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(57) Abstract: A computing device processor may be configured with
processor-executable instructions to implement methods of detecting
and responding to fake user interaction (UI) events. The processor may
determine whether a user interaction event is a fake user interaction
event by analyzing raw data generated by one or more hardware drivers
in conjunction with user interaction event information generated or re-
ceived by the high-level operating system. In addition, the processor
may be configured with processor-executable instructions to implement
methods of using behavioral analysis and machine learning techniques
to identify, prevent, correct, or otherwise respond to malicious or per-
formance-degrading behaviors of the computing device based on wheth-
er a detected user interaction event is an authentic or fake user interac-
tion event.
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TITLE

Methods and Systems for Detecting Fake User Interactions with a Mobile Device for

Improved Malware Protection
BACKGROUND

[0001] Cellular and wireless communication technologies have seen explosive growth
over the past several years. Wireless service providers now offer a wide array of
features and services that provide their users with unprecedented levels of access to
information, resources and communications. To keep pace with these enhancements,
personal and consumer electronic devices (e.g., cellular phones, watches, headphones,
remote controls, etc.) have become more powerful and complex than ever, and now
commonly include powerful processors, large memories, and other resources that

allow for executing complex and powerful software applications on their devices.

[0002] Due to these and other improvements, personal and consumer electronic
devices are becoming ubiquitous in modern life, and have unprecedented levels of
access to information that is generated by, or which relates to, their users. In addition,
people frequently use their devices to store sensitive information (e.g., credit card
information, contacts, etc.) and/or to accomplish tasks for which security is important.
For example, mobile device users frequently use their devices to purchase goods, send
and receive sensitive communications, pay bills, manage bank accounts, and conduct
other sensitive transactions. Due to these trends, personal and consumer electronic
devices are quickly becoming the next frontier for malware and cyber attacks.
Accordingly, new and improved security solutions that better protect resource-
constrained computing devices, such as mobile and wireless devices, will be

beneficial to consumers.
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SUMMARY

[0003] The various embodiments include a method of analyzing an activity of a
software application operating on a computing device, including comparing raw data
received from a user input device of the computing device to user interaction event
information received in the computing device to generate analysis results, and using
the generated analysis results to determine whether a user interaction (UI) event
correlates with a user of the computing device. In a further embodiment, the raw data
received from the user input device may include raw data received from a device
driver, and the user interaction event information received in the computing device
may include interaction information received from a high level operating system of

the computing device.

[0004] In a further embodiment, the method may include classifying the activity of the
software application as non-benign in response to determining that the user interaction
event does not correlate with a user of the computing device. In a further
embodiment, the method may include generating a behavior vector that characterizes
the activity of the software application, applying the generated behavior vector to a
classifier model that may include a decision node that evaluates whether there 1s a user
interaction event that corresponds to the activity in response to determining that the
user interaction event does not correlate with a user of the computing device, and
using a result of applying the generated behavior vector to the classifier model to

determine whether the activity of the software application is non-benign.

[0005] In a further embodiment, the method may include generating a behavior vector
that characterizes the activity of the software application, selecting a classifier model
that does not include a decision node that tests whether there is a user interaction
event that corresponds to the activity in response to determining that the user
interaction event does not correlate with a user of the computing device, applying the

generated behavior vector to the selected classifier model to generate additional
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analysis results, and using the generated additional analysis results to determine

whether the activity of the software application is non-benign.

[0006] In a further embodiment, the method may include selecting a family of robust
classifier models in response to determining that the user interaction event does not
correlate with a user of the computing device, and applying a plurality of behavior
vectors to the selected family of robust classifier models to determine whether the
activity of the software application is non-benign. In a further embodiment, the
method may include comparing raw data received from a first sensor of the computing
device to raw data received from a second sensor of the computing device to
determine whether the raw data received from the first sensor is consistent with the
raw data received from the second sensor, in which comparing raw data received from
the user input device of the computing device to the user interaction event information
received in the computing device to generate analysis results is preformed in response
to determining that the raw data received from the first sensor is consistent with the

raw data received from the second sensor.

[0007] In a further embodiment, comparing raw data received from the first sensor to
the raw data received from the second sensor may include comparing results of
applying behavior vectors to classifier models. In a further embodiment, the raw data
received from the user input device may include raw data received from a user input
sensor, the user interaction event information received in the computing device may
include data received from a device driver for the user input sensor, and using the
generated analysis results to determine whether the user interaction event correlates
with a user of the computing device may include determining that the user interaction
event does not correlate with a user of the computing device in response to the raw
data received from the user input sensor does not correlate to data received from the

device driver for the user input sensor.

[0008] In a further embodiment, the user input sensor may include a touch screen, and

the device driver may include a touch screen device driver. In a further embodiment,
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the method may include classifying the activity of the software application as non-
benign in response to determining that the user interaction event does not correlate
with a user of the computing device. In a further embodiment, the method may
include generating a behavior vector that characterizes the activity of the software
application, applying the generated behavior vector to a classifier model that does not
include a decision node that evaluates conditions related to user interactions with the
computing device in response to determining that the user interaction event does not
correlate with a user of the computing device, and using a result of applying the
generated behavior vector to the classifier model to determine whether the activity of

the software application is non-benign.

[0009] Further embodiments may include a computing device having a processor
configured with processor-executable instructions to perform various operations

corresponding to the methods discussed above.

[0010] Further embodiments may include a computing device having various means

for performing functions corresponding to the method operations discussed above.

[0011] Further embodiments may include a non-transitory processor-readable storage
medium having stored thereon processor-executable instructions configured to cause a
processor to perform various operations corresponding to the method operations

discussed above
BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated herein and constitute part
of this specification, illustrate exemplary embodiments of the invention, and together
with the general description given above and the detailed description given below,

serve to explain the features of the invention.

[0013] FIG. 1 1s an architectural diagram of an example system on chip suitable for

implementing the various embodiments.
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[0014] FIG. 2 1s a block diagram illustrating example logical components and
information flows in an embodiment computing device that includes a fake user
interaction (UI) event detection module configured to identify and respond to fake Ul

events in accordance with the various embodiments.

