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AFFINE MOTION PREDICTION FOR VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
62/337,301, filed May 16, 2016, the entire content of which is hereby incorporated by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in video coding standards. The video devices may transmit, receive,
encode, decode, and/or store digital video information more efficiently by implementing
such video coding techniques.

[0004] Some video coding standards are defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC) including its Scalable
Video Coding (SVC) and Multiview Video Coding (MVC) extensions, ITU-T H.265,
also referred to as High Efficiency Video Coding (HEVC), and extensions of such
standards. Recently, the design of a new video coding standard, namely High-
Efficiency Video Coding (HEVC), has been finalized by the Joint Collaboration Team
on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and
ISO/IEC Motion Picture Experts Group (MPEG). The latest HEVC draft specification,
and referred to as HEVC WD hereinafter, is available at itu.int/rec/T-REC-H.265-
201504-S/en. Range Extensions to HEVC, namely HEVC-Rext, are also being
developed by the JCT-VC. A recent Working Draft (WD) of Range extensions, referred
to as RExt WD6 hereinafter, is available from phenix.int-

evry fr/jct/doc_end user/documents/16 San%20Jose/wgl1/JCTVC-P1005-v1.zip.



WO 2017/200771 PCT/US2017/031258

[0005] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which for some techniques may
also be referred to as treeblocks, coding units (CUs) and/or coding nodes. Video blocks
in an intra-coded (I) slice of a picture are encoded using spatial prediction with respect
to reference samples in neighboring blocks in the same picture. Video blocks in an
inter-coded (P or B) slice of a picture may use spatial prediction with respect to
reference samples in neighboring blocks in the same picture or temporal prediction with
respect to reference samples in other reference pictures. Pictures may be referred to as
frames, and reference pictures may be referred to a reference frames.
[0006] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more
compression.

SUMMARY
[0007] In one example, a method for decoding video data includes: obtaining, by one or
more processors of a video decoder and for a current block of video data, values of
motion vectors of an affine motion model of a neighboring block of video data;
deriving, by the one or more processors and from the values of the motion vectors of the
affine motion model of the neighboring block of video data, values of predictors for
motion vectors of an affine motion model of the current block of video data; decoding,
by the one or more processors and from an encoded video bitstream, a representation of
differences between the values of the motion vectors of the affine motion model for the
current block of video data and the values of the predictors; determining, by the one or

more processors, the values of the motion vectors of the affine motion model for the
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current block of video data from the values of the predictors and the decoded
differences; determining, based on the determined values of the motion vectors of the
affine motion model for the current block of video data, a predictor block of video data;
and reconstructing the current block of video data based on the predictor block of video
data.

[0008] In another example, a method for encoding video data includes: determining, by
one or more processors of a video encoder, values of motion vectors of an affine motion
model of a current block of video data, the motion vectors of the affine motion model
identifying a predictor block of video data for of the current block of video data;
obtaining, by the one or more processors, values of motion vectors of an affine motion
model of a neighboring block of video data; deriving, by the one or more processors and
from the values of the motion vectors of the affine motion model of the neighboring
block of video data, values of predictors for motion vectors of an affine motion model
of the current block of video data; and encoding, by the one or more processors and in
an encoded video bitstream, a representation of differences between the values of the
motion vectors of the affine motion model for the current block of video data and the
values of the predictors.

[0009] In another example, a device for decoding a block of video data includes: a
memory configured to store the video data; and one or more processing units
implemented in circuitry. In this example, the one or more processing units are
configured to: obtain, for a current block of video data, values of motion vectors of an
affine motion model of a neighboring block of video data; derive, from the values of the
motion vectors of the affine motion model of the neighboring block of video data,
values of predictors for motion vectors of an affine motion model of the current block of
video data; decode, from an encoded video bitstream, a representation of differences
between the values of the motion vectors of the affine motion model for the current
block of video data and the values of the predictors; determine the values of the motion
vectors of the affine motion model for the current block of video data from the values of
the predictors and the decoded differences; determine based on the determined values of
the motion vectors of the affine motion model for the current block of video data, a
predictor block of video data; and reconstruct the current block of video data based on
the predictor block of video data.

[0010] In another example, a device for encoding a block of video data includes: a

memory configured to store the video data; and one or more processing units
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implemented in circuitry. In this example, the one or more processing units are
configured to: determine values of motion vectors of an affine motion model of a
current block of video data, the motion vectors of the affine motion model identifying a
predictor block of video data for of the current block of video data; obtain values of
motion vectors of an affine motion model of a neighboring block of video data; derive,
from the values of the motion vectors of the affine motion model of the neighboring
block of video data, values of predictors for motion vectors of an affine motion model
of the current block of video data; and encode, in an encoded video bitstream, a
representation of differences between the values of the motion vectors of the affine
motion model for the current block of video data and the values of the predictors.
[0011] In another example, a device for encoding or decoding video data includes:
means for obtaining, for a current block of video data, values of motion vectors of an
affine motion model of a neighboring block of video data; means for deriving, from the
values of the motion vectors of the affine motion model of the neighboring block of
video data, values of predictors for motion vectors of an affine motion model of the
current block of video data; means for obtaining differences between the values of the
motion vectors of the affine motion model for the current block of video data and the
values of the predictors; means for determining each of the values of the motion vectors
of the affine motion model for the current block of video data from the values of the
predictors and the decoded differences; and means for identifying, based on the
determined values of the motion vectors of the affine motion model for the current
block of video data, a predictor block of video data.

[0012] In another example, a computer-readable storage medium storing instructions
that, when executed, cause one or more processors of a video encoder or a video
decoder to: obtain, for a current block of video data, values of motion vectors of an
affine motion model of a neighboring block of video data; derive, from the values of the
motion vectors of the affine motion model of the neighboring block of video data,
values of predictors for motion vectors of an affine motion model of the current block of
video data; obtain differences between the values of the motion vectors of the affine
motion model for the current block of video data and the values of the predictors;
determine each of the values of the motion vectors of the affine motion model for the
current block of video data from the values of the predictors and the decoded
differences; and identify, based on the determined values of the motion vectors of the

affine motion model for the current block of video data, a predictor block of video data.
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[0013] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0014] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may be configured to perform the techniques of this disclosure.

[0015] FIG. 2 is a block diagram illustrating an example of video encoder that may be
configured to perform the techniques of this disclosure.

[0016] FIG. 3 is a block diagram illustrating an example of video decoder that may be
configured to perform the techniques of this disclosure.

[0017] FIGS. 4A and 4B are conceptual diagrams illustrating spatial neighboring
candidates in High Efficiency Video Coding (HEVC).

[0018] FIG. 5 is a conceptual diagram illustrating two-point motion vector affine with
four affine parameters.

[0019] FIG. 6 is a conceptual diagram illustrating an affine inter mode.

[0020] FIGS. 7A and 7B are conceptual diagrams illustrating candidates for an affine
merge mode.

[0021] FIG. 8 is a conceptual diagram illustrating a six-parameter affine motion model,
in accordance with one or more techniques of this disclosure.

[0022] FIG. 9 is a conceptual diagram illustrating affine motion vector evaluation, in
accordance with one or more techniques of this disclosure.

[0023] FIG. 10 is a conceptual diagram illustrating overlapped block motion
compensation (OBMC) in H.263.

[0024] FIGS. 11A and 11B are conceptual diagrams illustrating OBMC on top of
HEVC.

[0025] FIGS. 12A and 12B are conceptual diagrams illustrating sub-blocks where
OBMC may apply.

[0026] FIG. 13 is a flowchart illustrating an example method for performing affine
motion compensation by a video encoder (e.g., during a video encoding process), in

accordance with one or more techniques of this disclosure.
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[0027] FIG. 14 is a flowchart illustrating an example method for performing affine
motion compensation by a video decoder (e.g., during a video decoding process), in

accordance with one or more techniques of this disclosure.

DETAILED DESCRIPTION

[0028] In general, this disclosure describes techniques related to coding (e.g., encoding
or decoding) of affine motion information for a block of video data. In current video
coding standards, only translational motion models are applied for motion compensation
prediction (MCP). When using a translational motion model for MCP, video coders
(e.g., video encoders or video decoders) may utilize a single two-dimensional motion
vector (MV) for a current block that indicate a displacement between the current block
of video data and a corresponding predictor block of video data. The MVs may be two-
dimensional in that each MV may have an x-component indicating a horizontal
displacement between the current block of video data and the predictor block of video
data, and a y-component indicating a vertical displacement between the current block of
video data and the predictor block of video data. As discussed in further detail below,
in current video coding standards such as HEVC, there are two inter prediction modes,
named merge (skip is considered as a special case of merge) and advanced motion
vector prediction (AMVP) modes. In merge mode, the value of an MV of a current
block is directly inherited from the value of an MV candidate, which may be the value
of an MV of a neighboring block of the current block. By contrast, in AMVP mode, the
value of the MV candidate may be further refined. In particular, a video coder may
signal a value of a difference between the value of the MV candidate and the value of
the MV for the current block. The value of the difference may be referred to as a
motion vector difference (MVD).

[0029] However, there are many kinds of motions other than translational motions, such
as zoom in motion, zoom out motions, rotation motions, perspective motions, and other
irregular motions. Applying only the translational motion model for MCP in such test
sequences with irregular motions may affect the prediction accuracy and may result in
low coding efficiency. For instance, using only the translational motion model may
result in prediction blocks that are not as well matched to original blocks being coded.

As a result, the size of the residual data (i.e., values representing pixel differences
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between original blocks to be coded and the prediction block) may be increased, which
may reduce coding efficiency.

[0030] ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) are studying
the potential need for standardization of future video coding technology with a
compression capability that significantly exceeds that of the current HEVC standard
(including its current extensions and near-term extensions for screen content coding and
high-dynamic-range coding). The groups are working together on this exploration
activity in a joint collaboration effort known as the Joint Video Exploration Team
(JVET) to evaluate compression technology designs proposed by their experts in this
area. JVET has released a Joint Exploration Model (JEM) that describes the coding
features that are under coordinated test model study as potential enhanced video coding
technology beyond the capabilities of HEVC. In JEM, affine motion models are
proposed for application to MCP. A recent algorithm description of JEM, “Algorithm
Description of Joint Exploration Test Model 2,” Joint Video Exploration Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting: San Diego,
USA, 20-26 February 2016, Document: JVET-B1001 v3 (hereinafter “JEM test
model”) is available from phenix.it-

sudparis.eu/jvet/doc_end user/documents/2 San%20Diego/wgl1/JVET-B1001-v3.zip.
[0031] When using affine motion models for MCP, video coder may utilize multiple
motion vectors for a current block that collectively indicate an affine transformation
(e.g., translation, scaling, reflection, rotation, etc.) between the current block of video
data and a corresponding predictor block of video data. For instance, an affine motion
model may include a first two-dimensional motion vector indicating a displacement
between a top-left corner of a current block and a top-left corner of the corresponding
predictor block, and a second two-dimensional motion vector indicating a displacement
between a top-right corner of the current block and a top-right corner of the
corresponding predictor block. The motion vectors in an affine motion model may be
referred to as control point motion vectors (CPMVs) and may be referenced to a
location (i.e., a control point) on the current block. For instance, a two-dimensional
motion vector that indicates a displacement between a top-left corner of a current block
and a top-left corner of the corresponding predictor block may be referred to as the top-
left CPMYV of the current block. As discussed in further detail below, in the JEM test
model, there are two inter prediction modes, affine inter (e.g., AF_INTER) and affine

merge (e.g., AF. MERGE).
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[0032] In affine merge mode, the value for each CPMYV of a current block is directly
derived from the CPMVs of a single neighboring block of the current block that is
coded using an affine motion model. In other words, in affine merge mode, the CPMVs
of the neighboring block are merely warped to the CPMVs of the current block, and
there is no flexibility to change or adjust the affine model parameters. In particular, it is
not possible to modify the values of the CPMVs using MVDs.

