩尔比为1:1.25 加
入聚乙二醇-400作为相转移催化剂，磁力搅拌下，于
20～60℃，反应1.0～2.5h，由TLC跟踪，
展开剂：乙酸乙酯：石油醚=1:1，当反应物完全
转化为产物时停止搅拌，将混合物倒入适量的冰
水中，有黄色的固体析出，抽滤、洗涤、干燥，重结
晶得到5-硝基香兰素的产品。本发明选用绿色化
学品硝酸铈铵作为硝化试剂，以聚乙二醇-400作
为相转移催化剂，缩短了反应时间，副反应少，操
作简便，生产成本低。
1. 5- 硝基香兰素的制备方法，该制备方法选用硝酸铈铵与香兰素反应得 5- 硝基香兰素，其中，硝酸铈铵为硝化试剂，醋酸为溶剂，聚乙二醇 -400 为相转移催化剂；其特征在于该制备方法的具体步骤如下：香兰素与硝酸铈铵的物质的量的比为 1 : 0.6 ～ 1.6，溶在体积分数 5% ～ 90% 的醋酸中，依与香兰素的摩尔比为 1 : 1.25 加入聚乙二醇 -400 作为相转移催化剂，在磁力搅拌下，于 20 ～ 60℃，反应 1.0 ～ 2.5h，由 TLC 跟踪，展开剂：乙酸乙酯 : 石油醚 = 1 : 1，当反应物完全转化为产物时停止搅拌；将混合物倒入适量的冰水中，有黄色的固体析出，抽滤、洗涤、干燥，重结晶得到 5- 硝基香兰素的产品。
5-硝基香兰素的制备方法

技术领域
[0001] 本发明涉及化合物的制备方法,具体涉及一种 5-硝基香兰素的制备方法。

背景技术
[0002] 5-硝基香兰素,系统名称是 3-甲氧基-4-羟基-5-硝基苯甲醛。主要用于医药和香料领域,可用于 3,5-二取代儿茶酚类儿茶酚 -0-甲基转移酶 (COMT) 抑制剂托卡朋 (tolcapone) 的合成,或作为合成利福霉素类抗生素 (3-羟基甲氧基利福霉素,3-羟基利福霉素) 生物合成的前体。5-硝基香兰素制备方法主要是通过香兰素硝化法,即以香兰素为原料,硝酸为氧化剂,在有机溶剂中获得。但这种方法用酸量大,废酸废水量大,不利于环境保护。同时,由于硝酸的强氧化性,也使副反应增多,产品分离工艺复杂。

发明内容
[0003] 本发明的目的在于提供一种 5-硝基香兰素的制备方法,选用硝酸铈铵 (CAN) 作为硝化试剂,操作简便、反应时间短、产率较高。
[0004] 本发明的技术解决方案是:该制备方法选用硝酸铈铵与香兰素反应得 5-硝基香兰素,其中,硝酸铈铵为硝化试剂,醋酸为溶剂,聚乙二醇 -400 为相转移催化剂。
[0005] 本发明的 5-硝基香兰素的制备方法中,制备方法的反应方程式如下:

![化学反应方程式]

本发明的 5-硝基香兰素的制备方法中,具体制备步骤如下:香兰素与硝酸铈铵的物质的量的比为 1 : 0.6 ～ 1.6, 溶在体积分数 5% ～ 90% 的醋酸中,依与香兰素的摩尔比为 1 : 1.25 加入聚乙二醇 -400 作为相转移催化剂, 在磁力搅拌下, 于 20 ～ 60℃, 反应 1.0 ～ 2.5h, 由 TLC 跟踪,展开剂：乙酸乙酯 ：石油醚 = 1 : 1, 当反应物完全转化为产物时停止搅拌; 将混合物倒入适量的冰水中, 有黄色的固体析出, 抽滤、洗涤、干燥, 重结晶得到 5-硝基香兰素的产品。
[0006] 本发明具有以下优点:选用绿色化学产品硝酸铈铵作为硝化试剂,以聚乙二醇 -400 作为相转移催化剂,缩短了反应时间,副反应少,操作简便,生产成本低。

附图说明
[0007] 图 1 为本发明的 5-硝基香兰素的红外光谱图。
[0008] 图 2 为本发明的 5-硝基香兰素的核磁共振氢谱图。

具体实施方式
[0009] 下面结合具体实施例进一步说明本发明的技术解决方案,具体实施例不能理解为
是对技术解决方案的限制。

[0010] 实施例 1：

在 25mL 的三角烧瓶中加入 0.152g (1mmol) 香兰素, 2mL 的体积分数 90% 醋酸, 0.50 g (1.25 mmol) 聚乙二醇—400, 在搅拌条件下缓慢滴入 0.09 g (0.58mmol) 硝酸铈铵的水溶液; 20°C 反应 2.5 小时, 由 TLC 跟踪, 展开剂：乙酸乙酯 : 石油醚 = 1 : 1, 当反应物完全转化为产物时停止搅拌; 将反应物倒入适量的冰水中, 有黄色的固体析出, 抽滤, 用蒸馏水洗涤固体物 2~3 次, 得到 5-硝基香兰素的粗产品; 称重: 0.14g, 产率: 71%; 产品经熔点测定和红外光谱、核磁共振氢谱分析, 与文献报道一致; 测得熔点为: m.p. : 177.2~178.6 °C；

IR: ν max (KBr 压片, cm⁻¹): 3203, 3077, 2945, 2876, 1685, 1611, 1548, 1402, 1335, 1269, 1231, 1103, 1047, 916; ¹H NMR: (DMSO-d₆, ppm) δ : 3.99 (s, 3H, OCH₃), 7.65 (s, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 9.90 (s, 1H, CHO)。

[0011] 实施例 2：

在 100mL 的三角烧瓶中加入 0.76g (5mmol) 香兰素, 10mL 的体积分数 90% 醋酸, 2.5 g (6.25 mmol) 聚乙二醇—400, 在搅拌条件下缓慢滴入 0.76 g (4.9 mmol) 硝酸铈铵的水溶液; 40°C 反应 1.5 小时, 由 TLC 跟踪, 展开剂：乙酸乙酯 : 石油醚 = 1 : 1, 当反应物完全转化为产物时停止搅拌; 将反应物倒入适量的冰水中, 有黄色的固体析出, 抽滤, 用蒸馏水洗涤固体物 2~3 次, 得到 5-硝基香兰素的粗产品; 称重: 0.68g, 产率: 69%; 测得熔点为: m.p. : 177.5~178.6 °C。

[0012] 实施例 3：

在 1000mL 的圆底烧瓶中加入 15.2g (100mmol) 香兰素, 200mL 的体积分数 90% 醋酸, 50.0 g (125 mmol) 聚乙二醇—400, 在搅拌条件下缓慢滴入 24.32g (158 mmol) 硝酸铈铵的水溶液; 60°C 反应 1.0 小时, 由 TLC 跟踪, 展开剂：乙酸乙酯 : 石油醚 = 1 : 1, 当反应物完全转化为产物时停止搅拌; 将反应物倒入适量的冰水中, 有黄色的固体析出, 抽滤, 用蒸馏水洗涤固体物 2~3 次, 得到 5-硝基香兰素的粗产品; 称重: 13.8g, 产率: 70%。测得熔点为: m.p. : 177.5~178.5 °C。