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AUTOMATED LESION DETECTION, SEGMENTATION, AND LONGITUDINAL
IDENTIFICATION

Overview

Various implementations of the present disclosure are discussed
herein below. For readability, the implementations are provided under separate
headings. In particular, the following top-level headings are provided for the
various implementations: Automated Lesion Detection, Segmentation, and
Longitudinal Identification; Content Based Image Retrieval for Lesion Analysis;
Three Dimensional Voxel Segmentation Tool; Systems and Methods for
Interaction with Medical Image Data; Automated Three Dimensional Lesion
Segmentation; Autonomous Detection of Medical Study Types; Patient
Outcomes Prediction System; and Co-registration. It should be appreciated
that the discussion relating to one or more implementations may be applicable
to one or more other implementations. Further, features of each of the various
implementations discussed herein may be combined with one or more other

implementations to provide additional implementations.

A AUTOMATED LESION DETECTION, SEGMENTATION, AND
LONGITUDINAL IDENTIFICATION

Description of the Related Art

Identification of lesions can occur either manually or with the help
of semi- or fully-automated software. Use of semi- or fully-automated software
for finding possibly malignant regions of interest (ROIs) represented in the scan
is commonly referred to as computer aided detection (CAD or CADe).

The lungs are most often imaged with CT scans, as the generally
higher spatial resolution of CT over MRI allows for identification of smaller,
possibly malignant ROls than would be possible with MRI. Possibly cancerous

ROIs in the lung are often referred to as nodules or lesions; they will be referred
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to as lesions in the present disclosure. Other malignancies, such as different
types of emphysema, can also be identified in CT scans. The standardization
of received image data in Hounsfield Units allows for easy assessment of the
lesion type. CT scans generally consist of between 50-300 axial slices, with
higher resolution in the x-y plane than along the z dimension. As such, doctors
often look for possible malignancies by slice-scrolling through these axial slices.
However, reading the scan in a coronal or sagittal reformat is not uncommon.

Both CT and MRI are used to image the liver, with pros and cons
associated with both. CT is simpler to gather and read, but it does not provide
as much information as MRI. MRI’'s main advantage comes from its ability to
collect multi-modal information, using different pulse sequences, providing more
insight into the type of lesion and related diseases. However, there is
increased difficulty associated with synthesizing the results from the many
gathered series compared with reading a single CT scan. Preference for CT or
MRI for liver imaging is usually a result of what is available in the referring
physician’s hospital.

The ROls in both lung and liver scans require further analysis and
study, both qualitatively and quantitatively. Qualitative assessments include the
texture, shape, brightness relative to other tissue, and change in brightness
over time in cases where contrast is injected into the patient and a time series
of scans are available. Quantitative measurements commonly include the
number of possibly malignant ROls, longest linear dimension of the ROIls, the
volume of the ROls, and the changes to these quantities between scans.

Careful quantitative assessment of lung and liver lesions is
tedious and time consuming. Detection of these ROIs, which are often
camouflaged by surrounding tissue, requires significant clinical training.
However, even with training, radiologists are prone to fatigue and mistakes. In
addition, after ROIls are detected, quantitative assessment, such as calculating
the volume via segmentation, requires additional time and effort. The use of
CADe software can improve both accuracy and efficiency for both detection and

further quantitative assessment.
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Limitations of previous CADe approaches

Detection

Finding regions of interest in a volumetric image is a challenging
task for both humans and computer algorithms alike. Multiple radiologists
reading the same scan often identify different regions as being cause for
concern and disagree about likelihood. Single radiologists often fail to identify
upwards of 20% of ROls for lung CT scans as noted by Zhao, Yingru, et al.
"Performance of computer-aided detection of pulimonary nodules in low-dose
CT. compariscn with double reading by nodule volume.” European radiclogy
2210 (2012). 2076-2084. CADe algorithms have the potential to identify ROIs
more consistently. However, they also have imperfect sensitivity. All CADe
algorithms will have some tradeoff between sensitivity and specificity; higher
sensitivity can be achieved (up to a point) at the cost of having more false
positives per scan.

Radiologists generally find ROls by slice-scrolling through the
scan, either in an axial, sagittal, or coronal view. Tools commonly used include
adjusting the window width/window level and utilizing an intensity projection
(i.e., “thick slice”) to help differentiate ROls from other anatomy.

Most CADe approaches use a multi-stage approach to find ROI
candidates. For example, a recent multi-stage pipeline for lung lesion detection
was proposed by Firmine, Macedo, et al. "Computer-aided detection (CADe)
and diagnosis (CADX) system for lung cancer with likelihood of malignancy.”
Biomedical engineering online 15.1 {2016} 2. The authors segmented the
lungs in 3D, segmented the anatomical structures of the lungs (pulmonary
vessels, bronchi, etc.) in 3D, detected candidate lesions, reduced the number of
false positives, and calculated the likelihood of malignancy. However, multiple
of these stages require user input (e.g., placement of seed points) and review,
resulting in a slower diagnosis than a more fully-automated method.

The first stage requires the placement of two seed points, one

each in the left and right lungs, at which it is possible to utilize an iterative
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region growing and morphological closing pipeline to segment the lungs. In
order to not exclude juxtapleural lesions (attached to the pleural surface), a
complicated heuristic is described. At the end of the pipeline, the lung
segmentation is presented to the user. If the user deems it not good enough to
use, they must place seed points again and repeat the process. Algorithms that
do not need to iterate with clinician input are both faster and simpler to use.

For separating lung structures, the authors utilize the Watershed
transform to distinguish between pulmonary structures and lesions. This
technique allows areas with similar intensities to be grouped, and thus
separated. However, while CT intensities are reproducible, lesion intensities
and locations can vary greatly; this makes this algorithm highly susceptible to
accidental inclusion of lesions in the segmentation of benign pulmonary
structures.

A rule-based classifier is utilized to sort through all the contiguous
regions segmented by the Watershed transform. The authors define and
quantify the Roundness, Elongation, and Energy of each structure and remove
those that fall below a heuristically determined threshold. These kinds of
thresholds do not usually generalize well beyond the data for which they were
initially described.

Candidates that make it past this stage are then filtered with
another classifier. Features are extracted for all lesions with the images with
the Histogram of Oriented Gradients (HOG) technique then undergo Principal
Component Analysis (PCA) to reduce dimensionality. Finally, a support vector
machine (SVM) classifier is used on the PCA features. HOG features do not
fully characterize the lesion, as they do not consider global context, a major
limitation that prevents the classifier from learning lesion shapes. PCA limits
the scope of the features found to a subset of all features available, which
inherently limits the classifier to capturing only lesions that possess the retained
features. Additionally, SVMs do not scale well; given the same amount of data,
deep learning models are able to train more efficiently and pick up on more

subtle details, resulting in a higher accuracy upper limit.
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Segmentation

The most basic method of creating ROI contours is to complete
the process manually with some sort of polygonal or spline drawing tool, without
any automated algorithms or tools. In this case, the user may, for example,
create a freehand drawing of the outline of the ROI, or drop spline control points
which are then connected with a smoothed spline contour. After initial creation
of the contour, depending on the software’s user interface, the user typically
has some ability to modify the contour, e.g., by moving, adding or deleting
control points or by moving the spline segments. To reduce the onerousness of
this process, most software packages that support ROl segmentation include
semi-automated segmentation.

Two algorithms for semi-automated ventricular segmentation are
the “snakes” algorithm (known more formally as “active contours”) and
extensions that rely on a shape prior, either in 2D or 3D. For details of the
active contours algorithm, see Kass, M., Witkin, A., & Terzopoulos, D. (1988).
“Snakes: Active contour models.” International Journal of Computer Vision,

1(4), 321-331. Both methods utilize a deformable spline that is constrained to
wrap to intensity gradients in the image through an energy-minimization
approach. Practically, this approach seeks to both constrain the contour to
areas of high gradient in the image (edges) and also minimize “kinks” or areas
of high orientation gradient (curvature) in the contour. The optimal result is a
smooth contour that wraps tightly to the edges of the image. Figures 1 and 2
show examples of failure cases for the snakes algorithm for different types of
lung lesions. Figure 1 shows the results of the snakes algorithm (solid line 102)
for the given initial condition (dashed line 104) with alpha=0.015, beta=10, and
gamma=0.001. The resulting contour wraps the lesion too tightly. Figure 2
displays the results the snakes algorithm (solid line 202) for the given initial
condition (dashed line 204) with alpha=0.15, beta=10, and gamma=0.05. The
resulting contour incorrectly spills into the chest wall.

Although the snakes algorithm and other deformable models that

rely on a shape prior are common, and although modifying its resulting contours
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can be significantly faster than generating contours from scratch, the snakes
algorithm has several significant disadvantages. In particular, these algorithms
require a “seed.” The “seed contour” that will be improved by the algorithm is
often set by a heuristic for snakes, and for deformable models, the shape prior
is usually explicitly defined. Moreover, both algorithms know only about local
context. The cost function typically awards credit when the contour overlaps
edges in the image; however, there is no way to inform the algorithm that the
edge detected is the one desired; e.g., there is no explicit differentiation
between the edge of the ROI and blood vessels, airways, or other anatomy.
Therefore, the algorithm is highly reliant on predictable anatomy and the seed
being properly set.

Furthermore, these algorithms are greedy. The energy function of
snakes is often optimized using a greedy algorithm, such as gradient descent,
which iteratively moves the free parameters in the direction of the gradient of
the cost function. However, gradient descent, and many similar optimization
algorithms, are susceptible to getting stuck in local minima of the cost function.
This manifests as a contour that is potentially bound to the wrong edge in the
image, such as an imaging artifact or an edge that doesn'’t trace the shape of a
complicated ROI.

Additionally, these algorithms have a small representation space.
Because they generally only have a few dozen tunable parameters, the
algorithms do not have the capacity to represent a diverse set of possible
images on which segmentation is desired. Many different factors can affect the
perceived captured image of the ROI, including anatomy (e.g., size, shape,
texture of ROI, other pathologies, prior treatment), imaging protocol (e.g.,
operating technician experience, slice thickness, contrast agents, pulse
sequence, scanner type, receiver coil quality and type, patient positioning,
image resolution) and other factors (e.g., motion artifacts). Because of the
great diversity on recorded images and the small number of tunable
parameters, a snakes algorithm or deformable model can only perform well on

a small subset of “well-behaved” cases.

6



10

15

20

25

30

WO 2018/222755 PCT/US2018/035192

Despite these and other disadvantages of the snakes algorithm,
the snakes algorithm’s popularity primarily stems from the fact that the snakes
algorithm can be deployed without any explicit “training,” which makes it
relatively simple to implement. However, the snakes algorithm cannot be

adequately tuned to work on more challenging cases.

BRIEF SUMMARY OF AUTOMATED LESION DETECTION,
SEGMENTATION, AND LONGITUDINAL IDENTIFICATION

A machine learning system may be summarized as including at
least one nontransitory processor-readable storage medium that stores at least
one of processor-executable instructions or data; and at least one processor
communicably coupled to the at least one nontransitory processor-readable
storage medium, in operation the at least one processor: receives learning
data comprising a plurality of batches of labeled image sets, each image set
comprising image data representative of an input anatomical structure, and
each image set including at least one label which: classifies the entire input
anatomical structure as containing a lesion candidate; or identifies a region of
the input anatomical structure represented by the image set as potentially
cancerous; trains a fully convolutional neural network (CNN) model to: classify
if the entire input anatomical structure contains a lesion candidate; or segment
lesion candidates utilizing the received learning data; and stores the trained
CNN model in the at least one nontransitory processor-readable storage
medium of the machine learning system. The CNN model may include a
contracting path and an expanding path, the contracting path may include a
number of convolutional layers and a number of pooling layers, each pooling
layer preceded by at least one convolutional layer, and the expanding path may
include a number of convolutional layers and a number of upsampling layers,
each upsampling layer preceded by at least one convolutional layer and may
include a transpose convolution operation which performs at least one of an
upsampling operation and an interpolation operation with a learned kernel, or

an upsampling operation followed by an interpolation operation to segment a
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lesion candidate. Skip connections may be included between at least some of
the layers in the contracting path and the expanding path where image sizes of
those layers are compatible, and the skip connections may include
concatenating features maps, or the skip connections may be residual
connections and therefore may include adding or subtracting the values of the
feature maps The image data may be representative of a chest, including
lungs, or of an abdomen, including a liver. The image data may include
computed tomography (CT) scan data or magnetic resonance (MR) scan data.
Each scan may be resampled to the same fixed spacing. The CNN model may
include a contracting path which may include a first convolutional layer which
has between 1 and 2000 feature maps and a max-pooling layer having a
pooling size of between 2 and 16 and the CNN model may include a number of
convolutional layers, where each convolutional layer may include a
convolutional kernel of size 3x3 and a stride of 1.

In operation, initial layers of the contracting path may downsample
the image data in order to reduce computational cost of the subsequent layers,
and subsequent layers may contain more convolutional operations than a first
layer of the contracting path. The expanding path may contain fewer
convolutional layers than the contracting path. The convolution operations may
include a combination of dense 3x3 convolutions, cascaded Nx1 and 1xN
convolutions, where 3 < N < 11, and dilated convolutions. The image data may
include volumetric images, and each convolutional layer of the CNN model may
include a convolutional kernel of size N x N x K pixels, where N and K are
positive integers. The image data may be reformatted to be an intensity
projection along an axis, such intensity projection data having a depth of
between 2 and 512 pixels, and the projection is a mean, median, maximum, or
minimum. The received learning data may include both the intensity projection
data and non-projected image data, which data may be used as inputs into the
CNN model, and the feature maps for the intensity projection data and the non-
projected image data may be combined via concatenation, sum, difference, or

average. The CNN model may include a series of residual blocks, pooling
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layers, and non-linear activation functions which classify lesion candidates.
Input patches to the CNN model that contain the lesion candidate may be
between 4 and 512 pixels along an edge. An input patch to the CNN model
may have multiple channels, where each channel may be a plane of between 4
and 512 pixels along an edge, and each channel may be drawn from the set of
two-dimensional planes whose centers may further include intersect the three-
dimensional anatomical structure that is to be classified as potentially
cancerous, where there may be between 3 and 27 channels. The channels
may be evenly distributed in solid angle around a three-dimensional anatomical
structure that may be classified as potentially cancerous. The CNN model may
include two or more paths, each of the two or more paths utilizing multiple
series of residual blocks, pooling layers, and non-linear activation functions,
and each of the two or more paths may receive a resampled version of the
image data at different spatial scales. At least two of the two or more paths
may be parallel paths that are combined via concatenating features maps, or
adding, subtracting, or averaging the values of the feature maps. The CNN
model may receive a volumetric image as input for the purpose of classification,
and the volumetric image may be between 4 and 512 pixels along each
dimension.

The at least one processor may, for each image set, modify a
training loss function to penalize prediction errors in portions of the image data
containing the lesion candidate and reduce the penalty of prediction errors in
the background of the image data. The modified training loss function may
include convolving the ground truth segmentation with a Gaussian kernel,
where the width of the kernel may be a hyperparameter. A cancerous
anatomical structure may be found utilizing a patch based method, the patches
may be a crop of the input image data, and the patch based method may
include a proposing cancerous anatomical structure on patches where the edge
length of the patch is between 1 pixel and the image size.

The at least one processor may, for each image set, utilize a

plurality of trained CNN models to predict lesion candidates, in which each CNN
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model votes on a relevance of the lesion candidates and the final evaluation is
based on a weighted aggregation of the votes from the individual CNN models.
For each processed image of the image data, the CNN model concurrently may
utilize magnetic resonance imaging (MRI) data for a plurality of different pulse
sequences. Each of the different pulse sequences may be a channel, or each
of the different pulse sequences may be a separate input and the pulse
sequences may be subsequently combined together. The at least one
processor may co-register each pulse sequence prior to combining the pulse
sequences together. The at least one processor may augment the learning
data via modification of at least some of the image data in the plurality of
batches of labeled image sets. The at least one processor may augment at
least some of the image data in the plurality of batches of labeled image sets
according to at least one of: a horizontal flip, a vertical flip, a shear amount, a
shift amount, a zoom amount, a rotation amount, a brightness level, a contrast
level, a nonlinear deformation, a nonlinear contrast deformation, or a nonlinear
brightness deformation. The image data may be augmented either in 2D or 3D.

The CNN model may include a plurality of hyperparameters
stored in the at least one nontransitory processor-readable storage medium,
and the at least one processor may configure the CNN model according to a
plurality of configurations, each configuration including a different combination
of values for the hyperparameters; for each of the plurality of configurations,
validate the accuracy of the CNN model; and select at least one configuration
based at least in part on the accuracies determined by the validations.

A machine learning system may be summarized as including at
least one nontransitory processor-readable storage medium that stores at least
one of processor-executable instructions or data; and at least one processor
communicably coupled to the at least one nontransitory processor-readable
storage medium, in operation the at least one processor: receives image data
representative of anatomical structures; utilizes at least one CNN to both locate
and segment lesion candidates represented in the received image data;

classifies malignancy or other properties of the lesion candidates; post-
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processes the segmentations of the lesion candidates; computes lesion
characteristics; stores the generated classifications in the at least one
nontransitory processor-readable storage medium.

The segmented lesion candidates may be predicted in 2D, and
the at least one processor may stack the segmented lesion candidates to
create a 3D prediction volume; and combine the segmented lesion candidates
in 3D utilizing 6, 18, or 26-connectivity of the 3D prediction volume. The
relevant lesion information may include a center location for each lesion, and
the at least one processor may calculate the center location as the center of
mass of the predicted probabilities; and implement a proposal network that
generates the predicted probabilities. The at least one processor may post-
process the segmentations utilizing morphological operations that may include
at least one of dilation, erosion, opening or closing. The image data may
include 3D scan data, and the at least one processor may extract 2D images
from the 3D scan data that are evenly distributed in solid angle for each
cancerous anatomical region, the number of 2D images extracted from the 3D
scan data may be between 3 and 27. The image data may include 3D scan
data, and the at least one processor may augment at least some of the 3D scan
data according to at least one of: a horizontal flip, a vertical flip, a shear
amount, a shift amount, a zoom amount, a rotation amount, a brightness level,
or a contrast level.

A machine learning system may be summarized as including at
least one nontransitory processor-readable storage medium that stores at least
one of processor-executable instructions or data; and at least one processor
communicably coupled to the at least one nontransitory processor-readable
storage medium, in operation the at least one processor: receives image data
which represents an anatomical structure previously classified to be potentially
cancerous; processes the received image data through a fully convolutional
neural network (CNN) model to generate probability maps for each image of the
image data, wherein the probability of each pixel represents the probability of

whether or not the pixel is part of a lesion candidate; and stores the generated
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segmentations in the at least one nontransitory processor-readable storage
medium. The image data may be representative of a chest, including lungs, or
of an abdomen, including a liver. The at least one processor may
autonomously cause an indication of at least one of the plurality of parts of the
cancerous anatomical structure to be displayed on a display based at least in
part on the generated probability maps. The at least one processor may post-
process the probability maps to ensure at least one physical constraint is met.

The image data may be representative of a chest, including lungs,
or of an abdomen, including a liver, and the at least one physical constraint may
include at least one of: segmentations of cancerous anatomical structures of
the liver do not occur outside of the physical bounds of the liver; cancerous
anatomical structures of the lungs do not occur outside of the physical bounds
of the lungs; or cancerous anatomical structures of the given organ are not
larger than the given organ.

The at least one processor may, for each image of the image
data, set the class of each pixel to a foreground cancerous anatomical structure
class when the cancerous class probability for the pixel is at or above a
determined threshold, and set the class of each pixel to a background class
when the cancerous class probability for the pixel is below a determined
threshold; and store the set classes as a label map in the at least one
nontransitory processor-readable storage medium.

The at least one processor may, for each image of the image
data, set the class of each pixel to a background class when the pixel is not part
of a central fully-connected segmentation, where fully-connected is defined by
either 6-, 18-, or 26-connectivity in 3D, and a central lesion is a lesion of interest
for a given patch submitted to the CNN model; and store the set classes as a
label map in the at least one nontransitory processor-readable storage medium.
The determined threshold may be user adjustable. The at least one processor
may determine the volume of all lesion candidates utilizing the generated

segmentations. The at least one processor may cause the determined volume
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of at least one unique cancerous anatomical structure to be displayed on a
display.

The at least one processor may cause a display to present the
segmentations to a user as a mask or contours; and implement a tool that is
controllable via a cursor and at least one button, in operation, the tool edits the
segmentations via addition or subtraction,, and the tool continuously adds
regions underneath the cursor to the segmentation, or continuously subtracts
regions underneath the cursor from the segmentation, for as long as the at least
one button is activated. The CNN model may include a number of
convolutional layers, and each convolutional layer of the CNN model may
include a convolutional kernel of sizes N x N x K pixels, where N and K are
positive integers. The at least one processor may utilize metadata related to
the lesion candidate with the at least one CNN model to improve
segmentations.

A machine learning system may be summarized as including at
least one nontransitory processor-readable storage medium that stores at least
one of processor-executable instructions or data; and at least one processor
communicably coupled to the at least one nontransitory processor-readable
storage medium, in operation the at least one processor: receives two sets of
image data representative of the same anatomical structure; co-registers the
image data; and aligns any potentially malignant anatomical structures across
the two sets of image data. The two sets of image data may be from the same
patient and may have been acquired at different times, or the two sets of image
data may be from the same patient and may be from different scan sequences.
The at least one processor may align the center of the two sets of images. The
at least one processor may co-register the two sets of images via a
transformation that may be calculated via gradient descent to find a rigid affine
transformation such that mutual information between the two sets of images is
maximized. Subsequent to the co-registration of the image data, the at least
one processor may pair lesions identified in one of the two sets of image data

with lesions identified in the other of the two sets of image data if the lesions
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are not further than a distance X away from each other, where X is a specific
value larger than 1 mm until there are no more lesions left for pairing.
Subsequent to the co-registration of the image data, the at least one processor
may pair lesions identified in one of the two sets of image data with lesions
identified in the other of the two sets of image data according to criteria that
minimizes the sum of distances among the paired lesions, where lesions that
are greater than 50 mm apart from each other are not paired with each other.

A display system may be summarized as including at least one
nontransitory processor-readable storage medium that stores at least one of
processor-executable instructions or data; and at least one processor
communicably coupled to the at least one nontransitory processor-readable
storage medium, in operation the at least one processor: causes a display to
present the set of image data comprising a plurality of anatomical structures,
wherein the opacity of certain anatomical structures is lower than that of other
anatomical structures.

The processor may receive a set of image data representative of
a plurality of anatomical structures; identify at least one of the anatomical
structures as being not of interest; and adjust the opacity of the identified
anatomical structure not of interest to be lower than the opacity of the other of
the plurality of anatomical structures.