[0015] FIG. 3 1s a block diagram illustrating example logical components and
information flows in an embodiment computing device configured to determine

whether a particular mobile device behavior is benign or non-benign.

[0016] FIGs. 4A and 4B are process flow diagrams illustrating methods of detecting

and responding to fake UI events in accordance with various embodiments.

[0017] FIG. 4C is a process flow diagram illustrating a method detecting and
responding to a compromised user input sensor device driver in accordance with an

embodiment.

[0018] FIG. 5 1s a process flow diagram illustrating a method of using a family of

classifier models to classify a device behavior in accordance with an embodiment.

[0019] FIG. 6 1s an illustration of example decision nodes that may be generated and

used to generate classifier models.

[0020] FIG. 7 1s a process flow diagram illustrating a method of performing adaptive

observations in accordance with an embodiment.

[0021] FIG. 8 is a component block diagram of a mobile device suitable for use in an

embodiment.
DETAILED DESCRIPTION

[0022] The various embodiments will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be

used throughout the drawings to refer to the same or like parts. References made to



WO 2016/126379 PCT/US2016/012851

particular examples and implementations are for illustrative purposes, and are not

intended to limit the scope of the invention or the claims.

[0023] In overview, the various embodiments include methods, and computing devices
configured to implement the methods, of using behavior-based and machine learning
techniques to detect and respond to fake user interaction (UI) events. In an
embodiment, a computing device may be configured to implement a method of
analyzing raw data generated by one or more hardware drivers or user input devices in
conjunction with UI event information generated or received by the high-level
operating system, and use the results of this analysis to determine whether a UI event
correlates with a user of the computing device and/or to classify a detected Ul event as
an authentic UI event or as a fake Ul event. The computing device may also include a
comprehensive behavior-based security system that is configured to identify and
respond to non-benign device behaviors (e.g., behaviors caused by malicious or
performance-degrading software applications, etc.) based on whether the Ul event is

an authentic or fake Ul event.

[0024] Generally, each software application program performs a number of tasks or
activities on the computing device. Some of application tasks/activities directly or
inherently involve or require some form of user interaction with the device. For
example, the use of a camera, activating a microphone to record audio, and sending
premium Short Message Service (SMS) messages are all tasks/activities that involve
some form of user interaction with the device, such as the user actuating the shutter-
release button for the camera, pressing a record button to active the microphone,

typing text and touching a send button to send a SMS message, etc.

[0025] Most user interactions with the device will cause the computing device to
generate one or more Ul events (e.g., View::onTouchEvent, onKeyDown, onKeyUp,
onTrackBallEvent, etc.). For example, touching an electronic touchscreen display of
the computing device may cause a device driver to generate a “touch event” that

identifies the area touched (e.g., via rectangular coordinates X and Y, etc). The
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operating system may receive the Ul event (e.g., the “touch event”) from the device
driver, and in response, perform procedures of software applications for which the Ul

event 1s relevant.

[0026] Thus, some tasks/activities directly or inherently involve or require some form
of user interaction and most user interactions generate some form of a Ul event. As
such, the performance of certain tasks/activities of an application program without a
corresponding Ul event may be strong indicator that the application program is non-
benign or otherwise merits closer scrutiny, monitoring or analysis. Accordingly, in
some embodiments, the behavior-based security system of the computing device could
be configured to classify activities that directly or inherently involve or require a user
interaction but are not associated with a Ul event as suspicious or non-benign. For
example, in an embodiment, the behavior-based security system may be configured to
monitor an activity of a software application program, determine whether the
monitored activity (e.g., use of a camera, etc.) directly or inherently involve or
requires some form of user interaction, determine whether there is a Ul event (e.g.,
onTouchEvent, etc.) that corresponds to the monitored activity in response to
determining that the monitored activity directly or inherently involve or requires user
interaction, and classify the application program as non-benign (or as requiring closer
scrutiny, more detailed analysis, etc.) in response to determining that the monitored
directly or inherently involve or requires user interaction and that there are no Ul

events that correspond to the monitored activity.

[0027] The behavior-based security system is generally effective at identifying non-
benign behaviors and preventing the device’s degradation in performance and power
utilization levels over time. For example, by using Ul event information as an
indicator of whether an activity or software application is non-benign, the behavior-
based security system allows the computing device to identify and respond to non-
benign devices behaviors (e.g., malicious software applications, etc.) without

consuming an excessive amount of its processing, memory or battery resources. As a
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result, the behavior-based security system is well suited for inclusion and use in
mobile and resource constrained-computing devices, such as smartphones, which have
limited resources, run on battery power, and for which performance and security are

important.

[0028] While the above-described system is generally effective, a malicious software
application could circumvent or evade detection by the security system by generating
and sending fake UI event information to the device’s operating system. For example,
a malicious software application could activate the camera of the computing device to
capture an image without the user’s knowledge or consent, and then send a fake
onTouchEvent to the device’s operating system to cause the security system to
incorrectly determine that the detected activity (activation of the camera) is associated
with a corresponding UI event. This could cause the security system to incorrectly

classify the malicious application program as benign.

[0029] By using behavior-based and machine learning techniques to analyze raw data
generated by one or more hardware/device drivers in conjunction with UI event
information received by the high-level operating system, the various embodiments
allow the computing device to determine whether a Ul event is a fake Ul event, and
use this information when analyzing device behaviors so as to prevent malicious
software applications from using fake UI event information to circumvent or evade

detection.

[0030] The various embodiments improve the functioning of the computing device by
allowing the device to more accurately and efficiently identify, prevent, correct,
and/or otherwise respond to non-benign software applications. The various
embodiments also improve the functioning of the computing device by allowing the
computing device (or its behavior-based security system) to use the Ul event
information to intelligently focus its monitoring and/or analysis operations, thereby
reducing their impact on the responsiveness, performance, and power consumption

characteristics of the device.
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[0031] Additional improvements to the functions, functionalities, and/or functioning of
computing devices will be evident from the detailed descriptions of the embodiments

provided below.

