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(57) ABSTRACT 

Systems, methods, and Software to facilitate simulating 
machines used in industrial automation are disclosed herein. 
In at least one implementation, an API is utilized to establish 
at least a communication link between a simulation model 
created in a simulation application and an industrial control 
ler system outside of the simulation model, wherein the simu 
lation model comprises definitions for a virtual representation 
of at least a portion of a machine used in an industrial auto 
mation environment. Data is then exchanged between the 
industrial controller system and the simulation model over the 
communication link. 
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TIME SYNCHRONIZATION OF SIGNAL 
TRANSMISSION INTERVALS FOR 

SIMULATING AMACHINE IN INDUSTRIAL 
AUTOMATION 

RELATED APPLICATIONS 

0001. This application hereby claims the benefit of, and 
priority to, U.S. Provisional Patent Application No. 61/901, 
956, entitled “INTEGRATING CONTROLLERS WITH 
SIMULATIONS'', filed Nov. 8, 2013, and which is hereby 
incorporated by reference in its entirety for all purposes. 

TECHNICAL BACKGROUND 

0002 Simulation of industrial equipment can be essential 
in designing, prototyping, and demonstrating the different 
design options to engineers, customers, and other interested 
parties. Such simulations can be utilized to emulate virtual 
ized operation of their corresponding physical devices over 
time, and may be further used in providing visual represen 
tations of the various simulated devices. In some examples, 
simulation and modeling applications may be used to define 
parameters for simulated mechanical components. These 
parameters ensure that the emulated equipment performs in 
the same manner during a simulation as can be expected for 
their real-world counterparts. 
0003. In addition to the physical industrial equipment that 
provides the mechanical functionality to perform various 
industrial operations, controller systems are also essential 
components of an industrial automation environment. Indus 
trial controller systems are typically utilized to provide con 
trol instructions to physical machines to accomplish various 
tasks in an industrial plant, such as product manufacturing, 
materials handling, batch processing, Supervisory control, 
and other industrial functions. As a result, by combining 
industrial machinery with the proper controller, an industrial 
system can be created that is capable of performing various 
operations. 

Overview 

0004 Systems, methods, and software to facilitate simu 
lating machines used in industrial automation are disclosed 
herein. In at least one implementation, an API is utilized to 
apply timestamps to data exchanged between a simulation 
model created in a simulation application and an industrial 
controller system external to the simulation model. The 
timestamps are then processed to synchronize the simulation 
model and the industrial controller system. 
0005. This Overview is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Technical Disclosure. It should be understood 
that this Overview is not intended to identify key features or 
essential features of the claimed Subject matter, nor is it 
intended to be used to limit the scope of the claimed subject 
matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006. Many aspects of the disclosure can be better under 
stood with reference to the following drawings. While several 
implementations are described in connection with these 
drawings, the disclosure is not limited to the implementations 
disclosed herein. On the contrary, the intent is to cover all 
alternatives, modifications, and equivalents. 
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0007 FIG. 1A is a block diagram that illustrates an over 
view of synchronizing multiple controllers with simulated 
industrial devices. 
0008 FIG. 1B is a block diagram that illustrates a com 
puting system that may be used to facilitate simulating 
machines used in industrial automation. 
0009 FIG. 2 is a flow diagram that illustrates an operation 
of a computing system in an exemplary implementation. 
0010 FIG.3 is a block diagram that illustrates an overview 
of implementing controllers with simulated industrial 
devices. 
0011 FIG. 4 is a block diagram that illustrates an opera 
tional Scenario involving a computing system in an exemplary 
implementation. 
0012 FIG. 5 is a block diagram that illustrates an opera 
tional scenario for synchronizing a controller and a simula 
tion in an exemplary implementation. 
0013 FIG. 6 is a controller synchronization chart that 
illustrates an exemplary technique of synchronizing multiple 
controllers. 
0014 FIG. 7 is a block diagram that illustrates an opera 
tional Scenario involving a computing system in an exemplary 
implementation. 
0015 FIG. 8 is a block diagram that illustrates a comput 
ing system in an exemplary implementation. 