The opacity may be adjusted based on an intensity threshold.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar
elements or acts. The sizes and relative positions of elements in the drawings
are not necessarily drawn to scale. For example, the shapes of various
elements and angles are not necessarily drawn to scale, and some of these
elements may be arbitrarily enlarged and positioned to improve drawing
legibility. Further, the particular shapes of the elements as drawn, are not

necessarily intended to convey any information regarding the actual shape of
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the particular elements, and may have been solely selected for ease of
recognition in the drawings.

Figure 1 is an image that displays the suboptimal results of the
snakes algorithm on a small lesion.

Figure 2 is an image that displays the suboptimal results of the
snakes algorithm on a juxtaplueral lesion.

Figure 3 is an image that displays the end-to-end detection, false-
positive reduction, and segmentation pipeline in schematic form, according to
one illustrated implementation.

Figure 4 is a flow diagram that displays the end-to-end detection,
false-positive reduction, and segmentation pipeline, according to one illustrated
implementation.

Figure 5 is a flow diagram that displays the end-to-end detection,
false-positive reduction, and segmentation pipeline for a case where each study
has multiple series, according to one illustrated implementation.

Figure 6 is a flow diagram of the creation of a lightning memory-
mapped database (LMDB) for training, according to one illustrated
implementation.

Figure 7 is a flow diagram of the model training pipeline,
according to one illustrated implementation.

Figure 8 is a flow diagram of the model inference pipeline,
according to one illustrated implementation.

Figure 9 is an image that displays an example from the proposal
network training database, according to one illustrated implementation.

Figure 10 is an image that displays the method by which the
ground truth map is adjusted for training, according to one illustrated
implementation.

Figure 11 is a flow diagram of the means by which inference
results for a 2D proposal network are combined, according to one illustrated

implementation.
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Figure 12 is an image that displays a 3D render of a lung scan
showing both proposed and ground truth lesion candidates.

Figure 13 is an image that displays a 3D render of a lung scan
and how a multi-plane view is extracted for a specific nodule, according to one
illustrated implementation.

Figure 14 is an image that displays two randomly selected true
cases and two randomly selected false cases from the classification network
training database.

Figure 15 is an image that displays inference results for two
selected cases from the classification network training database.

Figure 16 is an image that displays the lesion detection sensitivity
vs. average number of false positives per scan for lung lesion detection using
the combination of the proposal and classification networks for a lesion
detection system of the present disclosure vs. other clinical CAD products,
according to one illustrated implementation.

Figure 17 is an image that displays a randomly selected case
from the segmentation network training database.

Figure 18 is an image that displays inference results for a
randomly selected case from the segmentation network training database.

Figure 19 is an image that displays inference results for a
randomly selected case from the segmentation network training database in a
web application.

Figure 20 is an image that displays co-registration results via a
single axial slice for two scans from the same patient in sequential years.

Figure 21 is an image that displays co-registration results via an
axial intensity projection and 9-planes views for two scans from the same
patient in sequential years.

Figure 22 is a flow diagram describing the co-registration system,
according to one illustrated implementation.

Figure 23 is an image that displays an axial top-down view of a

3D render of a lung scan with the opacity adjusted for certain structures.
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Figure 24 is a schematic diagram of the U-Net network
architecture used, according to one illustrated implementation.

Figure 25 is a schematic diagram of the ENet network architecture
used, according to one illustrated implementation.

Figure 26 is a schematic diagram of one implementation of a
system that may be used for content based image retrieval, according to one
non-limiting illustrated implementation.

Figure 27 is a schematic block diagram of a convolutional neural
network training procedure according to an implementation wherein the
convolutional neural network operates as a feature extractor.

Figure 28 is a schematic block diagram of a training procedure for
a convolutional neural network according to an implementation wherein the
convolutional neural network operates to provide predictions of similarity.

Figure 29 is a schematic block diagram of a content based image
retrieval process, wherein a convolutional neural network operates as a feature
extractor.

Figure 30 is a schematic block diagram of a content based image
retrieval process according to an implementation wherein a convolutional neural
network operates to provide predictions of similarity.

Figure 31 is a schematic block diagram of a user interface of a
content based image retrieval system, according to one non-limiting illustrated
implementation.

Figure 32 illustrates one implementation of a results user interface
of a content based image retrieval system, according to one non-limiting
illustrated implementation.

Figure 33 illustrates another implementation of a results user
interface of a content based image retrieval system, wherein returned results
are stratified by malignancy, according to one non-limiting illustrated
implementation.

Figure 34 illustrates another implementation of a results user

interface of a content based image retrieval system, wherein returned results
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are stratified by malignancy and arranged spatially according to similarity,
according to one non-limiting illustrated implementation.

Figure 35 illustrates another implementation of a results user
interface of a content based image retrieval system, wherein returned results
are shown in a two-dimensional radial diagram, according to one non-limiting
illustrated implementation.

Figure 36 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, according to one non-limiting illustrated
implementation.

Figure 37 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing hove moving a pointer adds
voxels to a segmentation, according to one non-limiting illustrated
implementation.

Figure 38 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing how a segmentation grows as a
sphere follows movement of a pointer until the pointer is deactivated, according
to one non-limiting illustrated implementation.

Figure 39 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing that selecting a point inside an
existing segmentation initializes a tool that adds voxels to the segmentation,
according to one non-limiting illustrated implementation.

Figure 40 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing that selecting a point outside an
existing segmentation initializes a tool that removes voxels from the
segmentation, according to one non-limiting illustrated implementation.

Figure 41 is a schematic diagram that illustrates an adjustable
radius editing cylinder that may be used by the three-dimensional voxel
segmentation tool to modify segmentations, according to one non-limiting
illustrated implementation.

Figure 42 is a screenshot of a user interface of a three-

dimensional voxel segmentation tool, showing an editing cylinder approaching
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an existing segmentation, according to one non-limiting illustrated
implementation.

Figure 43 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing that the editing cylinder has cut
most of the way through a segmentation, according to one non-limiting
illustrated implementation.

Figure 44 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing that the editing cylinder has cut
all of the way through a segmentation resulting in the removal of a small
connected region, according to one non-limiting illustrated implementation.

Figure 45 is a screenshot of a user interface of a three-
dimensional voxel segmentation tool, showing measurement details that are
displayed for a selected segmentation, according to one non-limiting illustrated
implementation.

Figures 46A and 46B are a flow diagram of a method of operating
a computer based system to interact with medical image data, according to one
non-limiting illustrated implementation.

Figure 47 is a screenshot of a user interface that shows two
studies that are set up to show the same anatomy in scans taken at different
times, according to one non-limiting illustrated implementation.

Figure 48 is a screenshot of a user interface that shows the
volume of a lesion and calculation of maximum linear dimension and maximum
orthogonal dimension, according to one non-limiting illustrated implementation.

Figure 49 is a screenshot of a user interface that shows linked
findings between two scans, according to one non-limiting illustrated
implementation.

Figure 50 is a screenshot of a user interface that provides an
example of multiple series of a study that are aligned and shown

simultaneously, according to one non-limiting illustrated implementation.
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Figure 51 is a screenshot of a user interface that shows
segmentation of a liver and calculation of the longest linear diameter, according
to one non-limiting illustrated implementation.

Figure 52 is a screenshot of a user interface that is used to
capture LI-RADS features, which allows users to input each feature manually or
to select a score from a score table, according to one non-limiting illustrated
implementation.

Figure 53 is a screenshot of a user interface that includes an
excerpt of an automated report that collects all characteristics of each finding,
according to one non-limiting illustrated implementation.

Figure 54 is a flow diagram of a method of operating a computer-
based system to perform automated three-dimensional lesion segmentation,
according to one non-limiting illustrated implementation.

Figure 55 is a flow diagram that depicts a high level overview of a
method of operating a computer-based system to perform automated three-
dimensional lesion segmentation, according to one non-limiting illustrated
implementation.

Figure 56 is a high level flow diagram of a patient outcomes
prediction system, according to one non-limiting illustrated implementation.

Figure 57 is a flow diagram of a method training models in a
patient outcomes prediction system, according to one non-limiting illustrated
implementation.

Figure 58 is a flow diagram of a method of implementing a model
inference process in a patient outcomes prediction system, according to one
non-limiting illustrated implementation.

Figure 59 is a flow diagram of a method of providing a user
interface in a patient outcomes prediction system, according to one non-limiting
illustrated implementation.

Figure 60 is a user interface of a patient outcomes prediction
system, showing prediction results, according to one non-limiting illustrated

implementation.
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Figure 61 is another user interface of a patient outcomes
prediction system, showing prediction results, according to one non-limiting
illustrated implementation.

Figure 62 is a block diagram of an example processor-based
device used to implement one or more of the functions described herein,

according to one non-limiting illustrated implementation.

DETAILED DESCRIPTION

In the following description, certain specific details are set forth in
order to provide a thorough understanding of various disclosed
implementations. However, one skilled in the relevant art will recognize that
implementations may be practiced without one or more of these specific details,
or with other methods, components, materials, etc. In other instances, well-
known structures associated with computer systems, server computers, and/or
communications networks have not been shown or described in detail to avoid
unnecessarily obscuring descriptions of the implementations.

Unless the context requires otherwise, throughout the
specification and claims that follow, the word “comprising” is synonymous with
“‘including,” and is inclusive or open-ended (i.e., does not exclude additional,
unrecited elements or method acts).

Reference throughout this specification to “one implementation” or
“an implementation” means that a particular feature, structure or characteristic
described in connection with the implementation is included in at least one
implementation. Thus, the appearances of the phrases “in one implementation”
or “in an implementation” in various places throughout this specification are not
necessarily all referring to the same implementation. Furthermore, the
particular features, structures, or characteristics may be combined in any
suitable manner in one or more implementations.

As used in this specification and the appended claims, the

” o

singular forms “a,” “an,” and “the” include plural referents unless the context

clearly dictates otherwise. It should also be noted that the term “or” is generally
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employed in its sense including “and/or” unless the context clearly dictates
otherwise.

The headings and Abstract of the Disclosure provided herein are
for convenience only and do not interpret the scope or meaning of the

implementations.

1st Embodiment: Automated Detection and Segmentation

Overview

Figure 3 is a diagram 300 that visualizes an overview of a pipeline
used to detect and segment lesions for a lung scan. This process uses a
proposal network to suggest lesions candidates, optimizing for high sensitivity.
A classification network sorts through all the lesion proposals, improving
specificity (culling false positive proposals) while maintaining high sensitivity. A
final network segments these proposals to calculate relevant diagnostic
quantities to be presented to the user.

Co-registration of scans for machine learning purposes or
longitudinal tracking of observations is also discussed.

A more general flowchart overview of the end-to-end pipeline for
detection, segmentation, and co-registration of lesion candidates is detailed in
Figures 4 and 5. Figure 4 displays the pipeline for an input or inputs each with
a single series (e.g., for lung lesion detection in CT), whereas Figure 5 shows
the pipeline for an input or inputs with multiple series (e.g., for liver lesion
detection in MR). These figures provide context that will aid in understanding
the other operational pieces discussed below.

For the pipeline wherein studies have a single series, the process
400 begins at 402 when a study or multiple studies are uploaded. The process
400 takes a study and generates lesion proposals at 404. From these
proposals, lesion candidates are determined at 406 and classified as either a
true positive (True) or false positive (False) at 408. Note that (404, 406) is

described in further detail in Figure 11. At 410, the system determines the
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classification of each module. For each lesion candidate, if the classification
determined at 410 to be negative, it is not considered any further at 412. If the
classification is positive, the lesion is segmented at 414. If there are further
studies that have not been processed, which is determined at 416, steps 402-
414 are repeated. If there are not any further studies to be processed, it is
assessed whether there are multiple studies at 418. If there are not, the results
are displayed at 424 on a display of the system. If there are multiple studies,
they are co-registered at 420, and lesion candidates between each scan are
longitudinally identified at 422, at which point the results are displayed at 424.

For the pipeline wherein studies have multiple series, the process
500 begins at 502 when a study or multiple studies are uploaded at 502. The
process co-registers all available series at 504 and extracts the relevant series
at 506 for generating lesion proposals at 508. From these proposals, lesion
candidates are determined at 510 and classified at 512. Note that (508, 510) is
described in further detail in Figure 11. For each lesion, if the classification
determined at 514 is negative, it is not considered any further at 516. If the
classification determined is positive, the lesion candidate is segmented at 518.
If there are further studies that have not been processed, which is determined
at 520, steps 502-518 are repeated. If there are not, it is assessed whether
there are multiple studies at 522. If there are not, the results are displayed 528.
If there are multiple studies, they are co-registered at 524, and lesion
candidates between each study are longitudinally identified at 526, at which
point the results are displayed at 528.

Each of the methods of generating lesion proposals, classifying
the proposals, and segmenting the lesions are all deep learning methods, and
each utilizes its own training database with particular specifications. After the
models are trained, they can be used for inference on new data. After
inference is complete, and the lesion(s) are detected, co-registration is invoked
if multiple scans for the same patient have been uploaded. Each of these steps

will be discussed in order.
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Training Databases

Each deep learning method utilized in the pipeline requires its
own training database with particular specifications. Lightning Memory-mapped
Databases (LMDBs) are utilized that store preprocessed image/segmentation
mask pairs for training. This database architecture holds many advantages
over other means of storing training data, including:

- Mapping of keys is lexicographical for speed

- Image/segmentation mask pairs are stored in the format
required for training so they require no further preprocessing at training time

- Reading image/segmentation mask pairs is a
computationally cheap transaction

The training data could have been stored in a variety of other
formats, including named files on disk and real-time generation of masks from
the ground truth database for each image. These methods would have
achieved the same result, though they would likely have slowed down training.

Creation of a general LMDB is visualized in Figure 6. The
process 600 begins at 602 when the ground truth information is paired it with
the pixel data from the corresponding scan at 604 to create image/label pairs
from this information at 606. Preprocessing acts at 608 include normalizing the
images, cropping the images, and resizing the images. If the label is a boolean
mask, preprocessing also includes cropping and resizing.

A unique key for each image/label pair to be stored in the LMDB
is defined at 610. The image and label metadata, including the slice index,
lesion candidate location, and LMDB key are stored in a dataframe at 612. The

preprocessed image and label are stored in the LMDB for each key at 614.

Network Training

Figure 7 is a flowchart that describes general model training. An
open-source wrapper built on TensorFlow called Keras is utilized in this

disclosure for model training. However, equivalent results could be achieved
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using raw TensorFlow, Theano, Caffe, Torch, MXNet, MATLAB, or other
libraries for tensor math.

The datasets are split into a training set, validation set, and test
set; the training set is used for model gradient updates, the validation set is
used to evaluate the model during training (e.g., for early stopping), and the test
set is not used at all in the training process.

The process 700 begins at 702 when training is invoked. Image
and mask data is read from the LMDB training set, one batch at a time at 704.
The images and masks are distorted according to distortion hyperparameters in
a model hyperparameter file at 706. The batch is processed through the
network at 708, the loss/gradients are calculated at 710, and weights are
updated as per the specified optimizer and optimizer learning rate at 712. Loss
is calculated using a per-pixel cross-entropy loss function and the Adam update
rule. For details of the Adam update rule, see Kingma, Diederik P. and Ba,
Jimmy. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG],
December 2014.

At the end of every epoch at 714, metrics on the validation set at
716, including the validation loss, validation accuracy, relative accuracy vs. a
naive model that predicts only the majority class, f1 score, precision, and recall.
The validation loss is monitored to determine if the model improved at 718; if it
did, the weights of the model are saved at that time at 720, and the early
stopping counter is reset to zero at 722. Training begins for another epoch at
704. Metrics other than validation loss, such as validation accuracy, could also
be used to indicate evaluate model performance. It is noted if the model didn’t
improve after an epoch by incrementing the early stopping counter at 724 by 1.
If the counter has not reached its limit at 726, training begins for another epoch
at 704. If the counter has reached its limit, training of the model is stopped at
728. This “early stopping” methodology is used to prevent overfitting, but other
methods of overfitting prevention exist, such as utilizing a smaller model,

increasing the level of dropout or L2 regularization.
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At no point is data from the test set used when training the model.
Data from the test set may be used to show examples of segmentations, but
this information is not used for training or for ranking models with respect to one

another.

Network Inference

Inference is the process of utilizing a trained model for prediction
on new data. A web app is utilized for inference. Once the study is uploaded to
the web app, the entire pipeline of detection and segmentation will be run, and
co-registration will occur if multiple scans for the same patient are linked. The
predicted lesion locations and segmentations are stored at that time and
displayed to the user when they open the study.

For each part of the pipeline described in Figure 4 that includes a
neural network, the inference service is responsible for loading a model and
generating output. The final segmentation network is responsible for
generating the mask that will be displayed to the user.

The general inference pipeline for each model is described in
Figure 8. The process 800 begins at 802 when inference is invoked. Images
are sent to an inference server at 804 and the network is loaded on the
inference server at 806. The production model that is used by the inference
service has been previously hand-selected from the corpus of models trained
during hyperparameter search; it is chosen based on the optimal tradeoff
between accuracy, memory usage and speed of execution. The user may
alternatively be given a choice between a “fast” or “accurate” model via a user
preference option.

One batch of images at a time is processed by the inference
server at 808. The images are preprocessed (normalized, cropped, etc.) using
the same parameters that were utilized during training at 810. Inference-time
distortions may also be applied to take the average inference result on, e.g., 10
distorted copies of each input image; this would create inference results that

are robust to small variations in brightness, contrast, orientation, etc.
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For a given image, a segmentation model generates probabilities
for each pixel during the forward pass at 812, which results in a set of
probability maps with values ranging from 0 to 1. The probabilities correspond
to whether each pixel is part of a possible cancerous anatomical structure. The
probability maps are transformed into a label mask, wherein all pixels with a
probability above 0.5 are set to “potentially cancerous” and all pixels with a
probability below 0.5 are set to background at 814.

For the classification model, a forward pass at 812 results in a
probability score on whether the entire input image contains in it a possibly
cancerous anatomical structure.

If not all batches have been processed as is determined at 816, a
new batch is added to the processing pipeline at 808 and steps 810-814 are
repeated until inference has been performed for all required inputs as
determined at 816. Inference is complete at 818.

There are many reasonable physical constraints that should be
satisfied for accurate segmentation. These include, for example, that
segmentations of cancerous anatomical structures of the liver do not occur
outside of the physical bounds of the liver, that cancerous anatomical structures
of the lungs do not occur outside of the physical bounds of the lungs, and that
cancerous anatomical structures of the given organ are not larger than the
given organ.

Once the label mask has been created, to ease viewing, user
interaction, and database storage, the mask may be converted to a spline
contour for each axial slice. The first step is to convert the mask to a polygon
by marking all the pixels on the border of the mask. This polygon is then
converted to a set of control points for a spline using a corner detection
algorithm. For details of this algorithm, see Rosenfeld, Azriel, and Joan 8.
Weszka. "An improved method of angle detection on digial curves.” JEEE
Transactions on Computers 100.8 (1975). 840-841. A typical polygon from one
of these masks will have hundreds of vertices. The corner detection attempts

to reduce this to a set of approximately sixteen spline control points. This
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reduces storage requirements and results in a smoother-looking segmentation.
These splines are stored in a database and displayed to the user in the web
app. If the user modifies a spline, the database is updated with the modified
spline.

Volumes may be calculated by creating a volumetric mesh from
all vertices for a given time point. The vertices are ordered on every slice of the
3D volume. An open cubic spline is generated that connects the first vertex in
each contour, a second spline that connects the second vertex, etc., for each
vertex in the contour, until a cylindrical grid of vertices is created that is used to
define the mesh. The internal volume of the polygonal mesh is then calculated.

Alternatively, for small or complex lesions, a spline may be too
coarse of a representation to fully capture the structure of the lesion. In this
case, the mask may be created and stored as a pixel mask without being
converted to a spline. Volumes may be calculated by counting the voxels within
the 3D mask and multiplying by the volume of each voxel in mL or mm?.
Alternatively, volumes can be calculated using a shape prior for the given

lesion.

Proposal Network

In this disclosure, a fully convolutional network (FCN) is utilized
for segmentation to locate as many lesion candidates as possible. This FCN is
tuned to maximize lesion sensitivity rather than specificity; it is left to the second
piece of the pipeline, the classification network, to reduce the number of false
positives from the proposal network.

Various styles of FCN may be chosen, as long as the FCN
performs pixelwise segmentation. Possible segmentation architectures include
but are not limited to ENet, U-Net, and their variants. Detailed discussion of
these FCN architectures is presented in a later section. In this disclosure, 2D
or 3D FCNs are utilized. 2D networks train more quickly than their 3D

extensions and have lighter computational requirements, but 3D networks
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incorporate more spatial context. Dimensionality of the neural network is
chosen via a hyperparameter search.

If a 2D network is chosen, it is generally used on axially acquired
images, as scan resolution is often highest in the xy plane; however, the 2D
FCN could also be trained and validated on any reformat or acquired plane of
the data, including the coronal or sagittal planes.

If the image data are from CT scans, the data are clipped with a
lower limit of -1000 Hounsfield units and an upper limit of 400 Hounsfield units
before normalizing such that they have a mean of O, though other clip values
that contain the full range of lesion brightnesses would suffice. MRIs are
normalized such that they have a mean of zero and that the 1st and 99th
percentile of a batch of images fall at -0.5 and 0.5, i.e., their “usable range” falls
between -0.5 and 0.5.

Both 2D and 3D networks are applied to the full input image for a
particular model if there is sufficient GPU memory. If not, the input image can
be downsampled (e.g., a 512x512 pixel image to a 256x256 pixel image for the
2D case) or the FCN can operate on patches of the high resolution data, either
in a non-overlapping fashion (e.g., a 512x512 pixel image is split into 256x256
pixel images with stride 256, resulting in four total images in the 2D case) or an
overlapping fashion (e.g., a 512x512 pixel image is split into 256x256 pixel
images with stride 128, resulting in sixteen total images in the 2D case).

To achieve a high sensitivity with the proposal network, the loss
function is modified to increase the penalty of prediction errors in portions of the
image containing pixels annotated to be lesion candidates by clinicians and
reduce the penalty of prediction errors in the background of the image. The
modified training function comprises convolving the ground truth label map with
a Gaussian kernel. Furthermore, the modified training function has as a
hyperparameter the ratio of total weight given to foreground and background
pixels.

To further increase the sensitivity of the proposal network,

multiple models trained in different ways are ensembled, as each model may
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pick up on different “flavors” of possibly cancerous anatomical structure. There
are many different ways to ensemble models. The inventors found that the
most effective combination involves combining the predictions from a model
trained with a modified loss function and one trained with a classic pixel-wise
binary cross-entropy. However, other means of ensembling predictions could
include but are not limited to combining the results of 2D FCNs trained on each
of axial, coronal, and sagittal slices of the volumetric data and ensembling
different model architectures, including combinations of 2D and 3D models.

