
(19) United States
US 2015O134313A1

(12) Patent Application Publication (10) Pub. No.: US 2015/0134313 A1
Maturana et al. (43) Pub. Date: May 14, 2015

(54) TIME SYNCHRONIZATION OF SIGNAL
TRANSMISSION INTERVALS FOR
SIMULATING AMACHINE IN INDUSTRIAL
AUTOMATION

(71) Applicant: ROCKWELL AUTOMATION
TECHNOLOGIES, INC., Mayfield
Heights, OH (US)

(72) Inventors: Francisco Maturana, Lyndhurst, OH
(US); Haithem Mansouri, Beachwood,
OH (US); Jaroslav Kriz, Usti nad
Labem (CZ)

(21) Appl. No.: 14/303,172

(22) Filed: Jun. 12, 2014

Related U.S. Application Data
(60) Provisional application No. 61/901.956, filed on Nov.

8, 2013.

CO-SIMULATION
MASTER 150

CONTROLLER 151 AP

CONTROLLER 161 AP

CONTROLLER-SIDE

CONTROLLER-SIDE

Publication Classification

(51) Int. Cl.
G06F 17/50 (2006.01)
G06F L/4 (2006.01)
G06F 9/54 (2006.01)

(52) U.S. Cl.
CPC G06F 17/5009 (2013.01); G06F 9/541

(2013.01); G06F I/14 (2013.01)
(57) ABSTRACT

Systems, methods, and Software to facilitate simulating
machines used in industrial automation are disclosed herein.
In at least one implementation, an API is utilized to establish
at least a communication link between a simulation model
created in a simulation application and an industrial control
ler system outside of the simulation model, wherein the simu
lation model comprises definitions for a virtual representation
of at least a portion of a machine used in an industrial auto
mation environment. Data is then exchanged between the
industrial controller system and the simulation model over the
communication link.

N101

SIMULATION FMU
155

FMU 152
FM-ES

FMU 162

US 2015/0134.313 A1 May 14, 2015 Sheet 1 of 9 Patent Application Publication

US 2015/0134.313 A1

Õ?J TEOJOWN

May 14, 2015 Sheet 2 of 9

00 || WNELSÅS €)N|LOCHWOO

Patent Application Publication

US 2015/0134.313 A1 May 14, 2015 Sheet 3 of 9 Patent Application Publication

US 2015/0134.313 A1 May 14, 2015 Sheet 4 of 9 Patent Application Publication

US 2015/0134.313 A1 May 14, 2015 Sheet 5 of 9

SETO)\O [lc][O EZINON-HONÅSSETO AO [lc][O EZINON-HONÅS

Patent Application Publication

May 14, 2015 Sheet 6 of 9 US 2015/0134.313 A1 Patent Application Publication

ÕIG ETTOJOWN > HETTO?-|_LNO O

Patent Application Publication May 14, 2015 Sheet 7 of 9 US 2015/0134.313 A1

May 14, 2015 Sheet 8 of 9 US 2015/0134.313 A1 Patent Application Publication

Patent Application Publication May 14, 2015 Sheet 9 of 9 US 2015/0134.313 A1

Od
O
d

O
C
L
n1

H
Z
n1

CfO
D

US 2015/0134313 A1

TIME SYNCHRONIZATION OF SIGNAL
TRANSMISSION INTERVALS FOR

SIMULATING AMACHINE IN INDUSTRIAL
AUTOMATION

RELATED APPLICATIONS

0001. This application hereby claims the benefit of, and
priority to, U.S. Provisional Patent Application No. 61/901,
956, entitled “INTEGRATING CONTROLLERS WITH
SIMULATIONS'', filed Nov. 8, 2013, and which is hereby
incorporated by reference in its entirety for all purposes.

TECHNICAL BACKGROUND

0002 Simulation of industrial equipment can be essential
in designing, prototyping, and demonstrating the different
design options to engineers, customers, and other interested
parties. Such simulations can be utilized to emulate virtual
ized operation of their corresponding physical devices over
time, and may be further used in providing visual represen
tations of the various simulated devices. In some examples,
simulation and modeling applications may be used to define
parameters for simulated mechanical components. These
parameters ensure that the emulated equipment performs in
the same manner during a simulation as can be expected for
their real-world counterparts.
0003. In addition to the physical industrial equipment that
provides the mechanical functionality to perform various
industrial operations, controller systems are also essential
components of an industrial automation environment. Indus
trial controller systems are typically utilized to provide con
trol instructions to physical machines to accomplish various
tasks in an industrial plant, such as product manufacturing,
materials handling, batch processing, Supervisory control,
and other industrial functions. As a result, by combining
industrial machinery with the proper controller, an industrial
system can be created that is capable of performing various
operations.

Overview

0004 Systems, methods, and software to facilitate simu
lating machines used in industrial automation are disclosed
herein. In at least one implementation, an API is utilized to
apply timestamps to data exchanged between a simulation
model created in a simulation application and an industrial
controller system external to the simulation model. The
timestamps are then processed to synchronize the simulation
model and the industrial controller system.
0005. This Overview is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Technical Disclosure. It should be understood
that this Overview is not intended to identify key features or
essential features of the claimed Subject matter, nor is it
intended to be used to limit the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. Many aspects of the disclosure can be better under
stood with reference to the following drawings. While several
implementations are described in connection with these
drawings, the disclosure is not limited to the implementations
disclosed herein. On the contrary, the intent is to cover all
alternatives, modifications, and equivalents.

May 14, 2015

0007 FIG. 1A is a block diagram that illustrates an over
view of synchronizing multiple controllers with simulated
industrial devices.
0008 FIG. 1B is a block diagram that illustrates a com
puting system that may be used to facilitate simulating
machines used in industrial automation.
0009 FIG. 2 is a flow diagram that illustrates an operation
of a computing system in an exemplary implementation.
0010 FIG.3 is a block diagram that illustrates an overview
of implementing controllers with simulated industrial
devices.
0011 FIG. 4 is a block diagram that illustrates an opera
tional Scenario involving a computing system in an exemplary
implementation.
0012 FIG. 5 is a block diagram that illustrates an opera
tional scenario for synchronizing a controller and a simula
tion in an exemplary implementation.
0013 FIG. 6 is a controller synchronization chart that
illustrates an exemplary technique of synchronizing multiple
controllers.
0014 FIG. 7 is a block diagram that illustrates an opera
tional Scenario involving a computing system in an exemplary
implementation.
0015 FIG. 8 is a block diagram that illustrates a comput
ing system in an exemplary implementation.