DETAILED DESCRIPTION 

0016. The following description and associated drawings 
teach the best mode of the invention. For the purpose of 
teaching inventive principles, some conventional aspects of 
the best mode may be simplified or omitted. The following 
claims specify the scope of the invention. Some aspects of the 
best mode may not fall within the scope of the invention as 
specified by the claims. Thus, those skilled in the art will 
appreciate variations from the best mode that fall within the 
scope of the invention. Those skilled in the art will appreciate 
that the features described below can be combined in various 
ways to form multiple variations of the invention. As a result, 
the invention is not limited to the specific examples described 
below, but only by claims and their equivalents. 
0017 Industrial automation environments, such as auto 
mobile manufacturing factories, food processing plants, oil 
drilling operations, microprocessor fabrication facilities, and 
other types of industrial enterprises, typically employ several 
machines and other equipment to carry out their business 
operations. For example, an industrial automation enterprise 
could employ machines comprising sensors, drives, pumps, 
filters, drills, motors, robots, mills, printers, carousels, fabri 
cation machinery, or any other industrial automation equip 
ment. During the design, prototyping, and testing phases of 
product development, these machines and other devices used 
in industrial automation may be simulated using computing 
systems to provide virtual representations to engineers and 
customers of the end product. These simulations typically 
include physical attributes, parameters, and other aspects of 
the machine being simulated to ensure a proper emulation is 
furnished by the computing system. In some examples, a user 
may desire to have control over a simulated device to further 
illustrate the functionality and operation of the device as can 
be expected when physically implemented. As a result, the 
user may prefer to attach one or more real or emulated con 
trollers to the simulated device to demonstrate and test the 
different controllable operations of the device. 
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0018 FIG. 1A is a block diagram that illustrates an over 
view 101 of synchronizing multiple controllers 151-152 with 
simulated industrial devices. FIG. 1A shows a functional 
mock-up interface emulation simulation interface (FMI 
ESI), controllers 151 and 161, controller-side functional 
mock-up unit (FMU) 152 and FMU 162, co-simulation mas 
ter 150, and simulation FMU 155. 
0019 Controllers 151 and 161 typically each comprise an 
industrial controller, which could include automation con 
trollers, programmable logic controllers (PLCs), or any other 
controllers used in automation control. Controllers 151 and 
161 could comprise one or more physical and/or emulated 
controllers implemented in Software—including combina 
tions thereof. In this example, each controller 151 and 161 has 
an associated controller-side FMU 152 and 162, respectively. 
Each controller-side FMU 152 and 162 includes an applica 
tion programming interface (API) that may be used to read 
and write tags and synchronize time between the controllers 
151 and 162 and their respective controller-side FMUs 152 
and 162. 
0020 Simulation FMU 155 comprises definitions for a 
virtual representation of at least a portion of a machine used in 
an industrial automation environment. Simulation FMU 155 
is typically created, at least in part, using a simulation appli 
cation that complies with the FMI standard, so that FMI may 
be used to wrap the simulation module inside of an FMU. For 
example, the simulation application could comprise a third 
party simulation framework tool, such as MATLAB(R) Sim 
ulinkTM, although the simulation application could comprise 
any other Suitable simulation application or combination of 
applications in some implementations. Each FMU provides 
an interface for exchanging data with other FMUs. 
0021. In operation, a tag server within the FMI-ESI pro 
vides distributed communication connectivity services for 
connecting the communicating parts on the controller side. 
The communication between controller-side FMUs 152 and 
162 and the simulation FMU 155 is coordinated by the co 
simulation master 150, which also complies with FMI. The 
clock synchronization is typically performed in two phases. 
First, the co-simulation master 150 coordinates global time 
among all the FMUs 152, 162, and 155, which involves send 
ing a clock pulse to each FMU at each time step interval in 
order to inject the global time into each FMU. Second, the tag 
server service within the FMI-ESI coordinates controller-side 
FMU time among the controllers 151 and 161. In this 
example, since there is more than one controller-side FMU 
152 and 162, the co-simulation master 150 handles the time 
synchronization among them. 
0022. The FMI-ESI tool may be used to expose the input/ 
output (I/O) interface from the controller side into the FMU 
side, which necessitates the controller-side FMUs 152 and 
162. Each controller-side FMU 152 and 162 typically has one 
or more controllers under its Supervision. In this example, 
controller-side FMU 152 handles controller 151, and control 
ler-side FMU 162 handles controller 161. The FMI-ESI tool 
used to configure each controller-side FMU 152 and 162. 
0023. When executing the simulation at runtime, the FMI 
co-simulation master 150 coordinates the data exchange and 
clocks among the FMUs 152, 162, and 155. The tag server 
within the FMI-ESI coordinates the clock and data exchange 
among the controllers 151 and 161 under each controller-side 
FMU 152 and 162. In other words, the FMI-ESI may be used 
to configure the controller-side FMUs 152 and 162 to inter 
operate with the simulation FMU 155 and other types of 
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FMUs (not shown). The co-simulation master 150 coordi 
nates the data exchange and global time between the FMUs 
152, 162, and 155, and the tag server portion of the FMI-ESI 
in this case grabs the local time of each controller-side FMU 
152 and 162 to facilitate synchronizing the controllers 151 
and 161 under their supervision. 
0024 FIG. 1B is a block diagram that illustrates comput 
ing system 100 that may be used to facilitate simulating 
machines used in industrial automation. Computing system 
100 includes industrial controller system 110, application 
programming interface (API) 120, and simulation model 130. 
Computing system 100 is representative of any computing 
environment, which could include several different systems 
and devices located in geographically diverse areas and inter 
connected via communication networks in a distributed man 
ner in Some examples. 
0025 Industrial controller system 110 comprises, for 
example, an industrial controller, which could include auto 
mation controllers, programmable logic controllers (PLCs), 
or any other controllers used in automation control. Industrial 
controller system 110 could comprise one or more physical 
and/or emulated controllers implemented in Software-in 
cluding combinations thereof. Simulation model 130 com 
prises definitions for a virtual representation of at least a 
portion of a machine used in an industrial automation envi 
ronment. Simulation model 130 is typically created, at least in 
part, using a simulation application. In some implementa 
tions, the simulation application employed may comply with 
the FMI standard, so that FMI may be used to wrap the 
simulation module inside of an FMU. For example, the simu 
lation application could comprise a third-party simulation 
framework tool, such as MATLAB(R) SimulinkTM, although 
the simulation application could comprise any other Suitable 
simulation application or combination of applications in 
some implementations. API 120 provides an interface that 
enables communication between industrial controller system 
110 and simulation model 130, among other functionality. An 
operation of computing system 100 will now be described 
with respect to FIG. 2. 
0026 FIG. 2 is a flow diagram that illustrates an operation 
200 of computing system 100 in an exemplary implementa 
tion. The operation 200 shown in FIG.2 may also be referred 
to as synchronization process 200 herein. The steps of opera 
tion 200 are indicated below parenthetically. The following 
discussion of synchronization process 200 will proceed with 
reference to computing system 100 of FIG. 1B in order to 
illustrate its operations, but note that the details provided in 
FIG. 1B are merely exemplary and not intended to limit the 
scope of synchronization process 200 to the specific imple 
mentation shown in FIG. 1B. 
0027 Synchronization process 200 may be employed to 
operate computing system 100 to facilitate simulating 
machines used in industrial automation. As shown in the 
operational flow of synchronization process 200, computing 
system 100 utilizes an application programming interface 
(API) 120 to apply timestamps to data exchanged between a 
simulation model created in a simulation application and an 
industrial controller system external to the simulation model 
(201). In some implementations, the industrial controller sys 
tem 110 could comprise one or more physical industrial con 
troller devices, emulated industrial controllers implemented 
in Software, or any other control system—including combi 
nations thereof. The simulation model 130 may typically 
comprise definitions for a virtual representation of at least a 
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portion of a machine used in an industrial automation envi 
ronment. For example, the simulation model 130 could define 
the design and parameters of an entire robot, or could define 
an individual component of the robot, such as an arm joint, 
drive motor, articulation mechanism, or some other portion of 
the robot. In some examples, the simulation model 130 could 
include information for rendering a three dimensional visu 
alization of the machine, or at least a portion thereof. 
0028. Among other functionality, API 120 may facilitate 
data exchange between the simulation model 130 and the 
industrial controller system 110 in abidirectional manner. For 
example, the data transferred from the industrial controller 
system 110 to the simulation model 130 could comprise con 
trol signals used to drive the simulation, and the data received 
by the industrial controller system 110 from the simulation 
model 130 could comprise feedback, operational status, and 
other information associated with the execution of the simu 
lation model 130. In some implementations, API 120 could be 
utilized to establish at least one communication link between 
the industrial controller system 110 and the simulation model 
130 by linking ports associated with the industrial controller 
system 110 to the simulation model 130 to create an input and 
output interface between the industrial controller system 110 
and the simulation model 130. Data may then be exchanged 
over the communication link between the industrial control 
ler system 110 and the simulation model 130 by utilizing the 
input and output interface to transfer control program param 
eters, control signals, and other information between the 
industrial controller system 110 and the simulation model 
130. The simulation model 130 may then utilize the data 
received from the industrial controller system 110 to generate 
an animated visualization of a machine being simulated. For 
example, the data from the industrial controller system 110 
could direct the simulation model 130 to move and animate a 
three dimensional visualization of the simulated machine in 
the same manner that the industrial controller system 110 
could drive the physical machine itself. 
0029. In some implementations, API 120 may be utilized 
to apply timestamps to any of the data exchanged between the 
industrial controller system 110 and the simulation model 
130. For example, API 120 could be utilized to apply a first 
timestamp to data as soon as it is transferred by the industrial 
controller system 110 for delivery to the simulation model 
130, and to apply a second timestamp immediately before 
providing the data to the simulation model 130, and vice 
versa. Other techniques of utilizing API 120 to apply times 
tamps to data exchanged between the simulation model 130 
and the industrial controller system 110 are contemplated and 
within the scope of this disclosure. 
0030 The timestamps are then processed to synchronize 
the simulation model 130 and the industrial controller system 
110 (202). In some embodiments, the timestamps may be 
utilized to determine the timing of when to provide the data to 
the simulation model 130 or the industrial controller system 
110 to achieve synchronization. In at least one implementa 
tion, processing the timestamps to synchronize the simulation 
model 130 and the industrial controller system 110 could 
comprise coordinating signal transmission intervals of the 
simulation model 130 and the industrial controller system 
110 using the timestamps. Coordinating the signal transmis 
sion intervals between the simulation model 130 and the 
industrial controller system 110 is necessary in some 
examples because the signal transmission intervals could 
often comprise different rates. In some implementations, pro 
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cessing the timestamps to synchronize the simulation model 
130 and the industrial controller system 110 could comprise 
providing a periodic clock pulse to the simulation model 130 
and the industrial controller system 110 to advance the simu 
lation model 130 and the industrial controller system 110 
ahead one time step. Note that the time step size for the 
simulation model 130 and the industrial controller system 
110 could comprise different values, but would both be 
advanced by the appropriate amount responsive to the peri 
odic clock pulse. Additionally, in implementations where the 
industrial controller system 110 comprises multiple control 
lers, each controller could have a different time step size, and 
each of these controllers could be further synchronized at 
each clock pulse by dynamically calculating the deltas foruse 
in compensating for the differences in time step size between 
the multiple controllers. 
0031 Advantageously, the API 120 may be utilized to 
apply timestamps to data exchanged between the simulation 
model 130 and the industrial controller system 110. The 
timestamps may then be processed in order to facilitate Syn 
chronization between the execution of the simulation model 
130 and the industrial controller system 110. In this manner, 
the simulation model 130 is able to receive and interpret 
control signals transmitted by the industrial controller system 
110 at the appropriate timing to achieve Smooth and harmo 
nious operation of the simulation, thereby increasing the 
value and utility of the simulation model 130 through inte 
gration and synchronization with the industrial controller 
system 110. 
0032 Turning now to FIG. 3, FIG. 3 is a block diagram 
that illustrates an overview 300 of implementing controllers 
with simulated industrial devices. Overview 300 includes 
controller module 310, simulation module 320, co-simula 
tion assembly module 330, and resulting module 340. Con 
troller module 310 may be any physical or emulated control 
ler configured to manage one or more devices in an industrial 
automation system. In some implementations, controller 
module 310 may be configured to provide control instructions 
that direct physical and/or simulated machines, or their indi 
vidual components, to move or perform some action in three 
dimensional space, such as controlling the motion of a robot 
arm. Simulation module 320 may be configured to generate a 
simulation model comprising simulation files that define vari 
ous properties, parameters, and physical attributes of a real 
world industrial device to ensure that the simulated device 
looks and operates in the same manner as the physical device 
from which it is modeled. 

