(54) Title: ELECTRONIC AEROSOL PROVISION SYSTEMS AND METHODS

(57) Abstract: A system comprising an electronic aerosol provision device for selectively providing an aerosol to a user of the electronic aerosol provision device, a computing device configured to communicate with the electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device, and a biometric sensor configured to measure a biometric parameter of the user of the electronic aerosol provision device and to communicate with the computing device to exchange sensor data indicating a measurement of the biometric parameter. The computing device is further configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.
ELECTRONIC AEROSOL PROVISION SYSTEMS AND METHODS

Field
The present disclosure relates to electronic aerosol provision systems such as nicotine delivery systems (e.g. electronic cigarettes and the like) and associated functionality.

Background
Electronic aerosol provision devices such as electronic cigarettes (e-cigarettes) generally contain a reservoir of a source formulation, typically a liquid including nicotine which is sometimes referred to as an e-liquid, from which an aerosol is generated, e.g. through heat vaporisation. An aerosol source for an aerosol provision device may thus comprise a heater having a heating element arranged to receive source liquid from the reservoir, for example through wicking / capillary action. While a user inhales on the device, electrical power is supplied to the heating element to vaporise source liquid in the vicinity of the heating element to generate an aerosol for inhalation by the user. The amount of power supplied to the heating element may in some cases be varied to control aspects of the aerosol generation. The devices are usually provided with one or more air inlet holes located away from a mouthpiece end of the system. When a user sucks on a mouthpiece connected to the mouthpiece end of the system, air is drawn in through the inlet holes and past the aerosol source so that vapour from the aerosol source becomes entrained in the airflow with the resulting aerosol being inhaled by the user. The practice of inhaling vaporised liquid in this manner is commonly referred to as vaping.

An e-cigarette may have an interface to support external data communications. This interface may be used, for example, to communicate with a computing device running a software application associated with the use of the e-cigarette. For example, the computing device may comprise a smart phone or tablet computer running an application ("app") provided to facilitate a user's interaction with the e-cigarette. The communications interface may be used, for example, to load control parameters and/or updated software onto the e-cigarette. Alternatively or additionally, the interface may be utilised to download data from the e-cigarette to the computing device, for example for display to a user though the user interface of an app running on the computing device. The downloaded data may, for example, represent usage parameters of the e-cigarette, fault conditions, etc. As the skilled person will be aware, many other forms of data can be exchanged between an e-cigarette and one or more external devices.

Summary
According to a first aspect of certain embodiments there is provided a system comprising: an electronic aerosol provision device for selectively providing an aerosol to a user of the electronic aerosol provision device; a computing device configured to
communicate with the electronic aerosol provision device to exchange operating data
associated with the operation of the electronic aerosol provision device; and a biometric
sensor configured to measure a biometric parameter of the user of the electronic aerosol
provision device and to communicate with the computing device to exchange sensor data
indicating a measurement of the biometric parameter; and wherein the computing device is
configured to control an aspect of its operation relating to the electronic aerosol provision
device in response to the sensor data received from the biometric sensor.

According to another aspect of certain embodiments there is provided the electronic
aerosol provision device of the first aspect.

According to another aspect of certain embodiments there is provided a method of
operating a system comprising an electronic aerosol provision device, a computing device
configured to communicate with the electronic aerosol provision device to exchange
operating data associated with the operation of the electronic aerosol provision device, and a
biometric sensor configured to measure a biometric parameter of a user of the electronic
aerosol provision device and to communicate with the computing device to exchange sensor
data indicating a measurement of the biometric parameter; wherein the method comprises:
the biometric sensor measuring a biometric parameter of a user of the electronic aerosol
provision device and communicating sensor data indicating a measurement of the biometric
parameter to the computing device; and the computing device controlling an aspect of its
operation relating to the electronic aerosol provision device in response to the sensor data
received from the biometric sensor.

According to another aspect of certain embodiments there is provided a computing
device configured to communicate with an electronic aerosol provision device to exchange
operating data associated with the operation of the electronic aerosol provision device and to
communicate with a biometric sensor to receive sensor data from the biometric sensor
indicating a measurement of a biometric parameter of a user of the electronic aerosol
provision device, wherein the computing device is further configured to control an aspect of
its operation relating to the electronic aerosol provision device in response to the sensor
data received from the biometric sensor.

According to another aspect of certain embodiments there is provided a method of
operating a computing device configured to communicate with an electronic aerosol
provision device to exchange operating data associated with the operation of the electronic
aerosol provision device, the method comprising communicating with a biometric sensor to
receive sensor data from the biometric sensor indicating a measurement of a biometric
parameter of a user of the electronic aerosol provision device and controlling an aspect of
the computing device’s operation relating to the electronic aerosol provision device in
response to the sensor data received from the biometric sensor.
According to another aspect of certain embodiments there is provided a computer
program product comprising machine readable instructions which when executed on a
computing device configure the computing device to communicate with an electronic aerosol
provision device to exchange operating data associated with the operation of the electronic
aerosol provision device, to communicate with a biometric sensor to receive sensor data
from the biometric sensor indicating a measurement of a biometric parameter of a user of
the electronic aerosol provision device, and to control an aspect of the computing device's
operation relating to the electronic aerosol provision device in response to the sensor data
received from the biometric sensor.

According to another aspect of certain embodiments there is provided a system
comprising: electronic aerosol provision means for selectively providing an aerosol to a user
of the electronic aerosol provision means; computing means for communicating with the
electronic aerosol provision means to exchange operating data associated with the operation
of the electronic aerosol provision means; and biometric sensor means for measuring a
biometric parameter of the user of the electronic aerosol provision means and
communicating with the computing means to exchange sensor data indicating a
measurement of the biometric parameter; and wherein the computing means controls an
aspect of its operation relating to the electronic aerosol provision means in response to the
sensor data received from the biometric means.

It will be appreciated that features and aspects of the invention described above in
relation to the first and other aspects of the invention are equally applicable to, and may be
combined with, embodiments of the invention according to other aspects of the invention as
appropriate, and not just in the specific combinations described above.

Further respective aspects and features of the disclosure are defined in the
appended claims.

Brief Description of the Drawings

Embodiments of the present invention will now be described by way of example with
reference to the accompanying drawings, in which:

Figure 1 is a schematic (exploded) diagram of an e-cigarette in accordance with
some embodiments of the disclosure.

Figure 2 is a schematic diagram of the main electrical/electronic components of the
e-cigarette of Figure 1 in accordance with some embodiments of the disclosure.