DETAILED DESCRIPTION

0016. The following description and associated drawings
teach the best mode of the invention. For the purpose of
teaching inventive principles, some conventional aspects of
the best mode may be simplified or omitted. The following
claims specify the scope of the invention. Some aspects of the
best mode may not fall within the scope of the invention as
specified by the claims. Thus, those skilled in the art will
appreciate variations from the best mode that fall within the
scope of the invention. Those skilled in the art will appreciate
that the features described below can be combined in various
ways to form multiple variations of the invention. As a result,
the invention is not limited to the specific examples described
below, but only by claims and their equivalents.
0017 Industrial automation environments, such as auto
mobile manufacturing factories, food processing plants, oil
drilling operations, microprocessor fabrication facilities, and
other types of industrial enterprises, typically employ several
machines and other equipment to carry out their business
operations. For example, an industrial automation enterprise
could employ machines comprising sensors, drives, pumps,
filters, drills, motors, robots, mills, printers, carousels, fabri
cation machinery, or any other industrial automation equip
ment. During the design, prototyping, and testing phases of
product development, these machines and other devices used
in industrial automation may be simulated using computing
systems to provide virtual representations to engineers and
customers of the end product. These simulations typically
include physical attributes, parameters, and other aspects of
the machine being simulated to ensure a proper emulation is
furnished by the computing system. In some examples, a user
may desire to have control over a simulated device to further
illustrate the functionality and operation of the device as can
be expected when physically implemented. As a result, the
user may prefer to attach one or more real or emulated con
trollers to the simulated device to demonstrate and test the
different controllable operations of the device.

US 2015/0134313 A1

0018 FIG. 1A is a block diagram that illustrates an over
view 101 of synchronizing multiple controllers 151-152 with
simulated industrial devices. FIG. 1A shows a functional
mock-up interface emulation simulation interface (FMI
ESI), controllers 151 and 161, controller-side functional
mock-up unit (FMU) 152 and FMU 162, co-simulation mas
ter 150, and simulation FMU 155.
0019 Controllers 151 and 161 typically each comprise an
industrial controller, which could include automation con
trollers, programmable logic controllers (PLCs), or any other
controllers used in automation control. Controllers 151 and
161 could comprise one or more physical and/or emulated
controllers implemented in Software—including combina
tions thereof. In this example, each controller 151 and 161 has
an associated controller-side FMU 152 and 162, respectively.
Each controller-side FMU 152 and 162 includes an applica
tion programming interface (API) that may be used to read
and write tags and synchronize time between the controllers
151 and 162 and their respective controller-side FMUs 152
and 162.
0020 Simulation FMU 155 comprises definitions for a
virtual representation of at least a portion of a machine used in
an industrial automation environment. Simulation FMU 155
is typically created, at least in part, using a simulation appli
cation that complies with the FMI standard, so that FMI may
be used to wrap the simulation module inside of an FMU. For
example, the simulation application could comprise a third
party simulation framework tool, such as MATLAB(R) Sim
ulinkTM, although the simulation application could comprise
any other Suitable simulation application or combination of
applications in some implementations. Each FMU provides
an interface for exchanging data with other FMUs.
0021. In operation, a tag server within the FMI-ESI pro
vides distributed communication connectivity services for
connecting the communicating parts on the controller side.
The communication between controller-side FMUs 152 and
162 and the simulation FMU 155 is coordinated by the co
simulation master 150, which also complies with FMI. The
clock synchronization is typically performed in two phases.
First, the co-simulation master 150 coordinates global time
among all the FMUs 152, 162, and 155, which involves send
ing a clock pulse to each FMU at each time step interval in
order to inject the global time into each FMU. Second, the tag
server service within the FMI-ESI coordinates controller-side
FMU time among the controllers 151 and 161. In this
example, since there is more than one controller-side FMU
152 and 162, the co-simulation master 150 handles the time
synchronization among them.
0022. The FMI-ESI tool may be used to expose the input/
output (I/O) interface from the controller side into the FMU
side, which necessitates the controller-side FMUs 152 and
162. Each controller-side FMU 152 and 162 typically has one
or more controllers under its Supervision. In this example,
controller-side FMU 152 handles controller 151, and control
ler-side FMU 162 handles controller 161. The FMI-ESI tool
used to configure each controller-side FMU 152 and 162.
0023. When executing the simulation at runtime, the FMI
co-simulation master 150 coordinates the data exchange and
clocks among the FMUs 152, 162, and 155. The tag server
within the FMI-ESI coordinates the clock and data exchange
among the controllers 151 and 161 under each controller-side
FMU 152 and 162. In other words, the FMI-ESI may be used
to configure the controller-side FMUs 152 and 162 to inter
operate with the simulation FMU 155 and other types of

