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pseudo 2-D dictionary mode. Yet the method and device predict current pixel values us-
ing a pseudo 2-D dictionary mode. Yet the method and device predict current pixel val -
ues from previous pixel values in a reference picture using an inter pseudo 2-D diction -
ary mode. Pixel values can be predicted from previous pixel values (e.g., stored in a dic -
l tionary) that are identified by an offset and a length. Yet the method and device encode
pixel values using hash matching of pixel values.
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DICTIONARY ENCODING AND DECODING OF SCREEN CONTENT

BACKGROUND
[001] Engineers use compression (also called source coding or source encoding) to
reduce the bit rate of digital video. Compression decreases the cost of storing and
transmitting video information by converting the information into a lower bit rate form.
Decompression (also called decoding) reconstructs a version of the original information from

the compressed form. A “codec” is an encoder/decoder system.

[002] Over the last two decades, various video codec standards have been adopted,
including the ITU-T H.261, H.262 (MPEG-2 or ISO/IEC 13818-2), H.263 and H.264
(MPEG-4 AVC or ISO/IEC 14496-10) standards, the MPEG-1 (ISO/IEC 11172-2) and
MPEG-4 Visual (ISO/IEC 14496-2) standards, and the SMPTE 421M standard. More
recently, the HEVC standard (ITU-T H.265 or ISO/IEC 23008-2) has been approved.
Extensions to the HEVC standard (e.g., for scalable video coding/decoding, for
coding/decoding of video with higher fidelity in terms of sample bit depth or chroma
sampling rate, or for multi-view coding/decoding) are currently under development. A video
codec standard typically defines options for the syntax of an encoded video bitstream,
detailing parameters in the bitstream when particular features are used in encoding and
decoding. In many cases, a video codec standard also provides details about the decoding
operations a decoder should perform to achieve conforming results in decoding. Aside from
codec standards, various proprietary codec formats define other options for the syntax of an

encoded video bitstream and corresponding decoding operations.

[003] Encoding and decoding of specific types of content, such as screen content, can
present different challenges from coding normal video content. For example, screen content
can include areas of similar content (e.g., large graphical areas with the same color or a
smooth gradient) and areas of repeated content. Encoding and decoding such content using
normal video coding techniques can produce results that are inefficient and that reduce

quality (e.g., by producing compression artifacts).
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SUMMARY
[004] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is it

intended to be used to limit the scope of the claimed subject matter.

[005] Techniques are described for improving efficiency of encoding and/or decoding
of video and/or image data. In some innovations, a one-dimensional (1-D) dictionary mode is
used to encode and/or decode pixel values using previous pixel values (e.g., previously
reconstructed or previously decoded pixel values) stored in a 1-D dictionary. In the 1-D
dictionary mode, current pixel values can be predicted (e.g., predicted exactly, without
requiring any residual) using an offset that identifies a location within the 1-D dictionary and

a length indicating a number of pixel values being predicted.

[006] In other innovations, a pseudo 2-D dictionary mode is used to encode and/or
decode pixel values using previous pixel values (e.g., previously reconstructed or previously
decoded pixel values). In the 2-D dictionary mode, current pixel values can be predicted (e.g.,
predicted exactly, without requiring any residual) using an X and Y offset and a length. An
inter pseudo 2-D dictionary mode can also be used to encode and/or decode pixel values
using pixel values in a reference picture (e.g., identified within the reference picture by an X
and Y offset and a length from a corresponding pixel location in the reference corresponding

to a current pixel location in a current picture being encoded or decoded).

[007] In other innovations, an encoder calculates hash values for previously encoded
pixel values (e.g., for every 1, 2, 4, and 8 pixel values). Current pixel values being encoded
are then matched against the previously encoded pixel values by creating a hash of the

current pixel values and matching the hash values.

[008] The technologies described herein can be applied to coding of screen content.
Screen content refers to video and/or image content that is computer-generated (e.g., text,
graphics, and/or other artificial content that is computer-generated). An example of screen

content is an image of a computer desktop graphical user interface comprising text, icons,



WO 2015/131304 PCT/CN2014/072774

menus, windows, and/or other computer text and graphics. The technologies described herein

can also be applied to content other than screen content.

[009] The foregoing and other objects, features, and advantages of the invention will
become more apparent from the following detailed description, which proceeds with

reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS
[010] Figure 1 is a diagram of an example computing system in which some described

embodiments can be implemented.

[011] Figures 2a and 2b are diagrams of example network environments in which some

described embodiments can be implemented.

[012] Figure 3 is a diagram of an example encoder system in conjunction with which

some described embodiments can be implemented.

[013] Figure 4 is a diagram of an example decoder system in conjunction with which

some described embodiments can be implemented.

[014] Figures 5a and 5b are diagrams illustrating an example video encoder in

conjunction with which some described embodiments can be implemented.

[015] Figure 6 is a diagram illustrating an example video decoder in conjunction with

which some described embodiments can be implemented.

[016] Figure 7 is a diagram illustrating an example of encoding a block of pixel values

using a 1-D dictionary mode.

[017] Figure 8 is a diagram illustrating an example of decoding a block of pixel values

using a 1-D dictionary mode

[018] Figure 9 is a flowchart of an example method for decoding pixel values using a

dictionary mode.
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[019] Figure 10 is a flowchart of an example method for decoding pixel values using a

1-D dictionary mode.

[020] Figure 11 is a flowchart of an example method for encoding pixel values using a

dictionary mode.

DETAILED DESCRIPTION
[021] The detailed description presents innovations in the use of dictionary modes
during encoding and/or decoding. In particular, the detailed description presents innovations
for encoding and/or decoding digital video and/or image content (e.g., video content such as
screen content) using 1-D dictionary modes, pseudo 2-D dictionary modes, and/or inter
pseudo 2-D dictionary modes. For example, various 1-D, pseudo 2-D, and inter pseudo 2-D
dictionary modes can be applied to encode and/or decode pixel values in video content (e.g.,
in a video picture) based on previously encoded or decoded (e.g., reconstructed) pixel values
(e.g., in the video picture) stored in dictionaries (e.g., 1-D dictionaries) or stored in other

locations (e.g., stored in a reconstructed picture).

[022] Techniques are described for improving efficiency of encoding and/or decoding
of video and/or image data. In some innovations, a dictionary mode is used to encode and/or
decode pixel values using previous pixel values (e.g., previously reconstructed or previously
decoded pixel values) stored in a dictionary or in another location. In dictionary mode,
current pixel values can be predicted (e.g., predicted exactly, without requiring any residual)
using an offset that identifies a location within previous pixel values (e.g., in a dictionary)
and a length indicating a number of pixel values being predicted. Lossless prediction can be

performed by predicting pixel values exactly from previous pixel values.

[023] Some of these innovations improve efficiency of encoding and/or decoding
digital picture content (e.g., image content and/or video content). For example, a dictionary
coding mode can be applied to reduce the bits needed to code digital picture content. In
situations where screen content is being encoded and/or decoded, the various 1-D, pseudo
2-D, and inter pseudo 2-D dictionary coding modes can be applied to reduce the coding

complexity and/or the number of bits needed to code the content. In other innovations
-4 -
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encoding of digital picture content can be improved by calculating hash values of various
groupings of pixels (e.g., 1 pixel, 2 pixels, 4 pixels, 8 pixels, and so on) and matching hash
values to identify matching pixel values to use for predicting current pixel values being

encoded (e.g., for encoding using the various dictionary modes described herein).

[024] The technologies described herein can be applied to coding of screen content.
Screen content refers to video and/or image content that is computer-generated (e.g., text,
graphics, and/or other artificial content that is computer-generated). An example of screen
content is an image of a computer desktop graphical user interface comprising text, icons,
menus, windows, and/or other computer text and graphics. The technologies described herein
can also be applied to content other than screen content (e.g., other types of digital video

and/or image content).

[025] Although operations described herein are in places described as being performed
by a video encoder or video decoder, in many cases the operations can be performed by
another type of media processing tool (e.g., digital image or digital picture encoder, digital

image or digital picture decoder).

[026] Some of the innovations described herein are illustrated with reference to syntax
elements and operations specific to the HEVC standard. For example, reference is made to
the draft version JCTVC-N1005 of the HEVC standard — “High Efficiency Video Coding
(HEVC) Range Extensions Text Specification: Draft 4,” JCTVC-N1005, July 2013. The

innovations described herein can also be implemented for other standards or formats.

[027] More generally, various alternatives to the examples described herein are
possible. For example, some of the methods described herein can be altered by changing the
ordering of the method acts described, by splitting, repeating, or omitting certain method acts,
etc. The various aspects of the disclosed technology can be used in combination or
separately. Different embodiments use one or more of the described innovations. Some of
the innovations described herein address one or more of the problems noted in the

background. Typically, a given technique/tool does not solve all such problems.
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I Example Computing Systems

[028] Figure 1 illustrates a generalized example of a suitable computing system (100)
in which several of the described innovations may be implemented. The computing system
(100) is not intended to suggest any limitation as to scope of use or functionality, as the

innovations may be implemented in diverse general-purpose or special-purpose computing

systems.

[029] With reference to Figure 1, the computing system (100) includes one or more
processing units (110, 115) and memory (120, 125). The processing units (110, 115) execute
computer-executable instructions. A processing unit can be a general-purpose central
processing unit (“CPU”), processor in an application-specific integrated circuit (“ASIC”) or
any other type of processor. In a multi-processing system, multiple processing units execute
computer-executable instructions to increase processing power. For example, Figure 1 shows
a central processing unit (110) as well as a graphics processing unit or co-processing unit
(115). The tangible memory (120, 125) may be volatile memory (e.g., registers, cache,
RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some
combination of the two, accessible by the processing unit(s). The memory (120, 125) stores
software (180) implementing one or more innovations for 1-D, pseudo 2-D, and/or inter
pseudo 2-D dictionary mode coding, in the form of computer-executable instructions suitable

for execution by the processing unit(s).

[030] A computing system may have additional features. For example, the computing
system (100) includes storage (140), one or more input devices (150), one or more output
devices (160), and one or more communication connections (170). An interconnection
mechanism (not shown) such as a bus, controller, or network interconnects the components of
the computing system (100). Typically, operating system software (not shown) provides an
operating environment for other software executing in the computing system (100), and

coordinates activities of the components of the computing system (100).

[031] The tangible storage (140) may be removable or non-removable, and includes
magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which

can be used to store information and which can be accessed within the computing system

-6-
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(100). The storage (140) stores instructions for the software (180) implementing one or more

innovations for 1-D, pseudo 2-D, and/or inter pseudo 2-D dictionary mode coding.

[032] The input device(s) (150) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a voice input device, a scanning device, or another device that
provides input to the computing system (100). For video, the input device(s) (150) may be a
camera, video card, TV tuner card, or similar device that accepts video input in analog or
digital form, or a CD-ROM or CD-RW that reads video samples into the computing system
(100). The output device(s) (160) may be a display, printer, speaker, CD-writer, or another

device that provides output from the computing system (100).

[033] The communication connection(s) (170) enable communication over a
communication medium to another computing entity. The communication medium conveys
information such as computer-executable instructions, audio or video input or output, or other
data in a modulated data signal. A modulated data signal is a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media can use an electrical, optical, RF,

or other carrier.

[034] Any of the disclosed innovations can be implemented as computer-executable
instructions or a computer program product stored on one or more computer-readable storage
media and executed on a computing device (e.g., any available computing device, including
smart phones or other mobile devices that include computing hardware). Computer-readable
storage media are any available tangible media that can be accessed within a computing
environment (e.g., one or more optical media discs such as DVD or CD, volatile memory
components (such as DRAM or SRAM), or nonvolatile memory components (such as flash
memory or hard drives)). By way of example and with reference to Fig. 1, computer-readable
storage media include memory 1020 and 1025, and storage 1040. The term computer-
readable storage media does not include signals and carrier waves. In addition, the term

computer-readable storage media does not include communication connections (e.g., 170).

