METHOD AND APPARATUS FOR CONSTRUCTING A TEMPORARY PARKING LOT

A method of constructing a temporary vehicle parking lot (10) on a land area (12) comprises the steps of: providing a composite drainage material (20) through which water drains; and covering the land area (12) with the composite drainage material (20). The composite drainage material (20) comprises a polymeric open mesh core (22) between first and second layers (24 and 26) of a non-woven geotextile fabric. The first layer (24) contacts the land area and the second layer (26) faces away from the land area (12) and provides a surface (50) on which vehicles may park. The drainage material (20) directs water which contacts the second layer (26) through the layers of geotextile (24 and 26), through the polymeric core (22), and into the land area covered by the composite drainage material.
METHOD AND APPARATUS FOR
CONSTRUCTING A TEMPORARY PARKING LOT

Technical Field

The present invention is directed to a method and apparatus for constructing a temporary parking lot on a land area.

Background of the Invention

The transportation industry often requires additional parking areas for temporary vehicle storage prior to vehicle transfer and/or distribution. Such parking areas are typically needed adjacent rail yards and automotive production facilities. These additional parking areas are frequently only needed for a relatively short period of time, such as two or three months. Hence, it is desirable to minimize the time and expenses associated with constructing the additional parking areas.

Traditionally parking lots are constructed by covering a land area with concrete or asphalt. These
traditional construction methods provide a desirable hard surface for vehicles to be driven on, but are time-consuming and expensive. Further, covering the land area with concrete or asphalt can create complications in the project, such as having to construct a retention pond to deal with excess rain water.

Other less permanent methods for constructing parking lots are also known. These other methods include covering a land area with gravel, wood chips, or shredded rubber from recycled tires. These non-traditional methods reduce the time and expenses associated with constructing the parking areas. However, these methods do not provide the desired parking surface, and can lead to the vehicles being damaged. Such vehicle damage can range from scratches in a vehicle’s paint to extensive body damage caused by vehicles sliding into one another when excessive rain washes away the gravel, wood chips, or shredded rubber, and turns at least a portion of the parking area into a mud pit.

Summary of the Invention

The present invention is a method of constructing a temporary vehicle parking lot on a land area. The
method comprises the steps of: providing a composite drainage material through which water drains; and covering the land area with the composite drainage material so that the land area is underneath the composite drainage material. The composite drainage material comprises a polymeric open mesh core between first and second layers of a non-woven geo-textile fabric. One of the first and second layers contacts the land area. The other of the first and second layers faces away from the land area and provides a surface on which vehicles may be parked. The composite drainage material directs water which contacts the other layer through the first and second layers, through the polymeric core between the layers, and into the land area covered by the composite drainage material.

The step of covering the land area includes the step of staking the composite drainage material to the land area. The step of covering the land area further includes the steps of: placing rolls of the composite drainage material adjacent one another; unrolling the rolls of the composite drainage material so that longitudinal edges of adjacent rolls adjoin one another; and joining the longitudinal edges of adjacent
rolls to create a continuous surface of the composite drainage material.

The present invention further provides an apparatus for constructing a temporary vehicle parking lot on a land area. The apparatus comprises a composite drainage material through which water drains. The composite drainage material comprises a polymeric open mesh core between first and second layers of a non-woven geo-textile fabric. The composite drainage material is adapted to cover the land area so that the land area is underneath the composite drainage material. One of the first and second layers contacts the land area. The other of the first and second layers faces away from the land area and comprises a surface on which vehicles may be parked. The composite drainage material directs water which contacts the other layer through the first and second layers, through the polymeric core between the layers, and into the land area covered by the composite drainage material.

Brief Description of the Drawings

The foregoing and other features of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading
the following description with reference to the accompanying drawings, wherein:

Fig. 1 is a schematic perspective view of a temporary parking lot constructed in accordance with the present invention;

Fig. 2 is a schematic perspective view of the temporary parking lot of Fig. 1 during its construction;

Fig. 3 is an enlarged plan view of a portion of the temporary parking lot shown in Fig. 1;

Fig. 4 is a sectional view taken along line 4-4 in Fig. 3;

Fig. 5 is an exploded view of a portion of Fig. 4;

Fig. 6 is a view similar to Fig. 5 illustrating an alternate configuration; and

Fig. 7 is a view similar to Fig. 5 illustrating another alternate configuration.

Description of Preferred Embodiments

The present invention is directed to a method and apparatus for constructing a temporary parking lot on a land area. As representative of the present invention, Fig. 1 illustrates a temporary parking lot 10.

The parking lot 10 is situated on a land area 12 adjacent railroad tracks 14. The land area 12 has been
cleared of any trees and large shrubbery. Thus, the land area 12 comprises soil 16 and has an upper surface 18 (Fig. 2) which may be covered by grass or other vegetation (not shown). Preferably, the land area 12 is relatively flat.

A composite material 20 through which water can drain is used to construct the temporary parking lot 10 on the land area 12. The composite drainage material 20 comprises a polymeric open mesh core 22 (Fig. 3) between first and second layers 24 and 26 (Fig. 5) of a non-woven geo-textile fabric. The core 22 is preferably 2-8mm thick and is extruded from polyethylene resin.