[0033] In affine inter mode, the value for each CPMYV of a current block is derived
individually, based on the value of a MV of a block that neighbors the corresponding
control point and a MVD. The value of the MV that a CPMV is determined based on
may be referred to as a control point motion vector predictor (CPMVP). As one
example, the value of the top-left CPMV of a current block may be derived based on a
MYV of one of a left block, an above-left block, or an above neighboring block adjacent
to the top-left point of the current block and a MVD. As another example, the value of
the top-right CPMV of a current block may be derived based on a MV of one of an
above-right block or an above neighboring block adjacent to the top-right point of the
current block and a MVD.

[0034] In both HEVC and the JEM test model, a video encoder may signal the MVD
syntax (i.e., syntax elements that represent that value of the MVD) in the bitstream so
that the M'Vs can be reconstructed at the decoder side. The amount of data used to
signal the MVD syntax may be related to the size of the MVD value. For instance,
more data may be needed to signal the MVD syntax for MVDs with relatively larger
values as compared to MVDs with relatively smaller values.

[0035] However, the current technique of deriving the value for each CPMV based on
the value of a MV of a neighboring block of the corresponding control point may
present one or more disadvantages. As one example, the current technique does not
take advantage of the correlation of the affine motion model of a current block and the
affine motion model of a neighboring block.

[0036] In accordance with one or more techniques of this disclosure, a video coder may
determine values of motion vectors of an affine motion model of a current block of
video data based on values of motion vectors of an affine motion model of a particular
neighboring block of video data and values of differences between the values of the
motion vectors of the affine motion model for the current block of video data and the
values of the motion vectors that are derived based on the affine motion model of the

neighboring block of video data. For instance, a video coder may utilize the CPMVs of
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the neighboring block as CPMVPs for CPM Vs of the current block. As the CPMVs of
the neighboring block may be correlated with the CMPVs of the current block, the
differences (e.g., MVDs) between the predictors (e.g., the CPMVPs) and the motion
vectors (e.g., the CMPVs) of the current block may be reduced. In this way, as the
amount of data used to encode the differences may be proportional to the size of the
difference, the techniques of this disclosure may improve the efficiency of video
compression.

[0037] A four-parameter affine motion model has been advanced in Huawei
Technologies Co, Ltd “Affine transform prediction for next generation video coding”
Document ITU-T SG 16 (Study Period 2013) Contribution 1016, (hereinafter
“Contribution 10167) is available from itu.int/md/T13-SG16-C-1016/en. Contribution
1016 introduces a four-parameter affine model shown below in Equation (1).

ve=ax —by+c 1
{vysz+ay+d (1

[0038] Where (vox, voy) is the CPMYV for the top-left corner of a current block and (vix,
viy) is the CPMV for the top-right corner of the current block, the affine motion model,
also referred to as a motion vector field (MVF), may be represented in accordance with

Equation (2) below.

v, —V v, =V

x:(leOx)x_(lyWOy)y+v0x

2)

Oy =vo,) (v, —vo)) (
Vy: yw Yy X+ leOx y+v0y

[0039] The four-parameter affine model shown above in Equation (1) may present one
or more disadvantages. In particular, the four-parameter affine motion constrains the
affine parameters of the x and y components, forcing them to have symmetric scaling
properties. However, this constraint may not be true in diversified video content.
[0040] In accordance with one or more techniques of this disclosure, a video coder may
selectively utilize either a four-parameter affine motion model or a six-parameter affine
motion model. For instance, a video decoder may determine whether a current block is
coded using the four-parameter affine motion model shown above in Equation (1) or a
six-parameter affine motion model shown below in Equation (3).

ve=ax —by+c 3
{vy:dx+ey+f 3)

[0041] In some examples, the video decoder may determine which affine motion model

is used based on explicit signalling. For instance, the video coder may decode, from a
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bitstream, a syntax element that indicates whether the affine motion model for a current
block of video data comprises a four-parameter model or a six-parameter model. In
some examples, the syntax element may be coded in one or more of a video parameter
set (VPS), sequence parameter set (SPS), picture parameter set (PPS), and a slice header
referred to by the current block of video data. In some examples, the syntax element
may be coded at the coding unit (CU) level of a CU that includes the current block of
video data.

[0042] The processing and/or signaling requirements of the four-parameter model may
be lower than the processing and/or signaling requirements of the six-parameter model.
However, in some examples, the six-parameter model may result in prediction blocks
that better match the block being coded, which may reduce the size of the residual
values. As such, in some examples, a video encoder may balance the processing and
signaling costs of encoding a block using a six-parameter model against the benefits of
reduced residual values for the block and may select which model is more
advantageous. In this way, the techniques of this disclosure may further improve the
efficiency of video compression using affine motion models.

[0043] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for performing affine motion compensation of this
disclosure. As shown in FIG. 1, system 10 includes a source device 12 that provides
encoded video data to be decoded at a later time by a destination device 14. In
particular, source device 12 provides the video data to destination device 14 via a
computer-readable medium 16. Source device 12 and destination device 14 may
comprise any of a wide range of devices, including desktop computers, notebook (i.e.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, so-called “smart” pads, televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming device, or the like. In some
cases, source device 12 and destination device 14 may be equipped for wireless
communication.

[0044] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data

directly to destination device 14 in real-time. The encoded video data may be
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modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14.

[0045] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0046] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a

data storage medium, or other applications. In some examples, system 10 may be
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configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0047] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for
performing affine motion compensation of this disclosure. In other examples, a source
device and a destination device may include other components or arrangements. For
example, source device 12 may receive video data from an external video source 18,
such as an external camera. Likewise, destination device 14 may interface with an
external display device, rather than including an integrated display device.

[0048] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
performing affine motion compensation of this disclosure may be performed by any
digital video encoding and/or decoding device. Although generally the techniques of
this disclosure are performed by a video encoding device, the techniques may also be
performed by a video encoder/decoder, typically referred to as a “CODEC.” Moreover,
the techniques of this disclosure may also be performed by a video preprocessor.
Source device 12 and destination device 14 are merely examples of such coding devices
in which source device 12 generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical
manner such that each of devices 12, 14 include video encoding and decoding
components. Hence, system 10 may support one-way or two-way video transmission
between video devices 12, 14, e.g., for video streaming, video playback, video
broadcasting, or video telephony.

[0049] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. In each case, the captured,

pre-captured, or computer-generated video may be encoded by video encoder 20. The
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encoded video information may then be output by output interface 22 onto a computer-
readable medium 16.

[0050] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
[0051] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units. Display device 32 displays the decoded video data to a
user, and may comprise any of a variety of display devices such as a cathode ray tube
(CRT), a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0052] Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the High Efficiency Video Coding (HEVC) standard, also referred to
as ITU-T H.265. Alternatively, video encoder 20 and video decoder 30 may operate
according to other proprietary or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. The techniques of this disclosure, however, are not
limited to any particular coding standard. Other examples of video coding standards
include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects,
video encoder 20 and video decoder 30 may each be integrated with an audio encoder
and decoder, and may include appropriate MUX-DEMUX units, or other hardware and
software, to handle encoding of both audio and video in a common data stream or
separate data streams. If applicable, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the user datagram protocol

(UDP),
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[0053] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, processing
circuitry (including fixed function circuitry and/or programmable processing circuitry),
digital signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any
combinations thereof. When the techniques are implemented partially in software, a
device may store instructions for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware using one or more processors
to perform the techniques of this disclosure. Each of video encoder 20 and video
decoder 30 may be included in one or more encoders or decoders, either of which may
be integrated as part of a combined encoder/decoder (CODEC) in a respective device.
[0054] In general, according to ITU-T H.265, a video picture may be divided into a
sequence of coding tree units (CTUs) (or largest coding units (LCUs)) that may include
both luma and chroma samples. Alternatively, CTUs may include monochrome data
(i.e., only luma samples). Syntax data within a bitstream may define a size for the CTU,
which is a largest coding unit in terms of the number of pixels. A slice includes a
number of consecutive CTUs in coding order. A video picture may be partitioned into
one or more slices. Each CTU may be split into coding units (CUs) according to a
quadtree. In general, a quadtree data structure includes one node per CU, with a root
node corresponding to the CTU. If a CU is split into four sub-CUs, the node
corresponding to the CU includes four leaf nodes, each of which corresponds to one of
the sub-CUs.

[0055] Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there
is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

[0056] A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a CTU may be split into four child

nodes (also referred to as sub-CUs), and each child node may in turn be a parent node
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and be split into another four child nodes. A final, unsplit child node, referred to as a
leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syntax data associated with a coded bitstream may define a maximum number of times
a CTU may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). This disclosure uses the term “block” to refer to any of a CU,
prediction unit (PU), or transform unit (TU), in the context of HEVC, or similar data
structures in the context of other standards (e.g., macroblocks and sub-blocks thereof in
H.264/AVC).

[0057] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and is generally square in shape. The size of the CU may range from 8x8
pixels up to the size of the CTU with a maximum size, e.g., 64x64 pixels or greater.
Each CU may contain one or more PUs and one or more TUs. Syntax data associated
with a CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

[0058] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs (or
partitions of a CU) within a given CU defined for a partitioned CTU, although this may
not always be the case. The TUs are typically the same size or smaller than the PUs (or
partitions of a CU, e.g., in the case of intra prediction). In some examples, residual
samples corresponding to a CU may be subdivided into smaller units using a quadtree
structure known as a “residual quad tree” (RQT). The leaf nodes of the RQT may be
referred to as transform units (TUs). Pixel difference values associated with the TUs
may be transformed to produce transform coefficients, which may be quantized.

[0059] A leaf-CU may include one or more prediction units (PUs) when predicted using
inter-prediction. In general, a PU represents a spatial area corresponding to all or a
portion of the corresponding CU, and may include data for retrieving and/or generating
a reference sample for the PU. Moreover, a PU includes data related to prediction.

When the CU is inter-mode encoded, one or more PUs of the CU may include data
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defining motion information, such as one or more motion vectors, or the PUs may be
skip mode coded. Data defining the motion vector for a PU may describe, for example,
a horizontal component of the motion vector, a vertical component of the motion vector,
a resolution for the motion vector (e.g., one-quarter pixel precision or one-eighth pixel
precision), a reference picture to which the motion vector points, and/or a reference
picture list (e.g., List O or List 1) for the motion vector.

[0060] Leaf-CUs may also be intra-mode predicted. In general, intra prediction
involves predicting a leaf-CU (or partitions thereof) using an intra-mode. A video coder
may select a set of neighboring, previously coded pixels to the leaf-CU to use to predict
the leaf-CU (or partitions thereof).