Figure 3 is a simplified schematic diagram of the processor of the e-cigarette of
Figure 1 in accordance with some embodiments of the disclosure.

Figure 4 is a schematic diagram of a system supporting wireless communications
between an e-cigarette, a mobile communication device and a biometric sensor.
Figure 5 is a schematic diagram showing further details of the biometric sensor of Figure 4.

Figure 6 is a schematic diagram showing further details of the mobile communication device of Figure 4.

Figure 7 is a flow diagram schematically representing a method of operating a system in accordance with an embodiment of the disclosure.

Detailed Description

Aspects and features of certain examples and embodiments are discussed / described herein. Some aspects and features of certain examples and embodiments may be implemented conventionally and these are not discussed / described in detail in the interests of brevity. It will thus be appreciated that aspects and features of apparatus and methods discussed herein which are not described in detail may be implemented in accordance with any conventional techniques for implementing such aspects and features.

As described above, the present disclosure relates to an aerosol provision device, such as an e-cigarette. Throughout the following description the term "e-cigarette" is used; however, this term may be used interchangeably with electronic vapour provision device, aerosol delivery device, and other similar terminology.

Figure 1 is a schematic (exploded) diagram of an e-cigarette 10 in accordance with some embodiments of the disclosure (not to scale). The e-cigarette comprises a body or control unit 20 and a cartomiser 30. The cartomiser 30 includes a reservoir 38 of liquid, typically including a liquid and nicotine and / or flavouring, a heater 36, and a mouthpiece 35. The e-cigarette 10 in this example has a longitudinal or cylindrical axis which extends along a centre-line of the e-cigarette from the mouthpiece 35 at one end of the cartomiser 30 to an opposing end of the control unit 20 (usually referred to as the tip end). This longitudinal axis is indicated in Figure 1 by the dashed line denoted LA.

The liquid reservoir 38 in the cartomiser may hold the (e-)liquid directly in free liquid form, or may utilise some absorbing structure, such as a foam matrix or cotton material, etc., as a retainer for the liquid. The liquid is then fed from the reservoir 38 to be delivered to a vapouriser comprising the heater 36. For example, liquid may flow via capillary action from the reservoir 38 to the heater 36 via a wick (not shown in Figure 1).

Although the examples described herein primarily focus on electronic smoking devices employing an aerosol forming substrate in the form of a liquid, it will be appreciated that the same principles can be applied in respect of electronic smoking devices employing aerosol forming substrate which are provided in solid form, for example comprising a plant material / plant derivative material. Note that devices containing a solid aerosol forming substrate do not typically employ a wick to transport the formulation to the heater, but rather
provide a suitable arrangement of the heater in relation to the material to provide suitable heating and vaporisation.

The control unit 20 includes a re-chargeable cell or battery 54 to provide power to the e-cigarette 10 (referred to hereinafter as a battery) and a printed circuit board (PCB) 28 and/or other electronics for generally controlling the e-cigarette.

The control unit 20 and the cartomiser 30 are in this example detachable from one another, as shown in Figure 1, but are joined together when the device 10 is in use, for example, by a screw or bayonet fitting. The connectors on the cartomiser 30 and the control unit 20 are indicated schematically in Figure 1 as 31B and 21A respectively. This connection between the control unit and cartomiser provides for mechanical and electrical connectivity between the two.

When the control unit is detached from the cartomiser, the electrical connection 21A on the control unit that is used to connect to the cartomiser may also serve as a socket for connecting a charging device (not shown). The other end of this charging device can be plugged into a USB socket to re-charge the battery 54 in the control unit of the e-cigarette. In other implementations, the e-cigarette may be provided (for example) with a cable for direct connection between the electrical connection 21A and a USB socket.

The control unit is provided with one or more holes for air inlet adjacent to PCB 28. These holes connect to an air passage through the control unit to an air passage provided through the connector 21A. This then links to an air path through the cartomiser 30 to the mouthpiece 35. Note that the heater 36 and the liquid reservoir 38 are configured to provide an air channel between the connector 31B and the mouthpiece 35. This air channel may flow through the centre of the cartomiser 30, with the liquid reservoir 38 confined to an annular region around this central path. Alternatively (or additionally) the airflow channel may lie between the liquid reservoir 38 and an outer housing of the cartomiser 30.

When a user inhales through the mouthpiece 35, air is drawn into or past the control unit 20 through the one or more air inlet holes. This airflow (or the associated change in pressure) is detected by a sensor, e.g. a pressure sensor, which in turn activates the heater 36 to vaporise the nicotine liquid fed from the reservoir 38. The airflow passes into the vaporiser, where the airflow combines with the vapour from the heated aerosol forming substrate, in this case liquid from the liquid reservoir. This combination of airflow and source formulation vapour (in effect, an aerosol) then passes through the cartomiser 30 and out of the mouthpiece 35 to be inhaled / vaped by a user. The cartomiser 30 may be detached from the control unit and disposed of when the supply of liquid is exhausted and replaced with another cartomiser.

It will be appreciated that the e-cigarette 10 shown in Figure 1 is presented by way of example only, and many other implementations may be adopted. For example, in some
implementations, the cartomiser 30 is split into a cartridge containing the liquid reservoir 38 and a separate vaporiser portion containing the heater 36. In this configuration, the cartridge may be disposed of after the liquid in reservoir 38 has been exhausted, but the separate vaporiser portion containing the heater 36 is retained. Alternatively, an e-cigarette may be provided with a cartomiser 30 as shown in Figure 1, or else constructed as a one-piece (unitary) device, but the liquid reservoir 38 is in the form of a (user-)replaceable cartridge and / or the liquid reservoir may be user-refillable. Further possible variations are that the heater 36 may be located at the opposite end of the cartomiser 30 from that shown in Figure 1, i.e. between the liquid reservoir 38 and the mouthpiece 35, or else the heater 36 is located along a central axis LA of the cartomiser, and the liquid reservoir is in the form of an annular structure which is radially outside the heater 35.

The skilled person will also be aware of a number of possible variations for the control unit 20. For example, airflow may enter the control unit at the tip end, i.e. the opposite end to connector 21A, in addition to or instead of the airflow adjacent to PCB 28. In this case the airflow would typically be drawn towards the cartomiser along a passage between the battery 54 and the outer wall of the control unit. Similarly, the control unit may comprise a PCB located on or near the tip end, e.g. between the battery and the tip end. Such a PCB may be provided in addition to or instead of PCB 28.