May 14, 2015

FMUs (not shown). The co-simulation master 150 coordi
nates the data exchange and global time between the FMUs
152, 162, and 155, and the tag server portion of the FMI-ESI
in this case grabs the local time of each controller-side FMU
152 and 162 to facilitate synchronizing the controllers 151
and 161 under their supervision.
0024 FIG. 1B is a block diagram that illustrates comput
ing system 100 that may be used to facilitate simulating
machines used in industrial automation. Computing system
100 includes industrial controller system 110, application
programming interface (API) 120, and simulation model 130.
Computing system 100 is representative of any computing
environment, which could include several different systems
and devices located in geographically diverse areas and inter
connected via communication networks in a distributed man
ner in Some examples.
0025 Industrial controller system 110 comprises, for
example, an industrial controller, which could include auto
mation controllers, programmable logic controllers (PLCs),
or any other controllers used in automation control. Industrial
controller system 110 could comprise one or more physical
and/or emulated controllers implemented in Software-in
cluding combinations thereof. Simulation model 130 com
prises definitions for a virtual representation of at least a
portion of a machine used in an industrial automation envi
ronment. Simulation model 130 is typically created, at least in
part, using a simulation application. In some implementa
tions, the simulation application employed may comply with
the FMI standard, so that FMI may be used to wrap the
simulation module inside of an FMU. For example, the simu
lation application could comprise a third-party simulation
framework tool, such as MATLAB(R) SimulinkTM, although
the simulation application could comprise any other Suitable
simulation application or combination of applications in
some implementations. API 120 provides an interface that
enables communication between industrial controller system
110 and simulation model 130, among other functionality. An
operation of computing system 100 will now be described
with respect to FIG. 2.
0026 FIG. 2 is a flow diagram that illustrates an operation
200 of computing system 100 in an exemplary implementa
tion. The operation 200 shown in FIG.2 may also be referred
to as synchronization process 200 herein. The steps of opera
tion 200 are indicated below parenthetically. The following
discussion of synchronization process 200 will proceed with
reference to computing system 100 of FIG. 1B in order to
illustrate its operations, but note that the details provided in
FIG. 1B are merely exemplary and not intended to limit the
scope of synchronization process 200 to the specific imple
mentation shown in FIG. 1B.
0027 Synchronization process 200 may be employed to
operate computing system 100 to facilitate simulating
machines used in industrial automation. As shown in the
operational flow of synchronization process 200, computing
system 100 utilizes an application programming interface
(API) 120 to apply timestamps to data exchanged between a
simulation model created in a simulation application and an
industrial controller system external to the simulation model
(201). In some implementations, the industrial controller sys
tem 110 could comprise one or more physical industrial con
troller devices, emulated industrial controllers implemented
in Software, or any other control system—including combi
nations thereof. The simulation model 130 may typically
comprise definitions for a virtual representation of at least a

US 2015/0134313 A1

portion of a machine used in an industrial automation envi
ronment. For example, the simulation model 130 could define
the design and parameters of an entire robot, or could define
an individual component of the robot, such as an arm joint,
drive motor, articulation mechanism, or some other portion of
the robot. In some examples, the simulation model 130 could
include information for rendering a three dimensional visu
alization of the machine, or at least a portion thereof.
0028. Among other functionality, API 120 may facilitate
data exchange between the simulation model 130 and the
industrial controller system 110 in abidirectional manner. For
example, the data transferred from the industrial controller
system 110 to the simulation model 130 could comprise con
trol signals used to drive the simulation, and the data received
by the industrial controller system 110 from the simulation
model 130 could comprise feedback, operational status, and
other information associated with the execution of the simu
lation model 130. In some implementations, API 120 could be
utilized to establish at least one communication link between
the industrial controller system 110 and the simulation model
130 by linking ports associated with the industrial controller
system 110 to the simulation model 130 to create an input and
output interface between the industrial controller system 110
and the simulation model 130. Data may then be exchanged
over the communication link between the industrial control
ler system 110 and the simulation model 130 by utilizing the
input and output interface to transfer control program param
eters, control signals, and other information between the
industrial controller system 110 and the simulation model
130. The simulation model 130 may then utilize the data
received from the industrial controller system 110 to generate
an animated visualization of a machine being simulated. For
example, the data from the industrial controller system 110
could direct the simulation model 130 to move and animate a
three dimensional visualization of the simulated machine in
the same manner that the industrial controller system 110
could drive the physical machine itself.
0029. In some implementations, API 120 may be utilized
to apply timestamps to any of the data exchanged between the
industrial controller system 110 and the simulation model
130. For example, API 120 could be utilized to apply a first
timestamp to data as soon as it is transferred by the industrial
controller system 110 for delivery to the simulation model
130, and to apply a second timestamp immediately before
providing the data to the simulation model 130, and vice
versa. Other techniques of utilizing API 120 to apply times
tamps to data exchanged between the simulation model 130
and the industrial controller system 110 are contemplated and
within the scope of this disclosure.
0030 The timestamps are then processed to synchronize
the simulation model 130 and the industrial controller system
110 (202). In some embodiments, the timestamps may be
utilized to determine the timing of when to provide the data to
the simulation model 130 or the industrial controller system
110 to achieve synchronization. In at least one implementa
tion, processing the timestamps to synchronize the simulation
model 130 and the industrial controller system 110 could
comprise coordinating signal transmission intervals of the
simulation model 130 and the industrial controller system
110 using the timestamps. Coordinating the signal transmis
sion intervals between the simulation model 130 and the
industrial controller system 110 is necessary in some
examples because the signal transmission intervals could
often comprise different rates. In some implementations, pro

May 14, 2015

cessing the timestamps to synchronize the simulation model
130 and the industrial controller system 110 could comprise
providing a periodic clock pulse to the simulation model 130
and the industrial controller system 110 to advance the simu
lation model 130 and the industrial controller system 110
ahead one time step. Note that the time step size for the
simulation model 130 and the industrial controller system
110 could comprise different values, but would both be
advanced by the appropriate amount responsive to the peri
odic clock pulse. Additionally, in implementations where the
industrial controller system 110 comprises multiple control
lers, each controller could have a different time step size, and
each of these controllers could be further synchronized at
each clock pulse by dynamically calculating the deltas foruse
in compensating for the differences in time step size between
the multiple controllers.
0031 Advantageously, the API 120 may be utilized to
apply timestamps to data exchanged between the simulation
model 130 and the industrial controller system 110. The
timestamps may then be processed in order to facilitate Syn
chronization between the execution of the simulation model
130 and the industrial controller system 110. In this manner,
the simulation model 130 is able to receive and interpret
control signals transmitted by the industrial controller system
110 at the appropriate timing to achieve Smooth and harmo
nious operation of the simulation, thereby increasing the
value and utility of the simulation model 130 through inte
gration and synchronization with the industrial controller
system 110.
0032 Turning now to FIG. 3, FIG. 3 is a block diagram
that illustrates an overview 300 of implementing controllers
with simulated industrial devices. Overview 300 includes
controller module 310, simulation module 320, co-simula
tion assembly module 330, and resulting module 340. Con
troller module 310 may be any physical or emulated control
ler configured to manage one or more devices in an industrial
automation system. In some implementations, controller
module 310 may be configured to provide control instructions
that direct physical and/or simulated machines, or their indi
vidual components, to move or perform some action in three
dimensional space, such as controlling the motion of a robot
arm. Simulation module 320 may be configured to generate a
simulation model comprising simulation files that define vari
ous properties, parameters, and physical attributes of a real
world industrial device to ensure that the simulated device
looks and operates in the same manner as the physical device
from which it is modeled.