[0061] A leaf-CU may also include one or more transform units (TUs). The transform
units may be specified using an RQT (also referred to as a TU quadtree structure), as
discussed above. For example, a split flag may indicate whether a leaf-CU 1is split into
four transform units. Then, each TU may be split further into further sub-TUs. When a
TU is not split further, it may be referred to as a leat-TU. Generally, for intra coding, all
the leat-TUs belonging to a leaf-CU share the same intra prediction mode. That is, the
same intra-prediction mode is generally applied to calculate predicted values for all TUs
of aleaf-CU. For intra coding, a video encoder may calculate a residual value for each
leaf-TU using the intra prediction mode, as a difference between the portion of the CU
corresponding to the TU and the original block. A TU is not necessarily limited to the
size of a PU. Thus, TUs may be larger or smaller than a PU. For intra coding,
partitions of a CU, or the CU itself, may be collocated with a corresponding leaf-TU for
the CU. In some examples, the maximum size of a leaf-TU may correspond to the size
of the corresponding leaf-CU.

[0062] Moreover, TUs of leat-CUs may also be associated with respective quadtree data
structures, referred to as residual quadtrees (RQTs). That is, a leat-CU may include a
quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU
quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree
generally corresponds to a CTU (or LCU). TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to
leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0063] A video sequence typically includes a series of video frames or pictures, starting
with a random access point (RAP) picture. A video sequence may include syntax data

in a sequence parameter set (SPS) that characteristics of the video sequence. Each slice
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of a picture may include slice syntax data that describes an encoding mode for the
respective slice. Video encoder 20 typically operates on video blocks within individual
video slices in order to encode the video data. A video block may correspond to a
coding node within a CU. The video blocks may have fixed or varying sizes, and may
differ in size according to a specified coding standard.

[0064] As an example, prediction may be performed for PUs of various sizes.
Assuming that the size of a particular CU is 2Nx2N, intra-prediction may be performed
on PU sizes of 2Nx2N or NxN, and inter-prediction may be performed on symmetric
PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN. Asymmetric partitioning for inter-
prediction may also be performed for PU sizes of 2NxnU, 2NxnD, nL.x2N, and nRx2N.
In asymmetric partitioning, one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the CU corresponding to the
25% partition is indicated by an “n” followed by an indication of “Up”, “Down,” “Left,”
or “Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU that is partitioned
horizontally with a 2Nx0.5N PU on top and a 2Nx1.5N PU on bottom.

[0065] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0066] Picture order count (POC) is widely used in video coding standards to identify a
display order of a picture. Although there are cases where two pictures within one coded
video sequence may have the same POC value, it typically does not happen within a
coded video sequence. When multiple coded video sequences are present in a bitstream,
pictures with a same value of POC may be closer to each other in terms of decoding
order. POC values of pictures are typically used for reference picture list construction,
derivation of reference picture set as in HEVC and motion vector scaling.

[0067] Motion compensation in HEVC is used to generate a predictor for the current

inter block. Quarter pixel accuracy motion vector is used and pixel values at fractional
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positions are interpolated using neighboring integer pixel values for both luma and
chroma components.

[0068] In HEVC, for each block, a set of motion information can be available. A set of
motion information contains motion information for forward and backward prediction
directions. Here, forward and backward prediction directions are two prediction
directions of a bi-directional prediction mode and the terms “forward” and “backward”
do not necessarily have a geometry meaning; instead they correspond to reference
picture list O (RefPicList0) and reference picture list 1 (RefPicListl) of a current picture.
When only one reference picture list is available for a picture or slice, only RefPicList0
is available and the motion information of each block of a slice is always forward.
[0069] For each prediction direction, the motion information must contain a reference
index and a motion vector. In some cases, for simplicity, a motion vector itself may be
referred in a way that it is assumed that it has an associated reference index. A reference
index is used to identify a reference picture in the current reference picture list
(RefPicListO or RefPicListl). A motion vector has a horizontal and a vertical
component.

[0070] In the HEVC standard, there are two inter prediction modes, named merge (skip
is considered as a special case of merge) and advanced motion vector prediction
(AMVP) modes respectively for a prediction unit (PU). In either AMVP or merge
mode, a motion vector (MV) candidate list is maintained for multiple motion vector
predictors. The motion vector(s), as well as reference indices in the merge mode, of the
current PU are generated by taking one candidate from the MV candidate list.

[0071] The MV candidate list contains up to five candidates for the merge mode and
only two candidates for the AMVP mode. A merge candidate may contain a set of
motion information, e.g., motion vectors corresponding to both reference picture lists
(list 0 and list 1) and the reference indices. If a merge candidate is identified by a merge
index, the reference pictures are used for the prediction of the current blocks, as well as
the associated motion vectors are determined. However, under AMVP mode for each
potential prediction direction from either list O or list 1, a reference index needs to be
explicitly signaled, together with an MVP index to the MV candidate list since the
AMYVP candidate contains only a motion vector. In AMVP mode, the predicted motion
vectors can be further refined.

[0072] As can be seen above, a merge candidate may correspond to a full set of motion

information while an AMVP candidate may contain just one motion vector for a specific
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prediction direction and reference index. The candidates for both modes are derived
similarly from the same spatial and temporal neighboring blocks. Further details of the
spatial neighboring candidates for merge and AMVP modes are discussed below with
reference to FIG. 4.

[0073] Video encoder 20 and video decoder 30 may be configured to perform motion
compensation using affine motion models. For instance, as opposed to only using a
translational motion model with a single two-dimensional motion vector (i.e., as in
HEVC), video encoder 20 and video decoder 30 may utilize an affine motion model that
includes multiple motion vectors. Further details of the use of affine motion models are
discussed below.

[0074] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain (also referred to as the pixel domain) and the TUs may comprise
coefficients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs to include quantized
transform coefficients representative of the residual data for the CU. That is, video
encoder 20 may calculate the residual data (in the form of a residual block), transform
the residual block to produce a block of transform coefficients, and then quantize the
transform coefticients to form quantized transform coefficients. Video encoder 20 may
form a TU including the quantized transform coefficients, as well as other syntax
information (e.g., splitting information for the TU).

[0075] As noted above, following any transforms to produce transform coefficients,
video encoder 20 may perform quantization of the transform coefficients. Quantization
generally refers to a process in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. The quantization process may reduce the bit depth associated with some
or all of the coefficients. For example, an n-bit value may be rounded down to an m-bit
value during quantization, where # is greater than m.

[0076] Following quantization, the video encoder may scan the transform coefficients,

producing a one-dimensional vector from the two-dimensional matrix including the
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quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the
quantized transform coefticients to form a one-dimensional vector, video encoder 20
may entropy encode the one-dimensional vector, e.g., according to context-adaptive
variable length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC),
syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval
Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video
encoder 20 may also entropy encode syntax elements associated with the encoded video
data for use by video decoder 30 in decoding the video data.

[0077] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0078] In general, video decoder 30 performs a substantially similar, albeit reciprocal,
process to that performed by video encoder 20 to decode encoded data. For example,
video decoder 30 inverse quantizes and inverse transforms coefficients of a received TU
to reproduce a residual block. Video decoder 30 uses a signaled prediction mode (intra-
or inter-prediction) to form a predicted block. Then video decoder 30 combines the
predicted block and the residual block (on a pixel-by-pixel basis) to reproduce the
original block. Additional processing may be performed, such as performing a
deblocking process to reduce visual artifacts along block boundaries. Furthermore,
video decoder 30 may decode syntax elements using CABAC in a manner substantially
similar to, albeit reciprocal to, the CABAC encoding process of video encoder 20.
[0079] Video encoder 20 may further send syntax data, such as block-based syntax data,

picture-based syntax data, and sequence-based syntax data, to video decoder 30, e.g, in
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a picture header, a block header, a slice header, or other syntax data, such as a sequence
parameter set (SPS), picture parameter set (PPS), or video parameter set (VPS).

[0080] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder or decoder circuitry, as applicable, such as one or more
microprocessors, processing circuitry (including fixed function circuitry and/or
programmable processing circuitry), digital signal processors (DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), discrete
logic circuitry, software, hardware, firmware or any combinations thereof. Each of
video encoder 20 and video decoder 30 may be included in one or more encoders or
decoders, either of which may be integrated as part of a combined video
encoder/decoder (CODEC). A device including video encoder 20 and/or video decoder
30 may comprise an integrated circuit, a microprocessor, and/or a wireless
communication device, such as a cellular telephone.

[0081] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for performing affine motion compensation of this disclosure.
Video encoder 20 may perform intra- and inter-coding of video blocks within video
slices. Intra-coding relies on spatial prediction to reduce or remove spatial redundancy
in video within a given video frame or picture. Inter-coding relies on temporal
prediction to reduce or remove temporal redundancy in video within adjacent frames or
pictures of a video sequence. Intra-mode (I mode) may refer to any of several spatial
based coding modes. Inter-modes, such as uni-directional prediction (P mode) or bi-
prediction (B mode), may refer to any of several temporal-based coding modes.

[0082] As shown in FIG. 2, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode
select unit 40, reference picture memory 64 (which may also be referred to as a decoded
picture buffer (DPB)), summer 50, transform processing unit 52, quantization unit 54,
and entropy encoding unit 56. Mode select unit 40, in turn, includes motion
compensation unit 44, motion estimation unit 42, intra-prediction unit 46, and partition
unit 48. For video block reconstruction, video encoder 20 also includes inverse
quantization unit 58, inverse transform unit 60, and summer 62. A deblocking filter
(not shown in FIG. 2) may also be included to filter block boundaries to remove
blockiness artifacts from reconstructed video. If desired, the deblocking filter would

typically filter the output of summer 62. Additional filters (in loop or post loop) may



WO 2017/200771 PCT/US2017/031258
22

also be used in addition to the deblocking filter. Such filters are not shown for brevity,
but if desired, may filter the output of summer 50 (as an in-loop filter).

[0083] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive encoding
of the received video block relative to one or more blocks in one or more reference
frames to provide temporal prediction. Intra-prediction unit 46 may alternatively
perform intra-predictive encoding of the received video block relative to one or more
neighboring blocks in the same frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an
appropriate coding mode for each block of video data.

[0084] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into CTUs, and
partition each of the CTUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of a CTU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

[0085] Mode select unit 40 may select one of the prediction modes, intra or inter, e.g.,
based on error results, and provides the resulting predicted block to summer 50 to
generate residual data and to summer 62 to reconstruct the encoded block for use as a
reference frame. Mode select unit 40 also provides syntax elements, such as motion
vectors, intra-mode indicators, partition information, and other such syntax information,
to entropy encoding unit 56.

[0086] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum

of square difference (SSD), or other difference metrics. In some examples, video
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encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference picture memory 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0087] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0088] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

[0089] Video encoder 20 may be configured to perform any of the various techniques of
this disclosure discussed above with respect to FIG. 1, and as will be described in more
detail below. For example, motion compensation unit 44 may be configured to code
motion information for a block of video data using AMVP or merge mode in accordance
with HEVC, and/or may be configured to code affine motion information or a block of
video data using affine inter mode or affine merge mode in accordance with the

techniques of this disclosure.



WO 2017/200771 PCT/US2017/031258
24

[0090] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra-prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction unit
46 may encode a current block using various intra-prediction modes, e.g., during separate
encoding passes, and intra-prediction unit 46 (or mode select unit 40, in some examples)
may select an appropriate intra-prediction mode to use from the tested modes.

[0091] For example, intra-prediction unit 46 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteristics among the tested modes.
Rate-distortion analysis generally determines an amount of distortion (or error) between
an encoded block and an original, unencoded block that was encoded to produce the
encoded block, as well as a bitrate (that is, a number of bits) used to produce the encoded
block. Intra-prediction unit 46 may calculate ratios from the distortions and rates for the
various encoded blocks to determine which intra-prediction mode exhibits the best rate-
distortion value for the block.