[0032] The term “performance degradation” is used in this application to refer to a
wide variety of undesirable operations and characteristics of a computing device, such
as longer processing times, slower real time responsiveness, lower battery life, loss of
private data, malicious economic activity (e.g., sending unauthorized premium SMS
message), denial of service (DoS), poorly written or designed software applications,
malicious software, malware, viruses, fragmented memory, operations relating to
commandeering the mobile device or utilizing the phone for spying or botnet
activities, etc. Also, behaviors, activities, and conditions that degrade performance for

any of these reasons are referred to herein as “not benign” or “non-benign.”

[0033] The terms “mobile computing device” and “mobile device” are used
interchangeably herein to refer to any one or all of cellular telephones, smartphones,
personal or mobile multi-media players, personal data assistants (PDA’s), laptop
computers, tablet computers, smartbooks, ultrabooks, palm-top computers, wireless
electronic mail receivers, multimedia Internet enabled cellular telephones, wireless
gaming controllers, and similar personal electronic devices which include a memory, a
programmable processor for which performance is important, and operate under
battery power such that power conservation methods are of benefit. While the various
embodiments are particularly useful for mobile computing devices, such as
smartphones, which have limited resources and run on battery, the embodiments are
generally useful in any electronic device that includes a processor and executes

application programs.

[0034] Generally, the performance and power efficiency of a mobile device degrade
over time. Recently, anti-virus companies (e.g., McAfee, Symantec, etc.) have begun
marketing mobile anti-virus, firewall, and encryption products that aim to slow this

degradation. However, many of these solutions rely on the periodic execution of a
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computationally-intensive scanning engine on the mobile device, which may consume
many of the mobile device’s processing and battery resources, slow or render the
mobile device useless for extended periods of time, and/or otherwise degrade the user
experience. In addition, these solutions are typically limited to detecting known
viruses and malware, and do not address the multiple complex factors and/or the
interactions that often combine to contribute to a mobile device’s degradation over
time (e.g., when the performance degradation 1s not caused by viruses or malware).
For these and other reasons, existing anti-virus, firewall, and encryption products do
not provide adequate solutions for identifying the numerous factors that may
contribute to a mobile device’s degradation over time, for preventing mobile device
degradation, or for efficiently restoring an aging mobile device to its original

condition.

[0035] Further, modern mobile devices are highly configurable and complex systems.
As such, the features that are most important for determining whether a particular
device behavior is benign or non-benign (e.g., malicious or performance-degrading)
may be different in each mobile device. In addition, there are a large variety of factors
that may contribute to the degradation in performance and power utilization levels of a
mobile computing device over time, including poorly written or designed software
applications, malware, viruses, fragmented memory, background processes, etc. Due
to the number, variety, and complexity of these factors, it is often not feasible to
evaluate all of the factors that may contribute to the degradation in performance
and/or power utilization levels of the complex yet resource-constrained systems of
modern mobile computing devices. As such, it is difficult for users, operating
systems, and/or application programs (e.g., anti-virus software, etc.) to accurately and
efficiently identify the sources of problems. As a result, mobile device users currently
have few remedies for preventing the degradation in performance and power
utilization levels of a mobile device over time, or for restoring an aging mobile device

to its original performance and power utilization levels.

10
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[0036] To overcome the limitations of existing solutions, the various embodiments
include computing devices equipped with a behavioral monitoring and analysis system
configured to quickly and efficiently identify non-benign software applications (e.g.,
applications that are malicious, poorly written, incompatible with the device, etc.), and
prevent such applications from degrading the a computing device’s performance,
power utilization levels, network usage levels, security, and/or privacy over time. The
behavioral monitoring and analysis system may be configured to identify, prevent, and
correct identified problems without having a significant, negative, or user perceivable
impact on the responsiveness, performance, or power consumption characteristics of
the computing device. In an embodiment, the behavioral monitoring and analysis

system may be a behavior-based security system.

[0037] The behavior-based monitoring and analysis system may include an observer
process, daemon, module, or sub-system (herein collectively referred to as a
“module”) a behavior extractor module, and an analyzer module. The observer
module may be configured to instrument or coordinate various application
programming interfaces (APIs), registers, counters, or other device components
(herein collectively “instrumented components™) at various levels of the computing
device system, collect behavior information from the instrumented components, and
communicate (e.g., via a memory write operation, function call, etc.) the collected
behavior information to the behavior extractor module. The behavior extractor
module may use the collected behavior information to generate behavior vectors that
each represent or characterize many or all of the observed events, conditions, tasks,
activities, and/or behaviors (herein collectively “behaviors™) associated with one or
more specific threads, processes, software applications, modules, or components of
the device. The behavior extractor module may communicate (e.g., via a memory
write operation, function call, etc.) the generated behavior vectors to the analyzer
module, which may apply the behavior vectors to classifier models to generate
analysis results, and use the analysis results to determine whether a software

application or device behavior 1s benign or non-benign (e.g., malicious, poorly

11
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written, performance-degrading, etc.). The device processor may then perform
various operations to correct, heal, cure, isolate, or otherwise fix the identified

problems (e.g., behaviors determined to be non-benign).

[0038] Each behavior vector may be an information structure that includes or
encapsulates one or more “behavior features.” A behavior feature may be a number or
symbol that represents all or a portion of an observed event, condition, activity,
operation, relationship, interaction, or behavior in the computing device. Each
behavior feature may be associated with a data type that identifies a range of possible
values, operations that may be performed on those values, the meanings of the values,
and other similar information. The data type may be used by the computing device to
determine how the corresponding behavior feature (or feature value) should be

measured, analyzed, weighted, or used.

[0039] A classifier model may be a behavior model that includes data, entries,
decision nodes, decision criteria, and/or information structures that may be used by a
device processor to quickly and efficiently test or evaluate specific features, factors,
data points, entries, APIs, states, conditions, behaviors, software applications,
processes, operations, components, etc. (herein collectively “features™) or other
embodiments of the device’s behavior. A classifier model may also include
information that may be used by a device processor to determine the nature of the
relationships between software applications and/or the behaviors that to be monitored

in the mobile device.