[035] The innovations can be described in the general context of computer-executable

instructions, such as those included in program modules, being executed in a computing

-7 -
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system on a target real or virtual processor. Generally, program modules include routines,
programs, libraries, objects, classes, components, data structures, etc. that perform particular
tasks or implement particular abstract data types. The functionality of the program modules
may be combined or split between program modules as desired in various embodiments.
Computer-executable instructions for program modules may be executed within a local or

distributed computing system.

[036] The terms “system” and “device” are used interchangeably herein. Unless the
context clearly indicates otherwise, neither term implies any limitation on a type of
computing system or computing device. In general, a computing system or computing device
can be local or distributed, and can include any combination of special-purpose hardware
and/or general-purpose hardware with software implementing the functionality described

herein.

[037] The disclosed methods can also be implemented using specialized computing
hardware configured to perform any of the disclosed methods. For example, the disclosed
methods can be implemented by an integrated circuit (e.g., an ASIC (such as an ASIC digital
signal process unit (“DSP”), a graphics processing unit (“GPU”), or a programmable logic
device (“PLD”), such as a field programmable gate array (“FPGA™)) specially designed or

configured to implement any of the disclosed methods.

[038] For the sake of presentation, the detailed description uses terms like “determine”
and “use” to describe computer operations in a computing system. These terms are high-
level abstractions for operations performed by a computer, and should not be confused with
acts performed by a human being. The actual computer operations corresponding to these

terms vary depending on implementation.

1L Example Network Environments

[039] Figures 2a and 2b show example network environments (201, 202) that include
video encoders (220) and video decoders (270). The encoders (220) and decoders (270) are
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connected over a network (250) using an appropriate communication protocol. The network

(250) can include the Internet or another computer network.

[040] In the network environment (201) shown in Figure 2a, each real-time
communication (“RTC”) tool (210) includes both an encoder (220) and a decoder (270) for
bidirectional communication. A given encoder (220) can produce output compliant with a
variation or extension of the HEVC standard, SMPTE 421M standard, ISO-IEC 14496-10
standard (also known as H.264 or AVC), another standard, or a proprietary format, with a
corresponding decoder (270) accepting encoded data from the encoder (220). The
bidirectional communication can be part of a video conference, video telephone call, or other
two-party communication scenario. Although the network environment (201) in Figure 2a
includes two real-time communication tools (210), the network environment (201) can
instead include three or more real-time communication tools (210) that participate in multi-

party communication.

[041] A real-time communication tool (210) manages encoding by an encoder (220).
Figure 3 shows an example encoder system (300) that can be included in the real-time
communication tool (210). Alternatively, the real-time communication tool (210) uses
another encoder system. A real-time communication tool (210) also manages decoding by a
decoder (270). Figure 4 shows an example decoder system (400), which can be included in
the real-time communication tool (210). Alternatively, the real-time communication tool

(210) uses another decoder system.

[042] In the network environment (202) shown in Figure 2b, an encoding tool (212)
includes an encoder (220) that encodes video for delivery to multiple playback tools (214),
which include decoders (270). The unidirectional communication can be provided for a
video surveillance system, web camera monitoring system, remote desktop conferencing
presentation or other scenario in which video is encoded and sent from one location to one or
more other locations. Although the network environment (202) in Figure 2b includes two
playback tools (214), the network environment (202) can include more or fewer playback
tools (214). In general, a playback tool (214) communicates with the encoding tool (212) to
determine a stream of video for the playback tool (214) to receive. The playback tool (214)

-9.
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receives the stream, buffers the received encoded data for an appropriate period, and begins

decoding and playback.

[043] Figure 3 shows an example encoder system (300) that can be included in the
encoding tool (212). Alternatively, the encoding tool (212) uses another encoder system.
The encoding tool (212) can also include server-side controller logic for managing
connections with one or more playback tools (214). Figure 4 shows an example decoder
system (400), which can be included in the playback tool (214). Alternatively, the playback
tool (214) uses another decoder system. A playback tool (214) can also include client-side

controller logic for managing connections with the encoding tool (212).

III. Example Encoder Systems

[044] Figure 3 is a block diagram of an example encoder system (300) in conjunction
with which some described embodiments may be implemented. The encoder system (300)
can be a general-purpose encoding tool capable of operating in any of multiple encoding
modes such as a low-latency encoding mode for real-time communication, transcoding mode,
and regular encoding mode for media playback from a file or stream, or it can be a special-
purpose encoding tool adapted for one such encoding mode. The encoder system (300) can
be implemented as an operating system module, as part of an application library or as a
standalone application. Overall, the encoder system (300) receives a sequence of source
video frames (311) from a video source (310) and produces encoded data as output to a
channel (390). The encoded data output to the channel can include content encoded using

1-D, pseudo 2-D, and/or inter pseudo 2-D dictionary modes.

[045] The video source (310) can be a camera, tuner card, storage media, or other
digital video source. The video source (310) produces a sequence of video frames at a frame
rate of, for example, 30 frames per second. As used herein, the term “frame” generally
refers to source, coded or reconstructed image data. For progressive video, a frame is a
progressive video frame. For interlaced video, in example embodiments, an interlaced video
frame is de-interlaced prior to encoding. Alternatively, two complementary interlaced video

fields are encoded as an interlaced video frame or separate fields. Aside from indicating a
-10 -
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progressive video frame, the term “frame” or “picture” can indicate a single non-paired video
field, a complementary pair of video fields, a video object plane that represents a video object
at a given time, or a region of interest in a larger image. The video object plane or region can

be part of a larger image that includes multiple objects or regions of a scene.

[046] An arriving source frame (311) is stored in a source frame temporary memory
storage area (320) that includes multiple frame buffer storage areas (321, 322, ..., 32n). A
frame buffer (321, 322, etc.) holds one source frame in the source frame storage area (320).
After one or more of the source frames (311) have been stored in frame buffers (321, 322,
etc.), a frame selector (330) periodically selects an individual source frame from the source
frame storage area (320). The order in which frames are selected by the frame selector (330)
for input to the encoder (340) may differ from the order in which the frames are produced by
the video source (310), e.g., a frame may be ahead in order, to facilitate temporally backward
prediction. Before the encoder (340), the encoder system (300) can include a pre-processor
(not shown) that performs pre-processing (e.g., filtering) of the selected frame (331) before
encoding. The pre-processing can also include color space conversion into primary and
secondary components for encoding. Typically, before encoding, video has been converted
to a color space such as YUV, in which sample values of a luma (Y) component represent
brightness or intensity values, and sample values of chroma (U, V) components represent
color-difference values. The chroma sample values may be sub-sampled to a lower chroma
sampling rate (e.g., for YUV 4:2:0 format), or the chroma sample values may have the same
resolution as the luma sample values (e.g., for YUV 4:4:4 format). Or, the video can be

encoded in another format (e.g., RGB 4:4:4 format).

[047] The encoder (340) encodes the selected frame (331) to produce a coded frame
(341) and also produces memory management control operation (“MMCQO”) signals (342) or
reference picture set (“RPS”) information. If the current frame is not the first frame that has
been encoded, when performing its encoding process, the encoder (340) may use one or more
previously encoded/decoded frames (369) that have been stored in a decoded frame
temporary memory storage area (360). Such stored decoded frames (369) are used as
reference frames for inter-frame prediction of the content of the current source frame (331).

Generally, the encoder (340) includes multiple encoding modules that perform encoding tasks

-11 -
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such as partitioning into tiles, intra prediction estimation and prediction, motion estimation
and compensation, frequency transforms, quantization and entropy coding. The exact
operations performed by the encoder (340) can vary depending on compression format. The
format of the output encoded data can be a variation or extension of HEVC format, Windows
Media Video format, VC-1 format, MPEG-x format (e.g., MPEG-1, MPEG-2, or MPEG-4),
H.26x format (e.g., H.261, H.262, H.263, H.264), or another format.

[048] The encoder (340) can partition a frame into multiple tiles of the same size or
different sizes. For example, the encoder (340) splits the frame along tile rows and tile
columns that, with frame boundaries, define horizontal and vertical boundaries of tiles within
the frame, where each tile is a rectangular region. Tiles are often used to improve options for
parallel processing. A frame can also be organized as one or more slices, where a slice can
be an entire frame or region of the frame. A slice can be decoded independently of other
slices in a frame, which improves error resilience. The content of a slice or tile is further

partitioned into blocks or other sets of samples for purposes of encoding and decoding.

[049] For syntax according to the HEVC standard, the encoder splits the content of a
frame (or slice or tile) into coding tree units. A coding tree unit (“CTU”) includes luma
sample values organized as a luma coding tree block (“CTB”) and corresponding chroma
sample values organized as two chroma CTBs. The size of a CTU (and its CTBs) is selected
by the encoder, and can be, for example, 64x64, 32x32 or 16x16 sample values. A CTU
includes one or more coding units. A coding unit (“CU”) has a luma coding block (“CB”)
and two corresponding chroma CBs. For example, a CTU with a 64x64 luma CTB and two
64x64 chroma CTBs (YUV 4:4:4 format) can be split into four CUs, with each CU including
a 32x32 luma CB and two 32x32 chroma CBs, and with each CU possibly being split further
into smaller CUs. Or, as another example, a CTU with a 64x64 luma CTB and two 32x32
chroma CTBs (YUYV 4:2:0 format) can be split into four CUs, with each CU including a
32x32 luma CB and two 16x16 chroma CBs, and with each CU possibly being split further
into smaller CUs. The smallest allowable size of CU (e.g., 8x8, 16x16) can be signaled in the

bitstream.

[050] Generally, a CU has a prediction mode such as inter or intra. A CU includes one
or more prediction units for purposes of signaling of prediction information (such as

-12 -
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prediction mode details, etc.) and/or prediction processing. A prediction unit (“PU”) has a
luma prediction block (“PB”) and two chroma PBs. For an intra-predicted CU, the PU has
the same size as the CU, unless the CU has the smallest size (e.g., 8x8). In that case, the CU
can be split into four smaller PUs (e.g., each 4x4 if the smallest CU size is 8x8) or the PU can
have the smallest CU size, as indicated by a syntax element for the CU. A CU also has one
or more transform units for purposes of residual coding/decoding, where a transform unit
(“TU”) has a transform block (“TB”) and two chroma TBs. A PU in an intra-predicted CU
may contain a single TU (equal in size to the PU) or multiple TUs. As used herein, the term
“block’ can indicate a CU, CB, PB, TB or other set of sample values, depending on context.

The encoder decides how to partition video into CTUs, CUs, PUs, TUs, etc.

[051] Returning to Figure 3, the encoder represents an intra-coded block of a source
frame (331) in terms of prediction from other, previously reconstructed sample values in the
frame (331). For intra spatial prediction for a block, the intra-picture estimator estimates
extrapolation of the neighboring reconstructed sample values into the block. The intra-
prediction estimator outputs prediction information (such as prediction mode (direction) for
intra spatial prediction), which is entropy coded. An intra-prediction predictor applies the

prediction information to determine intra prediction values.

[052] For the various dictionary coding modes described herein, the encoder can
calculate hash values of previously reconstructed sample values (e.g., groupings of 1 pixel, 2
pixels, 4 pixels, 8 pixels, and so on) and compare those has values for a hash value of a
current pixel value being encoded. Matches of length one or more can be identified in the
previously reconstructed sample values based on the hash comparison and the current pixel
value (or values) can be encoded using the various 1-D and pseudo 2-D dictionary modes
described herein (or the inter pseudo 2-D dictionary mode with reference to a reference

picture).