0033 Typically, the baseline controller is a physical hard
ware device in which a control program may be executed. A
control program may then be loaded that is targeted to that
specific controller hardware in order to retarget it to an emu
lation controller implemented in software. Thus, one work
flow includes moving from physical to emulation control
which allows for improved modeling versatility. Once in an
emulation model, the emulation controller may interact with
the simulation model. Another workflow considers a case in
which the control program is fully designed in the emulation
controller against the simulation. In this case, once the control
program has been designed, it can be retargeted to the hard
ware controller. Notably, in both of the above transitions, the
input/output (I/O) interface is preserved between the physical
machine and the physical controller or the simulated machine
and the emulation controller.

US 2015/0134313 A1

0034. In operation, a user, an engineer, or some other
entity may generate a simulation within simulation module
320. Such a simulation may be used to model various indus
trial equipment, including robotic, fabrication, assembly, and
other types of equipment. In addition to generating the simu
lation, a user may further wish to control the simulation using
an industrial controller from controller module 310. Control
ler module 310 as used herein is intended to represent a real,
physical controller device or an emulated controller imple
mented in software that provides control instructions to the
generated simulation. For example, if the simulation was used
to emulate a robotic arm, one or more controllers could be
used to manage and control the movement and articulation of
the arm.

0035. Once the controller and the simulation have been
selected, the controller and simulation are then formatted
using co-simulation assembly module 330. In some
examples, co-simulation assembly module 330 can be used to
format the controller and the simulation using a functional
mock-up interface (FMI). FMI defines a standardized inter
face to be used in computer simulations to develop complex
cyberphysical systems. These cyberphysical systems are rep
resented in functional mock-up units (FMUs) that provide the
functions necessary to generate the simulation. The func
tional mock-up units typically include an extensible markup
language (XML) file comprising definitions of the variables
used by the FMUs, equations used by the model, which may
be defined as a set of functions, and other optional data, Such
as parameter tables, a user interface, and documentation
which may be needed by the model, among other things.
0036. In the present example, the FMI further includes
information necessary to provide the control functions. As a
result, necessary portions of the control functions are imple
mented in functional mock-up units to make the controls
appear as simulation information within the FMI. The com
bination of the simulation functional mock-up units 344 and
the control functional mock-up units 345 are used to provide
resulting module 340. Although illustrated using a functional
mock-up interface, it should be understood that resulting
module 340 could take the form of any other similar standard
ized interface for simulation. An emulation simulation inter
face environment is used to provide for this interface which is
unique to each specific control system vendor. Translators
may be provided throughout the emulation simulation inter
face from industrial control space to FMI space and vice
WSa.

0037. In some examples, a user may control the simulation
directly from the control functional mock-up units. Thus, the
control functional mock-up units include all of the necessary
functions to both receive a control instruction and execute that
function. In other implementations, the control functional
mock-up units may contain only the portion of information
necessary to control the simulation. As a result, an external
controller that receives input from the user may communicate
with the control functional mock-up units using an applica
tion programming interface (API), such as API 120 as shown
in FIG. 1B.

0038 Referring now to FIG. 4, FIG. 4 is a block diagram
that illustrates an operational scenario 400 involving a com
puting system in an exemplary implementation. The comput
ing system executes emulation simulation interface 410 and
may execute Some or all of the operations of industrial con
troller system 420 and simulation application 430. In some
examples, the computing system could be a single device or

May 14, 2015

could be distributed across many different systems and
devices separated over diverse geographic areas.
0039. As shown in FIG. 4, the emulation simulation inter
face 410 includes a configurator module 411, a tag server 412,
and a synchronizer 413. In this example, the industrial con
troller system 420 comprises a virtual controller emulator,
such as RSLogixTM Emulate 5000 provided by Rockwell
Automation, Inc. The simulation application 430 could com
prise any third-party simulation framework tool that complies
with the FMI standard, but the MATLAB(R) SimulinkTM tool is
used in this example. Thus, the simulation model 435 could
comprise a mdl file created in MATLAB(R) using library
blocks for different systems.
0040. The emulation simulation interface 410 is used to
connect controller tags to the simulation model 435 in MAT
LABR). To connect the virtual controller output signals to the
simulation model 435, it is necessary to establish an interface
between the simulation model 435 and the industrial control
ler system 420. To this end, the emulation simulation inter
face 410 will set up an interface between input/output (I/O)
signals of the controller 420 with the simulation model 435.
The interface established by the emulation simulation inter
face 410 enables connectivity and data exchange in a bidirec
tional manner between the simulation model 435 and the
controller 420. In this example, the emulation simulation
interface 410 uses a virtual controller emulator such as
RSLogixTM Emulate 5000 to encapsulate the control pro
grams. The controller emulator mimics the operation of a
ControlLogixTM programmable logic controller (PLC) but in
software only. The virtual controller 420 transfers data to the
simulation using output tags and receives data from the simu
lation using input tags.
0041. The configurator component 411 hosts the applica
tion-level information for connecting the virtual controller
420 with the simulation model 435. Tag server 412 coordi
nates the input and output tags for data exchange. In some
implementations, tag server 412 provides distributed commu
nication connectivity services for connecting the communi
cating parts in the controller side of the spectrum. The co
simulation master from FMI coordinates communication
between the FMUs. Underneath the tag server service, the
controllers and their respective communications are coordi
nated with simulations, which can become a very complex
network of communicating units.
0042. The synchronizer 413 coordinates the clock pro
gression between the controller 420 and the simulation model
435 to keep them synchronized. The clock synchronization is
typically carried out in two phases. First, the co-simulation
master coordinates global time among FMUs. Second, the tag
server service 412 coordinates control level FMU time among
the controllers. In situations where there is more than one
control level FMU, time synchronization among them may be
handled by the co-simulation master. An example of how the
execution of a controller and a simulation may be synchro
nized at runtime will now be discussed with respect to FIG. 5.
0043 FIG. 5 is a block diagram that illustrates an opera
tional scenario 500 for synchronizing a controller and a simu
lation in an exemplary implementation. Operational scenario
500 involves controller module 510, simulation module 530,
and co-simulation master 540. Controller module 510
includes API 520. In this example, controller module 510
comprises a controller-side FMU and simulation module 530
comprises a simulation FMU.