The geo-textile fabric used for the first and second layers 24 and 26 is a continuous layer of a polypropylene material with an additive to help protect the fabric from the effects of ultra-violet light. The first and second layers 24 and 26 are water permeable, but are sufficiently dense to prevent solid matter, such as soil, from penetrating through the layers. Each of the first and second layers 24 and 26 is preferably 2-8mm thick.

The polyethylene core 22 is placed between the first and second layers 24 and 26 and laminated using a
heat process. The heat process fuses the core 22 to both layers 24 and 26 of the fabric to create the composite drainage material 20.

The composite drainage material 20 is formed in rolls 28, as shown in Fig. 2, for ease of shipping and installation. The composite drainage material 20 may be 7 to 12 feet wide, and up to 250 feet long when unrolled. Each roll 28 of the composite drainage material 20 has oppositely disposed first and second longitudinal edges 30 and 40 (Fig. 5). The first longitudinal edge 30 is formed by an edge portion 32 of the first layer 24, an edge portion 33 of the core 22, and an edge portion 34 of the second layer 26. In accordance with the preferred embodiment of the invention illustrated in Figs. 3-5, the edge portions 32-34 are flush with one another.

The second longitudinal edge 40 is formed by an edge portion 42 of the first layer 24, an edge portion 43 of the core 22, and an edge portion 44 of the second layer 26. In accordance with the preferred embodiment illustrated in Figs. 3-5, the edge portions 42 and 44 are flush with one another, while the edge portion 43 is recessed, in the direction of arrow A in Fig. 5. The edge portion 43 is recessed
approximately 8-12 inches from the other edge portions 42 and 44, creating a cavity 46 in the second longitudinal edge portion 40.

To construct the temporary parking lot 10, several rolls 28 of the composite drainage material 20 are placed on the land area 12 adjacent one another. The rolls 28 of the composite drainage material 20 are then unrolled, as illustrated in Fig. 2, so that the first longitudinal edge 30 of one roll of the composite drainage material adjoins the second longitudinal edge 40 of an adjacent roll of the composite drainage material. The first fabric layer 24 of each roll 28 of the composite drainage material 20 contacts the upper surface 18 of the land area 12. The second fabric layer 26 of each roll 28 faces upward, away from the land area 12, and provides a surface 50 on which vehicles 80 (Fig. 1) may be parked.

The adjoining longitudinal edges 30 and 40 of adjacent rolls 20 are then joined together to create a continuous surface 52 of the composite drainage material 20. The adjoining longitudinal edges 30 and 40 of adjacent rolls 20 of the composite drainage material 20 are joined by first inserting the first longitudinal edge 30 into the cavity 46 in the second
longitudinal edge 40, as is shown in Fig. 4. The first
longitudinal edge 30 is inserted into the cavity 46
until the edge portion 33 of the core 22 in that
roll 28 abuts the edge portion 43 of the core 22 of the
adjacent roll 28. Next, a plurality of stakes 60
(Fig. 4) are driven through the junction of the
longitudinal edges 30 and 40 of the composite drainage
material 20 and into the soil 16 of the land area 12.
As may be seen in Fig. 2, the stakes 60 are spaced
apart along the longitudinal edges 30 and 40 of
adjoining rolls 28 of the composite drainage
material 20.

Finally, to complete the temporary parking lot 10,
lines 62 (Fig. 1) are painted on the surface 52 on the
second fabric layer 24 of the composite drainage
material 20 to indicate a plurality of parking places
for the vehicles 80.

As shown by the arrows in Fig. 4, the composite
drainage material 20 directs water, such as rain, which
contacts the surface 50 through the composite drainage
material and into the soil 16 of the land area 12. The
water flows through the second fabric layer 26, through
the core 22, and through the first fabric layer 24.
The combination of the core 22 and the fabric layers 24
and 26 function to disperse the water across a large section of the land area 12 so that normal ground water flow for the land area is maintained. This dispersion of the water obviates the need for a retention pond.

The core 22 in the composite drainage material 20 provides a sufficiently hard surface for the vehicles 80 to be driven on. Further, the heat fusion of the core 22 to the fabric layers 24 and 26 allows the composite drainage material 20 to withstand vehicle traffic, including turning of vehicle wheels, without the fabric layers becoming detached from the core. The geo-textile fabric of the first and second layers 24 and 26 stabilizes the soil 14 and traps the soil underneath the composite drainage material 20 to prevent large amounts of dirt and/or mud from penetrating to the upper surface 50 of the composite drainage material. Further, the continuous surface 52 formed by the overlapping joint between adjacent rolls 28 of the composite drainage material 20 also prevents dirt and/or mud from penetrating to the surface 50 between adjacent rolls. The composite drainage material 20 is reusable and has at least a two year useful life. Finally, the composite drainage
material 20 is relatively inexpensive to manufacture and install.