[053] The encoder (340) represents an inter-coded, predicted block of a source frame
(331) in terms of prediction from reference frames. A motion estimator estimates motion of
the block with respect to one or more reference frames (369). When multiple reference
frames are used, the multiple reference frames can be from different temporal directions or
the same temporal direction. A motion-compensated prediction reference region is a region
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of samples in the reference frame(s) that are used to generate motion-compensated prediction
values for a block of samples of a current frame. The motion estimator outputs motion
information such as motion vector information, which is entropy coded. A motion
compensator applies motion vectors to reference frames (369) to determine motion-

compensated prediction values.

[054] The entropy coder of the encoder (340) compresses quantized transform
coefficient values as well as certain side information (e.g., motion vector information, QP
values, mode decisions, parameter choices). In particular, the entropy coder can compress
data for elements of an index map using a coefficient coding syntax structure. Typical
entropy coding techniques include Exp-Golomb coding, arithmetic coding, differential
coding, Huffman coding, run length coding, variable-length-to-variable-length (“V2V”’)
coding, variable-length-to-fixed-length (“V2F’) coding, LZ coding, dictionary coding,
probability interval partitioning entropy coding (“PIPE”), and combinations of the above.
The entropy coder can use different coding techniques for different kinds of information, and

can choose from among multiple code tables within a particular coding technique.

[055] The coded frames (341) and MMCO/RPS information (342) are processed by a
decoding process emulator (350). The decoding process emulator (350) implements some of
the functionality of a decoder, for example, decoding tasks to reconstruct reference frames.
The decoding process emulator (350) uses the MMCO/RPS information (342) to determine
whether a given coded frame (341) needs to be reconstructed and stored for use as a reference
frame in inter-frame prediction of subsequent frames to be encoded. If the MMCO/RPS
information (342) indicates that a coded frame (341) needs to be stored, the decoding process
emulator (350) models the decoding process that would be conducted by a decoder that
receives the coded frame (341) and produces a corresponding decoded frame (351). In doing
so, when the encoder (340) has used decoded frame(s) (369) that have been stored in the
decoded frame storage area (360), the decoding process emulator (350) also uses the decoded

frame(s) (369) from the storage area (360) as part of the decoding process.

[056] The decoded frame temporary memory storage area (360) includes multiple

frame buffer storage areas (361, 362, ..., 36n). The decoding process emulator (350) uses the

MMCO/RPS information (342) to manage the contents of the storage area (360) in order to
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identify any frame buffers (361, 362, etc.) with frames that are no longer needed by the
encoder (340) for use as reference frames. After modeling the decoding process, the
decoding process emulator (350) stores a newly decoded frame (351) in a frame buffer (361,

362, etc.) that has been identified in this manner.

[057] The coded frames (341) and MMCO/RPS information (342) are buffered in a
temporary coded data area (370). The coded data that is aggregated in the coded data area
(370) contains, as part of the syntax of an elementary coded video bitstream, encoded data for
one or more pictures. The coded data that is aggregated in the coded data area (370) can also
include media metadata relating to the coded video data (e.g., as one or more parameters in
one or more supplemental enhancement information (“SEI”’) messages or video usability

information (“VUT”) messages).

[058] The aggregated data (371) from the temporary coded data area (370) are
processed by a channel encoder (380). The channel encoder (380) can packetize the
aggregated data for transmission as a media stream (e.g., according to a media stream
multiplexing format such as ISO/IEC 13818-1), in which case the channel encoder (380) can
add syntax elements as part of the syntax of the media transmission stream. Or, the channel
encoder (380) can organize the aggregated data for storage as a file (e.g., according to a
media container format such as ISO/IEC 14496-12), in which case the channel encoder (380)
can add syntax elements as part of the syntax of the media storage file. Or, more generally,
the channel encoder (380) can implement one or more media system multiplexing protocols
or transport protocols, in which case the channel encoder (380) can add syntax elements as
part of the syntax of the protocol(s). The channel encoder (380) provides output to a channel
(390), which represents storage, a communications connection, or another channel for the

output.

IV.  Example Decoder Systems

[059] Figure 4 is a block diagram of an example decoder system (400) in conjunction
with which some described embodiments may be implemented. The decoder system (400)

can be a general-purpose decoding tool capable of operating in any of multiple decoding
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modes such as a low-latency decoding mode for real-time communication and regular
decoding mode for media playback from a file or stream, or it can be a special-purpose
decoding tool adapted for one such decoding mode. The decoder system (400) can be
implemented as an operating system module, as part of an application library or as a
standalone application. Overall, the decoder system (400) receives coded data from a
channel (410) and produces reconstructed frames as output for an output destination (490).
The coded data can include content encoded using 1-D, pseudo 2-D, and/or inter pseudo 2-D

dictionary modes.

[060] The decoder system (400) includes a channel (410), which can represent storage,
a communications connection, or another channel for coded data as input. The channel (410)
produces coded data that has been channel coded. A channel decoder (420) can process the
coded data. For example, the channel decoder (420) de-packetizes data that has been
aggregated for transmission as a media stream (e.g., according to a media stream
multiplexing format such as ISO/IEC 13818-1), in which case the channel decoder (420) can
parse syntax elements added as part of the syntax of the media transmission stream. Or, the
channel decoder (420) separates coded video data that has been aggregated for storage as a
file (e.g., according to a media container format such as ISO/IEC 14496-12), in which case
the channel decoder (420) can parse syntax elements added as part of the syntax of the media
storage file. Or, more generally, the channel decoder (420) can implement one or more
media system demultiplexing protocols or transport protocols, in which case the channel

decoder (420) can parse syntax elements added as part of the syntax of the protocol(s).

[061] The coded data (421) that is output from the channel decoder (420) is stored in a
temporary coded data area (430) until a sufficient quantity of such data has been received.
The coded data (421) includes coded frames (431) and MMCO/RPS information (432). The
coded data (421) in the coded data area (430) contain, as part of the syntax of an elementary
coded video bitstream, coded data for one or more pictures. The coded data (421) in the
coded data area (430) can also include media metadata relating to the encoded video data

(e.g., as one or more parameters in one or more SEI messages or VUI messages).

[062] In general, the coded data area (430) temporarily stores coded data (421) until
such coded data (421) is used by the decoder (450). At that point, coded data for a coded
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frame (431) and MMCO/RPS information (432) are transferred from the coded data area
(430) to the decoder (450). As decoding continues, new coded data is added to the coded
data area (430) and the oldest coded data remaining in the coded data area (430) is transferred

to the decoder (450).

[063] The decoder (450) periodically decodes a coded frame (431) to produce a
corresponding decoded frame (451). As appropriate, when performing its decoding process,
the decoder (450) may use one or more previously decoded frames (469) as reference frames
for inter-frame prediction. The decoder (450) reads such previously decoded frames (469)
from a decoded frame temporary memory storage area (460). Generally, the decoder (450)
includes multiple decoding modules that perform decoding tasks such as entropy decoding,
inverse quantization, inverse frequency transforms, intra prediction, motion compensation
and merging of tiles. The exact operations performed by the decoder (450) can vary

depending on compression format.

[064] For example, the decoder (450) receives encoded data for a compressed frame or
sequence of frames and produces output including decoded frame (451). In the decoder
(450), a buffer receives encoded data for a compressed frame and, at an appropriate time,
makes the received encoded data available to an entropy decoder. The entropy decoder
entropy decodes entropy-coded quantized data as well as entropy-coded side information,
typically applying the inverse of entropy encoding performed in the encoder. A motion
compensator applies motion information to one or more reference frames to form motion-
compensated prediction values for any inter-coded blocks of the frame being reconstructed.
An intra prediction module can spatially predict sample values of a current block from

neighboring, previously reconstructed sample values.

[065] For the various dictionary coding modes described herein, the decoder can
decode current pixel values in a matching mode and/or a direct mode. In matching mode, the
decoder decodes current pixel values that are predicted from previously decoded pixel values
(e.g., previously reconstructed pixel values) which may be stored in a 1-D dictionary or in
another location (e.g., a reconstructed picture). For example, the decoder can receive one or

more codes indicating an offset (e.g., within a dictionary) and a length (indicating a number

-17 -



WO 2015/131304 PCT/CN2014/072774

of pixel values to be predicted from the offset). In direct mode, the decoder can decode pixel

values directly without prediction.

[066] In non-dictionary modes, the decoder (450) also reconstructs prediction residuals.
An inverse quantizer inverse quantizes entropy-decoded data. For example, the decoder
(450) sets values for QP for a picture, tile, slice and/or other portion of video based on syntax
elements in the bitstream, and inverse quantizes transform coefficients accordingly. An
inverse frequency transformer converts the quantized, frequency domain data into spatial
domain information. For an inter-predicted block, the decoder (450) combines reconstructed
prediction residuals with motion-compensated predictions. The decoder (450) can similarly
combine prediction residuals with predictions from intra prediction. A motion compensation
loop in the video decoder (450) includes an adaptive de-blocking filter to smooth

discontinuities across block boundary rows and/or columns in the decoded frame (451).

[067] The decoded frame temporary memory storage area (460) includes multiple
frame buffer storage areas (461, 462, ..., 46n). The decoded frame storage area (460) is an
example of a decoded picture buffer. The decoder (450) uses the MMCO/RPS information
(432) to identify a frame buffer (461, 462, etc.) in which it can store a decoded frame (451).
The decoder (450) stores the decoded frame (451) in that frame buffer.

[068] An output sequencer (480) uses the MMCO/RPS information (432) to identify
when the next frame to be produced in output order is available in the decoded frame storage
area (460). When the next frame (481) to be produced in output order is available in the
decoded frame storage area (460), it is read by the output sequencer (480) and output to the
output destination (490) (e.g., display). In general, the order in which frames are output from
the decoded frame storage area (460) by the output sequencer (480) may differ from the order
in which the frames are decoded by the decoder (450).

V. Example Video Encoders

[069] Figures Sa and 5b are a block diagram of a generalized video encoder (500) in

conjunction with which some described embodiments may be implemented. The encoder
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(500) receives a sequence of video pictures including a current picture as an input video

signal (505) and produces encoded data in a coded video bitstream (595) as output.

[070] The encoder (500) is block-based and uses a block format that depends on
implementation. Blocks may be further sub-divided at different stages, e.g., at the prediction,
frequency transform and/or entropy encoding stages. For example, a picture can be divided
into 64x64 blocks, 32x32 blocks or 16x16 blocks, which can in turn be divided into smaller
blocks of sample values for coding and decoding. In implementations of encoding for the
HEVC standard, the encoder partitions a picture into CTUs (CTBs), CUs (CBs), PUs (PBs)
and TU (TBs).

[071] The encoder (500) compresses pictures using intra-picture coding and/or inter-
picture coding. Many of the components of the encoder (500) are used for both intra-picture
coding and inter-picture coding. The exact operations performed by those components can

vary depending on the type of information being compressed.

[072] A tiling module (510) optionally partitions a picture into multiple tiles of the
same size or different sizes. For example, the tiling module (510) splits the picture along tile
rows and tile columns that, with picture boundaries, define horizontal and vertical boundaries
of tiles within the picture, where each tile is a rectangular region. The tiling module (510)
can then group the tiles into one or more tile sets, where a tile set is a group of one or more of

the tiles.