An optional preprocessing step includes reformatting the data to
be the intensity projection along any axis. Inlung CT, blood vessels appear
more elongated in an intensity projection, whereas lesions generally don't
appear more elongated. The intensity projection can be the mean, maximum,
or minimum. In this framework, the intensity projection and non-projected
image data are used as inputs into the model and the feature maps for the two
data types are combined via concatenation, sum, difference, or average.

Multi-modal data for training the models is utilized in cases where
it is available, e.g., in liver MRIs. These scans are co-registered before utilizing
this data. There are many possible ways of combining different series,
including but not limited to including each series as a channel and including
each series as a separate input and fusing the latent feature maps. Traditional
neural networks typically have one channel of input or channels that represent
RGB colors. By utilizing the different series as neighboring channels, the
network is able to learn spatially-coherent intensity correspondences between
the pulse sequences. If each series is included in a separate input, the network
learns unique features for each before they are combined to make a final
segmentation or classification.

A CNN that directly predicts the content of bounding boxes
corresponding to features in the input image may also function as the proposal
network. Two-stage bounding box prediction networks, wherein the first stage
suggests locations of reasonable bounding boxes and the second stage

classifies these bounding boxes, have been shown to succeed at a variety of
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detection tasks. However, these algorithms tend to be slow and require custom
fine-tuning to work.

A one-stage bounding box detection system that operates on a
dense grid of candidate bounding boxes has recently been proposed by
[Ysung-Yi 2017]; the authors describe a modified cross-entropy loss to sort
through the highly unbalanced classes, as most candidate boxes will be in the
background class. Their one-stage detection system and custom “focal loss”
may be extended to a 3D analogue tuned for nodule detection, except for one
notable distinction: a dense sampling of candidate bounding boxes in 3D
mandates an exceptional number of candidates. In this disclosure, the inventors
utilize the general structure outlined by [Ysung-Yi 2017] for purposes of nodule
detection, but modify the anchor sampling strategy. We observe that large
anchors, when densely sampled, have extremely high loU with one another,
resulting in an unnecessarily high computational burden; as such, we spread
larger candidate bounding boxes with a multi-pixel stride while still maintaining
dense sampling for smaller candidates. Both the baseline 2D approach and 3D

extension to published work are considered.

Proposal Network Training Database

For the proposal network, a ground truth database includes lesion
segmentations that are paired with the raw CT or MR images on an axial slice-
by-slice basis (for the 2D case) or with the entire scan (for the 3D case) to
create image/label mask pairs. For the 2D case, only axial slices that intersect
a lesion segmentation are included, though other slices could have been
included. The unique LMDB key is a concatenation of the series UID and the
slice index, though other unique keys would have sufficed. Figure 9 displays an
image/label pair (902 and 904, respectively) for the proposal network training
database. The ROl is in the black box 906. For the case wherein a bounding
box detection network is utilized, the ground truth database includes the

bounding boxes described by the lesion segmentations.
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Proposal Network Training

In order to maximize lesion recall, the 2D version of the proposal
network is trained only on slices that intersect a lesion. Although this will result
in an over-proposing of lesions at inference time, as real scans do not have
lesions on every slice, the subsequent classification network sorts out the false
proposals.

The training loss function is modified to preferentially penalize
prediction errors in the vicinity of the lesion candidate and reduces the penalty
of prediction errors in the background of the image. The modification involves
convolving a Gaussian kernel with the ground truth segmentations. The width
and strength of the kernel are hyperparameters. This is visualized in Figure 10.
Image 1002 shows the ground truth map before convolving with a Gaussian
kernel, image 1004 shows after convolving with a Gaussian kernel. The kernel
used in this example has a width of 15 pixels and has been normalized such
that the peak value is 100.

A plurality of models is optionally utilized, in which case the
results are ensembled. In this case, the best model trained with this modified
loss function (as determined in a hyperparameter search) and the best model
trained with a pixel-wise cross-entropy loss (as determined in a separate
hyperparameter search) are ensembled to use for inference and for creating the

classification network training database.

Proposal Network Inference

In the implementation wherein a 2D FCN is used on slices of the
volumetric image data, the process 1100 begins at 1102 when inference is run
for each slice. The proposals are stacked in a spatially ordered 3D array at
1104. The predicted probabilities are thresholded at 1106, and any desired
morphological operations are utilized at 1108. Morphological operations may
include dilation, erosion, opening and closing. These predictions are then
combined in 3D utilizing 6, 18, or 26-connectivity of the predicted pixels at

1110, for example. The centroid of each connected prediction is defined to be
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the center of mass of predicted probabilities, the center of the binarized mask,
the center of the circumscribing bounding box, or the random location within the
segmentation, among other options. Lesion candidates are defined for all
contiguous regions as 1112. Figure 12 displays a 3D render 1200 of both
proposed 1202 and ground truth 1204 lesion candidates after all 2D axial

proposals have been combined and processed.

Classification Network: False Positive Reduction

While the proposal network is able to achieve high lesion
sensitivity, it does so with a very low specificity. To reduce the number of false
positives while maintaining high sensitivity, a classification network is utilized to
sift through all proposals and learn the difference between true and false
lesions.

There are many popular CNN architectures for classification that
have been discussed in the literature. For this disclosure, a modified ResNet is
used. For a detailed description, refer to the “ResNet Variation” section below.

Image planes centered on the lesion center that are evenly
distributed in solid angle over each axis to create a 2.5D view of the lesion are
extracted and stacked as channels for input to the network. This allows us to
consider 3D context while making classifications on hundreds of lesion
candidates per scan in a reasonable amount of time. However, in other
implementations a 3D classification architecture may be used for this purpose.
A 3D architecture would likely be more accurate, at the expense of being
significantly more computationally intensive.

To further increase the classification accuracy of the model, an
intensity projection could be used for some subset of the channels of the 2.5D
view.

To learn features at a variety of spatial scales, the input data are
resampled to different real-world spacing per pixel and combine the learned

latent features.
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Classification Network Training Database

The classification network’s training database is built with the
results from the proposal network. The proposed segmentations are combined
in 3D and the centroid of each connected region is calculated. If the centroid
falls within the segmentation mask, the image extracted at this centroid will be a
true case in the database, whereas if it falls outside of a ground truth
segmentation mask, it will be a false case. The images utilized for training the
classification network are extracted from the raw CT scans or MRIs for each
centroid. Planes evenly distributed in angle along each primary axis are
extracted. This process is visualized in Figure 13, wherein a 3D render 1302 of
a CT lung scan with proposed 1301 and ground truth 1303 lesions and the 9-
plane view 1304 extracted for one specific lesion candidate in the box 1306.
The images extracted for the lesion candidate are evenly distributed in angle
(by 45 degrees for a 9-plane view) along each of the x, y, and z axes.

These images are stored in a single array where the channel
dimension are combined with the classification label. The unique key used in
the LMDB is the lesion location, though other unique keys could also be used.
Figure 14 displays two randomly selected true cases 1402 and false cases
1404 pulled from the classification network training database for the 9-planes

variation.

Classification Network Training

The classification network is trained as described in the general
framework. However, because there may be hundreds of false proposals for
every positive proposal, dataset rebalancing is used during training. The ratio
of negative to positive lesions is a hyperparameter. Samples are randomly
selected from all the negative proposals until the desired ratio is achieved.
Furthermore, the change in the ratio of negative to positive lesion images with
each epoch is a hyperparameter. Having this option allows the strong
oversampling of positive candidates during the beginning of training for the

network to learn the characteristics of positive lesions, followed by an annealing
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of the ratio towards the original distribution such that the network can learn the

native distribution of classes in the data.

Classification Network Inference

Figure 15 displays inference results for the classification network
of a true positive 1502 and true negative 1504 case. Figure 16 is a graph 1600
that displays the lesion detection sensitivity versus average number of false
positives per scan for lung lesion detection using the combination of the
proposal and classification networks for the lesion detection system discussed
in this disclosure versus other clinical CAD products, according to one

implementation.

Segmentation Network

Lesion candidates that are classified as true lesions will be
segmented via patches that are extracted from the full resolution images.
Having a dedicated segmentation network that operates on patches is
advantageous over a network that operates on the entire image at once. The
percentage of foreground pixels in a patch is much higher relative to a full
resolution image, allowing faster training. Furthermore, this implementation
does not require complicated custom loss functions. Furthermore, a patch
based method allows the use of a 3D end-to-end segmentation model, as
memory limits are not reached with small patches.

The segmentation methodology of the present disclosure utilizes
customized fully convolutional neural networks for end-to-end 3D training and
segmentation. This deep learning approach is able to learn a huge number of
features representative of the training data presented to it, resulting in superior
generalization performance. Furthermore, the network is able to consider full
spatial context for all lesion candidates that need to be segmented at the

intrinsic resolution of the scan.
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As with the proposal network, the exact FCN that is used for
segmentation may vary as long as it performs pixelwise segmentation. 3D
extensions of ENet, U-Net, and their variants are all possible.

The segmentation network may additionally contain a Spatial
Transformer Network (STN) module, a subnetwork structure that allows for the
spatial manipulation of data. STNs take as input the data to transform, and
produce the parameters necessary to perform a pre-determined spatial
transformation such as, but not limited to, rotation or scaling. STNs can produce
varying types of transformations that allow for rigid or non-rigid spatial
manipulation, and include but are not limited to affine transformations, thin plate
spline transformations, b-spline transformations, and projective transformations.

When inserted into an existing CNN, STN modules allow for the
network to increase its invariance to translation, scaling, rotation, and more
generic warping. STN modules may be inserted at the beginning of a CNN,
acting on the input and manipulating it in such a way that it is easier for the
CNN to perform its task (e.g. classification or segmentation). They can also be
inserted anywhere within a CNN to manipulate the intermediate feature maps
such that the CNN can more easily perform its task.

For semantic segmentation, scale invariance is often a challenge
that CNNs struggle with. Spatial transformer networks parametrized to perform
zoom/attention operations can improve the scale invariance of a CNN by

allowing the network to focus on the relevant features for segmentation.

Segmentation Network Training Database

The training database for the segmentation network is very similar
to that of the proposal network, as both are segmentation networks. One main
difference is that the segmentation network operates in 3D, while the proposal
network operates in 2D, 3D, or a combination thereof. The network is trained
only on 3D patches that contain lesions, though in some implementations non-
lesions are also included. 3D patches are extracted from the raw CT scans or

MRIs centered on the center of mass of each ground truth lesion. Patches are
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extracted such that the pixel spacing is fixed along all axes. In at least some
implementations, the system utilizes patches that are 64 pixels along each
edge, but a different size may be used in other implementations to achieve
similar results. The 3D image patches are matched with 3D boolean masks
representing whether each pixel within the 3D patch is in a lesion. The unique
key utilized is the lesion location, though other unique keys may be used.
Figure 17 displays a 3D render of the 3D patch 1702 and 3D ground truth
boolean mask target 1704 for an input/target pair randomly pulled from the

training database.

Segmentation Network Training

In at least some implementations, the segmentation network is
trained as described above with reference to Figure 7 with no further

adjustments.

Segmentation Network Inference

Figure 18 shows a render of the 3D input patch 1802, the
corresponding segmentation and ground truth annotation 1804. Figure 19
displays a view 1900 of an example lesion segmentation calculated with a
segmentation network in the web application. The lesion segmentation mask
from the segmentation network is presented in axial 1902 (top left), sagittal
1904 (top right), coronal 1906 (bottom left), and 3D reconstruction 1908 (bottom
right) views in the web application. The volume 1901 of the mask is displayed

to the user.

Co-registration

Co-registration of two scans is important for display purposes,
machine learning training and inference, and clinical interpretation. Often,
multiples series taken in the same session will be misaligned due to the patient
shifting or inconsistent breath holds. Furthermore, in order to assess tumor

growth, recession, and/or response to treatment, a patient will come in for a
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follow up scan, and the doctor would like to visually compare and quantify
changes in possibly malignant observations. Though the applications of co-
registration are slightly different, the technique for co-registration may be the
same. Figures 20 and 21 display examples of a co-registration algorithm
according to at least one implementation of the present disclosure. In Figure
20, an axial slice of co-registered scans for the same patient for an initial scan
2002 and a follow up scan the next year 2004 is displayed. A lesion identified
to be the same lesion in both scans is centered in box 2006. In Figure 21, axial
maximum intensity projections for co-registered scans for the same patient for
an initial scan 2102 and a follow up scan the next year 2104 with a specific
longitudinally identified lesion in the circle 2106 displayed as 2.5D nine plane
views 2108 are displayed.

In general, the goal of image co-registration is to find a certain
transformation so that when applied to the moving image, its similarity with the
fixed image is maximized. Linear transformations and elastic transformations
describe the two main classes of registration algorithms. The choice of
transformation depends on the organ of interest in the scan. For example, rigid
affine transformation may be applied to brain scans since the skull is rigid and
the movement of the brain is limited in the skull, as discussed in Huhdanpasa,
H., Hwang, D H., Gasparian, G. G, Booker, M. T, Cen, Y., Lemer, A, ..
Shiroishi, M. 8. (2014). Image Co-registration: Quantilstive Processing
Framework Tor the Assessment of Brain Lesions. Journal of Digital imaging,
27(3), 368379 http:/dolorg/10.1007/10278-013-8655-y. However, elastic
transformations may be important for precise registration of non-rigid organs,
such as the liver or lungs.

For affine transformation, points, lines and planes are preserved
in the transformation, e.g., rotation, translation and scaling are allowed. In the
case of affine rigid transformation, only rotation, translation and reflection are
allowed. Because affine transformation is formulated as a matrix multiplication,
co-registration using affine transformation is generally much faster than elastic

co-registration.
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For elastic transformation, local deformation is applied to the
moving image using, e.g., b-spline or thin-spline transformation.

A similarity metric is a continuous measure of degree of similarity
between two images, and registration methods attempt to maximize the chosen
similarity metric. Common choices of similarity measure include mutual
information, cross-correlation and sum of squared differences. The similarity
metric is used as a cost function for optimizing the transformation parameters in
stochastic gradient descent.

Similarity metrics can be calculated on the intensity of the image
directly or features extracted from the images. Image intensity and image
features might be computed in an overlapping or non-overlapping sliding-
window manner. Examples of image features are corresponding points, lines
and curves.

For follow up scans in which it is desired that quantification of
changes to any possibly malignant observations is determined, one of two
potential algorithms is utilized, though others that pair lesion candidates could
also be used. The first step for each algorithm is to co-register the scans. A
greedy nearest neighbor algorithm pairs each lesion candidate in one scan with
the closest lesion candidate in the other scan if it is not further than { mm away,
which t is a distance threshold depends on organ and use cases. This process
is repeated until there are no more lesion candidates left to be paired. Another
option is to find sets of pairs such that the sum of distances among the paired
lesion candidates is minimized. This pairing can be calculated using Hungarian
algorithm, for example. For details of the Hungarian algorithm, see Kuhn, H.
W. 19585. “The Hungarian Method for the Assignment Problem.” Nava/
Research Logistics 2 (1-2). Wiley Subscription Services, Inc., A Wiley
Company: 83-97. In addition, lesions are that t mm apart are ignored and will
not be paired, where t is a distance threshold that depends on the organ and

use cases.
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Co-registration Technique

In at least some implementations, the system utilizes a co-
registration technique that does not use deep learning, though deep learning
methods may also be used. The process is described in Figure 22. The
process 2200 begins at 2202 when two inputs that require co-registration are
uploaded. The inputs could be, but are not limited to, two scans from different
times for the same patient or two series from the same study for the same
patient (here, a “scan” or “series” refers to any volume of data). Then, at 2204
the system initializes the transformation such that the center of the two inputs
are aligned. Gradient descent is performed to find a rigid affine transformation
or non-rigid transformation such that a certain similarity metric between the two
scans is maximized at 2206. At this point, the transformation matrix can be
utilized on the moving image at 2208, i.e., the one to be matched with the
original. At this point, the co-registered inputs can be utilized. A specific
configuration could be to use mutual information as the similarity metric with 50
histogram bins and SGD with a learning rate of 0.1 for 200 iterations, but in
other implementations different configurations may be used to achieve similar

results.

Display of Lesions

It is important to display lung anatomy and lesions for doctor
review in an easily accessible way. We allow the user to view the nodule
annotations with the opacity of certain structures adjusted. Figure 23 is an
image 2300 that displays this effect from an axial top-down view, showing

various lesions 2302.

Fully Convolutional Neural Networks for Region Proposals and

Segmentation

This section describes in further detail the neural network

architectures and variations discussed elsewhere in the description.

40



10

15

20

25

30

0O 2018/222755 PCT/US2018/035192

The general idea behind fully convolutional networks (FCNSs) is to
use a downsampling path to learn relevant features at a variety of spatial scales
followed by an upsampling path to combine the features for pixelwise
prediction. The downsampling path generally includes convolution and pooling
layers, whereas the upsampling path includes upsampling and convolution
layers. Downsampling the feature maps with a pooling operation is an
important step for learning higher level abstract features by means of
convolutions that have a larger field of view in the space of the original image.
Upsampling the activation volumes back to the original resolution is necessary
in a fully convolutional network for pixel-wise segmentation.

In at least some implementations, the system uses ReLUs
(rectified linear units) for all activations following convolutions. Other
nonlinearities, including PReLU (parametric ReLU) and ELU (exponential linear

unit), may also be used.

UNet Variation Architecture

Figure 24 shows a schematic representation of the U-Net
convolutional neural network architecture 2400 according to at least some
implementations of the present disclosure. While superficially similar to the
original U-Net, the modifications to the network overcome many of the
limitations of the original U-Net. For details on the original U-Net, see
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-
Assisted Intervention—-MICCAI 2015, pp. 234-241. Springer (2015)

As in U-Net, the FCN 2400 according to an implementation of the
present disclosure utilizes two convolutional layers before every pooling
operation, with convolution kernels of size 3x3 and stride 1. Different
combinations of these parameters (number of layers, convolution kernel size,
convolution stride) may also be used, although the results may not improve. U-
Net uses a total of four contracting pooling operations, followed by four

upsampling operations; based on a hyperparameter search it was found that
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four pooling and upsampling operations worked best for the data, though the
results are only moderately sensitive to this number.

Without applying any padding to input images (this lack of
padding is called “valid” padding), convolutions that are larger than 1x1
naturally reduce the size of the output feature maps, as only (image_size -
conv_size + 1) convolutions can fit across a given image. The original U-Net
uses valid padding, and as such, their output segmentation maps are only
388x388 pixels, even though their input images are 572x572 pixels.
Segmenting the full image therefore requires a tiling approach, and
segmentation of the borders of the original image is not possible. In the
network, zero-padding of width (conv_size - 2) is utilized before every
convolution such that the segmentation maps are always the same resolution
as the input (known as “same” padding). Valid padding was experimented with
as well, but found it did not improve the results.

As in U-Net, a 2x2 max pooling operation with stride 2 is used to
downsample the images after every set of convolutions. Learned
downsampling, i.e., convolving the input volume with a 2x2 convolution with
stride 2 was experimented with, but found it increased computational
complexity without improving performance. Different combinations of pooling
size and stride were also tried, but it was found the results did not improve.

To increase the resolution of the activation volumes in the network
2400, U-Net uses an upsampling operation, then a 2x2 convolution, then a
concatenation of feature maps from the corresponding contracting layer through
a skip connection, and finally two 3x3 convolutions. The upsampling and 2x2
convolution are replaced with a single transpose convolution operator, which
performs upsampling and interpolation with a learned kernel, improving the
ability of the model to resolve fine details. As in U-Net, that operation is
followed with the skip connection concatenation. Following this concatenation,
two 3x3 convolutional layers are applied.

The number of free parameters in the network 2400 determines

the entropic capacity of the model, which is essentially the amount of
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information the model can remember. A significant fraction of these free
parameters reside in the convolutional kernels of each layer in the network.
The network is configured such that, after every pooling layer, the number of
feature maps doubles and the spatial resolution is halved. After every
upsampling layer, the number of feature maps is halved and the spatial
resolution is doubled. With this scheme, the number of feature maps for each

layer across the network can be fully described by the number in the first layer.

ENet Variation

Disadvantages of fully symmetric architectures in which there is a
one-to-one correspondence between downsampling and upsampling layers are
that they can be slow and have a significant memory footprint, especially for
large input images. ENet, an alternative FCN design, is an asymmetrical
architecture optimized for speed. For details on the original ENet
implementation, see FPaszke, Adam, et al. "Enet. A deep neural network
architecture for real-time semantic segmentation.” arxiv preprint
arXiv.1606.02147 (2016). Figure 25 shows a schematic representation of the
U-Net convolutional neural network architecture 2500 according to at least
some implementations of the present disclosure.

ENet utilizes early downsampling to reduce the input size using
only a few feature maps. This reduces both training and inference time, given
that much of the network’s computational load takes place when the image is at
full resolution, and has minimal effect on accuracy since much of the visual
information at this stage is redundant. ENet also makes use of bottleneck
modules, which are convolutions with a small receptive field that are applied in
order to project the feature maps into a lower dimensional space in which larger
kernels can be applied. Throughout the network, ENet leverages a diversity of
low cost convolution operations. In addition to the more-expensive n x n
convolutions, ENet also uses cheaper asymmetric (1 x nand n x 1)
convolutions and dilated convolutions. A significant limitation of the original

ENet implementation is the lack of skip connections, limiting the network’s
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ability to learn from and predict fine details. As such, the ENet variation utilizes

skip connections.

3D FCNs
In at least some implementations, the system may extend the 2D
implementations of UNet and ENet to utilize 3D convolutions, 3D pooling, and

3D upsampling.

ResNet Variation

For classification, convolutional neural networks using residual
connections, i.e., residual networks, ResNet, may be used. For details on
ResNet, see He, Kaiming, et al. "Deep residual learming for image recognition.”
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, A variant of the residual network for false positive reduction
is used in this disclosure. Residual connection adds an identify mapping (or
bypass) between the input and the output of the convolution and activation
layer, improving gradient flow in very deep neural networks.

The variant of ResNet in this disclosure utilizes identity mappings
wherein a residual block consists of 2 repetitions of Batch Normalization layer,
RelLU activation layer and a convolutional layer. For details of this variant, see
He, Kaiming, et al. "identity mappings in deep residual networks.” European
Conference on Computer Vision. Springer International Publishing, 2016, A
pooling block consists of one or more residual blocks in which the last
convolutional layer has stride of 2 to reduce dimension of the feature maps.
The variant of ResNet starts with a Convolution layer, ReLU activation layer
and a Batch Normalization layer. Unlike the original ResNet, a Max Pooling
layer was not used after because the lesion image patches size is smaller than
the input size. A certain number of pooling blocks follows, and the network
ends with a global averaging layer to reduce size of the feature map to 1x1.