Fig. 6 illustrates an alternate configuration for the longitudinal edges 30 and 40 of adjacent rolls of the composite drainage material 20. The suffix "A" is added to the reference numerals used in the prior embodiment to denote the alternate configuration. In Fig. 6, the first longitudinal edge 30A is formed by an edge portion 32A of the first layer 24A, and edge portion 33A of the core 22A, and an edge portion 34A of the second layer 26A. The edge portion 33A of the core 22A extends beyond the edge portion 32A of the first layer 24A, and the edge portion 34A of the second layer 26A extends beyond the edge portion 33A of the core.

The second longitudinal edge 40A has a complimentary shape formed by an edge portion 43A of the 22A which extends beyond the edge portion 44A of the second layer 26A, and an edge portion 42A of the first layer 24A which extends beyond the edge portion 43A of the core.

Fig. 7 illustrates another alternate configuration for the longitudinal edges of adjacent rolls of the composite drainage material 20. The suffix "B" is
added to the reference numerals used in the first embodiment in the alternate configuration of Fig. 7. The second longitudinal edge 40 is identical to that which is shown in Fig. 5. However, the first longitudinal edge 30B is formed by an edge portion 33B of the core 22B which extends beyond the edge portions 32B of the first layer 24B and the edge portion 34B of the second layer 26B. The extended edge portion 33B of the core 22B fits into the cavity 46 in the second longitudinal edge 40 to join adjacent rolls of the composite drainage material 20.

From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Having described the invention, I claim:

1. A method of constructing a temporary vehicle parking lot on a land area, said method comprising the steps of:

 providing a composite drainage material through which water drains, said composite drainage material comprising a polymeric open mesh core between first and second layers of a non-woven geo-textile fabric; and

 covering the land area with said composite drainage material so that the land area is underneath said composite drainage material, one of said first and second layers contacting the land area, the other of said first and second layers facing away from the land area and providing a surface on which vehicles may be parked, said composite drainage material directing water which contacts said other layer through said first and second layers, through said polymeric core between said layers, and into the land area covered by said composite drainage material.

2. The method of claim 1 further comprising the step of painting lines on said other layer of said
composite drainage material to indicate a plurality of parking places for vehicles.

3. The method of claim 1 wherein said step of covering the land area includes the step of staking said composite drainage material to the land area.

4. The method of claim 1 wherein said step of covering the land area includes the steps of:
 placing rolls of said composite drainage material adjacent one another;
 unrolling said rolls of said composite drainage material so that longitudinal edges of adjacent rolls adjoin one another; and
 joining said longitudinal edges of adjacent rolls to create a continuous surface of said composite drainage material.

5. The method of claim 1 further comprising, prior to said step of covering the land area, the step of heat-fusing said polymeric core between said first and second layers.
6. The method of claim 1 further comprising, prior to said step of covering the land area, the step of securing said other layer to said polymeric core to withstand vehicle traffic directly on said other layer including turning of vehicle wheels on said other layer without said other layer becoming detached from said polymeric core.

7. Apparatus for constructing a temporary vehicle parking lot on a land area, said apparatus comprising:

 a composite drainage material through which water drains, said composite drainage material comprising a polymeric open mesh core between first and second layers of a non-woven geo-textile fabric;

 said composite drainage material being adapted to cover the land area so that the land area is underneath said composite drainage material, one of said first and second layers contacting the land area, the other of said first and second layers facing away from the land area and comprising a surface on which vehicles may be parked,

 said composite drainage material directing water which contacts said other layer through said
first and second layers, through said polymeric core between said layers, and into the land area covered by said composite drainage material.

8. The apparatus of claim 7 wherein said other layer of said composite drainage material includes lines which are painted on to indicate a plurality of parking places for vehicles.

9. The apparatus of claim 7 further including stakes for securing said composite drainage material to the land area.

10. The apparatus of claim 7 wherein said composite drainage material is formed in rolls which are unrolled to cover the land, each of said rolls having longitudinal edges, said longitudinal edges of adjacent rolls of said composite drainage material being joined to create a continuous surface of said composite drainage material.

11. The apparatus of claim 7 wherein said polymeric core is heat-fused between said first and second layers of said composite drainage material.
12. The apparatus of claim 7 wherein said polymeric core to secured to said other of said first and second layers to withstand vehicle traffic directly on said other layer including turning of vehicle wheels on said other layer without said other layer becoming detached from said polymeric core.
A. CLASSIFICATION OF SUBJECT MATTER
IP(C) : E01C 5/22
US CL. : 404/44.82
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 404/17, 18, 32, 35, 44, 45, 70, 73, 82; 405/15, 16, 17, 19, 36, 258.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
EAST; WEST; World Wide Web
search terms: geosynthetics; geotextiles; geocomposites; nonwoven same (polymer or polymeric or polyethylene)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4,896,993 A (BOHNHOFF) 30 JANUARY 1990 (30.01.90), see entire document.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>US 3,346,219 A (SALYER et al.) 10 OCTOBER 1967 (10.10.67), see entire document.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>US 5,273,373 A (POUYER) 28 DECEMBER 1993 (28.12.93), see entire document.</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 26 JULY 2001
Date of mailing of the international search report: 28 AUG 2001

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
TARA L. MAYO
Telephone No. (703) 305-3019