[073] The general encoding control (520) receives pictures for the input video signal
(505) as well as feedback (not shown) from various modules of the encoder (500). Overall,
the general encoding control (520) provides control signals (not shown) to other modules
(such as the tiling module (510), transformer/scaler/quantizer (530), scaler/inverse
transformer (535), intra-picture estimator (540), motion estimator (550) and intra/inter
switch) to set and change coding parameters during encoding. In particular, the general
encoding control (520) can decide whether and how to use dictionary modes during encoding.
The general encoding control (520) can also evaluate intermediate results during encoding,
for example, performing rate-distortion analysis. The general encoding control (520)

produces general control data (522) that indicates decisions made during encoding, so that a
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corresponding decoder can make consistent decisions. The general control data (522) is

provided to the header formatter/entropy coder (590).

[074] If the current picture is predicted using inter-picture prediction, a motion
estimator (550) estimates motion of blocks of sample values of the current picture of the
input video signal (505) with respect to one or more reference pictures. The decoded picture
buffer (570) buffers one or more reconstructed previously coded pictures for use as reference
pictures. When multiple reference pictures are used, the multiple reference pictures can be
from different temporal directions or the same temporal direction. The motion estimator
(550) produces as side information motion data (552) such as motion vector data and
reference picture selection data. The motion data (552) is provided to the header

formatter/entropy coder (590) as well as the motion compensator (555).

[075] The motion compensator (555) applies motion vectors to the reconstructed
reference picture(s) from the decoded picture buffer (570). The motion compensator (555)

produces motion-compensated predictions for the current picture.

[076] In a separate path within the encoder (500), an intra-picture estimator (540)
determines how to perform intra-picture prediction for blocks of sample values of a current
picture of the input video signal (505). The current picture can be entirely or partially coded
using intra-picture coding. Using values of a reconstruction (538) of the current picture, for
intra spatial prediction, the intra-picture estimator (540) determines how to spatially predict
sample values of a current block of the current picture from neighboring, previously

reconstructed sample values of the current picture.

[077] For the various dictionary coding modes described herein, the encoder (500) can
calculate hash values of previously reconstructed sample values (e.g., groupings of 1 pixel, 2
pixels, 4 pixels, 8 pixels, and so on) and compare those has values for a hash value of a
current pixel value being encoded. Matches of length one or more can be identified in the
previously reconstructed sample values based on the hash comparison and the current pixel
value (or values) can be encoded using the various 1-D and pseudo 2-D dictionary modes
described herein (or the inter pseudo 2-D dictionary mode with reference to a reference

picture).
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[078] The intra-prediction estimator (540) produces as side information intra prediction
data (542), such as information indicating whether intra prediction uses spatial prediction or
one of the various dictionary modes (e.g., a flag value per intra block or per intra block of
certain prediction mode directions), prediction mode direction (for intra spatial prediction).
The intra prediction data (542) is provided to the header formatter/entropy coder (590) as
well as the intra-picture predictor (545). According to the intra prediction data (542), the
intra-picture predictor (545) spatially predicts sample values of a current block of the current

picture from neighboring, previously reconstructed sample values of the current picture.

[079] In non-dictionary modes, the intra/inter switch selects values of a motion-
compensated prediction or intra-picture prediction for use as the prediction (558) for a given
block. In non-dictionary modes, the difference (if any) between a block of the prediction
(558) and corresponding part of the original current picture of the input video signal (505)
provides values of the residual (518). During reconstruction of the current picture,
reconstructed residual values are combined with the prediction (558) to produce a
reconstruction (538) of the original content from the video signal (505). In lossy

compression, however, some information is still lost from the video signal (505).

[080] In the transformer/scaler/quantizer (530), for non-dictionary modes, a frequency
transformer converts spatial domain video information into frequency domain (i.e., spectral,
transform) data. For block-based video coding, the frequency transformer applies a discrete
cosine transform (“DCT”), an integer approximation thereof, or another type of forward
block transform to blocks of prediction residual data (or sample value data if the prediction
(558) is null), producing blocks of frequency transform coefficients. The encoder (500) may
also be able to indicate that such transform step is skipped. The scaler/quantizer scales and
quantizes the transform coefficients. For example, the quantizer applies non-uniform, scalar
quantization to the frequency domain data with a step size that varies on a frame-by-frame
basis, tile-by-tile basis, slice-by-slice basis, block-by-block basis or other basis. The
quantized transform coefficient data (532) is provided to the header formatter/entropy coder

(590).

[081] In the scaler/inverse transformer (535), for non-dictionary modes, a scaler/inverse
quantizer performs inverse scaling and inverse quantization on the quantized transform
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coefficients. An inverse frequency transformer performs an inverse frequency transform,
producing blocks of reconstructed prediction residuals or sample values. The encoder (500)
combines reconstructed residuals with values of the prediction (558) (e.g., motion-
compensated prediction values, intra-picture prediction values) to form the reconstruction

(538).

[082] For intra-picture prediction, the values of the reconstruction (538) can be fed
back to the intra-picture estimator (540) and intra-picture predictor (545). Also, the values of
the reconstruction (538) can be used for motion-compensated prediction of subsequent
pictures. The values of the reconstruction (538) can be further filtered. A filtering control
(560) determines how to perform deblock filtering and sample adaptive offset (“SAO”)
filtering on values of the reconstruction (538), for a given picture of the video signal (505).
The filtering control (560) produces filter control data (562), which is provided to the header
formatter/entropy coder (590) and merger/filter(s) (565).

[083] In the merger/filter(s) (565), the encoder (500) merges content from different tiles
into a reconstructed version of the picture. The encoder (500) selectively performs deblock
filtering and SAOQ filtering according to the filter control data (562), so as to adaptively
smooth discontinuities across boundaries in the frames. Tile boundaries can be selectively
filtered or not filtered at all, depending on settings of the encoder (500), and the encoder
(500) may provide syntax within the coded bitstream to indicate whether or not such filtering
was applied. The decoded picture buffer (570) buffers the reconstructed current picture for

use in subsequent motion-compensated prediction.

[084] The header formatter/entropy coder (590) formats and/or entropy codes the
general control data (522), quantized transform coefficient data (532), intra prediction data
(542) and packed index values, motion data (552) and filter control data (562). For example,
the header formatter/entropy coder (590) uses context-adaptive binary arithmetic coding
(“CABAC”) for entropy coding of various syntax elements of a coefficient coding syntax

structure.

[085] The header formatter/entropy coder (590) provides the encoded data in the coded

video bitstream (595). The format of the coded video bitstream (595) can be a variation or
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extension of HEVC format, Windows Media Video format, VC-1 format, MPEG-x format
(e.g., MPEG-1, MPEG-2, or MPEG-4), H.26x format (e.g., H.261, H.262, H.263, H.264), or

another format.

[086] Depending on implementation and the type of compression desired, modules of
the encoder can be added, omitted, split into multiple modules, combined with other modules,
and/or replaced with like modules. In alternative embodiments, encoders with different
modules and/or other configurations of modules perform one or more of the described
techniques. Specific embodiments of encoders typically use a variation or supplemented
version of the encoder (500). The relationships shown between modules within the encoder
(500) indicate general flows of information in the encoder; other relationships are not shown

for the sake of simplicity.

VI. Example Video Decoders

[087] Figure 6 is a block diagram of a generalized decoder (600) in conjunction with
which several described embodiments may be implemented. The decoder (600) receives
encoded data in a coded video bitstream (605) and produces output including pictures for
reconstructed video (695). The format of the coded video bitstream (605) can be a variation
or extension of HEVC format, Windows Media Video format, VC-1 format, MPEG-x format
(e.g., MPEG-1, MPEG-2, or MPEG-4), H.26x format (e.g., H.261, H.262, H.263, H.264), or

another format.

[088] The decoder (600) is block-based and uses a block format that depends on
implementation. Blocks may be further sub-divided at different stages. For example, a
picture can be divided into 64x64 blocks, 32x32 blocks or 16x16 blocks, which can in turn be
divided into smaller blocks of sample values. In implementations of decoding for the HEVC

standard, a picture is partitioned into CTUs (CTBs), CUs (CBs), PUs (PBs) and TU (TBs).

[089] The decoder (600) decompresses pictures using intra-picture decoding and/or

inter-picture decoding. Many of the components of the decoder (600) are used for both intra-
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picture decoding and inter-picture decoding. The exact operations performed by those

components can vary depending on the type of information being decompressed.

[090] A buffer receives encoded data in the coded video bitstream (605) and makes the
received encoded data available to the parser/entropy decoder (610). The parser/entropy
decoder (610) entropy decodes entropy-coded data, typically applying the inverse of entropy
coding performed in the encoder (500) (e.g., context-adaptive binary arithmetic decoding).
For example, the parser/entropy decoder (610) uses context-adaptive binary arithmetic
decoding for entropy decoding of various syntax elements of a coefficient coding syntax
structure. As a result of parsing and entropy decoding, the parser/entropy decoder (610)
produces general control data (622), quantized transform coefficient data (632), intra
prediction data (642) and packed index values, motion data (652) and filter control data
(662).

[091] The general decoding control (620) receives the general control data (622) and
provides control signals (not shown) to other modules (such as the scaler/inverse transformer
(635), intra-picture predictor (645), motion compensator (655) and intra/inter switch) to set

and change decoding parameters during decoding.

[092] If the current picture is predicted using inter-picture prediction, a motion
compensator (655) receives the motion data (652), such as motion vector data and reference
picture selection data. The motion compensator (655) applies motion vectors to the
reconstructed reference picture(s) from the decoded picture buffer (670). The motion
compensator (655) produces motion-compensated predictions for inter-coded blocks of the
current picture. The decoded picture buffer (670) stores one or more previously

reconstructed pictures for use as reference pictures.

[093] In a separate path within the decoder (600), the intra-prediction predictor (645)
receives the intra prediction data (642), such as information indicating whether intra
prediction uses spatial prediction or one of the dictionary modes (e.g., a flag value per intra
block or per intra block of certain prediction mode directions), prediction mode direction (for
intra spatial prediction). For intra spatial prediction, using values of a reconstruction (638) of

the current picture, according to prediction mode data, the intra-picture predictor (645)
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spatially predicts sample values of a current block of the current picture from neighboring,

previously reconstructed sample values of the current picture.

[094] For the various dictionary coding modes described herein, the decoder can
decode current pixel values in a matching mode and/or a direct mode. In matching mode, the
decoder decodes current pixel values that are predicted from previously decoded pixel values
(e.g., previously reconstructed pixel values) which may be stored in a 1-D dictionary or in
another location (e.g., a reconstructed picture). For example, the decoder can receive one or
more codes indicating an offset (e.g., within a dictionary) and a length (indicating a number
of pixel values to be predicted from the offset). In direct mode, the decoder can decode pixel

values directly without prediction

[095] In non-dictionary modes, the intra/inter switch selects values of a motion-
compensated prediction or intra-picture prediction for use as the prediction (658) for a given
block. For example, when HEVC syntax is followed, the intra/inter switch can be controlled
based on a syntax element encoded for a CU of a picture that can contain intra-predicted CUs
and inter-predicted CUs. The decoder (600) combines the prediction (658) with
reconstructed residual values to produce the reconstruction (638) of the content from the

video signal.

[096] To reconstruct the residual, for non-dictionary modes, the scaler/inverse
transformer (635) receives and processes the quantized transform coefficient data (632). In
the scaler/inverse transformer (635), a scaler/inverse quantizer performs inverse scaling and
inverse quantization on the quantized transform coefficients. An inverse frequency
transformer performs an inverse frequency transform, producing blocks of reconstructed
prediction residuals or sample values. For example, the inverse frequency transformer
applies an inverse block transform to frequency transform coefficients, producing sample
value data or prediction residual data. The inverse frequency transform can be an inverse

DCT, an integer approximation thereof, or another type of inverse frequency transform.