Furthermore, an e-cigarette may support charging at the tip end, or via a socket elsewhere on the device, in addition to or in place of charging at the connection point between the cartomiser and the control unit. (It will be appreciated that some e-cigarettes are provided as essentially integrated units, in which case a user is unable to disconnect the cartomiser from the control unit). Other e-cigarettes may also support wireless (induction) charging, in addition to (or instead of) wired charging.

The above discussion of potential variations to the e-cigarette shown in Figure 1 is by way of example. The skilled person will aware of further potential variations (and combination of variations) for the e-cigarette 10.

Figure 2 is a schematic diagram of the main functional components of the e-cigarette 10 of Figure 1 in accordance with some embodiments of the disclosure. It will be recognised that Figure 2 is primarily concerned with electrical connectivity and functionality and is not intended to indicate the physical sizing of the different components, nor details of their physical placement within the control unit 20 or cartomiser 30. In addition, it will be appreciated that at least some of the components shown in Figure 2 located within the control unit 20 may be mounted on the circuit board 28. Alternatively, one or more of such components may instead be accommodated in the control unit to operate in conjunction with the circuit board 28, but not physically mounted on the circuit board itself. For example, these components may be located on one or more additional circuit boards, or they may be
separately located (such as battery 54). More generally, it will also be appreciated that whereas various elements of the electronic cigarette 10 are schematically represented in Figure 2 as separate elements for ease of explanation, in some example implementations the functionality of one or more of these units may be provided by a single element, for example a suitably programmed processor element.

As shown in Figure 2, and discussed above, the cartomiser contains heater 310 which receives power through connector 31B. The control unit 20 includes an electrical socket or connector 21A for connecting to the corresponding connector 31B of the cartomiser 30 (or potentially to a USB charging device). This then provides electrical connectivity between the control unit 20 and the cartomiser 30.

The control unit 20 further includes a sensor unit 61, which is located in or adjacent to the air path through the control unit 20 from the air inlet(s) to the air outlet (to the cartomiser 30 through the connector 21A). The sensor unit contains a pressure sensor 62 and temperature sensor 63 (also in or adjacent to this air path). The control unit further includes a capacitor 220, a processor 50, a field effect transistor (FET) switch 210, a battery 54, and input and output devices 59, 58.

The operations of the processor 50 and other electronic components, such as the pressure sensor 62, are generally controlled at least in part by software programs running on the processor (or other components). Such software programs may be stored in non-volatile memory, such as ROM, which can be integrated into the processor 50 itself, or provided as a separate component. The processor 50 may access the ROM to load and execute individual software programs as and when required. The processor 50 also contains appropriate communications facilities, e.g. pins or pads (plus corresponding control software), for communicating as appropriate with other devices in the control unit 20, such as the pressure sensor 62.

The output device(s) 58 may provide visible, audio and/or haptic output. For example, the output device(s) may include a speaker 58, a vibrator, and/or one or more lights. The lights are typically provided in the form of one or more light emitting diodes (LEDs), which may be the same or different colours (or multi-coloured). In the case of multi-coloured LEDs, different colours are obtained by switching different coloured, e.g. red, green or blue, LEDs on, optionally at different relative brightness to give corresponding relative variations in colour.

The output from the output device may be used to signal to the user various conditions or states within the e-cigarette, such as a low battery warning. Different output signals may be used for signalling different states or conditions. For example, if the output device 58 is an audio speaker, different states or conditions may be represented by tones or beeps of different pitch and/or duration, and/or by providing multiple such beeps or tones.
Alternatively, if the output device 58 includes one or more lights, different states or conditions may be represented by using different colours, pulses of light or continuous illumination, different pulse durations, and so on. For example, one indicator light might be utilised to show a low battery warning, while another indicator light might be used to indicate that the liquid reservoir 58 is nearly depleted. It will be appreciated that a given e-cigarette may include output devices to support multiple different output modes (audio, visual etc.).

The input device(s) 59 may be provided in various forms. For example, an input device (or devices) may be implemented as buttons on the outside of the e-cigarette - e.g. as mechanical, electrical or capacitive (touch) sensors. Some devices may support blowing into or sucking on the e-cigarette as an input mechanism (such blowing / sucking may be detected by pressure sensor 62, which would then be also acting as a form of input device 59), and/or connecting/disconnecting the cartomiser 30 and control unit 20 as another form of input mechanism. Again, it will be appreciated that a given e-cigarette may include input devices 59 to support multiple different input modes.

As noted above, the e-cigarette 10 provides an air path from the air inlet through the e-cigarette, past the pressure sensor 62 (or past an opening to an air channel leading to the pressure sensor) and the heater 310 in the cartomiser 30 to the mouthpiece 35. Thus when a user inhales on the mouthpiece of the e-cigarette, the processor 50 detects such inhalation based on information from the pressure sensor 62. In response to such a detection, the CPU supplies power from the battery 54 to the heater, which thereby heats and vaporises the nicotine from the liquid reservoir 38 for inhalation by the user.

In the particular implementation shown in Figure 2, a FET 210 is connected between the battery 54 and the connector 21A. This FET 210 acts as a switch. The processor 50 is connected to the gate of the FET to operate the switch, thereby allowing the processor to switch on and off the flow of power from the battery 54 to heater 310 according to the status of the detected airflow. It will be appreciated that the heater current can be relatively large, for example, in the range 1-5 amps, and hence the FET 210 should be implemented to support such current control (likewise for any other form of switch that might be used in place of FET 210).

In order to provide more fine-grained control of the amount of power flowing from the battery 54 to the heater 310, a pulse-width modulation (PWM) scheme may be adopted. A PWM scheme may be based on a repetition period of say 1ms. Within each such period, the switch 210 is turned on for a proportion of the period, and turned off for the remaining proportion of the period. This is parameterised by a duty cycle, whereby a duty cycle of 0 indicates that the switch is off for all of each period (i.e. in effect, permanently off), a duty cycle of 0.33 indicates that the switch is on for a third of each period, a duty cycle of 0.66 indicates that the switch is on for two-thirds of each period, and a duty cycle of 1 indicates
that the FET is on for all of each period (i.e. in effect, permanently on). It will be appreciated
that these are only given as example settings for the duty cycle, and intermediate values can be used as appropriate.

The use of PWM provides an effective power to the heater which is given by the
nominal available power (based on the battery output voltage and the heater resistance)
multiplied by the duty cycle. The processor 50 may, for example, utilise a duty cycle of 1 (i.e. full power) at the start of an inhalation to initially raise the heater 310 to its desired operating
temperature as quickly as possible. Once this desired operating temperature has been
achieved, the processor 50 may then reduce the duty cycle to some suitable value in order
to supply the heater 310 with the desired operating power.

