wo 2017/165566 A1 || I NN OF OO0 O A AR A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/165566 A1l

28 September 2017 (28.09.2017) WIPO I PCT
(51) International Patent Classification: (74) Agent: O'BANION, John; O'BANION & RITCHEY LLP,
A61B 34/10 (2016.01) A61B 19/00 (2006.01) 400 Capitol Mall, Suite 1550, Sacramento, California
A61B 5/00 (2006.01) GO6K 9/34 (2006.01) 95814 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2017/023669 kind of national protection available). AE, AG, AL, AM,
2 T ional Filine Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) Imternational Filing Date: 55 March 2017 (22.03.2017 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
arc (22.03.) DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
L) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(26) Publication Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
(30) Priority Data: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
62/313,530 25 March 2016 (25.03.2016) Us RU, RW, SA, SC, SD, SE, G, SK, SL, SM, ST, 8V, §Y,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
(71) Applicant: THE REGENTS OF THE UNIVERSITY ZA, ZM, ZW.
OF CALIFORNIA [US/US]; 1111 Franklin Street, 12th . L
Floor, Oakland, California 94607-5200 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventor: BRUNICARDI, F. Charles; University of Cali- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

fornia, Los Angeles, Department of' Surgery, 1328 16th
Street, 2nd Floor, Santa Monica, California 90404 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: HIGH DEFINITION, COLOR IMAGES, ANIMATIONS, AND VIDEOS FOR DIAGNOSTIC AND PERSONAL IMA -
GING APPLICATIONS

(57) Abstract: High definition, color images, animations, and videos for

10\\

Isometric
surface
models

SOJ

Gienerate caiabase of
Parametric human body

Palieni stats 34

12-

Fatient
MRICT scan

40

Patient
physiclogy
data

\38

Configure base
sim-set model

18\{

|k

Apply Dicom data

20 to sim-sei model

o

24

Search scan data
for miisstone markers

-

Manual
input

42

Align sim-set geomelry
o markers/scan data

Cull patient scan data
26~ for cugtom display

-

44

Additional
daia

Additicnal
pracessing

H

FIG. 1

diagnostic and personal imaging applications are described along with
T Wi soams | ¢ methods, devices and systems for creating the images, as well as applica-
tions for using the images, animations and videos.

ol

WO 2017/165566 A1 |IIWAT 00T A0 AR AR RO

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, Published:
GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

Declarations under Rule 4.17: — before the expiration of the time limit for amending the

— as to the applicant's entitlement to claim the priority of claims and to be republished in the event of receipt of
the earlier application (Rule 4.17(iii)) amendments (Rule 48.2(h))

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

HIGH DEFINITION, COLOR IMAGES, ANIMATIONS, AND VIDEOS
FOR DIAGNOSTIC AND PERSONAL IMAGING APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to, and the benefit of, U.S. provisional
patent application serial number 62/313,530 filed on March 25, 2016,

incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT
[0002] Not Applicable

INCORPORATION-BY-REFERENCE OF
COMPUTER PROGRAM APPENDIX
[0003] Not Applicable

NOTICE OF MATERIAL SUBJECT TO
COPYRIGHT PROTECTION

[0004] A portion of the material in this patent document is subject to
copyright protection under the copyright laws of the United States and of
other countries. The owner of the copyright rights has no objection to the
facsimile reproduction by anyone of the patent document or the patent
disclosure, as it appears in the United States Patent and Trademark Office
publicly available file or records, but otherwise reserves all copyright rights
whatsoever. The copyright owner does not hereby waive any of its rights to
have this patent document maintained in secrecy, including without
limitation its rights pursuant to 37 C.F.R. § 1.14.

BACKGROUND
[0005] 1. Field of the Technology
[0006] This technology pertains generally to imaging modalities used in

healthcare, and more particularly to a transformational imaging and

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

[0007]
[0008]

[0009]

[0010]

simulation platform that extends photorealism to healthcare and other uses.

2. Background Discussion

The primary purpose of most medical imaging modalities is to help
physicians of all specialties, as well as patients, provide accurate diagnoses
to improve therapeutics. The beginning of modern imaging began with
William Rontgen and the discovery of x-rays in 1895. The advent of CT
scanning, MRI scanning, Ultrasound, PET scanning and other computer
generated imaging has provided a remarkable advance in healthcare
worldwide over the last thirty years that greatly enhanced the ability of
healthcare providers to diagnose and treat diseases of all types, as well as
avoid unnecessary and costly procedures, such as exploratory
laparotomies.

While these advances are laudable, the quality of the images for
almost all imaging modalities produced is still remarkably primitive. The
images being produced in healthcare are currently presented in primitive
black and white images and are difficult to interpret except by few highly
trained specialists, such radiologists, nuclear medicine specialists and
imaging technicians. There are attempts using relatively primitive color
schemes in low definition and in 3-D. Additionally, low definition animations
of surgeries and other procedures, such as those made by DaVinci Robot
or Simbionix, do exist and have been demonstrated to have limited training
value for surgical trainees. There are medical video games with low
definition, unrealistic animations, such as Atlus' Trauma Center Series,
however these games are not practical for medical and surgical training
purposes.

Recent advancements have been made in technologies relating to
photo-real render engines, which primarily depend on the use of shader
code applied to an isometric surface model. Generally, CT scans are
volumetric and are designed for clinical viewing only. While converting
volumes to isometric surfaces is possible with existing 3rd party
applications, the converted surface lacks detail with respect to information

about the physical properties of the materials relating to the visible

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

wavelength — color, glossiness, etc.

[0011] Raw scan data from current imaging modalities also isn’t high
resolution due to limitations with the current generation of scanners.
Additionally, the raw data can be very noisy with lots of artifacts that will be
in direct conflict with generating photo-real rendering. Most scans are just
done to the localize area of interest, so getting a full body scan to build isn’t
practical.

[0012] Current technology would require a 3rd party company to process
the scan data and manually make a photo-real rendering of it, which would
be cost prohibitive and overly time consuming (e.g. weeks of time to
produce).

[0013] Furthermore, some scanners use custom file formats that only work
with their software, making it hard to process to the data to make a photo-
real rendering.

[0014] Even with the current advances in MRl and CT scanners, the data is
presented in a purely clinical manner, which can be very confusing and
intimating to even the trained eye, but to the patient it's even more
overwhelming.

[0015] Accordingly, creating a new tool that can alleviate these issues and
provide doctors, surgeons, radiologists, teachers, and patients a new

means to view the data is vitally important.

BRIEF SUMMARY

[0016] One aspect of the present disclosure is a transformational imaging
and simulation platform, herein referred to as "SIMaging."

[0017] Another aspect is systems and methods to convert a conventional
two dimensional black and white medical image into a colorized
"photorealistic" image, and automatically render diagnostic information
based on the photorealistic image.

[0018] Actual photorealism, color images of the patient’s body, organs,
tissues and cells transforms diagnostic capability for the radiologist and

healthcare providers of all specialties, as well as education of future

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

[0019]

[0020]

healthcare providers and the patients themselves. In turn, these
personalized images may be used for real time simulations coupled with
artificial intelligence that may be used for practice of any
intervention/operation, as well as realtime use during virtually any medical
procedure to guide surgeons and interventionalists of all specialties,
including all surgical specialties, gastroenterology, radiology, pulmonary,
anesthesia, pain medicine, cardiology, etc, through the procedures.

The images and simulations produced from the present technology
may be used on a daily basis to transform imaging, diagnostic capabilites
and therapy in all hospitals, centers, clinics and medical schools worldwide.
The system may also be connected to artificial intelligence to guide the
surgeon/interventionalist through procedures, like a GPS system, in real
time, while documenting each step of the procedure according to standard
operating protocols, thus standardizing and documenting procedures and
entering the information into databases in realtime. The images and
simulations can be used on a daily basis to transform the education of
surgeons and interventionalists of all specialities and their trainees in all
medical universities and hospitals and clinics worldwide. These advances
improve quality of care, improve documentation and lower costs of
complications, readmissions and documentation.

The personalized images produced from the technology can also be
used for home health systems that would help patients monitor such data
as their weight, body mass, body fat content, body water content, body
muscle content, which can be connected to an electronic medical record to
assist in health maintenance, as well as to track response to therapy and
recovery from operations over time. Users visualize and save images of
their body images over time. Expecting women (and their partners) may
visualize photorealistic images of their babies in utero. The personalized
images, coupled with artificial intelligence, help guide personal grooming,
make-up applications and dress for all different types of events. The
personalized images and simulations may also be used for entertainment

purposes for the movie, television, internet, and gaming industries. The

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

platform may further be used to evaluate employees before and during
employment, for example, athletes, on a global basis.

In one implementation, the technology of the present description is
incorporated into imaging machines for hospitals, clinics, operating rooms,
interventional suites and medical schools and laboratories, worldwide.
Further embodiments include systems comprising home health units using
computer gaming systems such as Kinnect, Wii, Oculus Rift, and
Playstation to assist in home health as well as personal grooming and
gaming using computer and robotic avatars. The technology of the present
description may also be used for movie, television, music videos and
internet. In doing so, this would represent the next generation in
personalized imaging and therapy to enhance healthcare, education and
entertainment on a global scale.

Another aspect of the technology described herein is to combine the
photorealism imaging technology with enhanced molecular contract
technology. The ability to produce photorealism imaging, in high definition,
with enhanced molecular contrast, and the production of personalized
animated simulations from these images represents the benchmark
transformation of personalized medicine and surgery on a global scale.
Therefore, the use of SIMaging represents a transformation in health
maintenance and healthcare delivery that will revolutionize the quality of life
and longevity of mankind, as we enter into the age of personalized
medicine and surgery.

Another aspect of the technology described herein is the use of
tissue specific gene delivery-imaging platform to enhance the imaging
differences between healthy tissues and cells, and diseased tissues and
cells, using state-of-the-art “molecular contrast agents.” In doing so,
personalized photorealism renderings and simulations of the healthy and
diseased body, organs, tissues and cells can be produced to assist both
health care providers of all specialties and humans worldwide to evaluate
their overall body health, diagnose their diseases of all types, practice, plan

and assist in operations and therapeutic interventions in unlimited

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

applications, as well as help track recovery from therapies, operations and
interventions.

The photorealism images produced by the technology can be used
for real time personalized animated simulations that will assist surgeons
and other interventionalists of all specialties to improve their quality of care
for their patients. These personalized animated simulations of both healthy
and diseased organs, tissues and cells will assist health care providers of
all specialties worldwide to evaluate their patients overall body health and
diagnose their diseases of all types. The personalized animated
simulations will also enable surgeons and other medical practitioners of all
specialties to practice and plan their proposed procedures on their patients’
images before the operation or procedure. Furthermore, the personalized
animated simulations coupled with artificial intelligence and robotic
assistance can be used during the procedure using specialized glasses or
computer screens to assist surgeons and interventionalists with the
procedures in real time to improve quality of care, reduce complications and
reduce costs of healthcare by guiding the surgeon and interventionalist
using standard-of-care protocols while capturing the details of the operation
or intervention in real time and into electronic healthcare databases. The
personalized animated simulations and artificial intelligence with robotic
assistance will assist in standardization and documentation of all
procedures in real time. In doing so, the quality of care and quality of life
for the patients, as well as quality of life for the healthcare providers, may
greatly improved, while significantly lowering healthcare costs.

The personalized animated simulations can also be used for
educational purposes for health care providers, future healthcare providers
and patients. The personalized animated simulations may used in home
health systems to help patients evaluate their own health status, as well as
disease states and recovery from therapies, operations and other
interventions.

The SIMaging technology can also be extended to entertainment

purposes, such as movies, television, music videos and internet computer

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

gaming of all types, as well as to personal grooming applications and
simulated aging by using computer and robotic avatars. The technology
can be used by private industry to evaluate employee health status before
and during employment, such as the sports industry worldwide. The
technology can also be used for farming husbandry purposes.
Furthermore, the technology can be used for research purposes in clinics
and laboratories worldwide. Simulated procedures can be carried out and
meaningful predictions can be made prior to use of lab animals or
appropriate human participants.

[0027] Further aspects of the technology will be brought out in the following
portions of the specification, wherein the detailed description is for the
purpose of fully disclosing preferred embodiments of the technology without

placing limitations thereon.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS
OF THE DRAWING(S)

[0028] The technology described herein will be more fully understood by
reference to the following drawings which are for illustrative purposes only:

[0029] FIG. 1 is a schematic flow diagram of a method for generating a
parametric simulated model (SIM-SET) of an anatomical region of a patient
in accordance with the present description.

[0030] FIG. 2 is a system for outputting the SIM-SET of FIG. 1 based on
input patient data.

[0031] FIG. 3 illustrates enhancing an MRI of the brain according to an
embodiment of the technology described herein.

[0032] FIG. 4 illustrates enhancing an angiogram of an aortic aneuryism
with an endovascular stent according to an embodiment of the technology
described herein.

[0033] FIG. 5 shows a schematic flow diagram of a model for personalized
genomic medicine and surgery according to embodiments of the technology
described herein.

[0034] FIG. 6 illustrates a flow diagram of a process flow for enhanced

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

imaging using promoters according to an embodiment of the technology
described herein.

[0035] FIG. 7 illustrates an embodiment of molecular contrast imaging
according to the technology described herein.

[0036] FIG. 8A and FIG. 8B illustrates an example of enhanced imaging of
pancreas cancer using promoters according to an embodiment of the
technology described herein.

[0037] FIG. 9A through FIG. 9D illustrate an example of enhanced imaging
of a tumor in mice using promoters according to embodiment of the
technology described herein.

[0038] FIG. 10A and FIG. 10B show a raw scan and isosurface render,
respectively, using CT data.

[0039] FIG. 10C and FIG. 10D show a raw scan and isosurface render,
respectively, for US data.

[0040] FIG. 11A through FIG. 11C show a flow diagram for a processing
method for automatic high-quality rendering of arbitrary human dicom scans

with a virtual camera.

DETAILED DESCRIPTION

[0041] A. SIMaging System and Method Overview

[0042] The technology described herein is directed to transformational
imaging and simulation platforms, "SIMaging," applied to current medical
imaging modalities to greatly enhance the accuracy and interpretability of
medical images. The technology facilitates accurate diagnoses, improved
therapeutics, and enhanced training for healthcare professionals, patients
and others.

[0043] SIMaging provides novel methods to present medical CT/MRI scans
(and other acquired data sets such as X-ray, photos, etc.) to patients and
doctors, allowing them to see in a very easy to decipher photorealistic real-
time rendering presentation by creating new geometry.

[0044] SIMaging is based largely on development of a "SIM-SET," which is

a parametrically built representation of the human body, or portion of a

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

human body, with fully photo-real geometry and shaders that can be
rendered in real-time. The SIM-SET is automatically aligned and calibrated
to one or more sources of input data such as: MRI/CAT scans, weight, BMI,
height, x-rays, photos, manual input, etc. This dynamically creates a 3D
patient SIM-SET to an almost exact representation of the real patient with
all of the pre-defined photo-real characteristics built into it for generating
imagery with realistic looking skin, bone, and flesh using a data base of
BRDF (bidirectional reflectance distribution function) shaders with sub-
surface scattering.

[0045] FIG. 1 shows a schematic flow diagram of a method 10 for
generating a parametric simulated model (SIM-SET) of an anatomical
region of a patient in accordance with the present description. First, a
database of a parametric human body (SIM-SET), or anatomical portion of
the body, is created at step 12 by acquiring input data in the form of one or
more of imaging scans 32 (e.g. MRI/CT/US scans), patient statistics 34,
photos 36, etc. The SIM-SET comprises mainly of volume data and/or
isometric surface models 30 of one or more aspects of the anatomy (e.g.,
for both male and female patients), the surface models 30 being designed
for photo-real real-time VR rendering.

[0046] Next at step 14, each object in the SIM-SET is ‘tagged.” The tagged
data is configured so that any piece of the human parametric model can be
turned on or off for viewing (e.g. to show skeletal, or vascular and muscle
together, etc).

[0047] The data from steps 12 and 14 may be stored in a secure dedicated
database, piggy back onto existing hospital systems, or may be completely
integrated into a manufacture’s database (such as the scanner
manufacturer, GE, or the like).

[0048] With the database established, the system (see, e.g., system 100
shown in FIG. 2) is ready to be applied to individual patients. At step 16,
individual patient data is input, which may be in the form of an MRI/CT scan
35, or the like.

[0049] At step 18, a patient specific, base SIM-SET model is developed

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

from the database as a function of input patient physiology data 38, e.qg.
specific physical characteristics of the patient. Both the patient scan 35 and
physiology data 38 are patient data 40 that is specific to the individual
patient.

[0050] At step 20, DICOM dataf/files (preferably non-proprietary) are
extracted from a CT/MRI scanners.

[0051] At step 22 the scan data is searched for specific milestone markers
of anatomy that will later be used to align the SIM-SET geometry. Manual
input 42 may be used for selecting one or more milestone markers if a
patient has a unique anatomy, e.g. birth defects, amputations, or other
abnormalities.

[0052] At step 24 the markers are then used to perform isometric surface
alignment of the SIM-SET geometry to the patient's scan 35. In a preferred
embodiment, the alignment is done taking into account other input data 38
such as weight, height, BMI, X-ray, photos, etc. This alignment is performed
on both volume data and surfaces, and can also be adjusted by manual
input 42 via selecting the key structures on different slices of a MRI/CT
scan to help fine-tune the SIM-SET.

[0053] Using the tags from the SIM-SET, the patient scan data 35 can now
be ‘culled’ at step 26 for rendering and custom display via a fully controlled
viewing system for showing all the data in a photo-real presentation.

[0054] Additional processing may be performed at step 28 as a function of
further input 44. For example, photographic reference of skin color can be
input to make the exact tone and hue of the patient. Now that that a fully 3D
model of the patient’s body exists, other data can now be connected to i,
e.g. auto-alignment and projection of wound, surgeon markups, or even X-
rays (for example) directly onto the surface of the body, essentially
generating a 3D photo gallery based on body location. Notes and other text
files can also be connected to different locations on the body, giving the
patient and the doctor a fully 3D representation of data.

[0055] Referring to the system 100 shown in FIG. 2 the output SIM-SET or

simulation model may be rendered in real-time for view on a display 112.

-10-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

System 100 further comprises a computer/server 102 comprising a
processor 106 and memory 108 for storing application programming 102.
Wherein programming 102 comprises instructions configured for execution
by the processor for transforming the input patient data 40 according to
method 10 into the output simulation model 110 for display or with VR
assisted headgear (not shown).

[0056] Programming 110 is furthermore adaptable so that doctors and
patients can add data to the SIM-SET over time. For example, additional
scans 35 can be added at a later date to show progress over time, or a
patient could take photos of a post-op condition and apply them to the
model data set. Tracking a patient's weight loss may also be represented in
an animated time-lapse photo-real presentation.

[0057] Because the data SIM-SET has anatomy information that is not
present in the patient scans (it can extrapolate the entire body based off of
just a chest CT scan and some other input data, for example), it may also
serve as an educational reference for the entire body, and can be viewed
and explored as such. Hence the name “Photo-real Simulation-
Visualography” because of the extrapolation of un-scanned portions of the
body.

[0058] Because the clinical scan data 35 is still maintained in the SIM-SET,
it can be viewed at the same time if needed. This allows the physician to
show raw data to a patient in combination with photo-real rendering.

[0059] Furthermore, because lighting and reflections are integral to photo-
real rendering, any photo-real HRDI (high range dynamic image)
environments can be selected for viewing the SIM-SET within, such as: a
generic modern doctors office, abstract white cyc, park setting, etc. Several
environment presets can be included and used depending on the desired
presentation of the SIM-SET.

[0060] The SIMaging systems and methods of the present description may
be integrated into the medical field via several different avenues, such as
working directly with manufactures to include it with their MRI/CT scanners,

or to have it be a stand-alone 3rd party application that patients or doctors

-11-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

can use from home or at school.

[0061] The SIMaging systems and methods of the present description
capable of producing color high definition photographs (photorealism) and
animated simulations of any person’s body, organs, tissues and cells from
the images obtained from standard imaging modalities, such as CT scans,
MR, ultrasound, PET scans, brain scans, nuclear medicine scans, optical
imaging scans, and other targeted imaging technology, using high definition
animation platforms.

[0062] SIMaging systems and methods of the present description may be
expanded to be the foundation for visualizing not just scan data (MRI, CT,
etc.), but any other input data that benefits from alignment with a 3D photo-
real representation of the patient, such as: pre-surgery markup photos,
post-surgery follow up photos, X-rays, artificial joints, pace makers, etc.

[0063] This photo real virtual patient may be used to show the results of a
recent scan or surgery, or may be used with VR assisted viewing for a
surgeon performing an evasive procedure, or finally to a teacher showing
students a photo-real anatomy lesson. And as additional data sets are
collected over the years, it can also provide a fully visual historical
presentation of patient to better track their health and progress.

[0064] The technology of this disclosure can be described in terms of
several main embodiments, which will now be described. In one
embodiment, referred to herein as Embodiment 1, conventional images
from standard diagnostic imaging platforms (e.g., DICOM format) are
transformed into high definition colorized, "photorealistic" images using the
SIMaging system and method of the present description.

[0065] In another embodment, referred to herein as Embodiment 2, three
dimensional animations are created from the photorealistic images.

[0066] In another embodiment, referred to herein as Embodiment 3, the
photorealistic images are rendered in such a way as to depict medical
conditions of interest. For example, an image of tissue or an organ would
visually depict cancerous areas in the tissue or organ.

[0067] It will be appreciated that the technology described herein includes

-12-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

other embodiments as described herein and as would be appreciated to
those skilled in the art in view of the description herein.

[0068] B. General Embodiment 1

[0069] In General Embodiment 1, conventional images from standard
diagnostic imaging platforms (e.g., DICOM format) are transformed into
high definition colorized, "photorealistic" images using the systems and
methods detailed above.

[0070] For example, animated platforms of both cartoon as well as
photorealism movies may be generated using computer generated imaging
facial recognition technology to enhance the standard diagnostic images
that are produced by the different imaging modalities. Preferably this
system would implemented in close collaboration between the surgeons,
interventionalists of all procedures, radiologists, animators and software
developers to combine the use of medical knowledge of the human body,
both anatomy and physiology, and therapeutic interventions with computer
animation platforms to produce photorealism images and simulations that
are created for the benefit of healthcare.

[0071] For example, a CT/MRI/US scan of a patient’s breast and/or internal
gastrointestinal organs may be input as scan 35 (see FIG.1) or patient data
40 (FIG. 2) into system 100 and is transformed into output simulation
model 110, e.g. as high definition colorized, "photorealistic" images or
animations in collaboration with, for example, surgeons and other
interventionalists who can interpret the images and their relevance to health
and disease. This may be performed for both normal and healthy tissues
versus those tissues that are diseased. Normal and healthy breast or
appendix images may be used for the initial images to create a photograph
of the breast or appendix similar to that seen during an operation. Once the
normal breast or appendix is visualized, different phases of the diseased
breast or inflamed appendix can be animated using input CT scans, MRI
scans, and ultrasounds of patient’s breast or inflamed appendices, which
are correlated with the images seen in the operating room during open

operations, as well as laparoscopic appendectomies. The same can be

-13-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

applied for gallbladders that are both normal as well as inflamed. For both
breast or appendix, the still or animated images could progress to cancer of
the breast or perforated appendix with surrounding purulent material. Once
the fundamentals are developed for these organs, the technology can then
be applied to any disease process that can be imaged such as
cardiovascular diseases, cancer, arthritis, chronic inflammatory diseases,
and any range of normal tissues versus pathologic states that can be
imaged.

In another example, CT/MRI/US scans of the body are performed on
a patient. The information for each organ seen on the primitive images of
the CT/MRI/US is evaluated and compared with known images and
photographs of the human body and organs from anatomy atlases and
other documented sources. Using, for example, the expertise of a surgeon
or other interventionalist, or information in a database of related information
previously developed, the images of the organs on the CT/MRI/US scan of
the patient’s body are transformed into a high definition, photorealistic
rendering of the internal gastrointestinal organs using the system and
methods of the present description. Initially, the program can be focused
on one organ, such as the liver or appendix, to simplify the process. Cross-
references of the animation being produced with the CT scan may done on
a continuous basis to ensure accuracy of the photo being produced. Once
completed, the CT/MRI/US scan may be reviewed and compared with the
photorealism rendering of the rendered animation image. A determination
may be made of whether the system is able to reproduce the photorealism
images from the DICOM format CT/MRI/US scan without the assistance of
the animators and surgeon. Once this is accomplished, a database of all
internal organs is developed and tested against CT/MRI/US scans from
multiple patients. This process may be repeated for other imaging
modalities of known patients, such as PET-CT and nuclear medicine scans.

Simultaneously, the same patient’s head and body may scanned into
the animation computer system using a 4 camera scanning facial

recognition technology such as that provided by Hydraulx, Inc. The

-14-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

CT/MRI/US scan may be reviewed in collaboration with the surgeon,
radiologist and the animation team and the information then transferred into
the system (e.g. using NECTAR and Dell computers animation software,
such as Poser Pro 2010 3D Modeling & Animation). The information of
each organ seen on the primitive images of the CT/MRI/US may be
discussed in detail and compared with known images and photographs of
the human body and organs from anatomy atlases and detailed information
obtained from other documented sources. With the guidance of the
surgeon, the images of the organs on the CT/MRI/US scan of the patient’s
body are then transformed into a high definition photorealism rendering of
the internal gastrointestinal organs using the system. As before, there may
be a focus on one organ, such as the liver or appendix, to simplify the
process. Cross-references of the animation being produced with the
CT/MRI/US scan may done on a continuous basis to ensure accuracy of
the photo being produced. Once completed, the image of the CT/MRI/US
scan will be reviewed and compared with the photorealism rendering. A
determination may be made of whether the system is able to reproduce the
photorealism images from the DICOM format CT/MRI/US scan without the
assistance of the animators and surgeon. Once this is accomplished, the
database of all internal organs may be developed and tested against other
patients’ CT/MRI/US scans. This process will be repeated for other
imaging modalities of known patients, such as PET-CT and nuclear
medicine scans.

It will be appreciated, therefore, that an aspect of the technology
described herein is to create high definition colorized animated images that
are accomplished by collaboration of the system of the present description
with diagnostic imaging platforms from CT scans, MRI, ultrasound,
mammography, brain scans, nuclear medicine scans, PET scans to
enhance diagnostic capability and therapy for healthcare providers and
education of patients.

In one exemplary configuration, FIG. 3 illutstrates enhancing an MRI

of the brain according to an embodiment of the present technology. An MRI

-15-

WO 2017/165566 PCT/US2017/023669

scan 40a is input into the system 100 to generate and output one or more
photorealistic simulations 26a of the brain.

[0076] FIG. 4 illustrates another exemplary embodiment for enhancing an
angiogram of an aortic aneuryism with an endovascular stent according to
an embodiment of the technology. In such embodiment, angiogram 40b is
input into the system 100 to generated and output photorealistic simulation
26b of the stent and surrounding anatomy in the chest cavity.

[0077] Another exemplary embodiment may entail inputting a standard
image of fetal ultrasound to generate a photorealism rendering of the baby
within the mother's womb in utero. A further exemplary embodiment may
include inputting a standard image of breast seen on mammogram and/or
MRI scan to generate an animated image of the breast, or inputting a
standard image of liver cancer seen on CT scan to generate photorealism
images of liver cancer metastases.

[0078] It will also be appreciated that potential levels of images and
generated simulation/animation are as follows: 1) whole body, face and
skull, 2) organs, 3) cells, 4) molecular pathways and functional genomics,
5) atomic and 6) subatomic.