0033 Typically, the baseline controller is a physical hard 
ware device in which a control program may be executed. A 
control program may then be loaded that is targeted to that 
specific controller hardware in order to retarget it to an emu 
lation controller implemented in software. Thus, one work 
flow includes moving from physical to emulation control 
which allows for improved modeling versatility. Once in an 
emulation model, the emulation controller may interact with 
the simulation model. Another workflow considers a case in 
which the control program is fully designed in the emulation 
controller against the simulation. In this case, once the control 
program has been designed, it can be retargeted to the hard 
ware controller. Notably, in both of the above transitions, the 
input/output (I/O) interface is preserved between the physical 
machine and the physical controller or the simulated machine 
and the emulation controller. 
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0034. In operation, a user, an engineer, or some other 
entity may generate a simulation within simulation module 
320. Such a simulation may be used to model various indus 
trial equipment, including robotic, fabrication, assembly, and 
other types of equipment. In addition to generating the simu 
lation, a user may further wish to control the simulation using 
an industrial controller from controller module 310. Control 
ler module 310 as used herein is intended to represent a real, 
physical controller device or an emulated controller imple 
mented in software that provides control instructions to the 
generated simulation. For example, if the simulation was used 
to emulate a robotic arm, one or more controllers could be 
used to manage and control the movement and articulation of 
the arm. 