[0092] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may
provide information indicative of the selected intra-prediction mode for the block to
entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 may include in the
transmitted bitstream configuration data, which may include a plurality of intra-prediction
mode index tables and a plurality of modified intra-prediction mode index tables (also
referred to as codeword mapping tables), definitions of encoding contexts for various
blocks, and indications of a most probable intra-prediction mode, an intra-prediction
mode index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0093] Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising transform coefficient values. Wavelet transforms, integer transforms,
sub-band transforms, discrete sine transforms (DSTs), or other types of transforms

could be used instead of a DCT. In any case, transform processing unit 52 applies the
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transform to the residual block, producing a block of transform coefficients. The
transform may convert the residual information from a pixel domain to a transform
domain, such as a frequency domain. Transform processing unit 52 may send the
resulting transform coefficients to quantization unit 54. Quantization unit 54 quantizes
the transform coefficients to further reduce bit rate. The quantization process may
reduce the bit depth associated with some or all of the coefficients. The degree of
quantization may be modified by adjusting a quantization parameter.

[0094] Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the
case of context-based entropy coding, context may be based on neighboring blocks.
Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

[0095] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain. In particular, summer 62 adds the reconstructed residual block to
the motion compensated prediction block earlier produced by motion compensation unit
44 or intra-prediction unit 46 to produce a reconstructed video block for storage in
reference picture memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

[0096] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for performing affine motion compensation of this disclosure. In
the example of FIG. 3, video decoder 30 includes an entropy decoding unit 70, motion
compensation unit 72, intra prediction unit 74, inverse quantization unit 76, inverse
transformation unit 78, reference picture memory 82 and summer 80. Video decoder 30
may, in some examples, perform a decoding pass generally reciprocal to the encoding
pass described with respect to video encoder 20 (FIG. 2). Motion compensation unit 72
may generate prediction data based on motion vectors received from entropy decoding
unit 70, while intra-prediction unit 74 may generate prediction data based on intra-

prediction mode indicators received from entropy decoding unit 70.
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[0097] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors or intra-
prediction mode indicators, and other syntax elements. Entropy decoding unit 70
forwards the motion vectors to and other syntax elements to motion compensation unit
72. Video decoder 30 may receive the syntax elements at the video slice level and/or
the video block level.

[0098] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 74
may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (i.e., B or P) slice,
motion compensation unit 72 produces predictive blocks for a video block of the current
video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List O and List 1, using default construction
techniques based on reference pictures stored in reference picture memory 82.

[0099] Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 72 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice or P slice), construction information for one or more of the reference
picture lists for the slice, motion vectors for each inter-encoded video block of the slice,
inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0100] Video decoder 30 may be configured to perform any of the various techniques of
this disclosure discussed above with respect to FIG. 1, and as will be discussed in more
detail below. For example, motion compensation unit 72 may be configured to perform
motion vector prediction using AMVP or merge mode in accordance with HEVC,
and/or may be configured to perform affine motion information or a block of video data

using affine inter mode or affine merge mode in accordance with the techniques of this
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disclosure. Entropy decoding unit 70 may decode one or more syntax elements
representing how motion information is coded for the current block.

[0101] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0102] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

[0103] Inverse transform unit 78 applies an inverse transform, e.g., an inverse DCT, an
inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

[0104] After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
unit 78 with the corresponding predictive blocks generated by motion compensation
unit 72. Summer 80 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the
decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or
otherwise improve the video quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 82, which stores reference pictures
used for subsequent motion compensation. Reference picture memory 82 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

[0105] FIGS. 4A and 4B are conceptual diagrams illustrating spatial neighboring
candidates in High Efficiency Video Coding (HEVC). As discussed above, spatial MV
candidates may be derived from the neighboring blocks for a specific PU (PUo),
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although the methods generating the candidates from the blocks differ for merge and
AMVP modes.

[0106] FIG. 4A illustrates an example of how a video coder may derive spatial MV
candidates in merge mode. In merge mode, up to four spatial MV candidates can be
derived with the orders showed on FIG. 4A with numbers, and the order is the
following: left (0), above (1), above right (2), below left (3), and above left (4), as
shown in FIG. 4A.

[0107] FIG. 4B illustrates an example of how a video coder may derive spatial MV
candidates in AVMP mode. In AVMP mode, the neighboring blocks are divided into
two groups: left group consisting of the block 0 and 1, and above group consisting of
the blocks 2, 3, and 4 as shown on FIG. 4B. For each group, the potential candidate in a
neighboring block referring to the same reference picture as that indicated by the
signaled reference index has the highest priority to be chosen to form a final candidate
of the group. It is possible that all neighboring blocks do not contain a motion vector
pointing to the same reference picture. Therefore, if such a candidate cannot be found,
the first available candidate will be scaled to form the final candidate; thus the temporal
distance differences can be compensated.

[0108] FIG. 5 is a conceptual diagram illustrating two-point motion vector affine with
four affine parameters. As shown in FIG. 5, (vox, voy) denoted as vo is the CPMYV for
top-left corner 502 of current block 500 and (vix, v1y) denoted as v1 is the CPMYV for top-
right corner 504 of current block 500. As discussed above, the CMPVs for current
block 500 may form a motion vector field (MVF) represented in accordance with
Equation (2), above.

[0109] In the JEM test model, the affine motion prediction is only applied to square
blocks. As natural extension, the affine motion prediction can be applied to non-square
blocks.

[0110] FIG. 6 is a conceptual diagram illustrating an affine inter mode. For block (e.g.,
CUs/PUs) having a size that is equal to or larger than 16x16, a video coder (e.g., video
encoder 20 and/or video decoder 30) may apply an affine inter (AF_INTER) mode as
follows. In some examples, if the current block (e.g., current CU/PU) is in affine inter
mode, the video coder may signal an affine flag in CU/PU level in the bitstream. The
video coder may construct a candidate motion vector list for the current using motion
vectors of neighboring valid reconstructed blocks of the current block. For instance, as

shown in the example FIG. 6, the candidate motion vector predictors for the top-left
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CPMYV v, may be selected from the motion vectors of the block 602A, 602B, and 602C
(i.e., neighboring blocks in contact with the top-left corner of current block 600). The
video coder may scale the motion vector from the neighbour block according to the
reference list and the relationship among the POC of the reference for the neighbour
block, the POC of the reference for the current CU/PU and the POC of the current
CU/PU. The video coder may perform a similar approach to select candidate motion
vector predictors for top-right CPMV v, from the neighbour block 602D and 602E (i.e.,
neighboring blocks in contact with the top-right corner of current block 600). As such,

in some examples, the candidate list may be represented as {(VO,Vl) vy =

{Ve024, V6028, Veo2ch V1 = {V602D,V602E}}~

[0111] If the number of candidate list is smaller than a threshold (e.g., two, three, or
four), the video coder may assign the candidates of AMVP to vy and v;. The video
coder may utilize the rate-distortion optimization (RDO) cost of the current block to
determine which (v, v,) to select as the control point motion vector prediction
(CPMVP) of the current block. The video coder may signal the index to indicate the
position of the CPMVP in the candidate list in the bitstream.

[0112] Based on the CPMVP of the current affine block, the video coder may apply
affine motion estimation to determine the CPMV. The video coder may code a
representation of a difference between CPMV and the CPMVP in the bitstream.

[0113] The video coder may perform affine motion compensation prediction as
described above to generate the residues of the current block. The video coder may
transform and quantize the generated residues of the current block, and code the
quantized residues into the bitstream (e.g., in a manner similar to HEVC).

[0114] FIGS. 7A and 7B are conceptual diagrams illustrating candidates for an affine
merge mode. When applying affine merge (AF_ MERGE) mode to a current bock, a
video coder (e.g., video encoder 20 and/or video decoder 30) may obtain the first block
coded with affine mode from the valid neighbour reconstructed blocks of the current
block. In some examples, the video coder may parse the neighbor reconstructed blocks
in a particular selection order to obtain the first block coded with affine mode. FIG. 7A
illustrates an example selection order. As shown in FIG. 7A, the selection order may be
as follows: left block 702A, above block 702B, above-right block 702C, left-bottom
block 702D, to above-left block 702E.
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[0115] FIG. 7B illustrates an example where the left block is the first block in the
selection order coded with affine more. As shown in FIG. 7B, the video coder may
derive the motion vectors of the top-left corner (v2), above-right corner (v3) and left-
bottom corner (v4) of CU/PU 704 which contains the selected block 1002A. The video
coder may determine/calculate the motion vector of the top-left corner of current block
700 (i.e., vo) and the motion vector of the top-right corner of current block 700 (i.e., v1)
based on the derived motion vectors of the selected block (i.e., v2, v3, and va).

[0116] The video coder may determine the MVF of current block 700 based on the
CPMVs of current block 700 vy and vi1 in accordance with the simplified affine motion
model described above in Equation (2). The video coder may apply affine MCP using
the MVF as described above.

[0117] In order to identify whether the current block is coded with affine merge mode,
the video coder may signal an affine flag in the bitstream when there is at least one
neighbour block coded in affine mode. If no affine block neighbour exists for the
current block, the video coder may omit coding the affine flag in the bitstream or may
code the affine flag to indicate that no affine block neighbor exists for the current block.
[0118] As discussed above, the existing affine motion model methods (e.g., in the JEM
test model and Contribution 1016) present several problems and/or have several
disadvantages. As one example, in Contribution 1016, the four-parameter affine motion
has posed a constraint on the affine parameters in MVx and MVy forcing them to have
symmetric scaling properties. This constraint may not be true in diversified video
content.

[0119] As another example, the affine merge mode relies on a pre-defined checking
order which is mainly relying on the bottom-left corner and above-right corner. This
pre-defined order has placed top-left corner in the lowest priority, while this corner
information is heavily used in the following affine model derivation.

[0120] As another example, the affine merge can only inherit the neighboring model by
warping the neighboring block corner MV to the current block corner. There is no
flexibility to change or adjust the affine model parameters when inheriting the
neighboring affine model.

[0121] In accordance with one or more techniques of this disclosure, a video coder may
code a syntax element that indicates how a predictor block of video data is identified.
For instance, a video coder may code a syntax element that indicates whether a four-

parameter or a six-parameter affine model is used to identify a predictor block of video
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data for a current block of video data. By enabling selection between a four-parameter
and a six-parameter affine model, the techniques of this disclosure may enable the
motion vectors to have non-symmetric scaling properties, which may improve coding
efficiency.

[0122] In some examples, the video coder may code the syntax element at the coding
unit (CU) level. For instance, a flag may be introduced in the CU level to indicate
whether four-parameter or six-parameter affine motion model is used for a current block
in the CU.

[0123] In some examples, the video coder may code the syntax element in a skip mode
syntax or a merge mode syntax referred to by the current block of video data. For
instance, a flag may be introduced in the Skip or Merge mode to indicate whether four-
parameter or six-parameter affine motion model is used for the current block.

[0124] In some examples, the video coder may code the syntax element in an inter
mode syntax referred to by the current block of video data. For instance, a flag may be
introduced in the inter mode (if the current block is neither Skip, nor Merge mode) to
indicate whether four-parameter or six-parameter affine motion model is used for the
current block.

[0125] In some examples, as opposed to only indicating whether a predictor block of
video data for a current block of video data is identified using a four-parameter affine
model or a six-parameter affine model, a video coder may code the syntax element to
indicate whether a predictor block of video data for a current block of video data is
identified using a single motion vector, a four-parameter affine model, a six-parameter
affine model, or switchable four/six-parameter affine model. For instance, one syntax
element in a sequence parameter set (SPS), a Picture Parameter Set (PPS) and/or slice
header may be present to signal which one of the following cases is used for current
sequence/picture/slice, 1) disabled affine, 2) 4-parameter affine, 3) 6-parameter affine,
4) 4-/6- switchable affine. The syntax element can be coded using unary, truncated
unary, or fixed length codeword.