[0079] C. General Embodiment 2

[0080] In this embodiment, animated simulations are generated from the
personalized images. The result can be used for medical and surgical
simulation video games for training of interventionalists of all specialities.
Animated simulation for any interventional procedures would help
practitioners of all specialties practice prior to the actual procedure and also
help guide the practitioner in real time through the procedure using artificial
intelligence to track milestones of the procedure, as well as track the
progress of the milestones for the procedure in real time in the medical
records. This would lead to standardization of procedures on a global scale
and improve outcomes and quality of care. In addition, practitioners would
also avoid the need for costly and often inaccurate dictations thus
improving documentation of healthcare.

[0081] System 100 configured in the form of a home animation imaging

-16-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

[0082]

[0083]

[0084]

[0085]

[0086]

system would provide information that would help patients recover from any
procedure and also help guide the patient, in real time, through the
recovery process using artificial intelligence to track milestones of the
recovery, as well as tracking the progress of the milestones for the recovery
in real time in their medical records. Data that may be recorded and
analyzed by the patient includes, but is not limited to:

(a) weight loss;

b) weight gain;

fat content;

)
)
c) general health at home;
)
e)

(
(
(d
(e) muscle mass;

(f) water content.

Such a system may enable standardization of recovery from
procedures on a global scale and improve outcomes, quality of care and
quality of life. This would also serve avoid the need for costly readmissions
and improve documentation of home healthcare.

The home animation imaging system may be used to facilitate
personal grooming, including application of facial make-up, other cosmetic
applications, dress, etc., in 3D for a number of special events.

Application programming 104 may be configured as a mobile app for
use on smartphone or other mobile devices in the form of gaming systems
that involve the human body, repair of the human body, and portraying any
injury of the human body such as gunshots, stabbings, car crashes, and
other trauma that are currently used in gaming systems. Realistic
simulations of trauma to the body may be provides, in addition to the ability
to repair the trauma. The games could be used to help gamers of all ages
that are interested in any medical applications.

Accordingly, Embodiment 2 includes animated simulations from the
high definition colorized, photorealism images described in Embodiment 1
above, using the system 100 as applied to standard diagnostic imaging
platforms (e.g. in DICOM format).

Following the generation of high definition colorized, photorealism

-17-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

images from the patient’'s CT/MRI/US scan of the body, or from any
standard imaging modality, the original CT/MRI/US scan and the
photorealism images may be reviewed. The information for each organ
seen on the primitive images of the CT/MRI/US is compared with the
images of the patient’s body and organs along with personal knowledge of
the surgeon and interventionalist of the specific details of the procedure or
intervention to be performed. Identification of the actual human anatomy
and color from selected black, white and grey features of the CT/MRI/US
images, blood vessels, fat, liver parenchyma is preferably performed done
by the surgeon and radiologist using the Hounsfield unit scale, standard
contrast agents and molecular contrast agents to differentiate densities of
blood, water and parenchyma, tumors, scars, etc., are translated into the
simulated images by animators in coordination with the photorealism
images of the tissues of the selected organs and tissues.

With the guidance of the surgeon and interventionalist, the
simulation of the procedure may be developed from actual high definition
colorized images of the organs intended for the operation or procedure from
the CT/MRI/US scan of the patient’s body using the animation platform.
Initially, there can be a focus on developing a simulation of one organ, such
as the appendix, to simplify the process. Cross-references of the animated
simulation being produced with the CT/MRI/US scan may be done on a
continuous basis to ensure accuracy of the simulation being produced.
Once completed, the animated simulation of the CT/MRI/US scan, or
similar modality, will be reviewed and compared with the photorealism
rendering by the surgeon, radiologist, interventionalist, etc.

A determination may be made of whether the system is able to
reproduce the photorealism images from the DICOM format CT/MRI/US
scan without the assistance of the animators and surgeon. The animated
simulations may ultimately be reviewed by the entire team, which will
ensure accuracy of the automated simulations. Once this is accomplished,
a database of animated simulations of all operations and interventions is

developed and tested against other patients’” CT/MRI/US scans. The

-18-

5

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

animated simulation may be evaluated using practice operation or
interventions by the surgeon or interventionalist, respectively, to determine
the usefulness of the simulation in helping prepare for the actual operation
or intervention.

Once evaluated, the animated simulation may be evaluated again in
real-time during the actual operation or intervention using picture-in-a-
picture technology to determine the usefulness of the simulation in assisting
the surgeon or interventionalist during the actual operation or intervention.
The animated simulations may be continuously modified to incorporate
artificial intelligence technology and real-time data capture technology to
assist the surgeon and interventionalist with the performance and reporting
of the details of the operation or intervention. The goal is to ensure safety
and improve quality of care by using standard of care protocols that are
captured using artificial intelligence as the operation or intervention
proceeds in real time. This process may be repeated for other imaging
modalities of known patients, such as PET-CT or nuclear medicine scans.

In another example, the same patient’'s head and body is scanned
simultaneously into the system (e.g., using a 4 camera scanning facial
recognition technology, as provided by Hydraulx, Inc.). The CT/MRI/US
scan is then reviewed in collaboration with the surgeon, radiologist and the
animation team and the information transferred into the system (e.g. using
NECTAR and Dell computers animation software, such as Poser Pro 2010
3D Modeling & Animation). The information of each organ seen on the
primitive images of the CT/MRI/US may be discussed in detail and
compared with known images and photographs of the human body and
organs from anatomy atlases and detailed information obtained from other
documented sources. With the guidance of the surgeon, the images of the
organs on the CT/MRI/US scan of the patient’s body are then transformed
into a high definition photorealism rendering of the internal gastrointestinal
organs using the system.

The original CT/MRI/US scan and the photorealism images may be

reviewed in collaboration with the surgeon, radiologist, interventionalist and

-19-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

the animation team and the information will be transferred into the
animation simulation platform for development of the animated simulation.
The information of each organ seen on the primitive images of the
CT/MRI/US is discussed in detail and compared with the images of the
patient’s body and organs along with personal knowledge of the surgeon
and interventionalist of the specific details of the procedure or intervention
to be performed. Identification of the actual human anatomy and color from
selected black, white and grey features of the CT/MRI/US images, blood
vessels, fat, liver parenchyma is performed by the surgeon and radiologist
using the Hounsfield unit scale, standard contrast agents and molecular
contrast agents to differentiate densities of blood, water and parenchyma,
tumors, scars, etc., and will be translated into simulated images by the
animators in coordination with the photorealism images of the tissues of the
selected organs and tissues.

[0092] The information and databases, as well as the technology from these
processes can also be implemented for home health systems that are
connected to electronic medical records, for gaming purposes, for movies
and television and for personal grooming programs.

[0093] D. General Embodiment 3

[0094] As an extension of Embodiment 1, the systems and methods of the
present descriptin mayb be used for functional genomics and molecular
imaging to develop “molecular contrasts” for SIMaging.

[0095] PET-CT scan imaging currenlty exits, but the images are of low
definition. The quality of definition can be greatly enhanced using the
photorealism imaging system 100 of the present description, as well as the
ability to image any diseased tissue versus healthy, normal tissue. Similar
to that of intravenous and oral contrast agents used in current imaging
modalities, the present system would use “molecular contrast” to
differentiate different healthy cells and tissues, as well as diseased cells
and tissues, from one another using tissue specific- synthetic promoter-
driven gene delivery platform to deliver cell and tissue specific imaging

genes.

-20-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

[0096] FIG. 5 shows a schematic flow diagram of a model 150 for
personalized genomic medicine and surgery according to embodiments of
the technology described herein. First genomic evaluation is performed at
block 152 in the form of one or more of exome or gene sequencing,
proteomics, etc. SIMaging method 10 is then performed at block 154 via
one or more imaging modalities (e.g. MRI, CT, US, PET, targeted molecular
imaging, nuclear medicine, optical imaging, etc.). Functional studies of
targets and/or mutations, such as overexpressed proteins, oncogenes,
tumor suppressor genes, signaling targets, etc., is then performed at block
156. Finally, targeted therapy (e.g. preventative, standard, and targeted
therapies, preclinical studies, clinical trials, etc.) are preformed at block 158.

[0097] FIG. 6 illustrates a flow diagram of a process flow 200 for enhanced
imaging using promoters (i.e. molecular contrasts for SIMaging) according
to an embodiment of the technology described herein.

[0098] The functional genomic analysis system 202 may be performed on
all given healthy tissues of the body, as well as diseased tissues for
identification of overexpressed Protein X in each given tissue at block 204.
This means that that tissue X has the transcriptional mechanisms to cause
activation of the promoter of the gene of protein X, thus causing
overexpression. For example, the insulin protein is over expressed in
healthy islets of Langerans in the pancreas, as well as in insulinoma
tumors. Along with others, we have identified that the transcription factor,
PDX1, is responsible for activation of the insulin promoter in these healthy
and diseased tissues.

[0099] At block 206, the synthetic promoter of Protein X is generated,
which will drive gene expression in the healthy and diseased tissues. For
example, we generated a synthetic insulin promoter (BL promoter) and
have shown that the BL promoter is very efficient at tissue specific delivery
of imaging genes in islets, insulinoma tumors cells and cancer cells.

[00100] At block 208, SIMaging is performed on the synthetic promoter. The
promoter of protein X is used for delivery of theranostic genes, which can

be used for enhanced cell and tissue specific imaging of both healthy

-21-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

tissues and diseased tissues, as well as therapy. For example, imaging
healthy islets of Langerhans within the pancreas (see image 40c in FIG. 7),
as well insulinoma tumors (and other cancers) in mice using the BL
promoter may be used to drive thymidine kinase and somatostatin receptor
subtype 5 genes. These images can then be used to generated
photorealism images (see image 26c¢ in FIG. 7), and ultimately simulations
of healthy and diseased tissues for personalized SIMaging step 210 based
upon the patients imaging studies. As defined in the GIFT model shown in
FIG. 5, this system represents personalized medicine, and thus is termed

SIMagingi n accordance with the present description.

[00101] The following details the basic science behind the embodiment 200

of FIG. 6. ltis to be noted that the BL promoter is labeled as SHIP or

"Synthetic Human Insulin Promoter" in this section.

[00102] 1. Using a functional genomics system we have determined that

PDX1 is overexpressed in most cancers and can be used as a target to
activate the insulin promoter to drive theranostic genes in cancers. PDX1
promotes PDAC via a PDX1 amplifying loop and is a target for insulin

promoter driven imaging and therapies.

[00103] 2. We have demonstrated that delivered Rat Insulin Promoter (RIP)-

Thymidine Kinase and an analogue of FHBG successfully imaged human
pancreatic cancer tumors in mice in vivo using optical imaging. For
translational purposes, we developed and tested a novel synthetic human
insulin promoter (SHIP or BL promoter) utilizing PDX1-activation sites of the
human insulin promoter (HIP). Preliminary data demonstrates that SHIP
(BL) successfully drives CAT reporter gene expression with significantly
higher efficiency than RIP, HIP or CMV promoters in PDX1-positive human
pancreatic cancer cells (PANC1), but not in PDX1-negative HPDE cells. We
delivered iv SHIP-TK nanoparticles which were successfully expressed in
human pancreatic cancer tumors in mice and imaged using optical
scanning imaging. The study was repeated on insulinoma tumors in mice
and the tumors were successfully imaged. This preliminary data

demonstrates that systemically delivered SHIP (BL Promoter) drives gene

-22-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

expression in PDX1-positive human pancreatic cancer and insulinoma
tumors in mice with great efficiency, demonstrating the feasibility of the

imaging studies using “molecular contrasts”.

[00104] 3. We have shown that the novel SHIP (BL promoter) drives

chloramphenicol acetyltransferase (CAT) gene expression with significantly
higher efficiency than RIP and HIP in human pancreatic cancer cells. To
determine whether SHIP-driven gene expression can be determined using
bioluminescence imaging and microPET imaging, SHIP-luciferase is first
transfected into pancreatic cancer cell lines with varying PDX1 expression
levels, including cell lines PANC1 (PDX1- high), MiaPaCa2 (PDX1-medium)
and A549 (PDX1-low), as well as benign HEK293 cells with various doses
of PDX1 transfections. Bioluminescence imaging is performed at 24, 48 and
72 hours after gene transfection. The same strategy with imaging TK gene
expression driven by SHIP is repeated with microPET imaging using 18F-
FHBG. After validation of the accuracy of bioluminescence imaging and
microPET imaging in cell lines, these in vitro SHIP-luciferase and SHIP-TK
imaging experiments are repeated with the presence of bi- sShRNAPDX1 or
empty-vector NPs, and followed by bioluminescence imaging or microPET
imaging at various time points after bi-shRNAPDX1 treatment, respectively.
The responses of PDX1-expressing PDAC cell lines to the bi-shRNAPDX1

NP treatments are analyzed and compared with the control groups.

[00105] 4. We have shown that the SHIP promoter drives CAT gene

expression with significantly higher efficiency than RIP and HIP in PANC1
cells. To determine whether SHIP-driven gene expression can be imaged
using bioluminescence or microPET imaging, SHIP-luciferase or SHIP-TK
is first transfected into PDAC cell lines with varying PDX1 expression levels
and bioluminescence or microPET (with 18F-FHBG) imaging is performed
at 24, 48 and 72 hours after gene transfection. Having experience with RIP-
TK imaging in PANC1 subq tumors in SCID mice, test the SHIP-driven
gene imaging of PDACis tested in vivo. The xenograft tumor models are

created as follows:

[00106] i) stably transfected SHIP-TK-PANC1 cells are placed subq in nude

-23-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

mice; stably transfected SHIP-TK-MiaPaCa2 cells are placed subq in nude
mice (n=5 each); the tumors are imaged by microCT after day 30, 60, 90
following implantation of the cells. The subq tumors are measured and the
size will be correlation to imaging size. Once the parameters are
determined, stably transfected SHIP- TK-PANC1 cells are placed
orthotopically in nude mice; stably transfected SHIP-TK-MiaPaCa2 cells will
be placed orthotopically in nude mice (n-15 each); the tumors are imaged
by microCT after day 30, 60, 90 following implantation of the cells. The
orthotopic tumors are measured by sacrificing 5 mice at each time point
and the size will be correlated to imaging size. Once these parameters are
known, then PANC1 or MiaPaCa2 cells are implanted orthotopically in nude
mice (n=15 per group) to test systemically delivered SHIP-TK imaging
system. When tumors are measured more than 0.5cm in diameter by
microCT, (~30 days after implantation) the mice are given one dose of 35ug
of iv injection of SHIP-TK NP, followed by 18F- FHBG then studied using
microPET at 24, 48 and 72h after injection to determine whether the PDAC
tumor can be detected. The background noise of islets is also be

determined.

[00107] ii) Once these parameters are known, along with the data from aim

2a on PDAC tumor volume in KPC mice, KPC mice (n=10) at the optimal
age (e.g., 8-10 weeks) receive 35ug of SHIP-TK NP via tail vein and are
imaged by microPET following 18F-FHBG at 24, 48 and 72 hours after
injection. The mice are then treated with three biweekly cycles of 35ug of
mouse-bi- ShRNAPDX1 NP. Imaging is repeated 2 weeks after each
treatment. Tumors are then harvested to compare tumor volumes, as well

as TK and PDX131/46 expression levels.

[00108] iil) These studies are repeated using SHIP-Luc-PANC1 and SHIP-

Luc-MiaPaCa2 nude mice model and imaged using Bioluminescence
imaging system to image tumors following same protocols as described
above. A comparison of these imaging studies may determine the most

sensitive and accurate approach for further studies.

[00109] 5. Test data demonstrates that systemically delivered rat insulin

-24-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

promoter-lacZ (RIP-lacZ), but not CMV- lacZ, resulted in tumor specific
expression of LacZ in PDX1-positive metastatic PANC1 tumors harvested
from the peritoneal cavity of SCID mice. Furthermore, systemically
delivered RIP-Thymidine Kinase and an analogue of FHBG successfully
imaged PANC1 subcutaneous tumors in SCID mouse in vivo using optical
imaging. For translational purposes, we developed and tested a novel
synthetic human insulin promoter (SHIP) utilizing PDX1-activation sites of
the human insulin promoter (HIP). Preliminary data demonstrate that SHIP
successfully drives CAT reporter gene expression with significantly higher
efficiency than RIP, HIP or CMV promoters in PDX1-positive PANC1 cells,
but not in PDX1-negative HPDE cells. We next developed a SHIP driven
Luciferase-RFP (SHIP-Luc2RFP) fusion reporter gene assay and
generated stably transfected MiaPaCa2-SHIP-Luc2RFP and PANC1-SHIP-
Luc2RFP PDAC cell lines, which can be reliably used to visualize PDX1
gene expression and activity in response to bi- ShRNAPDX1 therapy in
vitro. These cells are used to study PDX1 expression and the mechanisms
in aim 1. Having considerable experience with RIP-TK and pro-drug
ganciclovir (GCV) therapy in PDAC mouse models, we delivered iv SHIP-
TK NPs in a PANC1 xenograft SCID mouse model, which were
successfully expressed in PANC1 tumors. When treated with GCV, PDX1-
positive PANC1 tumor volume was significantly suppressed with greater
efficacy than CMV-TK/GCV or RIP-TK/GCV. These preliminary data
demonstrate that systemically delivered SHIP drives gene expression in
PDX1- positive PDAC cells and tumors in mice with great efficiency,

demonstrating the feasibility of personalized imaging and therapy.

[00110] FIG. 8A and FIG. 8B show an /In vivo PANC1 tumor-specific imaging

using iv RIP-TK/FHBG (FIG. 8A) and RIP-lacZ (FIG. 8B). The image in FIG.
8B is a high definition photorealism of a human pancreatic cancer that was
growing in a mouse and was stained blue with a targeted insulin promoter
gene delivery system, thus exemplary of SIMaging in accordance with the

present description.

[00111] FIG. 9A through FIG. 9D show reporter assay of SHIP (BL) versus

-25-

5

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

RIP and HIP (FIG. 9A). SHIP-Luc2RFP PDAC cell lines before and after
PDX1 knocking down and shown in (FIG. 9B and FIG. 9C. FIG. 9D shows
SHIP-TK/GCV successfully targeted and suppressed PDX1-positive

PANC1 tumor volume in mice.

[00112] Accordingly, the technology described herein provides an imaging

platform that is capable of producing high definition color visual renderings,
essentially "photorealistic-type" images, from the two-dimensional black
and white images currently obtained from standard tests, such as CT
scans, MRI, ultrasound, brain scans, nuclear medicine scans, PET scans,
and other targeted imaging technology. These images can be used alone,
or can in turn be used for creating real-time simulations that will assist
healthcare professionals of all specialties improve their quality of care for
their patients,. These real-time simulations, or animations, can further be

used for the standardization and/or documentation of that care in real time

[00113] E. Example Data Extraction

[00114] A simulation was performed to build a basic pipeline to import raw

image scan data from current generation medical imaging devices along

with a visualization toolset.

[00115] Raw data was acquired from an ACUSON Sequoia 512 ultrasound

system at somewhat lower resolution (256 x 256 x 32 voxels compared to
221 x 251 x 143 voxels on a GE EB6 system or about 25% of the
measurement points. A higher resolution CT scan of an adult male was
also provided at a resolution of 256 x 256 x 256. A demo rendering
program was ported to run on a Linux system along with a full import
pipeline to load data into Houdini. This allowed direct comparison of the
quality of US data with CT data.

[00116] With a basic conversion pipeline, filtering and rendering were

performed on the two main data sets: the CT scan from Siemens and the

US scan.
[00117] The following procedure was used:
[00118] First, raw data is imported into Houdini using the custom decoder

described above for either the Siemens or GE .vol files. From here we have

-26-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

a standard volume representation that can be processed using a variety of
tools.

[00119] The following steps were used to produce renderable geometry:

a. Filter the raw volume with a mean value (box) filter.

b. Convert the volume into a level set.

c. Carve out obvious noise and outliers using a spherical volume
cutter.

d. Smooth the level set with a Gaussian filter.

e. Convert the level set to polygons (renderable geometry).

[00120] From here three slightly different meshes are produced for blending:

a. Regular: the direct result of level set to polygon conversion.

b. Medium geometric smoothing: average neighboring point
positions.

c. Aggressive geometric smoothing: average positions within a
specific search radius.

[00121] The three meshes are blended with weights. The smoothest has the
biggest influence, while the regular mesh has the least. The goal is to retain
subtle variations in the data while maintaining the smooth shape. The
resulting blended mesh is smoothed again at the edges, and finally we
apply a “peaking” filter by pulling the mesh a tiny bit inward along the
normal direction.

[00122] For rendering, Houdini's marble shader was used, which implements
physically based subsurface scattering. This mimics the transport of light in
semi-translucent materials like skin. Rendering produces several image
layers that can be composited together and placed on top of the
background..

[00123] Once imported, the same processing steps can be applied to any
type of volume data to produce images. Although this set of steps requires
some manual work, the process is repeatable and can be captured in a
procedure within Houdini so that additional images can be produced
relatively quickly.

[00124] FIG. 10A and FIG. 10B show a raw scan and isosurface render,

-27-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

respectively, using CT data from the Siemens example data sets and FIG.
10C and FIG. 10D show a raw scan and isosurface render, respectively, for
the GE US data. These were imported into Houdini using our custom
decoder steps detailed above and then processed/rendered using Houdini
native tools. Note that these data sets use very different imaging
technology (CT versus US), but they are recorded at comparable resolution
(albeit with the caveat mentioned above that the CT dataset has a
resolution of 256 x 256 x 256). With the CT scan you can easily pick out
many fine scale details of the subject including skin wrinkles and other fine
geometric details. This is without any further processing of the raw volume
data. US data seems inherently noisy.

[00125] FIG. 11A through FIG. 11C show a flow diagram for a processing
method 300 for automatic high-quality rendering of arbitrary human dicom
scans with a virtual camera. Method 300 enables input from three separate
sources: dicom images 302 (e.g. arbitrary image scans from MRI, CT, etc.),
3D “standard” human library 304 (e.g. complete human body dataset (mesh
models, textures, shaders, etc.)), and camera input 306 (arbitrary virtual
camera view).

[00126] DICOM image data input 302 is fed into the automatic mesh
generation module 310, wherein it reads the dicom images and generates
the series of slices at first step or node 312. This step allows the user to
optionally display the series of slices in the system viewport at 322a (i.e.
hardware rendering).

[00127] Next at step 314 the series of slices are converted to a volume. This
step allows the user to optionally display the generated volume in the
system viewport at 322b.

[00128] Next at step 316, the volume data is clipped and filtered. Ideally,
mean/Gaussian kernels are used for filtering. This step allows the user to
optionally display the volume result in the system viewport at 322c.

[00129] Next at step 318, the isosurface is generated from the volume.
Ideally, OTSU volume histogram thresholds are used to generate the

isosurface. This step allows the user to optionally display the generated

-28-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

isosurface in the system viewport at 322d.

[00130] Next at step 320, the polygon mesh shape is generated from the
volume. This step allows the user to optionally display the generated
polygon mesh shape in the system viewport at 322e. This output is then
fed into the automatic mesh processing module 330.

[00131] At step 332, the generated mesh is analyzed and identified. The
generated mesh is morphologically compared against all the ones of the
standard human library in order to find its matching, and thus identify it.
Heat equation/ propagation/ laplace-beltrami operator/ temperature
distribution histograms may be used for the morphological/ shape analysis
and matching algorithm. This step allows the user to optionally display the
matching result in the system viewport at 322f.

[00132] At step 334, the generated mesh is aligned (e.g. translated, rotated
and scaled in order to fit with its matching). An iterative closed-points
algorithm is used for the alignment algorithm. This step allows the user to
optionally display the fitting result in the system viewport at 322g.

[00133] At step 336, the generated mesh is reconstructed. An iterative
closed-points algorithm is used for the reconstruction algorithm. The
generated mesh is reconstructed by copying the missing parts from its
matching. This step allows the user to optionally display the reconstruction
result in system viewport at 322h.

[00134] At step 338, the generated mesh is texture mapped by copying the
coordinates and assigned textures from its matching. An iterative closed-
points algorithm is used for the mapping algorithm. This step allows the
user to optionally display the texture mapping result in the system viewport
at 322i.

[00135] At step 340, the rendering is output. The resulting mesh is software
rendered at an arbitrary camera view, an arbitrary resolution, and with a
high-quality texturing and shading.

[00136] Exemplary software code for carrying out the processing steps of
method 300 is found in Table 1, below. Table 1 provides an embodiment of

instructions contained in application programming 104 the may be

-29-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

executable on a processor 106 to perform the functions shown in method

300 of FIG. 11, or any other method described herein.

[00137] F. Additional Applications

[00138] The animation of a laparoscopic appendectomy will demonstrate that

the patient is in the supine position with the left arm tucked. The monitors
are positioned at two o’clock and four o’clock and the patient is under
general anesthesia. An incision is made in the midline of the umbilicus and
the umbilical ring is dilated. A 12-mm blunt trochar is placed into the
abdominal cavity which is then insufflated with CO, gas. Two 5-mm ports
are placed under direct camera vision in the left flank. The operation then
proceeds in conjunction with the animated CT image of the inflamed
appendix as well as the animated simulation that has been developed from
patient’'s CT scan. An exploration is performed which reveals all normal
organs within the abdominal cavity except for the inflamed appendix. The
adhesions are taken down using blunt and sharp dissection. The base of
the appendix is lifted cephalad using a grasper. The mesoappendix is
identified. The base of the appendix is then gently dissected using a Kittner
dissector. Once a window is obtained between the base of the appendix
and the mesoappendix a 12-mm stapler is placed into the abdominal cavity
using the umbilical port. A 5-mm camera is used from the 5 mm lateral
port. The base of the appendix is then stapled. The meso appendix is
identified and stapled using a GIA stapling device with a vascular load. The
appendix is then placed into a specimen bag and removed out of the
umbilical port. The staple lines are examined. If irrigation is needed, it is
performed at this point. The trochars are removed, the gas is removed, and
the umbilical trochar site is closed with interrupted sutures of #0 Vicryl. The
skin is closed with #4-0 Monocryl. Steri-Strips are applied. Sterile
dressings are applied. The patient is awakened and then taken to the

recovery room.

[00139] The animated simulation in accordance with the present description

is used on the screen utilizing picture-in-a-picture technology. The

animated simulation of the appendectomy is also used to help guide the

-30-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

surgeon through the operation. The videos of actual laparoscopic
appendectomies are linked to CT scans, MRI scans and ultrasounds will be
used to develop the animated simulation. This constitutes personalized
surgery/interventions based upon the patient’s imaging studies and
animated imaging. Similar personalized animated simulations can be

developed for all operations and interventional procedures.

[00140] Personalized imaging using whole body scanning sequentially over

time may also be implemented utilizing the systems and methods of the
present description. The animated image and simulation methods may be
used to create whole body scanning that to follow patients sequentially over
time to understand their current health status as well as pathophysiology
and the progression of any disease that might be present, such as cancer.
Personalized imaging using whole body scanning may also be used to
develop home imaging systems to develop weight loss, weight gain,
general health conditions at home, and can be connected to an electronic
medical record. For example, the patient’s differential of muscle and fat
versus bone can all be ascertained using a home imaging system using

animated imaging.

[00141] The systems and methods of the present description may also be

implemented for application of personal grooming, including facial make-up,

other cosmetic applications, dress, etc in 3D for a number of special events

[00142] The systems and methods of the present description may also be

combined with 3D printing technology to produce models of the patient’s
body, head, organs, cells for enhanced imaging, diagnoses, therapy and

personal uses.