0035. Once the controller and the simulation have been 
selected, the controller and simulation are then formatted 
using co-simulation assembly module 330. In some 
examples, co-simulation assembly module 330 can be used to 
format the controller and the simulation using a functional 
mock-up interface (FMI). FMI defines a standardized inter 
face to be used in computer simulations to develop complex 
cyberphysical systems. These cyberphysical systems are rep 
resented in functional mock-up units (FMUs) that provide the 
functions necessary to generate the simulation. The func 
tional mock-up units typically include an extensible markup 
language (XML) file comprising definitions of the variables 
used by the FMUs, equations used by the model, which may 
be defined as a set of functions, and other optional data, Such 
as parameter tables, a user interface, and documentation 
which may be needed by the model, among other things. 
0036. In the present example, the FMI further includes 
information necessary to provide the control functions. As a 
result, necessary portions of the control functions are imple 
mented in functional mock-up units to make the controls 
appear as simulation information within the FMI. The com 
bination of the simulation functional mock-up units 344 and 
the control functional mock-up units 345 are used to provide 
resulting module 340. Although illustrated using a functional 
mock-up interface, it should be understood that resulting 
module 340 could take the form of any other similar standard 
ized interface for simulation. An emulation simulation inter 
face environment is used to provide for this interface which is 
unique to each specific control system vendor. Translators 
may be provided throughout the emulation simulation inter 
face from industrial control space to FMI space and vice 
WSa. 

0037. In some examples, a user may control the simulation 
directly from the control functional mock-up units. Thus, the 
control functional mock-up units include all of the necessary 
functions to both receive a control instruction and execute that 
function. In other implementations, the control functional 
mock-up units may contain only the portion of information 
necessary to control the simulation. As a result, an external 
controller that receives input from the user may communicate 
with the control functional mock-up units using an applica 
tion programming interface (API), such as API 120 as shown 
in FIG. 1B. 

