Title: METAL BELLOWS EQUALIZER CAPACITY MONITORING SYSTEM

Abstract: A bellows position monitoring arrangement to determine the axial position of a bellows assembly within the outer housing of a seal section or equalizer. The position can be correlated to an amount of motor oil being retained within the bellows assembly.
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(a))

Published:

— with international search report (Art. 21(3))
METAL BELLOWS EQUALIZER CAPACITY MONITORING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The invention relates generally to seal sections and/or equalizers used in electric submersible pump assemblies used for hydrocarbon production recovery. In particular aspects, the invention relates to systems and methods for measuring or estimating the volume of motor oil contained within a seal section or equalizer.

2. Description of the Related Art

[0002] A typical electrical submersible pump (ESP) system includes a pump that is driven by a motor. Because the ESP system may be disposed at great depths and are inaccessible at this time, the motors are designed to operate for a long period of time without maintenance. Motor oil is used to help lubricate the motor and to dissipate the heat the motor generates during operation. The volumetric expansion and contraction of the di-electric motor oil is compensated for by dynamic members in the seal section such as elastomeric bags or metal bellows. Metal bellows are accordion-like structures that expand and contract axially.

SUMMARY OF THE INVENTION

[0003] The present invention provides systems and methods for measuring or estimating the volume of fresh motor oil that is contained within a bellows assembly within a seal section or equalizer. Exemplary bellows assemblies are described that are axially expandable and contractible within an outer housing between a fully contracted position and a fully expanded position. The bellows assembly holds a known amount of fluid. The axial position of the bellows assembly with respect to its surrounding housing can be correlated to the volume of fluid that is retained within
the bellows assembly. Therefore, as the axial position of the bellows assembly changes during operation, the corresponding change in fluid volume can be derived. Also, while the di-electric oil volume can be derived or estimated using bellows position measurement, the bellows position is important information independently. Information about bellows position within the outer housing permits an operator to know when there is insufficient bellows capacity for further oil expansion or contraction without damage to the bellows assembly.

[0004] In a first described embodiment, a linear potentiometer is used to detect the axial position of the bellows assembly within the housing.

[0005] In an alternative embodiment, a magnetic driver is mounted on or incorporated into the bellows. A plurality of metallic followers are incorporated into the surrounding housing. As the driver moves proximate a particular follower, the follower provides a signal indicative of the axial position of the driver.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a thorough understanding of the present invention, reference is made to the following detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings, wherein like reference numerals designate like or similar elements throughout the several figures of the drawings and wherein:

[0007] Figure 1 is a side view of an exemplary electric submersible pump assembly located within a wellbore.

[0008] Figure 2 is a side, cross-sectional view of portions of an exemplary seal section/equalizer which incorporates a bellows assembly and a bellows capacity monitor in accordance with the present invention.
Figure 3 is a side, cross-sectional view of the seal section/equalizer portions shown in Figure 2, now with the bellows assembly substantially contracted.

Figure 4 is a side, cutaway view of portions of an exemplary seal section/equalizer which incorporates an alternative type of bellows capacity monitor.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 illustrates an exemplary wellbore 10 that has been drilled through the earth 12 from the surface 14 down to a hydrocarbon-bearing formation 16. The wellbore 10 has been lined with metallic casing 18 of a type known in the art. Perforations 20 are disposed through the casing and into the formation 16, thereby allowing hydrocarbons to enter the wellbore 10.

An electric submersible pump (ESP) assembly, generally indicated at 22, is shown disposed within the wellbore 10 by production tubing 24, which could be traditional jointed pipe or possibly coiled tubing. An annulus 26 is defined between the casing 18 and the running string 24/ESP 22. The ESP assembly 22 includes a pump section 28, a seal section 30 and motor section 32 as well as a below-motor equalizer 35 and affixed gage unit 39. As is known, the motor section 32 drives the pump section 28 to draw hydrocarbon fluid in from the wellbore 10 via fluid inlets 34 and flow it to the surface 14. A power cable 36 provides power to the motor section 32 from the surface 14. As is known, the motor section 32 includes an outer housing, a stator and a rotor that is rotatable with respect to the stator. The rotor rotates a shaft that will, in turn, power the pump section 28. A data communications cable 37 extends from the gage unit 39 to a receiver 40 located at the surface 14.