[0040] Each classifier model may be categorized as a full classifier model or a lean
classifier model. A full classifier model may be a robust data model that is generated
as a function of a large training dataset, which may include thousands of features and
billions of entries. A lean classifier model may be a more focused data model that is
generated from a reduced dataset that includes or prioritizes tests on the
features/entries that are most relevant for determining whether a particular mobile

device behavior is not benign. A local classifier model may be a lean classifier model

12
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that is generated in the computing device. A user-specific classifier model may be a
local classifier model that includes a highly focused data model that includes or
prioritizes decision nodes that test or evaluate device features/entries that are most
relevant for determining whether a device behavior is consistent with the ordinary

usage of the computing device by a specific user.

[0041] Each person generally interacts with his/her computing device in a unique or
distinct way. For example, mobile device users often have a distinct work or
communication style, use specific software applications or specific types of software
applications, use their mobile device to perform specific activities or accomplish
specific tasks, perform activities in a specific order, perform specific activities at
specific times, interact with specific software applications in a specific ways, etc. The
distinct way in which a user interacts with his/her device may be learned over time,
and used to determine whether a software application is non-benign. For example, in
an embodiment, the computing device may be configured to learn the distinct way in
which a user interacts with his/her device over time, use this information to determine
whether an activity, task, or behavior should be associated with a corresponding Ul
event, generate behavior vectors and/or classifier models that account for the existence
of a corresponding UI event, apply the behavior vectors to the classifier models to
generate analysis results, and use the analysis results to determine whether a software
application associated with the activity, task, or behavior is non-benign (e.g.,

malicious, etc.).

[0042] Modern computing devices have unprecedented levels of access to information
that 1s generated by, or which relates to, their users. For example, mobile computing
devices are often equipped with sensors (e.g., accelerometer, gyroscope, geo-spatial
positioning sensor, camera, heart rate monitor, glucometer, etc.) that collect or
generate detailed personal information about the user. In addition, mobile computing
devices now include powerful processors that allow for executing complex software

applications, including applications for navigating the web, purchasing goods, monitor

13
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the user’s health, controlling home appliances, playing games, watching/recording
videos, navigating new cities, tracking workouts, conducting financial transactions,
etc. These software applications often collect or generate detailed personal
information about the user. The information that is collected, generated, or used by
these software applications and sensors may be used by an embodiment computing
device to generate user-persona information that characterizes the activities,
preferences, age, occupation, habits, moods, emotional states, personality, etc. of the
user. An embodiment computing device may be configured to collect and use such
user-persona information to determine the normal operating patterns of the device
over time, including whether an activity, task, or behavior should be associated with a
corresponding Ul event. The user-persona information may also be used to generate
behavior vectors and/or classifier models (e.g., user-specific classifier models, etc.)

that are suitable for use in determining whether a software application is non-benign.

[0043] Certain tasks/activities directly or inherently involve or require that the
operating system or software application (or process, thread, etc.) be in an execution
state that supports or is compatible with those tasks/activities. For example, the use of
a camera, sending Short Message Service (SMS) messages, and the collection
accelerometer data are all tasks/activities that typically require some form of user
interaction with the device. As such, these activities generally must be performed in
the “foreground” execution state or in another execution state that supports user
interaction with the computing device. When these or other similar tasks/activities are
preformed in an execution state that does not support a high degree of user interaction
with the device, such as in the background execution state, this operating condition
may be an indicator that a device behavior associated with that activity is non-benign
or otherwise merits additional or closer scrutiny, monitoring or analysis. As such, in
an embodiment, the computing device may be configured to use the specific execution
state in which an activity or task is performed to determine whether an activity, task,
or behavior should be associated with a corresponding Ul event, generate behavior

vectors and/or classifier models that account for the execution state and/or the

14



WO 2016/126379 PCT/US2016/012851

existence of a corresponding Ul event, apply the behavior vectors to the classifier
models to generate analysis results, and use the analysis results to determine whether a

software application is non-benign.

[0044] In an embodiment, the behavioral monitoring and analysis system may use the
existence of a Ul event as a factor that 1s tested/evaluated (e.g., via the application of a
behavior vector to classifier model, etc.) when generating the analysis results that are

used to determine whether a software application is non-benign.

[0045] In the above examples, the computing device uses information generated via
the user interaction with the device, such as the presence of a corresponding UI event,
to determine whether a software application is non-benign. Such information
typically includes data generated by the device’s sensors or hardware (e.g., when a
user touches device’s touch screen, etc.), which is sent to the operating system for
forwarding to the behavioral monitoring and analysis system (e.g., via the operating
system storing the information in a log, etc.). Since the behavioral monitoring and
analysis system uses this information to determine whether a software application is
non-benign, a malicious software application could attempt to evade or circumvent
detection by the system by generating and sending fake UI event information to the
operating system, such as to cause the operating system to incorrectly report the

presence of a Ul event to the behavioral monitoring and analysis system.

[0046] To prevent software applications that generate fake user interaction
information (e.g., fake Ul events) from evading or circumventing detection by the
behavioral monitoring and analysis system (e.g., behavior-based security system), in
an embodiment, the computing device may be equipped with a fake UI event detection
module that 1s configured to receive raw data from sensor and hardware drivers and
Ul event information from the operating system, compare the received raw data to the
received Ul event information to determine whether a UI event is an authentic Ul
event or a fake UI event, and report fake Ul event events to the behavioral monitoring

and analysis system.
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[0047] In an embodiment, the behavioral monitoring and analysis system may be
configured to classify software applications that are associated with a fake Ul event as

non-benign.

[0048] In an embodiment, the behavioral monitoring and analysis system may be
configured to classify software applications that are associated with a fake UI event as
suspicious, and increase its level of scrutiny or analysis (e.g., by using more robust
classifier models, monitoring more activities of the software application, generating

larger behavior vectors, etc.).

[0049] In an embodiment, the behavioral monitoring and analysis system may be
configured to ignore Ul events that are determined to be fake Ul events, such as by
using a classifier model that does not test conditions relating to the presence or
existence of a corresponding Ul event. This allows the system to focus its monitoring
and/or analysis operations are the features or factors that are most important to

determining whether the activity or behavior is non-benign.