The final layer is a fully connected layer of 1 neuron with sigmoid nonlinearity.
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Model Hyperparameters

The model hyperparameters are stored in a configuration file that
Is read during training. Each model (U-Net, ENet, ResNet) and dimensionality
(2D, 3D) will have a specific set of hyperparameters. Parameters that describe
a 2D U-Net model include:

- num_pooling_layers: the total number of pooling (and
upsampling) layers

- pooling_type: the type of pooling operation to use

- num_init_filters: the number of filters (convolutional
kernels) for the first layer

- num_conv_layers: the number of convolution layers
between each pooling operation

- conv_kernel_size: the edge length, in pixels, of the
convolutional kernel

- dropout_prob: the probability that a particular node’s
activation is set to zero on a given forward/backward pass of a batch through
the network

- border_mode: the method of zero-padding the input feature
map before convolution

- activation: the nonlinear activation function to use after
each convolution

- weight_init: the means for initializing the weights in the
network

- batch_norm: whether or not to utilize batch normalization
after each nonlinearity in the down-sampling / contracting part of the network

- batch_norm_momentum: momentum in the batch
normalization computation of means and standard deviations on a per-feature
basis

- down_trainable: whether to allow the downsampling part of

the network to learn upon seeing new data
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- bridge_trainable: whether to allow the bridge convolutions
to learn

- up_trainable: whether to allow the upsampling part of the
network to learn

- out_trainable: whether to allow the final convolution that
produces pixel-wise probabilities to learn

Parameters that describe the training data to use include:

- crop_frac: the fractional size of the images in the LMDB
relative to the originals

- height: the height of the images, in pixels

- width: the width of the images, in pixels

Parameters that describe the data augmentation during training
include:

- horizontal_flip: whether to randomly flip the input/label pair
in the horizontal direction

- vertical_flip: whether to randomly flip the input/label pair in
the vertical direction

- shear_amount: the positive/negative limiting value by which
to shear the image/label pair

- shift_amount: the max fractional value by which to shift the
image/label pair

- zoom_amount: the max fractional value by which to zoom
in on the image/label pair

- rotation_amount: the positive/negative limiting value by
which to rotate the image/label pair

- zoom_warping: whether to utilize zooming and warping
together

- brightness: the positive/negative limiting value by which to
change the image brightness

- contrast: the positive/negative limiting value by which to

change the image contrast
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- alpha, beta: the first and second parameters describing the
strength of elastic deformation. For more details on elastic deformation, see
Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural
Networks applied to Visual Document Analysis", in Proc. of the International
Conference on Document Analysis and Recognition, 2003.

Parameters that describe training include:

- batch_size: the number of examples to show the network
on each forward/backward pass

- max_epoch: the maximum number of iterations through the
data

- optimizer_name: the name of the optimizer function to use

- optimizer_Ir: the value of the learning rate

- objective: the objective function to use

- early_stopping_monitor: the parameter to monitor to
determine when model training should stop training

- early_stopping_patience: the number of epochs to wait
after the early_stopping_monitor value has not improved before stopping model
training

To choose the optimal model, a random search over these
hyperparameters is performed and the model with the highest validation

accuracy is chosen.

B. Content Based Image Retrieval for Lesion Analysis

Terms
o API - Application Programming Interface
o Benign - Not cancerous
o CBIR - Content-Based Image Retrieval
o CBIR Database - Database containing images and (in some
implementations) one or more of image features and clinical

features for lesions that may be returned to the user
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CBIR Image Database - Database containing the images from
which features may be extracted for lesions that may be returned
to the user

Clinical Features - Features related to a lesion that are derived
from clinical data of the patient from whom the lesion is drawn,
such as: demographic information, medical history, biopsy results
or semantic features determined through radiological examination
CNN - Convolutional Neural Network

CT - Computed Tomography

Database - Any nontransitory processor-readable storage
medium, including but not limited to a relational database (e.g.,
MySQL), a “NoSQL” database (e.g., MongoDB), a key-value store
(e.g., LMDB), or any centralized or distributed file system

EHR - Electronic Health Record

Ground Truth Label - The label that is correctly associated with an
image for the purpose of training or evaluating a machine learning
model; to be contrasted with the predicted label

Image Features - Features that are derived from the pixel data of
one or more images

Lesion Features - Features related to a lesion that may be a
combination of any or all of image features, clinical features or
other features

Malignant - Cancerous

MR - Magnetic Resonance

Predicted Label - The label predicted by a machine learning
model; may or may not be correct with respect to the ground truth

label

Current Clinical Practice for Radiological Estimation of Lesion Malignancy

One of the most important tasks that radiologists need to perform

is the review of medical images, such as magnetic resonance (MR) or
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computed tomography (CT), of patients who may have cancer. These patients
may have imaging performed for a variety of reasons: they may be participating
in cancer screening; they may have an unidentified mass from a clinical
examination; they may have known cancer and are being imaged to track
progression. As part of the review, the radiologist may discover potentially
malignant lesions. The radiologist must then make an assessment of the
likelihood of malignancy of the lesions. Such an assessment will then lead to
decisions for follow-up care for the patient, which may include any of: no
treatment, follow-up imaging, biopsy, cancer treatment (such as radiation,
surgery or chemotherapy) or others.

Although radiologists receive training in the practice of
determining the likelihood of malignancy from radiological images, the great
variety of presentations for both benign and malignant lesions makes this task
extremely challenging. For example, Lung-RADS assessment categories [ACR
Lung-RADS] are often used for the clinical prediction of malignancy for lung
nodules and LI-RADS assessment categories [ACR LI-RADS] perform the
same role for assessing potential hepatocellular carcinoma in liver lesions.
These systems are generally structured as decision trees, in which a clinician
will assess various morphological features associated with a lesion or its growth
and then assign a category to the lesion based on the appropriate reporting
system. There are at least two major challenges when using these reporting
systems. The first challenge is that the assessment categories are very coarse
(i.e., each category has a wide range of malignancy probabilities) which leads
to low positive predictive value (PPV) in the classification of cancer and
therefore unnecessary biopsy and treatment. The second challenge is that
assessment of lesion morphological features is subjective and suffers from
inter- and intra-rater variability.

The challenge that arises from the coarseness of the assessment
categories can be illustrated with an example from Lung-RADS. Lung-RADS
Version 1.0 dictates that the nodule category corresponding to the highest

likelihood of malignancy, Category 4B, carries a true probability of malignancy
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of 15% or greater. Studies have shown that the true probability of malignancy
for some Category 4B nodules is around 25%, a number that is similar to the
Lung-RADS guideline of >15% [Chung 2017]. Because Category 4B constitutes
the highest suspicion level, all Category 4B nodules are likely to be
recommended for biopsy. If the true likelihood of malignancy of Category 4B
nodules is 25%, indicating a positive predictive value (PPV) of 25%, this means
that 75% of all Category 4B nodules that are recommended for biopsy are
benign and that the biopsies in those cases were not truly necessary. There is
therefore a critical need to provide radiologists better tools to improve the PPV
of malignancy prediction which would allow them to reduce the number of
invasive biopsy procedures for patients who do not stand to benefit from them.
Simultaneously, improvements to sensitivity would allow radiologists to detect
more malignant lesions earlier, leading to more timely care for patients.

The second challenge of malignancy assessment based on
clinical reporting systems is related to the inter- and intra-reader variation, an
issue that is well-established for the clinical diagnosis of medical images [van
Riel 2015] [Gulshan 2018]. Inter-reader variation results from a variety of
factors, including differences in clinical training, years of experience, and
frequency of reading a particular type of image. Intra-reader variation can be
influenced by how much time a clinician has to read a scan or the context in
which the scan is read (e.g., whether the clinician’s other most recently-read
scans contained benign or malignant lesions). Providing the appropriate,
objective information to clinicians during the process of diagnostic decision
making can reduce this inter- and intra-reader variation by reducing biases and

giving more historical context to the current case.

Content-Based Image Retrieval (CBIR)

Content-based image retrieval (CBIR) constitutes a class of
machine learning methods to retrieve images (and possibly other associated
information) from a database based on the similarity of those images to a query

image. The query image is drawn from the medical images of the query patient,
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which is usually the patient for whom the clinician seeks to make a clinical
assessment. By using a CBIR system to retrieve similar images along with
information about the clinical outcomes of the patients from whom those images
are drawn, the clinician gains direct access to imaging and outcomes
information for similar patients. The clinician can then incorporate that
information into the process of making a diagnosis for the query patient.
Although an effectively implemented CBIR system has the
potential to significantly improve the accuracy of cancer diagnosis,
implementation of a CBIR system can be very challenging. An effective CBIR
system should have the following properties:
e A large, diverse database of images
e A clinically relevant definition of similarity
e A scalable way of querying the database
In the past, many of the aspects that define a successful CBIR
system have been very difficult to achieve. Some of the obstacles are described
in detail below.
e A large, diverse database of images
Assembly of a large, diverse database of images has traditionally
been very challenging. Standard clinical care for the radiological assessment of
suspicious lesions typically involves the review of images followed by the
dictation of relevant findings into a textual report. Although reviewers may make
basic measurements on the image, such as the longest linear dimension of the
lesion, these measurements are typically not stored in a manner that allows
them to be easily retrieved for research or product development. It is therefore
impossible to use these reports to localize lesions on images for later retrieval.
It is therefore necessary to execute a targeted annotation
procedure to localize lesions on their original images. Because the annotation
of images typically requires a trained radiologist or technologist, this procedure
is often prohibitively time consuming, expensive, or both. Two very recent
innovations have changed that calculation. The first is the recent advent of

large, well-annotated data sets, such as the LIDC-IDRI dataset [Armato 2011],
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which includes multi-reader volumetric localization and segmentations of lung
nodules. The second is the development of the cloud-based radiological
viewing software, such as the web-based application provided by Arterys, Inc.,
which collects in a central cloud database all annotations created by users,
including linear distance and volumetric annotations. These annotations,
provided by radiologists and technologists as part of standard clinical care, can
then be easily used to localize lesions in images, allowing the lesions
themselves, along with localized pixel data and related metadata, to be stored

in a database for subsequent analysis and retrieval.

A clinically relevant definition of similarity

The concept of lesion similarity is subjective and context
dependent; not only may two different individuals disagree on the definition of
similarity, but the same user may also wish to change the definition to suit
different purposes. For example, one definition of similarity may be relevant for
distinguishing between benign and malignant lesions, while another definition
may be relevant for distinguishing between different cancerous subtypes.

Even when a clinician is able to express their definition of
similarity, it has in the past been challenging to computationally quantify that
definition. For example, the presence of spiculations in lung nodules tends to
increase the likelihood that the nodule is malignant, so a clinician may prefer
that spiculations factor into the definition of similarity. However, computationally
quantifying the extent to which a lung nodule is spiculated has traditionally
required the extraction of hand-crafted features. These hand-crafted features
would be meticulously designed based on low-level image processing
techniques, such as wavelets, texture analysis, the Hough transform and
others. Hand-crafted features traditionally took a very long time to develop and
were very fragile and dependent on intricacies with the given data set.
However, the very recent advent of deep learning, and particularly convolutional
neural networks [Russakovsky 2015], has significantly reduced the difficulty of

extracting relevant features. Using modern deep learning-based convolutional
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neural networks (CNNs), one can straightforwardly extract any features for
which well-curated training data is established.

The burden has therefore shifted away from the design of hand-
crafted features and towards the curation of labeled datasets and the design of
effective models for feature extraction. Once a clinically relevant set of features
-- including, for example, spiculations -- is identified, one can create a training
dataset with lesions and their ground truth annotations (including, e.g., the
degree of spiculation for each lesion), design a CNN model to predict the
annotations, and train it on the training dataset. That model can then be used to
extract the features from new images beyond those in the training dataset and
the features may be included as part of the definition of similarity for comparing
a query lesion to lesions from a database.

CNNs can alternatively be used to extract relevant features less
directly. Because a CNN includes many layers, one can extract features from
any layer of the CNN and use those features as part of the definition of
similarity. For example, a CNN can be trained as a binary classifier to classify
images of lesions as benign or malignant. The final output of such a network
typically has only a single scalar value: the probability that a lesion is malignant,
from O to 1. However, the layers prior to the final layer of a CNN model typically
have on the order of 1000 or more features [He 2016]. These are mid-level
features that the CNN model has learned are relevant for the ultimate prediction
of malignancy. Because these mid-level features must ultimately depend on the
morphological appearance of the lesion (given that the lesion image is the input
to the model), they may also be relevant for retrieving similar lesions. These
lower-level features could therefore be used directly, or with some
postprocessing, to calculate lesion similarity.

Finally, a CNN model could be used to directly predict the
similarity of a query lesion to other lesions in the database. For example, if a
training data set was created that consisted of a set of query lesions and their

quantitative similarity to some or all lesions within a database of lesions, a
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model could be trained on that data set. That model would then be able to

predict similarity for a new query lesion to lesions from the database.

A scalable way of querying the database

CBIR is most effective when integrated with a clinician’s existing
workflow. This presents a challenge for traditional radiological postprocessing
tools, which are workstation-based and typically possess minimal ability to send
data to or receive data from outside of a hospital’s IT network. Part of this
restriction is technological (e.g., building network-connected software is difficult)
and part is administrational (e.g., hospitals prefer to restrict network connectivity
to reduce the possibility of a data breach). A large database of retrievable
images and associated information, particularly a dynamic one, cannot easily
be maintained within the context of a single workstation, because of both its
size and its need for continual updates.

A cloud-based solution, in which the CBIR interface is a web-
based application, can fully support the needed scalability and dynamism of the
CBIR database. For such a solution to be effective, it must both integrate with
the clinician’s workflows and mitigate the privacy risk of sending data between

the hospital and the outside network.

Detailed Description

1st Embodiment

System Overview

One implementation of the full content-based image retrieval
system is described below in two separate phases: the “training” phase, in
which the models and databases that will be used in operation of the system
are developed, and the “inference” phase, in which a user interacts with the
system to retrieve images that are similar to a query image.

Figure 26 shows one implementation of a complete system 2600,
including both a training 2630 and an inference 2640 phase. In the training

phase 2630 of this implementation, training images, optionally along with
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“‘labels” or “targets” for the images, are stored in a training database 2602. For
implementations in which the CNN model that is trained is a supervised
learning model, the training database 2602 contains labels, whereas for
implementations in which the CNN model is an unsupervised learning model,
labels may not be used in the training process and therefore do not need to be
stored in the training database 2602. The training images, along with their
labels if applicable, are used to train the CNN model 2604. Once trained, the
CNN model 2604 is stored 2606 to disk or a database 2608. Note that the
training process is described in more detail for different implementations below.

In the inference phase 2640 of this implementation, a query lesion
is initially selected at 2610. Data related to the lesion is then loaded at 2612.
Once the image data of the query lesion is loaded, the trained CNN model 2608
is used along with the lesion data 2612 to calculate the similarity between the
query lesion and lesions in the CBIR database lesions at 2618. Different
implementations for how similarity is calculated 2618 are described elsewhere
herein.

Once similarity has been calculated between the query lesion and
lesions from the CBIR database, similar lesions are retrieved from the CBIR
database 2616 at 2620. After similar lesions are retrieved, they are displayed to
the user of the software at 2622. Additional details and different possible

implementations of the user interface are discussed further below.

Training
Several different implementations of the training phase 130 are

described below. Figure 27 shows a method 2700 of one implementation of
training, in which a CNN is trained for use as a feature extractor. Training data
is stored in the training image database 2702. In at least some
implementations, training is performed in a supervised manner and data in the
training image database 2702 includes both lesion images and ground truth
labels. Those labels may take on many forms, depending on the specific CNN

implementation, including but not limited to: Lesion diagnosis (e.g., malignancy,

55



10

15

20

25

30

WO 2018/222755 PCT/US2018/035192

type of malignant lesion, overall type of lesion including benign and malignant
lesions); lesion characteristics (e.g., size, shape, margin, opacity,
heterogeneity); characteristics of the tissue surrounding the lesion; location of
the lesion within the body; whether the image is drawn from a real radiological
image or one fabricated by, e.g., the generator of a generative adversarial
network; or any combination of the above.

Training is cyclical process and includes repeated loading of
batches of training data from the database at 2704, followed by a standard
CNN training iteration 2706. The standard CNN training iteration 2706 includes
a forward pass of image data through the network, calculation of a loss
function, and updating the weights of the CNN model using backpropagation
[LeCun 1998]. For implementations in which the model is supervised, loss is
calculated with respect to the network’s output and the ground truth label. For
implementations in which the model is unsupervised, loss is calculated with
respect to some other metric, such as the inter-cluster distance of predicted
results.

After each CNN training iteration 2706, some criteria is used to
evaluate whether the training is complete at 2708. This criteria could take on
any of several forms, including but not limited to: whether the evaluation loss is
continuing to decrease with respect to historical loss data; whether a
predetermined maximum number of training iterations have completed; whether
a predetermined maximum amount of time has elapsed; or some combination
of the above.

If training is not complete, another batch is loaded at 2704 and
training continues; if training is complete, the cycle is broken and the CNN
model is stored at 2710 and 2712.

The CBIR image database 2716 contains image data for lesions
that may be returned as part of CBIR inference. These images are in the format
from which features may be extracted using the trained CNN model 2712. Note
that this image format may be different from the format of images that are

returned to the user as part of CBIR inference. For example images from the
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CBIR image database 2716 may include the complete scan of the patient,
which could be a multi-slice, multi-timepoint MR or CT study, for example. In
contrast, images returned to the user as part of CBIR inference may be
optimized for user viewing. In at least some implementations, returned images
include simple thumbnails showing the lesions. In other implementations,
images returned to the user include more complex data, such as the full scan
with which the user can interact through an appropriate user interface.

After the trained CNN model is stored, images are drawn from the
CBIR image database 2716 and features are extracted at 2714 using the
trained CNN model 2712. These features are then stored 2718 in the CBIR
database 2720. In at least one implementation, clinical features are also stored
2718 in the CBIR database 2720. Lesion images of the appropriate format for
returning to the user are also stored 2718 in the CBIR database 2720.

Note that, in place of the single CNN described above, an
ensemble of multiple CNNs, possibly with different training techniques or target
label formats, may be used to extract complementary features.

Figure 28 shows a method 2800 of one implementation of
training, in which a CNN is trained to directly predict similarity. As in the method
2700, training images are drawn from a training database 2802. One distinction
between the implementation of the method 2800 and the implementation of the
method 2700 is that, in the implementation of the method 2800, the ground
truth labels drawn from the CBIR similarity database 2803 are themselves
similarity scores between the training images and the images in the CBIR
database. Unlike the implementation of the method 2700, where the CNN is
used as a feature extractor, the CNN of the method 2800 is responsible for
directly predicting the similarity between a given lesion image to some or all
lesion images within the CBIR database.

Because similarity is an intrinsically subjective concept, there are
several methods by which the similarity score targets of the CNN can be
determined, including but not limited to: a system in which similarity is derived

from similarities of the diagnosis or treatment response of the training database
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lesions and CBIR database lesions; a system in which clinicians or other
trained individuals explicitly indicate the extent to which lesions in the CBIR
database are similar to lesions in the training image database; or some
combination of the above.

Similarity need only be determined between any given lesion in
the training image database and a subset (as opposed to all) lesions in the
CBIR database. Lesions in the CBIR database for which similarity is not
determined may either have their similarity score imputed based on surrounding
data or they may be ignored for a given training image while training the CNN
model.

Beyond the difference in how labels are defined, the remaining
steps of the training process for the implementation of method 2800 are
analogous to the steps in the method 2700. As part of this implementation’s
training cycle, a batch of training data is loaded at 2804, a training iteration is
performed at 2806, and completeness of training is evaluated at 2808. Unlike
the training iteration of the act 2706, which could be either a supervised or
unsupervised training iteration, the training iteration at 2806 may be exclusively
supervised, with the similarity score as the ground truth label. Once training is
complete at 2808, the CNN model is stored at 2810 and 2812. Unlike in the
method 2700, features are not extracted for lesions in the CBIR image
database 2716 and stored in the CBIR database 2720 in this implementation,
because the CNN model of the method 2800 is not used as a feature extractor.

In at least some implementations, clinical features related to
lesions in the training image database 2802 may be loaded along with the
images when loading the training batch at 2804. In those implementations, the
CNN input includes both image data and clinical features. Although the image
data is used as input to the CNN at the first layer (the layer furthest from the
output), the clinical features may be used as input to the CNN at any layer; for
example, they may be used as input to the last layer (the layer closest to the
output) of the CNN.
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Inference

Several different implementations of the inference phase 2640
(Figure 26) are described below. Figure 29 shows a method 2900 of a CBIR
retrieval process in which a CNN is used as a feature extractor. Initially, the
query lesion is selected at 2902. The query lesion could be selected in many
different ways, including but not limited to: a user clicking on or tapping a lesion
when viewing a radiological study (such as an MR or CT study); a user
selecting a lesion from a list of previously identified lesions; via an automated
system; or some combination of the above.

The lesion may be a lesion that a user (e.g., a radiologist) is
interested in diagnosing as being malignant or benign. The lesion may be a
lesion for which the radiologist wishes to diagnose the type or subtype of lesion
(e.g., infection, fibroma, cancer, etc.), or it may be any other lesion for which the
user wishes to retrieve similar lesions, including possibly a lesion for which the
diagnosis is already known.

Image data associated with the lesion is then loaded at 2904. The
image data includes pixels from the original radiological study (or some
derivative thereof, such as one or more PNG or JPEG images) and may be 2D,
3D or of a higher dimension (e.g., in perfusion or cine studies that include a
temporal dimension in addition to the three spatial dimensions).

In at least one implementation, clinical features are also loaded at
2910. These clinical features can be derived from the patient’s electronic health
record through an application programming interface (API) or they may be
retrieved from a separate database that may either be colocated with or
separated from the image data associated with the query lesion. These clinical
features are used in conjunction with image features in order to retrieve similar
lesions.

Once the image data of the query lesion is loaded, the trained
CNN model 2906 is used to extract image features from the image data at

2908. The image features and clinical features are then used to calculate the
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similarity 2914 between the query lesion and lesions from the CBIR database
2912.

In at least one implementation, the CBIR database 2912 contains
both lesion information to be retrieved as well as lesion features that are used
as part of the similarity calculation. The lesion information to be retrieved
includes some form of image data for display to the user as well as, in some
implementations, lesion metadata, such as clinical information. In at least one
implementation, the CBIR database 2912 is implemented as multiple linked
databases that each contain different types of data; for example, one database
may contain pixel data, another database may contain image features and yet
another database may contain clinical features.

