FREEZE-DRIED AERATED FRUIT OR VEGETABLE COMPOSITIONS AND METHODS OF MAKING THEREOF

Applicant: Nestec S.A., Vevey (CH)

Inventors: Thomas Burkholder, East Amherst, NY (US); Scott Peterson, Spring Lake, MI (US); Frank Welch, Kentwood, MI (US)

Assignee: NESTEC S.A., Vevey (CH)

Appl. No.: 13/633,378

Filed: Oct. 2, 2012

The present invention comprises a freeze-dried, aerated fruit or vegetable composition comprising a fruit or vegetable ingredient and an emulsifier and methods of making thereof.
FREEZE-DRIED AERATED FRUIT OR VEGETABLE COMPOSITIONS AND METHODS OF MAKING THEREOF

INCORPORATION BY REFERENCE

[0001] This application is a divisional of U.S. Ser. No. 12/650,820, filed Dec. 31, 2009, which is a continuation-in-part of, based upon and claims the benefit of priority from U.S. Ser. No. 12/599,328, filed on Nov. 9, 2009, which claims priority to International Application No. PCT/US08/63306, filed on May 9, 2008, which claims priority to U.S. Ser. No. 60/916,956, filed on May 9, 2007, the entire contents of which are incorporated herein by reference.

BACKGROUND

[0002] Aerated compositions are known in the art. Aeration can provide desirable characteristics such as light, fluffy textures. It is also known in the art that aerated products are subject to physical and chemical instability and therefore can destabilize over time. One solution to such instability issues in aerated milk-based products includes the addition of a hydrated emulsifier to already cultured dairy products before aeration. (See e.g., U.S. Pat. No. 7,005,157, hereinafter "the '157 patent"). Specifically, the '157 patent teaches against adding ingredients directly to the milk blend prior to fermentation because such ingredients can adversely affect processing considerations such as fermentation times. The '157 patent teaches that the addition of a hydrated emulsifier post-fermentation avoids adversely lengthening fermentation times while contributing to stability. Freeze-drying is a process well known in the food industry. It is critical in further drying aerated products that the resulting product retain sensory attributes that are important to consumers. Using the invention taught in the '157 patent, hydration of the aerated product before freeze-drying can detrimentally affect physical stability. For example, a hydrated, aerated product when freeze-dried may result in increased fragility during shipping and handling of the product. Fruit purées are difficult to freeze-dry because of their sugar content. The fruit purées hold onto water, so it is difficult to de-sugar the sugar and water.

[0003] As a further example, dissolubility is an important issue in a freeze-dried product. Specifically, the aerated product, which has been dried and treated with air, must still remain readily dissolvable upon consumption at such a rate as to transfer flavor to the consumer's taste buds. Moreover, the product should be readily dissolvable to reduce the risk of choking hazards for consumers with restricted or under-developed oral motor skills or digestive functions. As a known solution, increasing the aeration can improve dissolubility. However, increased aeration has the negative effect of reducing the hardness of the end product. When the hardness is reduced, the physical stability of product can be compromised.

[0004] Therefore, there is a need for a product that is freeze-dried and aerated that has improved physical stability and improved dissolubility.

SUMMARY

[0005] The present invention comprises a freeze-dried, aerated fruit or vegetable composition comprising a fruit or vegetable ingredient and an emulsifier and methods of making thereof.

DETAILED DESCRIPTION

[0006] As used throughout, ranges are used as a shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. When used, the phrase “at least one of” refers to the selection of any one member individually or any combination of the members. The conjunction “and” or “or” can be used in the list of members, but the “at least one of” phrase is the controlling language. For example, at least one of A, B, and C is shorthand for A alone, B alone, C alone, A and B, B and C, A and C, or A and B and C.

[0007] “Freeze-dry” is a dehydration process that works by freezing the material and then reducing the surrounding pressure to allow the frozen water in the material to sublime directly from the solid phase to gas.

[0008] “Aeration” is the process of introducing air to increase gas concentration in liquids. Aeration may be performed by bubbling a gas through the liquid, spraying the liquid into the gas or agitation of the liquid to increase surface absorption.