[0050] In an embodiment, the device processor of the computing device may be
configured to compare and correlate information received from different device
drivers or hardware components to determine whether a detected UI event is a fake Ul
event. For example, touching the computing device’s touch screen display by the user
may cause the display to generate raw data in the form of a timestamp identifying the
time in which the display was touched and coordinate information identifying the
touched display area. In addition, since the computing device typically moves when
its display is touched (due to the force of the user’s touch), its gyroscope and
accelerometer may generate raw data that indicates that the device moved slightly at
the same time as the touch event. As such, the device processor may determine
whether the device’s movement at the time when the touch event was generated is

consistent with that user interaction.
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[0051] The various embodiments (including the embodiments described with
reference to FIGs. 2-7), may be implemented in a number of different mobile devices,
including single processor and multiprocessor systems, and a system-on-chip (SOC).
FIG. 1 is an architectural diagram illustrating an example system-on-chip (SOC) 100
architecture that may be used in computing devices implementing the various
embodiments. The SOC 100 may include a number of heterogeneous processors, such
as a digital signal processor (DSP) 102, a modem processor 104, a graphics processor
106, and an application processor 108. The SOC 100 may also include one or more
coprocessors 110 (e.g., vector co-processor) connected to one or more of the
heterogeneous processors 102, 104, 106, 108. Each processor 102, 104, 106, 108, 110
may include one or more cores, and each processor/core may perform operations
independent of the other processors/cores. For example, the SOC 100 may include a
processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS
X, etc.) and a processor that executes a second type of operating system (e.g.,

Microsoft Windows 10).

[0052] The SOC 100 may also include analog circuitry and custom circuitry 114 for
managing sensor data, analog-to-digital conversions, wireless data transmissions, and
for performing other specialized operations, such as processing encoded audio signals
for games and movies. The SOC 100 may further include system
components/resources 116, such as voltage regulators, oscillators, phase-locked loops,
peripheral bridges, data controllers, memory controllers, system controllers, access
ports, timers, and other similar components used to support the processors and clients

running on a computing device.

[0053] The system components/resources 116 and custom circuitry 114 may include
circuitry to interface with peripheral devices, such as cameras, electronic displays,
wireless communication devices, external memory chips, etc. The processors 102,
104, 106, 108 may be interconnected to one or more memory elements 112, system

components/resources 116 and custom circuitry 114 via an interconnection/bus
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module 124, which may include an array of reconfigurable logic gates and/or
implement a bus architecture (e.g., CoreConnect, AMBA, etc.). Communications may
be provided by advanced interconnects, such as high performance networks-on chip

(NoCs).

[0054] The SOC 100 may further include an input/output module (not illustrated) for
communicating with resources external to the SOC, such as a clock 118 and a voltage
regulator 120. Resources external to the SOC (e.g., clock 118, voltage regulator 120)
may be shared by two or more of the internal SOC processors/cores (e.g., DSP 102,

modem processor 104, graphics processor 106, applications processor 108, etc.).

[0055] The SOC 100 may also include hardware and/or software components suitable
for collecting sensor data from sensors, including speakers, user interface elements
(e.g., input buttons, touch screen display, etc.), microphone arrays, sensors for
monitoring physical conditions (e.g., location, direction, motion, orientation,
vibration, pressure, etc.), cameras, compasses, GPS receivers, communications
circuitry (e.g., Bluetooth®, WLAN, WiFi, etc.), and other well known components

(e.g., accelerometer, etc.) of modern electronic devices.

[0056] In addition to the SOC 100 discussed above, the various embodiments may be
implemented in a wide variety of computing systems, which may include a single

processor, multiple processors, multicore processors, or any combination thereof.

[0057] FIG. 2 illustrates example logical components and information flows in an
embodiment computing device 200 configured to identify fake Ul events in
accordance with the various embodiments. In the example illustrated in FIG. 2, the
computing device 200 includes various sensors and hardware components 202, a
device driver module 204, an operating system 206, a fake UI event detection module
212, a behavior-based security module 214, and a log of actions 220. The computing

device also includes a software application program 208 and a malicious software
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application program 210, both of which may operate or execute on the computing

device 200 via one or more of its processors or processing cores.

[0058] The software application programs 208, 210 may use an application program
interface (API) to invoke services of the operating system 206. The operating system
206 may communicate with the sensor/hardware components 202 via the device driver
module 204, which may serve as or provide a software interface between the
sensor/hardware components 202 and the operating system 206. The device driver
module 204 may be configured to control or communicate with the sensor/hardware
components 202 via the operation codes (opcodes) and native commands implemented
by the sensor/hardware components 202. The device driver module 204 may be
configured to use raw data received from the sensor/hardware components 202 to
generate information that is suitable for interpretation and use by the operating system

206.

[0059] The sensor/hardware components 202 may be configured to generate and send
raw data to the device driver module 204 in response to detecting user interaction
events, and the device driver module 204 may be configured to use the raw data
received from the sensor/hardware components 202 to generate Ul event information
that 1s suitable for interpretation and use by the operating system 206. For example,
the sensor/hardware components 202 may include an electronic touchscreen display
(e.g., capacitive sensing touchscreen panel, etc.) configured to send raw data in the
form of X and Y location coordinates to the device driver module 204 each time a user
touches the touchscreen. The device driver module 204 may be configured to convert
this raw data (i.e., location coordinates X and Y) into UI event information (e.g.,
screenTouch(X,Y)) that is suitable for interpretation and use by the operating system
206. The operating system 206 may receive and use the Ul event information to
determine that an onTouch(X,Y) function of the software application program 208

should be invoked, and cause the software application program 208 to perform
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operations of the onTouch(X,Y) function. Such operations may include opening a

camera shutter, capturing an image, processing a captured image, etc.

[0060] Both the operating system 206 and the software application program 208 may
log their respective operations, activities and/or task in a log of actions 220. For
example, the operating system may log the detection of the Ul event (e.g.,
screenTouch(X,Y)) in the log of actions 220, and the software application program
208 may log the operations (e.g., opening the camera shutter, capturing the image,
writing the information to memory, etc.) or their associated API calls in the log of

actions 220.