[097] For intra-picture prediction, the values of the reconstruction (638) can be fed
back to the intra-picture predictor (645). For inter-picture prediction, the values of the

reconstruction (638) can be further filtered. In the merger/filter(s) (665), the decoder (600)
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merges content from different tiles into a reconstructed version of the picture. The decoder
(600) selectively performs deblock filtering and SAO filtering according to the filter control
data (662) and rules for filter adaptation, so as to adaptively smooth discontinuities across
boundaries in the frames. Tile boundaries can be selectively filtered or not filtered at all,
depending on settings of the decoder (600) or a syntax indication within the encoded
bitstream data. The decoded picture buffer (670) buffers the reconstructed current picture for

use in subsequent motion-compensated prediction.

[098] The decoder (600) can also include a post-processing deblock filter. The post-
processing deblock filter optionally smoothes discontinuities in reconstructed pictures. Other

filtering (such as de-ring filtering) can also be applied as part of the post-processing filtering.

[099] Depending on implementation and the type of decompression desired, modules of
the decoder can be added, omitted, split into multiple modules, combined with other modules,
and/or replaced with like modules. In alternative embodiments, decoders with different
modules and/or other configurations of modules perform one or more of the described
techniques. Specific embodiments of decoders typically use a variation or supplemented
version of the decoder (600). The relationships shown between modules within the decoder
(600) indicate general flows of information in the decoder; other relationships are not shown

for the sake of simplicity.

VII. Innovations for 1-D Dictionary Mode

[0100] This section presents various innovations for one-dimensional (1-D) dictionary
mode. Some innovations relate to signaling pixel values using an offset and a length, while
others relate to signaling pixel values directly. Still others relate to vertical scanning and

horizontal scanning.

[0101] In particular, using the 1-D dictionary mode when encoding pixel values can
improve performance and reduce needed bits when encoding video content, particularly

screen content (e.g., when performing screen capture). Screen content typically includes
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repeated structures (e.g., graphics, text characters), which provide areas with the same pixel

values that can be encoded with prediction to improve performance.
A. 1-D Dictionary Mode — Introduction

[0102] In 1-D dictionary mode, sample values (e.g., pixel values) are predicted by
reference (using offset and length) to previously sample values stored in a 1-D dictionary
(e.g., previously reconstructed sample values). For example, a video encode or image encoder
can encode current sample values with reference to a 1-D dictionary storing previous sample
values (e.g., reconstructed or original sample values) that are used to predict and encode the
current sample values. A video decoder or image decoder can decode current sample values
with reference to a 1-D dictionary storing previously decoded (e.g., reconstructed) sample

values that are used to predict and decode the current sample values.

[0103] In the 1-D dictionary mode, one or more current pixel values can be predicted
from one or more previous pixel values (e.g., in scan order). The prediction can be performed
by matching the current pixel values with the previous pixel values so that current pixel
values can be predicted exactly (e.g., without requiring any residual). The term “matching
mode” describes encoding and/or decoding using matching pixel values in a dictionary (or
from another source, such as a reconstructed picture). In situations where there are no
matching pixel values (e.g., at the beginning of a frame or where there are no matches found
in the dictionary of previous pixel values), then one or more current pixel values can be
coded directly. The term “direct mode” describes encoding and/or decoding pixel values

directly.

[0104] In some implementations, pixel values are encoded and decoded as combined
pixels (a combination of Y, U, and V values for the pixel, or a combination of R, G, and B
values for the pixel, are encoded/decoded together). In other implementations, pixel values
are encoded and decoded as separate components (e.g., separate 1-D dictionaries can be
maintained for each of Y, U, and V components or R, G, and B components). Pixel values
can be encoded and decoded in various YUV data formats (e.g., YUV 4:4:4, YUV 4:2:2,
YUV 4:2:0, etc.) or in various RGB data formats (e.g., RGB, GBR, BGR, etc.).

=27 -



WO 2015/131304 PCT/CN2014/072774

[0105] Encoding and/or decoding of pixel values using the 1-D dictionary mode can be
applied to video or image content that is divided into distinct areas, such as blocks. Generally,
any size block can be used. In some implementations, video content (e.g., a video picture or

frame) is divided into coding units with sizes of 64x64, 32x32, 16x16, or 8x8 sample values.

[0106] In some implementations, dictionary coding can be combined with other types of
coding. For example, pixel values can be coded using one of the dictionary modes described
herein (e.g., 1-D dictionary mode). The coded pixel values can then be coded using another

coding technique (e.g., context-based arithmetic coding or another coding technique).
B. Signaling Offset and Length

[0107] In the 1-D dictionary mode, when there are matching pixel values, the offset and
length values are signaled to indicate the position in the 1-D dictionary where the matching
pixel values are located to predict the current pixel values. For example, one or more current
pixel values can be predicted from one or more previous pixel values stored in the 1-D
dictionary that are identified within the 1-D dictionary by offset (the position back in the 1-D
dictionary from the current pixel value) and length (the number of pixel values that are
predicted from the offset). As should be understood, an offset of 5 means five pixels back in
the 1-D dictionary from the current pixel value (e.g., in some implementations a negative sign

is added to the offset, which would be an offset of -5 in this example).

[0108] In the 1-D dictionary mode, in some implementations pixel values in a current
block can be predicted from pixel values in a previous block (e.g., depending on the
maximum size of the dictionary). For example, in a picture coded using 64x64 blocks, pixel
values from the fourth block in the picture can be predicted (e.g., using offset and length)

from pixel values from the first block in the picture that are stored in a 1-D dictionary.

[0109] The offset can be encoded and signaled (e.g., in a bit stream) in a format that
divides the possible offset values into a number of ranges, and encodes the offset values by
range. In this way, an offset can be encoded as a two-part code with the first part identifying

the offset range and the second part indicating the offset value within the range.
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[0110] In a specific implementation, the offset values are coded using the following
ranges. In addition, in this implementation zero-based numbering is applied so that offset
values are decreased by 1 before the offset values are encoded and increased by 1 after the
offset values are decoded. The ranges (with their offset range codes), corresponding offset

values, and number of bits are indicated by the following table (Table 1).

Number of bits to represent
Range Offset values
offset value
Range 1 (code: 1) [0, 3] 2 bits
Range 2 (code: 01) [4, 19] 4 bits
Range 3 (code: 001) [20, 275] 8 bits
Range 4 (code: 0001) [276, 65,811] 16 bits
Range 5 (code: 0000) [more than 65,811] N bits

Table 1 — Example Ranges for Offset Values

[0111] Using the implementation depicted in Table 1 above, offsets can be encoded,
signaled, and decoded. As an example, an offset value of 415 (representing an original offset
value of 416, which is decreased by 1 for encoding) would be encoded in Range 4. Because
Range 4 starts with an offset value of 276, the value to be coded would be 415 — 276 = 139.
The encoded offset would be generated by combining the offset range code of “0001”
(representing Range 4) followed by the 16-bit value of “0000000010001011” (the 16-bit
binary value for the decimal number 139). Putting the two parts of the code together (the
offset range code and the offset value code) results in the following combined code for the
encoded offset: “00010000000010001011”. As another example, an offset value of 45
(representing an original offset value of 46, which is decreased by 1 for encoding) would be
encoded in Range 3. Because Range 3 starts with an offset value of 20, the value to be coded
would be 45 — 20 = 25. The encoded offset would be generated by combining the offset range
code of “001” (representing Range 3) followed by the 8-bit value of “00011001” (the 8-bit
binary value for the decimal number 25). Putting the two parts of the code together (the offset
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range code and the offset value code) results in the following combined code for the encoded

offset: “00100011001”.

[0112] As depicted in Table 1 above, Range 5 represents offset values of more than
65,811 using N bits where N represents the number of bits needed to represent the maximum
offset value. In some implementations, the maximum offset value is determined from the
current dictionary size. For example, if the current dictionary size is 300,000, then N can be
set to 18 (i.e., 18 bits are needed to represent the maximum offset value of 300,000), and
therefore an offset value between 65,811 and 300,000 would use 18 bits to encode the offset
value. It should be understood that the offset value for Range 5 begins at 65,812, so to
represent 300,000 only 18 bits are needed to represent the amount over 65,811 (i.e., only 18
bits are needed to represent 300,000 — 65,812 = 234,188). In other implementations, the
maximum offset value is pre-determined and does not depend on the current dictionary size.

For example, if the pre-determined maximum offset value is 800,000, then N can be set to 20.

[0113] In other implementations, the offset values can be coded using a different number

of ranges and/or ranges covering different groupings of offset values.

[0114] In a specific implementation, the length values are coded by range, similar to the
offset values. In addition, in this implementation zero-based numbering is applied so that
length values are decreased by 1 before the length values are encoded and increased by 1
after the length values are decoded. The ranges (with their length range codes), corresponding

length values, and number of bits are indicated by the following table (Table 2).

Number of bits to represent
Range Length values
length value
Range 1 (code: 1) [0, 3] 2 bits
Range 2 (code: 01) [4, 19] 4 bits
Range 3 (code: 001) [20, 275] 8 bits
Range 4 (code: 000) [more than 275] N bits

Table 2 — Example Ranges for Length Values
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[0115] Using the implementation depicted in Table 2 above, lengths can be encoded,
signaled, and decoded. As an example, a length value of 2 (representing an original length
value of 3, which is decreased by 1 for encoding) would be encoded in Range 1. The encoded
length would be generated by combining the length range code of “1” (representing Range 1)
followed by the 2-bit value of “10” (the 2-bit binary value for the decimal number 2). Putting
the two parts of the code together (the length range code and the length value code) results in
the following combined code for the encoded length: “101”. As another example, a length
value of 56 (representing an original length value of 57, which is decreased by 1 for
encoding) would be encoded in Range 3. Because Range 3 starts with an offset value of 20,
the value to be coded would be 56 — 20 = 36. The encoded length would be generated by
combining the length range code of “001” (representing Range 3) followed by the 8-bit value
of “00100100 (the 8-bit binary value for the decimal number 36). Putting the two parts of
the code together (the length range code and the length value code) results in the following
combined code for the encoded length: “00100100100”.

[0116] As depicted in Table 2 above, Range 4 represents length values of more than 275
using N bits where N represents the number of bits needed to represent the maximum length
value. In some implementations, the maximum length value is the number of pixels left in the
current block being encoded or decoded. For example, if the current pixel value being
encoded or decoded is the 3,000™ pixel value in a current 64x64 block (a block having 4,096
pixel values), then the maximum length value is 1,096 (4,096 — 3,000), which can be
represented by 10 bits (N = 10). It should be understood that the offset value for Range 4
begins at 276, so to represent 1,096 only 10 bits are needed to represent the amount over 275
(i.e., only 10 bits are needed to represent 1,096 — 276 = §20). In other implementations, the
maximum length value is pre-determined and does not depend on the current dictionary size.

For example, if the pre-determined maximum length value is 4,096, then N can be set to 12.

[0117] In other implementations, the length values can be coded using a different

number of ranges and/or ranges covering different groupings of length values.

[0118] In some implementations, a maximum offset and/or a maximum length is known.
When the maximum offset and/or maximum length is known, coding efficiency can be
improved. For example, when coding the value of the matching offset, the maximum offset
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can be set to the current dictionary size (e.g., if the current dictionary size is 10 pixels, the
offset cannot be greater than 10). When encoding the value of the matching length, the
maximum length can be set to the number of pixels left in the current block (e.g., the current
coding unit (CU)). For example, if the current pixel value being encoded or decoded is the
15 pixel in an 8x8 block, then the maximum length can be set to 49. When the maximum
value is known (for the offset and/or length), it can be signaled more efficiently. For example,
the number of bits needed to encode the maximum value can be determined by calculating
ceiling(log,(maximum)), which can be used to define the “N” bits in Table 1 and Table 2

above.