[0126] In some examples, a video coder may code an enabling syntax element that
indicates whether a number of parameters used in affine models used to identify
predictor blocks of video data is switchable. For instance, the video coder may code a
flag in a sequence parameter set (SPS), a Picture Parameter Set (PPS) and/or slice
header to indicate whether switchable affine model is enabled for pictures referring to

the SPS or PPS or the slice header.
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[0127] Where the enabling syntax element indicates that that the number of parameters
used in affine models used to identify predictor blocks of video data is switchable (e.g.,
where the enabling syntax element is a flag with value 1), the video coder may code a
syntax element that indicates whether a four-parameter or a six-parameter affine model
is used to identify a predictor block of video data for a current block of video data as
discussed above. For instance, where the enabling syntax element indicates that that the
number of parameters used in affine models used to identify predictor blocks of video
data is switchable (e.g., where the enabling syntax element is a flag with value 1), four-
and six-parameter affine models are both enabled and an additional flag for each block
may be signaled to indicate the usage of four or six-parameter models.

[0128] Where the enabling syntax element indicates that that the number of parameters
used in affine models used to identify predictor blocks of video data is not switchable
(e.g., where the enabling syntax element is a flag with value 0), the video coder may
determine that a four-parameter affine model is used (i.e., if affine is used). In such
examples, the video coder may omit coding of the syntax element that indicates whether
a four-parameter or a six-parameter affine model is used to identify the predictor block
of video data for the current block of video data.

[0129] In some examples, one or more of the above-described syntax elements (i.e., the
affine parameter (four-parameter or six-parameter) flag and/or the enabling syntax
element) may be coded using a CABAC context model depending on neighboring block
affine parameter usage. In one example, the current affine parameter context index
CtxVal depends on the left and above neighboring blocks. If the left neighboring block
is not available, or not affine mode, or six-parameter affine, the leftCtx is set equal to 0;
otherwise (left available, and six-parameter affine mode) the leftCtx is set equal to 1.
Similar calculation can be calculated for the above neighboring block to get aboveCtx.
Then CtxVal of the current block is set equal to leftCtx+aboveCtx. In this case, CtxVal
is in the range of [0, 2] inclusively. Other variations of setting leftCtx (aboveCtx) are
also possible. For instance, leftCtx (aboveCtx) is set equal to O if left (above)
neighboring block is not available, or not affine coded; 1 if the left (above) neighboring
block is using four-parameter affine; 2 if the left (above) neighboring block is using six-
parameter affine. In this case, CtxVal is in the range of [0, 4] inclusively.

[0130] In some examples, one or more of the above-described syntax elements (i.e., the
affine parameter (four-parameter or six-parameter) flag and/or the enabling syntax

element) may be coded using CABAC context model depending on the current block
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size and a block size threshold may be used to differentiate different contexts. For
instance, context O is used for block size equal or smaller than 16 x16; while context 1 is
used for block size larger than 16 x16. The threshold may be predefined or signaled in
bitstream. The size of the block could be specified by the width and height of the
current block separately or jointly. For example, the size can be represented by the
value of width*height.

[0131] In some examples, one or more of the above-described syntax elements (i.e., the
affine parameter (four-parameter or six-parameter) flag and/or the enabling syntax
element) can also be coded using CABAC bypass mode without any context.

[0132] FIG. 8 is a conceptual diagram illustrating a six-parameter affine motion model,
in accordance with one or more techniques of this disclosure. A four-parameter affine
model may include two motion vectors and a six-parameter affine model may include
three motion vectors. In some examples, such as when the six-parameter affine motion
model is used, a video coder may code three motion vector differences (MVD) in the
bitstream for inter mode. The three motion vector predictors may be generated from
neighboring motion vectors, or derived from neighboring motion vectors. The
neighboring motion vectors may or may not be affine motion vectors. For instance,
three motion vectors in the current block vo (MVO0), vi (MV1), and v2 (MV2) in the three
corners of current block 800 may to be coded as shown in FIG. 8. In order to predict vo,
the motion vectors of 802A (above-left), 802B (above) and 802C (left) are possible
candidates. Similarly, the motion vectors of 802D (above) and 802E (above-right) are
possible candidates for predicting v1, and the motion vectors of 802F (left) and 802G
(below-left) are possible candidates for predicting v2. In some examples, the first
available candidate for each position in a predefined checking order is directly used as
its predictor.

[0133] The three motion vector predictors can be selected from a list of combinations
using a validation, sorting and de-duplication scheme and only the first few K
combinations are used as possible predictors, where K >=1. In some examples, the
video coder may generate a full combination of all the predictors using neighboring
available motion vectors. As shown in FIG. 8, there may be a total of 3x2x2 =12
combinations.

[0134] In the first step, for each combination, the video coder may perform a validation
checking. If MVO is equal to MV1 and MVO is equal to MV2, this combination is

invalid; otherwise, it is valid. In the second step, the video coder may perform a sorting
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based on parameter similarity. For instance, if the current block is using six-parameter
affine mode as follows where a, b, c, d, e, and f are model parameters, the affine motion
model may be represented in accordance with Equation (3), reproduced below.

ve=ax —by+c 3
{vy:dx+ey+f (3)

[0135] Using the six-parameter affine model, the three corner motion vectors can be

represented as follows:

{Aﬁ@_%:c
MVO_v, =f

MV1_ v =axwidth+c
MV1_v, =dxwidth+ f )

MV2 v =bxheight +c
{MVZ_vy =ex height + f
[0136] FIG. 9 is a conceptual diagram illustrating affine motion vector evaluation, in
accordance with one or more techniques of this disclosure. In order to evaluate the
model correctness, this disclosure introduces a parameter called estimated difference
(ED). At the same time, two neighboring block MVs may be used in the evaluation
process highlighted in neighboring block 902H and 9021 which located half in the width

and half in the height as shown in FIG. 9. Thus there is:

{MVH_VX =axwidth/2+c

MVH v, =dxwidth/2+ f
()

MVI _v_=bxheight/2+c
MVI _v, =exwidth/2+ f

[0137] Among all the combinations, the first few K least ED combinations may be
selected as the final predictor. The following is an example ED calculation:
Aax height = abs(MV1 v -MVO v )-(MVH v —-MVO v )x2)xhe
Abxwidth =abs(MV2 v —-MVO v )—(MVI v -MVO v )x2)xwid ((
Ad x height = abs((MV1_v,—-MVO_v )-(MVH _v,—MVO_v )x2)xh 6)
Aexwidth =abs(MV2_v.—MVO_v)—(MVI _v,-MVO_v )x2)xwia
[0138] The video coder may set ED equal to the summation of the four elements above.

ED = Aa+ Ab+ Ad + Ae (7)
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[0139] In some examples, the video coder may perform a sorting based on affine
motion vector similarity. In one example, given three motion vectors, the video coder
may predict the fourth motion vector using six-parameter affine model. The prediction
difference may be added in ED and the first few combination with smallest ED may be
chosen as MV prediction candidates.

[0140] The motion vector predictors can be generated across the other predictors using
four-parameter affine model. For instance, given the first two reconstructed MVs, the
video coder may generate a third MV predictor using the four-parameter affine model.
For example, the MV predictor for MV2 can by derived based on MV0 and MV1 of the
current block by using Equation (2) above.

[0141] In some examples, the affine motion vector predictor can be generated from the
previously coded affine motion vectors within the current frame. In one example, a set
of N (N >=0) affine motion vectors can be initialized at the beginning of each frame,
and after coding each affine block, the list is updated with the recently coded affine
motion vectors and an index is signaled to indicate the chosen affine motion predictor
among the list. The video coder may use truncated unary, or flag plus truncated unary
code to code the index.

[0142] In some examples, a set of K (K >= 0) affine model parameters are initialized at
the beginning of each frame. After each affine block is coded, the set of parameters are
updated with the coded affine model parameters. For instance, in the six-parameter
model, the video coder may maintain a list of N vectors, where each vector being
represented by {ai, bi, ci, di, ei, fi} with six elements. Similarly, in the four-parameter
mode, the video coder may maintain a list of M vectors {aj, bj, ¢, dj}. Note that M and
N may or may not be the same.

[0143] In above-mentioned techniques, for affine inter mode, the video coder may
derive the motion vector predictor of each MV of the affine model individually, by
using the MVs of its neighboring position. In accordance with one or more techniques
of this disclosure, when affine motion is used by a neighboring block, a video coder
may use the affine motion model of the neighboring block can predict all the MVs of
the affine motion model of the current block, i.e. the predictors of MV0O and MV1 (and
MV2 for six-parameter models) of the current affine model is extrapolated from the
affine motion of a neighboring block, and then code the MVD.

[0144] The different prediction methods mentioned above can be used jointly. For

example, a flag or index can be signaled to indicate which MV prediction method is
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used. In some examples, the predictors derived by using the different prediction
methods mentioned above are used to generate a MV predictor candidate list, and a flag
or index is used to indicate which candidate is used to predict the current affine motion
model.

[0145] When a four-parameter affine motion model is used, either “MV0 and MV1” or
“MVO0 and MV2” (vo and v1 or vo and v2 as shown in FIG. 8) can be used to represent the
affine motion of the current CU/PU. When width and height of the current CU/PU is
different, a certain kind of rule can be used to determine which pair of motion vectors is
used.

[0146] In one example, when the width is larger than or equal to (or just larger than)
height or the ration of width and height is greater than a threshold, the pair of MVO0 and
MV 1 may be used, otherwise the pair of MV0 and MV2 may be used. The threshold
may be block size dependent or width/height dependent.

[0147] The techniques can be applied to both affine merge mode and affine inter mode,
or only applied in one of them, e.g., affine merge mode.

[0148] The video coder may use a particular checking/evaluation order to select a
neighboring block (e.g., in merge mode). In some examples, the video coder may use
the following order to check neighboring blocks for affine merge mode: Above -> Left -
>Above Left ->Above Right -> Below Left. This order corresponds to the blocks in
FIG.9as D ->F -> A -> E -> G. When the neighboring blocks are not available or not
affine coded block, the video coder may apply the checking in the pre-defined order
until all the five candidates are checked.

[0149] In some examples, if there are no available neighboring affine motion blocks,
the video coder may insert certain default or pre-defined or pre-calculated affine motion
models as the candidate for the merge mode. The inserted models can be initialized as
the picture level, and may be updated on the fly.

[0150] In some examples, if there are no valid neighboring affine models, the video
coder may perform the insertion of default or pre-defined or pre-calculated affine
motion models after checking the neighboring blocks according to the “Above -> Left -
>Above Left ->Above Right -> Below Left” order.