Figure 2 is a cross-sectional view of portions of the interior of the motor equalizer 35 which incorporates a bellows position monitoring assembly in
accordance with the present invention. The equalizer 35 includes a tubular outer housing 42 with a top cap 44 and a bottom cap 46 that are adapted to be interconnected with other ESP components, such as the motor section 32 and gage unit 39. A guide tube 48 extends axially through the center of the housing 42. A guide tube bore 50 is defined within the guide tube 48. Lateral ports 52 are disposed through the guide tube 48 and permit fluid to be transmitted between the guide tube bore 50 and the radial exterior of the guide tube 48.

[0014] A bellows assembly, generally indicated at 54, is also retained within the outer housing 42 to equalize the pressure of the di-electric motor oil and surrounding wellbore pressure. Bellows assembly 54 includes a radially outer bellows 56 and a radially inner bellows 58. Each of the outer and inner bellows 56, 58 are axially expandable and contractible in the manner of an accordion bellows. The inner and outer bellows 58, 56 are secured together by an annular sleeve 60. The outer bellows 56 lies just radially within the outer housing 42 while the inner bellows 58 lies just radially outside of the guide tube 48. The bellows assembly 54 encloses a volume of motor oil in the region 62 lying between the inner and outer bellows 58, 56. In Figure 2, the bellows assembly 54 is shown in an expanded condition wherein the bellows assembly 54 contains a large amount of motor oil. Figure 3 shows the bellows assembly 54 in a contracted condition wherein the bellows assembly 54 contains a lesser amount of motor oil.

[0015] A linear potentiometer 64 is disposed within the guide tube bore 50 and is employed as a bellows position monitoring arrangement. The potentiometer 64 provides a sliding contact 66 that can be moved along the length of the potentiometer body 65 to change resistance provided across the potentiometer 64. A connection 68 is provided between the sliding contact 66 and the sleeve 60 of the
bellows assembly 54. In currently preferred embodiments, the connection 68 is a rigid connection between the sleeve 60 and the contact 66, such as an arm, rod or bar, so that the sleeve 60 and contact 66 move together. A longitudinal slot (not shown) is formed in the guide tube 48 that permits the connection 68 to interconnect the sliding contact 66 within the guide tube bore 50 with the sleeve 60 outside of the guide tube 48 and along which the connection 68 will move as the bellows assembly 54 expands or contracts. It is noted that, while the sliding contact 66 is shown to be connected with the sleeve 60 of the bellows assembly 54, it might instead be interconnected with other portions of the bellows assembly 54, such as the inner bellows 58. As di-electric motor oil within the bellows assembly 54 expands and contracts due to changes in temperature and pressure, the bellows assembly 54 moves within the outer housing 42 from an expanded condition (Fig. 2) to a contracted condition (Fig. 3). Resistance across the potentiometer 64 will change as the contact 66 is moved along its body. A signal indicative of the change in resistance is transmitted to the gage unit 39. Optionally, data and information from the gage unit 39 can be transmitted to the receiver 40 at surface 14 via the data communications cable 38.

[0016] An operator can use the signal indicative of the change in resistance to determine an approximate volume of motor oil remaining in the region 62. One technique for determining the approximate volume of remaining fluid is to directly measure this at surface and correlate remaining volume with potentiometer resistance. At surface and prior to running the equalizer 35 into the wellbore 10, the region 62 of the bellows assembly 54 is filled to capacity with a measured amount of fluid. The resistance across the potentiometer 64 is measured. Thereafter, the fluid is drained from the region 62 while resistance measurements are recorded at
increments of draining. The detected measurements are correlated with the volume of fluid then remaining in the bellows assembly 54. These measurements can then be used to determine an approximate amount of fluid remaining within the bellows assembly 54.

[0017] Figure 4 illustrates an alternative bellows position monitoring arrangement that can be used within equalizer 35'. In Figure 4, the guide tube 50 is not shown. The bellows position monitoring system includes a cylindrical magnetic driver 70 that is operably associated with the bellows assembly 54 so that the magnetic driver 70 is moved axially within the housing 42 as the bellows assembly 54 expends or contracts within the housing 42. In the depicted embodiment, the magnetic driver 70 is a cylindrical magnet that is secured to the lower end of the sleeve 60. However, it might be incorporated into or affixed to other portions of the bellows assembly 54. The bellows position monitoring system also includes a pluralities of monitoring followers 72 that are incorporated into or onto the outer housing 42. The monitoring followers 72 are adapted to move or be triggered by the magnetic driver 70. In the depicted embodiment, the monitoring followers 72 paddle-shaped members 74 that are rotatably supported upon shafts 76. One edge portion 78 of each paddle-shaped member 74 is made of a metal that is strongly magnetically attracted to the magnetic driver 70. As the driver 70 moves axially within the housing 42 (as motor oil is expended from within the bellows assembly 54), the monitoring followers 72 will rotate in concert with this movement. Rotation of the shafts 76 can be measured using a potentiometer or with other means known in the art. The measured rotation of monitoring followers 72 can provide an indication of the axial position of the bellows assembly 54 within the housing 42.
It is noted that in accordance with the present invention, other mechanisms might be used to detect or determine the linear position of the bellows assembly 54 or its displacement. Such mechanisms include a fiber optic detection arrangement or a linear variable differential transformer.