[00143] Personalized animated imaging for diagnostics (Embodiment 1)

produces a photorealism rendering of the patient’s body and organs. An
actual color photograph of any diagnostic image transforms diagnostic
capability for the radiologist and clinicians of all specialties, as well as
education of the patient. The images may be used for real time simulations
for practice of a procedure, as well as realtime use during the procedure,

for interventionalists of all specialties, including all surgical specialties,

-31-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

radiology, pulmonary, anesthesia, gastroenterology, etc. The images may
be used on a daily basis to transform imaging, diagnostic capabilites and
therapy in all hospitals and clinics worldwide. The images and animations
are transformative for training in all specialties. The images may be used
for home health systems to help patients monitor their weight, body mass,
body fat content, body water content, body muscle content, which can be
connected to an electronic medical record. The system would allow users

to visualize and save images of their body images over time.

[00144] Personalized animated simulation for any interventional procedures,

as provided in Embodiment 2, may be implemented to assist surgeons and
interventionalists of all specialties in practice for a given procedure, and
also help guide the interventionalist in real time through the procedure
using artificial intelligence, like a GPS, and to track milestones of any
procedure, as well as tracking the progress of the milestones for the
procedure in real time in the medical records. This would allow
standardization of procedures on a global scale and improve outcomes and
quality of care and improve documentation of all procedures worldwide.
This would also avoid the need for costly and inaccurate dictations and

improve documentation of healthcare.

[00145] The systems and methods of the present description may also be

implemented for education for patients, students, medical students, trainees

and practicing physicians (CME).

[00146] In one embodiment, personalized imaging using whole body

scanning may be performed sequentially over time, and may be coupled

with artificial intelligence.

[00147] In another embodiment, the system may comprise a home animation

imaging system to determine weight loss, weight gain, general health at
home, fat content, muscle mass, water content, connected to an EMR using
artificial intelligence to guide the patients through the process. The home
animation imaging system would help patients recover from any procedure
and also help guide the patient in real time through the recovery process

using artificial intelligence to track milestones of the recovery, as well as

-32-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

tracking the progress of the milestones for the recovery in real time in the
medical records. This would lead to standardization of recovery from
procedures on a global scale and improve outcomes, quality of care and
quality of life. This would also avoid the need for costly readmissions and

improve documentation of home healthcare.

[00148] The technology of the present description may be implemented to

evaluate employees worldwide, including the evaluation of athletes. The
technology may be used to evaluate both anatomy and physiology (form

and function).

[00149] Another implementation of technology is 3D printing to create

models of the patients’ organs, patients head and torso, and diseases.

[00150] The technology may comprise a system configured for personal

grooming, including facial make-up, other cosmetic applications, dress, etc.,
in 3D for any number of special events, such as evening socials, proms,

weddings, bar mitzvahs, etc.

[00151] Face and body recognition technology may be implemented, with

populating the site with internal organs. Medical knowledge may be used to
navigate the animated imaging and videos, and be used for movies,
television, music videos and internet as well for research purposes in

laboratories, clinics, hospitals and medical schools.

[00152] SIMaging systems and methods may be used for military, paramedic

and hospital emergency room rescues. The system may be incorporated
into a portable unit, like an ultrasound configured to take images/photos of
the internal organs of an injured soldier or civilian and relay that information
back to a MASH unit for guidance based upon the image/photo of the

internal injury.

[00153] In the hospital, the CT scans and ultrasounds are greatly enhanced

using the system of the present description, showing images of the internal
organs, thus more clearly defining the injuries of the patient. Artificial
intelligence, in the form of a virtual paramedic, may be configured into the
system to guide the military medic, paramedic, emergency physician and/or

trauma surgeon in the care of the injured soldier or civilian. The actual care

-33-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

can be applied by a robot, which is guided by the virtual paramedic or
virtual surgeon. The simulations would also be used for education for all

health care providers, guided by the virtual paramedic or virtual surgeon.

[00154] Mobile CT, MRI and ultrasound mobile units may be configured to

make house calls to patients for imaging and care conveyed back to the
electronic medical record of the health system. The actual images and care
can be applied by a robot, which is guided by the virtual nurse, virtual
paramedic or virtual surgeon and documented in real time. The robot could
be a personal avatar that assists with all applications of SIMaging to help

with health maintenance for each person.

[00155] SIMaging software in accordance with the present description may

be used in home portable units, such as ultrasounds, that are safe and
easy to use to generate photorealistic images of the internal organs. The
actual images can be taken by a robot avatar, which is guided by artificial
intelligence in the form of the virtual paramedic or virtual nurse. Therefore,
SIMaging software could be part of robotic avatars that are used at home

as virtual trainers, valets, lady’s maids, paramedics or virtual nurses.

[00156] SIMaging software in accordance with the present description may

be configured for automatic photographic enhancement, in which the
SIMaging software is implemented in a camera to enhance the quality of
photograph produced, such as that seen with common manual
enhancement of images via "airbrushing" or the like. The photographs can
be taken by the person or a robotic avatar, and are guided by the virtual

photographic SIMaging software.

[00157] SIMaging software configured for personal grooming software may

include tutorials on diets, weight loss, weight gain, exercise programs,
attire, facial make-up, other cosmetic applications, etc., in 3D high
definition. This may include artificial intelligence, in the form of a virtual
valet or lady’s maid or personal avatar, to help the viewer with tutorials on
the basic principles of how to eat, exercise, to dress and how to apply
make-up to optimize one’s health and image. The SIMaging personal

grooming software may incorporate how the world’s experts in diet,

-34-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

exercise, fashion design and make-up apply their craft for any given event
world wide to advise the viewer on how to prepare, dress and apply their
make-up for any number of special events, such as vacations, evening
socials, red carpet events, balls, proms, weddings, bar mitzvahs, funerals,
on a world wide basis. The make-up can be applied by a robotic avatar,
which is guided by SIMaging software. The software will include how the
stars of all entertainment fields dress and apply for make-up for any given

social event on a global basis.

[00158] An interested viewer may use SIMaging personal grooming software

to learn how to dress and apply make-up on their own high definition
images using artificial intelligence, as a virtual valet or virtual lady’s maid or
personal avatar, to take them through the basics of make-up application.
The viewer will get to see how they look with different styles of clothing. The
viewer will get to see how they appear with each different application of eye
liner, powder, facial liners, rouge, lipstick, eyebrow enhancement or
trimming, wigs, false eyelashes, skin color, tanning, etc. The make-up can

be applied by a robotic avatar, which is guided by SIMaging software.

[00159] The SIMaging personal grooming software may be used for

educational and training purposes in beauty and design schools and acting
schools worldwide, guided by the virtual valet or lady’s maid or personal

avatar.

[00160] The SIMaging personal grooming software may be used by

entertainers of all types, producers, directors, dress designers worldwide to
help them prepare for any given entertainment event, such as movies,
television, stage, ballet, shows, concerts, sporting events, etc., all guided by
the virtual valet or lady’s maid or personal avatar. The software will
demonstrate their images, or images of a given performer or athlete, in 3D
high definition, in any given attire and make-up in helping to prepare for any
given entertainment event. For example, producers, directors and casting
agents will use this software to help select to most appropriate actor or
actress for a role in a propose movie or television show, as well as help the

actor or actress prepare for that movie or show. The make-up can be

-35-

5

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

applied by a robotic avatar, which is guided by the SIMaging software.

[00161] The SIMaging personal grooming software may assist in teaching

the basics of how exercise and diet will help them to gain or lose weight
and how fit they will appear with selected exercise regimens, all guided by
the virtual trainer, virtual valet or virtual lady’s maid or personal avatar,

which is guided by SIMaging software.

[00162] Once the basics are learned, the viewer may use the software and

artificial intelligence, in the form of the virtual valet or virtual lady’s maid or
personal avatar, to help prepare for any given social event on a worldwide
basis. For example, if the person attends a wedding in China, the SIMaging
software may help them prepare the appropriate style of dress and make-
up for such an event and allow how they will appear for that event. The
make-up can be applied by a robotic avatar, which is guided by SIMaging
software. The software will help them keep track of their own clothing and
what might be needed for any given event, as well as what clothes and
make-up that were chosen for any previous event. The SIMaging software
and artificial intelligence, in the form of the virtual valet or virtual lady’s maid
or personal avatar, will give advice as to what the world fashion designers
and make-up artists would choose for any given event and how the stars
might appear for that event or for any previous event. The clothing can be
retrieved from the closet by a robot, which is guided by the virtual valet or

virtual lady’s maid or personal avatar.

[00163] The SIMaging personal grooming software may be configured to

demonstrate in 3D high definition how the viewer will appear if they chose
an exercise routine and diet for any given event, all guided by the virtual
trainer, virtual valet or lady’s maid or personal avatar. For example, if the
person were planning a beach vacation, the SIMaging software will show
the viewer in high definition how their body will look if they were to lose five
or ten pounds on a given diet as well as an exercise routine. Routines and
diets of leading experts and trainers, as well as predicted results, will be

part of the software.

[00164] The SIMaging personal grooming software may be used by

-36-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

healthcare providers of all specialties for educational purposes to show
patients how they would appear after any body altering therapy, such as
plastic surgery, morbid obesity surgery, any operation on the outer body, as
well as after chemotherapy, steroids, all guided by the virtual professor,
virtual doctor, virtual valet, virtual lady’s maid or personal avatar. The
software may be used to educate patients on how they and their internal
organs will appear with harmful behavioral habits, such as smoking and
other illicit drug use, as well as over eating or under eating. The software
can also be used to educate patients on how they and their internal organs
will deteriorate due to the process of any given disease and how therapies

might alter the deterioration of appearance.

[00165] The SIMaging personal grooming software may be used by the

individual and/or healthcare providers of all specialties for educational
purposes to show the viewer how they and their internal body composition
will age over time, all guided by the virtual doctor, virtual valet, virtual lady’s

maid or personal avatar.

[00166] The SIMaging personal grooming software may be used by

governments, national security agencies, military agencies, and police
forces of all specialties for educational purposes to demonstrate how their
personnel will appear after training, make-up, dress, or any body altering
procedures for the purposes of national security, all guided by artificial
intelligence in the form of the virtual tutor, virtual valet, lady’s maid or
personal avatar. The make-up can be applied by a robot avatar, which is

guided by the SIMaging software.

[00167] Conversely, the SIMaging personal grooming software may be used

by governments, national security agencies, military agencies and police
forces of all specialties for identification purposes to demonstrate how any
criminal might appear after make-up, dress, or any body altering
procedures for the purposes of national security, all guided by artificial
intelligence in the form of the virtual agent, virtual tutor, virtual professor,

virtual valet, lady’s maid or personal avatar.

[00168] The SIMaging software may be configured in the form of computer

-37-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

games that assist in learning/practicing medical and surgical interventions,
to practice interventions/operations in real time on actual patient images.

[00169] The SIMaging software may be configured in the form of home
health systems connected to electronic medical records.

[00170] The SIMaging software may be configured for real time simulations
that could be used for practice of any intervention/operation, as well as
realtime use during the procedure, for interventionalists of all specialties,
including all surgical specialties, gastroenterology, radiology, pulmonary,
anesthesia, pain medicine, cardiology, etc.

[00171] The SIMaging software may be coupled with artificial intelligence to
guide the surgeon/interventionalist through procedures, like a GPS system,
in real time, while documenting each step of the procedure according to
standard operating protocols, thus standardizing and documenting
procedures and entering the information into databases.

[00172] The systems and methods of the present description improve quality
of care, improve documentation and lower costs of complications,
readmissions and documentation.

[00173] The SIMaging software may be configured as home health systems
that would help patients monitor their weight, body mass, body fat content,
body water content, body muscle content, which can be connected to an
electronic medical record.

[00174] The images generated by SIMaging software may be used for
entertainment purposes; examples would be (a) to produce an animated
photograph or movie of a baby in utero for parents expecting their
developing baby; (b) to develop medical video games using simulations and
for movies.

[00175] The SIMaging software may be configured as a home animation
imaging system to determine weight loss, weight gain, general health at
home, fat content, muscle mass, water content, connected to an EMR using
artificial intelligence to guide the patients through the process.

[00176] The SIMaging software may be configured as a home animation

imaging system to help patients recover from any procedure and also help

-38-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

guide the patient in real time through the recovery process using artificial
intelligence to track milestones of the recovery, as well as tracking the
progress of the milestones for the recovery in real time in the medical
records.

[00177] The SIMaging software may be configured as gaming systems that
involve the human body, repair of the human body, and portraying any
injury of the human body such as gunshots, stabbings, car crashes, and
other trauma that are currently used in gaming systems.

[00178] The SIMaging software may be configured to create realistic
simulations of trauma to the body and provide the ability to repair the
trauma.

[00179] The SIMaging software may be configured to use of artificial
intelligence in the form of personal avatars, virtual doctors, virtual surgeons,
virtual professors, virtual paramedic, virtual valet, virtual lady’s maid, etc to
guide the viewer through the simulation, and the use of robots, which will
actually implement the numerous applications. For example, personalized
robotic avatars will actually perform the home healthcare, operations,
procedures, trauma rescues in the field, make-up application, clothing,
photography, etc. for all SIMaging applications, guided by the artificial
intelligence built into the software. The robots can also be guided by the
doctors or paramedics in real time. Each person could have their own
personal avatar, either virtual or an actual robot, which helps guide them
through their own health maintenance or personal grooming using
SIMaging software.

[00180] Embodiments of the technology of this disclosure may be described
with reference to flowchart illustrations of methods and systems according
to embodiments of the technology, and/or algorithms, formulae, or other
computational depictions, which may also be implemented as computer
program products. In this regard, each block or step of a flowchart, and
combinations of blocks (and/or steps) in a flowchart, algorithm, formula, or
computational depiction can be implemented by various means, such as

hardware, firmware, and/or software including one or more computer

-39-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

program instructions embodied in computer-readable program code logic.
As will be appreciated, any such computer program instructions may be
loaded onto a computer, including without limitation a general purpose
computer or special purpose computer, or other programmable processing
apparatus to produce a machine, such that the computer program
instructions which execute on the computer or other programmable
processing apparatus create means for implementing the functions

specified in the block(s) of the flowchart(s).

[00181] Accordingly, blocks of the flowcharts, algorithms, formulae, or

computational depictions support combinations of means for performing the
specified functions, combinations of steps for performing the specified
functions, and computer program instructions, such as embodied in
computer-readable program code logic means, for performing the specified
functions. It will also be understood that each block of the flowchart
illustrations, algorithms, formulae, or computational depictions and
combinations thereof described herein, can be implemented by special
purpose hardware-based computer systems which perform the specified
functions or steps, or combinations of special purpose hardware and

computer-readable program code logic means.

[00182] Furthermore, these computer program instructions, such as

embodied in computer-readable program code logic, may also be stored in
a computer-readable memory that can direct a computer or other
programmable processing apparatus to function in a particular manner,
such that the instructions stored in the computer-readable memory produce
an article of manufacture including instruction means which implement the
function specified in the block(s) of the flowchart(s). The computer program
instructions may also be loaded onto a computer or other programmable
processing apparatus to cause a series of operational steps to be
performed on the computer or other programmable processing apparatus to
produce a computer-implemented process such that the instructions which
execute on the computer or other programmable processing apparatus

provide steps for implementing the functions specified in the block(s) of the

-40-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

flowchart(s), algorithm(s), formula(e), or computational depiction(s).

[00183] From the discussion above it will be appreciated that the technology
described herein can be embodied in various ways, including but not limited
to the following:

[00184] 1. A computer implemented method for enhanced imaging, the
method comprising: (a) transforming a non-color, non-photorealistic image
into a high definition colorized photorealistic image; (b) wherein said
method is performed by executing programming on at least one computer
processor, said programming residing on a non-transitory medium readable
by the computer processor.

[00185] 2. A computer implemented method for enhanced imaging, the
method comprising: (a) transforming a non-color, two-dimensional image
generated from a diagnostic imaging device into high definition colorized,
photorealistic image; (b) wherein said method is performed by executing
programming on at least one computer processor, said programming
residing on a non-transitory medium readable by the computer processor.

[00186] 3. The method of any preceding embodiment, further comprising
creating animated simulations based on a plurality of said photorealistic
images.

[00187] 4. The method of claim any preceding embodiment, further
comprising highlighting an area of interest in the photorealistic image using
a molecular contrast promoter.

[00188] 5. The method of any preceding embodiment, further comprising
automatically generating a diagnosis by evaluating characteristics of the
areas of interest in the photorealistic image.

[00189] 6. The method of any preceding embodiment, further comprising:
using functional genomics and molecular imaging to generate a molecular
contrast; using the molecular contrast to highlight the area of interest.

[00190] 7. The method of any preceding embodiment, further comprising,
further comprising automatically generating a diagnosis by evaluating
characteristics of the areas of interest in the photorealistic image.

[00191] 8. A computer implemented method for creating an animated

-41-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

simulation, the method comprising: (a) transforming a plurality of images of
a biological component, feature, characteristic, assembly, or structure, or a
combination thereof, into high definition colorized photorealistic images;
and (b) assembling said photorealistic images into an animated simulation;
(c) wherein said method is performed by executing programming on at least
one computer processor, said programming residing on a non-transitory

medium readable by the computer processor.

[00192] 9. An apparatus for enhanced imaging, the apparatus comprising:

(a) a computer processor; and (b) programming in a non-transitory
computer readable medium and executable on the computer processor for
transforming a non-color, non-photorealistic image into a high definition

colorized photorealistic image.

[00193] 10. An apparatus for enhanced imaging, the apparatus comprising:

(a) a computer processor; and (b) programming in a non-transitory
computer readable medium and executable on the computer processor for
transforming a non-color, two-dimensional image generated from a
diagnostic imaging device into high definition colorized, photorealistic

image.

[00194] 12. The apparatus of any preceding embodiment, wherein said

programming is configured to create animated simulations based on a

plurality of said photorealistic images.

[00195] 13. The apparatus of any preceding embodiment, wherein said

programming is configured to highlight an area of interest in the

photorealistic image using a molecular contrast promoter.

[00196] 14. The apparatus of any preceding embodiment, wherein said

programming is configured for automatically generating a diagnosis by
evaluating characteristics of the areas of interest in the photorealistic

image.

[00197] 15. The apparatus of any preceding embodiment, wherein said

programming is configured for performing steps comprising: using
functional genomics and molecular imaging to generate a molecular

contrast; and using the molecular contrast to highlight the area of interest.

-42-

5

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

[00198] 16. The apparatus of any preceding embodiment, wherein said

programming is configured for automatically generating a diagnosis by
evaluating characteristics of the areas of interest in the photorealistic

image.

[00199] 17. An apparatus for creating an animated simulation, the apparatus

comprising:(a) a computer processor; and (b) programming in a non-
transitory computer readable medium and executable on the computer
processor for: (i) transforming a plurality of images of a biological
component, feature, characteristic, assembly, or structure, or a combination
thereof, into high definition colorized photorealistic images; and (ii)

assembling said photorealistic images into an animated simulation.

[00200] 18. An enhanced image, comprising: (a) a high definition colorized

photorealistic image transformed from a non-color, non-photorealistic
image; (b) wherein image transformation is performed by executing
programming on at least one computer processor, said programming

residing on a non-transitory medium readable by the computer processor.

[00201] 19. An enhanced image, comprising: (a) a high definition colorized

photorealistic image transformed from a non-color, two-dimensional image
generated from a diagnostic imaging device; (b) wherein image
transformation is performed by executing programming on at least one
computer processor, said programming residing on a non-transitory

medium readable by the computer processor.

[00202] 20. A animated simulation, comprising: (a) an assembly of a high

definition colorized photorealistic images transformed from non-color, non-
photorealistic images; (b) wherein image transformation and assembly is
performed by executing programming on at least one computer processor,
said programming residing on a non-transitory medium readable by the

computer processor.

[00203] 21. A animated simulation, comprising: (a) an assembly of a high

definition colorized photorealistic images transformed from a non-color,
two-dimensional image generated from a diagnostic imaging device; (b)

wherein image transformation and assembly is performed by executing

-43-

WO 2017/165566 PCT/US2017/023669

programming on at least one computer processor, said programming
residing on a non-transitory medium readable by the computer processor.

[00204] 22. An apparatus for enhanced imaging, the apparatus comprising:
(a) a computer processor; and (b)a non-transitory computer-readable
memory storing instructions executable by the computer processor; (c)
wherein said instructions, when executed by the computer processor,
perform steps comprising: (i)generating a database of parametric anatomy
comprising one or more of volume data and isometric surface models of
one or more aspects of the anatomy; (ii)tagging one or more objects within
the parametric anatomy; (iii) inputting patient data comprising an imaging
scan of a target patient anatomy of a patient; (iv) configuring a base
parametric model of patient anatomy as a function of input patient data
comprising one or more physical characteristics of the patient; (v) applying
data relating to the imaging scan to the base parametric model; (vi)

searching the data relating to the imaging scan for one or more
markers within the data; (vii) aligning the parametric model to the one or
more markers of the imaging scan; and (viii) rendering the aligned
parametrical model and imaging scan for photo-realistic display of the
patient target anatomy.

[00205] 23. The apparatus of any preceding embodiment, wherein data
relating to the imaging scan comprises DICOM data from one or more of an
MRI, CT, or ultrasound scan of the patient.

[00206] 24. The apparatus of any preceding embodiment, wherein the
database is generated by acquiring input from patient data comprising one
or more of patient scans, statistics or photos relating to patient.

[00207] 25. The apparatus of any preceding embodiment, wherein the
isometric surface models are configured for photo-real real-time VR
rendering.

[00208] 26. The apparatus of any preceding embodiment, wherein the
tagged data is configured so that that can be turned on or off for viewing.

[00209] 27. The apparatus of any preceding embodiment, the instructions

further comprising: allowing manual input for selecting the one or more

-44-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

markers.

[00210] 28. The apparatus of any preceding embodiment, wherein aligning
the parametric model to the one or more markers of the imaging scan
comprises isometric surface alignment of the parametric anatomical
geometry to the patient's DICOM scan data.

[00211] 29. The apparatus of any preceding embodiment, wherein the
alignment is done taking into account input patient data relating to one or
more of weight, height, BMI, X-ray, and patient photos.

[00212] 30 The apparatus of any preceding embodiment, wherein the
alignment is performed on both volume data and isometric surfaces.

[00213] 31. The apparatus of any preceding embodiment, wherein the
alignment is adjusted by manual input via selecting one or more structures
on slices of the MRI or CT scan to fine-tune the base parametric model.

[00214] 32. The apparatus of any preceding embodiment, the instructions
further configured for: applying photographic reference of skin color to the
output parametric model.

[00215] 33. The apparatus of any preceding embodiment, the instructions
further configured for: auto-alignment and projection of one or more of the
following to the parametric model: patient wounds, surgeon markups, X-
rays, notes and other text files.

[00216] 34. A computer implemented method for enhanced imaging, the
method comprising: generating a database of parametric anatomy
comprising one or more of volume data and isometric surface models of
one or more aspects of the anatomy; tagging one or more objects within the
parametric anatomy; inputting patient data comprising an imaging scan of a
target patient anatomy of a patient; configuring a base parametric model of
patient anatomy as a function of input patient data comprising one or more
physical characteristics of the patient; applying data relating to the imaging
scan to the base parametric model; searching the data relating to the
imaging scan for one or more markers within the data; aligning the
parametric model to the one or more markers of the imaging scan; and

rendering the aligned parametrical model and imaging scan for photo-

-45-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

realistic display of the patient target anatomy.

[00217] 35. The method of any preceding embodiment, wherein data relating
to the imaging scan comprises DICOM data from one or more of an MR,
CT, or ultrasound scan of the patient.

[00218] 36. The method of any preceding embodiment, wherein the
database is generated by acquiring input from patient data comprising one
or more of patient scans, statistics or photos relating to patient.

[00219] 37. The method of any preceding embodiment, wherein the isometric
surface models are configured for photo-real real-time VR rendering.

[00220] 38. The method of any preceding embodiment, wherein the tagged
data is configured so that that can be turned on or off for viewing.

[00221] 39. The method of any preceding embodiment the method further
comprising: allowing manual input for selecting the one or more markers.

[00222] 40. The method of any preceding embodiment, wherein aligning the
parametric model to the one or more markers of the imaging scan
comprises isometric surface alignment of the parametric anatomical
geometry to the patient's DICOM scan data.

[00223] 41. The method of any preceding embodiment, wherein the
alignment is done taking into account input patient data relating to one or
more of weight, height, BMI, X-ray, and patient photos.

[00224] 42 The method of any preceding embodiment, wherein the
alignment is performed on both volume data and isometric surfaces.

[00225] 43. The method of any preceding embodiment, wherein the
alignment is adjusted by manual input via selecting one or more structures
on slices of the MRI or CT scan to fine-tune the base parametric model.

[00226] 44, The method of any preceding embodiment, the method further
comprising: applying photographic reference of skin color to the output
parametric model.

[00227] 45. The method of any preceding embodiment, the method further
comprising: auto-alignment and projection of one or more of the following
to the parametric model: patient wounds, surgeon markups, X-rays, notes

and other text files.

-46-

WO 2017/165566 PCT/US2017/023669

[00228] Although the description herein contains many details, these should

10

15

20

not be construed as limiting the scope of the disclosure but as merely
providing illustrations of some of the presently preferred embodiments.
Therefore, it will be appreciated that the scope of the disclosure fully
encompasses other embodiments which may become obvious to those
skilled in the art.

[00229] In the claims, reference to an element in the singular is not intended

to mean "one and only one" unless explicitly so stated, but rather "one or
more." All structural, chemical, and functional equivalents to the elements
of the disclosed embodiments that are known to those of ordinary skill in
the art are expressly incorporated herein by reference and are intended to
be encompassed by the present claims. Furthermore, no element,
component, or method step in the present disclosure is intended to be
dedicated to the public regardless of whether the element, component, or
method step is explicitly recited in the claims. No claim element herein is to
be construed as a "means plus function" element unless the element is
expressly recited using the phrase "means for". No claim element herein is
to be construed as a "step plus function" element unless the element is

expressly recited using the phrase "step for".

-47-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

Table 1

Firmware

i

1

/l HDX_DCMseriesReader (Maya node)

1

/l reads the DICOM images and generates the series of slices.