[0151] In some examples, the video coder may code an affine merge index to indicate
which neighboring affine models are copied for the current block and truncated unary,
or unary, or exponential Golomb, or Golomb family codeword, or concatenation of

these can be used to code the index.
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[0152] Switchable four-parameter and six-parameter affine model derived/inferred from
other information. In some examples, the video coder may derive the affine parameter
from inter prediction direction information. For each block, if it is coded using inter
mode, the prediction reference frame index can be from refList0O, or from refList1, or
both refListO and refList]l. In accordance with one or more techniques of this
disclosure, when uni-prediction is used (either predicted from refListO, or predicted
from refListl), a video coder may use a six-parameter affine model in which three
motion vector differences are coded in the bitstream. When bi-prediction is used
(predicted from both refListO and refListl), a video coder may use a four-parameter
affine model in which two motion vector differences are coded in the bitstream. In
some of such examples, the video coder may omit coding of syntax element that
explicitly indicate whether a four-parameter or a six-parameter affine model is used to
identify one or more predictor blocks of video data for a current block of video data.
[0153] In accordance with one or more techniques of this disclosure, for bi-prediction
block, when L1ZeroMVDFlag is on, a video coder may enable six-parameter affine
model for refList] although there is no MVD transmitted. In this case, the video coder
may generate the motion compensated predictor through the six-parameter affine model
established by the three motion vector predictors

[0154] In some examples, the affine parameter can be derived from neighboring block.
If the majority of neighboring blocks are using four-parameter affine mode, the current
block also uses four-parameter affine model. Similarly, when the majority of
neighboring blocks are using six-parameter affine model (number of six-parameter
affine is larger than that of four-parameter affine), the current block also uses six-
parameter affine model. A counter can be used to calculate the number of neighboring
blocks in certain unit size (for 4x4 block) in determining the majority neighboring affine
usage. When there is no neighboring affine model, six -parameter affine model is used
as a default mode (alternatively, four-parameter affine model is used as default). When
the number of four-parameter affine model is equal to that of six -parameter model, six -
parameter affine model is used as default (alternatively, four-parameter affine model is
used as default).

[0155] Cross-frame determination of affine model flags and motion vectors. In
accordance with one or more techniques of this disclosure, a video coder may use the
cross-frame affine motion model parameters instead of explicitly signaling the affine

parameter flags (four or six-parameter mode) or affine motion vector information. In
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one example, the current block inherits the affine parameter model flag from the
collocated block. The collocated block is from the same location but in the previously
coded picture at the same temporal level. The collocated block may or may not have the
same partition size with the current block. In accordance with one or more techniques
of this disclosure, a video coder may check all the sub-blocks (in the unit of 4x4) in the
collocated region, and the majority of affine model is used for the current block. If
there is no affine model in the collocated region, the video coder may explicitly code the
four or six-parameter switching flag. In some examples, 6 (or 4)-parameter affine is
used as default. In some examples, to reduce the complexity, the first affine sub-block in
the collocated region in the raster scanning order is checked and inherited by the current
block.

[0156] In another example, the current block inherits the affine motion model
parameters {a, b, c, d, e, f} or {a, b, ¢, d} directly from the collocated block. The
collocated block is from the same location but in the previously coded picture with the
same temporal level. The collocated block may or may not have the same partition size
with the current block. In accordance with one or more techniques of this disclosure, a
video coder may check all the sub-blocks (in the unit of 4x4) in the collocated region,
and the current block inherits the motion model parameters of the majority affine area.
If there is no affine mode in the collocated region, the video coder may explicitly code a
four or six-parameter switching flag. In some examples, six (or four)-parameter affine
is used as default. In some examples, to reduce the complexity, the first affine sub-
block in the collocated region in the raster scanning order is checked and inherited by
the current block. In some examples, a combination of the above examples can be used
together. A video coder may code a flag to indicate if such an inheritance is used or not
in different levels, such as PU, CU level, PPS, or SPS.

[0157] Affine motion compensation given the affine parameter information. In the
reconstruction process, given three motion vector (for instance the corner motion vector
in the current block), a six-parameter affine model can be established by solving
Equation (4). Given the six-parameter model, the per-pixel motion vector can be
calculated by substituting the pixel position (x, y) into Equation (3). To reduce the
motion compensation complexity, one motion vector can be used for each sub-block
KxK, where K is an integer equal to or larger than 1. The representative motion vector
can be calculated using the top-left pixel position within the KxK sub-block, or using

the center position of the KxK sub-block. The size K can be signaled explicitly, or set
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as a default value, or calculated on the fly based on whether the group of pixel share the
same motion vector.

[0158] Affine motion vector coding. Predictors from the neighboring valid (in terms of
affine model validation) and de-duplicated motion vectors may be used to
identify/predict the current affine motion vector. Predictors from the latest previously
de-duplicated coded affine motion vectors may be maintained to identify/predict the
current affine motion vector. The number of predictors may be K where K is an integer
equal or larger than 1. Such predictors form an affine predictor list. K may be
predefined or signaled in bitstream.

[0159] In some examples, a combination of both of the above techniques may be used
to maintain the predictor list. For instance, a video coder may use predictors from the
neighboring valid (in terms of affine model validation) and de-duplicated motion
vectors along with predictors from the latest previously de-duplicated coded affine
motion vectors to identify/predict the current affine motion vector.

[0160] The video coder may explicitly signal a predictor index in the bitstream to
indicate the predictor usage. Three MVDs may be coded in case of six-parameter
model, while two MVDs may be coded in case of four-parameter model.

[0161] The MVD may use different binarization method from traditional MVD coding.
In one example, the affine MVD is coded using a separate context modeling. In another
example, the affine MVD coding shares the same MVD coding context modeling with
traditional inter MVD coding (i.e., as in HEVC).

[0162] The MVD may use different binarization method for each MVD based on the
relative location in the block with either four-parameter or six-parameter affine model.
In one example, the affine MVD may be coded using different context modeling based
on the relative location in the block with either four-parameter or six-parameter affine
model.

[0163] A flag may be signaled to indicate whether the MVD in both directions (X and
Y directions) are zero for one or all of the affine motion vectors to further improve the
motion vector coding. If such a flag (AllZeroFlag) is 1, a novel MVD coding is
introduced to jointly code MVD_ x and MVD y. Specifically, if AllZeroFlag is 1, both
MVD_ x and MVD y are inferred to be zero, otherwise, if MVD x is zero, MVD y
must be nonzero. In this case, abs(MVD y) - 1 is coded. In other words, for each

motion vector, a flag AllZeroFlag is signaled followed by two MVD coding if
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AllZeroFlag is zero. For four-parameter affine, for each list, two AllZeroFlags are
coded; while for six-parameter affine, for each list, three AllZeroFlags are coded.

[0164] In some examples, AllZeroFlag can be extended and represent all zero MVD in
both reference lists in bi prediction. For instance, in four-parameter affine, totally two
AllZeroFlags are coded for two reference lists; in six-parameter affine, totally three
AllZeroFlags are coded for two reference lists.

[0165] FIG. 10 illustrates an example of overlapped block motion compensation
(OBMC). Proposed in the development of H.263, OBMC is performed on an 8x8
block, and motion vectors of two connected neighboring 8x8 blocks are used for a
current block. For example, for a first 8x8 block in current macroblock, besides the
motion vector of the first 8x8 block, the above and left neighboring motion vectors of
the first 8x8 block are also applied to generate two additional prediction blocks.
Similarly, for a second 8x8 block in the current macroblock, besides the motion vector
of the second 8x8 block, the above and right neighboring motion vectors of the second
8x8 block are also applied to generate two additional prediction blocks. For instance, in
the example of FIG. 10, the motion vectors of block 1004A and block 1004B may be
used to generate additional prediction blocks for 8x8 block 1002A of 16x16 macroblock
1000, and the motion vectors of block 1006A and block 1006B may be used to generate
additional prediction blocks for 8x8 block 1002B of macroblock 1000. In this way,
each pixel in the current 8x8 block may have three prediction blocks and weighted
average of these three prediction values may be used as the final prediction block.
[0166] When a neighboring block is not coded or coded as intra (i.e., the neighboring
block does not have an available motion vector), the motion vector of current 8x8 block
is used as the neighboring motion vector. Meanwhile, for the third and fourth 8x8 block
of current macroblock (as shown in FIG. 10), the below neighboring block is always not
used. For instance, as shown in the example of FIG. 10, the motion vector of block
1008B is not used to generate an additional prediction block for 8x8 block 1002C
because block 1008B is considered not to be coded and the motion vector of block
1010B is not used to generate an additional prediction block for 8x8 block 1002D
because block 1010B is considered not to be coded. In other words, for each
macroblock, no motion information from macroblocks below it will be used to
reconstruct the pixels of the current macroblock during the OBMC.

[0167] FIGS. 11A and 11B are conceptual diagrams illustrating OBMC in HEVC. In
HEVC, OBMC was also proposed to smooth the PU boundary in U.S. Patent
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Application Publication No. 2013/0128974A1 and U.S. Patent Application Publication
No. 2012/0177120A1. An example of the proposed method is illustrated FIGS. 11A
and 11B. In FIGS. 11A and 11B, the white regions each are a first PU 1102 (PUO) and
the shaded regions each are a second PU 1104 (PU1). When a CU contains two (or
more) PUs, lines/columns near the PU boundary are smoothed by OBMC. For pixels
marked with “A” or “B” in PUO 1102 or PU1 1104, two prediction values are generated,
e.g., by applying motion vectors of PUO and PU1 respectively, and weighted average of
them are used as the final prediction.

[0168] FIGS. 12A and 12B are conceptual diagrams illustrating sub-blocks where
OBMC may apply. In the Joint Exploration Model (JEM) reference software (available
at https://jvet.hhi fraunhofer.de/), sub-PU level OBMC is applied. The OBMC is
performed for all Motion Compensated (MC) block boundaries except the right and
bottom boundaries of a CU. Moreover, it is applied for both luma and chroma
components. In HEVC, a MC block is corresponding to a PU. In JEM, when a PU is
coded with sub-PU mode, each sub-block of the PU is a MC block. To process CU/PU
boundaries in a uniform fashion, OBMC is performed at sub-block level for all MC
block boundaries, where sub-block size is set equal to 4x4, as illustrated in FIGS. 12A
and 12B.

[0169] When OBMC applies to the current sub-block, besides current motion vectors,
motion vectors of four connected neighbouring sub-blocks are also used to derive
prediction block for the current sub-block if they are available and are not identical to
the current motion vector. These multiple prediction blocks based on multiple motion
vectors are weighted to generate the final prediction signal of the current sub-block.
[0170] Prediction blocks based on motion vectors of a neighboring sub-block may be
denoted as P, with N indicating an index for the neighbouring above, below, left and
right sub-blocks. Prediction block based on motion vectors of a current block may be
denoted as Pc. When Py belongs to the same PU as Pc (thus contains the same motion
information), the OBMC is not performed from Pv. Otherwise, every pixel of Py is
added to the same pixel in Pc, i.e., four rows/columns of Py are added to Pc. The
weighting factors {1/4, 1/8, 1/16, 1/32} are used for Py and the weighting factors {3/4,
7/8, 15/16, 31/32} are used for Pc. The exception are small MC blocks, (i.e., when PU
size is equal to 8x4, 4x8 or a PU is coded with ATMVP mode), for which only two
rows/columns of Py are added to Pc. In this case weighting factors {1/4, 1/8} may be

used for Py and weighting factors {3/4, 7/8} are used for Pc. For Py generated based on
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motion vectors of vertically (horizontally) neighbouring sub-block, pixels in the same
row (column) of Py are added to Pc with a same weighting factor. Note that for PU
boundaries, OBMC can be applied on each side of the boundary. Such as in FIGS. 12A
and 12B, OBMC can be applied along boundary between PU1 and PU2 twice. First,
OBMC is applied with PU2’s MV to the shaded blocks along the boundary inside PU1.
Second, OBMC is applied with the PU1’s MV to the shaded blocks along the boundary
inside PU2. In contrast, OBMC can only be applied to one side of CU boundaries
because when coding the current CU, we cannot change CUs which have been coded.
[0171] FIG. 13 is a flowchart illustrating an example method for performing affine
motion compensation by a video encoder (e.g., during a video encoding process), in
accordance with one or more techniques of this disclosure. For purposes of example
and explanation, the method of FIG. 13 is described with respect to video encoder 20 of
FIGS. 1 and 2.