The similarity calculation of 2914 may be implemented in many
different ways. In at least one implementation, the query lesion is compared to
the lesions in the CBIR database 2912 by calculating the Euclidian distance
between the features of the query lesion to the features of the lesions in the
CBIR database. Other distance metrics, such as Manhattan, Minkowski or LP
distance can also be used. Features may have individual weights such that, for
example, image features are weighted more heavily in the distance calculation
than clinical features. If features have individual weights, these may be set
explicitly or implicitly by users, they may be based on aggregated preferences
of users, or they may be based on users’ feedback about the quality of the
similar results. Features may also be combined in a non-linear fashion, e.g.,
using dimensionality reduction methods such as principal component analysis
(PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE). Features may
be combined based on their relationship, by, for example, reducing the
dimensionality of clinical features independently from reducing the
dimensionality of image features. For speed, similarity may be calculated using
an approximate nearest neighbors algorithm [Muja 2009] instead of an exact
algorithm.

In at least one implementation, similarity is directly calculated

using a regression model. Such a regression model predicts a similarity metric
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between the query lesion and each lesion or a subset of lesions in the CBIR
database 2912. The regression model takes as input image features and, in at
least one implementation, clinical features. The output of the regression model
is a similarity score between the query lesion and some or all lesions in the
CBIR database. The regression model must have previously been trained on a
set of lesions with known ground truth similarity to some or all lesions from the
CBIR database. The regression model could be any type of feature-based
regression, such as K-nearest-neighbors, logistic regression, multilayer
perceptron, random forests or gradient boosted decision trees.

Similarity may be calculated on only a subset of lesions in the
CBIR database 2912. In at least one implementation, similarity is only
calculated based on patients with similar demographics or with similar clinical
history to the patient from whom the query lesion is drawn. The criteria that
determines which subset of similar lesions to return may be user selectable, or
it may be determined automatically by the software.

Once similarity has been calculated between the query lesion and
lesions from the CBIR database 2912, similar lesions are retrieved at 2916 from
the CBIR database. All lesions from the CBIR database 2912 may be returned
and ranked, or a subset of lesions may be returned. For the at least one
implementation in which a subset of lesions are returned, there are many
criteria that may be used to determine which subset of lesions is returned.
Criteria may include, without being limited to: the most similar lesions; the most
similar lesions from each of a selection of categories, e.g.: benign and
malignant; different subtypes of lung cancer; different types of lesions (infection,
fibroma, cancer, etc.); the most similar lesions which specific morphological
characteristics selected by the user (e.g., lesions with spiculations; ground
glass lesions; hypoenhancing lesions, etc.); the most similar lesions from
patients with similar demographic or clinical characteristics to the patient from
whom the query lesion is drawn; or any combination of the above.

In at least some implementations, the returned results are used as

input to an algorithm that classifies the query lesion at 2918. The classification
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algorithm may predict for the query lesion any clinical outcome that is known for
the lesions retrieved from the CBIR database 2912. For example, the classifier
may classify the malignancy, lesion type, cancer subtype or prognosis of the
query lesion. The classifier may be a K-nearest-neighbors algorithm that
generates a result based on majority voting of the returned results, or it may be
a more sophisticated algorithm, such as a random forest or gradient boosted
decision trees. The classification may include the probability associated with the
most likely predicted class as well as the probabilities associated with other
classes. The results may include the uncertainty of the prediction. The
uncertainty may be expressed as a confidence interval or in colloquial language
that indicates the degree to which the classifier is confident in its prediction.
After similar lesions are retrieved, the similar lesions, along with
the classification result (if applicable in the given implementation) are displayed
to the user of the software at 2920. Additional details and different possible
implementations of the user interface are discussed elsewhere herein.Figure 30
shows a method 3000 for an alternative implementation for inference in which a
CNN is used to directly predict similarity. As in the previous implementation of
the method 2900, the query lesion is selected at 3002, image data is loaded at
3004 and, in at least some implementations, clinical features are loaded at
3006. One difference between the implementation of the method 3000 and the
implementation of the method 2900 is that, in the implementation of the method
3000, the trained CNN model 3008 is not used to extract features. Rather, the
trained CNN model 3008 directly predicts at 3012 the similarity of the query
lesion to lesions from the CBIR database 3010. The CNN model takes as input
image data and, in some implementations, clinical features. Although the image
data is used as input to the first CNN layer, if clinical features are used as input,
the clinical features may be used as input to the CNN at any layer; for example,
they may be used as input to the last layer (the layer closest to the output) of
the CNN. The output of the CNN model is a similarity value between the query

lesion and lesions from the CBIR database 3010.
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The remaining sections of the method 3000, including retrieval of
similar lesions at 3014, optional classification at 3016, and displaying the
results to the user at 3018, operate identically to the analogous sections in the

method 2900 discussed above.

Inference User Interface

Figure 31 shows a method 3100 of implementing a user interface
with which the user can interact with the CBIR system. Within the software
application, the user initially opens the relevant study from which they wish to
invoke CBIR at 3102. Within the study, the query lesion is selected at 3104, as
described previously. From there, a Find Similar Lesions process is invoked at
3106. The Find Similar Lesions process may be invoked manually by the user,
or it may be invoked automatically once the query lesion is selected at 3104.
The request to find similar lesions is sent to the application server 3108 which
may either be a remote server or it may reside on the user's computer. Similar
lesions are returned at 3110 and then displayed to the user on a display at
3114. In at least some implementations, the probability of malignancy or some
other metric for the query lesion is simultaneously displayed. In
implementations for which such a metric is displayed, the metric may be
displayed simultaneously with the returned lesions, or it may be displayed in a
separate interface. In at least some implementations, the metric is displayed as
a bar chart or number indicating the probability of the given metric (e.g.,
malignancy).

In at least some implementations, the user has the option of
providing feedback on the returned results at 3112. The feedback mechanism
may take on any of several forms, including but not limited to: the user may
indicate on specific results whether they deem them to be similar or dissimilar
to the query lesion; the user may indicate on specific results whether they deem
them to be relevant or irrelevant to the specific treatment decision (e.g.,
whether or not to biopsy the query lesion) that the clinician wishes to make; the

user may directly assign similarity scores or relevancy scores to the individual

63



10

15

20

25

30

WO 2018/222755 PCT/US2018/035192

results; the user may re-order the results based on their preferred ordering of
similarity or relevance; or any combination of the above.

Figure 32 shows one implementation of a user interface 3200. In
particular, Figure 32 shows the user interface 3200 for returned results 3214.
The query lesion 3202 is shown alongside the current selected similar lesion
3204. Characteristics of the current selected similar lesion 3204, such as the
biopsy result, are shown. In at least some implementations, the current selected
similar lesion 3204 may be displayed larger, possibly in its own window, hiding
other elements of the user interface 3200. Degrees of similarity of the current
selected similar lesion along different similarity dimensions may be displayed

” o

3208. In this implementation, three dimensions, including “size,” “average
intensity” and “deep learning” are shown. Other implementations may show
similarity across additional dimensions, different dimensions or not at all.
Additional similar lesions beyond the current selected similar lesion 3204 that is
currently selected are shown below in a scrollable interface 3212. The user may
interact with one of the other similar lesions 3212. Upon interaction, that similar
lesion becomes the current selected similar lesion.

The user may browse additional similar lesions beyond those
shown by clicking the arrows on either side of the list of similar lesions. In other
implementations, the user may also scroll through the list using a mouse scroll
wheel, a touch interface, clicking and dragging or keyboard shortcuts. In this
implementation, a summary of the returned lesion characteristics, namely
whether the lesion is known to be malignant (M) or benign (B) is indicated
alongside the results 3214, but this information could be displayed in another
way (e.g., using color or a shape, or overlaid on the images). Other information
about the lesions (e.g., the known cancer subtype) could be displayed. In this
implementation, the likelihood of malignancy 3206 of the query lesion is
displayed. In this implementation, the likelihood is displayed as a bar graph with
error bars, though other forms of display, including other types of graphs or a
textual percent are also possible. Other predicted results, e.g., the probabilities

of different cancerous subtypes can also be displayed. In at least some
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implementations, the predicted results 3206 may be derived from statistical
analysis of the returned similar lesions 3212. In at least some implementations,
predicted results 3206 are not shown.

Figure 33 shows a view of a user interface 3300 that provides an
alternative implementation of displaying returned lesions. In this
implementation, returned lesions are stratified into sections based on biopsy-
confirmed malignancy 3302, with benign lesions shown separated from
malignant lesions. Any characteristic of the lesions, such as known cancerous
subtype, or different types of lesions (including both benign and malignant
types) can be used to stratify the display of returned lesions. Figure 34 shows a
view of a user interface 3400 that provides an alternative implementation of
displaying returned lesions. This implementation is similar to the
implementation shown in Figure 33, except that, instead of returned lesions
shown spaced equidistant from each other, the distances of the lesions with
respect to each other in the returned lesion display 3402 are based on the
actual similarity of the lesions with respect to each other. For example, the
small gap between the leftmost two lesions 3408 and 3404 in the benign
category indicates that those two lesions are similar to each other. The large
gap between the second and third benign lesions 3404 and 3406, respectively,
indicates that those lesions are relatively more dissimilar to each other. The fact
that the first malignant lesion 3410 is further to the right than the first benign
lesion 3408 indicates that the first malignant lesion 3410 is less similar to the
query lesion than the first benign lesion 3408 is to the query lesion. In at least
one implementation, the benign and malignant rows of lesions scroll
synchronously to preserve the similarity relationships between the two rows.
Stratifications other than benign and malignant, such as lesion subtype, could
also be used.

Figure 35 shows a view of a user interface 3500 that provides an
alternative implementation of displaying returned lesions. As in other
implementations described here, the query lesion is shown 3502. In at least

some implementations, the query lesion 3502 is not separately shown. In this
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implementation, returned similar lesions are shown in a two-dimensional polar
plot 3504. The polar plot 3504 represents two dimensions of similarity between
returned lesions and the query lesion; the overall distance on the polar plot from
its center 3508 represents the overall distance (inversely proportional to
similarity) between a given returned lesion and the query lesion. The
dimensions may be two features that are used in the calculation of similarity, or
they may be two features that result from dimensionality reduction of a higher
dimensional feature space, such as through principal component analysis
(PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE). The query
lesion is shown at the center of the polar plot 3508 for reference. Contours
3510 indicate lines of equal distance from the query lesion. Returned lesions
are indicated on the polar plot using thumbnail images of the lesions. Returned
lesions could also be represented with markers that do not show the lesion
image. In this implementation, the biopsy result of returned lesions is indicated
by the color of the image border and a symbol (circle for biopsy negative,
triangle for biopsy positive) 3506. The biopsy result could be indicated via other
means, such as the shape of the thumbnail image, a symbol adjacent to the
image, or a text overlay. If the returned images are represented with markers,
the marker type (e.g., square vs. diamond) could indicate the category of lesion
(e.g., benign vs. malignant). Other categories besides benign or malignant,
such as the lesion subtype of the returned lesions, could alternatively or

additionally be indicated.

C. Three Dimensional Voxel Segmentation Tool

Medical imaging, such as CT and MR, is frequently used to create
a 3D image of anatomy from a stack of 2D images, where the 3D image then
includes a three dimensional grid of voxels. While the technique is extremely
powerful, its three dimensional nature frequently presents challenges when
trying to interact with the data. For example, the simple task of viewing the
resulting volume requires specialized 3D rendering and multiplanar

reconstruction techniques.
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A common task for a radiologist is to segment some feature within
the 3D volume. One example would be indicating all of the voxels of a 3D
volume that make up a tumor. This would be important to help measure the
tumor and track its change over time. Another example would be segmenting
the volume of the left and right ventricles of the heart along with the
myocardium at end systole and end diastole in order to determine heart
function.

In order to deal with the challenges presented by trying to work in
three dimensional space, usually using two dimensional tools such as a
computer screen and mouse, various techniques have been developed.

A radiologist may characterize a tumor based on one or more
simple measurements, such as the tumor’'s diameter, implemented as a simple
linear measurement. Such measures are not as ideal as keeping track of all the
voxels in a tumor, but are relatively simple to implement.

Similarly, it is very common to segment features such as the left
ventricle of the heart by establishing a set of regularly spaced 2D slices through
the feature and then creating contours on each of the slices which can then be
connected to produce a representation of the three dimensional segmented
region. This technique works well for some shapes, such as the left ventricle,
although the process of drawing contours on many slices can be time
consuming. Other anatomy features have more complex shapes and are not
easily represented by a series of contours, making their segmentation much
more difficult.

One or more implementations of the present disclosure are
directed to systems, methods and articles that allow a user to interact with 3D
imaging data. In at least some implementations, the system allows a user to
move an adjustable radius sphere (or cylinder), also referred to herein as an
editing tool, within a volume in order to add voxels to a segmentation. The
action can be thought of as using the sphere to paint the voxels of interest. One
way to visualize a 3D volume is to produce a multiplanar reconstruction (MPR)

of the volume, creating a 2D image representing a slice through the volume at
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some arbitrary position and orientation. The placement and movement of the
sphere may be controlled by the user clicking and dragging (e.g., via a mouse
or other pointer) on such an MPR representation of the volume. By alternating
between adjusting the position and orientation of the MPR and using an editing
tool of the system, the user is able to quickly segment a region of interest as
defined by the current application. As the user edits the segmentation, the
editing tool may be displayed to the user as a circle on the MPR. The current
extent of the segmentation may also be displayed to the user by constantly
updating the MPR as the user makes an edit and highlighting the MPR pixels
that fall within the segmentation.

While a sphere is an appropriate shape for adding voxels to a
segmentation to fill a region of the volume, a sphere may not work well for
removing voxels in a well-controlled manner. For this purpose, the application
may create an infinitely long cylinder with the axis of the cylinder perpendicular
to the plane of the MPR with which the user is interacting. The cylinder then
acts like a “knife” that can effectively cut away parts of the segmentation.

The application maintains a list of independent segmentations and
provides the ability to distinguish different types of segmentations as defined by
the current task. For each segmentation the application also displays the total
volume of the segmented voxels and other measurements of the
segmentation’s physical extent.

The following provides a description of one possible
implementation of the present disclosure.

The user is able to view either a single MPR of the volume or a
collection of three orthogonal MPRs along with a 3D rendering of the volume.
As with most medical image viewing software, controls are provided to easily
manipulate the position and orientation of the MPRs so that the user can get
the desired view of the anatomy feature of interest.

A tool is then provided that allows the user to create a 3D
segmentation by clicking and dragging on one of the displayed MPRs. Voxels

are added to the segmentation by moving an editing tool (e.g., a sphere)
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through the volume. As shown in a screenshot 3600 of Figure 36, in at least
some implementations, when a user clicks on some point within one of the
MPRs, a sphere 3602 is initialized at that point within the 3D volume. The
intersection of the MPR with the sphere is displayed to the user as a circle on
the MPR itself, providing feedback to the user. As the sphere is moved through
the volume guided by the user dragging the sphere’s center point over the
MPR, the voxels that come in contact with the sphere are added to the
segmentation. This feature is shown in the screenshot 3700 of Figure 37 and
the screenshot 3800 of Figure 38. The segmentation itself keeps track of all the
voxels that it contains and is typically implemented by marking a mask of the
volume’s voxels. The segmentation grows as the sphere follows the mouse
movement until the mouse button is released.

As the current segmentation is edited, the MPRs are continually
updated in order to display the intersection of the MPR with the segmented
volume. This may be done by applying a color highlight to intersecting pixels of
the MPR. Because MPRs are only capable of displaying 2D cross sections of
the resulting segmentation, it can be advantageous for the radius of the editing
sphere to be easily adjustable to so that it is an appropriate size for the feature
being marked. It is also very useful to have a tool that allows the user to easily
rotate the orientation of the MPRs around a center point, which can be placed
within the segmentation, so that the user can quickly get an idea of how well the
segmentation is proceeding and quickly find new orientations where the
segmentation needs further edits.

In addition to being able to add voxels to a segmentation, the
system may allow a user to easily remove voxels from a segmentation in order
to make corrections. In this particular implementation, a user indicates their
desire to add more voxels to an existing segmentation by placing the initial click
of the drag operation inside the segmentation itself, as shown in the screenshot
3900 of Figure 39. In a similar manner, placing the initial click of the drag
operation outside the segmentation triggers a removal or trimming operation, as

shown in the screenshot 4000 of Figure 40.
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While a sphere is a suitable shape for adding voxels to a
segmentation, a sphere may not be particularly well-suited for removing voxels.
As shown in a diagram 4100 of Figure 41, when a user indicates that voxels are
to be removed (e.g., by placing the initial click of the drag operation outside the
segmentation), in at least some implementations the sphere is replaced with an
adjustable radius cylinder 4102, the axis 4104 of which is perpendicular to the
MPR 4106 with which the user is currently interacting. The representation of the
cylinder on the MPR may still be a circle 4110 of the same radius as when the
editing operation uses a sphere, but the cylinder is projected over the entire
depth of the volume 4108, forming, in essence, a “knife” that is used to cut or
trim the segmentation over its full depth. In this way removal of voxels from the
segmentation becomes a predictable and controllable operation even under the
constraint that the user is only able to see the result of the immediate operation
on a 2D plane.

When doing this removal operation, it is very easy to deliberately or accidentally
isolate different regions of an existing segmentation, for example, the user may
use a small radius to cut a segmentation in half. When this happens, in at least
some implementations, the system locates and keeps the largest connected
resulting region of the segmentation and eliminates all resulting regions that
have been cut off from it. This is done so that the end result is guaranteed to be
a single connected region, which is advantageous for many uses of the
segmentation tool. Allowing only a single connected region may also be
advantageous because it helps the user keep control of the segmentation given
that they cannot see all of the entire 3D segmentation at the same time. That
is, it helps avoid leaving random small disconnected bits while the user is
deleting or trimming part of the segmentation. Figure 42 shows a screenshot
4200 as the editing cylinder 4102 approaches an existing segmentation 4202,
Figure 43 shows a screenshot 4300 as the editing cylinder 4102 has cut most
of the way through the segmentation 4202, and Figure 44 shows a screenshot

4400 as the editing cylinder 4102 has cut all the way through the segmentation
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4202 resulting in the removal of the smaller connected region from the
segmentation.

In order to accommodate the need to be able to segment multiple
regions, the functionality may be organized as a list of independent, possibly
overlapping, segmentations, each of which defines a single connected region.
Each region may be assigned a code, which is used to control the color of the
segmentation when it is displayed to the user. In addition, each segmentation
may be labeled with a type defined by the specific application or tool that
generated the segmentation, making it easy for each application or tool to find
and control its own segmentations when a study is reloaded at a later date. A
control is provided to the user that allows them to toggle on and off the display
of an individual segmentation or a whole group of segmentations.

Figure 45 is a screenshot 4500 of the MPR that displays the
regions covered by the individual segmentations shown in a list on the right
hand side. The application further displays values associated with the physical
extent of the segmentation, such as volume of the segmentation, the longest
diameter of the segmentation, etc., as shown in the box 4502 on the right side
of the screenshot 4500. In at least some implementations, the MPR displays
the major diameter and the orthogonal diameter as lines 4504 and 4506,
respectively, on a selected segmentation 4508.

When a segmentation is to be edited, it may first be put into a
“selected” state, de-selecting any previously selected segmentation. In this way,
the user is able to use the tool to interact with only a single segmentation at a
time without needing to worry about accidentally editing neighboring or

overlapping segmentations.
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D. Systems and Methods for Interaction with Medical Image Data

Current Clinical Practice for Radiological Estimation of Lesion

Malignancy

One of the most important tasks that radiologists need to perform

is the review of medical images, including magnetic resonance (MR) or
computed tomography (CT), of patients who may have cancer. These patients
may have imaging performed for a variety of reasons: they may be participating
in cancer screening; they may have an unidentified mass from a clinical
examination; they may have known cancer and are being imaged to track
progression. As part of the review, the radiologist may discover potentially
malignant lesions. They then need to make an assessment of the likelihood of
malignancy of the lesions. Such an assessment will then lead to decisions for
follow-up care for the patient, which may include any of the following: no
treatment, follow-up imaging, biopsy, cancer treatment (such as radiation,
surgery or chemotherapy) or others.

Because a lot of these assessments are subjective, the field of
radiology has developed several standards for grading the findings in medical
images. Depending on the type of cancer, these standards often include a
combination of features such as size measurements, intensity of the pixels in
images, response to contrast, growth rate, and diffusion properties amongst
others. Some of these gradings are used for screening purposes, such as
Lung-RADS (Lung Screening Reporting and Data System), which is used to
assess the likelihood that a nodule found during a lung screening is malignant,
and others are used to assess treatment response or disease progression,
such as RECIST (response evaluation criteria in solid tumors), which uses
linear dimensions to assess the growth or shrinkage of solid tumors.

These algorithms for calculating the score of a finding can be
simple or complex, and the features can be easy to pinpoint or they may require
an expert. In all cases, significant inter-reader variability exists when different

clinicians assess the same scan, complicating communication with other

72



10

15

20

25

WO 2018/222755 PCT/US2018/035192

physicians and decreasing the quality of the diagnostic decisions that are based
on these variable assessments.

To make matters worse, radiologists today often spend time on
very low-value tasks, such as aligning images from different series so they can
compare findings over time, and opening scans on different software packages
to make a complete assessment as imaging software has traditionally been
applied for very specific tasks, such as measuring the volume of a finding,
detecting disease or visualizing complex scans.

Implementations of the present disclosure are directed to system,
methods and articles that provide users with a case-specific graphical user
interface (GUI) and workflow to assist physicians in screening for, measuring
and tracking specific conditions. Figures 46A and 46B show a non-limiting
example of a workflow 4600, according to one non-limiting illustrated
implementation. The workflow for each case is comprehensive, so that users
can use a single piece of software for the tasks they need to perform on the
scan. Workflow features may include automated features that can be manually
overridden or also manually created including, but not limited to, series
selection, image set-up, finding detection, finding measurement, tracking
findings between scans, providing a GUI to annotate different features for each
finding or the entire case, and reporting scores, findings and a case summary.
The system offers unprecedented flexibility for combining automated and

manual features, and editing the output of automated features.

1st Embodiment (CT example): Lung augmented workflow

GUI that comprises automated and manual tools for chest CT analyses

Setup
Figure 47 shows a screenshot 4700 of an example GUI that
allows for several lung CT studies to be displayed next to each other and be co-

registered so that the same anatomy in the scans shows at the same time (e.g.,
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4702 and 4704). The image brightness and contrast may be automatically
adjusted for optimal lung reading. Furthermore, this user interface can display
several studies of this type at the same time in order to make it easy for the
physician to compare images from the same patient over time. In both cases,
the physician can scroll through studies, zoom, and move images to see the
same anatomy in all of the different studies simultaneously. The system also
offers manual and automated tools to level the brightness and contrast of the

image based on the workflow selected.