0038 Referring now to FIG. 4, FIG. 4 is a block diagram 
that illustrates an operational scenario 400 involving a com 
puting system in an exemplary implementation. The comput 
ing system executes emulation simulation interface 410 and 
may execute Some or all of the operations of industrial con 
troller system 420 and simulation application 430. In some 
examples, the computing system could be a single device or 
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could be distributed across many different systems and 
devices separated over diverse geographic areas. 
0039. As shown in FIG. 4, the emulation simulation inter 
face 410 includes a configurator module 411, a tag server 412, 
and a synchronizer 413. In this example, the industrial con 
troller system 420 comprises a virtual controller emulator, 
such as RSLogixTM Emulate 5000 provided by Rockwell 
Automation, Inc. The simulation application 430 could com 
prise any third-party simulation framework tool that complies 
with the FMI standard, but the MATLAB(R) SimulinkTM tool is 
used in this example. Thus, the simulation model 435 could 
comprise a mdl file created in MATLAB(R) using library 
blocks for different systems. 
0040. The emulation simulation interface 410 is used to 
connect controller tags to the simulation model 435 in MAT 
LABR). To connect the virtual controller output signals to the 
simulation model 435, it is necessary to establish an interface 
between the simulation model 435 and the industrial control 
ler system 420. To this end, the emulation simulation inter 
face 410 will set up an interface between input/output (I/O) 
signals of the controller 420 with the simulation model 435. 
The interface established by the emulation simulation inter 
face 410 enables connectivity and data exchange in a bidirec 
tional manner between the simulation model 435 and the 
controller 420. In this example, the emulation simulation 
interface 410 uses a virtual controller emulator such as 
RSLogixTM Emulate 5000 to encapsulate the control pro 
grams. The controller emulator mimics the operation of a 
ControlLogixTM programmable logic controller (PLC) but in 
software only. The virtual controller 420 transfers data to the 
simulation using output tags and receives data from the simu 
lation using input tags. 
0041. The configurator component 411 hosts the applica 
tion-level information for connecting the virtual controller 
420 with the simulation model 435. Tag server 412 coordi 
nates the input and output tags for data exchange. In some 
implementations, tag server 412 provides distributed commu 
nication connectivity services for connecting the communi 
cating parts in the controller side of the spectrum. The co 
simulation master from FMI coordinates communication 
between the FMUs. Underneath the tag server service, the 
controllers and their respective communications are coordi 
nated with simulations, which can become a very complex 
network of communicating units. 
0042. The synchronizer 413 coordinates the clock pro 
gression between the controller 420 and the simulation model 
435 to keep them synchronized. The clock synchronization is 
typically carried out in two phases. First, the co-simulation 
master coordinates global time among FMUs. Second, the tag 
server service 412 coordinates control level FMU time among 
the controllers. In situations where there is more than one 
control level FMU, time synchronization among them may be 
handled by the co-simulation master. An example of how the 
execution of a controller and a simulation may be synchro 
nized at runtime will now be discussed with respect to FIG. 5. 
0043 FIG. 5 is a block diagram that illustrates an opera 
tional scenario 500 for synchronizing a controller and a simu 
lation in an exemplary implementation. Operational scenario 
500 involves controller module 510, simulation module 530, 
and co-simulation master 540. Controller module 510 
includes API 520. In this example, controller module 510 
comprises a controller-side FMU and simulation module 530 
comprises a simulation FMU. 
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0044) In operation, API 520 of controller module 510 gen 
erally reads and writes tags for data exchanged between the 
controller module 510 and the simulation module 530, and 
functions to synchronize the timing associated with this data 
exchange and execution of the simulation. For example, the 
signal transmission intervals of the controller module 510 and 
the simulation model 530 may be exchanged at different time 
rates, and the co-simulation master 540 works in conjunction 
with API 520 to compensate for these different rates to 
achieve synchronization. 
0045. In this example scenario, controller module 510 is 
transferring control data to the simulation module 530. Co 
simulation master 540 provides an interface to connect the 
controller module 510 FMU and the simulation module 530 
FMU. As controller module 510 transfers the control data to 
simulation module 530, co-simulation master 540 utilizes 
API 520 to apply a first timestamp to the control data to mark 
the time in. Co-simulation master 540 then provides the con 
trol data to simulation module 530 and a second timestamp is 
applied to the data to mark the time out. In this manner, 
co-simulation master 540 is aware of what time the controller 
module 510 intended to provide the control data to the simu 
lation module 530 based on the first timestamp noting the 
time in, and what time the simulation module 530 actually 
receives the control databased on the second timestamp not 
ing the time out. 
0046. To ensure the controller module 510 and the simu 
lation module 530 are operating in a synchronized manner, 
co-simulation master 540 calculates time offsets for the con 
trol databased on the timestamps to compensate for delay and 
other timing anomalies. The co-simulation master 540 then 
advances the master clock one clock cycle and sends a clock 
pulse to both the controller module 510 and the simulation 
module 530 to advance each module ahead one time step. 
Note that the time step size may not be the same size for the 
simulation module 530 and the controller module 510. 
0047. In some examples, the FMUs of both the simulation 
module 530 and the controller module 510 are configured to 
emit periodic pulses, such as every twenty milliseconds, into 
the simulation and controller, respectively, to advance in time 
at the appropriate time step sizes, since as noted above, the 
time step sizes may not be the same size for the simulation 
module 530 and the controller module 510. Also, in imple 
mentations where the controller module 510 includes mul 
tiple controllers, each of the controllers in the controller mod 
ule 510 could be operating at different time step sizes. An 
example of how multiple controllers that operate at different 
time step sizes could be synchronized will now be discussed 
in greater detail with respect to FIG. 6. 
0048 FIG. 6 is a controller synchronization chart 600 that 
illustrates an exemplary technique of synchronizing multiple 
controllers. The multiple controllers could comprise several 
separate physical controller devices, multiple independent 
emulated controllers implemented in Software, or combina 
tions thereof. For example, multiple controllers could be used 
to control several separate components of a single machine 
being simulated, such as various drive motors, articulation 
mechanisms, and other parts of the machine. In this example, 
the controllers are numbered C1, C2, and C3. The time step 
size in this example is ten milliseconds, as shown along the 
horizontal X-axis of controller synchronization chart 600. 
0049. As shown in controller synchronization chart 600, 
after a first iteration, controller C1 has advanced fifteen mil 
liseconds, C2 has advanced ten milliseconds, and C3 has 
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advanced five milliseconds. These different intervals are then 
processed to dynamically calculate time offsets from the time 
step size often milliseconds in order to compensate for the 
different signal transmission intervals of the controllers C1, 
C2, and C3. For controller C1, the time offset is calculated to 
be a plus five millisecond delta from the time step size, since 
C1 advanced fifteen milliseconds but the time step size is only 
ten milliseconds. The next time step for controller C1 is then 
calculated by Subtracting the delta from the time step size, so 
with a time step size often milliseconds minus a plus five 
millisecond delta, C1 should only advance five milliseconds 
on the next time step to achieve synchronization with the 
other controllers and the ten millisecond time step size. 
0050 Controller C2 has a time step size often millisec 
onds, which matches the time step size of the simulation. 
Thus, no offset needs to be calculated and no compensation of 
the time step size of controller C2 is necessary for synchro 
nization. Controller C3 has a time step size of only five 
milliseconds, so the time offset is calculated to be a negative 
five millisecond delta from the time step size often millisec 
onds. The next time step for controller C3 is then calculated 
by subtracting the delta from the time step size, so with a time 
step size often milliseconds minus a negative five millisecond 
delta, C1 should advance fifteen milliseconds on the next time 
step to achieve synchronization with the other controllers and 
the overall ten millisecond time step size. As the simulation 
advances, the offsets for each of the controllers C1, C2, and 
C3 are then continually recalculated dynamically at each time 
step to ensure synchronization persists. In this manner, the 
simulation model proceeds to learn the amplitude and fre 
quency of the sinusoidal time progression of each of the 
controllers C1, C2, and C3. 
0051 FIG. 7 is a block diagram that illustrates an opera 
tional scenario 700 involving a computing system in an exem 
plary implementation. Operational scenario 700 is capable of 
creating and operating a machine simulation in an industrial 
automation environment. To integrate design, control, simu 
lation, and visualization, the following system and workflow 
may be used. According to an example, the system architec 
ture may consist generally offive main parts: control program 
design 710, industrial controller system 720, simulation mod 
eling 730, computer-aided design (CAD) solid modeling 740, 
and visualization 750. Various industry-based tools and open 
Source Software may be used to implement these design goals. 
0052. In an example, control programming design 710 
may be carried out using a control programming tool, such as 
the Studio5000TM programming tool by Rockwell Automa 
tion, Inc. Control program execution is handled by industrial 
controller system 720, which could comprise an emulated 
virtual controller implemented in Software, such as 
RSLogixTM Emulate 5000 by Rockwell Automation, Inc. 
Simulation modeling 730 can be performed by any simula 
tion framework tool, such as the MATLAB(R) SimulinkTM 
tool. Solid modeling 740 may be handled by any CAD soft 
ware, such as SolidworksTM or the like. Finally, visualization 
550 may be performed by any suitable visualization tool, such 
as a Scalable Vector Graphics (SVG) tool, Virtual Reality 
Modeling Language (VRML) tool, and others. Each of the 
above tools brings its own data structures and information 
formats into the design process. The challenge for the inte 
grated design and validation environment is to combine the 
pieces of information into a common information exchange 
structure that can be used to harmonize the components into 
a rapid prototyping environment. 
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0053. In FIG. 7, an example information flow of the inte 
grated system is shown. The solid modeling phase 740 pro 
duces a three dimensional representation of the mechanical 
system to be controlled. The solid model may be converted 
into two information elements: a kinematics simulation and a 
graphical assembly. The SolidworksTM tool provides plugins 
to generate both data files as MATLABR) simulation and 
VRML export files. 
0054) The Studio5000TM tool by Rockwell Automation is 
an industrial control programming design tool 710 that is 
used to create control algorithms written in an International 
Electrotechnical Commission (IEC) 61131-based program 
ming language. The control program is deployed in the virtual 
controller within industrial controller system 720. 
0055. The kinematics simulation is downloaded to the 
MATLABR) tool for simulating the machine under specific 
load conditions. The simulation model 730 interacts with the 
controller 720 at runtime to stimulate the controlling algo 
rithms with the responses of the machine that is put under 
stress with dynamic loading and control profiles. Graphical 
assemblies will be further processed to become a hierarchical 
data structure of graphical description that can be animated in 
the visualization tool 750. The visualization tool collects the 
real-time data that is generated in the controller-to-simulation 
interaction. 
0056. Different techniques may be used to connect each 
phase of this information flow. In one implementation, con 
trol program parameters are transferred between the simula 
tion model 730 and the controller 720 using an I/O interface. 
MATLABR) provides a SimMechanicsLinks plugin for CAD 
software SolidworksTM to transfer the CAD model produced 
in the solid modeling phase 740 into the simulation model 
730. The simulation model 730 contains mass and inertial 
properties of each of the component parts of a machine 
described in the CAD drawings. This information is essential 
to generate accurate animation of the mechanical system. 
0057 Kinematics and dynamical information of the simu 
lation model 530 can be used to generate realistic model 
conditions since the actual physical properties of the model 
are included in the simulation calculations. As discussed 
above, visualization 550 may be performed by any suitable 
visualization tool, such as a Scalable Vector Graphics (SVG) 
tool, Virtual Reality Modeling Language (VRML) tool, or 
any other simulation modeling tool. In at least one implemen 
tation, a high quality and realistic animation can be produced 
in any VRML-compatible tool using the exported VRML 
models. VRML provides an open source, platform-indepen 
dent graphical language to create and view three dimensional 
models. VRML is a text-based language so it can be easily 
edited using any text editor. To bring the VRML tool into this 
workflow, it is necessary to attach an API to it so it can 
communicate with the other parts of the system. Of course, 
other tools besides VRML may be utilized for this purpose 
and are within the scope of this disclosure. 
0058 Based on this work flow, an application can be cre 
ated using these different systems under one platform. Robots 
are widely used in industrial automation applications and 
their control algorithms are developed by System engineers. 
In an example, a six-axis articulated robot model may be 
used. A desired motion profile for the robots end effector 
position is established in the controlling program 710 using 
command position profiles. 
0059. The command positions are points of desired 
motion trajectory for the end effector. To achieve a desired 
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position of the end effector, different parts (links) of the robot 
must be placed in a position by the driving motors at the link 
joints. These motors are driven by torque signals that are to be 
calculated by the controlling drivers. However, the control 
ling torque depends on knowledge of the system response to 
the torque and the load at the end effector. In the classical 
design approach, these pieces of information are known by 
trial and error or by experienced designers. The intent here is 
to capture the information flow for automating the process of 
generating the feedback information for the drivers and con 
trollers. Based on the drivers torque signal, each joint will 
move and the end effector will move in the space to a target 
location. Current position is the feedback to the drivers and 
controllers for close loop control. 
0060 A work flow, validation framework, and process to 
enable a virtual design engineering environment have been 
presented. The environment enables interoperability of solid 
model design, controllers, simulation, and visualization tools 
into an integrated development environment. Results showed 
that the selected work flow and information exchange could 
be assembled in an automated system. The deployment of the 
virtual design engineering environment permitted observing 
in real-time the effect of the controlling algorithm on the 
machine prototype which was simulated and controlled by 
motion instructions. This disclosure enables early validation 
of controlling logic for complex industrial automation 
projects and manufacturing plants. The benefits include the 
reduction of engineering cost, time, and resources during the 
design and prototyping of industrial automation machinery. 
In addition, the virtual design engineering environment opens 
new opportunities to train engineers and operators in control 
ling machines, without the need for the physical presence of 
the actual machine. 