As shown in Figure 2, the processor 50 includes a communications interface 55 for wireless communications, in particular in this example, support for Bluetooth® Low Energy (BLE) communications.

Optionally the heater 310 may be utilised as an antenna for use by the
communications interface 55 for transmitting and receiving the wireless communications.
One motivation for this is that the control unit 20 may have a metal housing 202, whereas the cartomiser portion 30 may have a plastic housing 302 (reflecting the fact that the cartomiser 30 is disposable, whereas the control unit 20 is retained and therefore may benefit from being more durable). The metal housing acts as a screen or barrier which can affect the operation of an antenna located within the control unit 20 itself. However, utilising the heater 310 as the antenna for the wireless communications can help to avoid this metal screening because of the plastic housing of the cartomiser, but without adding additional components or complexity (or cost) to the cartomiser. Alternatively a separate antenna may be provided (not shown), or a portion of the metal housing may be used.

If the heater is used as an antenna then as shown in Figure 2, the processor 50, more particularly the communications interface 55, may be coupled to the power line from the battery 54 to the heater 310 (via connector 31B) by a capacitor 220. This capacitive coupling occurs downstream of the switch 210, since the wireless communications may operate when the heater is not powered for heating (as discussed in more detail below). It will be appreciated that capacitor 220 helps prevent the power supply from the battery 54 to the heater 310 being diverted back to the processor 50.

Note that the capacitive coupling may be implemented using a more complex LC (inductor-capacitor) network, which can also provide impedance matching with the output of the communications interface 55. (As known to the person skilled in the art, this impedance matching can help support proper transfer of signals between the communications interface 55 and the heater 310 acting as the antenna, rather than having such signals reflected back along the connection).
In some implementations, the processor 50 and communications interface are implemented using a Dialog DA14580 chip from Dialog Semiconductor PLC, based in Reading, United Kingdom. Further information (and a data sheet) for this chip is available, for example, at: http://www.dialog-semiconductor.com/products/bluetooth-smart/smartbond-da14580.

Figure 3 presents a high-level and simplified overview of this chip 50, including the communications interface 55 for supporting Bluetooth® Low Energy. This interface includes in particular a radio transceiver 520 for performing signal modulation and demodulation, etc., link layer hardware 512, and an advanced encryption facility (128 bits) 511. The output from the radio transceiver 520 is connected to the antenna (for example, to the heater 310 acting as the antenna via capacitive coupling 220 and connectors 21A and 21B).

The processor 50 further includes a general processing core 530, RAM 531, ROM 532, a one-time programming (OTP) unit 533, a general purpose I/O system 560 (for communicating with other components on the PCB 28), a power management unit 540 and a bridge 570 for connecting two buses. Software instructions stored in the ROM 532 and/or OTP unit 533 may be loaded into RAM 531 (and/or into memory provided as part of core 530) for execution by one or more processing units within core 530. These software instructions cause the processor 50 to implement functionality as described herein, such as interfacing with the sensor unit 61 and controlling the heater accordingly. Note that although the device shown in Figure 3 acts as both a communications interface 55 and also as a general controller for the electronic vapour provision device 10, in other embodiments these two functions may be split between two or more different devices (chips) - e.g. one chip may serve as the communications interface 55, and another chip as the general controller for the electronic vapour provision device 10.

In some implementations, the processor 50 may be configured to prevent wireless communications when the heater is being used for vaporising liquid from reservoir 38. For example, wireless communications may be suspended, terminated or prevented from starting when switch 210 is switched on. Conversely, if wireless communications are ongoing, then activation of the heater may be prevented - e.g. by disregarding a detection of airflow from the sensor unit 61, and/or by not operating switch 210 to turn on power to the heater 310 while the wireless communications are progressing.

One reason for preventing the simultaneous operation of heater 310 for both heating and wireless communications in some implementations is to help avoid potential interference from the PWM control of the heater. This PWM control has its own frequency (based on the repetition frequency of the pulses), albeit typically much lower than the frequency used for the wireless communications, and the two could potentially interfere with one another. In some situations, such interference may not, in practice, cause any problems, and
simultaneous operation of heater 310 for both heating and wireless communications may be allowed (if so desired). This may be facilitated, for example, by techniques such as the appropriate selection of signal strengths and/or PWM frequency, the provision of suitable filtering, etc.

Figure 4 is a schematic diagram showing a system 600 supporting Bluetooth ® Low Energy communications between an e-cigarette 10, a smart phone 400 and a biometric sensor 800 arranged to measure a biometric parameter, such as a heart rate, of a user of the e-cigarette. Although this particular example is presented in the context of a smart phone running an application for supporting user interaction with the e-cigarette 10 and biometric sensor 800, it will be appreciated other computing devices with suitable communications functionality could equally be used, for example, a tablet, laptop, smartwatch, smart TV, etc.

In accordance with certain example embodiments of the disclosure, and as discussed in more further below, the smart phone 400 also supports wireless communications with the biometric sensor 800 for obtaining information regarding measurements of a biometric parameter for a user of the e-cigarette.

Communications between the e-cigarette 10 and the smart phone / computing device 400 can be used to support a wide range of functions, for example, to upgrade firmware on the e-cigarette 10, to retrieve usage and/or diagnostic data from the e-cigarette 10, to reset or unlock the e-cigarette 10, to control settings on the e-cigarette, etc.

In general terms, when the e-cigarette 10 is switched on, such as by using input device 59, or possibly by joining the cartomiser 30 to the control unit 20, it starts to advertise for Bluetooth ® Low Energy communication. If this outgoing communication is received by smart phone 400, then the smart phone 400 requests a connection to the e-cigarette 10. The e-cigarette may notify this request to a user via output device 58, and wait for the user to accept or reject the request via input device 59. Assuming the request is accepted, the e-cigarette 10 is able to communicate further with the smart phone 400. Note that the e-cigarette may remember the identity of smart phone 400 and be able to accept future connection requests automatically from that smart phone. Once the connection has been established, the smart phone 400 and the e-cigarette 10 operate in a client-server mode, with the smart phone operating as a client that initiates and sends requests to the e-cigarette which therefore operates as a server (and responds to the requests as appropriate).