[0061] The behavior-based security module 214 may be configured to monitor the
operations, activities of the software application program 208, collect behavior
information from the log of actions 220, use the collected behavior information to
generate behavior vector structures, apply the generated behavior vector structures to
classifier models to generate analysis results, and use the analysis results to determine
whether the software application program 208 is non-benign. As part of these
operations, the behavior-based security module 214 may determine that a behavior or
activity of software application program 208 directly or inherently involve or requires
some form of user interaction with the device, determine whether the log of actions
220 includes a Ul event corresponding to the behavior/activity in response to
determining that the behavior/activity directly or inherently involve or requires user
interaction, and use a behavior vector and/or classifier model that evaluates the
presence or existence of a corresponding Ul event when determining whether the

software application program 208 is non-benign.

[0062] In the example illustrated in FIG. 2, the malicious software application
program 210 attempts to evade or circumvent detection by the behavior-based security
module 214 by generating and sending fake Ul event to the operating system. For
example, the malicious software application program 210 may the activate the camera

to capture an image without the user’s knowledge consent, and cause the operating

20



WO 2016/126379 PCT/US2016/012851

system to incorrectly log the presence of a UI event corresponding the activation of
the camera. This could cause the behavior-based security module 214 to incorrectly

determine there is a Ul event that corresponds to the monitored activity.

[0063] The fake UI event detection module 212 may be configured to prevent the
malicious software application program 210 from evading or circumventing detection
by the behavior-based security module 214. The device driver module 204 may
include a driver instrumentation module 216 that is configured to send raw data to the
fake UI event detection module 212, and the operating system 206 may include an
operating system instrumentation module 218 that is configured to send UI event
information to the fake UI event detection module 212. The fake UI event detection
module 212 may be configured to receive the raw data from driver instrumentation
module 216 and the UI event information from the operating system instrumentation
module 218, compare the received raw data to the received Ul event information to
determine whether the Ul event is an authentic UI event or a fake Ul event, and report

fake UI event events to the behavior-based security module 214.

[0064] In response to receiving a report of a fake Ul event, the behavior-based
security module 214 may classify software applications associated with the fake Ul
event as non-benign, classify software applications that are associated with the fake
Ul event as suspicious, update the classifier models to exclude decision nodes that test
conditions relating to the presence/existence of Ul events, or select/use behavior
vectors and classifier models that do not test conditions relating to the

presence/existence of Ul events.

[0065] FIG. 3 illustrates example logical components and information flows in an
embodiment computing device that includes a behavior-based security module 214
configured to use behavioral analysis techniques to identify and respond to non-
benign device behaviors. In the example illustrated in FIG. 3, the computing device
1s a mobile device 300 that includes a device processor (i.e., mobile device processor)

configured with executable instruction modules that include a behavior observer
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module 302, a behavior extractor module 304, a behavior analyzer module 306, and an
actuator module 308. Each of the modules 302-308 may be a thread, process,

daemon, module, sub-system, or component that is implemented in software,
hardware, or a combination thereof. In various embodiments, the modules 302-308
may be implemented within parts of the operating system (e.g., within the kernel, in
the kernel space, in the user space, etc.), within separate programs or applications, in
specialized hardware buffers or processors, or any combination thereof. In an
embodiment, one or more of the modules 302-308 may be implemented as software

instructions executing on one or more processors of the mobile device 300.

[0066] The behavior observer module 302 may be configured to instrument
application programming interfaces (APIs), counters, hardware monitors, etc. at
various levels/modules of the device, and monitor the activities, conditions,
operations, and events (e.g., system events, state changes, etc.) at the various
levels/modules over a period of time. The behavior observer module 302 may collect
behavior information pertaining to the monitored activities, conditions, operations, or

events, and store the collected information in a memory (e.g., in a log file, etc.).

[0067] In some embodiments, the behavior observer module 302 may be configured to
collect user-based information (e.g., user-persona information, etc.) from software
applications operating in the computing device, the sensors of the computing device,
and/or from the user’s interactions with the computing device or its software
applications. The user-based information may include any information that is suitable
for identifying or characterizing the activities, device usage patterns, habits, moods,
occupation, and/or emotional states of the device user. As examples, the user-based
information may include information identifying the user’s interactions with the
device, number and types of customizations performed on the device, types of
software applications downloaded or used by a user, the rate at which the user touches
or interacts with the screen, the device’s graphics processing unit (GPU) usage level,

how often the user uses the device to communicate with others, the user’s preferred
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method of communication (e.g., text vs. voice), how fast the user communicates, the
device memory size, etc. The device processor may use the collected user-based
information to learn how the user typically interacts with the computing device, to
determine the normal operating patterns of the device and/or to determine whether an
activity, task, or behavior should be associated with a Ul event. For example, the
device process may use the user-based information to determine whether the normal
operating patterns of the device indicate that a specific activity is associated with a
specific Ul event and/or that the performance of a specific activity without its
corresponding Ul event is not consistent with the normal operating patterns of the

device.

[0068] The behavior observer module 302 may be configured to collect the user-
persona information by monitoring any of a variety of software applications (or
software application types), including calendar applications, reminder applications,
communication applications, financial applications, applications for accomplishing
specific tasks (e.g., word processing, preparing tax reforms, presentation applications,
accounting applications, etc.), location based applications (e.g., mapping and
geolocation apps, etc.), social media applications, web browsers (e.g., to obtain
information regarding past searches, browsing history, types of websites visited,
content of websites visited, etc.), entertainment applications (e.g., an audio or
multimedia player application), applications for accessing user accounts (e.g., banking

apps, etc.), personal training and development applications, etc.

[0069] The behavior observer module 302 may also collect user-persona information
by obtaining data from a heart rate monitor, blood pressure monitor, thermometer,
pedometer, blood glucose meter, humidity sensor, breathalyzer, galvanic skin
response sensot, or other sensor in the device. For example, the behavior observer
module 302 may collect user-persona information by monitoring geo-spatial
positioning and navigation systems of the device to determine user’s current location

(e.g., at the office, at home, at a restaurant, a gym, traveling, etc.), the user’s current
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movements (e.g., 1s currently traveling, is exercising, is stationary, etc.), history of
movements (e.g., travels extensively, never leaves town, etc.), whether the user is
following his/her established routine (e.g., arrived to work on time, still at work) or is

off his/her routine (e.g., arrived later than usual, left earlier than usual).

