实用新型名称
配备有电源电压管理电路的智能电池

摘要
本实用新型涉及配备有电源电压管理电路的智能电池。智能电池包括与电池相连的用于管理电源电压的电子电路。所述电路包括电池寿命终止检测器、管理单元、振荡器和电源电压接近或等于电池寿命终止阈值时被通电的DC-DC转换器、以及数据或指令通信接口。所述数据或指令通信接口是与所述智能电池的正极电源电压端子相连的单线接口，用于通过电源电压端子中的一者发送经调制的数据或指令信号。所述接口发送的调制信号可包括电池寿命终止信息。
1. 智能电池 (1)，其包括与电池 (2) 相连的电子电源电压管理电路 (10)，所述电子电源电压管理电路包括电池寿命终止检测器 (3)、管理单元 (7)、振荡器 (4) 及以及数据或指令通信接口 (8)。

其特征在于，所述数据或指令通信接口 (8) 与所述智能电池的电源电压端子中的一者相连，以通过所述电源电压端子中的一者发送和接收调制数字数据或指令信号，以及

所述数据或指令通信接口 (8) 被设置为从所述智能电池供电的电子装置接收调制信号，所述接口接收的所述调制信号包括用于设定电池寿命终止阈值的指令，在设定该阈值之后，所述电子电路 (10) 的 DC-DC 转换器 (6) 被所述管理单元 (7) 通电以提供所述智能电池的电源电压。

2. 根据权利要求 1 所述的智能电池 (1)，其特征在于，所述数据或指令通信接口 (8) 由与所述电池寿命终止检测器 (3) 相连的所述管理单元 (7) 控制，以便发送至少包括电池寿命终止信息的调制信号。

3. 根据权利要求 1 所述的智能电池 (1)，其特征在于，所述电子电路 (10) 包括 DC-DC 转换器 (6)，所述转换器在所述电池 (2) 的电源电压接近或等于电池寿命终止阈值时被通电，以便所述转换器提供所述智能电池的电源电压。

4. 根据权利要求 3 所述的智能电池 (1)，其特征在于，所述管理单元 (7) 与所述电池寿命终止检测器 (3)、振荡器 (4)、DC-DC 转换器 (6) 以及数据或指令通信接口 (8) 相连，以及当所述电池 (2) 的电源电压接近或等于电池寿命终止阈值时，所述电池寿命终止检测器 (3) 一将输出信号提供给所述管理单元时，所述管理单元 (7) 一操作所述 DC-DC 转换器 (6)。

5. 根据权利要求 1 所述的智能电池，其特征在于，所述数据或指令通信接口 (8) 与所述智能电池的外部正极电源电压端子相连，以传输所述调制信号。

6. 根据权利要求 5 所述的智能电池 (1)，其特征在于，所述电池 (2) 的正极端子与所述电子电路 (10) 的开关 (9) 的第一输入端相连，而所述开关 (9) 的第二输入端与 DC-DC 转换器 (6) 的输出端相连，所述转换器在所述电池 (2) 的电源电压接近或等于电池寿命终止阈值时被通电，所述开关 (9) 的输出端与所述智能电池的外部正极端子相连；以及所述开关 (9) 通过来自所述管理单元 (7) 的指令信号 (17) 来控制，从而在所述电池电压高于所述电池寿命终止阈值时将所述电池 (2) 的电压提供给所述外部正极端子，以所述电池电压高于或低于所述电池寿命终止阈值时提供所述 DC-DC 转换器 (6) 的输出电压。

7. 根据权利要求 1 所述的智能电池 (1)，其特征在于，所述振荡器 (4) 包括与石英谐振器 (5) 相连以提供振荡信号的振荡器，以及一连接的分频器，所述分频器用于分割振荡信号频率以提供时钟信号来对所述管理单元 (7) 的操作进行时控。

8. 根据权利要求 7 所述的智能电池 (1)，其特征在于，所述石英谐振器是时钟石英谐振器，以便所述振荡器提供频率约为 32,768Hz 的振荡信号。

9. 根据权利要求 8 所述的智能电池 (1)，其特征在于所述分频器为一分二分频器，所述分频器的数量为十五个，以便分割振荡信号频率来提供时钟信号，从而允许数据或指令通信接口 (8) 每秒发送作为上位秒信号的调制数据信号。