A Bluetooth ® Low Energy link (also known as Bluetooth Smart ®) implements the IEEE 802.15.1 standard, and operates at a frequency of 2.4-2.5 GHz, corresponding to a wavelength of about 12cm, with data rates of up to 1Mbit/s. The set-up time for a connection is less than 6ms, and the average power consumption can be very low - of the order 1 mW or less. A Bluetooth Low Energy link may extend up to some 50m. However, for the situation shown in Figure 4, the e-cigarette 10 and the smart phone 400 will typically belong to the
same person, and will therefore be in much closer proximity to one another - e.g. 1m. Further information about Bluetooth Low Energy can be found in the relevant operating standard documents and also, for example, at http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx.

It will be appreciated that e-cigarette 10 may support other communications protocols for communication with smart phone 400 (or any other appropriate device). Such other communications protocols may be instead of, or in addition to, Bluetooth Low Energy. Examples of such other communications protocols include Bluetooth ® (not the low energy variant), see for example, www.bluetooth.com, near field communications (NFC), as per ISO 13157, and WiFi ®. NFC communications operate at much lower wavelengths than Bluetooth (13.56 MHz) and generally have a much shorter range - say <0.2m. However, this short range is still compatible with most usage scenarios such as shown in Figure 4.

Meanwhile, low-power WiFi ® communications, such as IEEE802.1 1ah, IEEE802.1 1v, or similar, may be employed between the e-cigarette 10 and a remote device. In each case, a suitable communications chipset may be included on PCB 28, either as part of the processor 50 or as a separate component. The skilled person will be aware of other wireless communication protocols that may be employed in e-cigarette 10.

Thus, and as already mentioned above, the e-cigarette 10 can communicate with a mobile communication device 400, for example by pairing the devices using the Bluetooth ® low energy protocol so that it is possible to provide additional functionality for a user of the electronic cigarette 10 and the smart phone 400, by providing suitable software instructions (for example in the form of an app) to run on the smart phone.

Figure 5 is a schematic diagram of the main functional components of the biometric sensor 800 of Figure 4. In this example it is assumed the biometric sensor 800 is a heart rate monitor configured to measure the heart rate of a user. In other examples the biometric sensor may instead, or additionally, comprise a blood pressure sensor for measuring a user’s blood pressure, a breathing rate sensor for measuring a user’s breathing rate, and / or a user activity sensor for measuring an aspect of a user’s activity. The biometric sensor 800 may be based on conventional biometric sensor hardware that may be configured to operate in a system providing the functionality described herein. It will be appreciated the biometric sensor 800, and indeed the elements represented in all the other figures described herein, will in practice comprise further components (e.g. a power supply) which are not specifically represented in the figures or discussed herein in the interest of brevity.

Thus, the biometric sensor 800 comprises a biometric sensing element 802, a central processing unit (CPU) 808, a transceiver unit 804 and an antenna 806. The CPU 808 is configured to communicate with the biometric sensing element 802 and transceiver 804 over a communications bus in accordance with conventional techniques.
The biometric sensing element 802 is configured to measure a biometric parameter of a user, i.e. in this example a heart rate, and it may do this in accordance with conventional techniques. For example, the biometric sensor 800 may comprise a watch-like device to be worn on a user's wrist with heart rate measuring functionality. In this respect the biometric sensor 800 may adopt similar techniques to those used in conventional heart rate monitors supporting wireless communications functionality. The CPU 808 is configured to receive measurements of the user's heart rate from the biometric sensing element 802 and to control the transceiver unit 804 to wirelessly transmit an indication of the biometric measurement(s) to the smart phone 400 using the antenna 806. In this respect the communications between the biometric sensor 800 and the smart phone 400 may be configured and operate in accordance with conventional wireless communications techniques, for example in accordance with one or more of the many established protocols for wireless communications, such as Bluetooth® (standard or low-energy variants), near field communication and Wi-Fi® as described previously, and also phone based communication such as 2G, 3G and/or 4G.

Thus, and as for the e-cigarette 10, the biometric sensor 800 can communicate with the mobile communication device 400, for example by pairing using the Bluetooth® low energy protocol, so that it is possible to provide the system with additional functionality that takes account of biometric measurements for a user of the electronic cigarette 10 and the smart phone 400, by providing suitable software instructions (for example in the form of an app) to run on the smart phone.

Figure 6 is a schematic diagram of the main functional components of the smart phone 400 of Figure 4 in accordance with some embodiments of the disclosure. It will be recognised that as for the other figures described herein, Figure 6 is not intended to indicate the physical sizing of the different components, nor details of their relative physical placements. The smart phone 400 may comprise conventional smart phone hardware which is configured to operate to provide the functionality described herein by running a suitably programmed software application (app).

Thus, the smart phone 400 comprises a central processing unit (CPU) (410) which may communicate with components of the smart phone either through direct connections or via an I/O bridge 414 and/or a bus 430 as applicable.

In the example shown in Figure 6, the CPU communicates directly with a memory 412, which may comprise a persistent memory such as for example Flash® memory for storing an operating system and applications (apps), and volatile memory such as RAM for holding data currently in use by the CPU. Typically, though not necessarily, persistent and volatile memories are formed by physically distinct units (not shown). In addition, the
memory may separately comprise plug-in memory such as a microSD card, and also
subscriber information data on a subscriber information module (SIM) (not shown).

The smart phone may also comprise a graphics processing unit (GPU) 416. The
GPU may communicate directly with the CPU or via the I/O bridge, or may be part of the
CPU. The GPU may share RAM with the CPU or may have its own dedicated RAM (not
shown) and is connected to the display 418 of the mobile phone. The display is typically a
liquid crystal (LCD) or organic light-emitting diode (OLED) display, but may be any suitable
display technology, such as e-ink. Optionally the GPU may also be used to drive one or
more loudspeakers 420 of the smart phone.

Alternatively, the speaker may be connected to the CPU via the I/O bridge and the
bus. Other components of the smart phone may be similarly connected via the bus,
including a touch surface 432 such as a capacitive touch surface overlaid on the screen for
the purposes of providing a touch input to the device, a microphone 434 for receiving
speech from the user, one or more cameras 436 for capturing images, a global positioning
system (GPS) unit 438 for obtaining an estimate of the smart phone's geographical
position, and wireless communication means 440 (i.e. a transceiver).

The wireless communication means 440 may in turn comprise several separate
wireless communication systems adhering to different standards and/or protocols, such as
Bluetooth® (standard or low-energy variants), near field communication and Wi-Fi® as
described previously, and also phone based communication such as 2G, 3G and/or 4G.