Those of skill in the art will recognize that numerous modifications and changes may be made to the exemplary designs and embodiments described herein and that the invention is limited only by the claims that follow and any equivalents thereof.
CLAIMS

What is claimed is:

1. An equalizer for an electric submersible pump, the seal section comprising:
 a. an outer housing;
 b. a bellows assembly that retains an amount of fluid, the bellows assembly being axially moveable between an expanded position and a contracted position as fluid expands or contracts within the bellows assembly; and
 c. a bellows assembly position monitoring arrangement operably associated with the equalizer for determining an axial position of the bellows assembly within the outer housing.

2. The equalizer of claim 1 wherein the bellows position monitoring arrangement further comprises a linear potentiometer having:
 a. a potentiometer body; and
 b. a sliding contact which is slidably moveable upon the potentiometer body and wherein resistance across the linear potentiometer is varied as the sliding contact is moved upon the potentiometer body.

3. The equalizer of claim 2 wherein the sliding contact is affixed to a portion of the bellows assembly so that the sliding contact moves upon the potentiometer body as the bellows assembly moves between its expanded and contracted positions.

4. The equalizer of claim 1 wherein the bellows position monitoring arrangement further comprises:
a magnetic driver operably associated with the bellows assembly and axially moveable within the outer housing as the bellows assembly expands and contracts within the housing; and

at least one monitoring follower operably associated with the housing, the at least one follower being magnetically responsive to the magnetic driver as the magnetic driver is moved within the outer housing.

5. The equalizer of claim 4 wherein one or more of the at least one monitoring follower further comprises:

a member that is rotatable upon a shaft;

the member having an edge portion that is magnetically attracted to the magnetic follower;

so that the member is rotated upon the shaft as the magnetic driver is moved within the outer housing.

6. The equalizer of claim 4 wherein the magnetic driver further comprises a cylindrical magnet.

7. The equalizer of claim 6 wherein:

the bellows assembly comprises an inner bellows and an outer bellows radially surrounding the inner bellows and an annular sleeve which secures the inner and outer bellows together; and

wherein the cylindrical magnet is incorporated into the annular sleeve.

8. An equalizer for an electric submersible pump, the seal section comprising:
an outer housing;

a bellows assembly that retains an amount of fluid, the bellows assembly being axially moveable between an expanded position and a contracted position as fluid expands or contracts within the bellows assembly;

the bellows assembly having an inner bellows and an outer bellows radially surrounding the inner bellows; and

a bellows assembly position monitoring arrangement operably associated with the equalizer for determining an axial position of the bellows assembly within the outer housing.

9. The equalizer of claim 8 wherein the bellows position monitoring arrangement further comprises a linear potentiometer having:

a potentiometer body; and

a sliding contact which is slidably moveable upon the potentiometer body and wherein resistance across the linear potentiometer is varied as the sliding contact is moved upon the potentiometer body.

10. The equalizer of claim 9 wherein the sliding contact is affixed to a portion of the bellows assembly so that the sliding contact moves upon the potentiometer body as the bellows assembly moves between its expanded and contracted positions.

11. The equalizer of claim 8 wherein the bellows position monitoring arrangement further comprises:
a magnetic driver operably associated with the bellows assembly and axially moveable within the outer housing as the bellows assembly expands and contracts within the housing; and

at least one monitoring follower operably associated with the housing, the at least one follower being magnetically responsive to the magnetic driver as the magnetic driver is moved within the outer housing.

12. The equalizer of claim 11 wherein one or more of the at least one monitoring follower further comprises:

a member that is rotatable upon a shaft;

the member having an edge portion that is magnetically attracted to the magnetic follower;

so that the member is rotated upon the shaft as the magnetic driver is moved within the outer housing.

13. The equalizer of claim 12 wherein the magnetic driver further comprises a cylindrical magnet.

14. The equalizer of claim 13 wherein:

the bellows assembly further comprises an annular sleeve which secures the inner and outer bellows together; and

the cylindrical magnet is incorporated into the annular sleeve.