10. 根据权利要求 1 所述的智能电池 (1)，其特征在于，所述管理单元 (7) 包括非易失性存储器，所述存储器存储电池寿命终止电压阈值，以便调整所述电池寿命终止检测器
11. 根据权利要求 1 所述的智能电池 (1)，其特征在于，电池寿命终止检测器 (3) 能够以根据所述管理单元 (7) 确定的周期比或占空比而设定的时间间隔被通电和断电，以测量所述电池 (2) 的电压电压，所述管理单元由所述振荡器 (4) 进行控制。

12. 根据权利要求 11 所述的智能电池 (1)，其特征在于，如果所述电池 (2) 的所述电压电压高于第二电压阈值，所述检测器 (3) 能够以第一时间间隔被通电和断电，其中，该第二电压阈值高于第一电池寿命终止阈值；以及如果所述电池 (2) 的电压电压低于所述第二电压阈值，所述检测器 (3) 能够以短于所述第一时间间隔的第二时间间隔被通电和断电。
配电池源电压管理电路的智能电池

技术领域
[0001] 本发明涉及配备有用于管理电源电压的电子电路的智能电池。所述电子电路包括电池寿命终止 (EOL) 检测器、振荡器、电力管理单元和通信接口。所述电子电路也可包括在电源电压接近或等于电池 EOL 阈值时即被通电 (power on) 的 DC-DC 转换器。这样，可通过持续提供高于最小电容的电压并提取电池的残余电量，来延长使用电池产品的寿命。电池提供的最大电流也可由管理单元限制，同样是为了延长电池的寿命，从而延长产品的寿命。该电池可以是一次电池，也可以是可再充电电池。

背景技术
[0002] 电池主体 (cell) 或电池可通过公知的方式包括集成在电池主体或电池的结构内的管理电路，尤其是电力管理电路。在此方面，可引用编号为 6,198,250BI 的美国专利，该专利公开了此类包括控制电路的智能电池主体或电池。控制电路与电池主体电源端子或电池电源端子相连。控制电路可延长电池寿命。为实现此目标，控制电路包括 DC-DC 转换器，该转换器由振荡器进行控制 (Clock) 以将电池主体电压或电池电压转换为输出电压，该输出电压可高于截止电压或电池寿命终止电压。该转换器可在电池电压降低到电池寿命终止电压阈值时即被通电，以便延长电池寿命。

[0003] 在编号为 6,198,250BI 的美国专利的智能电池主体或电池中，不当控制电路中设置任何用于将数字数据发送到由智能电池供电的电子器件的装置。没有任何有关电池寿命终止或电池类型的信息被发送到智能电池主体或电池的外部以确保电子器件在更换电池之前正确地操作。这是一个缺陷。

[0004] 也可引用编号为 2005/081787A1 的 WO 专利申请，该申请公开了配备有电子电路的电池。电池的电子电路包括非易失性存储器、热敏电阻、电压识别单元、与热敏电阻串联的采用 FET 晶体管形式的开关、以及良好的电池数据接口。数据接口端子与非易失性存储器相连，该非易失性存储器与可再充电电池的端子相连。开关由电压识别单元控制。如果电池充低，开关打开，这表示无法经由热敏电阻执行测量，但是可通过与存储器关联的时钟端子在充电器与电池电路之间建立通信。然而，如果电压电平充足，则由充电器执行热敏电阻测量，以确定电池电路的温度。

[0005] 必须针对包含编号为 2005/081787A1 的 WO 专利申请中的电子电路的电池设置多个用于电压提供和数据通信的端子。因此，这样使得所述电池的制造过程变复杂，并且无法正确地优化面向电池外部的电力提供和数据供应，这是一个缺陷。