Detection

The system is built to automatically detect and measure findings
in the lung. These findings may comprise lung nodules, pneumothorax, fibrosis,
COPD, measurements of surrounding organs or other incidental findings such
as cardiac calcium levels and bone density. The detection of these different
findings can apply a variety of thresholding, density or machine learning
methods and the output of the findings may be editable by a user. The system
also allows for manual detection of these findings. The software can also apply
algorithms to detect key anatomical landmarks comprising vasculature, bronchi

and lung segments.

Measurement and quantification

The system can automatically measure the volume of the nodules
that were detected either automatically or manually. From the volume of each
nodule, the maximum diameter in the axial plane and its orthogonal diameter
are mathematically calculated and reported. All of these measurements can be
edited by the user. Furthermore, from the volume of each nodule, the density
of the nodule can also be calculated and displayed in an editable fashion.

Figure 48 shows a screenshot 4800 that depicts a lesion 4802, a
maximum linear dimension 4804 of the lesion, and a maximum orthogonal

dimension 4806 of the lesion.
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Scoring

The system can automatically calculate different scores pertaining
to lung nodules, comprising Lung-RADS, RECIST and Fleishman groupings, for
example, from the measurements and quantification above. The system clearly
shows each of the features, whether it was present or not present, and which
Li-RADS score was selected. All of these annotations can be edited by the
user, and the system automatically re-calculates the score and/or the features
to ensure congruency.

The system may also allow clinicians to input each feature

manually and it calculates the sores without automation.

Tracking

The system can track anatomical findings between scans of the
same patient taken at different time points. Once two findings in scans are
linked, these findings can also be used for image setup and layout.

Figure 49 shows a screenshot 4900 of linked findings, in
particular, a lesion 4906 in a left image 4902 and the lesion 4908 shown in the
right image 4904.

A finding that was detected or confirmed by a physician may be
referred to as a first finding, and a finding that was found by the system may be
referred to as a second finding. The system can measure the second linked
finding in the same way that the first finding was measured. Measurement may
comprise linear dimensions, areas, volumes, and pixel density. These
measurements are then compared mathematically to assess changes in size or
presentation of the finding, and calculate growth or shrinkage of a finding over
time.

Additionally, the system offers an interface that allows users to
edit the linkages between findings, where linkages can be added between
detected findings or where automated linkages can be broken. Once the
linkages are edited, the software may re-calculate the measurements and their

comparisons for each new pair of linked findings.
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Reporting

The system can automatically report findings and their
characterizations based on standard reporting templates and inputs created by
both automated systems or users. The automatic report can be edited and
supplemented by the user.

In one case, the report is created as a simple paragraph with text
describing the findings. This can be done by populating fields in a paragraph
with the findings, or via natural language processing (NLP) methods of creating
text. The automatic report can be structured so that findings are presented
based on urgency and severity. The automatic report can also be a graphical
report containing tables and images that describe the evolution of the findings

over time.

2nd Embodiment: Liver augmented workflow

GUI that comprises automated and manual tools for setting up,
interpreting and reporting findings in abdominal MRI scan or an abdominal CT

scan focused on hepatocellular carcinoma (HCC).

Setup

Figure 50 is a screenshot 5000 of a GUI that allows for several
liver series to be displayed next to each other and be co-registered so that the
same anatomy in the scans shows at the same time. Which images go into the
different canvases can be done automatically, or manually. In the case of the
automatic setup, the series displayed will be those that inform LI-RADS scoring.
Specifically, the scans could be acquisitions done prior during and after contrast

injection. Then the images displayed comprise:

1. Prior to contrast entering the liver

2 As contrasts enters the liver

3. As contrast exits the liver

4 One or more scans after contrast has exited the liver

76



10

15

20

25

WO 2018/222755 PCT/US2018/035192

Furthermore, this user interface can display several studies of this
type at the same time in order to make it easy for the physician to compare
images from the same patient over time. In both cases, the physician can scroll
through studies, zoom, and move images to see the same anatomy in all the
different studies simultaneously.

The system also offers manual and automated tools to level the

brightness and contrast of the image based on the workflow selected.

Detection

The system is built to automatically detect and measure findings
in the liver. These findings comprise liver lesions, fat content, fibrosis,
measurements of surrounding organs and other incidental findings. The
detection of these different findings can apply a variety of thresholding, density
or machine learning methods, and the output of the findings is editable by a
user. The system also allows for manual detection of these findings. The
system can also detect key liver landmarks comprising vasculature and liver

segments.

Measurement

The system can automatically measure the volume of the liver, as
well as the volume of the lesions that were detected either automatically or
manually. From the volume of each lesion, the maximum diameter in the axial
plane and its orthogonal are mathematically calculated and reported. All of
these measurements can be edited by the user.

As an example, Figure 51 shows a screenshot 5100 of
segmentation of the liver and calculation of the longest linear diameter 5104 of
a lesion 5102. Other measurements the system can capture comprise of liver
fat content, fibrosis and texture, as well as measurements of surrounding

organs and tissues.
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Annotation and scoring

The system can automatically define features of liver lesions in
the different series, comprising enhancement, washout, and corona presence,
and then calculates the corresponding LI-RADS score. The system clearly
shows each of the features, whether it was present or not present, and which
LI-RADS score was selected. All of these annotations can be edited by the
user, and the system automatically re-calculates the score and/or the features
to ensure congruency.

The system also allows clinicians to input each feature manually
and it calculates the LI-RADS score without automation. Alternatively, the user
can select the score directly from the score table and fill in only the necessary
number of features. These features are illustrated in a GUI 5200 shown in
Figure 52.

Tracking

The system can track anatomical findings between series of the
same patient taken at different time points. Once two findings in scans are
linked, these findings can also be used for image setup and layout.

A finding that was detected or confirmed by a physician may be
referred to as a first finding, and a finding that was found by the system may be
referred to as a second finding. The system can measure the second linked
finding in the same way that the first finding was measured. Measurement may
comprise linear dimensions, areas, volumes, and pixel density. These
measurements are then compared mathematically to assess changes in size or
presentation of the finding, and calculate growth or shrinkage of a finding over
time.

Additionally, the system offers an interface that allows users to
edit the linkages between findings, where linkages can be added between
detected findings or where automated linkages can be broken. Once the
linkages are edited, the software may re-calculate the measurements and their

comparisons for each new pair of linked findings.
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Reporting

The system can automatically report findings and their
characterizations based on standard reporting templates and inputs created by
both automated systems or users. The automatic report can be edited and
supplemented by the user.

In one case, the report is created as a simple paragraph with text
describing the findings. This can be done by populating fields in a paragraph
with the findings, or via NLP methods of creating text. The automatic report can
be structured so that findings are presented based on urgency and severity.
The automatic report can also be a graphical report containing tables and
images that describe the evolution of the findings over time. Figure 53 is a GUI
5300 that shows an excerpt of an automated report that collects all

characteristics of each finding.

E. Automated Three Dimensional Lesion Segmentation

Identification of regions of interest in image data can occur either
manually or with the help of semi- or fully-automated software. Use of semi- or
fully-automated software for finding possibly malignant regions of interest
(lesions) represented in a scan is commonly referred to as computer aided
detection (CAD or CADe).

The lesions in both lung and liver scans require further analysis
and study, both qualitatively and quantitatively. Qualitative assessments include
the texture, shape, brightness relative to other tissue, and change in brightness
over time in cases where contrast is injected into the patient and a time series
of scans are available. Quantitative measurements commonly include the
number of possibly malignant lesions, longest linear dimension of the lesions,
the volume of the lesions, and the changes to these quantities between scans.
It is also possible to quantitatively assess texture, shape, and brightness with

specialized software.
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Careful manual quantitative assessment of lesions is tedious and
time consuming; the help of semi- or fully-automated software can help

expedite the process.

Limitations of Manual Quantification of Lesions

Manual quantification of important characteristics of lesions can
take minutes per lesion. For example, quantifying volume manually in most
software requires drawing 2D contours surrounding the lesion on every slice
that intersects the lesion; for larger lesions, this may mean drawing contours on
15+ slices. Quantifying features about the lesion, such as the shape, margin,
opacity, heterogeneity, location within the body, relationship to surrounding
lesions, and tissue properties surrounding the lesion also take significant

clinician time.

Limitations of On-Demand Quantification of Lesions

Machine learning models allow for automatic measurement of
many quantities of interest. However, accurate machine learning models, such
as those based on convolutional neural networks (CNNs), can be slow to run
and expensive to have ready at a moment’s notice for on-demand inference.
Models that are more computationally efficient than CNNs exist, but those
algorithms tend to have significantly poorer accuracy than CNNs. See, e.g.,
Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge."
International Journal of Computer Vision 115.3 (2015): 211-252.

Limitations of CAD-based Lesion Detection and Segmentation

Computer aided detection (CAD) can be used to both detect and
segment potentially cancerous lesions. With such a system, a clinician invokes
the CAD algorithm and lesions are detected and shown to the clinician, possibly
along with their segmentations. One major disadvantage of this system is that
clinicians may grow accustomed to the detection technology and come to rely

on it, causing degradation of their own skills. Evaluation of the CAD systems
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therefore often requires onerous clinical trials to prove accuracy and efficacy,
making them particularly expensive to develop. A system that automatically
detects and segments lesions without degrading clinician skills or requiring
such a burden of proof of accuracy would have significant advantages over a
full CAD system.

1st Embodiment

Overview

Figure 54 is a flow diagram of a process 5400 of operating a
processor-based system to store information about a pre-localized region of
interest in image data and to reveal such information upon user interaction,
according to one illustrated implementation. The process 5400 begins at 5402
when image data is uploaded to a processor-based system. A pre-trained
algorithm for lesion localization stored in a database at 5404 is used to localize
lesions in the image data at 5406. This pre-trained algorithm may include one
or more machine learning algorithms, such as, but not limited to, Convolutional
Neural Networks (CNNs). In at least one implementation of the current
disclosure, two unique CNNs are joined end to end; the first CNN proposes
locations of potential lesions with a focus on high sensitivity, and the second
CNN sorts through these proposed lesions and discards results determined to
be false positives.

A pre-trained CNN model for segmentation of lesions at 5408 is
used to segment the lesions at 5410. This CNN model evaluates image patches
centered on the localized lesion locations 5406 and calculates the
segmentation of the lesion represented in the image data. In at least one
implementation, this CNN model 5408 is trained and evaluated on
image/segmentation pairs in an end-to-end fashion in 3D such that for every 3D
input of image data, a 3D segmentation is produced. In other implementations,
the segmentation model operates on individual 2D slices of the 3D lesion. In at

least one implementation, the image data are resampled to have isotropic world
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spacing along each pixel dimension; other implementations do not resample the
image data.

The segmentations are stored at 5412 in a database at 5420.
These segmentations may be stored as serialized Boolean arrays, but other
lossless means of storing the data, such as, but not limited to, Hierarchical Data
Format (HDF) files and lossless-specific Joint Photographic Experts Group
(JPEG) files, may also be used. In at least one implementation, the Boolean
arrays are stored with a key that is a concatenation of the series unique
identifier and lesion world center location in x, y, and z, but other keys, such as
those that utilize the study unique identifier or lesion position in pixel space,
may also be used.

In at least one implementation, a pre-trained CNN model for
classification of lesions at 5414 is used to classify lesions at 5416. This CNN
model evaluates image patches centered on the proposed location at 5406 and
infers metadata about the lesion in question. This metadata can include, but is
not limited to, the features of the lesion, including one or more of size, shape,
margin, opacity, or heterogeneity, the location of the lesion within the body, the
relationship to surrounding lesions and tissue properties surrounding the lesion,
the malignancy, or the cancerous subtype of the lesion. The CNN model
optionally uses the segmentation generated by the CNN model at 5410 and
stored at 5412 to help the classifications.

The classifications are stored at 5418 in a database at 5420. In at
least one implementation, the metadata arrays are stored with a key that is a
concatenation of the series unique identifier and lesion world center location in
X, ¥, and z, but other keys, such as those that also utilize the study unique
identifier or lesion position in pixel space, may also be used.

The user loads image data for review at 5422 to look for lesions.
Doctors often look for lesions by slice-scrolling through axial slices of the image
data, but reading the scan in a coronal or sagittal reformat is not uncommon.
After visual identification of the lesion, the user identifies the lesion to the

software at 5424. The identification of the lesion can occur via means including,
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but not limited to, a click or tap within the pre-generated segmentation mask, a
mouseover of the pre-generated segmentation mask, or a click-and-drag
selection surrounding all or part of the pre-generated segmentation mask.

The presence of the lesion is the database is assessed at 5426; in
at least some implementations, the lesions’ presence is assessed by checking
whether the lesion unique identifier is present as a key in the database. If the
lesion is determined to be present in the database, all stored information,
including but not limited to the segmentation and classifications of the lesion,
are revealed. In at least some implementations, if the lesion is determined to
not be present in the database at 5426, information including one or more of the
segmentation and classifications is calculated on demand using the trained
CNN models at 5408 and 5414.

In at least some implementations, multiple related series of image
data may be available. Those series may have been acquired in a single
imaging session, they may be acquired across multiple imaging sessions (e.g.,
separated by hours, days or years), or some combination of the two. If the
images were acquired in a single imaging session, they may be, for example,
images taken of the same anatomy with using different MRI pulse sequences or
CT doses, images taken of the same anatomy over the course of a contrast
perfusion study, or images taken of different, nearby anatomical sections. When
multiple series are available, the user may be interested in having information
revealed for the same lesion on multiple series, or on the optimal series, where
the optimal series may or may not be the series with which the user chooses to
interact. The notion of optimality is task dependent, and may take on different
definitions, including, but not limited to: the series of highest quality; the series
with fewest artifacts; the series on which the lesion can most accurately be
assessed; the series for which clinical guidelines or other standards
recommend assessing the lesion; the series that has been acquired most
recently; the series that has been acquired least recently; or any combination of

the above.
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In at least some implementations, under the circumstances
described above, or under similar circumstances, the indication of a lesion by
the user in one series may reveal stored information in one or more series,

possibly including the series in which the user indicated the lesion.

F. Autonomous Detection of Medical Study Types

A method of auto-triaging medical data for machine learning analysis

In healthcare, massive amounts of data are being generated
every second. At a healthcare facility, all of this data is typically stored in
separate repositories and not leveraged holistically to improve patient care. The
method described herein auto-triages disparate data streams (e.g., EMR data,
imaging data, genotype data, phenotype data, etc.) and sends the data to the
right algorithms and/or endpoints for processing and/or analysis. Since there
are so many algorithms that are specific to an application and/or organ, not all
of these algorithms can be executed on all of the data being generated within a
healthcare system; this would be too costly and results would take too long to
generate. Sometimes results need to be ready immediately since every second
counts (for example for stroke patients). It can take up to 10 minutes to run a
machine learning (ML) algorithm on one study. If there are several ML
algorithms, the time and cost to try every combination may not be clinically
feasible.

Figure 55 shows a high-level method 5500 of at least one
implementation of the system. Data 5502 is sent to a triage system 5504. The
triage system 5504 analyzes the data 5502, and based on its content, invokes
one or more of N appropriate processes, 5506, 5508, 5510. In order to auto-
triage data, diagnostic and/or non-diagnostic data may be used as input into an
algorithm (referred to herein as the “auto-triager”) executable on the system. In
at least one implementation, the output of the auto-triager is a set of

locations/destinations for the incoming diagnostic and/or non-diagnostic data.
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The locations/destinations could be another algorithm, a repository, or a tag
associated with the data, for example.

Specifically, in imaging, DICOM is the standard used to transmit
and store medical images. In at least some implementations, based on the
DICOM headers for a given study, the auto-triager determines what body
part/organ or specialty the data is relevant for (e.g., cardiac, neuro, thoracic,
abdominal, pelvic, etc.). At least some implementations determine the imaging
modality (e.g. MR, CT, PET, etc.) of the study. After determining the relevant
information about the study, in at least some implementations, the auto-triager
lets the next processing step in the process know that a subset and/or all of the
potential processing algorithms are required to analyze a study. In at least
some implementations, the auto-triager can be used to do any of: facilitate
loading of the appropriate workflow when the user opens the study; or
determine which machine learning model(s), if any, to run on series within the
study.

In the case of a medical imaging platform that has two or more
applications (or modules or machine learning algorithms), it is helpful for a
reproducible imaging pipeline to be established to ensure the right data is being
processed at the right time using the right machine learning algorithms. Typical
medical imaging datasets have the following hierarchy, where each item in the
list contains one or more instances of subsequent items in the list: patient,
study, series, instance.

With this hierarchy, typically there is one or more studies per
patient, one or more series per study, and one or more instance or image per
series. With all of this data, it is very important to ensure that the right data is
processed using the correct algorithm. There may be two types of image
processing pipelines, 1) Offline or Batch and 2) Interactive.

An offline or batch imaging pipeline may include one or more of
the following acts:

1. Raw image created by scanner (e.g. modality).
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2. Raw image converted to bitmap image using some sort of reconstruction
technique.

3. Bitmap image sent to an algorithm for processing. Processing may
include producing a text and/or image report.

4. Report sent to people (e.g., clinicians, patients, etc.) and/or archiving
(e.g., EMR, PACS, RIS, etc.).

An interactive imaging pipeline may include one or more of the
following acts:

1. Raw image created by scanner (e.g. modality).

2. Raw image converted to bitmap image using some sort of reconstruction
technique.

3. Bitmap image sent to a visualizer (e.g., PACS, advanced visualization
software, workstation, cloud based software etc.).

4. Optional: Visualizer receives data and optionally attempts to process this
data (e.g., to automate the interpretation and reading, or to speed
loading).

5. User loads data (e.g. study, image, etc.) using a user selected
application (also referred to as a workflow or module).

6. User clicks to do something manually and/or tells the system to do
something automatically by explicitly telling it what to do (e.g., compute
volume of heart)

7. Optional: user opens study, validates and optionally adds more content,
creates report

8. Report sent to people (e.g., clinicians, patients, etc.) and/or archiving
(e.g., EMR, PACS, RIS, etc.).

For the processing acts of either interactive mode or batch mode
processing, it is important that the correct processing is performed on the right
set of data. Processing may include format optimization (e.g., for computing
analytics, such as derivatives), storage optimization, loading optimization,
rendering optimization, computing heuristics (e.g., average window

width/window level), as well as performing machine learning to automate the
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task of interpreting a study. Many of these processing techniques may be
generic (e.qg., applied to all studies independent of modality, organ, patient), and
thus there may be no need to differentiate studies. But machine learning, on the
other hand, can be quite expensive and may be very specific to the type of
modality, organ, patient demographic, etc.

Many implementations of the auto-triaging algorithm are possible.
Below is a description of several non-limiting example implementations in the
case of medical imaging data. The various implementations may be combined
in any suitable manner to provide further implementations.

A first implementation is an auto-triager based on using the either
public and/or private DICOM tags. The algorithm uses DICOM tags (e.g., the
default DICOM tags) to route to a machine learning algorithm. For example, if
modality for a study is “MRI” and body part is “Heart’, the algorithm routes this
study to a heart MRI machine learning algorithm and/or a heart visualizer, for
example.

A second implementation is an auto-triager that uses both the
pixel data and/or DICOM tags. This method uses heuristics in the pixel data to
try to detect what is in the image. An example of this is a 3D face detector. If a
face is detected, then the study is most probably a head scan. The auto-triager
may then route this study to a neuro machine learning algorithm and/or a neuro
visualizer, for example.

A third implementation is an auto-triager that triages the incoming
data based on custom rules, optionally combined with any of the methods
described herein. Each institution may use custom routing rules to send data to
the correct location. This method uses data transfer information, such as
Application Entity (AE) title, host, port, IP address, etc., to route data based on
custom rules per organization.

A fourth implementation is an auto-triager that triages data using
machine learning and/or deep learning. The machine learning algorithm may be
trained on an annotated dataset of images. The annotations may include a label

of body part, specialty, workflow, and/or additional diagnostic information
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contained in the data. Once the machine learning/deep learning model is
created, that model may be used to run inference on any new incoming
unannotated data.

Optionally, once a study has been triaged (e.g., the organ(s),
modality, and/or the correct application is selected), additional analysis, which
may include dedicated machine learning algorithms, of the series and images
within that study may be performed using heuristics based on many features of
the study, including but not limited to the following: tags within the DICOM data
(e.g. FrameOfReferenceUID); same slice spacing; same number of images; a
set of rules per sequence (e.g., ProtocolName or private DICOM tags); or any

combination of the above

G. Patient Qutcomes Prediction System

Terms

e CNN - Convolutional Neural Network
e CT - Computed Tomography
o Database - Any nontransitory processor-readable storage

medium, including but not limited to a relational database (e.g.,

MySQL), a “NoSQL” database (e.g., MongoDB), a key-value store

(e.g., LMDB), or any centralized or distributed file system

o Epoch - Date from which predictions are made; for example,
whether a patient will suffer “cancer associated death within the
next 365 days,” the epoch is the date on which that prediction is
made and when the countdown to 365 days begins.

Once a diagnosis of cancer is confirmed for a patient, such as
through histopathological or molecular analysis of biopsy specimens, it is critical
to determine the most appropriate treatment for the patient. Treatment
decisions are traditionally made by oncologists, with additional insight provided
on a case-by-case basis by radiologists, surgeons and radiation oncologists.

One big challenge for this system is the lack of conveniently availability
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historical information about similar patients, treatments they received, and their
clinical outcomes. Clinicians rely on their memory of similar cases and on
papers from medical journals to determine their treatment decisions but these
sources of information are generally incomplete and subject to biases.
Treatment decisions are particularly ambiguous for late stage cancer patients,
due to the many different ways that cancer can spread and the varying ability
for individual patients to handle aggressive treatments.

Clinicians would greatly benefit from a system that can provide,
on demand, treatment guidance that draws on a large, objective database of
patients with similar cancers, the treatments they received, and the resulting
outcomes. Such a system could be used to compare different treatments and
their likely outcomes for the given patient in order to choose the best treatment
for the given patient.

Such a treatment planning system has traditionally been
challenging to create due to the heterogeneity of electronic medical records and
the lack of sophisticated models that can extract relevant features from image
data. However, the availability of large, well-curated, longitudinal data sets,
such as the National Lung Screening Trial [NLST 2011], as well as the advent
of modern convolutional neural networks [Russakovsky 2015] that can be used

for image feature extraction now allows these challenges to be overcome.

System Qverview

One implementation of the full system for predicting patient
outcomes is described below in two separate phases: the “training” phase, in
which the models and databases that will be used in operation of the system
are developed and the “inference” phase, in which a user interacts with the
system to retrieve predicted outcomes for a patient.

Figure 56 shows one implementation of a system 5600, including
both a training phase 5630 and an inference 5640 phase. In the training phase

5630 of this implementation, training data is stored in a training database 5602.

89



10

15

20

25

0O 2018/222755 PCT/US2018/035192

This training data is derived from patients with known or suspected diagnosis of
cancer and for whom clinical outcomes are known.