[0070] In some embodiments, a device processor of the mobile device 300 may be
configured to use the user-persona information and/or information characterizing the
user’s interaction with the device to generate the behavior vectors and/or classifier
models. For example, the device processor may be configured to use user interaction
information to dynamically determine the device features that are monitored, the
behavior information that is included in the behavior vectors, the specific device
features that are included in (and thus evaluated by) the classifier models, etc. As
another example, the device processor may be configured to generate a classifier
model that evaluates conditions/features focused on identifying the presence of Ul
events during the use or execution of certain types of software applications (e.g.,

games, etc.).

[0071] In some embodiments, the device processor may be configured to determine
whether the user-interaction information 1s relevant to analyzing all or portions of the
collected behavior information, generate a classifier model that includes a decision
node that evaluates a device feature in relation to a user-interaction (if relevant),
generate a behavior vector that correlates the collected behavior information for which
user-interaction is relevant, and apply the generated behavior vector to the generated

classifier model to determine whether a device behavior is non-benign.

[0072] The behavior observer module 302 may also be configured to monitor the
activities of the mobile device 300 by collecting information pertaining to library
application programming interface (API) calls in an application framework or
run-time libraries, system call APIs, file-system and networking sub-system
operations, device (including sensor devices) state changes, and other similar events.

In addition, the behavior observer module 302 may monitor file system activity, which
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may include searching for filenames, categories of file accesses (personal info or
normal data files), creating or deleting files (e.g., type exe, zip, etc.), file

read/write/seek operations, changing file permissions, etc.

[0073] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring data network activity, which may include types of
connections, protocols, port numbers, server/client that the device is connected to, the
number of connections, volume or frequency of communications, etc. The behavior
observer module 302 may monitor phone network activity, which may include
monitoring the type and number of calls or messages (e.g., SMS, etc.) sent out,

received, or intercepted (e.g., the number of premium calls placed).

[0074] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring the system resource usage, which may include
monitoring the number of forks, memory access operations, number of files open, etc.
The behavior observer module 302 may monitor the state of the mobile device 300,
which may include monitoring various factors, such as whether the display 1s on or
off, whether the device is locked or unlocked, the amount of battery remaining, the
state of the camera, etc. The behavior observer module 302 may also monitor inter-
process communications (IPC) by, for example, monitoring intents to crucial services
(browser, contracts provider, etc.), the degree of inter-process communications, pop-

up windows, etc.

[0075] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring driver statistics and/or the status of one or more
hardware components, which may include cameras, sensors, electronic displays, WiFi
communication components, data controllers, memory controllers, system controllers,
access ports, timers, peripheral devices, wireless communication components, external
memory chips, voltage regulators, oscillators, phase-locked loops, peripheral bridges,
and other similar components used to support the processors and clients running on

the mobile device 300.
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[0076] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring one or more hardware counters that denote the state
or status of the mobile device 300 and/or computing device sub-systems. A hardware
counter may include a special-purpose register of the processors/cores that is
configured to store a count value or state of hardware-related activities or events

occurring in the mobile device 300.

[0077] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring the actions or operations of software applications,
software downloads from an application download server (e.g., Apple® App Store
server), computing device information used by software applications, call information,
text messaging information (e.g., SendSMS, BlockSMS, ReadSMS, etc.), media
messaging information (e.g., ReceiveMMS), user account information, location
information, camera information, accelerometer information, browser information,
content of browser-based communications, content of voice-based communications,
short range radio communications (e.g., Bluetooth, WiFi, etc.), content of text-based
communications, content of recorded audio files, phonebook or contact information,

contacts lists, etc.

[0078] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring transmissions or communications of the mobile
device 300, including communications that include voicemail (VoiceMailComm),
device identifiers (DevicelDComm), user account information (UserAccountComm),
calendar information (CalendarComm ), location information (LocationComm),
recorded audio information (RecordAudioComm ), accelerometer information

(AccelerometerComm), etc.

[0079] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring the usage of, and updates/changes to, compass
information, computing device settings, battery life, gyroscope information, pressure

sensors, magnet sensors, screen activity, etc. The behavior observer module 302 may
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monitor notifications communicated to and from a software application
(AppNotifications), application updates, etc. The behavior observer module 302 may
monitor conditions or events pertaining to a first software application requesting the
downloading and/or install of a second software application. The behavior observer
module 302 may monitor conditions or events pertaining to user verification, such as

the entry of a password, etc.

[0080] The behavior observer module 302 may also monitor the activities of the
mobile device 300 by monitoring conditions or events at multiple levels of the mobile
device 300, including the application level, radio level, and sensor level. Application
level observations may include observing the user via facial recognition software,
observing social streams, observing notes entered by the user, observing events
pertaining to the use of PassBook®, Google® Wallet, Paypal®, and other similar
applications or services. Application level observations may also include observing
events relating to the use of virtual private networks (VPNs) and events pertaining to
synchronization, voice searches, voice control (e.g., lock/unlock a phone by saying
one word), language translators, the offloading of data for computations, video
streaming, camera usage without user activity, microphone usage without user

activity, etc.

[0081] Radio level observations may include determining the presence, existence or
amount of any or more of user interaction with the mobile device 300 before
establishing radio communication links or transmitting information, dual/multiple
subscriber identification module (SIM) cards, Internet radio, mobile phone tethering,
offloading data for computations, device state communications, the use as a game
controller or home controller, vehicle communications, computing device
synchronization, etc. Radio level observations may also include monitoring the use of
radios (WiF1, WiMax, Bluetooth, etc.) for positioning, peer-to-peer (p2p)

communications, synchronization, vehicle to vehicle communications, and/or
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machine-to-machine (m2m). Radio level observations may further include monitoring

network traffic usage, statistics, or profiles.

[0082] Sensor level observations may include monitoring a magnet sensor or other
sensor to determine the usage and/or external environment of the mobile device 300.
For example, the computing device processor may be configured to determine whether
the device 1s in a holster (e.g., via a magnet sensor configured to sense a magnet
within the holster) or in the user’s pocket (e.g., via the amount of light detected by a
camera or light sensor). Detecting that the mobile device 300 is in a holster may be
relevant to recognizing suspicious behaviors, for example, because activities and
functions related to active usage by a user (e.g., taking photographs or videos, sending
messages, conducting a voice call, recording sounds, etc.) occurring while the mobile
device 300 is holstered could be signs of nefarious processes executing on the device

(e.g., to track or spy on the user).