[0006] 编号为 1892791AI 的 EP 专利申请公开了电池组，该电池组包括电子电源电压管理电路相连的电池。电子电路包括操作状态检测装置，用于检测电流、电压和温度。这些检测装置与控制单元相连。还设置与控制单元相连的通信接口，以便通过调制信号 (modulated signal) 与电子仪器通信。但是，电子电路未被设置为适应特定的操作参数，这是一个缺陷。
发明内容
[0007] 因此，本发明的目的是提供一种配备有用于管理电源电压的电子电路的智能电池，该电子电路能够将数据发送到由智能电池供电的电子器件并且克服本领域技术中的上述缺陷。
[0008] 为此，本发明涉及配备有用于管理电源电压的电子电路的智能电池，该智能电池包括与电池相连的电子电源电压管理电路，所述电子电源电压管理电路包括电池寿命终止检测器、管理单元、振荡器以及数据或指令通信接口。
[0009] 其特征在于，所述数据或指令通信接口与所述智能电池的电源电压端子中的一者相连，以通过所述电源电压端子中的一者发送和接收调制数字数据或指令信号，以及
[0010] 所述数据或指令通信接口被设置为从所述智能电池供电的电子装置接收调制信号，所述接口接收的所述调制信号包括用于设定电池寿命终止阈值的指令，在设定该阈值之后，所述电子电路的 DC-DC 转换器被所述管理单元通电以提供所述智能电池的电源电压。
[0011] 根据本发明的智能电池，其特征在于，所述数据或指令通信接口由与所述电池寿命终止检测器相连的所述管理单元控制，以便发送至少包括电池寿命终止信号的调制信号。
[0012] 根据本发明所述的智能电池，其特征在于，所述电子电路包括 DC-DC 转换器，所述转换器在所述电池的电源电压接近或等于电池寿命终止阈值时被通电，以便所述转换器提供所述智能电池的电源电压。
[0013] 根据本发明的智能电池，其特征在于，所述管理单元与所述电池寿命终止检测器、振荡器、DC-DC 转换器以及数据或指令通信接口相连，以及当所述电池的电源电压接近或等于电池寿命终止阈值时，所述电池寿命终止检测器输出信号提供给所述管理单元时，所述管理单元就操作所述 DC-DC 转换器。
[0014] 根据本发明的智能电池，其特征在于，所述数据或指令通信接口与所述智能电池的外部正极电源电压端子相连，以传输所述调制信号。
[0015] 根据本发明的智能电池，其特征在于，电池的正极端子与所述电子电路的开关的第一输入端相连，而所述开关的第二输入端与 DC-DC 转换器的输出端相连，所述转换器在所述电池的电源电压接近或等于电池寿命终止阈值时被通电，所述开关的输出端与所述智能电池的外部正极端子相连，以及所述开关通过来自所述管理单元的指令信号来控制，从而在所述电池电压高于所述电池寿命终止阈值时将所述电池的电压提供给所述外部正极端子，在所述电池电压等于或低于所述电池寿命终止阈值时提供所述 DC-DC 转换器的输出电压。
[0016] 根据本发明的智能电池，其特征在于，所述振荡器包括与石英谐振器相连以提供振荡信号的振荡器，以及一连串的分频器，所述分频器用于分割振荡信号频率以提供时钟信号来对所述管理单元的操作进行控制。
[0017] 根据本发明的智能电池，其特征在于，所述石英谐振器是时钟石英谐振器，以便所述振荡器提供频率约为 32,768 Hz 的振荡信号。
[0018] 根据本发明的智能电池，其特征在于所述分频器为一分二分频器，这些分频器的数量为十五个，以便分割振荡信号频率来提供 1 Hz 时钟信号，从而允许数据或指令通信接
口每秒发送作为上位秒信号的调制数据信号。
[0019] 根据本发明的智能电池，其特征在于，所述管理单元包括非易失性存储器，所述存储器存储电池寿命终止电压阈值，以便调整所述电池寿命终止检测器。
[0020] 根据本发明的智能电池，其特征在于，电池寿命终止检测器能够以根据所述管理单元由所述时间间隔被通电和断电，以测量所述电池的电压电平，所述管理单元的所述超限进行调制。
[0021] 根据本发明的智能电池，其特征在于，如果所述电池的所述电压电平低于第二电压阈值，所述电池能够以第一时间间隔被通电和断电，其中，该第二电压阈值高于第一电池寿命终止阈值；以及如果所述电池的电压电平低于所述第二电压阈值，所述电池能够以短于所述第一时间间隔的第二时间间隔被通电和断电。
[0022] 智能电池的一个优点是数据在智能电池的电源端子之一的同一连接线上传送。优选地，数据在智能电池的高电位端子的连接线上传送。数字数据可取决于要发送的每个位的状态，通过不同时长的时间窗口，或者可能借助相位或频率调制，在电源上发送。要发送的调制数据可以是数字电池寿命终止信号。
[0023] 有利地，由电子电源电压管理电路的管理单元控制的单线接口通过智能电池的正极端子提供调制的数字数据或指令信号。由于管理单元通由时钟振荡级的时钟信号进行调制，因此，单线接口能够提供与包括智能电池的电子装置的上位秒信号相关的调制数据信号。