[0009] “Dissolubility” is defined as the change in hardness of a product in going from a dry to a wet state.

[0010] “Hardness” is defined as the peak stress prior to fracturing a material. Universal Tester model 4465 with 100 N static load cell, manufactured by Instron in Canton, Mass., is used. The probe used for testing is a compression anvil #2830-011. Initial settings for speed of probe were 1 mm/sec or to approximately 90% compression. Speed based upon journal article in J. Texture Studies, 36 (2005), pp 157-173, “Effects of Sample Thickness of Bite Force for Raw Carrots and Fish Gels.” Testing is repeated on 10-15 replicate samples for each variable.

[0011] “Viscosity” is defined as a measure of the resistance of a substance to flow. Viscosity is measured using a Brookfield viscometer with a Helipath® stand with an F-T bar before the composition is aerated. Viscosity aids in holding the shape of a substance through aeration and deposit.

[0012] The present invention comprises a fruit or vegetable composition useful in the preparation of a freeze-dried, aerated product. The first component of the composition comprises a fruit or vegetable ingredient. The fruit or vegetable ingredient is selected from any ordinarily known in the art. Preferably, the fruit or vegetable ingredient is pureed. The fruit or vegetable ingredient is present in amount of from 60% to 98%, preferably from 70% to 90% and most preferably from 60% to 80% of the composition.

[0013] The present invention comprises a fruit and/or vegetable composition useful in the preparation of a freeze-dried, aerated product. The first component of the composition comprises a fruit and/or vegetable ingredient. The fruit and/or vegetable ingredient is selected from any ordinarily known in the art. Preferably, the fruit and/or vegetable ingredient is pureed. The fruit and/or vegetable ingredient is present in an amount from 60% to 98%, preferably from 70% to 90% and most preferably from 60% to 80% of the composition.

[0014] The second component of the present composition comprises an emulsifier. While not wishing to be bound by any theories, it is believed that the emulsifier reduces the surface tension at the air-liquid interface, therefore allowing for stable dispersion of air bubbles within the viscous liquid matrix. The emulsifier is preferably a lactylated mono and diglyceride. The lactylated mono and diglyceride is selected from the group consisting of but not limited to lactic and citrate acid esters of mono- and diglycerides, distilled
monoglycerides, and combinations thereof. While not wishing to be bound by any theories, it is believed that the lactic acid stays in the water phase and the monoglycerides stay in the hydrophobic phase for whipping agent. The lactylated mono and diglycerides are present in an amount of from 0.001 to 1%, preferably from 0.01 to 0.5% and most preferably from 0.1 to 0.4% of the composition. It is believed that the lactylated mono and diglyceride component of the present invention promotes stabilization of the final aerated composition.

The composition of the present invention can further comprise optional ingredients such as starch, gums, whipping aids, sugars and stabilizers. Starches include but are not limited to tapioca, corn and rice. The rice can be native, physically or chemically modified. Gums include but are not limited to pectin, gelatin, carrageenan, locust bean gum, guar gum, cellulose gums, microcrystalline cellulose. Whipping aids include but are not limited to lactic acid esters of mono/diglycerides, as well as other acid esters, and other emulsifiers with foam stabilization ability (polysorbate 80), egg white and whey protein.

Hardness, Dissolvability and Viscosity

The consumer preference for the final product of the present invention is believed to be based on physical characteristics such as hardness, viscosity and dissolvability. While each characteristic is important, the correct balance between the three components is desired to optimize the final product of the present invention. Viscosity is defined as a measure of the resistance of a substance to flow. Viscosity is measured using a Brookfield viscometer with a Helyco® stand with an F-T bar before the composition is aerated. It is believed that while the viscosity aids in holding the shape of a substance through aeration and deposit, the hardness aids in physical stability. The dissolvability, also a hardness measurement, is the change in hardness of a product in going from a dry to a wet state. With increased aeration, which aids in dissolvability, the hardness can be negatively affected. The compositions and methods of the present invention have unexpectedly discovered the optimum balance between viscosity, hardness and dissolvability to provide a physically stable and consumer acceptable product.