Training data is loaded at 5604 from the database 5602 and
features, treatments, features and outcomes are extracted at 5606. Features
and treatments are used as inputs to the machine learning models and
outcomes are used as labels or targets for the models. One or more machine
learning models are trained at 5608 and subsequently stored at 5610 to a
database 5612 of trained models. More details of some implementations of
training are described below.

In the inference phase 5640 of this implementation, initially a
patient is selected for whom inference is to be performed at 5614. Patient data
is loaded for the selected patient at 5616 and features are extracted at 5618 in
the same manner as they were extracted during training at 5606. Inference is
performed with the trained machine learning models 5612 and input features
5618 to predict outcomes for the patient under one or more different treatment
scenarios 5620. The results of inference are then displayed to the user 5622 on
a display 5624. More details of some implementations of inference are

described below.

Training

Figure 57 shows a method 5700 according to one implementation
of the training phase 5630 of the system 5600. In at least some
implementations, images from patients are loaded from an image database
5702 and a trained convolutional neural network (CNN) 5704 is used to extract
image features at 5706. Images from the image database 5702 are associated
with patients with a known or potential diagnosis of cancer. The images may
have been acquired either before or after a cancer diagnosis was made or
suspected; e.g., images acquired a year prior to a cancer diagnosis or a year
after a cancer diagnosis may be used in order to analyze longitudinal changes

and the rate of growth of suspected cancerous lesions.
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The CNN used for feature extraction may be any of a variety of
forms of CNN, including but not limited to: a classification network; an object
detection network; a semantic segmentation network; or any combination of the
above.

For implementations for which the trained CNN is a classification
network, the CNN may have been trained to predict one or more of a variety of
different objectives from patient medical images, including but not limited to:
features of potentially cancerous lesions, e.g., size, shape, spiculations;
features of the surrounding organ, e.g., texture, other (possibly non-cancer)
disease; lesion malignancy; changes to any of the above metrics over time,
using images acquired over time (e.g., over the course of days, months or
years); image provenance, such as whether the image is from a true
radiological exam or whether it is from a system that generates fabricated
images; or any combination of the above.

CNNs are typically composed of many (e.g., significantly more
than two) layers; some recent networks have 1000 or more layers [He 2016].
The input to the first layer is typically the overall network input (e.g., an image of
a lesion that may or not be malignant) and the output of the final layer is
typically the metric of interest (e.g., the scalar probability that the lesion is
malignant). Intermediate layers are typically considered “hidden” and are used
only for internal network calculations. However, the outputs of these
intermediate layers contain a representation of the input that is relevant for
quantifying its properties (e.g., malignancy), so it is reasonable to think of the
outputs of intermediate layers as relevant “features” of the lesion; hence, these
outputs are often called “feature maps.” These feature maps can be used as
features to help predict objectives for which the model was not explicitly trained.

In at least some implementations, the feature extraction act 5706
involves performing a forward pass through the CNN and extracting features
from the outputs of intermediate CNN layers. The final output of the CNN (e.g.,
the probability of malignancy) can also be used as features, either in lieu of or

alongside features from intermediate layers. Some types of classification CNNs
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(e.g., models that predict the lesion subtype) may have multiple final outputs,
any or all of which may be used as features.

In at least some implementations, data from a clinical database
5708 is used in the training process. From the clinical database, clinical
features 5710, treatments 5712 and outcomes 5714 are extracted. Many
different clinical features 5710 can be used, including but not limited to: patient
demographic information (e.g., age, sex, race, ethnicity, weight or height);
patient’s current and past medical history and conditions (e.g., previous
diseases, previous cancers, hospitalizations, treatments, procedures, alcohol,
tobacco or drug use, exposure to carcinogenic substances, comorbidities);
family medical history; diagnostic information relating to the current known or
potential cancer (e.g., cancer stage, grade or subtype, lesion size, molecular
expression data, molecular sequencing data, information about metastases,
location in the body, relationship to other structures within the body); or any
combination of the above.

Many different treatments 5712 can be used. Treatments used will
be those that are relevant for the particular form of cancer for which the system
is designed. At least one implementation of this system is designed to predict
outcomes for lung cancer patients, in which case, treatments may include
without being limited to: chemotherapy (possibly including the specific drugs,
session duration and interval, etc.); lymphadenectomy; lobectomy; radiation
(possibly including the specific site, dose, session duration and interval, etc.);
resection; pneumonectomy; or any combination of the above.

For cancers other than lung cancer, analogous treatments for the
appropriate cancer site may be included.

Many different outcomes 5714 can be used as the model's
predictive target, including but not limited to: cancer-associated death; death
from any cause; disease-free survival; time until next cancer-related hospital
admission; time until next hospital admission from any cause; pathological
complete response after treatment; post-treatment recovery time; or any

combination of the above.
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For outcomes that are events, the outcome may take on any of
several forms, including but not limited to: the binary occurrence of the event in
some fixed number of days from the epoch (where the epoch is the date on
which the prediction is made); the expected number of days before the event
occurs; given a definition of several populations with different distributions of
when the event may occur (e.g., with different Kaplan-Meier survival curves):
the population in which the given patient is most likely to belong; or any
combination of the above.

For example, if the outcome is “whether the patient dies as a
result of cancer in the next 365 days,” then the prediction could be either True
or False, or it could be a probability of the event occurring from 0 to 1.
Alternatively, if the outcome is “when the patient will die as a result of cancer,”
then the prediction could be an expected number of days.

In this implementation, a given patient involved in training will
have at least some data from each of the following categories of data: features,
treatments and outcomes. Both features and treatments are inputs to the
model, while outcomes are the output of the model. Under this formulation, the
model expresses the fact that “this patient, with these features, under the
condition that they receive this treatment, is likely to experience these
outcomes.”

In this implementation, one or more models are trained at 5716 to
predict patient outcomes. One or more models may be combined into an
ensemble of models. Each model may be any machine learning model that
accepts structured features and performs classification or regression, including
but not limited to: random forests; gradient boosted decision trees; multi-layer
perceptrons; or any combination of the above.

After the models are trained, they are stored at 5718 to a
database 5720 for subsequent inference.

In at least some implementations, any of image features 5706,

clinical features 5710, treatments 5712 or outcomes 5714 may be extracted
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and stored in a database prior to training the models 5716 such that they do not
need to be extracted while the model is being trained.

In at least some implementations, images are not used in the
training process and blocks 5702, 5704 and 5706 are not present. In at least
some implementations, clinical features are not used in the training process and
block 5710 is not present. In at least some implementations, features are used
as inputs without treatments, in which case block 5712 is not present.

At least one implementation of a system is designed as follows.
The system predicts lung cancer-associated mortality for lung cancer patients.
The model 5716 is trained with a set of patients, each of which has some
associated features and some associated treatments that they received. The
features include demographic features of the patients (age, sex, etc.), features
from histopathological assessment of lesion biopsy (tumor stage, grade,
presence of lymph node metastases), features related to medical procedures
and complications in the preceding 12 months, and image features from the
most recent thoracic CT exam (current tumor size, change in tumor size since
the previous thoracic CT exam, CNN-extracted features for a CNN that was
trained to distinguish lesions from blood vessels in CT images e.g., following
[Berens 2016]). The outcome associated with each patient is lung cancer-
associated death within 365 days of the epoch. The epoch is the date of lung
cancer diagnosis. Treatments are all treatments received by the patient
between the epoch and 365 days after the epoch. The model is a random forest
classification model. As described in the preceding sections, any or all of these

specific design decisions may be altered in other implementations.

Inference

Figure 58 shows a method 5800 of one implementation of the
inference phase 5640 of the system 5600. Initially a patient is selected at 5802.
In at least some implementations, the patient may be selected by a user; in
other implementations, the patient is selected by an automated system. Using

data from a patient database 5804, features are extracted for the patient at
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5806. At least some of the features that are extracted 5806 are the same type
of features, including one or more of image or clinical features extracted at
5706 and 5710 that are used in model training. For example, if cancer stage is
a clinical feature 5710 used in model training, cancer stage may also be a
feature extracted 5806 at inference time. One or more of the trained models
5808 (also 5720 in Figure 57) that were created at training time at are loaded
and used to predict outcomes 5810 using the extracted features 5806.

For implementations in which treatments 5712 were used as an
input to model training, outcomes are predicted 5810 assuming that a certain
treatment combination is used to treat the patient. In at least some
implementations, this process is repeated for different treatment combinations.
For example, outcomes may be predicted assuming treatment combination A is
used, and separately, outcomes may be predicted assuming treatment
combination B is used. Outcome predictions would then be separately available
under the conditions that one of treatment combination A or treatment
combination B is used. In this example, each of A or B may comprise one or
more treatments. Those one or more treatments may or may not be
administered to the patient simultaneously.

After outcomes are predicted 5810, the results are displayed to
the user 5812 on a display 5814.

At least one implementation of a system is designed as follows.
The system predicts lung cancer-associated mortality for lung cancer patients.
A lung cancer patient is selected at 5802 with a known cancer diagnosis based
on histopathological examination of a lung nodule biopsy. The features 5806
include demographic features of the patient (age, sex, etc.), features from
histopathological assessment of lesion biopsy (tumor stage, grade, presence of
lymph node metastases), features related to medical procedures and
complications in the preceding 12 months, and features from the most recent
thoracic CT exam (current tumor size, change in tumor size since the previous
thoracic CT exam, CNN-extracted features for a CNN that was trained to

distinguish lesions from blood vessels in CT images e.g., following [Berens
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2016]). The outcome associated with the patient is lung cancer-associated
death within 365 days of the epoch. The epoch is the date of lung cancer
diagnosis. The models 5808 consist of a single random forest classification
model. Outcomes are predicted 5810 for each of several different sets of
treatments; treatment sets include chemotherapy, radiation, resection, others,
and combinations of individual treatments. Because outcomes are predicted for
different treatment combinations, the data provided to the user includes the
likelihood of lung cancer-related mortality for each treatment combination; this
is a prediction of “treatment success” (by at least one definition) for each
treatment combination. As described in the preceding sections, any or all of

these specific design decisions may be altered in other implementations.

Inference User Interface

Figure 59 shows one method 5900 of implementing a user
interface with which the user can interact with the outcomes prediction system.
Within the software application the user initially indicates the patient for whom
they wish to invoke outcomes prediction 5902. The user either manually
indicates that they wish to predict outcomes 5904 or the system predicts
outcomes automatically. The request to predict outcomes is sent to the
application server 5906 which may either be a remote server or it may reside on
the user’'s computer. Data from which features will be extracted may either be
sent to the application server 5906 along with the request, or the data may be
retrieved from a separate location by the application server 5906. Outcome
predictions are then returned 5908 and displayed to the user on a display 5912.
The user may choose to disable or hide predictions for some treatments if they
deem those treatments inapplicable to the current case.

In at least some implementations, the user has the option of
providing feedback on the returned results 5910. The feedback mechanism
may take on any of several forms, including but not limited to: retrospective
information about the outcome of the patient (i.e., the user may indicate the true

outcome after the outcome, such as lung cancer death, has already been
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observed); which treatments are applicable or inapplicable to the current case,
and optionally, why; which prediction results they deem to be unreasonable,
and optionally, why; or any combination of the above.

Figure 60 shows a GUI 6000 for displaying results. In particular,
Figure 60 shows the user interface 6000 for returned results 5912. A table 6002
of treatments along with the associated probability 6006 of lung cancer-
associated death for each treatment 6004 is shown. The probability of lung
cancer-associated death 6006 is derived from model output 5908. In this
implementation, confidence intervals for the predicted probabilities are also
shown in parentheses 6006; other implementations may not show confidence
intervals, or may display confidence using a different format, such as

” o

categorical “low,” “medium” or “high” confidence. Reasonable combinations of
treatments (e.g., “radiation of primary tumor and systemic chemotherapy” 6005)
are shown as individual rows in the table. Clinical information about the patient
is also shown for reference 6008, along with histopathological biopsy results
6010. An image of the lesion 6012 is shown for reference. Some or all of this
reference information could be the same information from which features are
extracted for model inference. Other implementations may contain some or
none of the displayed information in 6008, 6010 and 6012, or they could display
additional reference information, such as molecular analysis of the biopsy
result, medical history, or other information. Other implementations may show
the probability of survival instead of the probability of death.

Figure 61 shows another implementation of a user interface 6100
for displaying results. In this implementation, outcomes are shown graphically.
The probability of lung cancer-associated death is shown as a bar chart 6102,
where the length of the bar is representative of the probability of death.
Confidence intervals are shown as whiskers on the bars 6104. Other

implementations may use other graphical chart forms, such as pie charts or line

charts, for example.
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H. Co-registration

Medical imaging such as CT and MR is frequently used to create
a 3D image of anatomy from a stack of 2D images, where the 3D image then
consists of a three dimensional grid of voxels. While the technique is extremely
powerful, its three dimensional nature frequently presents challenges when
trying to interact with the data. For example, the simple task of viewing the
resulting volume requires specialized 3D rendering and multiplanar
reconstruction techniques.

A radiologist may want to correlate some feature within a 3D
volume at one point in time to the same feature at another point in time. A
radiologist may also want to correlate some feature within a 3D volume at a
single time point but using multiple modalities (CT, MR, PET, NM). In order to
do this, it is advantageous to align anatomical structures in one volume to the
other using a geometric transform. The transform can include one or more of
rotation, translation, scaling, and deformation. The determination of the
transform to perform this alignment is referred to as co-registration.

An implementation is described whereby given two volumes of
common anatomical structure, a transform is autonomously found that aligns
the two volumes such that a feature or features common to both volumes can
be easily correlated.

The following provides a description of one or more possible
implementations of the present disclosure.

Given two volumes of common anatomical structure as input, a
system may autonomously determine or find a transform that aligns the two
volumes such that a feature or features common to both volumes can be easily
correlated. First, the system, or a user thereof, may select a similarity metric to
measure the quality of the transform. The metric may be configurable and may
be intensity based or feature based, for example. Next, a vector of parameters
that defines the transform are initialized. The number of parameters, N,
determines the dimensionality of an optimization function used to determine the

transform. In at least some implementations, an N dimensional search
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optimization space is then sampled both at regular intervals and stochastically.
For example, for a parameter that specifies rotation that is specified in degrees
constrained to be within £30 degrees, the optimization space may be sampled
stochastically between 30 degrees, and at regular intervals (e.g., every X
degrees between +30 degrees, where X is an integer (e.g., 5, 10, 15)). As
another non-limiting example, for a parameter that specifies a linear translation
dimension that is specified in mm constrained to be within £10 mm, the
optimization space may be sampled stochastically between £10 mm, and at
regular intervals (e.g., every X mm between £10 mm, where X is an integer
(e.g., 2, 5, 10)).

The similarity between the two volumes is measured at each
sample point using the selected similarity metric. For a collection of these
sample points, an optimization algorithm (e.g., gradient descent) is used to find
a transform that will maximize the similarity. Performing the gradient descent at
multiple sample points (e.g., sample points measured at regular intervals and
stochastically), mitigates the chances of landing in a poor local minimum, as the
function is almost always non-convex.

Examples of similarity metrics include, but are not limited to, an
intensity based metric or a feature based metric. An example intensity based
metric that may be used is a sum of squared difference metric, which calculate
the sum of the squared difference value for at least some (e.g., all voxels,
voxels proximate one or more features) of the voxels in the two volumes. An
example feature based metric that may be used is the inner product of the
normalized gradient at least some of the voxels in the two volumes.

The vector parameters determining the transform may, in a rigid
case, be a translation in 3D space and a rotation in 3D space, represented by
six values. In an elastic case, the vector parameters may be a 3D spline of 3D
vectors that define how regions of one volume need to move to be co-
registered with a second volume. In an elastic case, the number of parameters

may be numerous (e.g., tens, hundreds, thousands).
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Example Processor-based Device

Figure 62 shows a processor-based device 6204 suitable for
implementing the various functionality described herein. Although not required,
some portion of the implementations will be described in the general context of
processor-executable instructions or logic, such as program application
modules, objects, or macros being executed by one or more processors.
Those skilled in the relevant art will appreciate that the described
implementations, as well as other implementations, can be practiced with
various processor-based system configurations, including handheld devices,
such as smartphones and tablet computers, wearable devices, multiprocessor
systems, microprocessor-based or programmable consumer electronics,
personal computers (“PCs”), network PCs, minicomputers, mainframe
computers, and the like.

The processor-based device 6204 may include one or more
processors 6206, a system memory 6208 and a system bus 6210 that couples
various system components including the system memory 6208 to the
processor(s) 6206. The processor-based device 6204 will at times be referred
to in the singular herein, but this is not intended to limit the implementations to a
single system, since in certain implementations, there will be more than one
system or other networked computing device involved. Non-limiting examples
of commercially available systems include, but are not limited to, ARM
processors from a variety of manufactures, Core microprocessors from Intel
Corporation, U.S.A., PowerPC microprocessor from IBM, Sparc
microprocessors from Sun Microsystems, Inc., PA-RISC series
microprocessors from Hewlett-Packard Company, 68xxx series
microprocessors from Motorola Corporation.

The processor(s) 6206 may be any logic processing unit, such as
one or more central processing units (CPUs), microprocessors, digital signal
processors (DSPs), application-specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), etc. Unless described otherwise, the

construction and operation of the various blocks shown in Figure 62 are of
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conventional design. As a result, such blocks need not be described in further
detail herein, as they will be understood by those skilled in the relevant art.

The system bus 6210 can employ any known bus structures or
architectures, including a memory bus with memory controller, a peripheral bus,
and a local bus. The system memory 6208 includes read-only memory
(“ROM”) 1012 and random access memory (‘RAM”) 6214. A basic input/output
system (“BIOS”) 6216, which can form part of the ROM 6212, contains basic
routines that help transfer information between elements within processor-
based device 6204, such as during start-up. Some implementations may
employ separate buses for data, instructions and power.

The processor-based device 6204 may also include one or more
solid state memories, for instance Flash memory or solid state drive (SSD)
6218, which provides nonvolatile storage of computer-readable instructions,
data structures, program modules and other data for the processor-based
device 6204. Although not depicted, the processor-based device 6204 can
employ other nontransitory computer- or processor-readable media, for
example a hard disk drive, an optical disk drive, or memory card media drive.

Program modules can be stored in the system memory 6208,
such as an operating system 6230, one or more application programs 6232,
other programs or modules 6234, drivers 6236 and program data 6238.

The application programs 6232 may, for example, include panning
/ scrolling 6232a. Such panning / scrolling logic may include, but is not limited
to logic that determines when and/or where a pointer (e.g., finger, stylus,
cursor) enters a user interface element that includes a region having a central
portion and at least one margin. Such panning / scrolling logic may include, but
is not limited to logic that determines a direction and a rate at which at least one
element of the user interface element should appear to move, and causes
updating of a display to cause the at least one element to appear to move in the
determined direction at the determined rate. The panning / scrolling logic
6232a may, for example, be stored as one or more executable instructions.

The panning / scrolling logic 6232a may include processor and/or machine
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executable logic or instructions to generate user interface objects using data
that characterizes movement of a pointer, for example data from a touch-
sensitive display or from a computer mouse or trackball, or other user interface
device.

The system memory 6208 may also include communications
programs 6240, for example a server and/or a Web client or browser for
permitting the processor-based device 6204 to access and exchange data with
other systems such as user computing systems, Web sites on the Internet,
corporate intranets, or other networks as described below. The
communications programs 6240 in the depicted implementation is markup
language based, such as Hypertext Markup Language (HTML), Extensible
Markup Language (XML) or Wireless Markup Language (WML), and operates
with markup languages that use syntactically delimited characters added to the
data of a document to represent the structure of the document. A number of
servers and/or Web clients or browsers are commercially available such as
those from Mozilla Corporation of California and Microsoft of Washington.

While shown in Figure 62 as being stored in the system memory
6208, the operating system 6230, application programs 6232, other
programs/modules 6234, drivers 6236, program data 6238 and server and/or
browser 6240 can be stored on any other of a large variety of nontransitory
processor-readable media (e.g., hard disk drive, optical disk drive, SSD and/or
flash memory).

A user can enter commands and information via a pointer, for
example through input devices such as a touch screen 6248 via a finger 6244a,
stylus 6244b, or via a computer mouse or trackball 6244c which controls a
cursor. Other input devices can include a microphone, joystick, game pad,
tablet, scanner, biometric scanning device, etc. These and other input devices
(i.e., “I/0O devices”) are connected to the processor(s) 6206 through an interface
6246 such as touch-screen controller and/or a universal serial bus (“USB”)
interface that couples user input to the system bus 6210, although other

interfaces such as a parallel port, a game port or a wireless interface or a serial
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port may be used. The touch screen 6248 can be coupled to the system bus
6210 via a video interface 6250, such as a video adapter to receive image data
or image information for display via the touch screen 6248. Although not
shown, the processor-based device 6204 can include other output devices,
such as speakers, vibrator, haptic actuator, etc.

The processor-based device 6204 may operate in a networked
environment using one or more of the logical connections to communicate with
one or more remote computers, servers and/or devices via one or more
communications channels, for example, one or more networks 6214a, 6214b.
These logical connections may facilitate any known method of permitting
computers to communicate, such as through one or more LANs and/or WANS,
such as the Internet, and/or cellular communications networks. Such
networking environments are well known in wired and wireless enterprise-wide
computer networks, intranets, extranets, the Internet, and other types of
communication networks including telecommunications networks, cellular
networks, paging networks, and other mobile networks.

When used in a networking environment, the processor-based
device 6204 may include one or more wired or wireless communications
interfaces 6214a, 6214b (e.g., cellular radios, WI-FI radios, Bluetooth radios) for
establishing communications over the network, for instance the Internet 6214a
or cellular network.

In a networked environment, program modules, application
programs, or data, or portions thereof, can be stored in a server computing
system (not shown). Those skilled in the relevant art will recognize that the
network connections shown in Figure 62 are only some examples of ways of
establishing communications between computers, and other connections may
be used, including wirelessly.

For convenience, the processor(s) 6206, system memory 6208,
network and communications interfaces 6214a, 624b are illustrated as
communicably coupled to each other via the system bus 6210, thereby

providing connectivity between the above-described components. In alternative
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implementations of the processor-based device 6204, the above-described
components may be communicably coupled in a different manner than
illustrated in Figure 62. For example, one or more of the above-described
components may be directly coupled to other components, or may be coupled
to each other, via intermediary components (not shown). In some
implementations, system bus 6210 is omitted and the components are coupled
directly to each other using suitable connections.