/I this node allows to optionally display the series of slices in the maya
/I viewport (hardware rendering)

1

i

/l Maya includes

#include <math.h>

#include <maya/MIOStream.h>
#include <maya/MFnPlugin.h>
#include <maya/MMaterial.h>
#include <maya/MSelectionList.h>
#include <maya/MSelectionMask.h>
#include <maya/MDrawData.h>
#include <maya/MMatrix.h>
#include <maya/MObjectArray.h>
#include <maya/MDagPath.h>

/I STL includes
#include <limits>

// GDCM Includes

#include <gdcmImageReader.h>
#include <gdcmlimageHelper.h>
#include <gdcmRescaler.h>
#include <gdcmAttribute.h>
#include <gdcmUnpacker12Bits.h>

/I Core includes
#include <Core/DataBlock/StdDataBlock.h>

T T T
/l HDX_DCMseriesReader
T T T

MTypeld HDX_DCMseriesReader::id(0x8000001);

-48-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

void* HDX_DCMseriesReader::creator()

{
return new HDX_DCMseriesReader();
}
MStatus HDX_DCMseriesReader::initialize()
{
return MS::kSuccess;
}
class HDX_DCMseriesReader
{

public:

virtual ~HDX_DCMseriesReader() {;}
HDX_DCMseriesReader();

public:

HDX_DCMseriesReader() :
rescale_slope (0.0),
rescale_intercept_(0.0),
buffer_length_(0),
slice_data_size (0),
pixel_type_(Core::DataType::UCHAR_E),
origin_(0.0, 0.0, 0.0),
row_direction_(1.0, 0.0, 0.0),
col_direction_(0.0, 1.0, 0.0),77
slice_direction_(0.0, 0.0, 1.0),
x_spacing_(1.0),
y_spacing_(1.0),
z_spacing_(1.0),
read_header_(false),
swap_xy_spacing_(false)

{

}

/I READ_HEADER

/[l Read the header of the dicom file and fill out its information into this
private class

bool read_header();

/ READ_DATA

/I Read the dicom data into this private class
bool read_data();

-49-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/l READ_IMAGE
bool read_image(const std::string& filename, char* buffer);

public:
/I Pointer to interface class
HDX_DCMseriesReader* reader_;

double rescale_slope_;

double rescale_intercept_;
unsigned long buffer_length_;
unsigned long slice_data_size_;

Core::GridTransform grid_transform_;
Core::DataType pixel_type_;

Core::Point origin_;
Core::Vector row_direction_;
Core::Vector col_direction_;
Core::Vector slice_direction_;

double x_spacing_;
double y_spacing_:
double z_spacing_;

/I Data block with actual data (generated by read_data)
Core::DataBlockHandle data_block_;

/I Meta data (generated by read_data)
nodeMetaData meta_data_;

/I Whether the header of the files has been parsed
bool read_header_;

/I Whether to swap xy spacing
bool swap_xy_spacing_;

public:

void draw_slice(nodeSceneltemHandle node_item, const Core::Matrix&

proj_mat,

ProxyRectangleHandle rect = ProxyRectangleHandle());
void map_slice_texture(Core::Texture2DHandle slice_tex, int width, int

double left, double right, double bottom, double top,
const Core::Matrix& proj_mat,
ProxyRectangleHandle rect);
void map_large_slice_texture(Core:: Texture2DHandle slice_tex, int width,

-50-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

int height,
double left, double right, double bottom, double top,
const Core::Matrix& proj_mat,
ProxyRectangleHandle rect);

I3

T T

bool HDX_DCMseriesReader::read_header()
{

if (this->read_header_) return true;

/I Get the filenames
std:.vector<std::string> filenames = this->reader_->get_filenames();
if (filenames.size() ==0)
{
this->reader_->print_error("no files were specified.");
return false;

}

/I Setup some compatibility rules for GDCM
gdem::ImageHelper::SetForcePixelSpacing(true);
gdem::ImageHelper::SetForceRescalelnterceptSlope(true);

/I Read the first file and extract information out of it;

gdcm::ImageReader reader;
reader.SetFileName(filenames[0].c_str());
if (Ireader.Read())

{

this->reader_->print_error(std::string("cannot read file
);
return false;

}

const gdcm::Image& image = reader.Getlmage();

const gdcm::File& file = reader.GetFile();

const gdcm::DataSet& ds = file. GetDataSet();

const unsigned int* dims = image.GetDimensions();

const gdcm::PixelFormat& pixeltype = image.GetPixelFormat();
this->buffer_length_ = image.GetBufferLength();

) + filenames[O]+ ™.

if (pixeltype.GetSamplesPerPixel() = 1)
{

this->reader_->print_error("unsupported pixel format.");
return false;

}

-51-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

unsigned int num_of_dimensions = image.GetNumberOfDimensions();
if (num_of _dimensions != 2 && num_of_dimensions !=3)
{
this->reader_->print_error("unsupported number of dimensions.");
return false;

}

this->grid_transform_.set_nx(dims[0]);
this->grid_transform_.set_ny(dims[1]);

if (num_of _dimensions == 2)
{
this->grid_transform_.set_nz(filenames.size());
}
else
{
this->grid_transform_.set_nz(dims[2]);
}

this->rescale_intercept_ = image.Getlntercept();
this->rescale_slope_ = image.GetSlope();

gdcm::Rescaler rescaler;

rescaler.SetIntercept(this->rescale_intercept_);

rescaler.SetSlope(this->rescale_slope_);

rescaler.SetPixelFormat(pixeltype);

gdem::PixelFormat::ScalarType output_pixel_type =
rescaler.ComputelnterceptSlopePixelType();

switch(output_pixel_type)
{
case gdcm::PixelFormat::INT8:
this->pixel_type_ = Core::DataType::CHAR_E;
break;
case gdcm::PixelFormat::UINTS:
this->pixel_type_ = Core::DataType::UCHAR_E;
break;
case gdcm::PixelFormat::INT12:
this->pixel_type_ = Core::DataType::SHORT_E;
break:
case gdcm::PixelFormat::UINT12:
this->pixel_type_ = Core::DataType::USHORT_E;
break;
case gdcm::PixelFormat::INT16:
this->pixel_type_ = Core::DataType::SHORT_E;
break:

-52-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

case gdcm::PixelFormat::UINT16:
this->pixel_type_ = Core::DataType::USHORT_E;
break;

case gdcm::PixelFormat::INT32:
this->pixel_type_ = Core::DataType:: INT_E;
break:

case gdcm::PixelFormat::UINT32:
this->pixel_type_ = Core::DataType::UINT_E;
break:

case gdcm::PixelFormat::FLOAT32:
this->pixel_type_ = Core::DataType::FLOAT_E;
break:

case gdcm::PixelFormat::FLOAT64:
this->pixel_type_ = Core::DataType::DOUBLE_E;
break:

default:
this->reader_->print_error("encountered an unknown data type.");
return false;

}
double epsilon = std::numeric_limits<double>::epsilon() * 10.0;

this->slice_data_size_ = GetSizeDataType(this->pixel_type_) * dims[O] * dims]|

17

/I Compute the grid transform

const double* spacing = image.GetSpacing();

const double* origin = image.GetOrigin();

const double* dircos = image.GetDirectionCosines();

this->row_direction_ = Core::Vector(dircos[O], dircos[1], dircos[2]);
this->col_direction_ = Core::Vector(dircos[3], dircos[4], dircos[5]);
this->slice_direction_ = Core::Cross(this->row_direction_, this->col_direction_);
this->slice_direction_.normalize();

this->row_direction_.normalize();

this->col_direction_.normalize();

this->origin_[0] =origin[0];
this->origin_[1] =origin[1];
this->origin_[2] = origin[2];

this->x_spacing_ = spacing[O];
this->y_spacing_ = spacing[1];

gdcm::Tag slice_thickness_tag(0x0018,0x0050);

gdcm::Tag slice_distance_tag(0x0018,0x0088);
gdcm::Tag patient_position_tag(0x0020, 0x0032);

-53-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

bool found_thickness = false;

if(ds.FindDataElement(slice_thickness_tag)) // Slice Thickness
{
const gdecm::DataElement& de = ds.GetDataElement(slice_thickness_tag);
if (!de.IsEmpty())
{
gdcm::Attribute< 0x0018, 0x0050 > slice_thickness;
slice_thickness.SetFromDataElement(de);
double thickness = slice_thickness.GetValue();
if (thickness > epsilon)
{
this->z_spacing_ = thickness;
found_thickness = true;

}

else

{

this->reader_->print_warning("encountered an incorrect value in the
slice thickness tag.");

}
}
}
else if(ds.FindDataElement(slice_distance_tag))
{

const gdcm::DataElement& de = ds.GetDataElement(slice_distance_tag);
if (!de.IsEmpty())

gdcm::Attribute< 0x0018, 0x0088 > slice_thickness;
slice_thickness.SetFromDataElement(de);

double thickness = slice_thickness.GetValue();

if (thickness > epsilon)

{
this->z_spacing_ = thickness;
found_thickness = true;

}

else

{

this->reader_->print_warning("encountered an incorrect value in the
slice distance tag.");

}
}
}

if (filenames.size() > 1 && ds.FindDataElement(patient_position_tag))

{

gdcm::ImageReader reader2;

-54-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

reader2.SetFileName(filenames[1].c_str());

if (lreader2.Read())

{
this->reader_->print_error("can't read file " + filenames[1]);
return false;

}

const gdcm::Image &image2 = reader2.Getlmage();

const double* origin2 = image2.GetOrigin();

Core::Vector origin_vec(origin[0], origin[1], origin[2]);
Core::Vector origin_vec2(origin2[0], origin2[1], origin2[2]);
Core::Vector dir = origin_vec2 - origin_vec;

double spacing = dir.length();

if (found_thickness && Core::Abs(this->z_spacing_ - spacing) > epsilon)
{
this->reader_->print_warning("slice spacing in DICOM header is
inconsistent, using the patient slice location to derive the z spacing.");

}

if (spacing < -epsilon || spacing > epsilon)
{
this->z_spacing_ = spacing;
this->slice_direction_ = dir;
this->slice_direction_.normalize();

}

else

{
this->reader_->print_warning("slice spacing in DICOM header is too close
to zero, reseting itto 1.0.");
this->z_spacing_ = 1.0;

}
}
else if (found_thickness == false)
{

this->reader_->print_warning("no slice spacing is assigned in the DICOM
header.");

this->z_spacing_=1.0;

}

this->grid_transform__.load_basis(this->origin_, this->row_direction_ * this-
>X_spacing_,
this->col_direction_ * this->y_spacing_,
this->slice_direction_ * this->z_spacing_);
this->grid_transform__.set_originally_node_centered(false);

-55-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

this->read_header_ = true;

return true;

}
T T

bool HDX_DCMseriesReader::read_data()

{
if (this->swap_xy_spacing_)
{
std::swap(this->x_spacing_, this->y_spacing_);
}
this->grid_transform__.load_basis(this->origin_, this->row_direction_ * this-
>X_spacing_,

this->col_direction_ * this->y_spacing_,
this->slice_direction_ * this->z_spacing_);

this->grid_transform__.set_originally_node_centered(false);

this->data_block_ = Core::StdDataBlock::New(this->grid_transform_, this-
>pixel_type_);

char® data = reinterpret_cast< char* >(this->data_block_->get_data());
std:.vector<std::string> filenames = this->reader_->get_filenames();

for (size_ti=0; i< filenames.size(); i++)
{
if ('this->read_image(filenames| i], data + this->slice_data_size_ *1i))
{
this->data_block_.reset();
return false;

}
}

if (filenames.size())

InputFilesID inputfile_id = this->reader_->get_inputfiles_id();

this->meta_data_.meta_data_ = Core::ExportToString(filenames) +"|" +
Core::ExportToString(inputfile_id);

this->meta_data_.meta_data_info_ = "dicom_filename";

}

return true;

}

-56-

10

15

20

25

30

35

40

45

WO 2017/165566

T T

PCT/US2017/023669

bool HDX_DCMseriesReader::read_image(const std::string& filename, char*®
buffer)

{

gdcm::ImageReader reader;
reader.SetFileName(filename.c_str());

if ('reader.Read())

{

}

gdem::Image& image = reader.Getimage();

this->reader_->print_error("failed to read file

return false;

+ filename + """);

if (this->buffer_length_ '= image.GetBufferLength())

{

}

this->reader_->print_error("images in the series have different sizes");

return false;

image. GetBuffer(buffer);
const gdcm::PixelFormat& pixeltype = image.GetPixelFormat();

if (pixeltype == gdcm::PixelFormat::UINT12)

{

}

if (this->rescale_slope_ != 1.0 || this->rescale_intercept_!=0.0)

{

this->reader_->print_error("unsupported data format");

return false;

}

std::vector< char > copy(this->buffer_length_);
memcpy(©[0], buffer, this->buffer_length_):
if ('gdem::Unpacker12Bits::Unpack(buffer, ©][O], this->buffer_length_))

{

this->reader_->print_error("failed to unpack 12bit data");

return false;

}

if (this->rescale_slope_ != 1.0 || this->rescale_intercept_ !=0.0)

{

gdcm::Rescaler rescaler;

rescaler.SetIntercept(this->rescale_intercept_);

rescaler.SetSlope(this->rescale_slope_);

rescaler.SetPixelFormat(pixeltype);

-57-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

std::vector< char > copy(this->buffer_length_);
memcpy(©[0], buffer, this->buffer_length_):
rescaler.Rescale(buffer, ©[O], this->buffer_length_);

}

return true;

}
T T

void HDX_DCMseriesReader::set_dicom_swap_xyspacing_hint(bool
swap_xy_spacing)
{

this->private_->swap_xy_spacing_ = swap_xy_spacing;

}
T T

bool HDX_DCMseriesReader::get_file_info(nodereaderFilelInfoHandle& info)
{
try

{
// Read the header of the file

if (! this->private_->read_header()) return false;

/I Create an information structure with the properties of this file
info = nodereaderFilelnfoHandle(new nodereaderFilelnfo);
info->set_grid_transform(this->private_->grid_transform_);
info->set_data_type(this->private_->pixel_type),
info->set_file_type("dicom");
info->set_mask_compatible(false);

}

catch (...)

{
this->print_error("reader crashed when reading file.");
return false;

}

return true;

}
T T

bool HDX_DCMseriesReader::get_file_data(nodereaderFileDataHandle& data)

{
try
{

-58-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I Read the data from the file
if ('this->private_->read_data()) return false;

// Create a data structure with handles to the actual data in this file
data = nodereaderFileDataHandle(new nodereaderFileData);
data->set_data_block(this->private_->data_block_);
data->set_grid_transform(this->private_->grid_transform_):
data->set_meta_data(this->private_->meta_data_);
data->set_name(this->get_file_tag());

}

catch (...)

{
this->print_error("reader crashed when reading file.");
return false;

}

return true;

}
T T

void HDX_DCMseriesReader::draw_slice(nodeSceneltemHandle node_item,
const Core::Matrix& proj_mat,
ProxyRectangleHandle rect)

this->slice_shader_->set_volume_type(node_item->type());
this->slice_shader_->set_opacity(static_cast< float >(node_item->opacity_));
Core::VolumeSlice* volume_slice = node_item->volume_slice_.get();
switch (node_item->type())
{
case Core::VolumeType::DATA_E:
{
DatanodeSceneltem* data_node_item =
dynamic_cast<DatanodeSceneltem*>(node_item.get());
this->set_scale_bias(data_node_item->data_min_, data_node_item-
>data_max_,
data_node_item->display_min_, data_node_item->display_max_);
this->slice_shader_->set_texture_clamp(0.0f, 1.0f, 0.0f, 1.0f);
this->map_slice_texture(volume_slice->get_texture(),
static_cast<int>(volume_slice->nx()), static_cast<int>(volume_slice->ny()),
volume_slice->left(), volume_slice->right(),
volume_slice->bottom(), volume_slice->top(), proj_mat, rect);
}
break:
case Core::VolumeType::MASK_E:
{

MasknodeSceneltem* mask_node_item =

-59-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

dynamic_cast< MasknodeSceneltem* >(node_item.get());
if (rect)
{
this->slice_shader_->set_mask_mode(2);
}
else
{
/I If mask fill mode is none, force the border width to be at least 1
if (mask_node_item->fil_ == 0 && mask_node_item->border_==0)
{
mask_node_item->border_ =1;

}

this->slice_shader_->set_mask_mode(mask_node_item->fill_);
this->slice_shader_->set_border_width(mask_node_item->border_);
¥
Core::Color color = PreferencesManager:: Instance()->get_color(
mask_node_item->color_);
this->slice_shader_->set_mask_color(static_cast< float >(color.r() / 255),
static_cast< float >(color.g() / 255), static_cast< float >(color.b() / 255));
this->slice_shader_->set_texture_clamp(0.0f, 1.0f, 0.0f, 1.0f);
this->map_slice_texture(volume_slice->get_texture(),
static_cast<int>(volume_slice->nx()), static_cast<int>(volume_slice->ny()),
volume_slice->left(), volume_slice->right(),
volume_slice->bottom(), volume_slice->top(), proj_mat, rect);
}
break;
case Core::VolumeType::LARGE_DATA_E:
{
LargeVolumenodeSceneltem™* data_node_item =
dynamic_cast< LargeVolumenodeSceneltem* >(node_item.get());
this->set_scale_bias(data_node_item->data_min_, data_node_item-
>data_max_,
data_node_item->display_min_, data_node_item->display_max_);
const std::vector<Core::LargeVolumeBrickSliceHandle>& tiles =
data_node_item->tiles_;
double left, right, bottom, top;
int width, height;
Core:: Texture2DHandle texture;
for (size_ti=0; i < tiles.size(); ++i)
{
Core::LargeVolumeBrickSliceHandle tile = tiles[i];
Core::BBox inner = tile->get_inner_brick_bbox();
Core::BBox outer = tile->get_outer_brick_bbox();

volume_slice->project_onto_slice(outer.min(), left, bottom);
volume_slice->project_onto_slice(outer.max(), right, top);

-60-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

double ileft, iright, ibottom, itop;
volume_slice->project_onto_slice(inner.min(), ileft, ibottom);
volume_slice->project_onto_slice(inner.max(), iright, itop);

texture = tile->get_texture(volume_slice->get_slice_type(),
volume_slice->depth(), width, height, Core::ExportToString(this-
>viewer_id_));
if (texture)
{
this->slice_shader_->set_texture_clamp(
Core::Max(0.0f, static_cast<float>((ileft - left) / (right - left))),
Core::Min(1.0f, static_cast<float>((iright - left) / (right - left))),
Core::Max(0.0f, static_cast<float>((ibottom - bottom) / (top - bottom))),
Core::Min(1.0f, static_cast<float>((itop - bottom) / (top - bottom))));

this->map_large_slice_texture(texture, width, height, left, right, bottom, top,
proj_mat, rect),
}
}
}

break:

default:
assert(false);
return;

} /1l end switch

}
T T

void HDX_DCMseriesReader::map_large_slice_texture(Core:: Texture2DHandle
slice_tex, int width, int height,

double left, double right, double bottom, double top,

const Core::Matrix& proj_mat, ProxyRectangleHandle rect)
{

double slice_width = right - left;

double slice_height = top - bottom;

if (slice_width == 0.0 || slice_height == 0.0)

{

return;

}

Core:: Texture::lock_type slice_tex_lock(slice_tex->get_mutex());
slice_tex->bind();

double texel_width = slice_width / width;
double texel_height = slice_height / height;

-61-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

if (rect)

{
double tex_left = (rect->left - left) / slice_width;
double tex_right = (rect->right - right) / slice_width + 1.0;
double tex_bottom = (rect->bottom - bottom) / slice_height;
double tex_top = (rect->top - top) / slice_height + 1.0;
glBegin(GL_QUADS),
glNormal3dv(&rect->normal[0]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_left, tex_bottom);
glVertex3dv(&rect->bottomleft[0]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_right, tex_bottom);
glVertex3dv(&rect->bottomright[O]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_right, tex_top);
glVertex3dv(&rect->topright[0]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_left, tex_top);
glVertex3dv(&rect->topleft[0]);
glEnd();

}

else

/ Compute the size of the slice on screen

Core::Vector slice_x(slice_width, 0.0, 0.0);

slice_x = proj_mat * slice_x;

double slice_screen_width = Core::Abs(slice_x.x()) / 2.0 * this->renderer_-
>width_;

double slice_screen_height = slice_height / slice_width * slice_screen_width;

float pattern_repeats_x = static_cast< float >(slice_screen_width /
PATTERN_SIZE_C);

float pattern_repeats_y = static_cast< float >(slice_screen_height /
PATTERN_SIZE_C);

this->slice_shader_->set_pixel_size(static_cast< float >(1.0 /
slice_screen_width),

static_cast< float >(1.0 / slice_screen_height));

glBegin(GL_QUADS),

glMultiTexCoord2f(GL_TEXTUREDO, 0.0f, 0.0f);

glMultiTexCoord2f(GL_TEXTURE1, 0.0f, 0.0f);

glVertex2d(left, bottom);

glMultiTexCoord2f(GL_TEXTUREDO, 1.0f, 0.0f);

glMultiTexCoord2f(GL_TEXTURE1, pattern_repeats_x, 0.0f);

glVertex2d(right, bottom);

gMultiTexCoord2f(GL_TEXTUREDO, 1.0f, 1.0f);

glMultiTexCoord2f(GL_TEXTURE1, pattern_repeats_x, pattern_repeats_y);

glVertex2d(right, top);

glMultiTexCoord2f(GL_TEXTUREDO, 0.0f, 1.0f);

glMultiTexCoord2f(GL_TEXTURE1, 0.0f, pattern_repeats_y);

glVertex2d(left, top);

-62-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

}

glEnd();
}

slice_tex->unbind();

T T

void HDX_DCMseriesReader::map_slice_texture(Core:: Texture2DHandle
slice_tex, int width, int height,

{

double left, double right, double bottom, double top,
const Core::Matrix& proj_mat, ProxyRectangleHandle rect)

double slice_width = right - left;

double slice_height = top - bottom;

if (slice_width == 0.0 || slice_height == 0.0)
{

return;

}

Core:: Texture::lock_type slice_tex_lock(slice_tex->get_mutex());
slice_tex->bind();

double texel_width = slice_width / (width - 1);
double texel_height = slice_height / (height - 1);

left = left - 0.5 * texel_width;

right = right + 0.5 * texel_width;
bottom = bottom - 0.5 * texel_height;
top = top + 0.5 * texel_height;
slice_width += texel_width;
slice_height += texel_height;

if (rect)

{
double tex_left = (rect->left - left) / slice_width;
double tex_right = (rect->right - right) / slice_width + 1.0;
double tex_bottom = (rect->bottom - bottom) / slice_height;
double tex_top = (rect->top - top) / slice_height + 1.0;
glBegin(GL_QUADS);
glNormal3dv(&rect->normal[0]);
glMultiTexCoord2d(GL_TEXTURED, tex_left, tex_bottom);
glVertex3dv(&rect->bottomleft[0]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_right, tex_bottom);
glVertex3dv(&rect->bottomright[O]);
glMultiTexCoord2d(GL_TEXTUREDO, tex_right, tex_top);
glVertex3dv(&rect->topright[0]);

-63-

10

15

20

25

30

35

40

45

WO 2017/165566

glMultiTexCoord2d(GL_TEXTUREDO, tex_left, tex_top);

glVertex3dv(&rect->topleft[0]);
glEnd();

else

{

/ Compute the size of the slice on screen
Core::Vector slice_x(slice_width, 0.0, 0.0);

slice_x = proj_mat * slice_x;

PCT/US2017/023669

double slice_screen_width = Core::Abs(slice_x.x()) / 2.0 * this->renderer_-

>width_;

double slice_screen_height = slice_height / slice_width * slice_screen_width;
float pattern_repeats_x = static_cast< float >(slice_screen_width /

PATTERN_SIZE_C);

float pattern_repeats_y = static_cast< float >(slice_screen_height /

PATTERN_SIZE_C);

this->slice_shader_->set_pixel_size(static_cast< float >(1.0 /

slice_screen_width),

static_cast< float >(1.0 / slice_screen_height));

glBegin(GL_QUADS),

gIMultiTexCoord2f(GL_TEXTUREO, 0.0f, 0.0f);
gIMultiTexCoord2f(GL_TEXTURE, 0.0f, 0.0f);

glVertex2d(left, bottom);

glMultiTexCoord2f(GL_TEXTUREDO, 1.0f, 0.0f);
glMultiTexCoord2f(GL_TEXTURE1, pattern_repeats_x, 0.0f);

glVertex2d(right, bottom);

gIMultiTexCoord2f(GL_TEXTUREO, 1.0f, 1.0f);

glMultiTexCoord2f(GL_TEXTURE1, pattern_repeats_x, pattern_repeats_y);

glVertex2d(right, top);

glMultiTexCoord2f(GL_TEXTUREDO, 0.0f, 1.0f);
glMultiTexCoord2f(GL_TEXTURE1, 0.0f, pattern_repeats_y);

glVertex2d(left, top);
glEnd();

}

slice_tex->unbind();

}

T T

1
/I Node registry
1

/I Registers/Deregisters HDX_DCMseriesReader node

1

T T

MStatus initializePlugin(MObject obj)

-64-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");
MStatus stat = plugin.registerShape("HDX_DCMseriesReader",
HDX_DCMseriesReader::id,

&HDX_DCMseriesReader::creator,
&HDX_DCMseriesReader::initialize,

&HDX_DCMseriesReader::creator);
if (!stat){
cerr << "Failed to register node\n";
}

return stat;

}

MStatus uninitializePlugin(MObject obj)
{

MFEnPlugin plugin(obj);

MStatus stat;

stat = plugin.deregisterNode(HDX_DCMseriesReader::id);
if (!stat){

cerr << "Failed to deregister node : HDX_DCMseriesReader \n";
}

return stat;

i

1

/Il HDX_sliceSeriesToVolume (Maya node)

1

/I converts the series of sclices to a volume.