[0119] In some implementations, the minimum offset and length are 1, which can be

coded as 0 when converted to zero-based numbering.

[0120] The 1-D dictionary mode can be applied to encode and/or decode pixel values
within a block. For example, the 1-D dictionary mode (as well as the other dictionary modes
described herein) can be applied to encode and/or decode pixel values within blocks of a
video frame (e.g., blocks of various sizes, such as 4x4 blocks, 8x8 blocks, 16x16 blocks,

32x32 blocks, and 64x64 blocks).

[0121] In some implementations, the offset and length can overlap the current pixel
value being encoded/decoded. As an example, consider pixel values [ P-2, P-1, PO, P1, P2,
P3 ] where P-2 and P-1 are the last two pixel values in the 1-D dictionary, PO is the current
pixel value being encoded/decoded, and P1 through P3 are the next pixel values to be
encoded/decoded. In this situation, an offset of 1 and a length of 3 (un-encoded offset and
length values) is a valid condition in which PO is predicted from P-1, P1 is predicted from PO,
and P2 is predicted from P1. As should be understood, an offset of 1 (un-encoded value,
which would be 0 when encoded) means one position back from the current pixel value into
the 1-D dictionary (e.g., in some implementations a negative sign is added to the offset,

which would be an offset of -1 in this example).
C. Horizontal and Vertical Scanning

[0122] The 1-D dictionary mode supports horizontal and vertical scanning, which can be

used to convert between the 1-D dictionary and the two dimensional representation of video
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or image content (e.g., blocks of two dimensional video or image content). For example,
pixel values within a block of video content can be scanned horizontally when encoding and
decoding. With horizontal scanning, pixel values are added to the 1-D dictionary in
horizontal scanning order (e.g., from left to right in a row of pixels). Pixel values within a
block of video content can also be scanned vertically when encoding and decoding. With
vertical scanning, pixel values are added to the 1-D dictionary in vertical scanning order (e.g.,

from top to bottom in a column of pixels).

[0123] In some implementations, both horizontal and vertical scanning are supported. In
order to support both horizontal and vertical scanning, two 1-D dictionaries can be
maintained, one 1-D dictionary (a horizontal scanning 1-D dictionary) that stores pixel values
in the horizontal scanning order and another 1-D dictionary (a vertical scanning 1-D
dictionary) that stores pixel values in the vertical scanning order. When a pixel value needs to
be added, it can be added to both the horizontal scanning 1-D dictionary and to the vertical
scanning 1-D dictionary. The ordering of the pixel values will be different in both

dictionaries as the order depends on which scanning order is used.

[0124] In some implementations, adding to the 1-D dictionaries is performed at different
times. For example, when encoding or decoding a block in horizontal scanning mode, pixel
values can be added to a horizontal scanning 1-D dictionary when they are encoded or
decoded. When the current block has been encoded or decoded, the pixel values can then be

added to the vertical scanning 1-D dictionary.

[0125] In an implementation that supports both horizontal and vertical scanning, the
scanning order can be changed (e.g., on a block-by-block basis or on some other basis). For
example, if one block of a picture uses horizontal scanning, pixel values for that block will be
added to the horizontal scanning 1-D dictionary (in horizontal scanning order), and the pixel
values for the block will also be added to the vertical scanning 1-D dictionary (in vertical
scanning order). If another block of the picture uses vertical scanning, pixel values for that
block will be added to the vertical scanning 1-D dictionary (in vertical scanning order), and
the pixel values for the block will also be added to the horizontal scanning 1-D dictionary (in

horizontal scanning order).

-33.



WO 2015/131304 PCT/CN2014/072774

D. Reducing Dictionary Size

[0126] The size of the 1-D dictionary can be limited (e.g., to balance the cost of
maintaining the dictionary against the benefit of predicting pixel values). Reducing the size of
the dictionary (e.g., pruning the dictionary) can be performed at various times. For example,
the size of the dictionary can be checked when adding a pixel value to the dictionary. If the
dictionary is larger than a maximum size (e.g., a pre-determined maximum size, such as
500K), the dictionary can be reduced in size (e.g., by removing the oldest entries in the

dictionary).

[0127] In some implementations, a pre-defined maximum dictionary size is defined. If
the dictionary is greater than the pre-defined maximum dictionary size, then a portion of the
dictionary is removed (e.g., the oldest portion of the dictionary). In a specific implementation,
if the dictionary is greater than the threshold size, then one-third of the dictionary is removed.
For example, in some implementation, the basic dictionary size is defined as 1<<18. If the
current dictionary size is equal to or greater than 1.5 times basic dictionary size, the oldest 0.5

times basic dictionary size elements are removed from the dictionary.

[0128] In some implementations, the dictionary is only checked periodically (and pruned
if needed). For example, the dictionary can be checked after encoding and/or decoding a
block, a CU, or a CTU. In a specific implementation, the size of the dictionary is checked
after encoding or decoding a CTU, and reduced in size by one-third if above the maximum
size. In such implementation, it should be guaranteed that the maximum number of elements
that may be added to the dictionary between two checks should be no greater than the
dictionary buffer size minus the removing threshold. For example, the basic dictionary size is
defined as 1<<18, and the removing threshold is defined as 1.5 times basic dictionary size,
which should be 1<<18 + 1<<17. If the dictionary size is checked after encoding or decoding
a CTU (suppose the CTU size is 4096), the minimum buffer used for the dictionary should be
1<<18 + 1<<17 + 4096.

E. Reconstruction in Scanning Order

[0129] After decoding the pixel values, the pixel values are reconstructed to re-create the

video content in two dimensions. Reconstructing the pixel values in scanning order can be
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performed at various points during the decoding process. For example, after the pixel values
for a specific area of video content (e.g., a block, a CU, or a CTU) have been decoded, they

can be reconstructed in scanning order.

[0130] In some implementations, the reconstruction is performed after the pixel values
have been decoded for a CU as follows. If horizontal scanning is used for a CU, the following
equation (Equation 1) is used to reconstruct the pixel values for the CU with width “w” and
height “h” in scanning order (rec[i][j] is the reconstructed pixel at row “i” and column “j*;
pixel[] are the decoded pixels):

rec[i][j] = pixel[ 1 * w +] ] (Equation 1)
If vertical scanning is used for a CU, the following equation (Equation 2) is used to

reconstruct the pixel values for the CU with width “w” and height “h” in scanning order:

rec[i][j] = pixel[ j * h +1] (Equation 2)
F. Direct Mode

[0131] When using the 1-D dictionary mode, there may be situations where a matching
pixel value is not found. For example, during encoding the encoder can look back in the
dictionary to determine if there is a pixel value (or a sequence of multiple pixel values) that
match the current pixel value being encoded (or that match multiple pixel values currently
being encoded). If a match is found, the current pixel value(s) can be encoded in matching
mode using the offset and length coding described above in this section. However, if a
matching pixel value is not found in the dictionary, then the current pixel value can be
encoded using a direct mode. In the direct mode, the current pixel value can be coded directly
(e.g., the Y, U, and V components of the pixel value, or R, G, and B components of the pixel

value, can be encoded directly without reference to any other pixel value in the dictionary).

[0132] In some implementations, an escape code or flag is used to indicate when direct
mode is used for a pixel value. For example, an encoder can place the escape code or flag in
the bitstream with the directly encoded pixel value so that the decoder knows that the pixel
value is encoded using direct mode. In this way, the decoder can distinguish between pixel

values encoded in direct mode and pixel values encoded using matching mode. In addition,
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coding in the 1-D dictionary mode can support switching between matching mode and direct

mode as needed (e.g., on a pixel-by-pixel basis).
G. Example Encoding/Decoding

[0133] Figs. 7 is a diagram illustrating a simplified example 700 of how pixel values can
be encoded using the 1-D dictionary mode. As depicted in the example 700, three rows (the
first, second, and last row) of an 8x8 block of example pixel values 710 is depicted. The
block of example pixel values 710 are depicted using 3-byte YUV or RGB values. The pixel
values in the block are labeled for reference purposes beginning with pixel zero (Pp) in

horizontal scanning order.

[0134] As illustrated in the example 700, the pixel values are encoded using the 1-D
dictionary mode 720. The first pixel value Py is added as the first entry in the 1-D dictionary
(e.g., the first pixel value may be the first pixel in the first block of a video frame). Because
there are no previous pixel values in the 1-D dictionary, the first pixel value Py is encoded in
direct mode and added to the encoded bit stream. The second pixel value P is also added to
the 1-D dictionary in direct mode because it does not match any previous pixel values in the
dictionary. The third pixel value P, is also added to the 1-D dictionary in direct mode. The
state of the 1-D dictionary and the encoded bit stream are depicted at 730. The encoded bit
stream is depicted in a simplified format that indicates the first three pixels are encoded using
the direct mode (e.g., the direct mode may be indicated by an escape code in the encoded bit

stream).

[0135] When the fourth pixel value Pj is encoded, a match is found in the 1-D
dictionary. Specifically, P, matches P; and therefore P; can be encoded in the matching mode
using an offset value and a length value with reference to Py in the 1-D dictionary. After the
matching pixel Py is identified in the 1-D dictionary, the length of matching pixel values can
be determined. In this example, two pixel values match (i.e., P; and P4 match Py and P,). In
order to encode the offset and length, this example 700 uses the ranges described above in
this section (Table 1 and Table 2). First, the offset and length values are reduced by one (to
convert to zero-based numbering) and encoded using the ranges. Specifically, the offset value

of 2 (3 —1) is encoded according to the first row of Table 1 as “110” (the first “1” indicating
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Range 1, and the “10” indicating an offset value of 2). The length value of 1 (2 - 1) is
encoded according to the first row of Table 2 as “101” (the first “1” indicating Range 1, and
the “01” indicating a length value of 1). Appending the length and offset results in a code of
“110101. The state of the 1-D dictionary and the encoded bit stream are depicted at 740. The
encoded bit stream is depicted in a simplified format that indicates the first three pixels are
encoded using the direct mode and the fourth and fifth pixel values are encoded in matching

mode and are predicted from the first and second pixel values.

[0136] Figs. 8 is a diagram illustrating a simplified example 800 of how pixel values can
be decoded using the 1-D dictionary mode. As depicted in the example 800, the encoded bit
stream generated from encoding the block in Fig. 7 is decoded using the 1-D dictionary mode
810. The first three pixel values are decoded in the direct mode and added to the dictionary,

as depicted at 8§20.

[0137] The fourth and fifth pixel values are decoded using the matching mode. In this
example, the encoded bitstream representation for the fourth and fifth pixel values is
“110101,” which is decoded using the offset and length ranges defined by Table 1 and Table
2 above in this section. Specifically, the offset is decoded as 2 and the length is decoded as 1.
Using the offset and length, the pixel values that are used for the prediction are identified. In
this example, the offset of 2 (three pixels back after adding 1 to compensate for the zero-
based numbering) identifies the first pixel value in the dictionary. The length indicates that
two pixel values are predicted (after adding 1 to the length to compensate for the zero-based
numbering). Therefore, the fourth and fifth pixel values are predicted from the first and

second pixel values and added to the dictionary, as depicted at §30.

[0138] Once the 8x8 block has been decoded, it is reconstructed in horizontal scanning

order. The reconstructed 8x8 block is depicted at 840.

VIII. Innovations for Pseudo 2-D Dictionary Mode

[0139] This section presents various innovations for the pseudo 2-D dictionary mode.

The pseudo 2-D dictionary mode is similar to the 1-D dictionary mode described in Section
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VII above and therefore the operation of the pseudo 2-D dictionary mode is the same as the

1-D dictionary mode except for the differences described in this section.