The systems are typically powered by a battery (not shown) that may be chargeable
via a power input (not shown) that in turn may be part of a data link such as USB (not
shown).

It will be appreciated that different smart phones may include different features (for
example a compass or a buzzer) and may omit some of those listed above (for example a
touch surface).

Thus more generally, in an embodiment of the present disclosure a computing
device such as smart phone 400 may comprise a CPU and a memory for storing and
running an app to provide functionality in accordance with the principles described herein.

Accordingly, as described above and schematically represented in Figure 4, in
accordance with certain embodiments of the disclosure a system is provided which
comprises an electronic aerosol provision device (e.g. an e-cigarette) for selectively
providing an aerosol to a user of the electronic aerosol provision device, a biometric sensor
(e.g. a heart rate monitor) for measure a biometric parameter (e.g. a heart rate) of the user
of the electronic aerosol provision device, and a computing device (e.g. a smartphone)
configured to communicate with the electronic aerosol provision device and the biometric
sensor.
The computing device may run a software program (i.e. an application / app) to configure the computing device to communicate with the electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device. The operating data relating to the aerosol provision device may comprise, for example, usage statistics transferred from the aerosol provision device to the computing device relating to the use of the aerosol provision device. This usage data may be presented to a user through a user interface of the app running on the computing device. Alternatively, or in addition, the operating data may comprise control (configuration) information transferred from the computing device to the aerosol provision device to control an aspect of the operation of the aerosol provision device. For example the control information may be arranged to modify an operational settings for the aerosol provision device, for example a power supply level for a heater of the aerosol device. Control information transferred to the aerosol the device from the computing device may be generated in response to user input through the user interface of the computing device and / or may be automatically generated by the computing device itself in response to particular conditions.

In accordance with certain embodiments of the disclosure, the software program / app running on the computing device that configures the computing device to support communications with the electronic aerosol provision device also configures the computing device to support communications with the biometric sensor, and in particular to allow the computing device to receive and process sensor data from the biometric sensor comprising an indication of one or more measurements of one or more biometric parameters of a user of the electronic aerosol provision device. The computing device in this example is further configured to control an aspect of its operation, and in particular an aspect of its operation relating to the electronic aerosol provision device, in response to the sensor data received from the biometric sensor.

Figure 7 is a flow diagram schematically showing steps of a method of operating the system 600 schematically represented in Figure 4 in accordance with an embodiment of the disclosure.

In step S101 a software application (app) relating to the electronic aerosol provision device is launched on the computing device. This app may be provided by the manufacturer / vendor of the electronic aerosol provision device, or may be provided independently by another party. The app may provide a range of functionality associated with / relating to the electronic aerosol provision device, for example including functionality of the kind provided with known apps relating to electronic aerosol provision devices. Thus, the app may in some implementations cause the computing device to provide a user interface through which a user can view operating data associated with the aerosol provision device, for
example frequency and times of use over a previous time period, as well as status
information for the aerosol provision device, for example a battery level or power setting.
The app may also allow the user to control one or more operational aspects of the
electronic aerosol provision device, for example setting a nominal power level for a heater
of the device, through the user interface provided by the computing device. It will be
appreciated the app may be written / created to provide the functionality described herein
using conventional programming techniques.

In step S102 of the example represented in Figure 7, operating data associated with
the operation of the electronic aerosol provision device is communicated from the electronic
aerosol provision device to the computing device for display to the user through the user
interface provided by the app running on the computing device. As noted above, this
operating data may, for example, comprise an indication of previous usage and or status
information relating to the electronic aerosol provision device.

In step S103 the biometric sensor measures a biometric parameter, e.g. heart rate,
of the user of the electronic aerosol provision device. As noted above, this may be
performed in accordance with conventional biometric sensing techniques.

In step S104 the biometric sensor communicates sensor data to the computing
device which indicates a measurement of the relevant biometric parameter. As will be
appreciated, the communication and data coding protocols associated with the transfer of
information between the various elements of the system may be performed in accordance
with established wireless communication techniques.

In step S105, after having received the indication of the measurement of the
biometric parameter from the biometric sensor, the computing device is configured to
control an aspect of its operation relating to the electronic aerosol provision device in
response to the sensor data.

There are various different ways in which the computing device may control an
aspect of its operation in response to the sensor data.

For example, in one implementation the step of the computing device controlling an
aspect of its operation may involve the computing device updating a user interface to
provide a user with information relating to the measurement of the biometric parameter
associated with the sensor data, i.e. to provide a user with feedback relating to the
biometric measurement(s). For example, the computing device may be configured to
include an indication of the measurement of a relevant biometric parameter within through
the user interface presented to the user in association with the aerosol provision device.

Thus, a user may observe any effect the use of the electronic aerosol provision device has
on the relevant biometric parameter. This may be of general interest to the user, and may
furthermore allow the user to take account of the measurement of the biometric parameter
in deciding how to proceed with using the electronic aerosol provision device. For example, if the user notes the sensor data provides an indication of an elevated heart rate, the user may elect to limit their use of the aerosol system for a period of time. This may be done by the user ceasing use or reducing an amount of aerosol generated by the aerosol provision device during use, for example by limiting the power supply to a heater of the aerosol provision device. In this regard the control may be provided through user input through the user interface of the computing device. In some example implementations the computing device may be configured to present the user with a value directly corresponding to the measurement of the biometric parameter, for example a value of the user's heart rate in terms of beats per minute. In another implementation, instead of, or in addition, to providing a specific value, the computing device may be configured to present the user, through the user interface, with an indication as to whether the biometric parameter falls within a particular predefined range, for example a preferred range or a less preferred range. It will be appreciated that what comprises a preferred range or and a less preferred range may be based on established medical opinions for the relevant biometric parameter. Thus, for example, if the sensor data from the biometric sensor indicates the user's heart rate is outside a predefined preferred range, an indication may be raised in the user interface. The indication may be provided in many ways, for example by sounding an audible signal or modifying the appearance of the display, for example changing the colour or including a specific logo.

In another implementation the computing device may be configured to communicate an indication of the sensor data / biometric parameter measurement(s) to the electronic aerosol provision device, thereby allowing the electronic aerosol provision device to control its operation in dependence on the sensor data. For example, the aerosol provision device may include an indicator, for example a light emitting diode, which may be used to provide an indication of whether or not the sensor data indicate the relevant biometric parameter is within or without a predefined range (i.e. a range defined by two end points or defined by greater than or less than an individual value).