/I this node allows to optionally display the generated volume in the maya
/I viewport (hardware rendering)

1

i

/l Maya includes
#include <math.h>
#include <maya/MIOStream.h>

-65-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

#include <maya/MFnPlugin.h>
#include <maya/MMaterial.h>
#include <maya/MSelectionList.h>
#include <maya/MSelectionMask.h>
#include <maya/MDrawData.h>
#include <maya/MMatrix.h>
#include <maya/MObjectArray.h>
#include <maya/MDagPath.h>

/I Core includes

#include <Core/Math/MathFunctions.h>

#include <Core/VolumeRenderer/VolumeRendererBase.h>
#include <Core/Geometry/Algorithm.h>

#include <Core/DataBlock/StdDataBlock.h>

i

/I HDX_sliceSeriesToVolume
i
MTypeld HDX_sliceSeriesToVolume::id(0x8000002);

void* HDX _sliceSeriesToVolume::creator()

{

return new HDX_sliceSeriesToVolume();
}
MStatus HDX_sliceSeriesToVolume::initialize()
{

return MS::kSuccess;
}
class HDX_sliceSeriesToVolume
{

public:

VolumeShaderSimpleHandle volume_shader_;

I3

HDX_sliceSeriesToVolume::HDX_sliceSeriesToVolume() :
private_(new HDX_sliceSeriesToVolume)

{
}

HDX_sliceSeriesToVolume::~HDX_sliceSeriesToVolume()

{
}

-66-

5

10

15

20

25

30

35

40

45

WO 2017/165566

T T

void HDX_sliceSeriesToVolume:.draw_volume(DataVolumeHandle volume, const

VolumeRenderingParam& param)

{

std::vector< BrickEntry > brick_queue;
this->process_volume(volume, param.sampling_rate_, param.view_,
param.orthographic_, false, brick_queue);

size_t num_bricks = brick_queue.size();
if (num_bricks ==0)
{

return;

}

Vector voxel_size = this->get_voxel_size();

glPushAttrib(GL_DEPTH_BUFFER_BIT | GL_POLYGON_BIT);
glEnable(GL_DEPTH_TEST);

glDepthMask(GL_FALSE);

glDisable(GL_CULL_FACE),

unsigned int old_tex_unit = Texture::GetActiveTextureUnit();

TextureHandle diffuse_lut = param.transfer_function_->get_diffuse_Ilut();
TextureHandle specular_lut = param.transfer_function_->get_specular_lut();
Texture::lock_type diffuse_lock(diffuse_lut->get_mutex());
Texture::lock_type specular_lock(specular_lut->get_mutex());
Texture::SetActiveTextureUnit(1);

diffuse_lut->bind();

Texture::SetActiveTextureUnit(2);

specular_lut->bind();

Texture::SetActiveTextureUnit(0);

this->private_->volume_shader_->enable();
this->private_->volume_shader_->set_voxel_size(

static_cast< float >(voxel_size[0]),

static_cast< float >(voxel_size[1]),

static_cast< float >(voxel_size[21]));
this->private_->volume_shader_->set_lighting(param.enable_lighting_);
this->private_->volume_shader_->set_fog(param.enable_fog_);
this->private_->volume_shader_->set_slice_distance(static_cast< float >(

this->get_normalized_sample_distance()));
this->private_->volume_shader_->set_fog_range(static_cast< float >(

param.znear_),

static_cast< float >(param.zfar_));
this->private_->volume_shader_->set_clip_plane(param.clip_plane_);
this->private_->volume_shader_->set_enable_clip_plane(

param.enable_clip_plane_);

-67-

PCT/US2017/023669

5

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

this->private_->volume_shader_->set_enable_clipping(param.enable_clipping_

);

glEnableClientState(GL_VERTEX_ARRAY);
for (size_ti=0; 1< num_bricks; ++i)
{
std::vector< PointF > polygon_vertices;
std::vector< int > first_vec, count_vec;
DataVolumeBrickHandle brick = brick_queue][i].brick_;
this->slice_brick(brick, polygon_vertices, first_vec, count_vec);

BBox texture_bbox = brick->get_texture_bbox();

Texture3DHandle brick_texture = brick->get_texture();

VectorF texel_size(brick->get_texel_size());

VectorF texture_size(texture_bbox.diagonal());

this->private_->volume_shader_->set_texture_bbox_min(static_cast< float >(
texture_bbox.min().x()),

static_cast< float >(texture_bbox.min().y()), static_cast< float >(

texture_bbox.min().z()));

this->private_->volume_shader_->set_texture_bbox_size(texture_size[0],
texture_size[1], texture_size[2]);

this->private_->volume_shader_->set_texel_size(texel_size[0], texel_size[1],
texel_size[2]);

Texture::lock_type tex_lock(brick_texture->get_mutex());
brick_texture->bind();

glVertexPointer(3, GL_FLOAT, 0, &polygon_vertices[0][01]);
gMultiDrawArrays(GL_POLYGON, &first_vec[0], &count_vec[0],
static_cast< GLsizei >(count_vec.size()));

brick_texture->unbind();
}
glDisableClientState(GL_VERTEX_ARRAY);
this->private_->volume_shader_->disable();
Texture::SetActiveTextureUnit(1);
diffuse_lut->unbind();
Texture::SetActiveTextureUnit(2);
specular_lut->unbind();

Texture::SetActiveTextureUnit(old_tex_unit);
glPopAttrib();

T T

-68-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

1

/I Node registry

1

/I Registers/Deregisters HDX_sliceSeriesToVolume node
1

i

MStatus initializePlugin(MObject obj)

MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");
MStatus stat = plugin.registerShape("HDX_sliceSeriesToVolume",
HDX_sliceSeriesToVolume::id,

&HDX_sliceSeriesToVolume::creator,
&HDX _sliceSeriesToVolume::initialize,

&HDX_sliceSeriesToVolume::creator);
if (!stat){
cerr << "Failed to register node\n";
}

return stat;

}

MStatus uninitializePlugin(MObject obj)

{
MFnPlugin plugin(obj);
MStatus stat:

stat = plugin.deregisterNode(HDX_sliceSeriesToVolume::id);
if (!stat){

cerr << "Failed to deregister node : HDX_sliceSeriesToVolume \n";
}

return stat;

i

1

/I HDX_volumekFilteringClipping (Maya node)

1

/I clips and filters the volume data. mean / gaussian kernels are used for
/I filtering. this node allows to optionally display the volume result in

-69-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I the maya viewport (hardware rendering)
1
i

/l Maya includes

#include <math.h>

#include <maya/MIOStream.h>
#include <maya/MFnPlugin.h>
#include <maya/MMaterial.h>
#include <maya/MSelectionList.h>
#include <maya/MSelectionMask.h>
#include <maya/MDrawData.h>
#include <maya/MMatrix.h>
#include <maya/MObjectArray.h>
#include <maya/MDagPath.h>

/I Core includes
#include <Core/DataBlock/StdDataBlock.h>

i

/I HDX_volumekFilteringClipping
i

MTypeld HDX_volumekFilteringClipping::id(0x8000003);

void* HDX_volumeFilteringClipping::creator()

{
return new HDX_volumekFilteringClipping();
}
MStatus HDX_volumeFilteringClipping::initialize()
{
return MS::kSuccess;
}
class HDX_volumekFilteringClipping
{
public:
void handle_kernel_changed(std::string kernel_name);
nodeResampler* tool_;
nodeHandle src_node_;
nodeHandle dst_node_;
I3

-70-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

T T

void HDX_volumeFilteringClipping::handle_kernel_changed(std::string
kernel_name)
{
this->tool_->has_gaussian_params_state_->set(kernel_name ==
NrrdResampleFilter:: GAUSSIAN_C);
this->tool_->has_bspline_params_state_->set(kernel_name ==
ITKResampleFilter::B_SPLINE_C),
}

T T

HDX_volumerFilteringClipping::HDX_volumekFilteringClipping(nodeHandle
src_node, nodeHandle dst_node) :

Core::StateHandler("noderesampler", false),

private_(new nodeResamplerPrivate)
{

this->private_->tool_ = this;

this->private_->src_node_ = src_node;

this->private_->dst_node_ = dst_node;

std::vector< Core::OptionLabelPair > padding_values;

padding_values.push_back(std::make_pair(PadValues::ZERO_C, "0"));

padding_values.push_back(std::make_pair(PadValues::MIN_C, "Minimum
Value"));

padding_values.push_back(std::make_pair(PadValues::MAX_C, "Maximum
Value"));

this->add_state("pad_value", this->padding_value_state_, PadValues::ZERO_C,
padding_values);

std::vector< Core::OptionLabelPair > kernels;

kernels.push_back(std::make_pair(NrrdResampleFilter::BOX_C, "Box"));

kernels.push_back(std::make_pair(NrrdResampleFilter:: TENT_C, "Tent"));

kernels.push_back(std::make_pair(NrrdResampleFilter::CUBIC_CR_C, "Cubic
(Catmull-Rom)"));

kernels.push_back(std::make_pair(NrrdResampleFilter::CUBIC_BS_C, "Cubic
(B-spline)"));

kernels.push_back(std::make_pair(NrrdResampleFilter:: QUARTIC_C, "Quartic"
));

kernels.push_back(std::make_pair(NrrdResampleFilter:: GAUSSIAN_C,
"Gaussian")),

kernels.push_back(std::make_pair(ITKResampleFilter::LINEAR_C, "Linear")),

kernels.push_back(std::make_pair(ITKResampleFilter::B_SPLINE_C, "B-spline"
));

kernels.push_back(std::make_pair(

-71-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

ITKResampleFilter:NEAREST_NEIGHBOR_C, "Nearest Neighbor"));
this->add_state("kernel", this->kernel_state_, NrrdResampleFilter::BOX_C,
kernels);

this->add_state("sigma", this->gauss_sigma_state , 1.0, 1.0, 100.0, 0.01);
this->add_state("cutoff", this->gauss_cutoff_state , 1.0, 1.0, 100.0, 0.01);
this->add_state("spline_order", this->spline_order_state , 3, 0, 5, 1);
this->add_state("has_gaussian_params", this->has_gaussian_params_state_,
false);
this->add_state("has_bspline_params", this->has_bspline_params_state |, false

);

this->add_connection(this->kernel_state_->value_changed_signal_.connect(
boost::bind(&nodeResamplerPrivate::handle_kernel_changed, this->private_,
_2)))
}

T T

HDX_volumekFilteringClipping::~HDX_volumeFilteringClipping()
{

this->disconnect_all();

}
T T

void HDX_volumecFilteringClipping::run(Core::ActionContextHandle context)

{
Core::StateEngine::lock_type lock(Core::StateEngine::GetMutex());

ActionResample::Dispatch(context,
this->private_->src_node_->get_node_id(),
this->private_->dst_node_->get_node_id(),
this->padding_value_state ->get(),
this->kernel_state ->get(),
this->gauss_sigma_state ->get(),
this->gauss_cutoff_state_->get(),
this->spline_order_state_->get(),
true);

}

i

1

/I Node registry

1

/I Registers/Deregisters HDX_volumekFilteringClipping node
1

-72-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

T T

MStatus initializePlugin(MObject obj)
{

MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");

MStatus stat = plugin.registerShape("HDX_volumeFilteringClipping",
HDX_volumerFilteringClipping::id,

&HDX_volumeFilteringClipping::creator,
&HDX_volumeFilteringClipping::initialize,

&HDX_volumeFilteringClipping::creator);
if (!stat){
cerr << "Failed to register node\n";
}

return stat;

}

MStatus uninitializePlugin(MObject obj)
{

MFEnPlugin plugin(obj);

MStatus stat;

stat = plugin.deregisterNode(HDX_volumekFilteringClipping::id);
if (!stat){

cerr << "Failed to deregister node : HDX_volumekFilteringClipping \n";
}

return stat;

i

1

/I HDX volumeTolsosurface (Maya node)

1

/I generates the isosurface from the volume. otsu volume histogram threshold
/] are used to generate the isosurface. this node allows to optionally display
/I the generated isosurface in the maya viewport (hardware rendering)

1

i

-73-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/l Maya includes

#include <math.h>

#include <maya/MIOStream.h>
#include <maya/MFnPlugin.h>
#include <maya/MMaterial.h>
#include <maya/MSelectionList.h>
#include <maya/MSelectionMask.h>
#include <maya/MDrawData.h>
#include <maya/MMatrix.h>
#include <maya/MObjectArray.h>
#include <maya/MDagPath.h>

/' ITK includes
#include <itkOtsuMultipleThresholdsimageFilter.h>

/I Core includes

#include <Core/DataBlock/StdDataBlock.h>
#include <Core/Utils/StackVector.h>
#include <Core/Utils/Parallel.h>

#include <Core/Utils/Log.h>

i

/I HDX volumeTolsosurface
i
MTypeld HDX_volumeTolsosurface::id(0x8000004),

void* HDX volumeTolsosurface::creator()

{

return new HDX_volumeTolsosurface();
}
MStatus HDX_volumeTolsosurface::initialize()
{

return MS::kSuccess;
}

T T

OtsuThresholdFilter::OtsuThresholdFilter(const std::string& toolid) :
SingleTargetTool(Core::VolumeType::DATA_E, toolid)

{

/I Need to set ranges and default values for all parameters
add_state("amount”, this->amount_state , 1,1, 4, 1);

}

-74-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

OtsuThresholdFilter::~OtsuThresholdFilter()
{

disconnect_all();

}

void OtsuThresholdFilter::execute(Core::ActionContextHandle context)

{
Core::StateEngine::lock_type lock(Core::StateEngine::GetMutex());

ActionOtsuThresholdFilter::Dispatch(context,
this->target_node_state ->get(),
this->amount_state _->get());

}
T T

/I Marching Cubes tutorial:
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

typedef struct {
int edges_[15]; // Vertex indices for at most 5 triangles
int num_triangles_; // Last number in each table entry
} MarchingCubesTableType;

/I Precalculated array of 256 possible polygon configurations (248 = 256) within
the cube

/] 256x16 table of integer values, which are used as indices for the array of 12
points of

/I intersection. It defines the right order to connect the intersected edges to form
triangles.

/I The process for one cell stops when index of -1 is returned from the table,
forming a maximum of

/I 5 triangles.

const MarchingCubesTableType MARCHING_CUBES_TABLE_C[] ={

{1, -1,-1,-1,-1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1}, O},
{0 3 8 -1 11,14 1,11 1,1, -1 -1} 1}
{0, 9 1,-1,-1-1,-1,-1,-1,-1,-1, -1, -1, -1, -1}, 1},
{13 8 9 1 8 -1, -1,-1,-1 -4 1,1 -1 -1} 2},
111, 2,44, -1,-1, 1,1, 4, 4,1, -1, -1, -1, -1}, 1},
{0, 3,8 1,11, 2 -1,-1,-1,-1,-1,-1, -1, -1, -1}, 2},
{911, 2 0,9 2 -1,-1,-1,-1,-1,-1, -1, -1, -1}, 2},
{2 38 2 811,11, 8 9,1, -1, -1, -1, -1, -1} 3},
{3, 2,10,-1,-1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 1},
{0, 210, 8 0,10,-1,1, -1, -1, 1, -1, -1, -1, -1}, 2},
{1, 0,9 2 10, 3,-1,-1, 1,-1,-1,-1,-, 1} 2},
{1, 2,10, 1,10, 9, 9, 10, 8, -1, -1, -1, -1, -1, -1}, 3},

-75-

PCT/US2017/023669

WO 2017/165566

RO &R s , S ETHITO s BT e
"~ e PPy .,}1\r.,.1r.,.1\r.,.}31r.,.43 .,Ir.,.lr.,.lr.,. s D P g -~ oM< [0 I T L
,1|;,,1|;},,1|f,1,22mo;2,3342,},.3},},},},”122mo;2,3342,mof,34},},},},2 NN FTFOOFE
T — P I] - ~— T P R N N o g ~ ~ e D e e D e
R T I e e e
— T =~ 't .,.,.,.,.,.,.,.,1114 L S I B iy Lo L L
_., - _., _:4441:44444444 ! _., _., :4441:444114441: vy _., ! 1.,1.,1.,1.,4 1:1:441.,11
~ ~ 1 - - ~ 1 1 - 1 T~ b I 1 1 1 1
" -~ . . - - . T - ~ Y- %Y -~ .. - e o~ " - ~ A .,_ ! - - -
_., - _., _74111744414444 _., _., _., 741111444144117 Y _., ! 11717111711111717
4414 LR L .,.,.,2.,1004 LR S oot _1.,0.,01.,_ [T Y T T T |
T A e - T TR R T
T B e T e i e~ M e e e S e,
S R T IR SN A TR TR CHRSR A RN A=l
4 _44 o= 7_717 - - 71717 79471_ - 7_717 - - 71717 L .,m/l 7_ _ - Yol D — - .
T R I IR R T T I N D A Tt
4114 - - 7_ - r iy - 707 70800m - -~ 7_ . . . v 797 y - 1O -Q © _ _ _ . 71 y y .
17 71174443742474 3147471 74441749054 o™ O 7”1 74777574713575m277
197 - - - - -~ - - -~ 747 727 . - - - - -~ - - - -~ v -~ ~ < O - - - -~ - -~
R T o R I A 10 Qo ow.1nMH T oNTNO NN ®
T 0T - - - e e a=N T o - L L =T -
T T INT RN N O T ad T YYOT e R e R Lt N N
TSN OYNTYoRPOR ¢ ,1,0,014 W@WOPATANO™ T PO NOU-OoWw PN ConN~
O T T INENEFANN T N -T2 o YT N g TN NNCUuPaaN®
O~ -~ P - Y @ | .~ A T o Nt
~P NPT OPNG—dP® V-0 PPN CTAN T T HHTTr P NNo @
T oON - NN TSI oo N N O NN T~ "oy NoONOUN T o Z ow®
- ~ ~ ~ ~ - ~
- .- e G LN
O WO N CToNT T e T T 0 A F IO T OFANTO - 000000 NN ND
N OO O~ oOoNO I - T OO - IONOTOCONI T O OTOTO— 0NN N
atasfastastastastasiastectastastactastastasiastactasfastactastastastastactasfastactastastasinsfastasfastastastastasnsfastasasfaafaeasfa

5
10
15
20
25
30
35
40
45

-76-

PCT/US2017/023669

WO 2017/165566

e mea cn e e . - = - - .
R ok o R Lo T BRI it I e i
i et P e i SRRy
44Qﬂﬁﬂ%%ﬂﬂ%%%44ﬂﬂﬂ%%ﬂﬂﬂﬂ%%%%“ﬂﬂﬂaﬂmZﬂﬂﬂﬂhhﬁ%%ﬂﬂ
- ey~ - TS -~ . - 5 R L T -~ .
T T T T LT T et T T b T
~ -~ . L " - -~ - . T - o~ -
AQJZ%NAAA444ZMMAQAA5AAAA9¢,,Qﬁjﬂﬂm“6mrﬁﬁtﬂa4ﬂhﬂ
Aﬂﬂ&ﬁﬁﬂﬂ4ﬂﬂﬂ&HWAJ4ﬁ&ﬁﬁ44441&&AWQ%QK&QAAAW%4%%rﬁ
AH15%ﬂﬂﬂ4444&A@AﬂﬂﬁQﬂAﬂﬂZﬂ&Qﬂ4Z&jﬂomZAﬂﬂaﬂzﬂﬂﬂﬁ
J1WQWAAAW%Q,ZA5HM1JQ,4 77062623%5Q31Aﬂ,a,4421ﬂ
ﬁSQLWﬁAAQ%&Q&A,6231584WZ&&459500O1ﬂ&&ﬁﬂﬂ44&ﬂ&“ﬂ
”HZWWAAA&%&Q&WN595MOO O T IS e YT NOO T SY T Pl aaT T Y
Z&Q&M4HHQ&ZQ&50395 39771952098770006949%1222268
O,790,746681662,1,002356083671654428256501H R]
—TOWT T U CTNTOIB e NT OO0 O YN T O NN Y P09 Y g0~
Z&ZHHG&Q&QQaQ&QLW&&m&m&Q6124&mW1241554WQ&4QZ&4&
T O UYL FCE TN ONGTNCT NS TP o aN®
S Wl oo la SO0 O O -OBNT OO OO EFEB SO S
atastastastastasfasfasfastastastasfastastastastasfasfasasfasfastastasfastastasfasfasfasfasfasasfasfasasfastastasasfasfasfasasfes s g
0 2 2 & & 3 <3 S <

-77-

PCT/US2017/023669

WO 2017/165566

Lt - S) I e P e e .,Ir.,.lr.,.lr.,.lr.,. - ~a e L aa
FTOGHEHENOATED 2 G I OOY R T o CANFVO D L s sOFTIYON TGO Y
1b,su1LU1L.Ln,su“n,mw.1b,suAA,:u i R I ,Aﬂ,1n,su“n,ﬂu.xnuhu1n,suuhuﬂu
SN T N ST T ST N TSNS N LTSS Ty ST En T
- - - - B - - -~ 1 I - - - - - - - - - - - - - - - 7_ I 1 - - T~ - - - R - -
TSI ST TN ey N TN NN N S oo T TS
- - - - - x - - ~ 1 N - - - - - - h h - - - - -~ - N N 1 -~ - 71 - - - - -~ -
T OO _,4,441,7,4,44,924,1,44444444,440_%44,4,1,444 _,444444
- - - - - -~ | R - - N - -~ - - - - - - - R 1 - -~ T~ - - - N - =
1167144_77846797174677764644444444 7417177740//”.7444344
- rNm e~ " T N N T S N ¢ B AP o §
TR YT s lwyY T @R TN TSN om0 LT YT e
R PP S « o SN (o JRNIPNNIE Rt D U S B I B R &
CNGOP s O T o OO O T TS NN T oo T TS T o
~ - o - - - 1 - N - - - - - - 1 1 - - - - ~ - .
- - RN .0 . .© - - - - o . ~ - . ©
6o PO " Ot g g O oSN T N TN 22 o - o -
U b o LT R .) Nl O e - -O
T T I %% gaay NN TSN T T TOUNN o ane T TP T o o=
- - - - 1 - 1 - - -
' O g0 o T o S 1o N 1o R N e - O O
OY 20T PO Y CEw T O~ T T T T T 00 Tgg~" T O TO00 g
AR R ¢ § | M~ . (o | I e e — LT O SR - - - .,1.,7., R o —
T g 00T - ,69078,777,6 04,4,77310H126387, SN 0O T GO
- . - - - - - - ~ - - - - - -
O @OO®™®_ O-wN 20 NhgTTOQO OGO NogNG ~ZPOO0OO0 G~
T o S G R L e T U - -
OO0l T INOCONOCOBT PO NFTF 0 Lo - NG 2NONONN OO O GNP
Nt 000~ 0NN 000 NN ONCONT T2 0T 0™
OO ONOC LT ~aNNANN-T2OONNNOOO I ~aNONNN-ZZ O 0 ® © —
et Nt Nt Mt Nt N N e " St S Nt S Nt Nt N Mt o N S e St St Nt Nt M) Nt Y Vo e e St S Nt St Nt et —— ——
LSS TR U/ W/ W/ W W/ Wy Wy Uy iy W M W W/ Wy Wy Wy Uy W/ W W/ W/ W A W/ Wy W Wy M — ——

20
25
30
35

9,2, 2,911, 1,1, -1}, 4},
-78-

H
H

H 37 97 37 47 107 67 37 47 37 6}7 5}7

0
6
{{ 87 37 27 87 27 47 47 27 67 _17 _17 _17 _17 _17 _1}7 3}7

H
H

0
0
2

PCT/US2017/023669

WO 2017/165566

- ~ ~ 5 - ~ ~

- - g et -~ - - - g ~ - - - 5 - 7} - - g ey - -~
}Ir.,.lr.,.}aan/_ .Ln/_r.aa}ald.r.d. alr.,.lr.,.lr.,. e :4:&1?.4 $4:aa4 e .,}.Lr.,.l4r.
24341?.,. -~ _ 41?.,. -~ 344&451—/f}1ﬁ.41ﬁ. }Iﬁ.lﬁ.lﬁ.43a25 -
- - by [t P S ~— el -~ ~ ~ . - ~
- e N e A - Lo ey
T e - - L AP Yo o~ - — .,5.,1.,4 1 N ! -
- - L - - - - - - - 1 - B B - - -

Ty L T T L S ST T Y s LT LT o L e O
- - -~ - - - - i - - - - - QO - ~ -
~ 717141 _411141 I i ol i) 'T = e ! T 00
LTS I e - _., :14441 1 - o - ! S o N :446 1 _.,
T TG T T e T SN0 g s T O L g OO
P T o S T N L TOoT® N s o O g @ T @ -
- - -~ . . - - - - - -

TEES O LT T RO NS rgghNe T ee s 9 e o©
T L L T Py To B To N S T ¥
444 _.,O _., | 443 _., :21//”465418314: _.,O .,40., 11:1:34345 ;
N o R L [o N oo} C e e e TS O~ 200~ - - .~ W0
TESFY T TR0 NFowshe L T O T T Cgooy @
S I PRt oo B o » SEANI R (UMY o » JPpRel o RN « o I (o Ji Vo NSRRI el o
TOOCOw o T Y o T NSO T T OO GNNo O
N I N« 1 I N o ' N o Il o SR N o I + o PN o)
~aNNO W TE2NONT T N T T T T T NGO e @
T o B N> Sl o I ~ I U sl Sl Slpial (o ISRl Vo T (o I ['e JEFA e N =]
COFO PP T 0N N0 O™ ONGgo—©
R ¢ R R i o Y o Bl o I o I (o SR (o
NN Y2 o YN -t aNOONOCOOOGO O =" Werggo0dT

- ~

~ -

- e e e 7777777777777777777777770’7777771
TN -t ONTO RTINS H O THhogQCQROOO -0 g —a~ —

T T 0P 00NN N OCOHFOQ2ON
ST T T O F S T FTNGTLE " 5O G5 —
NOTOTCA YT O NI NOFT LT w20 T

o o

~

Cowvwwm T

11, 6,-1,-1,-1,-1,-1,-1,-1,-1-1} 2},
17 _17 _17 _17 _17 _17 _17 _17_17 _17 _17 _1}7 1}7

o

3,

{{11, 6,5

{{10,11, 5, 7,10, 5,-1,-1,-1,-1,-1,-1, -1, -1, -1}, 2},

40

{{10,11, 5,10, 5, 7, 8, 0, 3,-1,-1,-1,-1, -1, -1}, 3},

{5, 7,10, 5, 1

H 17 07 97 _17_17_17_17_17_1}7 3}7

H 97 17 87 87 17 37 _17 _17 _1 }7 4}7

11

H

10

H

H 77 77 17 57_17_17_17_17_17_1}7 3}7

0
7
1

H

1

H

0

) 107 27 _17 _17 _1}7 4}7
) 77 107 _17 _17 _1}7 4}7

7
2

H
H

H 97 37 87 27 97 27 8}7 5}7

7
0

1
1
1
9
7

{{11, 5 7,

{{10, 2, 1,

H
H
H

8
7
5

H
H
H

3
5
2

{0,
{9,
{7,

45

-79-

PCT/US2017/023669

WO 2017/165566

7_17 _17 _17_17 _17 _1}7 3}7
7_17 _17 _17_17 _17 _1}7 3}7

H

7,

5 7,-1,-1,-1,-1,-1, -1}, 3},

5 7,11,5, 2,-1,-1, -1}, 4},

1,-1,-1,-1,-1,-1, -1, -1}, 2},

7, 3,3, 211,-1,-1, -1} 4},
2, 7,11, 5 2,7, 2, 5} 5},

™ o0 8.,4.,1.,

O T aAaNNooZ2Y

o

7_17 _17 _17 _17 _17 _17 _17 _1}7 2}7
1,810, -1,-1,-1,-1-1,-1} 3},

5,10, 11,10, O, 3, -1, -1, -1}, 4},

. ™
1

~

8,10, 11,11, 5, 4, -1,-1, -1}, 4},

4,10, 4, 3, 9, 1, 4, 3, 4 1}, 5},

-0

DR i To BT I N N o S

1

2,5 8 2 810, 4, 8 5-1-1,-1} 4},

0, 3,
0,

Nowomoowww o~

OLNOWOMmOowwo

To-NWUNONTYTo Y <

NOOOTOO~— OO WL
e e e e o e e o e
e e e e e e e e

-O

~

0, 4,10, 5, 2, 1,10, 5,10, 1}, 5},

1

, 2, 5,10, 4, 8, 5,10, 5, 8}, 5},

5
0
5
2

1

H

9
3

1,-1,-1,-1,-1,-1,-1, -1}, 2},

7_17

H

H

2

H 07 27 _17_17_17_17_17_1}7 3}7

H 57 47 37 47 87 _17 _17 _1 }7 4}7

3
4

H
H

H 57 37 57 87 47 87 57 07 97 1}7 5}7
27 17 27 97 97 27 47 _17 _17 _1 }7 4}7

H
H
H

2
4

1
4

1

H
H
H
H

3
5
3
5

v 4., 2., 4., 5., 1., 1., 1.,

H 17 57_17_17_17_17_17_1}73}7
7_17 _17 _17 _17 _17 _17 _17 _17 _1}7 2}7

H 97 57 07 07 57 37 _17 _17 _1 }7 4}7

17_17 _17 _17 _17_17_17 _17 _17 _17 _1}7 1}7

1

H

5
0
5

H
H
H

3
5
3

H
H
H

8

1

8
=5

0,9 91011, -1,-1,-1,-1 -1, -1}, 3},

4,

, 9,9 7,10, 9,10, 11, -1, -1, -1}, 4},

7
, 1,410, 1,0, 4,710, 4 -1,-1, -1}, 4},

H

-10-1 -1, 4,
,-1,-1, 13, 43,

H

H

1
3

, 2,1,10, O, 3, 8}, 5},
7,9,

- 7_17_17_17_17_1}7 3}7
1 87 O’ 77 27 7’ O}’ 5}7
11, 4,1, 0,11, 4,11, O}, 3},

77 _17 _17 _17 _17 _17 _17 _17 _17 _1}7 2}7

10, 2,9, 2, 1,1, -1, -1}, 4},
1
4
3
3,
2

1, 4,11, 7,10, 4,11, 4,10}, 5},

1,111,141, 13, 3,

, 1,8, 8 1, 7,-1,-1 -1} 4},
11111, 1,11, 1%, 23,
111111, 1,1, -1, -1, 1),
, 8,10, 1,-1,-1,-1,-1, 1,1, -1, -1}, 2},

7,

H
H

1,

- - - - - - - - - - - 7 - - - - - - -
T L - L2NENOC~NTGiyT 0

{10,
{10,

11
{3, 9 0 310 910,11, 9,-1,-1,-1,-1, -1, -1} 3},

H

~
~

{9,

{{0,11, 1, 0, 8 11, 8,10, 11, -1, -1, -1, -1, -1, -1}, 3},

{{3 11, 1,10,11, 3,-1,-1,-1,-1,-1,-1, -1, -1, -1} 2},

{{1,10, 2, 1, 9,10, 9, 8,10, 1, -1, -1, -1, -1, -1}, 3},

45

{{3,9 0 310, 9 1,9 2 2 910,-1,-1, -1} 4},

{{0,10, 2, 8,10, O, -1,-1,-1,-1, -1, -1, -1, -1, -1}, 2},

-80-

10

15

20

25

30

35

40

45

WO 2017/165566

—_—
o
—_—

{3,
{2,
{9,
{2,
{1,
{1,
{0,
{0,
{-1, -1,

typedef struct {

H

NN
I\)ol\)
A

l\)—_\

w

RN
—_ =

—_—

—_—
1

—_—
1

(o0}

20 —=~0NO00N ©

H

Lwow:
___\LO
___\

H H

PCT/US2017/023669

-1, -1, 1),
1, -1}, 3},
11} 2,
1,-1}, 4},
=1, =13 1},
1 A}, 2

A, 1)1,

1,13, 13,

1 -1}, O}

int points_[12]; // Vertex indices for at most 4 triangles

int num_triangles_
} CappingTableType;

- /I Last number in each table entry

/I Precalculated array of 16 possible polygon configurations (244 = 16) within the

cell.