15. An equalizer for an electric submersible pump, the seal section comprising:

an outer housing;
a bellows assembly that retains an amount of fluid, the bellows assembly being axially moveable between an expanded position and a contracted position as fluid expands or contracts within the bellows assembly; the bellows assembly having an inner bellows and an outer bellows radially surrounding the inner bellows and an annular sleeve which secures the inner and outer bellows together; and a bellows assembly position monitoring arrangement operably associated with the equalizer for determining an axial position of the bellows assembly within the outer housing.

16. The equalizer of claim 15 wherein the bellows position monitoring arrangement further comprises a linear potentiometer having: a potentiometer body; and a sliding contact which is slidably moveable upon the potentiometer body and wherein resistance across the linear potentiometer is varied as the sliding contact is moved upon the potentiometer body.

17. The equalizer of claim 16 wherein the sliding contact is affixed to a portion of the bellows assembly so that the sliding contact moves upon the potentiometer body as the bellows assembly moves between its expanded and contracted positions.

18. The equalizer of claim 15 wherein the bellows position monitoring arrangement further comprises:
a magnetic driver operably associated with the bellows assembly and axially
moveable within the outer housing as the bellows assembly expands and contracts
within the housing; and
at least one monitoring follower operably associated with the housing, the at
least one follower being magnetically responsive to the magnetic driver as the
magnetic driver is moved within the outer housing.

19. The equalizer of claim 18 wherein one or more of the at least one monitoring
follower further comprises:
a member that is rotatable upon a shaft;
the member having an edge portion that is magnetically attracted to the
magnetic follower;
so that the member is rotated upon the shaft as the magnetic driver is moved
within the outer housing.

20. The equalizer of claim 12 wherein the magnetic driver further comprises a
cylindrical magnet.
A. CLASSIFICATION OF SUBJECT MATTER

F04D 13/08(2006.01)i, F04D 15/00(2006.01)i, F04D 29/06(2006.01)i, F04D 29/66(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F04D 13/08; F04D 39/02; A61F 2/00; F04B 3/17; A61F 5/00; H01G 5/012; G10B 7/02; H01G 7/00; F04D 15/00; F04D 29/06; F04D 29/66

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: submersible pump, capacity, bellows, protector, equalizer, compensator, potentiometer, magnet, axial position, and sensor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2013-0004344 A1 (MCKINNEY et al.) 03 January 2013 See paragraphs [0019H0023], [0030] and figure 1.</td>
<td>1-4, 6-11, 15-18, 20</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>5, 12-14, 19</td>
</tr>
<tr>
<td>Y</td>
<td>US 5224841 A (THOMPSON et al.) 06 July 1993 See column 4, lines 57-66 and figure 3.</td>
<td>1-4, 6-11, 15-18, 20</td>
</tr>
<tr>
<td>Y</td>
<td>WO 89-07236 A1 (A/S DOUBLET-RECORD) 10 August 1989 See page 2, line 38 - page 3, line 19 and figure 2.</td>
<td>2-3, 9-10, 16-17</td>
</tr>
<tr>
<td>A</td>
<td>EP 1600120 A1 (ETHICON ENDO-SURGERY, INC.) 30 November 2005 See paragraph [0035] and figure 3.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 6542350 B1 (ROGERS, CHARLES R.) 01 April 2003 See column 3, lines 11-44 and figure 1.</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

18 July 2015 (18.07.2015)

Date of mailing of the international search report

20 July 2015 (20.07.2015)

Name and mailing address of the ISA/KR

International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer

LEE, Chang Ho

Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013-0004344 AI</td>
<td>03/01/2013</td>
<td>CA 2840417 AI</td>
<td>03/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2726704 A2</td>
<td>07/05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8932034 B2</td>
<td>13/01/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-003760 A2</td>
<td>03/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-003760 A3</td>
<td>28/03/2013</td>
</tr>
<tr>
<td>US 5224841 A</td>
<td>06/07/1993</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 38388 A</td>
<td>06/06/1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 38388 DO</td>
<td>27/01/1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005-201893 B2</td>
<td>18/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0502014 A</td>
<td>24/01/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2507155 A</td>
<td>28/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2507155 C</td>
<td>19/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1701766 A</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05106755 B2</td>
<td>26/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-334658 A</td>
<td>08/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN PA05005712 A</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2005116201 A</td>
<td>20/11/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005-0267500 A</td>
<td>01/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7481763 B2</td>
<td>27/01/2009</td>
</tr>
<tr>
<td>US 6542350 BI</td>
<td>01/04/2003</td>
<td>US 6210368 Bl</td>
<td>03/04/2001</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)