[0172] Video encoder 20 may receive a current block of video data to be encoded
(1302). For instance, video encoder 20 may receive, from video source 18, raw pixel
values (e.g., RGB, CMYK, YUYV, etc.) for a current picture of video data that includes
the current block of video data. Partition unit 48 of mode select unit 40 of video
encoder 20 may divide the current picture up into a plurality of blocks, one of which
may be the current block.

[0173] Video encoder 20 may determine to encode the current block of video data using
affine motion prediction (1304). For instance, mode select unit 40 may determine to
encode the current block of video data using inter-prediction mode, and select affine
motion model as a motion information prediction mode. Mode select unit 40 may
determine to use inter-prediction mode based on a wide variety of factors, such as a
frame type of the current picture (e.g., P-frame, an I-frame, a B-frame, etc.), and which
prediction mode results in the lowest rate-distortion optimization (RDO) cost.

[0174] Video encoder 20 may encode an indication that the current block is encoded
using affine motion prediction (1306). For instance, mode select unit 40 may cause
entropy encoding unit 56 of video encoder 20 to encode, in a video bitstream, one or
more syntax elements that indicate that the current block is encoded using inter-
prediction mode, one or more syntax elements that indicate that affine motion model is
the motion information prediction mode for the current block, and/or one or more

syntax elements that indicate that the current block is encoded using inter-prediction
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mode and affine motion model is the motion information prediction mode for the
current block.

[0175] Video encoder 20 may determine values of motion vectors of an affine motion
model of the current block of video data (1308). For instance, motion estimation unit
42 and/or motion compensation unit 44 of video encoder 20 may identify a predictor
block of video data having pixel values that closely match pixel values of the current
block of video data. Motion estimation unit 42 and/or motion compensation unit 44
may determine two or more motion vectors that represent an affine transformation
between the current block of video data and the predictor block of video data.

[0176] As discussed above, in some examples, motion estimation unit 42 and/or motion
compensation unit 44 may always use a four-parameter affine motion model that
includes two motion vectors to identify the predictor block. Similarly, in some
examples, motion estimation unit 42 and/or motion compensation unit 44 may always
use a six-parameter affine motion model that includes three motion vectors to identify
the predictor block. In yet other examples, motion estimation unit 42 and/or motion
compensation unit 44 may selectively use either a four-parameter affine motion model
that includes two motion vectors (e.g., vo and v1 of FIG. 8, also referred to as MVO0 and
MV1) or a six-parameter affine motion model that includes three motion vectors (e.g.,
vo, v1, and v2 of FIG. 8, also referred to as MV0, MV 1, and MV2) to identify the
predictor block.

[0177] In some examples, video encoder 20 may encode an indication of whether the
current block is coded using a four-parameter model or a six-parameter model. For
instance, motion estimation unit 42 and/or motion compensation unit 44 may cause
entropy encoding unit 56 to encode, in a encoded video bitstream, a syntax element that
indicates whether the affine motion model for the current block of video data comprises
a four-parameter model or a six-parameter model. In some examples, entropy encoding
unit 56 may encode the syntax element in one or more of a video parameter set (VPS),
sequence parameter set (SPS), picture parameter set (PPS), or a slice header referred to
by the current block of video data. In some examples, entropy encoding unit 56 may
encode the syntax element at the coding unit (CU) level of a CU that includes the
current block of video data

[0178] Video encoder 20 may select, for the current block of video data, a neighboring
block of video data that has an affine motion model (1310). For instance, when

encoding current block 800 of FIG. 8, motion estimation unit 42 and/or motion
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compensation unit 44 may evaluate blocks 802A—802G of FIG. 8 in a particular order
and select the first block, in the particular order, that is coded using affine motion
compensation (e.g., the first block that has an available affine motion model) as the
selected neighboring block of video data. In some examples, the current block of video
data may be coded using affine inter mode. In some examples, the selected neighboring
block of video data may be coded using affine inter mode (e.g., AF_INTER) or affine
merge mode (e.g., AF MERGE).

[0179] Video encoder 20 may obtain values of predictors of motion vectors of the affine
motion model of the selected neighboring block of video data (1312). For instance,
motion estimation unit 42 and/or motion compensation unit 44 may obtain the values of
the affine motion model of the selected neighboring block of video data from a memory
or storage device of video encoder 20, such as reference picture memory 64. Motion
estimation unit 42 and/or motion compensation unit 44 may warp the values of the
affine motion model of the selected neighboring block of video data to the position of
the current block to derive the values of the predictors. In other words, motion
estimation unit 42 and/or motion compensation unit 44 may extrapolate the values of
the predictors from the values of the affine motion model of the selected neighboring
block of video data. As one example, where the selected neighboring block is block
802F of FIG. 8, video encoder 20 may obtain values of a plurality of motion vectors of
block 802F (e.g., values of the CPMVs of block 802F), and warp the values of the
plurality of motion vectors of block 802F to the position of current block 800. As
another example, where the selected neighboring block is block 802F of FIG. 8, video
encoder 20 may use the values of the plurality of motion vectors of block 802F (e.g.,
values of the CPM Vs of block 802F) as the predictors.

[0180] Video encoder 20 may encode, in an encoded video bitstream, a representation
of differences between values of motion vectors of an affine motion model for the
current block of video data and values of the predictors (1314). For instance, motion
estimation unit 42 and/or motion compensation unit 44 may determine, for each
respective motion vector of the affine motion model of the current block, a respective
motion vector difference (MVD) value that represents the difference between the value
of the respective motion vector of the affine motion model of the current block and the
value of a corresponding predictor derived from the motion vectors of the affine motion
model of the selected neighboring block. As one example, where the values of the

motion vectors of the affine motion model of the current block are MV0O and MV 1 and
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the values of the predictors derived from the motion vectors of the affine motion model
of the selected neighboring block are MVPO and MVP1, motion estimation unit 42
and/or motion compensation unit 44 may determine a first MVD value as a difference
between MV0 and MVPO, and determine a second MVD value as a difference between
MV1 and MVP1. Motion estimation unit 42 and/or motion compensation unit 44 may
cause entropy encoding unit 56 to encode, in the encoded video bitstream, one or more
syntax elements that represent the values of the determined MVDs.

[0181] In some examples, video encoder 20 may further encode, in the encoded video
bitstream, residual data that represents pixel differences between the current block and a
predictor block identified by the affine motion model of the current block. Video
encoder 20 may implement a decoder loop to reconstruct the pixel values of the current
block (e.g., for use when predicting future blocks). For instance, video encoder 20 may
identify the predictor block based on the affine motion model for the current block,
obtain pixel values of the predictor block from reference picture memory 64, and add
the residual values to the pixel values of the predictor block to reconstruct the pixel
values of the current block.

[0182] FIG. 14 is a flowchart illustrating an example method for performing affine
motion compensation by a video decoder (e.g., during a video decoding process), in
accordance with one or more techniques of this disclosure. For purposes of example
and explanation, the method of FIG. 14 is described with respect to video decoder 30 of
FIGS. 1 and 3.

[0183] Video decoder 30 may decode an indication that a current block is encoded
using affine motion prediction (1402). For instance, entropy decoding unit 70 may
decode, from a video bitstream, one or more syntax elements that indicate that the
current block is encoded using inter-prediction mode, one or more syntax elements that
indicate that affine motion model is the motion information prediction mode for the
current block, and/or one or more syntax elements that indicate that the current block is
encoded using inter-prediction mode and affine motion model is the motion information
prediction mode for the current block. Entropy decoding unit 70 may provide the values
of the decoded syntax elements to motion compensation unit 72.

[0184] Video decoder 30 may select, for the current block of video data, a neighboring
block of video data that has an affine motion model (1404). For instance, when
decoding current block 800 of FIG. 8, motion compensation unit 72 may evaluate

blocks 802A—802G of FIG. 8 in a particular order and select the first block, in the
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particular order, that is coded using affine motion compensation (e.g., the first block that
has an available affine motion model) as the selected neighboring block of video data.
In some examples, the current block of video data may be coded using affine inter
mode. In some examples, the selected neighboring block of video data may be coded
using affine inter mode (e.g., AF_INTER) or affine merge mode (e.g., AF. MERGE).
[0185] Video decoder 30 may obtain values of predictors derived from motion vectors
of the affine motion model of the selected neighboring block of video data (1406). For
instance, motion compensation unit 72 may obtain the values of the affine motion model
of the selected neighboring block of video data from a memory or storage device of
video decoder 30, such as reference picture memory 82. Motion compensation unit 72
may warp the values of the affine motion model of the selected neighboring block of
video data to the position of the current block to derive the values of the predictors. In
other words, motion compensation unit 72 may extrapolate the values of the predictors
from the values of the affine motion model of the selected neighboring block of video
data. As one example, where the selected neighboring block is block 802F of FIG. 8,
video decoder 30 may obtain values of a plurality of motion vectors of block 802F (e.g.,
values of the CPM Vs of block 802F), and warp the values of the plurality of motion
vectors of block 802F to the position of current block 800. As another example, where
the selected neighboring block is block 802F of FIG. 8, video decoder 30 may use the
values of the plurality of motion vectors of block 802F (e.g., values of the CPMVs of
block 802F) as the predictors.

[0186] Video decoder 30 may decode, from an encoded video bitstream, a
representation of differences between values of motion vectors of an affine motion
model for the current block of video data and the values of the predictors (1408). For
instance, entropy decoding unit 70 may decode, from the encoded video bitstream,
syntax elements that represent values of differences between the value of the respective
motion vector of the affine motion model of the current block and the value of a
corresponding predictor derived from the motion vectors of the affine motion model of
the selected neighboring block. As one example, where the values of the motion vectors
of the affine motion model of the current block are MVO0 and MV and the values of the
predictors derived from the motion vectors of the affine motion model of the selected
neighboring block are MVPO and MVP1, entropy decoding unit 70 may decode syntax
elements that represent the value of a first MVD value and a second MVD value, the

first MVD value being a difference between MV0 and MVPO and the second MVD
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value being a difference between MV1 and MVP1. Entropy decoding unit 70 may
provide the values of the decoded syntax elements to motion compensation unit 72.
[0187] Video decoder 30 may determine the values of the motion vectors of the affine
motion model for the current block of video data based on the values of the predictors
and the decoded differences (1410). For instance, motion compensation unit 72 may
add the value of MVPO to the value of the first MVD value to determine the value of
MVO0 and add the value of MVP1 to the value of the second MVD value to determine
the value of MV 1.

[0188] Video decoder 30 may determine, based on the determine values of the motion
vectors of the affine motion model for the current block of video data, a predictor block
of video data (1412). For instance, motion compensation unit 72 may obtain, from
reference picture memory 82, pixel values of the predictor block identified by the affine
motion model for the current block of video data.

[0189] Video decoder 30 may reconstruct the current block of video data based on the
predictor block of video data (1414). For instance, entropy decoding unit 70 may
decode, from the encoded video bitstream, residual data that represents pixel differences
between the current block and a predictor block identified by the affine motion model of
the current block. Motion compensation unit 72 may add the residual values to the pixel
values of the predictor block to reconstruct the pixel values of the current block.