US 2015/0134313 A1

0044) In operation, API 520 of controller module 510 gen
erally reads and writes tags for data exchanged between the
controller module 510 and the simulation module 530, and
functions to synchronize the timing associated with this data
exchange and execution of the simulation. For example, the
signal transmission intervals of the controller module 510 and
the simulation model 530 may be exchanged at different time
rates, and the co-simulation master 540 works in conjunction
with API 520 to compensate for these different rates to
achieve synchronization.
0045. In this example scenario, controller module 510 is
transferring control data to the simulation module 530. Co
simulation master 540 provides an interface to connect the
controller module 510 FMU and the simulation module 530
FMU. As controller module 510 transfers the control data to
simulation module 530, co-simulation master 540 utilizes
API 520 to apply a first timestamp to the control data to mark
the time in. Co-simulation master 540 then provides the con
trol data to simulation module 530 and a second timestamp is
applied to the data to mark the time out. In this manner,
co-simulation master 540 is aware of what time the controller
module 510 intended to provide the control data to the simu
lation module 530 based on the first timestamp noting the
time in, and what time the simulation module 530 actually
receives the control databased on the second timestamp not
ing the time out.
0046. To ensure the controller module 510 and the simu
lation module 530 are operating in a synchronized manner,
co-simulation master 540 calculates time offsets for the con
trol databased on the timestamps to compensate for delay and
other timing anomalies. The co-simulation master 540 then
advances the master clock one clock cycle and sends a clock
pulse to both the controller module 510 and the simulation
module 530 to advance each module ahead one time step.
Note that the time step size may not be the same size for the
simulation module 530 and the controller module 510.
0047. In some examples, the FMUs of both the simulation
module 530 and the controller module 510 are configured to
emit periodic pulses, such as every twenty milliseconds, into
the simulation and controller, respectively, to advance in time
at the appropriate time step sizes, since as noted above, the
time step sizes may not be the same size for the simulation
module 530 and the controller module 510. Also, in imple
mentations where the controller module 510 includes mul
tiple controllers, each of the controllers in the controller mod
ule 510 could be operating at different time step sizes. An
example of how multiple controllers that operate at different
time step sizes could be synchronized will now be discussed
in greater detail with respect to FIG. 6.
0048 FIG. 6 is a controller synchronization chart 600 that
illustrates an exemplary technique of synchronizing multiple
controllers. The multiple controllers could comprise several
separate physical controller devices, multiple independent
emulated controllers implemented in Software, or combina
tions thereof. For example, multiple controllers could be used
to control several separate components of a single machine
being simulated, such as various drive motors, articulation
mechanisms, and other parts of the machine. In this example,
the controllers are numbered C1, C2, and C3. The time step
size in this example is ten milliseconds, as shown along the
horizontal X-axis of controller synchronization chart 600.
0049. As shown in controller synchronization chart 600,
after a first iteration, controller C1 has advanced fifteen mil
liseconds, C2 has advanced ten milliseconds, and C3 has

May 14, 2015

advanced five milliseconds. These different intervals are then
processed to dynamically calculate time offsets from the time
step size often milliseconds in order to compensate for the
different signal transmission intervals of the controllers C1,
C2, and C3. For controller C1, the time offset is calculated to
be a plus five millisecond delta from the time step size, since
C1 advanced fifteen milliseconds but the time step size is only
ten milliseconds. The next time step for controller C1 is then
calculated by Subtracting the delta from the time step size, so
with a time step size often milliseconds minus a plus five
millisecond delta, C1 should only advance five milliseconds
on the next time step to achieve synchronization with the
other controllers and the ten millisecond time step size.
0050 Controller C2 has a time step size often millisec
onds, which matches the time step size of the simulation.
Thus, no offset needs to be calculated and no compensation of
the time step size of controller C2 is necessary for synchro
nization. Controller C3 has a time step size of only five
milliseconds, so the time offset is calculated to be a negative
five millisecond delta from the time step size often millisec
onds. The next time step for controller C3 is then calculated
by subtracting the delta from the time step size, so with a time
step size often milliseconds minus a negative five millisecond
delta, C1 should advance fifteen milliseconds on the next time
step to achieve synchronization with the other controllers and
the overall ten millisecond time step size. As the simulation
advances, the offsets for each of the controllers C1, C2, and
C3 are then continually recalculated dynamically at each time
step to ensure synchronization persists. In this manner, the
simulation model proceeds to learn the amplitude and fre
quency of the sinusoidal time progression of each of the
controllers C1, C2, and C3.
0051 FIG. 7 is a block diagram that illustrates an opera
tional scenario 700 involving a computing system in an exem
plary implementation. Operational scenario 700 is capable of
creating and operating a machine simulation in an industrial
automation environment. To integrate design, control, simu
lation, and visualization, the following system and workflow
may be used. According to an example, the system architec
ture may consist generally offive main parts: control program
design 710, industrial controller system 720, simulation mod
eling 730, computer-aided design (CAD) solid modeling 740,
and visualization 750. Various industry-based tools and open
Source Software may be used to implement these design goals.
0052. In an example, control programming design 710
may be carried out using a control programming tool, such as
the Studio5000TM programming tool by Rockwell Automa
tion, Inc. Control program execution is handled by industrial
controller system 720, which could comprise an emulated
virtual controller implemented in Software, such as
RSLogixTM Emulate 5000 by Rockwell Automation, Inc.
Simulation modeling 730 can be performed by any simula
tion framework tool, such as the MATLAB(R) SimulinkTM
tool. Solid modeling 740 may be handled by any CAD soft
ware, such as SolidworksTM or the like. Finally, visualization
550 may be performed by any suitable visualization tool, such
as a Scalable Vector Graphics (SVG) tool, Virtual Reality
Modeling Language (VRML) tool, and others. Each of the
above tools brings its own data structures and information
formats into the design process. The challenge for the inte
grated design and validation environment is to combine the
pieces of information into a common information exchange
structure that can be used to harmonize the components into
a rapid prototyping environment.