The foregoing detailed description has set forth various
implementations of the devices and/or processes via the use of block diagrams,
schematics, and examples. Insofar as such block diagrams, schematics, and
examples contain one or more functions and/or operations, it will be understood
by those skilled in the art that each function and/or operation within such block
diagrams, flowcharts, or examples can be implemented, individually and/or
collectively, by a wide range of hardware, software, firmware, or virtually any
combination thereof. In one implementation, the present subject matter may be
implemented via Application Specific Integrated Circuits (ASICs). However,
those skilled in the art will recognize that the implementations disclosed herein,
in whole or in part, can be equivalently implemented in standard integrated
circuits, as one or more computer programs running on one or more computers
(e.g., @s one or more programs running on one or more computer systems), as
one or more programs running on one or more controllers (e.g.,
microcontrollers) as one or more programs running on one or more processors
(e.g., microprocessors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the software and or
firmware would be well within the skill of one of ordinary skill in the art in light of
this disclosure.

Those of skill in the art will recognize that many of the methods or
algorithms set out herein may employ additional acts, may omit some acts,
and/or may execute acts in a different order than specified.

In addition, those skilled in the art will appreciate that the

mechanisms taught herein are capable of being distributed as a program
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product in a variety of forms, and that an illustrative implementation applies
equally regardless of the particular type of signal bearing media used to actually
carry out the distribution. Examples of signal bearing media include, but are not
limited to, the following: recordable type media such as floppy disks, hard disk
drives, CD ROMs, digital tape, and computer memory.

The various implementations described above can be combined
to provide further implementations. To the extent that they are not inconsistent
with the specific teachings and definitions herein, all of the U.S. patents, U.S.
patent application publications, U.S. patent applications, foreign patents, foreign
patent applications and non-patent publications referred to in this specification
and/or listed in the Application Data Sheet, including but not limited to U.S.
Provisional Patent Application No. 61/571,908 filed July 7, 2011; U.S. Patent
No. 9,513,357 issued December 6, 2016; U.S. Patent Application No.
15/363683 filed November 29, 2016; U.S. Provisional Patent Application No.
61/928702 filed January 17, 2014; U.S. Patent Application No. 15/112130 filed
July 15, 2016; U.S. Provisional Patent Application No. 62/260565 filed
November 20, 2015; 62/415203 filed October 31, 2016; U.S. Patent Application
No. 15/779445 filed May 25, 2018, U.S. Patent Application No. 15/779447 filed
May 25, 2018, U.S. Provisional Patent Application No. 62/415666 filed
November 1, 2016; U.S. Patent Application No. 15/779448, filed May 25, 2018,
U.S. Provisional Patent Application No. 62/451482 filed January 27, 2017,
International Patent Application No. PCT/US2018/015222 filed January 25,
2018, U.S. Provisional Patent Application No. 62/501613 filed May 4, 2017,
International Patent Application No. PCT/US2018/030963 filed May 3, 2018,
U.S. Provisional Patent Application No. 62/512610 filed May 30, 2017; U.S.
Patent Application No. 15/879732 filed January 25, 2018; U.S. Patent
Application No. 15/879742 filed January 25, 2018; U.S. Provisional Patent
Application No. 62/589825 filed November 22, 2017; U.S. Provisional Patent
Application No. 62/589805 filed November 22, 2017; U.S. Provisional Patent
Application No. 62/589772 filed November 22, 2017; U.S. Provisional Patent
Application No. 62/589872 filed November 22, 2017; U.S. Provisional Patent
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Application No. 62/589876 filed November 22, 2017; U.S. Provisional Patent
Application No. 62/589766 filed November 22, 2017; U.S. Provisional Patent
Application No. 62/589833 filed November 22, 2017 and U.S. Provisional
Patent Application No. 62/589838 filed November 22, 2017 are incorporated
herein by reference, in their entirety. Aspects of the implementations can be
modified, if necessary, to employ systems, circuits and concepts of the various
patents, applications and publications to provide yet further implementations.
These and other changes can be made to the implementations in
light of the above-detailed description. In general, in the following claims, the
terms used should not be construed to limit the claims to the specific
implementations disclosed in the specification and the claims, but should be
construed to include all possible implementations along with the full scope of
equivalents to which such claims are entitled. Accordingly, the claims are not

limited by the disclosure.
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CLAIMS

1. A machine learning system, comprising:
at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and
at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation the at least one
processor:
receives learning data comprising a plurality of batches of
labeled image sets, each image set comprising image data representative of an
input anatomical structure, and each image set including at least one label
which:
classifies the entire input anatomical structure as
containing a lesion candidate; or
identifies a region of the input anatomical structure
represented by the image set as potentially cancerous;
trains a fully convolutional neural network (CNN) model to:
classify if the entire input anatomical structure
contains a lesion candidate; or
segment lesion candidates utilizing the received
learning data; and
stores the trained CNN model in the at least one
nontransitory processor-readable storage medium of the machine learning

system.

2. The machine learning system of claim 1 wherein the CNN
model comprises a contracting path and an expanding path, the contracting
path includes a number of convolutional layers and a number of pooling layers,
each pooling layer preceded by at least one convolutional layer, and the
expanding path includes a number of convolutional layers and a number of

upsampling layers, each upsampling layer preceded by at least one
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convolutional layer and comprises a transpose convolution operation which
performs at least one of an upsampling operation and an interpolation operation
with a learned kernel, or an upsampling operation followed by an interpolation

operation to segment a lesion candidate.

3. The machine learning system of claim 2 wherein skip
connections are included between at least some of the layers in the contracting
path and the expanding path where image sizes of those layers are compatible,
wherein the skip connections include concatenating features maps, or the skip
connections are residual connections and therefore include adding or

subtracting the values of the feature maps.

4. The machine learning system of claim 1 wherein the image
data is representative of a chest, including lungs, or of an abdomen, including a

liver.

. The machine learning system of claim 1 wherein the image
data includes computed tomography (CT) scan data or magnetic resonance
(MR) scan data.

6. The machine learning system of claim 4 wherein each scan

is resampled to the same fixed spacing.

7. The machine learning system of claim 1 wherein the CNN
model includes a contracting path which includes a first convolutional layer
which has between 1 and 2000 feature maps and a max-pooling layer having a
pooling size of between 2 and 16 and wherein the CNN model comprises a
number of convolutional layers, where each convolutional layer includes a

convolutional kernel of size 3x3 and a stride of 1.
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8. The machine learning system of claim 1 wherein, in
operation, initial layers of a contracting path of the CNN downsample the image
data in order to reduce computational cost of the subsequent layers, and
subsequent layers contain more convolutional operations than a first layer of

the contracting path.

9. The machine learning system of claim 1 wherein an
expanding path of the CNN contains fewer convolutional layers than a

contracting path of the CNN.

10.  The machine learning system of claim 1 wherein the
convolution operations of the CNN include a combination of dense 3x3
convolutions, cascaded Nx1 and 1xN convolutions, where 3 <N < 11, and

dilated convolutions.

11.  The machine learning system of claim 1 wherein the image
data comprises volumetric images, and each convolutional layer of the CNN
model includes a convolutional kernel of size N x N x K pixels, where N and K

are positive integers.

12.  The machine learning system of claim 3 wherein the image
data are reformatted to be an intensity projection along an axis, such intensity
projection data having a depth of between 2 and 512 pixels, and the projection

is a mean, median, maximum, or minimum.

13.  The machine learning system of claim 12 wherein the
received learning data comprises both the intensity projection data and non-
projected image data, which data are used as inputs into the CNN model, and
the feature maps for the intensity projection data and the non-projected image

data are combined via concatenation, sum, difference, or average.
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14.  The machine learning system of claim 1 wherein the CNN
model comprises a series of residual blocks, pooling layers, and non-linear

activation functions which classify lesion candidates.

15.  The machine learning system of claim 14 wherein input
patches to the CNN model that contain the lesion candidate are between 4 and

512 pixels along an edge.

16.  The machine learning system of claim 14 wherein an input
patch to the CNN model has multiple channels, where each channel is a plane
of between 4 and 512 pixels along an edge, and each channel is drawn from a
set of two-dimensional planes whose centers intersect a three-dimensional
anatomical structure that is to be classified as potentially cancerous, where

there are between 3 and 27 channels.

17.  The machine learning system of claim 16 where the
channels are evenly distributed in solid angle around a three-dimensional

anatomical structure that is to be classified as potentially cancerous.

18.  The machine learning system of claim 16 wherein the CNN
model includes two or more paths, each of the two or more paths utilizing
multiple series of residual blocks, pooling layers, and non-linear activation
functions, wherein each of the two or more paths receives a resampled version

of the image data at different spatial scales.

19.  The machine learning system of claim 18 wherein at least
two of the two or more paths are parallel paths that are combined via
concatenating features maps, or adding, subtracting, or averaging the values of

the feature maps.
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20.  The machine learning system of claim 16 wherein the CNN
model receives a volumetric image as input for classification, wherein the

volumetric image is between 4 and 512 pixels along each dimension.

21.  The machine learning system of claim 1 wherein the at
least one processor:

for each image set, modifies a training loss function to penalize
prediction errors in portions of the image data containing the lesion candidate
and reduces the penalty of prediction errors in the background of the image

data.

22.  The machine learning system of claim 20 wherein the
modified training loss function comprises convolving a ground truth
segmentation with a Gaussian kernel, where the width of the kernel is a

hyperparameter.

23.  The machine learning system of claim 20 wherein a
cancerous anatomical structure is found utilizing a patch based method,
wherein the patches are a crop of the input image data, wherein the patch
based method comprises a proposing cancerous anatomical structure on
patches where the edge length of the patch is between 1 pixel and the image

size.

24.  The machine learning system of claim 20 wherein the at
least one processor:

for each image set, utilizes a plurality of trained CNN models to
predict lesion candidates, in which each CNN model votes on a relevance of
the lesion candidates and the final evaluation is based on a weighted

aggregation of the votes from the individual CNN models.
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25.  The machine learning system of claim 1 wherein for each
processed image of the image data, the CNN model concurrently utilizes
magnetic resonance imaging (MRI) data for a plurality of different pulse

sequences.

26.  The machine learning system of claim 25 wherein each of
the different pulse sequences is a channel, or wherein each of the different
pulse sequences is a separate input and the pulse sequences are subsequently

combined together.

27.  The machine learning system of claim 25 wherein the at
least one processor co-registers each pulse sequence prior to combining the

pulse sequences together.

28.  The machine learning system of claim 1 wherein the at
least one processor:
augments the learning data via modification of at least some of

the image data in the plurality of batches of labeled image sets.

29.  The machine learning system of claim 28 wherein the at
least one processor:

augments at least some of the image data in the plurality of
batches of labeled image sets according to at least one of. a horizontal flip, a
vertical flip, a shear amount, a shift amount, a zoom amount, a rotation amount,
a brightness level, a contrast level, a nonlinear deformation, a nonlinear

contrast deformation, or a nonlinear brightness deformation.

30.  The machine learning system of claim 29 wherein the

image data are augmented either in 2D or 3D.
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31.  The machine learning system of claim 1 wherein the CNN
model includes a plurality of hyperparameters stored in the at least one
nontransitory processor-readable storage medium, and the at least one
processor:

configures the CNN model according to a plurality of
configurations, each configuration comprising a different combination of values
for the hyperparameters;

for each of the plurality of configurations, validates the accuracy of
the CNN model; and

selects at least one configuration based at least in part on the

accuracies determined by the validations.

32. A machine learning system, comprising:
at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and
at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation the at least one
processor:
receives image data representative of anatomical
structures;
utilizes at least one CNN to both locate and segment lesion
candidates represented in the received image data;
classifies malignancy or other properties of the lesion
candidates:
post-processes the segmentations of the lesion candidates;
computes lesion characteristics; and
stores the generated classifications in the at least one

nontransitory processor-readable storage medium.
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33.  The machine learning system of claim 32 wherein the
segmented lesion candidates are predicted in 2D, and the at least one
processor:

stacks the segmented lesion candidates to create a 3D prediction
volume; and

combines the segmented lesion candidates in 3D utilizing 6, 18,

or 26-connectivity of the 3D prediction volume.

34.  The machine learning system of claim 32 wherein the
relevant lesion information includes a center location for each lesion, and the at
least one processor:

calculates the center location as the center of mass of the
predicted probabilities; and

implements a proposal network that generates the predicted

probabilities.

35.  The machine learning system of claim 32 wherein the at
least one processor post-processes the segmentations utilizing morphological

operations that include at least one of dilation, erosion, opening or closing.

36. The machine learning system of claim 32 wherein the
image data comprises 3D scan data, and the at least one processor extracts 2D
images from the 3D scan data that are evenly distributed in solid angle for each
cancerous anatomical region, wherein the number of 2D images extracted from

the 3D scan data is between 3 and 27.

37.  The machine learning system of claim 32 wherein the
image data comprises 3D scan data, and the at least one processor augments
at least some of the 3D scan data according to at least one of: a horizontal flip,
a vertical flip, a shear amount, a shift amount, a zoom amount, a rotation

amount, a brightness level, or a contrast level.
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38.  The machine learning system of claim 32 wherein the CNN
includes an upsampling path and a downsampling path that each include one or
more feature maps, and at least one of regression or classification subnetworks
are attached to each feature map of the upsampling path or the downsampling
path to regress the location of or to classify the content of a sampling of anchor

boxes upon each feature map.

39.  The machine learning system of claim 38 wherein each
subnetwork includes at least one convolutional layer and at least one activation
function and wherein each feature map contains at least one spatial map of

activations from a learned kernel.

40. The machine learning system of claim 38 wherein the
anchor boxes are of sizes, aspect ratios, and sampling such that at least one

anchor box is matched to each of at least one ground truth bounding box.

41.  The machine learning system of claim 40 wherein anchor
box sizes at a given location on the feature map are sampled linearly or
logarithmically between the smallest and largest size of the ground truth

bounding boxes with at least one sample.

42.  The machine learning system of claim 40 wherein anchor
box aspect ratios for all anchor boxes at a given location on the feature map are
sampled linearly or logarithmically between the narrowest and widest aspect

ratio of the ground truth bounding boxes.
43.  The machine learning system of claim 40 wherein anchor

box strides are between one and the feature map size, where the sampling

differs for bounding boxes of different sizes and aspect ratios.
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44, The machine learning system of claim 40 wherein a match
between anchor bounding boxes is determined via an overlap metric wherein

the threshold that defines a match is a hyperparameter.

45.  The machine learning system of claim 44 wherein the

overlap metric comprises intersection over union.

46. A machine learning system, comprising:
at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and
at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation the at least one
processor:
receives image data which represents an anatomical
structure previously classified to be potentially cancerous;
processes the received image data through a fully
convolutional neural network (CNN) model to generate probability maps for
each image of the image data, wherein the probability of each pixel represents
the probability of whether or not the pixel is part of a lesion candidate; and
stores the generated segmentations in the at least one

nontransitory processor-readable storage medium.

47.  The machine learning system of claim 46 wherein the
image data is representative of a chest, including lungs, or of an abdomen,

including a liver.

48.  The machine learning system of claim 46 wherein the at
least one processor:

autonomously causes an indication of at least one of the plurality
of parts of the cancerous anatomical structure to be displayed on a display

based at least in part on the generated probability maps.
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49.  The machine learning system of claim 46 wherein the at
least one processor:
post-processes the probability maps to ensure at least one

physical constraint is met.

50.  The machine learning system of claim 48 wherein the
image data is representative of a chest, including lungs, or of an abdomen,
including a liver, and the at least one physical constraint comprises at least one
of:

segmentations of cancerous anatomical structures of the liver do
not occur outside of the physical bounds of the liver,

cancerous anatomical structures of the lungs do not occur outside
of the physical bounds of the lungs; or

cancerous anatomical structures of the given organ are not larger

than the given organ.

51.  The machine learning system of claim 46 wherein the at
least one processor:
for each image of the image data,
sets the class of each pixel to a foreground cancerous
anatomical structure class when the cancerous class probability for the pixel is
at or above a determined threshold, and sets the class of each pixel to a
background class when the cancerous class probability for the pixel is below a
determined threshold; and
stores the set classes as a label map in the at least one

nontransitory processor-readable storage medium.
52.  The machine learning system of claim 50 wherein the at

least one processor:

for each image of the image data,
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sets the class of each pixel to a background class when the
pixel is not part of a central fully-connected segmentation, where fully-
connected is defined by either 6-, 18-, or 26-connectivity in 3D, and a central
lesion is a lesion of interest for a given patch submitted to the CNN model; and
stores the set classes as a label map in the at least one

nontransitory processor-readable storage medium.

53.  The machine learning system of claim 52 wherein the

determined threshold is user adjustable.

54.  The machine learning system of claim 52 wherein the at
least one processor:
determines the volume of all lesion candidates utilizing the

generated segmentations.

55.  The machine learning system of claim 54 wherein the at
least one processor:
causes the determined volume of at least one unique cancerous

anatomical structure to be displayed on a display.

56. The machine learning system of claim 46 wherein the at
least one processor:

causes a display to present the segmentations to a user as a
mask or contours; and

implements a tool that is controllable via a cursor and at least one
button, in operation, the tool edits the segmentations via addition or subtraction,
and the tool continuously adds regions underneath the cursor to the
segmentation, or continuously subtracts regions underneath the cursor from the

segmentation, for as long as the at least one button is activated.
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57.  The machine learning system of claim 46 wherein the CNN
model includes a number of convolutional layers, and each convolutional layer
of the CNN model includes a convolutional kernel of sizes N x N x K pixels,

where N and K are positive integers.

58.  The machine learning system of claim 57 wherein a spatial
transformer network (STN) module is inserted between convolutional layers in

at least one location in the CNN.

59.  The machine learning system of claim 58 wherein the STN
module produces parameters corresponding to rigid or non-rigid

transformations.

60. The machine learning system of claim 59 wherein rigid

transformations comprise at least one of rotation or scaling.

61. The machine learning system of claim 59 wherein rigid
transformations comprise at least one of thin plate spline transformations, b-

spline transformations, or projective transformations.

62. The machine learning system of claim 46 wherein the at
least one processor utilizes metadata related to the lesion candidate with the at

least one CNN model to improve segmentations.

63. A machine learning system, comprising:

at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and

at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation the at least one

processor:
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receives two sets of image data representative of the same
anatomical structure;

co-registers the image data; and

aligns any potentially malignant anatomical structures

across the two sets of image data.

64. The machine learning system of claim 63 wherein the two
sets of image data are from the same patient and were acquired at different
times, or wherein the two sets of image data are from the same patient and are

from different scan sequences.

65. The machine learning system of claim 63 wherein the at

least one processor aligns the center of the two sets of images.

66. The machine learning system of claim 63 wherein the at
least one processor co-registers the two sets of images via a transformation
that is calculated via gradient descent to find a rigid affine transformation such

that mutual information between the two sets of images is maximized.

67. The machine learning system of claim 63 wherein,
subsequent to the co-registration of the image data, the at least one processor
pairs lesions identified in one of the two sets of image data with lesions
identified in the other of the two sets of image data if the lesions are not further
than a distance X away from each other, where X is a specific value larger than

1 mm until there are no more lesions left for pairing.

68. The machine learning system of claim 63 wherein,
subsequent to the co-registration of the image data, the at least one processor
pairs lesions identified in one of the two sets of image data with lesions

identified in the other of the two sets of image data according to criteria that
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minimizes the sum of distances among the paired lesions, where lesions that

are greater than 50 mm apart from each other are not paired with each other.

69. Adisplay system, comprising:

at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and

at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation the at least one
processor:

causes a display to present a set of image data comprising

a plurality of anatomical structures, wherein the opacity of certain anatomical

structures is lower than that of other anatomical structures.

70.  The display system of claim 69 wherein the processor:

receives a set of image data representative of a plurality of
anatomical structures;

identifies at least one of the anatomical structures as being not of
interest; and

adjusts the opacity of the identified anatomical structure not of
interest to be lower than the opacity of the other of the plurality of anatomical

structures.

71.  The display system of claim 69 wherein the opacity is

adjusted based on an intensity threshold.

72. A system for co-registering medical images, the system
comprising:
at least one nontransitory processor-readable storage medium

that stores at least one of processor-executable instructions or data; and
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at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation, the at least one
processor:
retrieves medical image data representative of two three
dimensional volumes; and
autonomously establishes a transform that aligns

anatomical features from the two volumes.

73.  The system of claim 72 wherein the medical images are

computed tomography (CT) images.

74.  The system of claim 73 wherein the images are segmented
such that only pixels having a Hounsfield unit (HU) value above a determined

threshold are used to determine the co-registration.

75.  The system of claim 73 wherein the images are segmented
such that only pixels having a Hounsfield unit (HU) value greater than or equal

to 50 Hu are used to determine the co-registration.

76.  The system of claim 72 wherein the transform comprises a

rigid transform.

77.  The system of claim 72 wherein the medical image data

includes series from different studies.

78.  The system of claim 77 where the studies were acquired

on different days.

79.  The system of claim 78 wherein the co-registration is used
to facilitate the autonomous analysis of changes to potentially cancerous

lesions over time.

123



WO 2018/222755 PCT/US2018/035192

80.  The system of claim 79 wherein the potentially cancerous

lesions are lung nodules.

81.  The system of claim 79 wherein the potentially cancerous

lesions are liver lesions.

82.  The system of claim 79 wherein the co-registration is used

to facilitate autonomous identification of potentially cancerous lesions over time.

83.  The system of claim 77 wherein the co-registration is used
to facilitate autonomous identification of potentially cancerous lesions across

different series of a single study.

84. A system for co-registering medical images, the system
comprising:
at least one nontransitory processor-readable storage medium
that stores at least one of processor-executable instructions or data; and
at least one processor communicably coupled to the at least one
nontransitory processor-readable storage medium, in operation, the at least one
processor:
retrieves medical image data representative of first and
second three dimensional volumes;
selects a similarity metric to measure the quality of a
transform;
initializes a vector of parameters of an optimization function
that defines the transform;
samples a search optimization space stochastically and at
regular intervals;
at each of the sample points, measures the similarity of the

first and second volumes according to the similarity metric;
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for each of the sample points, utilizes an optimization
algorithm to determine values for the vector of parameters that defines the
transform that maximizes the similarity according to the similarity metric;

selects one of the resulting vectors of parameters that
defines the transform that maximizes the similarity according to the similarity
metric; and

aligns anatomical features from the first and second
volumes using the determined values for the vector of parameters that defines

the transform.

85.  The system of claim 84 wherein the similarity metric is

configurable.

86. The system of claim 84 wherein the similarity metric is at

least one of intensity based or feature based.

87.  The system of claim 84 wherein the optimization algorithm

comprises a gradient descent algorithm.

88.  The system of claim 84 wherein the similarity metric

comprises a sum of squared difference metric.

89.  The system of claim 84 wherein the similarity metric

comprises an inner product of the normalized gradient metric.
90. The system of claim 84 wherein the vector of parameters

comprises six values that indicate a translation in 3D space and a rotation in 3D

space.
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91.  The system of claim 84 wherein the vector of parameters
comprises one of a 3D spline of 3D vectors that define how regions of the

volume are related.
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