附图说明
[0024] 通过下面基于附图所示的非限制性简化实施例的描述，配备有电子电源电压管理电路的智能电池的目的、优点和特征将变得更加清楚，其中：
[0025] 图 1 示出根据本发明的配备有电子电源电压管理电路的智能电池的组件的简化图，以及
[0026] 图 2 示出与传统电池提供的电源电压的演进相比，根据本发明的智能电池提供的电源电压的演进的图形。

具体实施方式
[0027] 在下面的描述中，仅以简化的方式描述电子电池电路中本技术领域的的技术人员极为了解的所有那些电子组件。
[0028] 图 1 示出智能电池电路中的所有组件的示意性总图。该电池可采取组扣电池的形式，该组扣电池能够被置于诸如手表之类的电子装置的电池壳体内，作为电子装置中电子元件的电源。
[0029] 智能电池电路包括电子电源电压管理电路 10，该电子电源电压管理电路与电池 2 的两个正极和负极电源端子相连。当电池 2 的电压接近电池寿命终止阈值时，电子电路 10 首先允许在指示电池寿命终止的同时以最优的方式控制电池放电。电子电路 10 可集成在电池 2 的结构内，或者被设置在电池结构的外表面。
[0030] 该电路 10 包括电池寿命终止检测器 3，指定的 EOL、其振荡器可与传统的石英振荡器 5 相连的振荡级 4、DC-DC 转换器 6、管理单元 7，用于发送或接收数据或指令信号的
单线（1-wire）接口8，以及由管理单元控制的开关9。管理单元7也与电池寿命终止检测器3、振荡器4、DC-DC转换器6以及单线接口8相连。因此，管理单元7根据电池寿命终止检测器3检测到的电池2的电压电平，控制DC-DC转换器6、单线接口8和开关9的操作。

[0031] 电池寿命终止检测器3与电池2的正极端子相连，以便确定电池2所供给的电压值达到确定的电池寿命终止阈值的时间。在纽扣电池实例中，电池寿命终止阈值例如可被设定为1.2伏，但是也可被设定为较低的值。为了能够执行电池寿命终止检测，检测器3可包括比较器，该比较器的第一输入端与根据已定义的电池寿命终止阈值设定的参考电压相连，该比较器的第二输入端与连接在电池2的正极与负极端子之间的电容分压器的节点相连。一旦电池电压电平达到电池寿命终止阈值，比较器将输出信号提供给管理单元7，该管理单元控制DC-DC转换器6的通电。

[0032] 电子电路的开关9采用电源选择器的形式。该开关9的第一输入端优选地与电池2的正极端子相连，第二输入端与DC-DC转换器6的输出端相连，以便在其操作期间从转换器接收输出电压16。开关9的输出端优选地与电池1的外部正极端子相连，以在电池2的电压电平高于检测器3检测到的电池寿命终止阈值时提供电池2的电压。但是，在电池2的电压电平低于或等于电池寿命终止阈值时，开关9的输出端提供来自DC-DC转换器6的输出电压16。在这样的情况下，管理单元7将指令信号17提供给开关9以将DC-DC转换器的输出端连接到智能电池1的外部正极端子。因此，可通过为DC-DC转换器6通电，延长电池的寿命终止持续时间，该转换器优选地为升压转换器。该升压转换器可在电池2达到电池寿命终止阈值时升高智能电池1的外部端子上的电压。

[0033] 振荡器4用于对DC-DC转换器6、管理单元7和单线接口8中的操作进行时控。该振荡器4可优选地由振荡器和串联的分频器形成，该振荡器与时钟石英谐振器5相连以提供频率约为32.768Hz的振荡信号，所述分频器用于分割振荡信号频率。一分二分频器（divider-by-two）的数量例如可以等于15，从而允许分割振荡信号频率以提供1Hz的时钟信号来对电子电路10的元件进行时控。

[0034] 还需要指出，振荡器4可以由RC振荡器和上述分频器形成。此类RC振荡器可以完全集成在电子集成电路内，它不是石英谐振器。但是，RC振荡器所提供的振荡信号与石英谐振振荡器所产生的振荡信号相比，精确度更小。