In another implementation the computing device may be configured to control the operation of the electronic aerosol provision device based on the sensor data. For example, the app may configure the computing device to compare a measurement of the biometric parameter with a predefined range of what is considered to be a preferred reading for the relevant parameter, for example based on established medical opinion. If the sensor data indicates the biometric parameter measurement falls outside the preferred range, the computing device may communicate control data to the aerosol provision device to modify the operation of the aerosol provision device, for example by providing instructions to stop or restrict the generation of aerosol by the aerosol provision device for a period of time. This
may be achieved, for example, by stopping or reducing the amount of electrical power
supplied to a heater of the aerosol provision device to generate the aerosol from an aerosol
forming substrate / aerosol precursor material.

The system may be arranged so the biometric sensor 800 provides sensor data to
the computing device representing measurements of the biometric parameter in
accordance with a predefined schedule and / or may be configured so the biometric sensor
communicates sensor data to the computing device in response to a request received from
the computing device. Thus, the computing device may be configured to receive operating
data from the electronic aerosol provision device indicating the electronic aerosol provision
device has been used to generate vapour for a user, and may in response to this
communicate with the biometric sensor 800 to request sensor data indicating a
measurement of the biometric parameter.

It will be appreciated there are many different approaches and modifications that
can be made in accordance with the general principle set out above in accordance with
different embodiments of the disclosure.

For example, it will be appreciated that measurements of the biometric parameter by
the biometric sensor may comprise one off individual measurements, or may comprise
measurements derived from a number of individual measurements, for example, the sensor
data may comprise an indication of a measurement which is an average, a minimum or a
maximum, or some other statistically derived parameter, for a plurality of individual
measurements of the biometric parameter made by the biometric sensor.

It will further be appreciated that whilst the above-described example has focused
on the measurement of heart rate, similar principles can be applied in respect of other
biometric parameters, for example in respect of any measurable aspect of a user which has
the potential for change during periods of use of the electronic aerosol provision device.

It will further be appreciated that whilst the above-described example has focused
on an implementation in which the electronic aerosol provision device, the computing
device, and the biometric sensor comprise discrete components in wireless communication,
in accordance with other example implementations, two or more of these components may
be consolidated into a single device. For example, an electronic aerosol provision device
and a biometric sensor may be combined into a single device, for example by providing a
biometric sensor for measuring a user's heartbeat within a part of the aerosol provision
device which the user will typically contact, for example a main body of the aerosol
provision device which will typically be held by a user, or a mouthpiece which will typically
be placed into contact with a user's lips during use. However, in practice it may be more
likely for the biometric sensor to comprise a separate device from the electronic aerosol
provision system because such biometric sensors are already widely available and in use, for example in "keep-fit" watches.

Furthermore, some or all of the functionality of the computing device in the example implementation discussed above may itself be provided by the electronic cigarette in accordance with some implementations.

Thus, there has been described a system comprising an electronic aerosol provision device for selectively providing an aerosol to a user of the electronic aerosol provision device, a computing device configured to communicate with the electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device, and a biometric sensor configured to measure a biometric parameter of the user of the electronic aerosol provision device and to communicate with the computing device to exchange sensor data indicating a measurement of the biometric parameter. The computing device is further configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.

It will be appreciated that the above methods may be carried out on conventional hardware suitably adapted as applicable by software instruction or by the inclusion or substitution of dedicated hardware.

Thus the required adaptation to existing parts of an otherwise conventional equivalent device may be implemented in the form of a computer program product comprising processor implementable instructions stored on a tangible non-transitory machine-readable medium such as a floppy disk, optical disk, hard disk, PROM, RAM, flash memory or any combination of these or other storage media, or realised in hardware as an ASIC (application specific integrated circuit) or an FPGA (field programmable gate array) or other configurable circuit suitable to use in adapting the conventional equivalent device. Separately, such a computer program may be transmitted via data signals on a network such as an Ethernet, a wireless network, the Internet, or any combination of these of other networks.

Furthermore, while the above described embodiments have in some respects focussed on some specific example aerosol provision devices, it will be appreciated the same principles can be applied for aerosol provision devices using other technologies. That is to say, the specific manner in which various aspects of the aerosol provision device function are not directly relevant to the principles underlying the examples described herein.

In order to address various issues and advance the art, this disclosure shows by way of illustration various embodiments in which the claimed invention(s) may be practiced. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to
assist in understanding and to teach the claimed invention(s). It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilised and modifications may be made without departing from the scope of the claims. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. other than those specifically described herein, and it will thus be appreciated that features of the dependent claims may be combined with features of the independent claims in combinations other than those explicitly set out in the claims. The disclosure may include other inventions not presently claimed, but which may be claimed in future.
Claims

1. A system comprising:
 - an electronic aerosol provision device for selectively providing an aerosol to a user of the electronic aerosol provision device;
 - a computing device configured to communicate with the electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device; and
 - a biometric sensor configured to measure a biometric parameter of the user of the electronic aerosol provision device and to communicate with the computing device to exchange sensor data indicating a measurement of the biometric parameter; and wherein the computing device is configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.

2. The system of claim 1, wherein the computing device is configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data by updating a user interface providing a user of the electronic aerosol provision device with information relating to the operation of the electronic aerosol provision device to include an indication of the sensor data.

3. The system of claim 2, wherein the indication of the sensor data included in the user interface comprises an indication of the measurement of the biometric parameter.

4. The system of claim 2 or 3, wherein the indication of the sensor data included in the user interface comprises an indication of whether or not the measurement of the biometric parameter falls within a predefined range.

5. The system of any of claims 1 to 4, wherein the computing device is configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data by providing operating data to the electronic aerosol provision device that comprises control information for controlling an aspect of the operation of the electronic aerosol provision device.

6. The system of claim 5, wherein controlling an aspect of the operation of the electronic aerosol provision device comprises configuring an indicator of the electronic aerosol provision device to provide an indication relating to the sensor data.
7. The system of claim 5 or 6, wherein controlling an aspect of the operation of the electronic aerosol provision device comprises restricting the ability of the electronic aerosol provision device to provide aerosol to the user.

8. The system of claim 7, wherein the electronic aerosol provision device comprises a heater for heating an aerosol precursor material to provide an aerosol to the user, and wherein restricting the ability of the electronic aerosol provision device to provide aerosol to the user comprises preventing or limiting the supply of power to the heater for a period of time.

9. The system of any of claims 1 to 8, wherein the computing device is configured to communicate with the biometric sensor to request sensor data from the biometric sensor in response to receiving operating data from the electronic aerosol provision device comprising use data indicating that the aerosol provision device has been used to provide aerosol to the user.