US 2015/0134313 A1

0053. In FIG. 7, an example information flow of the inte
grated system is shown. The solid modeling phase 740 pro
duces a three dimensional representation of the mechanical
system to be controlled. The solid model may be converted
into two information elements: a kinematics simulation and a
graphical assembly. The SolidworksTM tool provides plugins
to generate both data files as MATLABR) simulation and
VRML export files.
0054) The Studio5000TM tool by Rockwell Automation is
an industrial control programming design tool 710 that is
used to create control algorithms written in an International
Electrotechnical Commission (IEC) 61131-based program
ming language. The control program is deployed in the virtual
controller within industrial controller system 720.
0055. The kinematics simulation is downloaded to the
MATLABR) tool for simulating the machine under specific
load conditions. The simulation model 730 interacts with the
controller 720 at runtime to stimulate the controlling algo
rithms with the responses of the machine that is put under
stress with dynamic loading and control profiles. Graphical
assemblies will be further processed to become a hierarchical
data structure of graphical description that can be animated in
the visualization tool 750. The visualization tool collects the
real-time data that is generated in the controller-to-simulation
interaction.
0056. Different techniques may be used to connect each
phase of this information flow. In one implementation, con
trol program parameters are transferred between the simula
tion model 730 and the controller 720 using an I/O interface.
MATLABR) provides a SimMechanicsLinks plugin for CAD
software SolidworksTM to transfer the CAD model produced
in the solid modeling phase 740 into the simulation model
730. The simulation model 730 contains mass and inertial
properties of each of the component parts of a machine
described in the CAD drawings. This information is essential
to generate accurate animation of the mechanical system.
0057 Kinematics and dynamical information of the simu
lation model 530 can be used to generate realistic model
conditions since the actual physical properties of the model
are included in the simulation calculations. As discussed
above, visualization 550 may be performed by any suitable
visualization tool, such as a Scalable Vector Graphics (SVG)
tool, Virtual Reality Modeling Language (VRML) tool, or
any other simulation modeling tool. In at least one implemen
tation, a high quality and realistic animation can be produced
in any VRML-compatible tool using the exported VRML
models. VRML provides an open source, platform-indepen
dent graphical language to create and view three dimensional
models. VRML is a text-based language so it can be easily
edited using any text editor. To bring the VRML tool into this
workflow, it is necessary to attach an API to it so it can
communicate with the other parts of the system. Of course,
other tools besides VRML may be utilized for this purpose
and are within the scope of this disclosure.
0058 Based on this work flow, an application can be cre
ated using these different systems under one platform. Robots
are widely used in industrial automation applications and
their control algorithms are developed by System engineers.
In an example, a six-axis articulated robot model may be
used. A desired motion profile for the robots end effector
position is established in the controlling program 710 using
command position profiles.
0059. The command positions are points of desired
motion trajectory for the end effector. To achieve a desired

May 14, 2015

position of the end effector, different parts (links) of the robot
must be placed in a position by the driving motors at the link
joints. These motors are driven by torque signals that are to be
calculated by the controlling drivers. However, the control
ling torque depends on knowledge of the system response to
the torque and the load at the end effector. In the classical
design approach, these pieces of information are known by
trial and error or by experienced designers. The intent here is
to capture the information flow for automating the process of
generating the feedback information for the drivers and con
trollers. Based on the drivers torque signal, each joint will
move and the end effector will move in the space to a target
location. Current position is the feedback to the drivers and
controllers for close loop control.
0060 A work flow, validation framework, and process to
enable a virtual design engineering environment have been
presented. The environment enables interoperability of solid
model design, controllers, simulation, and visualization tools
into an integrated development environment. Results showed
that the selected work flow and information exchange could
be assembled in an automated system. The deployment of the
virtual design engineering environment permitted observing
in real-time the effect of the controlling algorithm on the
machine prototype which was simulated and controlled by
motion instructions. This disclosure enables early validation
of controlling logic for complex industrial automation
projects and manufacturing plants. The benefits include the
reduction of engineering cost, time, and resources during the
design and prototyping of industrial automation machinery.
In addition, the virtual design engineering environment opens
new opportunities to train engineers and operators in control
ling machines, without the need for the physical presence of
the actual machine.