/I 16x13 table of integer values, which are used as indices for the array of 8 points

(4 vertices, 4 edges) of

/I intersection. It defines the right order to connect the intersected edges to form

triangles.

/I The process for one cell stops when index of -1 is returned from the table,

forming a maximum of
/I 4 triangles.

/I For example: {{tri1.p1, tri1.p2, tri1.p3, tri2.p1, tri2.p2, tri2.p3, trid.p1, tri3.p2,

tri3.p3,
/1 trid.p1, trid,p2, trid.p3}, num_tri}

const CappingTabIeType CAPPING_TABLE_C[] ={

{1,-1,-1,-1,-1,-1,-1, -1, -1, -1, -1, -1}, O}, // 0
{{0,4, 7. 1, 4,1, 1,1, -1, 1,41, =13, 1), /1
{4,1,5-1,-1,-1,-1,-1,-1,-1,-1, -1}, 1}, // 2
{{0,1,7,7,1,5,-1,-1,-1, -1, -1, 1} 2}, /I3
(6,52 -1,-1,-1,-1,-1,-1,-1,-1, -1}, 1}, // 4
{{0,4,7,7,4,5,7,5,6,86, 5, }, /5
{4166 12 -1,1,-1-1-1,-1}2) /6
{0.6.7.0.1.6.6,1,2,-1,-1, -1}, 3} /7
{7.6,3-1,-1,-1,-1,-1,-1,-1,-1, 1}, 1}, // 8
{{0,4,3,3,4,6, -1,-1,-1,-1,-1, -1}, 2}, /9
(7.6, 37464564154 /110
{{0,6,3,0,560 1,5 -1,-1,-1}, 3}, // 11
{7.5,3,3,52 -1,-1,-1,-1,-1, -1}, 2}, /12
{{0,5,30,4,5 352 -1,-1,-1}, 3}, //13
{{7.4,33,4,2, 41,2 -1, 1 -1} 3, /14
{{0,1,3,3,1,2 -1, -1, -1, 1) 2): /115

class VertexBufferBatch

-81-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

{
public:

VertexAttribArrayBufferHandle vertex_buffer_;
VertexAttribArrayBufferHandle normal_buffer_;
VertexAttribArrayBufferHandle value_buffer_;
ElementArrayBufferHandle faces_buffer_;

by

typedef boost::shared_ptr< VertexBufferBatch > VertexBufferBatchHandle;

class HDX_volumeTolsosurface

{

public:
void downsample_setup(int num_threads, double quality_factor);

/I PARALLEL_DOWNSAMPLE:
/I Downsample mask prior to computing the isosurface in order to reduce the
mesh to speed up
/I rendering.
void parallel_downsample_mask(int thread, int num_threads, boost::barrier&
barrier,
double quality_factor);

/I Copy values to members just to simplify and shorten code. Must be called
after downsample

/I and before face computation.

void compute_setup();

/I SETUP:
/I Setup the algorithm and the buffers for face computation
void compute_faces_setup(int num_threads);

/l PARALLEL_COMPUTE_FACES:
/I Parallelized isosurface computation algorithm
void parallel_compute_faces(int thread, int num_threads, boost::barrier& barrier

)i

void translate_cap_coords(int cap_num, float i, float j, float& x, float& vy, float& z

);

size_t get_data_index(float x, float y, float z);

/I COMPUTE_CAP_FACES:

/l Compute the "cap" faces at the boundary of the mask volume to handle the
case where the

/l mask goes all the way to the boundary. Otherwise, we end up with holes in the

-82-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I isosurface at the boundary. The cap faces are computed as separate
geometry so that they can

/I be turned on/off independently from the rest of the isosurface.

void compute_cap_faces();

/l PARALLEL_COMPUTE_NORMALS:

/I Parallelized isosurface normal computation algorithm

void parallel_compute _normals(int thread, int num_threads, boost::barrier&
barrier);

/I UPLOAD_TO_VERTEX_BUFFER:
void upload_to_vertex_buffer();

void reset();

/I Pointer to public Isosurface -- needed to give access to public signals
Isosurface® isosurface_;
/I Downsample params

MaskVolumeHandle downsample_mask_volume_;
int neighborhood_size_;

size_t zsize_;

size_t total_neighborhoods_;

/I Input to isosurface computation, not downsampled

MaskVolumeHandle orig_mask_volume_;

/l Mask volume to be used for isosurface computation. May point to original
volume or

/l downsampled volume.

MaskVolumeHandle compute_mask_volume_;

unsigned char mask_value_; // Same for original volume and downsampled
volume

// Output mesh
PointFVector points_;
VectorFVector normals_;
UlntVector faces_; // unsigned int because GL expects this
FloatVector values_; // Should be in range [0, 1]

float area_; // Surface area of the isosurface

I/l Single colormap shared by all isosurfaces
ColorMapHandle color_map_;

/I Algorithm data & buffers

unsigned char* data_; // Mask data is stored in bit-plane (8 masks per data block)
size_t nx_, ny_, nz_; // Mask dimensions of original or downsampled volume

-83-

10

15

20

25

30

35

40

45

WO 2017/165566

depending on quality

PCT/US2017/023669

size_telem_nx_, elem_ny_, elem_nz_: // Number of (marching) cubes

UCharVector type_buffer_;

std::vector< UlntVector > edge_buffer_;

UIntVector min_point_index_;
UIntVector max_point_index_;
UIntVector min_face_index_;

UIntVector max_face_index_;

std:.vector< std::pair< unsigned int, unsigned int > > part_points_;
std:.vector< std::pair< unsigned int, unsigned int > > part_faces_;
std::vector< UlntVector > part_indices_;

std::vector< PointFVector > new_points_;
std::vector< std::vector< StackVector< size_t, 3 > > > new_elems_;

FloatVector new_elem_areas_;

IVector front_offset_;
IVector back_offset_;
size_t global_point_cnt_;

unsigned int prev_point_min_;
unsigned int prev_point_max_;

std:.vector< VertexBufferBatchHandle > vbo_batches_;

bool vbo_available_;
bool surface_changed_;
bool values_changed_;

bool need_abort_;

H

boost::function< bool () > check_abort_;

const static double COMPUTE_PERCENT_PROGRESS_C;
const static double NORMAL_PERCENT_PROGRESS_C;
const static double PARTITION_PERCENT_PROGRESS_C;

h

/! Initialize static variables

H

const double HDX_volumeTolsosurface:: COMPUTE_PERCENT_PROGRESS_C

=0.8;

const double HDX_volumeTolsosurface:: NORMAL_PERCENT_PROGRESS_C =

0.05;

const double HDX_volumeTolsosurface::PARTITION_PERCENT_PROGRESS_C

=0.15;

-84-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

T T

void HDX volumeTolsosurface::downsample_setup(int num_threads, double

quality_factor)

{
this->nx_ = this->orig_mask_volume_->get_mask_data_block()->get_nx();
this->ny_ = this->orig_mask_volume_->get_mask_data_block()->get_ny();
this->nz_ = this->orig_mask_volume_->get_mask_data_block()->get_nz();

/l Mask data is stored in bit-plane (8 masks per data block)
this->data_ = this->orig_mask_volume_->get_mask_data_block()-
>get_mask_data();

/I Bit where mask bit is stored
this->mask_value_ = this->orig_mask_volume_->get_mask_data_block()-
>get_mask_value();

/I Create downsampled mask to store results
this->neighborhood_size = static_cast< int >(1.0 / quality_factor);
size_t downsampled_nx = this->nx_ / this->neighborhood_size_;
size_t downsampled_ny = this->ny_ / this->neighborhood_size_;
size_t downsampled_nz = this->nz_ / this->neighborhood_size_;

/I Normally MaskDataBlocks should be registered with the
MathDataBlockManager, but in this
/I case we are only using this as a temporary object and do not want to share the
mask with
/I other masks since we would then have to carefully lock/unlock it during use.
MaskDataBlockHandle mask_data_block(new MaskDataBlock(
StdDataBlock::New(downsampled_nx, downsampled_ny, downsampled_nz,
DataType::UCHAR_E),
this->orig_mask_volume_->get_mask_data_block()->get_mask_bit()));

/I Downsampled mask needs to be scaled up to fill the same geometric space as
the original

/I mask.

GridTransform grid_transform = this->orig_mask_volume_-
>get_grid_transform();

double transform_scale = static_cast< double >(this->neighborhood_size);

grid_transform.post_scale(Vector(transform_scale, transform_scale,
transform_scale));

this->downsample_mask_volume_ = MaskVolumeHandle(new MaskVolume(
grid_transform,
mask_data_block));

/I Point to downsampled mask rather than original mask

-85-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

this->compute_mask_volume__ = this->downsample_mask_volume_;

/I For parallelization, divide mask into slabs along z. No synchronization is
needed.
this->zsize = static_cast< size_t >(this->nz_ / num_threads);
/I Make sure this zsize will cover all the data
if (this->zsize_ * num_threads < this->nz_)
{
this->zsize_++;

}

int remainder = this->zsize_ % this->neighborhood_size_;
/I Round up to the next neighborhood increment -- leaves least work for last
thread
if(remainder =0)
{

this->zsize_ += (this->neighborhood_size - remainder);

}

size_t x_neighborhoods = this->nx_ / this->neighborhood_size_;

size_t y_neighborhoods = this->ny_ / this->neighborhood_size_;

size_t z_neighborhoods = this->zsize_ / this->neighborhood_size_;

this->total_neighborhoods_ = x_neighborhoods * y_neighborhoods *
z_neighborhoods;

}
T T

/*
Allow downsampling by only half, quarter, and eighth. When downsampling by
half, a 2x2x2

neighborhood of nodes is downsampled to a single node. If at least one
neighborhood node is "on",

result is "on". This method was chosen to prevent holes in the downsampled data.

*/
void HDX volumeTolsosurface::parallel_downsample_mask(int thread, int
num_threads,
boost::barrier& barrier, double quality_factor)
{
// Only need to setup once
if(thread == 0)
{

this->downsample_setup(num_threads, quality_factor);

}

/I All threads must wait for setup to complete
barrier.wait();

-86-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I Different thread process slabs along the z axis. Each slab contains one or
more

/I neighborhoods to be downsampled.

/I [nzstart, nzend)

size_t nzstart = thread * this->zsize_;
size_t nzend = (thread + 1) * this->zsize_;
if (nzend > this->nz_)
{

nzend = this->nz_;
}
unsigned char* downsampled_data =

this->downsample_mask_volume_->get mask_data_block()->get_mask_data();

size_t z_offset = this->nx_ * this->ny_;
unsigned char not_mask_value = ~(this->mask_value_);

size_t target_index = thread * this->total_neighborhoods_;
size_t x_start_end = this->nx__ - this->neighborhood_size + 1;
size_ty_start_end = this->ny_ - this->neighborhood_size + 1;
size_t z_start_end = nzend - this->neighborhood_size + 1;

/I Loop over neighborhoods, chop off border values
for (size_t z_start = nzstart; z_start < z_start_end; z_start += this-
>neighborhood_size)
{
for (size_ty start = 0; y_start <y_start_end; y_start += this-
>neighborhood_size)
{
for (size_t x_start = 0; x_start < x_start_end; x_start += this-
>neighborhood_size)
{
// Clear entry initially
downsampled_data[target_index] &= not_mask_value;

bool stop = false;

size_t x_end = x_start + this->neighborhood_size_;
size_ty _end =y_start + this->neighborhood_size_;
size_t z_end = z_start + this->neighborhood_size_;

/l Loop over neighbors based on corner index
for(size_tz = z_start; z <z_end && !stop; z++)

{
for(size_ty=y_start; y <y _end && !stop; y++)
{
for(size_t x = x_start; x < x_end && !stop; x++)
{

-87-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

size_tindex = ((z_offset) *z) + (this->nx_*y) + X;

/' If at least one neighborhood node is "on", result is "on"
if (this->data_|[index] & this->mask_value_) // Node "on"
{
/[Turn on mask value
downsampled_data[target_index] |= this->mask_value_;
/I Short-circuit
stop = true;
}
}
}
}
target_index++;
}
}
}
}

T T

void HDX volumeTolsosurface::compute_setup()

{
this->nx_ = this->compute_mask_volume_->get_mask_data_block()->get_nx();
this->ny_ = this->compute_mask_volume_->get_mask_data_block()->get_ny();
this->nz_ = this->compute_mask_volume_->get_mask_data_block()->get_nz();

/l Mask data is stored in bit-plane (8 masks per data block)
this->data_ = this->compute_mask_volume_->get_mask_data_block()-
>get_mask_data();

/I Bit where mask bit is stored
this->mask_value_ = this->compute_mask_volume_->get_mask_data_block()-
>get_mask_value();

}
T T

void HDX volumeTolsosurface::compute_faces_setup(int num_threads)
{

/I Number of elements (cubes) in each dimension

this->elem_nx_ = this->nx_ - 1;
this->elem_ny_ = this->ny_ - 1;
this->elem_nz_ = this->nz_ - 1;

// Stores index into polygon configuration table for each element (cube)?
/I Why +1? Maybe just padding for safety?

-88-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

}

this->type_buffer_.resize((this-=>nx_+ 1) *(this-=>ny_+1));

/I For each element (cube), holds edge ID (12 edges) back_buffer_x,
back_buffer_y,

/I front_buffer_x, front_buffer_y, and side_buffer

this->edge buffer_.resize(5);

for(size_ tq=0;q9<5; g++)

{
}

this->edge _buffer_[q].resize((this->nx_ + 1) * (this-=>ny_+1));

/I Interpolated edge points for isosurface per thread
this->new_points_.resize(num_threads);

/I Vector of face indices per triangle, per thread
this->new_elems__.resize(num_threads);

/I Surface areas of generated triangles per thread
this->new_elem_areas_.resize(num_threads, 0);

/I Offset allows zero-based indexing over multiple slices
this->front_offset_.resize(num_threads, 0);
this->back_offset_.resize(num_threads, 0);

/I Total number of isosurface points
this->global_point_cnt_ = 0;

this->min_point_index_.resize(this->elem_nz_);
this->max_point_index_.resize(this->elem_nz_);
this->min_face_index_.resize(this->elem_nz_);

this->max_face_index_.resize(this->elem_nz_);

this->prev_point_min_ = 0;
this->prev_point_max_ = 0;

this->need_abort_ = false;

T T

void HDX volumeTolsosurface::parallel_compute_faces(int thread, int
num_threads,
boost::barrier& barrier)

{

/I Setup the algorithm and the buffers
if (thread == 0) // Only need to setup once

{
}

this->compute_faces_setup(num_threads);

-89-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I An object of class barrier is a synchronization primitive used to cause a set of

threads
/l to wait until they each perform a certain function or each reach a particular
point in their
/I execution. This mechanism proves useful in situations where processing
progresses in

/] stages and completion of the current stage by all threads is the entry criteria for

the next
/l stage.
barrier.wait();

/I In order to parallelize the algorithm, each thread processes a different
horizontal strip
/Il of data
/I Determine the element (cube) range for each thread in the y dimension
size_t ysize = static_cast< size_t >(this->ny_ / num_threads);
if (ysize * num_threads < this->ny_)
{
ysize++;

}

size_t nystart = thread * ysize;
size_tnyend = (thread + 1) * ysize;
if (nyend > this->ny_)
{

nyend = this->ny_;

}

size_t elem_ysize = static_cast< size_t >(this->elem_ny_ / num_threads),
if (elem_ysize * num_threads < this->elem_ny_)
{

elem_ysize++;

}

size_t elem_nystart = thread * elem_ysize;
size_telem_nyend = (thread + 1) * elem_ysize;
if (elem_nyend > this->elem_ny_)
{

elem_nyend = this->elem_ny_;

}

/I Each thread generates new points for the isosurface

PointFVector& points = this->new_points_|[thread |;

/I StackVector is a SCIRun class.

/I StackVector implements a subclass of the std::vector class, except that
/I the vector is statically allocated on the stack for performance.

-90-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I elems = triangles

std::vector< StackVector < size_t, 3 > >& elements = this->new_elems_|[thread |];

/I mark the point counter with the process number
unsigned int point_cnt = 0;

/I Vector of pointers into edge_buffer_ for each of the 12 edges. edge buffer_

has indices into

/I vector of actual points.
std::vector< unsigned int* > edge_table(12);

barrier.wait();

/I See function description
int back_buffer_x = 0;

int back_buffer_y =1;

int front_buffer_x = 2;

int front_buffer_y = 3;

int side_buffer = 4;

StackVector< size_t, 3 > elems(3);

/I Get mask transform from MaskVolume
GridTransform grid_transform = this->compute_mask_volume_-

>get_grid_transform();

/I Loop over all the slices
for (size_tz =0; z <this->elem_nz_; z++)
{
/I Process two adjacent slices at a time (back and front)
/I Get pointer to beginning of each slice in the data
unsigned char* data1 = this->data_ + z * (this->nx_ * this->ny_);
unsigned char* data2 = this->data_ + (z + 1) * (this->nx_ * this->ny_);

points.clear();
point_cnt = thread<<24; // upper 8 bits are used to store thread id -- efficiency

trick

/I References to back/front/side tables
UIntVector& back_edge_x = this->edge_buffer_[back_buffer_x];
UIntVector& back_edge_y = this->edge_buffer_[back_buffer_y |;

UIntVector& front_edge_x = this->edge_buffer_[front_buffer_x |;
UIntVector& front_edge_y = this->edge_buffer_[front_buffer_y |;

UIntVector& side_edge = this->edge_buffer_[side_buffer];

-91-

WO 2017/165566 PCT/US2017/023669

/I Use relative offsets to find edges

edge_table[0] = &(this->edge_buffer_[back_buffer x][01]);
edge_table[1] = &(this->edge_buffer_[back_buffer y][1]);
edge_table[2] = &(this->edge_buffer_[back_buffer_x][this-=>nx_1);
edge_table[3] = &(this->edge_buffer_[back_buffer y][0]);

edge_table[4]=&
edge_table[5]=&
edge_table[6]=&
edge_table[7]1=&

this->edge _buffer_[front_buffer x][0]);
this->edge_buffer_[front_buffer_ y][1]);
this->edge_buffer_[front_buffer_x][this->nx_]);
this->edge_buffer_[front_buffer y [0]);

o~ — p— p—

edge_table[8] = &(this->edge_buffer_[side_buffer [0]);
edge_table[9] = &(this->edge_buffer_[side_buffer][1]);
edge_table[10] = &(this->edge_buffer_[side_buffer || this->nx_]);
edge_table[11] = &(this->edge_buffer_|[side_buffer |[this->nx_ +1]);

/I Step 1: determine the type of marching cube pattern (triangles) that needs
/l to go in each element (cube) and the intersecting points on each edge

/I Loop over horizontal strip of elements (cubes)
for (size_ty = nystart; y < nyend; y++)
{
for (size_t x = 0; x < this->nx_; x++)
{
/I There are dim - 1 elements (cubes)
if (x <this->elem_nx_ && y < this->elem_ny_)
{
/I type = index into polygonal configuration table
unsigned char type = 0;
size_t q =y *this->nx_ + x; // Index into data
/I An 8 bit index is formed where each bit corresponds to a vertex
// Bit on if vertex is inside surface, off otherwise
if (datal[q] & this->mask_value_) type |= Ox1;
if (data1[g + 1] & this->mask_value_) type |= 0x2;
if (datal1[q + this->nx_ + 1] & this->mask_value_) type |= 0x4;
if (datal1[g + this->nx_] & this->mask_value_) type |= 0x8;

if
if
if
if

data?[q] & this->mask_value_) type |= 0x10;

data2[g + 1] & this->mask_value_) type |= 0x20;

data2?[q + this->nx_ + 1] & this->mask_value_) type |= 0x40;
data2[q + this->nx_] & this->mask_value_) type |= 0x80;

— — — —

this->type_buffer_[q] = type;
/I All points are inside or outside the cube -- does not contribute to the

/! isosurface
if (type == 0x00 || type == OxFF)

-92-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

{

continue;

}

// Since mask values are either on or off, no need to interpolate
/I between vertices along edges. Always put point in center of edge.
const float INTERP_EDGE_OFFSET_C = 0.5f;

if(z==0)
{
/l top border and center ones
if (((type>>0)"(type>>1)) & 0x01)
{
PointF edge _point = PointF(static_cast< float >(x) +
INTERP_EDGE_OFFSET_C,
static_cast< float >(y),
static_cast< float >(z));
/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
back _edge x[q] = point_cnt;
point_cnt++;

}

// bottom border one
if ((y==this->elem_ny_-1)&& (((type>>2)" (type>>3)) & 0x01))
{
PointF edge _point = PointF(static_cast< float >(x) +

INTERP_EDGE_OFFSET_C,

static_cast< float>(y + 1),

static_cast< float >(z));
/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
back edge X[q + this->nx_] = point_cnt;
point_cnt++;

}

/! left border and center ones
if (((type>>0)"*(type>>3)) & 0x01)
{

PointF edge_point = PointF(static_cast< float >(x),
static_cast< float >(y) + INTERP_EDGE_OFFSET_C,

-03-

WO 2017/165566 PCT/US2017/023669

static_cast< float >(z));
/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
back _edge_y[q] = point_cnt;
point_cnt++;

}

/l right one
if ((x==this->elem_nx_-1)&& (((type>>1)" (type>>2)) & 0x01))
{
PointF edge_point = PointF(static_cast< float >(x + 1),

static_cast< float >(y) + INTERP_EDGE_OFFSET_C,

static_cast< float >(z));
/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
back _edge y[g+ 1] = point_cnt;
point_cnt++;
}
}

/l top border and center ones
if (((type>>4)"(type>>5))&0x01)
{
PointF edge_point = PointF(static_cast< float >(x) +
INTERP_EDGE_OFFSET_C,
static_cast< float >(y),
static_cast<float>(z+1));

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
front_edge x[q] = point_cnt;
point_cnt++;

}

// bottom border one
if ((y==this-=>elem_ny_ -1)&& (((type>>6)" (type>>7))& 0x01))
{

PointF edge_point = PointF(static_cast< float >(x) +

-94-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

INTERP_EDGE_OFFSET_C,
static_cast< float >(y + 1),
static_cast<float>(z+1));

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
front_edge X[g + this->nx_] = point_cnt;
point_cnt++;

}

/! left border and center ones
if (((type>>4)"(type>>7))& 0x01)

PointF edge_point = PointF(static_cast< float >(x),
static_cast< float >(y) + INTERP_EDGE_OFFSET_C,
static_cast<float>(z+1));

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
front_edge_y[q] = point_cnt;
point_cnt++;

}

// bottom one
if ((x==this->elem_nx_-1)&& (((type>>5)" (type>>6)) & 0x01))
{

PointF edge_point = PointF(static_cast< float >(x + 1),
static_cast< float >(y) + INTERP_EDGE_OFFSET_C,
static_cast<float>(z+1));

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
front_edge _y[g+ 1] = point_cnt;
point_cnt++;

}
/l side edges

if (((type>>0)" (type>>4))& 0x01)
{

PointF edge_point = PointF(static_cast< float >(x),

-95-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

static_cast< float >(y),
static_cast< float >(z) + INTERP_EDGE_OFFSET_C);

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
side_edge[q] = point_cnt;
point_cnt++;

if ((x==this->elem_nx_-1)&& (((type>>1)" (type>>5))& 0x01))
{
PointF edge_point = PointF(static_cast< float >(x + 1),
static_cast< float >(y),
static_cast< float >(z) + INTERP_EDGE_OFFSET_C);

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
side_edge[g + 1] = point_cnt;
point_cnt++;

}

if ((y==this->elem_ny_-1)&& (((type>>3)" (type>>7))&0x01))
{
PointF edge_point = PointF(static_cast< float >(x),
static_cast< float >(y + 1),
static_cast< float >(z) + INTERP_EDGE_OFFSET_C);

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
side_edge[g + this->nx_] = point_cnt;
point_cnt++;

}

if (((y==this->elem_ny_ -1)&& (x==this->elem_nx_-1)) &&
(((type>>2)" (type>>6)) & Ox01))
{
PointF edge_point = PointF(static_cast< float >(x + 1),
static_cast< float >(y + 1),
static_cast< float >(z) + INTERP_EDGE_OFFSET_C);

-96-

WO 2017/165566 PCT/US2017/023669

/I Transform point by mask transform
edge_point = grid_transform.project(edge_point);

points.push_back(edge_point);
side_edge[g + this->nx_ + 1] = point_cnt;
point_cnt++;

barrier.wait();
elements.clear();

// Combine points from all threads
if (thread==0)
{
size_t local_size = 0;
for (int p =0; p < num_threads; p++)

{
this->front_offset_[p] = this->global_point_cnt_ + local_size;
if(z==0)
{
this->back_offset_[p] = this->front_offset_[p];
}

local_size += this->new_points_[p].size();
PointFVector& points = this->new_points_[p |;
for (size_t q = 0; q < points.size(); g++)
{
this->points_.push_back(points[q]);
}
}

this->global_point_cnt_ += local_size;

this->min_point_index_[z] = this->prev_point_min_;

this->max_point_index_[z] = static_cast<unsigned int>(this->points_.size());
this->prev_point_min_ = this->prev_point_max_;

this->prev_point_max_ = this->max_point_index_[z |

}

barrier.wait();

// Build triangles
for (size_ty = elem_nystart, y < elem_nyend; y++)

{

for (size_t x=0;x<elem_nx_;x++)

{

-97-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

size_t elem_offset = y * this->nx_ + x;
unsigned char type = this->type_buffer_[elem_offset |;

/I All points are inside or outside the cube -- does not contribute to the
/I isosurface
if (type == 0| type == OxFF)

{
}

continue;

/I Get the edges from the marching cube table
const MarchingCubesTableType& table = MARCHING_CUBES_TABLE_CJ

type |;

for (intk = 0; k < table.num_triangles_; k++)

{

/I Get the edge index (0-11 for 12 edges)
inti1 =table.edges [3 *k];

inti2 =table.edges [3*k+1];

int i3 =table.edges [3*k +2];

unsigned int p1 = edge_table[i1][elem_offset |;
unsigned int p2 = edge_table[i2][elem_offset |;
unsigned int p3 = edge_table[i3][elem_offset |;

if (i1<4)

}

elems[0] = (p1 & OXOOFFFFFF) + this->back_offset [p1>>24];

else

{
}

elems[0] = (p1 & OXOOFFFFFF) + this->front_offset_[p1>>24];

if (i2<4)