10. The system of any of claims 1 to 9, wherein the biometric sensor is selected from the group comprising: a heart rate sensor for measuring user's heart rate, a blood pressure sensor for measuring a user's blood pressure, a breathing rate sensor for measuring a user's breathing rate, and a user activity sensor for measuring an aspect of a user's activity.

11. The electronic aerosol provision device of any of claims 1 to 10.

12. A method of operating a system comprising an electronic aerosol provision device, a computing device configured to communicate with the electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device, and a biometric sensor configured to measure a biometric parameter of a user of the electronic aerosol provision device and to communicate with the computing device to exchange sensor data indicating a measurement of the biometric parameter; wherein the method comprises:

 the biometric sensor measuring a biometric parameter of a user of the electronic aerosol provision device and communicating sensor data indicating a measurement of the biometric parameter to the computing device; and

 the computing device controlling an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.
13. A computing device configured to communicate with an electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device and to communicate with a biometric sensor to receive sensor data from the biometric sensor indicating a measurement of a biometric parameter of a user of the electronic aerosol provision device, wherein the computing device is further configured to control an aspect of its operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.

14. A method of operating a computing device configured to communicate with an electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device, the method comprising communicating with a biometric sensor to receive sensor data from the biometric sensor indicating a measurement of a biometric parameter of a user of the electronic aerosol provision device and controlling an aspect of the computing device’s operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.

15. A computer program product comprising machine readable instructions which when executed on a computing device configure the computing device to communicate with an electronic aerosol provision device to exchange operating data associated with the operation of the electronic aerosol provision device, to communicate with a biometric sensor to receive sensor data from the biometric sensor indicating a measurement of a biometric parameter of a user of the electronic aerosol provision device, and to control an aspect of the computing device’s operation relating to the electronic aerosol provision device in response to the sensor data received from the biometric sensor.

16. A system comprising:
 electronic aerosol provision means for selectively providing an aerosol to a user of the electronic aerosol provision means;
 computing means for communicating with the electronic aerosol provision means to exchange operating data associated with the operation of the electronic aerosol provision means; and
 biometric sensor means for measuring a biometric parameter of the user of the electronic aerosol provision means and communicating with the computing means to exchange sensor data indicating a measurement of the biometric parameter; and wherein the computing means controls an aspect of its operation relating to the electronic aerosol provision means in response to the sensor data received from the biometric means.
17. A system or device substantially as described herein with reference to the accompanying drawings.

18. A method substantially as described herein with reference to the accompanying drawings.
Launch an app on the computing device

Exchange operating data associated with the operation of the electronic aerosol provision device between the aerosol provision device and the computing device for display to a user

Measure a biometric parameter of the user of the electronic aerosol provision device using the biometric sensor

Exchange sensor data indicating a measurement of the biometric parameter from the biometric sensor to the computing device

Control an aspect of the operation of the computing device in dependence on the sensor data received from the biometric sensor

Figure 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A24F47/00 A61M15/06 A61M11/04

ADD.

According to International Patent Classification (IPC), and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched [classification system followed by classification symbols]

A24F A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2015/107552 Al (GODFREY PHI LLI PS INDIA LTD [IN]) 23 July 2015 (2015-07-23)</td>
<td>1-6, 9, 11, 13, 16, 17</td>
</tr>
<tr>
<td></td>
<td>abstract: figure 1 page 5, line 4 - page 6, line 30</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>CN 203 986 103 U (LI SHUYAN) 10 December 2014 (2014-12-10)</td>
<td>1-6, 9, 11, 13, 16, 17</td>
</tr>
<tr>
<td></td>
<td>abstract paragraphs [0033], [0043], [0044]</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>CA 2 906 456 Al (ALTRIA CLIENT SERVICES LLC [US]) 25 September 2014 (2014-09-25)</td>
<td>1-7, 9, 11, 13, 16, 17</td>
</tr>
<tr>
<td></td>
<td>abstract paragraphs [0020] - [0026]</td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

12 December 2016

Date of mailing of the international search report

21/12/2016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax. (+31-70) 340-3016

Authorized officer

Moraru, Liviu
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:** 12, 14, 15, 18
 because they relate to subject matter not required to be searched by this Authority, namely:
 see FURTHER INFORMATION sheet PCT/ISA/2 10

2. **Claims Nos.:**
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.**

2. **As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.**

3. **As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims Nos.:**

4. **No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:**

Remark on Protest
The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

Form PCT/ISA/21 0 (continuation of first sheet (2)) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2015/257445 AI (HENRY J R RAYMOND CHARLES [US] ET AL) 17 September 2015 (2015-09-17) abstract; figure 3; examples 51-58</td>
<td>1-6,9, 11, 13, 16, 17</td>
</tr>
<tr>
<td>X</td>
<td>US 2015/142387 AI (ALARCON RAMON [US] ET AL) 21 May 2015 (2015-05-21) abstract; figure 1; examples 30-40</td>
<td>1-6,8,9, 11, 13, 16, 17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2015107552 A1</td>
<td>23-07-2015</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 203986103 U</td>
<td>10-12-2014</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2906456 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105491898 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2967150 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160040444 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016029697 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014150704 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015138589 A1</td>
</tr>
</tbody>
</table>
Continuation of Box II.1

Claims Nos.: 12, 14, 15, 18

Methods of providing aerosol to a subject as defined in claims 12, 14 and 18 of the present application are methods for treatment of human or animal body by therapy. Indeed these methods are meant to provide aerosol to a patient (see page 1 line 35 to page 2 line 7). Claims to computer programs such as claim 15 and computer readable storage media are allowable in combination with an allowable device or method claim, but only technical features are taken into account for the assessment of inventive step. To imply technical character, a further technical effect going beyond the "normal physical effects" (inherent physical interactions between every program and a computer) has to be proofed. A wording like "when executed by a computer" are not sufficient to imply technical character. The term "computer program product" is IBM terminology and synonymous with "computer program". Thus, claims 12, 14, 15 and 18 relate to subject-matter considered by this Authority to be covered by the provisions of Rules 39.1(iv) and 67.1(iv) PCT, and no international search report has been established with respect to the subject-matter of these claims (Article 17(2)(a)(i)PCT). Consequently, no opinion will be formulated with respect to novelty, inventive step and industrial applicability of the subject-matter of these claims (Article 34(4)(a)(i)PCT).