0061. It must be noted that the invention can be used in two
main phases: design phase runtime and commissioned phase
runtime. During design phase runtime, the industrial control
device can be real or emulated. Either encapsulation is con
nected to the simulation. In commissioned phase runtime, the
industrial control device and the simulation execute in paral
lel with a real controller. Additionally, another benefit of the
system is to aid system engineers to create optimized indus
trial control programs. For example, the Studio5000TM tool
by Rockwell Automation allows for online editing of the
control program, and the design may be incrementally
improved in virtual design.
0062 FIG. 8 is a block diagram that illustrates computing
system 800 in an exemplary implementation. Computing sys
tem 800 provides an example of computing system 100 or any
system that may be used to facilitate simulating machines
used in industrial automation, although other systems capable
of performing the techniques disclosed herein could use alter
native configurations, including computing system 100.
Computing system 800 is representative of a computing sys
tem that may be employed in any computing apparatus, sys
tem, or device, or collections thereof. For example, comput
ing system 800 may be employed in server computers, cloud
computing platforms, data centers, any physical or virtual
computing machine, and any variation or combination
thereof. In addition, computing system 800 may be employed
in desktop computers, laptop computers, tablets, Smart
phones, or the like.
0063 Computing system 800 includes processing system
801, storage system 803, software 805, communication inter
face 807, and user interface 809. Processing system 801 is

US 2015/0134313 A1

operatively coupled with storage system 803, communication
interface 807, and user interface 809. Processing system 801
loads and executes software 805 from storage system 803.
Software 805 includes application 806 which itself includes
synchronization process 200. Synchronization process 200
may optionally be implemented separately from application
806. When executed by computing system 800 in general, and
processing system 801 in particular, software 805 directs
computing system 800 to operate as described herein for
synchronization process 200 or variations thereof. Comput
ing system 800 may optionally include additional devices,
features, or functionality not discussed here for purposes of
brevity.
0064 Computing system 800 may be representative of any
computing apparatus, System, or systems on which applica
tion 806 and synchronization process 200 or variations
thereof may be suitably implemented. Examples of comput
ing system 800 include mobile computing devices, such as
cell phones, tablet computers, laptop computers, notebook
computers, and gaming devices, as well as any other type of
mobile computing devices and any combination or variation
thereof. Note that the features and functionality of computing
system 800 may apply as well to desktop computers, server
computers, and virtual machines, as well as any other type of
computing system, variation, or combination thereof.
0065 Referring still to FIG. 8, processing system 801 may
comprise a microprocessor and other circuitry that retrieves
and executes software 805 from storage system 803. Process
ing system 801 may be implemented within a single process
ing device but may also be distributed across multiple pro
cessing devices or Sub-systems that cooperate in executing
program instructions. Examples of processing system 801
include general purpose central processing units, application
specific processors, and logic devices, as well as any other
type of processing device, combinations, or variations
thereof.

0066 Storage system 803 may comprise any non-transi
tory computer-readable media or storage media readable by
processing system 801 and capable of storing software 805,
Such as a disk drive, flash drive, data storage circuitry, or some
otherhardware memory apparatus. In some examples, a com
puter apparatus could comprise storage system 803 and oper
ating software 805. Storage system 803 may include volatile
and nonvolatile, removable and non-removable media imple
mented in any method or technology for storage of informa
tion, such as computer readable instructions, data structures,
program modules, or other data. Storage system 803 may be
implemented as a single storage device but may also be imple
mented across multiple storage devices or Sub-systems co
located or distributed relative to each other including
devices in different geographic areas. Storage system 803
may also be embedded in various types of equipment. Storage
system 803 may comprise additional elements, such as a
controller, capable of communicating with processing system
801. Examples of storage media include random access
memory, read only memory, magnetic disks, optical disks,
flash memory, virtual memory and non-virtual memory, mag
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and that may be accessed
by an instruction execution system, as well as any combina
tion or variation thereof, or any other type of storage media. In
no case is the storage media a propagated signal.

May 14, 2015

0067. In operation, processing system 801 loads and
executes portions of software 805, such as synchronization
process 200, in order to operate as described herein. In par
ticular, software 805 may be implemented in program instruc
tions and among other functions may, when executed by
computing system 800 in general or processing system 801 in
particular, direct computing system 800 or processing system
801 to utilize an application programming interface (API) to
apply timestamps to data exchanged between a simulation
model created in a simulation application and an industrial
controller system external to the simulation model, and pro
cess the timestamps to synchronize the simulation model and
the industrial controller system. Software 805 may include
additional processes, programs, or components, such as oper
ating system software or other application software.
Examples of operating systems include Windows.(R), iOSR),
and Android R, as well as any other Suitable operating system.
Software 805 may also comprise firmware or some otherform
of machine-readable processing instructions executable by
processing system 801.
0068. In general, software 805 may, when loaded into
processing system 801 and executed, transform computing
system 800 overall from a general-purpose computing system
into a special-purpose computing system customized to
facilitate simulating machines used in industrial automation
as described herein for each implementation. Software 805
may also transform the physical structure of storage system
803. The specific transformation of the physical structure
may depend on various factors in different implementations
of this description. Examples of such factors may include, but
are not limited to, the technology used to implement the
storage media of storage system 803, whether the computer
storage media are characterized as primary or secondary stor
age, and the like. For example, if the computer-storage media
are implemented as semiconductor-based memory, Software
805 may transform the physical state of the semiconductor
memory when the software is encoded therein. For example,
software 805 may transform the state of transistors, capaci
tors, or other discrete circuit elements constituting the semi
conductor memory. A similar transformation may occur with
respect to magnetic or optical media. Other transformations
of physical media are possible without departing from the
Scope of the present description, with the foregoing examples
provided only to facilitate this discussion.
0069 Communication interface 807 may include commu
nication connections and devices that allow for communica
tion between computing system 800 and other computing
systems (not shown) or services, over a communication net
work or collection of networks. Examples of connections and
devices that together allow for inter-system communication
may include network interface cards, antennas, power ampli
fiers, RF circuitry, transceivers, and other communication
circuitry. The aforementioned network, connections, and
devices are well known and need not be discussed at length
here.