{
}

elems[1] =(p2 & OXOOFFFFFF) + this->back_offset_[p2>>24];

else

{
}

elems[1] =(p2 & OXOOFFFFFF) + this->front_offset_[p2>>24 |;

if (i3<4)

}

elems[2] = (p3 & OXOOFFFFFF) + this->back_offset [p3>>24];

-08-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

else

{
elems[2] = (p3 & OXOOFFFFFF) + this->front_offset [p3>>24 |;

}

elements.push_back(elems);

/I Add the area of the triangle to the total

this->new_elem_areas [thread] += 0.5f *
Cross(this->points_[elems[1]] - this->points_[elems[0]],
this->points_[elems[2]] - this->points_[elems[0]]).length();

}
}
}

std::swap(back_buffer_x, front_buffer_x);
std::swap(back_buffer_y, front_buffer_y);
barrier.wait();

if (thread==0)
{

this->min_face_index_[z] = static_cast<unsigned int>(this->faces_.size());

for (intw =0; w <num_threads; w++)
{
std::vector< StackVector< size_t, 3 > >& pelements = this->new_elems_[w |;
for (size_tp = 0; p < pelements.size(); p++)
{
StackVector< size t, 3 >& el = pelements[p |;
this->faces_.push_back(static_cast< unsigned int>(el[0]));
this->faces_.push_back(static_cast< unsigned int>(el[1]));
this->faces_.push_back(static_cast< unsigned int>(el[2]));
}
}

this->back_offset_ = this->front_offset_;

this->max_face_index_[z] = static_cast<unsigned int>(this->faces_.size());

}

if (thread==0)
{
if (this->check_abort_())
{
this->need_abort_ = true;
}
}

barrier.wait();

-99-

WO 2017/165566 PCT/US2017/023669

if (this->need_abort_)

{

return;

}

/' Update progress based on number of z slices processed
double compute_progress =
static_cast< double >(z + 1) / static_cast< double >(this->elem_nz_);
double total_progress = compute_progress *
COMPUTE_PERCENT_PROGRESS_C;
this->isosurface_->update_progress_signal_(total_progress);

}

barrier.wait();

/I Add up surface areas computed in all threads

if (thread==0)
{
for (intp =0; p < num_threads; ++p)
{
this->area_ += this->new_elem_areas [p];
}
}
barrier.wait();
}

i
/I Translates border face coords (i, j) to volume coords (X, y, z).

void HDX volumeTolsosurface::translate_cap_coords(int cap_num, float i, float j,

35

40

45

{

float& x, float& vy, float& z)

switch(cap_num)

{

case 0: // x, y, z = 0 (front)
X=1
y =]
z=0;
break:
case 1://x,z,y =0 (top)
X=1
y=0;
z=j;
break:
case 2: /1y, z, x = 0 (left)

-100-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

x=0;
y =i
z=j
break:
case 3:// x,y, z=nz - 1 (back)
X=1
y =]
z = static_cast< float >(this->nz_ - 1);
break;
case 4:// x, z, y = ny -1 (bottom)
X=1
y = static_cast< float >(this->ny_ -1);
z=j
break:

case 5: /1y, z, x =nx - 1 (right)
x = static_cast< float >(this->nx_ - 1);
y =i
z=j
break:

default:
x=y=z=0;
break;

}
}

T T

size_t HDX_volumeTolsosurface::get_data_index(float x, float y, float z)
{
size_t data_index = (static_cast< size_t >(z) * this->nx_ * this->ny_) +
(static_cast< size_t >(y) *this->nx_) + static_cast< size_t>(x);
return data_index;

}
T T

void HDX volumeTolsosurface::compute_cap_faces()

{

size_t nx = this->nx_; // Store local copy just to make code more concise

size_t ny = this->ny_;

size_t nz = this->nz_;

std:.vector< std::pair< size_t, size_t > > cap_dimensions;
cap_dimensions.push_back(std::make_pair(nx, ny)); // front and back caps
cap_dimensions.push_back(std::make_pair(nx, nz)); // top and bottom caps
cap_dimensions.push_back(std::make_pair(ny, nz)); // left and right side caps
PointF elem_vertices[3], // Temporary storage for triangle vertices

-101-

5

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

)i

/I For each of 6 caps
for(int cap_num = 0; cap_num < 6; cap_num++)

unsigned int min_point_index = static_cast< unsigned int >(this->points_.size()
unsigned int min_face_index = static_cast< unsigned int >(this->faces_.size());

/l Each
/Il STEP 1: Find cell types

// Calculate ni, nj for this face
size_t ni = cap_dimensions[cap_num % 3].first;
size_t nj = cap_dimensions[cap_num % 3].second;

// Since each cell has 4 nodes, we only need a char to represent the type. Only

using bits

/10-3.
/l Create an array of type per index
size_tnum_cells=(ni-1)*(nj-1);
UCharVector cell_types(num_cells);
/I Loop through all 2D cells to find each cell type
size_t cell_index = (O;
bool some_nodes_on = false;
for(floatj=0;j<nj-1;j++)
{
for(floati=0;i<ni-1;i++)
{
// Build type
/I type = index into polygonal configuration table
unsigned char cell_type = 0;

/I A 4 bit index is formed where each bit corresponds to a vertex
/[Bit on if vertex is inside surface, off otherwise
float x, vy, z;

H

this->translate_cap_coords(cap_num, i, j, X, y, Z);

H

size_t data_index = this->get_data_index(x, y, z);

H

if (this->data_[data_index] & this->mask_value_) cell_type |= Ox1;

this->translate_cap_coords(cap_num, i+1,j, X, vy, 2);
data_index = this->get_data_index(x, y, z);

H

if (this->data_[data_index] & this->mask_value_) cell_type |= 0x2;

this->translate_cap_coords(cap_num, i+1,j+1,Xx,y,2);
data_index = this->get_data_index(x, y, z);

H

if (this->data_[data_index] & this->mask_value_) cell_type |= Ox4;

-102-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

this->translate_cap_coords(cap_num, i,j+ 1, X, y, 2);
data_index = this->get_data_index(x, y, z);
if (this->data_[data_index] & this->mask_value_) cell_type |= 0x8;

cell_types] cell_index] = cell_type;
cell_index++,;

if(cell_type !1=0)
{
some_nodes_on = true;
}
}
}

/I If no border nodes for this cap are on, skip this cap
if('some_nodes_on)
{

continue;

}

/Il STEP 2: Add nodes to points list and translation table

/l Create translation table (2D matrix storing indices into actual points vector)

/I size_t point_trans_table[num cells = (nx - 1) * (ny - 1)][8 canonical indices (4
nodes, 4 edge points)]

std::vector< boost::array< unsigned int, 8 > > point_trans_table(num_cells);

/I Get mask transform from MaskVolume
GridTransform grid_transform = this->compute_mask_volume_-
>get_grid_transform();

/I All border nodes that are "on" are included as points because they are all
adjacent to

/I the imaginary padding that is "off."

/I Loop through all nodes

for(floatj = 0;j < nj; j++)

{
for(floati=0;i<ni i++)
{
/I Translate (i,) to (X, y, z) for this cap
float x, vy, z;

this->translate_cap_coords(cap_num, i, j, X, y, Z);

/I Look up mask value at (x, y, z)
size_t data_index = this->get_data_index(x, y, z);

-103-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

}

/! If mask value on

if (this->data_[data_index] & this->mask_value_)

{

/I Transform point by mask transform
PointF node_point = grid_transform.project(PointF(x, y, z));
/I Add node to the points list.
this->points_.push_back(node_point);
unsigned int point_index =
static_cast< unsigned int >(this->points_.size() - 1);

/I Add relevant canonical coordinates to translation table for adjacent cells.
/I Find indices and canonical coordinates of 1-4 adjacent cells

/I Lower right cell index
if(i<ni-1&&j<n-1)
{
size_t cell_index = static_cast<size_ t>((j*(ni-1))+1);
size_t canonical_coordinate = O;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

/I Lower left cell index

if(i>0&&j<nj-1)

{
size_t cell_index = static_cast< size_t>((j*(ni-1))+i-1);
size_t canonical_coordinate = 1;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

/I Upper left cell index
if(i>0&&j>0)
{
size_t cell_index =
static_cast<size_ t>(((j-1)*(ni-1))+i-1);
size_t canonical_coordinate = 2;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

/I Upper right cell index

if(i<ni-1&&j>0)

{
size_t cell_index = static_cast<size_t>(((j-1)*(ni-1))+1);
size_t canonical_coordinate = 3;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

}

-104-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

}

// STEP 3: Find edge nodes, add to points list and translation table

/I Check vertical edges
for(floatj=0;j<nj-1;j++)
{
for(floati=0;i<ni i++)
{
// Find endpoint nodes
float start_x, start_y, start_z;
this->translate_cap_coords(cap_num, i, j, start_x, start_y, start_z);
float end_x, end_y, end_z;
this->translate_cap_coords(cap_num, i,j+ 1, end_x, end_y, end_z);

size_t start_data_index = this->get_data_index(start_x, start_y, start_z);
size_t end_data_index = this->get_data_index(end_x, end_y, end_z);

/I If edge is "split" (one endpoint node is on and the other is off)
unsigned char start_bit = this->data_[start_data_index] & this-
>mask_value_;
unsigned char end_bit = this->data_[end_data_index] & this->mask_value_;
if (start_bit = end_bit)
{
/I Find edge point
float edge x, edge_y, edge z;
this->translate _cap_coords(cap_num, i, j + 0.5f,
edge_x, edge vy, edge_z);

/I Transform point by mask transform
PointF edge_point = grid_transform.project(PointF(edge_x, edge v,
edge_z));
/I Add edge to the points list.
this->points_.push_back(edge_point);
unsigned int point_index =
static_cast< unsigned int >(this->points_.size() - 1);

/I Add the relevant canonical coordinates to the translation table for adjacent
1-2 cells.

/I Left cell index

if(i>0)

{
size_t cell_index = static_cast<size_ t>((j*(ni-1))+i-1);
size_t canonical_coordinate = 5;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

-105-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I Right cell index
if(i<ni-1)
{
size_t cell_index = static_cast< size_t>((j*(ni-1))+1i);
size_t canonical_coordinate = 7;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}
}
}
}

/I Check horizontal edges
for(floatj=0;] <nj; j++)

for(floati=0;i<ni-1;i++)
{
// Find endpoint nodes
float start_x, start_y, start_z;
this->translate_cap_coords(cap_num, i, j, start_x, start_y, start_z);
float end_x, end_y, end_z;
this->translate_cap_coords(cap_num, i+ 1, j, end_x, end_y, end_z);

size_t start_data_index = this->get_data_index(start_x, start_y, start_z);
size_t end_data_index = this->get_data_index(end_x, end_y, end_z);

/I If edge is "split" (one endpoint node is on and the other is off)
unsigned char start_bit = this->data_[start_data_index] & this-
>mask_value_;
unsigned char end_bit = this->data_[end_data_index] & this->mask_value_;
if (start_bit = end_bit)
{
/I Find edge point
float edge x, edge_y, edge z;
this->translate _cap_coords(cap_num, i + 0.5f, j,
edge_x, edge vy, edge_z);

/I Transform point by mask transform
PointF edge_point = grid_transform.project(PointF(edge_x, edge v,
edge_z));
/I Add edge to the points list.
this->points_.push_back(edge_point);
unsigned int point_index =
static_cast< unsigned int >(this->points_.size() - 1);

/I Add the relevant canonical coordinates to the translation table for adjacent
1-2 cells.

-106-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I Upper cell index

if(j>0)

{
size_t cell_index = static_cast<size t>(((j-1)*(ni-1))+1i);
size_t canonical_coordinate = 6;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}

/I Lower cell index
if(j<nj-1)
{
size_t cell_index = static_cast<size_ t>((j*(ni-1))+1);
size_t canonical_coordinate = 4;
point_trans_table[cell_index][canonical_coordinate] = point_index;

}
}
}
}

Il STEP 4: Create face geometry (points + triangle indices)

/I Add points list to existing vertex list
/I For each cell
for(size_t cell_index = 0; cell_index < num_cells; cell_index++)
{
/I Lookup cell type (already stored in a 1D vector)
unsigned char cell_type = cell_types][cell_index |;

// Couldn't | just look up type on the fly here? Or does that make
parallelization harder?

// Look up the facet combo for this type

const CappingTableType& tesselation = CAPPING_TABLE_CJ cell_type ;

/I For each triangle in the tesselation for this type
for(int triangle_index = O; triangle_index < tesselation.num_triangles_;
triangle_index++)
{
/I For each vertex in the triangle
for(int triangle_point_index = O; triangle_point_index < 3;
triangle_point_index++)
{
/I Find canonical index for the point
int canonical_index =
tesselation.points_[3 * triangle_index + triangle_point_index |;

/I Look up the point index in the translation table for this cell

-107-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

unsigned int point_index = point_trans_table[cell_index][canonical_index |;
// Store the point coordinates in the temporary variable
elem_vertices] triangle_point_index] = this->points_[point_index |;
/I Add point index to the faces list
this->faces_.push_back(point_index);

}

/l Compute the area of the triangle and add it to the total area

this->area_ += 0.5f * Cross(elem_vertices[1] - elem_vertices[0],
elem_vertices[2] - elem_vertices[0]).length();

}

}

// Create a rendering "patch" for each cap

unsigned int max_point_index = static_cast< unsigned int >(this->points__.size()
);
);

)

unsigned int max_face_index = static_cast< unsigned int >(this->faces_.size()
if(min_point_index != max_point_index && min_face_index != max_face_index

{
this->min_point_index_.push_back(min_point_index);
this->max_point_index_.push_back(max_point_index);

this->min_face_index_.push_back(min_face_index);
this->max_face_index_.push_back(max_face_index);
}
}
}

T T

void HDX volumeTolsosurface::parallel_compute_normals(int thread, int
num_threads,
boost::barrier& barrier)

{

size_t num_vertices = this->points__.size();
if (thread == 0) // Only need to setup once
/I Reset the normals vector

this->normals__.clear();
this->normals__.resize(num_vertices, VectorF(0,0, 0));

}

/I All threads have to wait until setup is done before proceeding
barrier.wait();

-108-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I In order to parallelize the algorithm, each thread processes a different range of
vertex
/I indices [vertex_index_start, vertex_index_end)
size_t vertex_range_size = static_cast< size_t >(num_vertices / num_threads);
if (vertex_range_size * num_threads < num_vertices)
{
vertex_range_size++;

}

size_t vertex_index_start = thread * vertex_range_size;
size_t vertex_index_end = (thread + 1) * vertex_range_size;
if (vertex_index_end > num_vertices)

{

vertex_index_end = num_vertices;

}

// For each face
for(size_ti=0; i+ 2 < this->faces_.size(); i +=3)
{
size_t vertex_index1 = this->faces_[i];
size_t vertex_index2 = this->faces_[i+ 1];
size_t vertex_index3 = this->faces_[i+ 2];

/I If this face has at least one vertex in our range
if((vertex_index_start <= vertex_index1 && vertex_index1 < vertex_index_end

)l

(vertex_index_start <= vertex_index2 && vertex_index2 < vertex_index_end)
|

)
{

/I Get vertices of face

PointF p1 = this->points_[vertex_index1 |
PointF p2 = this->points_[vertex_index2 |
PointF p3 = this->points_[vertex_index3 |;

(vertex_index_start <= vertex_index3 && vertex_index3 < vertex_index_end)

// Calculate cross product of edges
VectorF vO = p3 - p2;

VectorF v1 = p1 - p2;

VectorF n = Cross(vO, v1);

/I Add to normal for each vertex in our range
if((vertex_index_start <= vertex_index1 && vertex_index1 <
vertex_index_end))

{

this->normals_|[vertex_index1] +=n;

}

-109-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

if((vertex_index_start <= vertex_index2 && vertex_index2 <
vertex_index_end))

{

this->normals_[vertex_index2 | +=n;

}

if((vertex_index_start <= vertex_index3 && vertex_index3 <

vertex_index_end))

{
this->normals_|[vertex_index3] += n;

}

}
}

/I For each vertex in our range
for(size_t i = vertex_index_start; i < vertex_index_end; i++)
{

/l Normalize normal

this->normals_|[i].normalize();

}
}

T T

void HDX volumeTolsosurface::upload_to_vertex_buffer()

{

if ('this->surface_changed_ && !this->values_changed)

{

return;

}

size_t num_of parts = this->part_points__.size();
bool has_values = this->values_.size() == this->points_.size();

/I Estimate the size of video memory required to upload the isosurface
ptrdiff_t total_size = O;
for (size_ti=0; i <num_of parts; ++i)
{
unsigned int num_pts = this->part_points_[i].second - this->part_points_[i
] .first;
ptrdiff_t vertex_size = num_pts * sizeof(PointF);
ptrdiff_t normal_size = num_pts * sizeof(VectorF);
ptrdiff_t value_size = has_values ? num_pts * sizeof(float) : O;
unsigned int num_face_indices = this->part_faces [i].second - this-
>part_faces [i].first;
ptrdiff_t face_size = num_face_indices * sizeof(unsigned int);
ptrdiff_t batch_size = vertex_size + normal_size + value_size + face_size;
CORE_LOG_MESSAGE("Isosurface Batch " + ExportToString(i)+ " " +

-110-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

ExportToString(num_pts) + " vertices, " +
ExportToString(num_face_indices / 3) + " triangles. Total memory: " +
ExportToString(batch_size));
total_size += batch_size;
¥
CORE_LOG_MESSAGE("Total memory required for the isosurface: " +
ExportToString(total_size));

if (total_size + (20 << 20) > static_cast< ptrdiff_t >(
RenderResources::Instance()->get_vram_size()))
{
CORE_LOG_WARNING("Could not fit the isosurface in GPU memory");
this->vbo_batches_.clear();
this->surface_changed_ = false;
this->values_changed_ = false;
this->vbo_available = false;
return;

}

RenderResources::lock_type rr_lock(RenderResources::GetMutex());
this->vbo_batches_.resize(num_of_parts);
for (size_ti=0; i< num_of_parts; ++i)
{
this->vbo_batches_[i].reset(new VertexBufferBatch);
this->vbo_batches_[i]->vertex_buffer_.reset(new
Core::VertexAttribArrayBuffer);
this->vbo_batches_[i]->normal_buffer_.reset(new
Core::VertexAttribArrayBuffer);
this->vbo_batches_[i]->faces_buffer_.reset(new Core::ElementArrayBuffer);
this->vbo_batches_[i]->vertex_buffer_->set_array(
VertexAttribArrayType::VERTEX_E, 3, GL_FLOAT, 0, 0);
this->vbo_batches_[i]->normal_buffer_->set_array(
VertexAttribArrayType::NORMAL_E, GL_FLOAT, 0, 0);

unsigned int num_pts = this->part_points_[i].second - this->part_points_[i
] .first;

ptrdiff_t vertex_size = num_pts * sizeof(PointF);

ptrdiff_t normal_size = num_pts * sizeof(VectorF);

unsigned int num_face_indices = this->part_faces [i].second - this-
>part_faces [i].first;

ptrdiff_t face_size = num_face_indices * sizeof(unsigned int);

this->vbo_batches_[i]->vertex_buffer_->set_buffer_data(vertex_size,
&this->points_[this->part_points_[i].first], GL_STATIC_DRAW);

this->vbo_batches_[i]->normal_buffer_->set_buffer_data(normal_size,
&this->normals_|[this->part_points_[i].first], GL_STATIC_DRAW));

this->vbo_batches_[i]->faces_buffer_->set_buffer_data(face_size,

-111-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

&this->part_indices_[i][0], GL_STATIC_DRAW);
if (has_values)

this->vbo_batches [i]->value_buffer_.reset(new
Core::VertexAttribArrayBuffer);
this->vbo_batches [i]->value_buffer_->set_generic_array(1, 1, GL_FLOAT,
GL_FALSE, 0,0,
this->vbo_batches_[i]->value_buffer_->set_buffer_data(num_pts * sizeof(
float),
&this->values_[this->part_points_[i].first], GL_STATIC_DRAW);
}
}

this->surface_changed_ = false;
this->values_changed_ = false;
this->vbo_available_ = true;

}
T T

void HDX volumeTolsosurface::reset()
{
this->points_.clear();
this->normals_.clear();
this->faces_.clear();
this->values_.clear();

}
T T

Isosurface::Isosurface(const MaskVolumeHandle& mask_volume) :
private_(new HDX_volumeTolsosurface)

{
this->private_->isosurface_ = this;
this->private_->orig_mask_volume_ = mask_volume;
this->private_->compute_mask_volume_ = mask_volume;
this->private_->surface_changed_ = false;
this->private_->values_changed_ = false;
this->private_->vbo_available_ = false;

}
T T

void Isosurface::.compute(double quality_factor, bool capping_enabled,
boost::function< bool () > check_abort)

{

-112-

10

15

20

25

30

35

40

45

WO 2017/165566

lock_type lock(this->get_mutex());

this->private_->points_.clear();
this->private_->normals_.clear();
this->private_->faces_.clear();
this->private_->values__.clear();
this->private_->area_ = 0;

this->private_->values_changed_ = false;

this->private_->check_abort_ = check_abort;

{

PCT/US2017/023669

Core::MaskVolume::shared_lock_type vol_lock(this->private_-

>orig_mask_volume_->get_mutex());

/I Initially assume we're computing the isosurface for the original volume (not

downsampled)

this->private_->compute_mask_volume_ = this->private_->orig_mask_volume_;

/I Downsample mask if needed
if(quality_factor !=1.0)

{

assert(quality_factor == 0.5 || quality_factor == 0.25 || quality_factor == 0.125

)i

Parallel parallel_downsample(boost::bind(
&HDX_volumeTolsosurface::parallel_downsample_mask,
this->private_, 1, 2, 3, quality_factor));

parallel_downsample.run();

}

if (check_abort())

{
// leave it in a decent state
this->private_->reset();
return;

}

I/l Copy values to members just to simplify and shorten code.

this->private_->compute_setup();

/l Compute isosurface without caps
Parallel parallel_faces(boost::bind(

&HDX_volumeTolsosurface::parallel_compute_faces,

this->private , 1, 2, 3)):
parallel_faces.run();

if (check_abort())
{

-113-

10

15

20

25

30

35

40

45

WO 2017/165566

/[leave it in a decent state
this->private_->reset();
return;

}

/I Compute isosurface caps
if(capping_enabled)
{
this->private_->compute_cap_faces();
}
}

/I Check for empty isosurface
if(this->private_->points_.size() == 0)

{

return;

}

Parallel parallel_normals(boost::bind(

&HDX_volumeTolsosurface::parallel_compute_normals,

this->private_, 1, 2, 3)):
parallel_normals.run();

if (check_abort())
{

/I leave it in a decent state
this->private_->reset();
return;

}

this->update_progress_signal_(

PCT/US2017/023669

HDX_volumeTolsosurface:: COMPUTE_PERCENT_PROGRESS_C +
HDX_volumeTolsosurface:: NORMAL_PERCENT_PROGRESS _C);

this->private_->type_buffer_.clear()
this->private_->edge_buffer_.clear(
this->private_->new_points_.clear()
this->private_->new_elems__.clear();
this->private_->new_elem_areas_.clear();
this->private_->front_offset_.clear();

this->private_->back_offset_.clear();

;;

H

this->private_->part_points_.clear();
this->private_->part_faces_.clear();
this->private_->part_indices_.clear();

unsigned int num_faces = 0;

-114-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

unsigned int min_point_index = O;
unsigned int min_face_index = 0;

for (size_t) = 0;) < this->private_->min_point_index__.size(); j++)
{
if (num_faces==0)
{
min_point_index = this->private_->min_point_index_[]]
min_face_index = this->private_->min_face_index_[]]

}

num_faces += this->private_->max_face_index_|[]] - this->private_-
>min_face_index_[]]

if (num_faces > 0 && (num_faces > 1000000 || j == this->private_-
>min_point_index_.size() -1))
{
this->private_->part_points_.push_back(std::make_pair(
min_point_index, this->private_->max_point_index_[j]));
this->private_->part_faces _.push_back(std::make_pair(
min_face_index, this->private_->max_face_index_[]j]));
num_faces = 0;

}

if (check_abort())

{
// leave it in a decent state
this->private_->reset();
return;

}

/I Update progress
double partition_progress =
static_cast< double >(j + 1) / static_cast< double >(this->private_-
>min_point_index_.size());
double total_progress =
HDX_volumeTolsosurface:: COMPUTE_PERCENT_PROGRESS_C +
HDX_volumeTolsosurface::NORMAL_PERCENT_PROGRESS_C +
(partition_progress *
HDX_volumeTolsosurface::PARTITION_PERCENT_PROGRESS_C);
this->update_progress_signal_(total_progress);
}
size_t num_batches = this->private_->part_points__.size();
for (size_ti=0; i< num_batches; ++i)
{
unsigned int num_face_indices = this->private_->part_faces_[i].second -
this->private_->part_faces_|[i].first;

-115-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

UIntVector local_indices(num_face_indices);
for (size_tj = 0; j < num_face_indices; ++j)
{
size_t pt_global_idx = this->private_->part_faces [i].first + J;
local_indices| j] = this->private_->faces [pt_global_idx] -
this->private_->part_points_[i].first;
assert(local_indices[|] >= 0 &&
local_indices[j] < (this->private_->part_points_[i].second -
this->private_->part_points_[i].first));

}

this->private_->part_indices_.push_back(local_indices);

}

this->private_->min_point_index_.clear();
this->private_->max_point_index_.clear();
this->private_->min_face_index_.clear();

this->private_->max_face_index_.clear();

this->private_->surface_changed_ = true;

if (check_abort())
{

/I leave it in a decent state
this->private_->reset();
return;

}

this->update_progress_signal_(1.0);

}
T T

const PointFVector& Isosurface::get_points() const

{

return this->private_->points_;

}
T T

const UlntVector& Isosurface::get_faces() const

{

return this->private_->faces_;

}
T T

-116-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

const VectorFVector& Isosurface::get_normals() const

{

return this->private_->normals_;

}
T T

const FloatVector& Isosurface::get_values() const

{

return this->private_->values_;

}
T T

bool Isosurface::set_values(const FloatVector& values)

{
{

return false;

this->private_->values_ = values;
this->private_->values_changed = true;
return true;

}
T T

if(!(values.size() == this->private_->points__.size() || values.size() ==

void Isosurface::set_color_map(ColorMapHandle color_map)

{
lock_type lock(this->get_mutex());

this->private_->color_map_ = color_map;

}
T T

Core::ColorMapHandle Isosurface::get_color_map() const

{
lock_type lock(this->get_mutex());

return this->private_->color_map_;

}
T T

void Isosurface::redraw(bool use_colormap)

lock_type lock(this->get_mutex());

-117-

))

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I Check for empty isosurface
if(this->private_->points_.size() == 0)
{

return;

}

this->private_->upload_to_vertex_buffer();

size_t num_batches = this->private_->part_points_.size();

bool has_values = this->private_->values__.size() == this->private_-
>points__.size();

/I Use the uploaded VBO for rendering if it's available
if (this->private_->vbo_available_)
{
for (size_ti=0; i < num_batches; ++i)
{
this->private_->vbo_batches_|[i]->vertex_buffer_->enable_arrays();
this->private_->vbo_batches [i]->normal_buffer_->enable_arrays();
if (has_values && use_colormap)

{

this->private_->vbo_batches_[i]->value_buffer_->enable_arrays();
¥
this->private_->vbo_batches [i]->faces_buffer_->draw_elements(

GL_TRIANGLES,

static_cast< GLsizei >((this->private_->part_faces_[i].second -

this->private_->part_faces_[i].first)), GL_UNSIGNED_INT);
this->private_->vbo_batches [i]->vertex_buffer_->disable_arrays();
this->private_->vbo_batches_[i]->normal_buffer_->disable_arrays();
if (has_values && use_colormap)
{

this->private_->vbo_batches_[i]->value_buffer_->disable_arrays();
}

}

return;

}

RenderResources::lock_type rr_lock(RenderResources::GetMutex());

/I The isosurface couldn't fit in GPU memory, render it piece by piece.