[0140] While the 1-D dictionary mode maintains a 1-D dictionary of previous pixel
values, the pseudo 2-D dictionary mode does not maintain a separate dictionary. Instead, with
the pseudo 2-D dictionary mode, all of the previously pixel values can be used for prediction
(e.g., all of the previously reconstructed pixel values from the beginning of the picture or
frame). For example, a video or image encoder or decoder can ordinarily maintain all
reconstructed pixel values (e.g., for the current picture or frame) during encoding and

decoding (e.g., for use during prediction).

[0141] Because the pseudo 2-D dictionary mode predicts current pixel values from pixel
values in a two dimensional picture (e.g., previously reconstructed pixel values), the pseudo
2-D dictionary mode uses a two offset values, an X offset value (offsetX) and a Y offset
value (offsetY). The offsetX and offsetY values can be signaled independently using the
techniques described above in the 1-D dictionary section (e.g., using the ranges described in
Table 1). For example, if a pixel value at 100, 100 (X/Y from the top-left of the current
picture) is being predicted from a pixel value at 10, 20, then the offsetX can be set to 90
(indicating 90 pixels left in the reconstructed pixel values for the picture, which can also be
indicated by -90) and the offsetY can be set to 80 (indicating 80 pixels up in the reconstructed

pixel values for the picture, which can also be indicated by -80).

[0142] In the pseudo 2-D dictionary mode, the structure of the block is taken into
consideration when performing prediction. For example, consider a current 8x8 block that is
coded using horizontal scanning. If a pixel value of the current block is predicted from a
previous 8x8 block, and the length of the prediction is 9 (i.e., longer than one row of an 8x8
block), then the pixel values used for prediction in the previous 8x8 block will wrap around

two rows of the block (or from the last row of one block to the first row of the next).

[0143] In some implementations, the following equation (Equation 3) is used to
reconstruct a current pixel in a picture in the pseudo 2-D dictionary mode. In this equation,
the dimensions of the current block are width (w) x height (h), the current pixel is the pixel at

[IPR2)

position “c” (counting from zero) in the current block, (x0, y0) is the start position of the top
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left of the current block, the offset is (0X, 0Y), the scanning order is horizontal, the matching
length is one, and pictureRec[] is the reconstruction of the current picture.

pixel[c] = pictureRec[y0 — oY + ¢/ w] [x0 — oX + ¢ % W] (Equation 3)

[0144] The remaining aspects of the pseudo 2-D dictionary mode are discussed above
with regard to the 1-D dictionary mode (e.g., signaling of length, maximum number of bits to
code length and offset, support for both horizontal and vertical scanning modes, processing

pixel value components together (e.g., Y, U, and V or R, G, and B), etc.).
IX. Innovations for Inter Pseudo 2-D Dictionary Mode

[0145] This section presents various innovations for the inter pseudo 2-D dictionary
mode. The inter pseudo 2-D dictionary mode is similar to the pseudo 2-D dictionary mode
described in Section VIII above and therefore the operation of the inter pseudo 2-D dictionary
mode is the same as the pseudo 2-D dictionary mode except for the differences described in

this section.

[0146] While the pseudo 2-D dictionary model uses the reconstructed pixel values in the
current picture for prediction, the inter pseudo 2-D dictionary mode uses the pixels values in
a reference picture (or multiple reference pictures) for prediction. In some implementations,
the reference picture used for prediction in the inter pseudo 2-D dictionary mode is signaled
(e.g., by signaling a reference picture list and a reference picture index into the list).
Alternatively, a default reference picture can be used for prediction (e.g., to avoid the
signaling overhead for the specific reference picture from multiple available reference
pictures). In some implementations, the default reference picture is the first picture in

reference picture list O.

X. Example Methods for Decoding Pixel Values using a Dictionary Mode

[0147] Methods can be provided for decoding pixel values using the 1-D dictionary

mode, pseudo 2-D dictionary mode, and/or inter pseudo 2-D dictionary mode.

-39 .



WO 2015/131304 PCT/CN2014/072774

[0148] Fig. 9 is a flowchart of an example method 900 for decoding pixel values using a
dictionary mode. At 910, encoded data is received in a bit stream. For example, the encoded

data can be encoded video data and/or encoded image data.

[0149] At 920, one or more current pixel values are decoded using a dictionary mode.
For example, dictionary mode can be a 1-D dictionary mode, a pseudo 2-D dictionary mode,
or an inter pseudo 2-D dictionary mode. The one or more current pixel values can be decoded
for a block of video content. Decoding the one or more current pixel values comprise

performing operations 930 through 950.

[0150] At 930, an offset is decoded indicating an offset location within previously
decoded pixel values. For example, decoding the offset can comprise decoding an offset
range code and an offset value code to obtain an offset value that identifies the offset location
within a 1-D dictionary of previously decoded (e.g., previously reconstructed) pixel values in
a current picture. Decoding the offset can also comprise decoding a two dimensional offset
with X and Y offset values for identifying a previous pixel value using the pseudo 2-D
dictionary mode or the inter pseudo 2-D dictionary mode. Furthermore, when using the inter
pseudo 2-D dictionary mode, reference picture information can be decoded (e.g., separately

from the offset).

[0151] At 940, a length is decoded indicating a number of pixels being predicted from
the offset that was decoded at 930. For example, decoding the length can comprise decoding

a length range code and a length value code.

[0152] At 950, the one or more current pixel values are predicted from one or more
previous pixel values at the offset. The one or more current pixel values can be predicted
exactly using the same pixel values (e.g., YUV or RGB component values) as the one or
more previous pixel values without any residual or other modification. The number of pixel

values being predicted is indicated by the length.

[0153] The one or more current pixel values, after being predicted, can be used for
reconstructing a two-dimensional video picture or image (e.g., using a horizontal or vertical

scanning order for a current block).
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[0154] Fig. 10 is a flowchart of an example method 1000 for decoding pixel values using
a 1-D dictionary mode. At 1010, encoded data is received in a bit stream. For example, the

encoded data can be encoded video data and/or encoded image data.

[0155] At 1020, a number of current pixel values are decoded using the 1-D dictionary
mode. The 1-D dictionary mode stores previously decoded pixel values (e.g., previously
reconstructed pixel values in a current picture) in a 1-D dictionary. Decoding the number of

current pixel values comprise performing operations 1030 through 1070.

[0156] At 1030, an offset range code is decoded. The offset range code indicates a
number of bits for an offset value code. For example, possible offset values can be divided
into a number of ranges (e.g., as depicted in Table 1 above), with the offset range code

indicating the range and the number of bits used for the offset value code.

[0157] At 1040, the offset value code is decoded (using the number of bits indicated at
1030) to produce an offset value. The offset value identifies a location within the 1-D
dictionary of previously decoded pixel values. If both a horizontal scanning 1-D dictionary
and a vertical scanning 1-D dictionary are used, the offset value may identify the location
within the dictionary corresponding to the scanning order of the current pixels (e.g., the

scanning order of the current block).

[0158] At 1050, a length range code is decoded. The length range code indicates a
number of bits for a length value code. For example, possible length values can be divided
into a number of ranges (e.g., as depicted in Table 2 above), with the length range code

indicating the range and the number of bits used for the length value code.

[0159] At 1060, the length value code is decoded (using the number of bits indicated at
1050) to produce the length value. The length value specifies the number of pixels being
predicted.

[0160] At 1070, the current pixel values are predicted from pixel values in at least one
dictionary using the offset value and the length value. The current pixel values can be
predicted from corresponding pixel values in a 1-D dictionary storing previous pixel values in

a scan order corresponding to the current pixel values (e.g., horizontal or vertical scanning
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order). The location in the 1-D dictionary is identified by the offset value with the number of
current pixel vales being predicted indicated by the length value. The current pixel values can
be predicted exactly using the same pixel values (e.g., YUV or RGB component values) as

the previous pixel values in the dictionary without any residual or other modification.

[0161] The current pixel values, after being predicted, can be used for reconstructing a
two-dimensional video picture or image (e.g., using a horizontal or vertical scanning order for

a current block).

XI.  Innovations for Encoding in the 1-D and Pseudo 2-D Dictionary Modes

[0162] This section presents various innovations for encoding that can be applied to the
1-D, pseudo 2-D, and/or inter pseudo 2-D dictionary modes. Some innovations relate to
finding matching pixel values within the dictionary and/or previously reconstructed pixel

values, while others related to the cost of signaling in matching mode and early termination.

A. Hash Based Matching in 1-D Dictionary Mode

[0163] In some implementations, a video or image encoder uses a hash-based search
technique to identify matching pixel values. In a specific implementation of the hash-based
search technique, hash values are calculated and stored for every 1 pixel (e.g., every
combined pixel that treats the components of the pixel, such as Y, U, and V components, or
R, G, and B components, together), every 2 pixels, every 4 pixels, and every 8 pixels. For
example, hash values can be created when a pixel value is added to a dictionary (e.g., added
to a 1-D dictionary) for each combination of 1, 2, 4, and § pixels of which the current pixel is
a part. As an example, a first pixel value can be encoded and added to a 1-D dictionary. A
hash value for the first pixel value can be determined and added (e.g., to a hash table). A
second pixel value can be encoded and added to the 1-D dictionary. A hash value for the
second pixel value can be determined and added. In addition, a hash value for the 2-pixel
combination (the first pixel value and the second pixel value) can be calculated and added,

and so on as additional pixel values are added to the 1-D dictionary.
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[0164] Matching is then performed to see if a pixel value (or pixel values) in the hash
matches the current pixel value (or current pixel values) being encoded. First, a check is
made to match every 1 pixel value using the hashed pixel values (e.g., by creating a hash of 1
current pixel value and comparing it to hashes of previous 1 pixel values in a dictionary). If a
1 pixel match is found, an encoder can check how many pixels can match from the current
pixel to determine the length (the number of pixels that match from the current pixel). If a
matching length of 2 is found (e.g., if a current pixel value matches a pixel value in the
dictionary at a specific offset with length 2), then matching can proceed with 2 pixels and
above (e.g., pixel values at other offsets in the dictionary with a length of 2, or more, may
match the current pixel) without the need to check hashes of 1 pixel anymore for the current
pixel. Similarly, if a matching length of 4 is found, then hash checking begins with 4 pixels
and above, and similarly with 8 pixels. In some implementations, hash search is implemented
with 1, 2, 4, and 8 pixels. In other implementations, hash search can use greater or fewer

pixels.

[0165] As an example, consider a dictionary that ends with the following eight pixel
values (with the value and location indicated, e.g., p-3 is the pixel three pixels back in the
dictionary with a pixel value of 3):

[ ... 4(p-8), 3(p-7), 4(p-6), 7(p-5), 1(p-4). 3(p-3), 4(p-2), 5(p-1) ]
The current pixels are going to be encoded by the encoder:

3(p0), 4(p1), 7(p2), 1(p3), 6(p4), 2(p5)
Encoding begins in the hash encoding mode by checking the hash value for 1 pixel p0. The
hash value for pO matches the 1 pixel hash value of p-3 (and both p0O and p-3 have a pixel
value of 3). The hash matching only determines the start position of the checking. From the
start position, the encoder also needs to check the actual number of matching pixel values.
Therefore, the encoder checks for the length of matching pixel values. In this example, the
encoder checks whether p0 == p-3 (both p0 and p-3 have a pixel value of 3, so yes), then
checks whether pl == p-2 (both have a pixel value of 4, so yes), then checks whether p2 ==
p-1 (the pixel values do not match, 7 !=35, so the encoder stops and determines that the
matching length is 2). Next, the encoder starts to check from hash values for two pixels
(because a match with a length of 2 has already been found, the encoder does not check for

hash matches of 1 pixel anymore). The hash value for pOp1 matches the 2 pixel has value of
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p-7p-6. Then, the encoder checks for the length of matching pixel values. In this example, the
encoder checks whether pOp1 == p-7p-6 (both have pixel values of 3, 4, so yes), then checks
whether p2 == p-5 (both have a pixel value of 7, so yes), then checks whether p3 == p-4
(both have a pixel value of 1, so yes), then checks whether p4 == p-3 (the pixel values do not
match, 6 != 3, so the encoder stops and determines that the matching length is 4). The
encoder can then proceed to check hash matches of 4 pixels to see if a longer matching length
can be found (and eventually with hash matches of 8 pixels). When the encoder is done

checking, the current pixel values will be encoded with the largest matching length found.