(0070. User interface 809 may include avoice input device,
a touch input device for receiving a gesture from a user, a
motion input device for detecting non-touch gestures and
other motions by a user, and other comparable input devices
and associated processing elements capable of receiving user
input from a user. Output devices such as a display system,
speakers, haptic devices, and other types of output devices
may also be included in user interface 809. The aforemen
tioned user input devices are well known in the art and need

US 2015/0134313 A1

not be discussed at length here. User interface 809 may also
include associated user interface software executable by pro
cessing system 801 in Support of the various user input and
output devices discussed above. Separately or in conjunction
with each other and other hardware and software elements,
the user interface Software and devices may provide a graphi
cal user interface, a natural user interface, or any other kind of
user interface.
0071. The functional block diagrams, operational
sequences, and flow diagrams provided in the Figures are
representative of exemplary architectures, environments, and
methodologies for performing novel aspects of the disclo
sure. While, for purposes of simplicity of explanation, meth
ods included herein may be in the form of a functional dia
gram, operational sequence, or flow diagram, and may be
described as a series of acts, it is to be understood and appre
ciated that the methods are not limited by the order of acts, as
Some acts may, in accordance therewith, occur in a different
order and/or concurrently with other acts from that shown and
described herein. For example, those skilled in the art will
understand and appreciate that a method could alternatively
be represented as a series of interrelated States or events, such
as in a state diagram. Moreover, not all acts illustrated in a
methodology may be required for a novel implementation.
0072 The above description and associated drawings
teach the best mode of the invention. The following claims
specify the scope of the invention. Some aspects of the best
mode may not fall within the scope of the invention as speci
fied by the claims. Also, while the preceding discussion
describes embodiments employed specifically in conjunction
with the monitoring and analysis of industrial processes,
other applications, such as the mathematical modeling or
monitoring of any man-made or naturally-existing system,
may benefit from use of the concepts discussed above. Fur
ther, those skilled in the art will appreciate that the features
described above can be combined in various ways to form
multiple variations of the invention. As a result, the invention
is not limited to the specific embodiments described above,
but only by the following claims and their equivalents.
What is claimed is:
1. One or more computer-readable storage media having

program instructions stored thereon to facilitate simulating
machines used in industrial automation, wherein the program
instructions, when executed by a computing system, direct
the computing system to at least:

utilize an application programming interface (API) to
apply timestamps to data exchanged between a simula
tion model created in a simulation application and an
industrial controller system external to the simulation
model; and

process the timestamps to synchronize the simulation
model and the industrial controller system.

2. The one or more computer-readable storage media of
claim 1 wherein, to process the timestamps to synchronize the
simulation model and the industrial controller system, the
program instructions direct the computing system to provide
a periodic clock pulse to the simulation model and the indus
trial controller system to advance the simulation model and
the industrial controller system ahead one time step.

3. The one or more computer-readable storage media of
claim 1 wherein, to process the timestamps to synchronize the
simulation model and the industrial controller system, the
program instructions direct the computing system to coordi

May 14, 2015

nate signal transmission intervals of the simulation model and
the industrial controller system using the time stamps.

4. The one or more computer-readable storage media of
claim 1 wherein the data exchanged between the simulation
model and the industrial controller system comprises control
signals transferred from the industrial controller system to the
simulation model.

5. The one or more computer-readable storage media of
claim 1 wherein the simulation model comprises definitions
for a virtual representation of at least a portion of a machine
used in an industrial automation environment.

6. The one or more computer-readable storage media of
claim 5 wherein the simulation model utilizes the data to
generate an animated visualization of the machine.

7. The one or more computer-readable storage media of
claim 1 wherein the industrial controller system comprises an
emulated industrial controller implemented in software.

8. A method of operating a computing system to facilitate
simulating machines used in industrial automation, the
method comprising:

utilizing an application programming interface (API) to
apply timestamps to data exchanged between a simula
tion model created in a simulation application and an
industrial controller system external to the simulation
model; and

processing the timestamps to synchronize the simulation
model and the industrial controller system.

9. The method of claim 8 wherein processing the times
tamps to synchronize the simulation model and the industrial
controller system comprises providing a periodic clock pulse
to the simulation model and the industrial controller system to
advance the simulation model and the industrial controller
system ahead one time step.

10. The method of claim 8 wherein processing the times
tamps to synchronize the simulation model and the industrial
controller system comprises coordinating signal transmission
intervals of the simulation model and the industrial controller
system using the timestamps.

11. The method of claim 8 wherein the data exchanged
between the simulation model and the industrial controller
system comprises control signals transferred from the indus
trial controller system to the simulation model.

12. The method of claim 8 wherein the simulation model
comprises definitions for a virtual representation of at least a
portion of a machine used in an industrial automation envi
rOnment.

13. The method of claim 12 wherein the simulation model
utilizes the data to generate an animated visualization of the
machine.

14. The method of claim 8 wherein the industrial controller
system comprises an emulated industrial controller imple
mented in software.

15. A computer apparatus to operate a computing system to
facilitate simulating machines used in industrial automation,
the apparatus comprising:

Software instructions configured, when executed by the
computing system, to direct the computing system to
utilize an application programming interface (API) to
apply timestamps to data exchanged between a simula
tion model created in a simulation application and an
industrial controller system outside of the simulation
model, and process the timestamps to synchronize the
simulation model and the industrial controller system,
wherein the simulation model comprises definitions for

US 2015/0134313 A1

a virtual representation of at least a portion of a machine
used in an industrial automation environment and
wherein the simulation model utilizes the data to gener
ate an animated visualization of the machine; and

at least one non-transitory computer-readable storage
medium storing the Software instructions.

16. The computer apparatus of claim 15 wherein the soft
ware instructions configured to direct the computing system
to process the timestamps to synchronize the simulation
model and the industrial controller system comprises the
Software instructions configured to direct the computing sys
tem to provide a periodic clock pulse to the simulation model
and the industrial controller system to advance the simulation
model and the industrial controller system ahead one time
step.

17. The computer apparatus of claim 15 wherein the soft
ware instructions configured to direct the computing system

May 14, 2015

to process the timestamps to synchronize the simulation
model and the industrial controller system comprises the
Software instructions configured to direct the computing sys
tem to coordinate signal transmission intervals of the simu
lation model and the industrial controller system using the
timestamps.

18. The computer apparatus of claim 17 wherein the signal
transmission intervals of the simulation model and the indus
trial controller system are different rates.

19. The computer apparatus of claim 15 wherein the data
exchanged between the simulation model and the industrial
controller system comprises control signals transferred from
the industrial controller system to the simulation model.

20. The computer apparatus of claim 15 wherein the indus
trial controller system comprises an emulated industrial con
troller implemented in software.

k k k k k