[0190] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0191] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-

readable media generally may correspond to (1) tangible computer-readable storage
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media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0192] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0193] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0194] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
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ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0195] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method for decoding video data, the method comprising:

obtaining, by one or more processors of a video decoder and for a current block
of video data, values of motion vectors of an affine motion model of a neighboring
block of video data;

deriving, by the one or more processors and from the values of the motion
vectors of the affine motion model of the neighboring block of video data, values of
predictors for motion vectors of an affine motion model of the current block of video
data;

decoding, by the one or more processors and from an encoded video bitstream, a
representation of differences between the values of the motion vectors of the affine
motion model for the current block of video data and the values of the predictors;

determining, by the one or more processors, the values of the motion vectors of
the affine motion model for the current block of video data from the values of the
predictors and the decoded differences;

determining, based on the determined values of the motion vectors of the affine
motion model for the current block of video data, a predictor block of video data; and

reconstructing the current block of video data based on the predictor block of

video data.

2. The method of claim 1, wherein the current block of video data is decoded using

affine inter mode.

3. The method of claim 2, wherein the neighboring block of video data is decoded

using affine inter mode or affine merge mode.

4. The method of claim 1, wherein the neighboring block of video comprises a
selected neighboring block of video data, and wherein obtaining the values of the
motion vectors of the affine motion model of the selected neighboring block of video
data comprises:

evaluating, in a pre-defined order, neighboring blocks of video data of the

current block of video data; and
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selecting a first neighboring block of video data of the plurality of neighboring
blocks of video data decoded using affine motion compensation as the selected

neighboring block of video data.

5. The method of claim 1, further comprising:
determining, by the one or more processors, whether the affine motion model for
the current block of video data comprises a four-parameter model that is convertible to

two motion vectors or a six-parameter model that is convertible to three motion vectors.

6. The method of claim 5, wherein determining whether the affine motion model
for the current block of video data comprises a four-parameter model or a six-parameter
model comprises:

decoding, by the one or more processors and from the encoded video bitstream,
a syntax element that indicates whether the affine motion model for the current block of

video data comprises a four-parameter model or a six-parameter model.

7. The method of claim 6, wherein decoding the syntax element comprises
decoding the syntax element from one or more of a video parameter set (VPS), sequence
parameter set (SPS), picture parameter set (PPS), and a slice header referred to by the

current block of video data.

8. The method of claim 6, wherein decoding the syntax element comprises
decoding the syntax element from a coding unit (CU) that includes the current block of

video data.

9. The method of claim 1, the method being executable on a wireless
communication device, wherein the device comprises:

a memory configured to store the video data;

a processor configured to execute instructions to process the video data stored in
the memory; and

a receiver configured to receive the video data and store the video data to the

memory.
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10. The method of claim 9, wherein the wireless communication device is a cellular
telephone and the video data is received by the receiver and modulated according to a

cellular communication standard.

11. A method for encoding video data, the method comprising:

determining, by one or more processors of a video encoder, values of motion
vectors of an affine motion model of a current block of video data, the motion vectors of
the affine motion model identifying a predictor block of video data for of the current
block of video data;

obtaining, by the one or more processors, values of motion vectors of an affine
motion model of a neighboring block of video data;

deriving, by the one or more processors and from the values of the motion
vectors of the affine motion model of the neighboring block of video data, values of
predictors for motion vectors of an affine motion model of the current block of video
data; and

encoding, by the one or more processors and in an encoded video bitstream, a
representation of differences between the values of the motion vectors of the affine

motion model for the current block of video data and the values of the predictors.

12. The method of claim 11, wherein the current block of video data is encoded

using affine inter mode.

13. The method of claim 12, wherein the neighboring block of video data is encoded

using affine inter mode or affine merge mode.

14. The method of claim 11, wherein the neighboring block of video comprises a
selected neighboring block of video data, and wherein obtaining the values of the
motion vectors of the affine motion model of the selected neighboring block of video
data comprises:

evaluating, in a pre-defined order, neighboring blocks of video data of the
current block of video data; and

selecting a first neighboring block of video data of the plurality of neighboring
blocks of video data decoded using affine motion compensation as the selected

neighboring block of video data.
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15. The method of claim 11, further comprising:
determining, by the one or more processors, whether the affine motion model for
the current block of video data comprises a four-parameter model that is convertible to

two motion vectors or a six-parameter model that is convertible to three motion vectors.

16. The method of claim 15, further comprising:
encoding, by the one or more processors and in the encoded video bitstream, a
syntax element that indicates whether the affine motion model for the current block of

video data comprises a four-parameter model or a six-parameter model.

17. The method of claim 16, wherein encoding the syntax element comprises
encoding the syntax element in a video parameter set (VPS), sequence parameter set
(SPS), picture parameter set (PPS), or a slice header referred to by the current block of

video data.

18. The method of claim 16, wherein encoding the syntax element comprises
encoding the syntax element in a coding unit (CU) that includes the current block of

video data.

19. The method of claim 11, the method being executable on a wireless
communication device, wherein the device comprises:

a memory configured to store the video data;

a processor configured to execute instructions to process the video data stored in
the memory; and

a transmitter configured to transmit the encoded video bitstream.

20. The method of claim 19, wherein the wireless communication device is a
cellular telephone and the encoded video bitstream is transmitted by the transmitted and

modulated according to a cellular communication standard.
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A device for decoding a block of video data, the device comprising:
a memory configured to store the video data; and
one or more processing units implemented in circuitry and configured to:

obtain, for a current block of video data, values of motion vectors of an
affine motion model of a neighboring block of video data;

derive, from the values of the motion vectors of the affine motion model
of the neighboring block of video data, values of predictors for motion vectors of
an affine motion model of the current block of video data;

decode, from an encoded video bitstream, a representation of differences
between the values of the motion vectors of the affine motion model for the
current block of video data and the values of the predictors;

determine the values of the motion vectors of the affine motion model for
the current block of video data from the values of the predictors and the decoded
differences;

determine based on the determined values of the motion vectors of the
affine motion model for the current block of video data, a predictor block of
video data; and

reconstruct the current block of video data based on the predictor block

of video data.

The device of claim 21, wherein the current block of video data is decoded using

affine inter mode.

23.

The device of claim 22, wherein the neighboring block of video data is decoded

using affine inter mode or affine merge mode.

24.

The device of claim 21, wherein the neighboring block of video comprises a

selected neighboring block of video data, and wherein, to obtain the values of the

motion vectors of the affine motion model of the selected neighboring block of video

data, the one or more processing units are configured to:

evaluate, in a pre-defined order, neighboring blocks of video data of the current

block of video data; and
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select a first neighboring block of video data of the plurality of neighboring
blocks of video data decoded using affine motion compensation as the selected

neighboring block of video data.

25.  The device of claim 21, wherein the one or more processing units are further
configured to:

determine whether the affine motion model for the current block of video data
comprises a four-parameter model that is convertible to two motion vectors or a six-

parameter model that is convertible to three motion vectors.

26. The device of claim 25, wherein, to determine whether the affine motion model
for the current block of video data comprises a four-parameter model or a six-parameter
model, the one or more processing units are configured to:

decode, from the encoded video bitstream, a syntax element that indicates
whether the affine motion model for the current block of video data comprises a four-

parameter model or a six-parameter model.

27. The device of claim 26, wherein, to decode the syntax element, the one or more
processing units are configured to decode the syntax element from one or more of a
video parameter set (VPS), sequence parameter set (SPS), picture parameter set (PPS),

and a slice header referred to by the current block of video data.

28. The device of claim 26, wherein, to decode the syntax element, the one or more
processing units are configured to decode the syntax element from a coding unit (CU)

that includes the current block of video data.

29. The device of claim 21, further comprising at least one of:
a display configured to display the reconstructed video data; or

a camera configured to capture the video data.

30. The device of claim 21, wherein the device comprises one or more of a camera,

a computer, a mobile device, a broadcast receiver device, or a set-top box.
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31 A device for encoding a block of video data, the device comprising:
a memory configured to store the video data; and
one or more processing units implemented in circuitry and configured to:
determine values of motion vectors of an affine motion model of a
current block of video data, the motion vectors of the affine motion model
identifying a predictor block of video data for of the current block of video data;
obtain values of motion vectors of an affine motion model of a
neighboring block of video data;
derive, from the values of the motion vectors of the affine motion model
of the neighboring block of video data, values of predictors for motion vectors of
an affine motion model of the current block of video data; and
encode, in an encoded video bitstream, a representation of differences
between the values of the motion vectors of the affine motion model for the

current block of video data and the values of the predictors.

32.  The device of claim 31, wherein the current block of video data is encoded using

affine inter mode.

33. The device of claim 32, wherein the neighboring block of video data is encoded

using affine inter mode or affine merge mode.

34. The device of claim 31, wherein the neighboring block of video comprises a
selected neighboring block of video data, and wherein, to obtain the values of the
motion vectors of the affine motion model of the selected neighboring block of video
data, the one or more processing units are configured to:

evaluate, in a pre-defined order, neighboring blocks of video data of the current
block of video data; and

select a first neighboring block of video data of the plurality of neighboring
blocks of video data decoded using affine motion compensation as the selected

neighboring block of video data.

35.  The device of claim 31, wherein the one or more processing units are further

configured to:
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determine whether the affine motion model for the current block of video data
comprises a four-parameter model that is convertible to two motion vectors or a six-

parameter model that is convertible to three motion vectors.

36. The device of claim 35, wherein the one or more processing units are further
configured to:

encode, in the encoded video bitstream, a syntax element that indicates whether
the affine motion model for the current block of video data comprises a four-parameter

model or a six-parameter model.

37. The device of claim 36, wherein, to encode the syntax element, the one or more
processing units are configured to encode the syntax element in a video parameter set
(VPS), sequence parameter set (SPS), picture parameter set (PPS), or a slice header

referred to by the current block of video data.

38. The device of claim 36, wherein, to encode the syntax element, the one or more
processing units are configured to encode the syntax element in a coding unit (CU) that

includes the current block of video data.

39. The device of claim 31, further comprising at least one of:
a display configured to display the reconstructed video data; or

a camera configured to capture the video data.

40.  The device of claim 31, wherein the device comprises one or more of a camera,

a computer, a mobile device, a broadcast receiver device, or a set-top box.
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41. A device for encoding or decoding video data, the device comprising:

means for obtaining, for a current block of video data, values of motion vectors
of an affine motion model of a neighboring block of video data;

means for deriving, from the values of the motion vectors of the affine motion
model of the neighboring block of video data, values of predictors for motion vectors of
an affine motion model of the current block of video data;

means for obtaining differences between the values of the motion vectors of the
affine motion model for the current block of video data and the values of the predictors;

means for determining each of the values of the motion vectors of the affine
motion model for the current block of video data from the values of the predictors and
the decoded differences; and

means for identifying, based on the determined values of the motion vectors of
the affine motion model for the current block of video data, a predictor block of video

data.

42. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors of a video encoder or a video decoder to:

obtain, for a current block of video data, values of motion vectors of an affine
motion model of a neighboring block of video data;

derive, from the values of the motion vectors of the affine motion model of the
neighboring block of video data, values of predictors for motion vectors of an affine
motion model of the current block of video data;

obtain differences between the values of the motion vectors of the affine motion
model for the current block of video data and the values of the predictors;

determine each of the values of the motion vectors of the affine motion model
for the current block of video data from the values of the predictors and the decoded
differences; and

identify, based on the determined values of the motion vectors of the affine

motion model for the current block of video data, a predictor block of video data.
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