VertexAttribArrayBufferHandle vertex_buffer(new VertexAttribArrayBuffer);

vertex_buffer->set_array(VertexAttribArrayType::VERTEX_E, 3, GL_FLOAT, 0,
0),
VertexAttribArrayBufferHandle normal_buffer(new VertexAttribArrayBuffer);
normal_buffer->set_array(VertexAttribArrayType::NORMAL_E, GL_FLOAT, 0, 0

’VertexAttribArrayBufferHandIe value_buffer;
if (has_values && use_colormap)

-118-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

{

value_buffer.reset(new VertexAttribArrayBuffer);
value_buffer->set_generic_array(1, 1, GL_FLOAT, GL_FALSE, 0, 0);
}
ElementArrayBufferHandle face_buffer(new ElementArrayBuffer);
for (size_ti=0; i< num_batches; ++i)
{
unsigned int num_pts = this->private_->part_points_[i].second - this->private_-
>part_points_[i].first;
ptrdiff_t vertex_size = num_pts * sizeof(PointF);
ptrdiff_t normal_size = num_pts * sizeof(VectorF);
ptrdiff_t value_size = has_values && use_colormap ? num_pts * sizeof(float) :
0;
unsigned int num_face_indices = this->private_->part_faces_[i].second - this-
>private_->part_faces_[i].first;
ptrdiff_t face_size = num_face_indices * sizeof(unsigned int);

vertex_buffer->set_buffer_data(vertex_size, 0, GL_STREAM_DRAW);
void* buffer = vertex_buffer->map_buffer(GL_WRITE_ONLY);
if (buffer==0)

CORE_LOG_ERROR("Failed to map OpenGL buffer, isosurface rendering
will"
" be incomplete!");
return;
}
memcpy(buffer, &this->private ->points_|[this->private _->part_points_[i].first],
vertex_size),
vertex_buffer->unmap_buffer();

normal_buffer->set_buffer_data(normal_size, 0, GL_STREAM_DRAW),
buffer = normal_buffer->map_buffer(GL_WRITE_ONLY),
if (buffer==0)

CORE_LOG_ERROR("Failed to map OpenGL buffer, isosurface rendering
will"
" be incomplete!");
return;

memcpy(buffer, &this->private_->normals_|[this->private ->part_points [i
].first], normal_size),
normal_buffer->unmap_buffer();

if (has_values && use_colormap)

value_buffer->set_buffer_data(value_size, 0, GL_STREAM_DRAW);
buffer = value_buffer->map_buffer(GL_WRITE_ONLY);

-119-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

if (buffer ==0)
{
CORE_LOG_ERROR("Failed to map OpenGL buffer, isosurface rendering
will"
" be incomplete!");
return;
}
memcpy(buffer, &this->private ->values_|[this->private_->part_points_[i].first
], value_size);
value_buffer->unmap_buffer();

}

face_buffer->set_buffer_data(face_size, 0, GL_STREAM_DRAW),
buffer = face_buffer->map_buffer(GL_WRITE_ONLY);
if (buffer==0)

CORE_LOG_ERROR("Failed to map OpenGL buffer, isosurface rendering
will"
" be incomplete!");
return;

memcpy(buffer, &this->private ->part_indices_[i][O], face_size),
face_buffer->unmap_buffer();

vertex_buffer->enable_arrays();
normal_buffer->enable_arrays();
if (has_values && use_colormap)

{

value_buffer->enable_arrays();
}
face_buffer->draw_elements(GL_TRIANGLES,
static_cast< GLsizei >((this->private_->part_faces_[i].second -
this->private_->part_faces_[i].first)), GL_UNSIGNED_INT);
vertex_buffer->disable_arrays();
normal_buffer->disable_arrays();
if (has_values && use_colormap)
{
value_buffer->disable_arrays();
}
}
}

float Isosurface::surface_area() const

{
lock_type lock(this->get_mutex());

return this->private_->area_;

} ,

-120-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

oo

Z Node registry

Z Registers/Deregisters HDX_volumeTolsosurface node
;;//

MStatus initializePlugin(MObject obj)

{
MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");
MStatus stat = plugin.registerShape("HDX_volumeTolsosurface",
HDX_volumeTolsosurface::id,

&HDX_volumeTolsosurface::creator,
&HDX_volumeTolsosurface::initialize,

&HDX_volumeTolsosurface:.creator);
if (!stat){
cerr << "Failed to register node\n";
}

return stat;

}

MStatus uninitializePlugin(MObject obj)

{
MFnPlugin plugin(obj);
MStatus stat:

stat = plugin.deregisterNode(HDX_volumeTolsosurface::id);
if (!stat){

cerr << "Failed to deregister node : HDX volumeTolsosurface \n";
}

return stat;

i
1

/I HDX isosurfaceToMesh (Maya node)

1

-121-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

/I generates the mesh polygon shape shape from the isosurface.

/l this node allows to optionally display the mesh shape in the maya
/I viewport (hardware rendering)

1

i

/l Maya includes

#include <math.h>

#include <maya/MIOStream.h>
#include <maya/MFnMesh.h>
#include <maya/MPoint.h>

#include <maya/MFloatPoint.h>
#include <maya/MFloatPointArray.h>
#include <maya/MIntArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnUnitAttribute.h>
#include <maya/MFnTypedAttribute.h>
#include <maya/MFnPlugin.h>

#include <maya/MPxNode.h>
#include <maya/MObject.h>
#include <maya/MPlug.h>
#include <maya/MDataBlock.h>
#include <maya/MFnMeshData.h>

/I Core includes

#include <Core/DataBlock/StdDataBlock.h>
#include <Core/Utils/StackVector.h>
#include <Core/Utils/Parallel.h>

#include <Core/Utils/Log.h>

i
/I HDX isosurfaceToMesh
i

class HDX_isosurfaceToMesh : public MPxNode
{
public:
HDX _isosurfaceToMesh() {};
virtual ~HDX_isosurfaceToMesh() {};
virtual MStatus compute(const MPlug& plug, MDataBlock& data);
static void* creator();
static MStatus initialize();

static MTypeld id;

-122-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

protected:
MObject createMesh(const PointFVector&, const UIntVector&);
I3

T T

boost::shared_array<float>
computeFaceNormal(const PointF& p1, const PointF& p2, const PointF& p3)
{

/I compute face normal:

/I 'U=p2-p1

/I 'V =p3-p1

/Il Ni=UyVz - UzVy

/I Nj =UzVx - UxVz

/I Nk = UxVy - UyVx

VectorF U = p2 - p1;
VectorF V = p3 - p1;

boost::shared_array<float> normal(new float[3]);
normal[0] = U.y() *V.z() - U.z() * V.y();
normal[1] = U.z() * V.x() - U.x() *V.z();
normal[2] = U.x() * V.y() - U.y() * V.x();

return normal;

}
T T

MObject HDX _isosurfaceToMesh::createMesh(const PointFVector& points,
const UIntVector& faces

)

for (size_ti=0; i+ 2 <faces.size(); i +=3)
{
size_t vertex_index1 =faces[i];
size_t vertex_index2 =faces[i+ 1],
size_t vertex_index3 =faces[i+ 2],

/I Get vertices of face

PointF p1 = points[vertex_index1 |;
PointF p2 = points[vertex_index2 |;
PointF p3 = points[vertex_index3 |;

boost::shared_array<float> normal = computeFaceNormal(p1, p2, p3);

-123-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

boost::shared_array<float> vertex1(new float[POINT_LEN]);
vertex1[0] = p1.x();
vertex1[1] = p1.y();
vertex1[2] = p1.z();

boost::shared_array<float> vertex2(new float[POINT_LEN]);
vertex2[0] = p2.x();
vertex2[1] = p2.y();
vertex2[2] = p2.z();

boost::shared_array<float> vertex3(new float[POINT_LEN]);
vertex3[0] = p3.x();

vertex3[1] = p3.y();
vertex3[2] = p3.z();

MObject newMesh = meshFS.create(numVertices, faces.size(),
points.size(),
faceCounts, faceConnects,
outData, &stat);

return newMesh:

}
T T

MStatus HDX_isosurfaceToMesh::compute(const MPlug& plug, MDataBlock&
data)

{

MStatus returnStatus;
if (plug == outputMesh) {
/* Get output object */

MDataHandle outputHandle = data.outputValue(outputMesh,
&returnStatus);

MFnMeshData dataCreator;
MObject newOutputData = dataCreator.create(&returnStatus);

createMesh(newOQOutputData, returnStatus);
outputHandle.set(newOutputData);

data.setClean(plug);
} else

-124-

10

15

20

25

30

35

40

45

WO 2017/165566 PCT/US2017/023669

return MS::kUnknownParameter;

return MS::kSuccess;

}

oo

Z Node registry

Z Registers/Deregisters HDX_isosurfaceToMesh node
;;//

MStatus initializePlugin(MObject obj)
MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");
MStatus stat = plugin.registerShape("HDX_isosurfaceToMesh",
HDX_isosurfaceToMesh::id,
&HDX_isosurfaceToMesh::creator,
&HDX _isosurfaceToMesh::initialize,
&HDX _isosurfaceToMesh::creator);

if (!stat){
cerr << "Failed to register node\n";
}

return stat;

}

MStatus uninitializePlugin(MObject obj)

{
MFnPlugin plugin(obj);
MStatus stat:

stat = plugin.deregisterNode(HDX _isosurfaceToMesh::id);
if (!stat){

}

return stat;

cerr << "Failed to deregister node : HDX_isosurfaceToMesh \n";

-125-

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

CLAIMS

What is claimed is:

1. A computer implemented method for enhanced imaging, the method
comprising:

(a) transforming a non-color, non-photorealistic image into a high
definition colorized photorealistic image;

(b) wherein said method is performed by executing programming on at
least one computer processor, said programming residing on a non-transitory

medium readable by the computer processor.

2. A computer implemented method for enhanced imaging, the method
comprising:

(a) transforming a non-color, two-dimensional image generated from a
diagnostic imaging device into high definition colorized, photorealistic image;

(b) wherein said method is performed by executing programming on at
least one computer processor, said programming residing on a non-transitory

medium readable by the computer processor.

3. The method of claim 1 or claim 2, further comprising creating

animated simulations based on a plurality of said photorealistic images.

4. The method of claim 1 or claim 2, furhter comprising highlighting an

area of interest in the photorealistic image using a molecular contrast promoter.
. The method of claim 4, further comprising automatically generating a
diagnosis by evaluating characteristcs of the areas of interest in the photorealistic

image.

6. The method of claim 1 or claim 2, further comprising:

using functional genomics and molecular imaging to generate a molecular

-126-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

contrast;

using the molecular contrast to highlight the area of interest.

7. The method of claim 6, further comprising , further comprising
automatically generating a diagnosis by evaluating characteristcs of the areas of

interest in the photorealistic image.

8. A computer implemented method for creating an animated
simulation, the method comprising:

(a) transforming a plurality of images of a biological component, feature,
characteristic, assembly, or structure, or a combination thereof, into high definition
colorized photorealistic images; and

(b) assembling said photorealistic images into an animated simulation;

(c) wherein said method is performed by executing programming on at
least one computer processor, said programming residing on a non-transitory

medium readable by the computer processor.

9. An apparatus for enhanced imaging, the apparatus comprising:

(a) a computer processor; and

(b) programming in a non-transitory computer readable medium and
executable on the computer processor for transforming a non-color, non-

photorealistic image into a high definition colorized photorealistic image.

10. An apparatus for enhanced imaging, the apparatus comprising:

(a) a computer processor; and

(b) programming in a non-transitory computer readable medium and
executable on the computer processor for transforming a non-color, two-
dimensional image generated from a diagnostic imaging device into high

definition colorized, photorealistic image.

11. The apparatus of claim 9 or claim 10, wherein said programming is

configured to create animated simulations based on a plurality of said

-127-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

photorealistic images.

12. The apparatus of claim 9 or claim 10, wherein said programming is
configured to highlight an area of interest in the photorealistic image using a

molecular contrast promoter.

13. The apparatus of claim 12, wherein said programming is configured
for automatically generating a diagnosis by evaluating characteristcs of the areas

of interest in the photorealistic image.

14. The apparatus of claim 9 or claim 10, wherein said programming is
configured for performing steps comprising:

using functional genomics and molecular imaging to generate a molecular
contrast; and

using the molecular contrast to highlight the area of interest.

15. The apparatus of claim 14, wherein said programming is configured
for automatically generating a diagnosis by evaluating characteristcs of the areas

of interest in the photorealistic image.

16. An apparatus for creating an animated simulation, the apparatus
comprising:

(a) a computer processor; and

(b) programming in a non-transitory computer readable medium and
executable on the computer processor for:

(1) transforming a plurality of images of a biological component,
feature, characteristic, assembly, or structure, or a combination thereof, into
high definition colorized photorealistic images; and

(i) assembling said photorealistic images into an animated

simulation.

-128-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

17. An enhanced image, comprising:

(a) a high definition colorized photorealistic image transformed from a
non-color, non-photorealistic image;

(b) wherein image transformation is performed by executing
programming on at least one computer processor, said programming residing on a

non-transitory medium readable by the computer processor.

18. An enhanced image, comprising:

(a) a high definition colorized photorealistic image transformed from a
non-color, two-dimensional image generated from a diagnostic imaging device;

(b) wherein image transformation is performed by executing
programming on at least one computer processor, said programming residing on a

non-transitory medium readable by the computer processor.

19. An animated simulation, comprising:

(a) an assembly of a high definition colorized photorealistic images
transformed from non-color, non-photorealistic images;

(b) wherein image transformation and assembly is performed by
executing programming on at least one computer processor, said programming

residing on a non-transitory medium readable by the computer processor.

20. An animated simulation, comprising:

(a) an assembly of a high definition colorized photorealistic images
transformed from a non-color, two-dimensional image generated from a diagnostic
imaging device;

(b) wherein image transformation and assembly is performed by
executing programming on at least one computer processor, said programming

residing on a non-transitory medium readable by the computer processor.
21. An apparatus for enhanced imaging, the apparatus comprising:
(a) a computer processor; and

(b) a non-transitory computer-readable memory storing instructions

-129-

SUBSTITUTE SHEET (RULE 26)

WO 2017/165566 PCT/US2017/023669

executable by the computer processor;
(c) wherein said instructions, when executed by the computer
processor, perform steps comprising:

(1) generating a database of parametric anatomy comprising one
or more of volume data and isometric surface models of one or more
aspects of the anatomy;

(i) tagging one or more objects within the parametric anatomy;

(i) inputting patient data comprising an imaging scan of a target
patient anatomy of a patient;

(iv) configuring a base parametric model of patient anatomy as a
function of input patient data comprising one or more physical
characteristics of the patient;

(V) applying data relating to the imaging scan to the base
parametric model;

(vi) searching the data relating to the imaging scan for one or
more markers within the data;

(vii) aligning the parametric model to the one or more markers of
the imaging scan; and

(vii) rendering the aligned parametrical model and imaging scan

for photo-realistic display of the patient target anatomy.

22. The apparatus of claim 21, wherein data relating to the imaging scan
comprises DICOM data from one or more of an MRI, CT, or ultrasound scan of the
patient.

23. The apparatus of claim 21, wherein the database is generated by
acquiring input from patient data comprising one or more of patient scans,

statistics or photos relating to patient.

24. The apparatus of claim 21, wherein the isometric surface models are

configured for photo-real real-time VR rendering.

-130-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

25. The apparatus of claim 21, wherein the tagged data is configured so

that that can be turned on or off for viewing.

26. The apparatus of claim 21, the instructions further comprising:

allowing manual input for selecting the one or more markers.

27. The apparatus of claim 22, wherein aligning the parametric model to
the one or more markers of the imaging scan comprises isometric surface
alignment of the parametric anatomical geometry to the patient's DICOM scan

data.

28. The apparatus of claim 27, wherein the alignment is done taking into
account input patient data relating to one or more of weight, height, BMI, X-ray,

and patient photos.

29. The apparatus of claim 27, wherein the alignment is performed on

both volume data and isometric surfaces.

30. The apparatus of claim 29, wherein the alignment is adjusted by
manual input via selecting one or more structures on slices of the MRI or CT scan

to fine-tune the base parametric model.

31. The apparatus of claim 21, the instructions further configured for:
applying photographic reference of skin color to the output parametric

model.
32. The apparatus of claim 21, the instructions further configured for:
auto-alignment and projection of one or more of the following to the

parametric model: patient wounds, surgeon markups, X-rays, notes and other text

files.

-131-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

33. A computer implemented method for enhanced imaging, the method
comprising:

generating a database of parametric anatomy comprising one or
more of volume data and isometric surface models of one or more aspects
of the anatomy;

tagging one or more objects within the parametric anatomy;

inputting patient data comprising an imaging scan of a target patient
anatomy of a patient;

configuring a base parametric model of patient anatomy as a
function of input patient data comprising one or more physical
characteristics of the patient;

applying data relating to the imaging scan to the base parametric
model;

searching the data relating to the imaging scan for one or more
markers within the data;

aligning the parametric model to the one or more markers of the
imaging scan; and

rendering the aligned parametrical model and imaging scan for

photo-realistic display of the patient target anatomy.

34. The method of claim 33, wherein data relating to the imaging scan
comprises DICOM data from one or more of an MRI, CT, or ultrasound scan of the
patient.

35. The method of claim 33, wherein the database is generated by
acquiring input from patient data comprising one or more of patient scans,

statistics or photos relating to patient.

36. The method of claim 33, wherein the isometric surface models are

configured for photo-real real-time VR rendering.

-132-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 2017/165566 PCT/US2017/023669

37. The method of claim 33, wherein the tagged data is configured so

that that can be turned on or off for viewing.

38. The method of claim 33, the method further comprising:

allowing manual input for selecting the one or more markers.

39. The method of claim 34, wherein aligning the parametric model to
the one or more markers of the imaging scan comprises isometric surface
alignment of the parametric anatomical geometry to the patient's DICOM scan

data.

40. The method of claim 39, wherein the alignment is done taking into
account input patient data relating to one or more of weight, height, BMI, X-ray,

and patient photos.

41. The method of claim 39, wherein the alignment is performed on both

volume data and isometric surfaces.

42. The method of claim 41, wherein the alignment is adjusted by
manual input via selecting one or more structures on slices of the MRI or CT scan

to fine-tune the base parametric model.

43. The method of claim 33, the method further comprising:
applying photographic reference of skin color to the output parametric

model.
44, The method of claim 33, the method further comprising:
auto-alignment and projection of one or more of the following to the

parametric model: patient wounds, surgeon markups, X-rays, notes and other text

files.

-133-

SUBSTITUTE SHEET (RULE 26)

WO 2017/165566 PCT/US2017/023669

1114

"QQN

32
/ MRl scans =
Isometric . 34
surface le— (Generate database of w1 Patient stats v
models Parametric human body
A
Photos .
12 36
Sﬁj i
gt T ag objects within database
" ' 5
., Patient
’ 6-—”’/ Input patient data S MRICT scan
' 40
18~ Configure base Patient
sim-set model phygé?éogy
! Coe
5g—" Apply Dicom data
1o sim-set model

:

Search scan data Manual
22,// .] .
for milestone markers input

. \42

24~ Align sim-set geometry
to markers/scan data

:

Cull patient scan data
26" for custom display

% /44

Additional Additional
processing data

FIG. 1

WO 2017/165566 PCT/US2017/023669

2/14

4@'\\

Patient data

102~ prnmmnemnem——- e
3 :
: Application :
: programming :
L 104 5
E Processor ;
: 106" g
L 108~ 5
E Memory :
, Qutput simulation
Display i model
1127 N110

FIG. 2

PCT/US2017/023669

WO 2017/165566

3/14

FIG. 3A

408~

FIG. 3B

FIG. 4A

WO 2017/165566 PCT/US2017/023669

5/14

PCT/US2017/023669

WO 2017/165566

6/14

S "5l
mmw/
: e LovEE Pl
SOIUIR ! M
ABojoiwemds . ! Buibepig - | SOIUIOLY
o Msmmmmm \@mw Za SOIUCIOGRIBY »
IAJOS UHBOH - ! or | SOIUIOR]OI «
S{Bl] [BOIID) - siebie) Buieubig . | | [: bog YNY -
SBIPMS sausy Jossaiddng w BuiBew) jeondgy » | | diyn ¥NQ -
EOIUNG-8ld « JOWINY . m BUIDIPBIN JBBJONN . m Bupusnbeg
aaaaaaaa Adesay) sauaboouq) » m an - m SUIOUBE) BIOUM »
nejsbie . suigioad w 191 Bupuanbeg
Adesayy p85SaIUXBIBAL m A - m SWOXT BJOUM -
pIBDUBLS - SUOneIN pue ! 13d s 1! |1 yuegoig pue Jsiusn
feteioy sjofie) 10 seIpms | BusBewy seynosjopy | 20IN0SBY BNSSI|
BAIUSARI » [BUCHOUNS . m ‘pajebie] . m UOIENBAT JILIOUBL) »
Adeiayy SIS uonEniBAY
paiebie} < 10 UoROUN <7 Buibepis <= T HITTETS)

WO 2017/165566

7114

202~

Functional genomic analysis
of diseased tissues

{

204—

identifications of
overexposed protein X

Y

206~

Generate synthetic promoter
of protein X

{

208~

Synthetic promoter SIMaging
gene delivery

Y

210

Personalized SiMaging

FIG. 6

PCT/US2017/023669

WO 2017/165566 PCT/US2017/023669

8/14

40c FIG. 7A

G. 8A

F

WO 2017/165566

10/14
3000

2500
2000
1500
1000

500

0]

PCT/US2017/023669

pFOX-CAT RIP-CAT HIP-CAT
PANC-1 0 370 246
HPDE 0 0 14

FIG. 9A

SHIP-CAT
2897
5

FIG. 9C
5000
2 4000
=
S 3000
= T
% 2000 1 I
— 1000
CMV-TK RIP-TK SHIP-TK
3776 2040 1268

FIG. 8D

WO 2017/165566 PCT/US2017/023669

1114

WO 2017/165566

P

PCT/US2017/023669

12/14

~302

310~
AUTOMATIC MESH

r GENERATION

322&" N

mmmmmmmmmmm

Sg?ib"‘ B o

mmmmmmmmmmm

y

3226"’ N v

mmmmmmmmmmm

i

VOLUME TO ISOSURFACE
GENERATION

322@ TN pmmmmmmm =

mmmmmmmmmmm

]

wwwwwwwwwww

bl |

o o

¥

A

WO 2017/165566 PCT/US2017/023669

13/14

INPUT: 3D “STANDARD”
HUMAN LIBRARY

AUTOMATIC MESH
GENERATION

27 OMESH N
< SHAPE ANALYSIS AND ™
~~_ VATCHING _~

¥
&

mmmmmmmmmmm

=
RN,
o
o
x>
L
L)
=
=
i
=
o]
&

mmmmmmmmmmm

mmmmmmmmmmm

=
T
o
x
=
=
o
=
=
&3
i

3221~ e

wwwwwwwwwww

WO 2017/165566 PCT/US2017/023669

14/14

¥

INPUT: CAMERA

306 /

340 N

QUTPUT: RENDERING

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2017/023669

A. CLASSIFICATION OF SUBJECT MATTER

CPC -

IPC(8) - A61B 34/10; A61B 5/00; A61B 19/00; GO6K 9/34 (2017.01)
AB1B 34/10; GO6F 19/3437; GO6T 3/0012; GO6T 15/02 (2017.02)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

USPC - 382/173; 382/190; 700/98 (keyword delimited)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/0278600 A1 (CHRISTENSEN et al) 24 October 2013 (24.10.2013) entire document 1,3,9,12,18,20
X 2,4-7,10, 13-16, 19
- US 6,233,480 B1 (HOCHMAN et al) 15 May 2001 (15.05.2001) entire document —
Y 8,17, 21
X WO 2014/145267 A1 (CONFORMIS, INC.) 18 September 2014 (18.09.2014) entire document | 22-45
Y US 2010/0157018 A1 (LAMPOTANG et al) 24 June 2010 (24.06.2010) entire document 8,17, 21
A US 2008/0134094 A1 (SAMADANI et al) 05 June 2008 (05.06.2008) entire document 1-10, 1245
A WO 2014/159082 A1 (BLUE BELT TECHNOLOGIES, INC.) 02 October 2014 (02.10.2014) 1-10, 1245

entire document

A US 2007/0070063 A1 (SUMANAWEERA) 29 March 2007 (29.03.2007) entire document 1-10, 1245
A US 2009/0184855 A1 (THIELE) 23 July 2009 (23.07.2009) entire document 1-10, 12-45
A WO 2009/004296 A1 (YANG et al) 08 January 2009 (08.01.2008) entire document 1-10, 1245
A US 8,674,989 B1 (DALAL et al) 18 March 2014 (18.03.2014) entire document 1-10, 1245
A US 6,359,618 B1 (HEIRICH) 19 March 2002 (19.03.2002) entire document 1-10, 1245

Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

10 July 2017

Date of mailing of the international search report

21 JUL 2017

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2017/023669

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. l:] Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. l:] Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
See extra sheet(s).

1. K‘ As all required additional search fees were timely paid by the applicant, this intermational search report covers all searchable
claims.

2. E] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

% No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

INTERNATIONAL SEARCH REPORT International application No,
PCT/US2017/023669

Continued from Box No. Il Observations where unity of invention is lacking

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must b€ paid.

Group |, claims 1-21, drawn to creating an animated simulation.
Group |l, claims 22-45, drawn to generating a database of parametric anatomy.

The inventions listed as Groups I-Il do not refate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corresponding special technical features for the following reasons: the special technical feature of the Group
| invention: transforming a non-color, non-photorealistic image into a high definition colorized photorealistic image as claimed therein is
not present in the invention of Group |l. The special technical feature of the Group Il invention: generating a database of parametric
anatomy comprising one or more of volume data and isometric surface models of one or more aspects of the anatomy; tagging one or
more objects within the parametric anatomy; inputting patient data comprising an imaging scan of a target patient anatomy of a patient;
configuring a base parametric model of patient anatomy as a function of input patient data comprising one or more physical
characteristics of the patient; applying data relating to the imaging scan to the base parametric model; searching the data relating to the
imaging scan for one or more markers within the data; aligning the parametric model to the one or more markers of the imaging scan;
and rendering the aligned parametrical model and imaging scan for photo-realistic display of the patient target anatomy as claimed
therein is not present in the invention of Group |.

Groups | and Il tack unity of invention because even though the inventions of these groups require the technical feature of an apparatus
for enhanced imaging of photo-realistic images, this technical feature is not a special technical feature as it does not make a contribution
over the prior art.

Specifically, US 2008/0134094 A1 (SAMADANI et al) 05 June 2008 (05.06.2008) teaches an apparatus for enhanced imaging of
photo-realistic images (Paras. 92-96).

Since none of the special technical features of the Group | or |l inventions are found in more than one of the inventions, unity of invention
is lacking.

Form PCT/ISA/210 (extra sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2017/023669

C (Continuation). =~ DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2007/0154110 A1 (WEN et al) 05 July 2007 (05.07.2007) entire document

1-10, 1245

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - claims
	Page 129 - claims
	Page 130 - claims
	Page 131 - claims
	Page 132 - claims
	Page 133 - claims
	Page 134 - claims
	Page 135 - claims
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - wo-search-report
	Page 151 - wo-search-report
	Page 152 - wo-search-report
	Page 153 - wo-search-report