0061. It must be noted that the invention can be used in two 
main phases: design phase runtime and commissioned phase 
runtime. During design phase runtime, the industrial control 
device can be real or emulated. Either encapsulation is con 
nected to the simulation. In commissioned phase runtime, the 
industrial control device and the simulation execute in paral 
lel with a real controller. Additionally, another benefit of the 
system is to aid system engineers to create optimized indus 
trial control programs. For example, the Studio5000TM tool 
by Rockwell Automation allows for online editing of the 
control program, and the design may be incrementally 
improved in virtual design. 
0062 FIG. 8 is a block diagram that illustrates computing 
system 800 in an exemplary implementation. Computing sys 
tem 800 provides an example of computing system 100 or any 
system that may be used to facilitate simulating machines 
used in industrial automation, although other systems capable 
of performing the techniques disclosed herein could use alter 
native configurations, including computing system 100. 
Computing system 800 is representative of a computing sys 
tem that may be employed in any computing apparatus, sys 
tem, or device, or collections thereof. For example, comput 
ing system 800 may be employed in server computers, cloud 
computing platforms, data centers, any physical or virtual 
computing machine, and any variation or combination 
thereof. In addition, computing system 800 may be employed 
in desktop computers, laptop computers, tablets, Smart 
phones, or the like. 
0063 Computing system 800 includes processing system 
801, storage system 803, software 805, communication inter 
face 807, and user interface 809. Processing system 801 is 
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operatively coupled with storage system 803, communication 
interface 807, and user interface 809. Processing system 801 
loads and executes software 805 from storage system 803. 
Software 805 includes application 806 which itself includes 
synchronization process 200. Synchronization process 200 
may optionally be implemented separately from application 
806. When executed by computing system 800 in general, and 
processing system 801 in particular, software 805 directs 
computing system 800 to operate as described herein for 
synchronization process 200 or variations thereof. Comput 
ing system 800 may optionally include additional devices, 
features, or functionality not discussed here for purposes of 
brevity. 
0064 Computing system 800 may be representative of any 
computing apparatus, System, or systems on which applica 
tion 806 and synchronization process 200 or variations 
thereof may be suitably implemented. Examples of comput 
ing system 800 include mobile computing devices, such as 
cell phones, tablet computers, laptop computers, notebook 
computers, and gaming devices, as well as any other type of 
mobile computing devices and any combination or variation 
thereof. Note that the features and functionality of computing 
system 800 may apply as well to desktop computers, server 
computers, and virtual machines, as well as any other type of 
computing system, variation, or combination thereof. 
0065 Referring still to FIG. 8, processing system 801 may 
comprise a microprocessor and other circuitry that retrieves 
and executes software 805 from storage system 803. Process 
ing system 801 may be implemented within a single process 
ing device but may also be distributed across multiple pro 
cessing devices or Sub-systems that cooperate in executing 
program instructions. Examples of processing system 801 
include general purpose central processing units, application 
specific processors, and logic devices, as well as any other 
type of processing device, combinations, or variations 
thereof. 