The composition of the present invention has a hardness value of from 0.5 to 8 pounds force, preferably from 1.5 to 5.5 pounds force.

The composition of the present invention has a dissolvability in the range of from 0.1 to 8 peak load.

The composition of the present invention has a viscosity of from 1,000 to 100,000 cp, dependent upon the temperature and speed of the viscometer used to measure the viscosity. In the preferred embodiment, the viscosity of the wet composition ranges from 30,000 to 60,000 cp at a 10 RPM speed of the spindle 6 in a Brookfield Viscometer. The most preferred range is from 35,000 to 50,000 cp.

The present invention further provides a method of marketing such compositions to children to promote child development, increase child development through providing developmentally appropriate size, shape and dissolution characteristics. Further, the present invention provides a method of providing probiotics to a child through the compositions disclosed herein. It should be understood that the main ingredient in the compositions can be from the group comprising fruit, vegetables, grains, proteins, dairy, dairy substitutes and any combinations thereof.

Method of Making

A method of preparing a freeze-dried, aerated fruit or vegetable product comprising the steps of (a) providing a fruit or vegetable blend, (b) adding an emulsifier, (c) thermally processing the fruit or vegetable blend, (d) fermenting the blend, (e) admixing a gas with the blend; (f) simultaneously aerating the gas and the fruit or vegetable blend to form an aerated product, and (g) freeze-drying the product. Step (f) is included as an optional step.

A method of preparing a freeze-dried, aerated fruit and/or vegetable product comprising the steps of (a) providing a fruit and/or vegetable blend, (b) adding an emulsifier, (c) thermally processing the fruit and/or vegetable blend, (d) fermenting the blend, (e) admixing a gas with the blend; (f) simultaneously aerating the gas and the fruit and/or vegetable blend to form an aerated product, and (g) freeze-drying the product. Step (f) is included as an optional step.

Example 1

<table>
<thead>
<tr>
<th>Puree Melts--Apple Strawberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>Apple Puree, (12.5 brix)</td>
</tr>
<tr>
<td>White Grape Juice Concentrate, (68 brix)</td>
</tr>
<tr>
<td>Strawberry Puree, Seedless, Organic</td>
</tr>
<tr>
<td>Tapioca Starch</td>
</tr>
<tr>
<td>Pectin, High Methoxyl</td>
</tr>
<tr>
<td>Lactic Acid Esters of Mono/Diglycerides</td>
</tr>
<tr>
<td>Citric Acid</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Procedure:

1. Preblend starch, Pectin and LACTEM with water using high shear blender (such as breco).
2. Add ascorbic acid and citric acid to mixture.
3. Slow blender speed to low and add white grape juice concentrate.
4. Finally, add apple puree and strawberry puree and blend on low speed 1 min.

5. Run puree blend through plate pasteurizer preheater, then homogenize 2500/500 psi (2-stage).

6. Thermally process puree mix at 190 deg F. for 2-8 minutes.

7. Cool to 41 deg F.

8. Mixture can be deposited unaerated or aerated.

9. To Aerate, pump through Mondomix Aerator and admix nitrogen gas to target of 30-60% overrun.

10. Deposit as drops, 0.8-1.2 grams weight, onto solid steel freezer belt and freeze.

11. Freeze dry frozen drops.

The composition described above is made using the methods described herein.

It should be appreciated that the present invention is not limited to the specific embodiments described above, but includes variations, modifications and equivalent embodiments defined by the following claims.

1. A method of providing a shelf stable fruit or vegetable product comprising the step of:
 - providing a fruit or vegetable ingredient;
 - adding an emulsifier to the blend;
 - thermally processing the blend;
 - admixing a gas with the blend; and
 - freeze drying the blend.

2. The method of claim 1, wherein the fruit or vegetable ingredient is present in an amount of from 60% to 98% of the product.

3. The method of claim 1, wherein the product is used to promote child development.