[0035] 单线接口8直接与管理单元相连并且用于通过智能电池1的外部端子中的一者传输信息。优选地，单线接口与智能电池1的外部正极端子相连，以允许通过单线接口将调制数据或指令信号18发送到包括该智能电池的电子装置。该单线接口可以是Dallas型接口并且可根据Atmel公司的AVR318电路中描述的那样创建。单线Dallas接口协议允许异步双向通信。在数字化的调制数据或指令信号中，每一定义的时间窗口由单线接口8的总线发送一个数据位。为了在“1”状态下发送数据位，该接口在第一时间段消耗电流或降低电压，而为了在“0”状态下发送数据位，该接口在第二时间段消耗电流或降低电源上的电压，该第二时间段大于第一时间段，如AVR 318中介绍的那样。

[0036] 通过振荡器4的时钟信号时控的管理单元7控制的单线接口8使得可以优选地通过智能电池1的外部正极端子发送调制数据信号。该调制数据信号包括有关电池寿命终止、电池类型、剩余电池自主性（autonomy）的信息或要发送到电子装置的其它任何类型的信息。该单线接口还可发送作为上位信号（top second signal）的调制数据信号，该信
号表示每秒发送的预定义代码。

[0037] 当然，单线接口 8 也可从电子装置接收调制数据或指令信号 18。单线接口 8 接收的调制信号例如可涉及电池寿命终止电压阈值的设定或者其它指令或数据。该阈值的设定之后，DC-DC 转换器 6 必须被通电。单线接口 8 接收的该电池寿命终止阈值必须例如存储在管理单元 7 的非易失性存储器中。管理单元 7 可通过修改参考电压或电容分压器来调整 (adapt) 检测器 3 的电池寿命终止阈值。如果智能电池被置于手表内，单线接口 8 也可接收调制信号，尤其是用于经由配备有处理器的管理单元 7 来校准振荡级 4 的调制信号。

[0038] 需要指出，电子电源电压管理电路 10 也可与可再生充电电池 2 相连以定义智能电池 1。在这种情况下，也可设置电流计以计量消耗的电池能量，以及提供给所述电池的电容能。

[0039] 图 2 示出表示与传统电池提供的电源电压的演进相比，根据本发明的智能电池提供的电源电压的演进的图形。只要电池电压 V_{Bat} 远高于电池寿命终止电压阈值 V_{bat}，电子管理单元就使 DC-DC 转换器通电。因此，经由转换器提供从智能电池获取的能量，这样可在更换包含所述电池的电子装置的智能电池之前，延长与电子电路相连的内置电池的寿命。根据智能电池的放电，也可以构想限制所提供的最大电流以进一步延长所述电池的寿命。

[0040] 还需要指出，也可以限制电子电源电压管理电路 10 特别对电池寿命的能量影响。可以构想引入定义周期比 (cyclical ratio) 或占空比的通电和断电周期，以允许根据电池状态以较长或较短的时间间隔测量电池 2 的电压，尤其是由检测器 3 测量。一般而言，至少管理单元 7 和振荡级 4 可被持续通电，从而以确定的周期比接通和关断检测器 3。

[0041] 在开始使用电池时设置第一长测量时间间隔，此时电压 V_{bat} 远高于电池寿命终止电压。可在电子电路中设置第二电压阈值以判定电压 V_{bat} 是否远高于该第二电压阈值。当电压 V_{bat} 接近小于第二阈值的临界电池寿命终止阈值时，设置第二短测量时间间隔。

[0042] 此类周期可能在内部控制中，其中只有电子电路的一小部分根据上述方式执行操作，并且能够在必要时唤醒电路的其它组件。这样需要消耗几十毫微安的电流。此类周期也可由电子装置的电子电路或包含智能电池的产品的电子电路控制。

[0043] 根据刚才给出的描述，在偏离权利要求所定义的本发明范围的情况下，本领域的技术人员可构想配备有电子电源电压管理电路的智能电池的多个变形。电池寿命终止检测器可在比较器输入端上包括电阻分压器而非电容分压器。DC-DC 转换器可以是降压升压转换器。可通过选择每个一分二分频器的输出端中的一者，经由管理单元来控制振荡级所提供的时钟信号频率的变化。