0066 Storage system 803 may comprise any non-transi 
tory computer-readable media or storage media readable by 
processing system 801 and capable of storing software 805, 
Such as a disk drive, flash drive, data storage circuitry, or some 
otherhardware memory apparatus. In some examples, a com 
puter apparatus could comprise storage system 803 and oper 
ating software 805. Storage system 803 may include volatile 
and nonvolatile, removable and non-removable media imple 
mented in any method or technology for storage of informa 
tion, such as computer readable instructions, data structures, 
program modules, or other data. Storage system 803 may be 
implemented as a single storage device but may also be imple 
mented across multiple storage devices or Sub-systems co 
located or distributed relative to each other including 
devices in different geographic areas. Storage system 803 
may also be embedded in various types of equipment. Storage 
system 803 may comprise additional elements, such as a 
controller, capable of communicating with processing system 
801. Examples of storage media include random access 
memory, read only memory, magnetic disks, optical disks, 
flash memory, virtual memory and non-virtual memory, mag 
netic cassettes, magnetic tape, magnetic disk storage or other 
magnetic storage devices, or any other medium which can be 
used to store the desired information and that may be accessed 
by an instruction execution system, as well as any combina 
tion or variation thereof, or any other type of storage media. In 
no case is the storage media a propagated signal. 
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0067. In operation, processing system 801 loads and 
executes portions of software 805, such as synchronization 
process 200, in order to operate as described herein. In par 
ticular, software 805 may be implemented in program instruc 
tions and among other functions may, when executed by 
computing system 800 in general or processing system 801 in 
particular, direct computing system 800 or processing system 
801 to utilize an application programming interface (API) to 
apply timestamps to data exchanged between a simulation 
model created in a simulation application and an industrial 
controller system external to the simulation model, and pro 
cess the timestamps to synchronize the simulation model and 
the industrial controller system. Software 805 may include 
additional processes, programs, or components, such as oper 
ating system software or other application software. 
Examples of operating systems include Windows.(R), iOSR), 
and Android R, as well as any other Suitable operating system. 
Software 805 may also comprise firmware or some otherform 
of machine-readable processing instructions executable by 
processing system 801. 
0068. In general, software 805 may, when loaded into 
processing system 801 and executed, transform computing 
system 800 overall from a general-purpose computing system 
into a special-purpose computing system customized to 
facilitate simulating machines used in industrial automation 
as described herein for each implementation. Software 805 
may also transform the physical structure of storage system 
803. The specific transformation of the physical structure 
may depend on various factors in different implementations 
of this description. Examples of such factors may include, but 
are not limited to, the technology used to implement the 
storage media of storage system 803, whether the computer 
storage media are characterized as primary or secondary stor 
age, and the like. For example, if the computer-storage media 
are implemented as semiconductor-based memory, Software 
805 may transform the physical state of the semiconductor 
memory when the software is encoded therein. For example, 
software 805 may transform the state of transistors, capaci 
tors, or other discrete circuit elements constituting the semi 
conductor memory. A similar transformation may occur with 
respect to magnetic or optical media. Other transformations 
of physical media are possible without departing from the 
Scope of the present description, with the foregoing examples 
provided only to facilitate this discussion. 
0069 Communication interface 807 may include commu 
nication connections and devices that allow for communica 
tion between computing system 800 and other computing 
systems (not shown) or services, over a communication net 
work or collection of networks. Examples of connections and 
devices that together allow for inter-system communication 
may include network interface cards, antennas, power ampli 
fiers, RF circuitry, transceivers, and other communication 
circuitry. The aforementioned network, connections, and 
devices are well known and need not be discussed at length 
here. 