[0166] Even if a pixel value (or multiple pixel values) in a dictionary (e.g., a 1-D
dictionary) have the same hash value as a current pixel value, matching is still performed to
see if the pixel values in the dictionary can be used for prediction. For example, the hash
value for a pixel in a 1-D dictionary may be the same as the hash value for a current pixel.
The pixel value in the 1-D dictionary still needs to be compared to determine if the pixel
value of the current pixel is the same (i.e., different pixel values can have the same hash

value).

[0167] In some implementations, even if a match is found for one or more current pixels,
the cost of encoding the one or more current pixels (e.g., in terms of number of bits) in
matching mode using an offset and length can be greater than the cost of encoding the one or
more current pixels directly (e.g., in terms of number of bits). In this situation, the one or
more current pixels can be coded directly (e.g., the encoder can switch from matching mode
to direct mode for the one or more current pixels, which can be identified in the bit stream by
an escape code or flag). The encoder can switch between matching mode and direct mode
when needed (e.g., on a pixel by pixel basis, on a block by block basis, or on some other

basis).

[0168] In some implementations, early termination is performed by the encoder. For
example, if enough pixel values have been processed (e.g., N pixel values), and the average
matching length (for direct mode, the matching length can be considered as 1) is smaller than
a threshold (e.g., a threshold value of T), dictionary mode estimation can be terminated early
(e.g., on a block by block basis). For example, dictionary mode can be terminated and the
picture can be re-encoded using other encoding modes, or dictionary mode can be terminated
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for the remainder of the picture or a portion of the picture (e.g., the current block). Early
termination can be performed when the average matching length is small enough that
dictionary mode would be less efficient than other encoding modes (e.g., less efficient than
normal intra mode, normal inter mode, etc.). For example, the average matching length

threshold T can be 2 or 3 in some implementations.

B. Hash Based Matching in Pseudo 2-D Dictionary Mode

[0169] Hash based matching during encoding can be performed in the pseudo 2-D
dictionary mode (and in the inter pseudo 2-D dictionary mode) similar to the hash based

matching described above for the 1-D dictionary mode.

[0170] Similar to the 1-D dictionary mode, hash values are created for previous pixel
values in groupings of 1, 2, 4, and § pixel values. However, when matching, the pseudo 2-D
dictionary mode (and inter pseudo 2-D dictionary mode) starts checking with 8 pixel hash
values (instead of starting with 1 pixel hash matches). If a match of length § is found, then the
maximum length should be no less than 8§ and there is no need to check hash values for 4
pixels or less. However, if a match of length § is not found, then checking starts for matches
of 4 pixels, and so on down to 1 pixel. If an 8 pixels match is not found by hash matching,
and the current matching length is 7 (e.g., hash matching for 4 pixels is found and from that
start position, an encoder found actually there are 7 matching pixels), an encoder can

terminate here as there is no match for § pixels.

C. Example Methods for Encoding Pixel Values using a Dictionary Mode

[0171] Methods can be provided for encoding pixel values using the 1-D dictionary
mode, pseudo 2-D dictionary mode, and/or inter pseudo 2-D dictionary mode. Encoding can
comprise computing hash values of previous pixel values (e.g., reconstructed pixel values)
and comparing the hash values to hash values of current pixel values to be encoded. Matches
can be identified by offset and length (e.g., in a 1-D dictionary or a previously encoded
values in a picture) and encoded. Encoding can be performed in direct mode if no match is

found.

- 45 -



WO 2015/131304 PCT/CN2014/072774

[0172] Fig. 11 is a flowchart of an example method 1100 for encoding pixel values using
a dictionary mode. At 1110, one or more current pixel values are encoded in a dictionary

mode (e.g., 1-D dictionary mode, pseudo 2-D dictionary mode, or inter pseudo 2-D dictionary
mode). Encoding the current pixel values comprises performing operations according to 1120

through 1150.

[0173] At 1120, hash values are calculated for previously encoded pixel values (e.g.,
reconstructed pixel values). For example, hash values can be calculated for combinations of 1

pixel, 2 pixels, 4 pixels, and 8 pixels.

[0174] At 1130, a hash value is calculated for the one or more current pixel values to be
encoded.
[0175] At 1140, the hash value for the one or more current pixel values is compared to

the hash values of the previously encoded pixel values to determine if a match is found. Once
a match is found (e.g., for 1 pixel value), then the length of pixels that match can be

determined.

[0176] At 1150, when a match is found, the one or more current pixel values are encoded
using an offset and length. For example, the offset and length can indicate a location in a 1-D
dictionary where the current pixel values are predicted or a location within a previously
reconstructed picture (e.g., using X and Y offset values for a pseudo 2-D dictionary mode or

an inter pseudo 2-D dictionary mode).
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We claim:

1. In a computing device with a video decoder or image decoder, a method
comprising:
receiving encoded data for a picture in a bit stream; and
decoding one or more current pixel values from the encoded data, comprising:
decoding an offset from the encoded data indicating an offset location within
previously decoded pixel values;
decoding a length from the encoded data; and
predicting the one or more current pixel values from one or more
corresponding pixel values in the previously decoded pixel values at the offset location,

wherein a number of pixels being predicted is indicated by the length.

2. The method of claim 1 wherein the one or more current pixel values and the one or

more corresponding pixel values are combined YUV pixel values.

3. The method of claim 1 wherein the offset indicates an offset location is within a
one-dimensional dictionary of previously decoded pixel values, and wherein the one or more

current pixel values are decoded according to a 1-D dictionary mode.

4. The method of claim 3 wherein decoding the offset comprises:

decoding an offset range code indicating a range of offset values and a number of bits
to decode for an offset value; and

based on the offset range code, decoding the offset value from the indicated number
of bits for the offset value;

wherein the offset location within the one-dimensional dictionary is identified by the

offset value.
5. The method of claim 3 further comprising:

adding the decoded one or more current pixel values to the one-dimensional

dictionary.
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6. The method of claim 3 wherein the one-dimensional dictionary is a horizontal
scanning one-dimensional dictionary, the method further comprising:

adding the decoded one or more current pixel values to the horizontal scanning one-
dimensional dictionary in horizontal scanning order; and

adding the decoded one or more current pixel values to a vertical scanning one-

dimensional dictionary in vertical scanning order.

7. The method of claim 3 further comprising:
determining a size of the one-dimensional dictionary; and
when the size of the one-dimensional dictionary is greater than a pre-determined

maximum, reducing the size of the one-dimensional dictionary.

8. The method of claim 1 wherein decoding the length comprises:

decoding an length range code indicating a range of length values and a number of
bits to decode for a length value; and

based on the length range code, decoding the length value from the indicated number
of bits for the length value;

wherein the number of pixels being predicted is identified by the length value.

9. The method of claim 1 wherein the one or more current pixel values are decoded in
a matching mode that predicts the one or more current pixel values from the one or more
corresponding pixel values in the previously decoded pixel values, the method further
comprising:
decoding one or more other current pixel values from the encoded data, comprising:
decoding the one or more other current pixel values using a direct mode in

which the one or more other current pixel values are encoded directly without prediction.

10. The method of claim 1 further comprising:
reconstructing at least a portion of the picture in one of a horizontal scanning order
and a vertical scanning order using, at least in part, the decoded one or more current pixel

values.
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11. The method of claim 1 wherein the offset indicates an X/Y offset location within
a current picture of previously decoded pixel values, and wherein the one or more current

pixel values are decoded according to a pseudo 2-D dictionary mode.

12. The method of claim 11 wherein decoding the offset comprises:

decoding an X offset value from a first offset range code indicating a range of offset
values and a number of bits to decode for the X offset value; and

decoding a Y offset value from a second offset range code indicating a range of offset
values and a number of bits to decode for the Y offset value;

wherein the X/Y offset location within the previously decoded pixel values is

identified by the X offset value and the Y offset value.

13. In a computing device with a video decoder or image decoder, a method
comprising:
receiving encoded data for a picture in a bit stream; and
decoding a number of current pixel values from the encoded data using a 1-D
dictionary mode, comprising:
decoding an offset range code, wherein the offset range code indicates a
number of bits for an offset value code;
decoding the offset value code from the indicated number of bits to produce an
offset value, wherein the offset value identifies a location in at least one dictionary of
previously decoded pixel values;
decoding a length range code, wherein the length range code indicates a
number of bits for a length value code;
decoding the length value code from the indicated number of bits to produce a
length value; and
predicting the current pixel values from corresponding pixel values at the
location, in the at least one dictionary, identified by the offset value with the number of

current pixel vales being predicted indicated by the length value.

- 49 -



WO 2015/131304 PCT/CN2014/072774

14. The method of claim 13 wherein the at least one dictionary comprises:
a horizontal scanning one-dimensional dictionary; and

a vertical scanning one-dimensional dictionary.

15. The method of claim 14 further comprising:

adding the decoded number of current pixel values to the horizontal scanning one-
dimensional dictionary in horizontal scanning order; and

adding the decoded number of current pixel values to the vertical scanning one-

dimensional dictionary in vertical scanning order.

16. The method of claim 13 further comprising:
reconstructing at least a portion of the picture in one of a horizontal scanning order
and a vertical scanning order using, at least in part, the decoded number of current pixel

values.

17. In a computing device with a video encoder or image encoder, a method
comprising:
encoding data for a picture, including using a dictionary mode for encoding one or
more current pixel values, the encoding comprising:
calculating hash values for previously encoded pixel values;
calculating a hash value for the one or more current pixel values to be
encoded;
determining if the hash value for the one or more current pixel values matches
a hash value for the previously encoded pixel values;
when a match is found, encoding the one or more current pixel values using an
offset and length that predicts the one or more current pixel values from the matching

previously encoded pixel values.

18. The method of claim 17 wherein the previously encoded pixel values are stored in

a one-dimensional dictionary.
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19. The method of claim 17 wherein the one or more current pixel values and the
previously encoded pixel values are one of combined YUV pixel values, combined RGB

pixel values, and combined GBR pixel values.

20. The method of claim 17 wherein calculating the hash values for the previously
encoded pixel values comprises:

calculating hash values for each 1 pixel value of the previously encoded pixel values;

calculating hash values for each 2 pixel values of the previously encoded pixel values;

calculating hash values for each 4 pixel values of the previously encoded pixel values;
and

calculating hash values for each 8 pixel value of the previously encoded pixel values.

21. The method of claim 17 further comprising:
switching to a direct encoding mode that encodes pixel values directly if a cost of
encoding the pixel values with prediction from the previously encoded pixel values is greater

than a cost of encoding the pixel values in direct mode.

22. The method of claim 17 further comprising:
calculating an average match length;
when the average match length is below a threshold value, switching to an encoding

mode other than the dictionary mode for a current block.

23. A computing device, comprising a processing unit and memory, adapted to

perform the method of any of claims 1-22.
24. One or more computer-readable media storage media storing computer-

executable instructions for causing a computing device programmed thereby to perform the

method of any of claims 1-22.
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