(0070. User interface 809 may include avoice input device, 
a touch input device for receiving a gesture from a user, a 
motion input device for detecting non-touch gestures and 
other motions by a user, and other comparable input devices 
and associated processing elements capable of receiving user 
input from a user. Output devices such as a display system, 
speakers, haptic devices, and other types of output devices 
may also be included in user interface 809. The aforemen 
tioned user input devices are well known in the art and need 
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not be discussed at length here. User interface 809 may also 
include associated user interface software executable by pro 
cessing system 801 in Support of the various user input and 
output devices discussed above. Separately or in conjunction 
with each other and other hardware and software elements, 
the user interface Software and devices may provide a graphi 
cal user interface, a natural user interface, or any other kind of 
user interface. 
0071. The functional block diagrams, operational 
sequences, and flow diagrams provided in the Figures are 
representative of exemplary architectures, environments, and 
methodologies for performing novel aspects of the disclo 
sure. While, for purposes of simplicity of explanation, meth 
ods included herein may be in the form of a functional dia 
gram, operational sequence, or flow diagram, and may be 
described as a series of acts, it is to be understood and appre 
ciated that the methods are not limited by the order of acts, as 
Some acts may, in accordance therewith, occur in a different 
order and/or concurrently with other acts from that shown and 
described herein. For example, those skilled in the art will 
understand and appreciate that a method could alternatively 
be represented as a series of interrelated States or events, such 
as in a state diagram. Moreover, not all acts illustrated in a 
methodology may be required for a novel implementation. 
0072 The above description and associated drawings 
teach the best mode of the invention. The following claims 
specify the scope of the invention. Some aspects of the best 
mode may not fall within the scope of the invention as speci 
fied by the claims. Also, while the preceding discussion 
describes embodiments employed specifically in conjunction 
with the monitoring and analysis of industrial processes, 
other applications, such as the mathematical modeling or 
monitoring of any man-made or naturally-existing system, 
may benefit from use of the concepts discussed above. Fur 
ther, those skilled in the art will appreciate that the features 
described above can be combined in various ways to form 
multiple variations of the invention. As a result, the invention 
is not limited to the specific embodiments described above, 
but only by the following claims and their equivalents. 
What is claimed is: 
1. One or more computer-readable storage media having 

program instructions stored thereon to facilitate simulating 
machines used in industrial automation, wherein the program 
instructions, when executed by a computing system, direct 
the computing system to at least: 

utilize an application programming interface (API) to 
apply timestamps to data exchanged between a simula 
tion model created in a simulation application and an 
industrial controller system external to the simulation 
model; and 

process the timestamps to synchronize the simulation 
model and the industrial controller system. 

2. The one or more computer-readable storage media of 
claim 1 wherein, to process the timestamps to synchronize the 
simulation model and the industrial controller system, the 
program instructions direct the computing system to provide 
a periodic clock pulse to the simulation model and the indus 
trial controller system to advance the simulation model and 
the industrial controller system ahead one time step. 

3. The one or more computer-readable storage media of 
claim 1 wherein, to process the timestamps to synchronize the 
simulation model and the industrial controller system, the 
program instructions direct the computing system to coordi 
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nate signal transmission intervals of the simulation model and 
the industrial controller system using the time stamps. 

4. The one or more computer-readable storage media of 
claim 1 wherein the data exchanged between the simulation 
model and the industrial controller system comprises control 
signals transferred from the industrial controller system to the 
simulation model. 

5. The one or more computer-readable storage media of 
claim 1 wherein the simulation model comprises definitions 
for a virtual representation of at least a portion of a machine 
used in an industrial automation environment. 

6. The one or more computer-readable storage media of 
claim 5 wherein the simulation model utilizes the data to 
generate an animated visualization of the machine. 

7. The one or more computer-readable storage media of 
claim 1 wherein the industrial controller system comprises an 
emulated industrial controller implemented in software. 

8. A method of operating a computing system to facilitate 
simulating machines used in industrial automation, the 
method comprising: 

utilizing an application programming interface (API) to 
apply timestamps to data exchanged between a simula 
tion model created in a simulation application and an 
industrial controller system external to the simulation 
model; and 

processing the timestamps to synchronize the simulation 
model and the industrial controller system. 

9. The method of claim 8 wherein processing the times 
tamps to synchronize the simulation model and the industrial 
controller system comprises providing a periodic clock pulse 
to the simulation model and the industrial controller system to 
advance the simulation model and the industrial controller 
system ahead one time step. 

10. The method of claim 8 wherein processing the times 
tamps to synchronize the simulation model and the industrial 
controller system comprises coordinating signal transmission 
intervals of the simulation model and the industrial controller 
system using the timestamps. 

11. The method of claim 8 wherein the data exchanged 
between the simulation model and the industrial controller 
system comprises control signals transferred from the indus 
trial controller system to the simulation model. 

12. The method of claim 8 wherein the simulation model 
comprises definitions for a virtual representation of at least a 
portion of a machine used in an industrial automation envi 
rOnment. 

13. The method of claim 12 wherein the simulation model 
utilizes the data to generate an animated visualization of the 
machine. 

14. The method of claim 8 wherein the industrial controller 
system comprises an emulated industrial controller imple 
mented in software. 

15. A computer apparatus to operate a computing system to 
facilitate simulating machines used in industrial automation, 
the apparatus comprising: 

Software instructions configured, when executed by the 
computing system, to direct the computing system to 
utilize an application programming interface (API) to 
apply timestamps to data exchanged between a simula 
tion model created in a simulation application and an 
industrial controller system outside of the simulation 
model, and process the timestamps to synchronize the 
simulation model and the industrial controller system, 
wherein the simulation model comprises definitions for 
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a virtual representation of at least a portion of a machine 
used in an industrial automation environment and 
wherein the simulation model utilizes the data to gener 
ate an animated visualization of the machine; and 

at least one non-transitory computer-readable storage 
medium storing the Software instructions. 

16. The computer apparatus of claim 15 wherein the soft 
ware instructions configured to direct the computing system 
to process the timestamps to synchronize the simulation 
model and the industrial controller system comprises the 
Software instructions configured to direct the computing sys 
tem to provide a periodic clock pulse to the simulation model 
and the industrial controller system to advance the simulation 
model and the industrial controller system ahead one time 
step. 

17. The computer apparatus of claim 15 wherein the soft 
ware instructions configured to direct the computing system 
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to process the timestamps to synchronize the simulation 
model and the industrial controller system comprises the 
Software instructions configured to direct the computing sys 
tem to coordinate signal transmission intervals of the simu 
lation model and the industrial controller system using the 
timestamps. 

18. The computer apparatus of claim 17 wherein the signal 
transmission intervals of the simulation model and the indus 
trial controller system are different rates. 

19. The computer apparatus of claim 15 wherein the data 
exchanged between the simulation model and the industrial 
controller system comprises control signals transferred from 
the industrial controller system to the simulation model. 

20. The computer apparatus of claim 15 wherein the indus 
trial controller system comprises an emulated industrial con 
troller implemented in software. 
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