[0083] Other examples of sensor level observations related to usage or external
environments may include, detecting near-field communication (NFC) signaling,
collecting information from a credit card scanner, barcode scanner, or mobile tag
reader, detecting the presence of a Universal Serial Bus (USB) power charging source,
detecting that a keyboard or auxiliary device has been coupled to the mobile device
300, detecting that the mobile device 300 has been coupled to another computing
device (e.g., via USB, etc.), determining whether an LED, flash, flashlight, or light
source has been modified or disabled (e.g., maliciously disabling an emergency
signaling app, etc.), detecting that a speaker or microphone has been turned on or
powered, detecting a charging or power event, detecting that the mobile device 300 is
being used as a game controller, etc. Sensor level observations may also include
collecting information from medical or healthcare sensors or from scanning the user’s
body, collecting information from an external sensor plugged into the USB/audio jack,

collecting information from a tactile or haptic sensor (e.g., via a vibrator interface,
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etc.), collecting information pertaining to the thermal state of the mobile device 300,

etc.

[0084] To reduce the number of factors monitored to a manageable level, in an
embodiment, the behavior observer module 302 may be configured to perform coarse
observations by monitoring/observing an initial set of behaviors or factors that are a
small subset of all factors that could contribute to the computing device’s degradation.
In an embodiment, the behavior observer module 302 may receive the initial set of
behaviors and/or factors from a server and/or a component in a cloud service or
network. In an embodiment, the initial set of behaviors/factors may be specified in

machine learning classifier models.

[0085] The behavior observer module 302 may communicate (e.g., via a memory write
operation, function call, etc.) the collected behavior information to the behavior
extractor module 304. The behavior extractor module 304 may be configured to
receive or retrieve the collected behavior information, and use this information to
generate one or more behavior vectors. Each behavior vector may succinctly describe
the behavior of the device, software application, or process in a value or vector data-
structure. The vector data-structure may include series of numbers, each of which
signifies a feature or a behavior of the mobile device, such as whether a camera of the
mobile device is in use (e.g., as zero or one), how much network traffic has been
transmitted from or generated by the mobile device (e.g., 20 KB/sec, etc.), how many
Internet messages have been communicated (e.g., number of SMS messages, etc.),
and/or any other behavior information collected by the behavior observer module 302.
In an embodiment, the behavior extractor module 304 may be configured to generate
the behavior vectors so that they function as an identifier that enables the mobile
device system (e.g., the behavior analyzer module 306) to quickly recognize, identify,

or analyze a behavior of the device.

[0086] In an embodiment, the behavior extractor module 304 may be configured to

generate the behavior vectors to include information that may be input to a

29



WO 2016/126379 PCT/US2016/012851

feature/decision node in the machine learning classifier to generate an answer to a

query regarding a monitored activity or activities.

[0087] In an embodiment, the behavior extractor module 304 may be configured to
generate the behavior vectors to include execution information. The execution
information may be included in the behavior vector as part of a behavior (e.g., camera
used five times in three second by a background process, camera used three times in
three second by a foreground process, etc.) or as part of an independent feature. In an
embodiment, the execution state information may be included in the behavior vector
as a shadow feature value sub-vector or data structure. In an embodiment, the
behavior vector may store the shadow feature value sub-vector/data structure in

association with the features, activities, tasks for which the execution state is relevant.

[0088] The behavior extractor module 304 may communicate (e.g., via a memory
write operation, function call, etc.) the generated behavior vectors to the behavior
analyzer module 306. The behavior analyzer module 306 may be configured to apply
the behavior vectors to classifier modules to determine whether a device behavior is a
non-benign behavior that is contributing to (or is likely to contribute to) the device’s

degradation over time and/or which may otherwise cause problems on the device.

[0089] Each classifier model may be a behavior model that includes data and/or
information structures (e.g., feature vectors, behavior vectors, component lists, etc.)
that may be used by a computing device processor to evaluate a specific feature or
embodiment of a computing device’s behavior. Each classifier model may also
include decision criteria for monitoring a number of features, factors, data points,
entries, APIs, states, conditions, behaviors, applications, processes, operations,
components, etc. (herein collectively “features”) in the computing device. The
classifier models may be preinstalled on the computing device, downloaded or
received from a network server, generated in the computing device, or any
combination thereof. The classifier models may be generated by using crowd

sourcing solutions, behavior modeling techniques, machine learning algorithms, etc.
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[0090] Each classifier model may be categorized as a full classifier model or a lean
classifier model. A full classifier model may be a robust data model that is generated
as a function of a large training dataset, which may include thousands of features and
billions of entries. A lean classifier model may be a more focused data model that is
generated from a reduced dataset that includes/tests only the features/entries that are
most relevant for determining whether a particular activity is an ongoing critical
activity and/or whether a particular computing device behavior is not benign. As an
example, a device processor may be may be configured to receive a full classifier
model from a network server, generate a lean classifier model in the mobile device
based on the full classifier, and use the locally generated lean classifier model to
classify a behavior of the device as being either benign or non-benign (i.e., malicious,

performance degrading, etc.).

[0091] A locally generated lean classifier model is a lean classifier model that is
generated in the computing device. That is, since mobile devices are highly
configurable and complex systems, the features that are most important for
determining whether a particular device behavior is non-benign (e.g., malicious or
performance-degrading) may be different in each device. Further, a different
combination of features may require monitoring and/or analysis in each device in
order for that device to quickly and efficiently determine whether a particular behavior
1s non-benign. Yet, the precise combination of features that require monitoring and
analysis, and the relative priority or importance of each feature or feature
combination, can often only be determined using information obtained from the
specific device in which the behavior is to be monitored or analyzed. For these and
other reasons, various embodiments may generate classifier models in the mobile
device in which the models are used. These local classifier models allow the device
processor to accurately identify the specific features that are most important in
determining whether a behavior on that specific device is non-benign (e.g.,
contributing to that device’s degradation in performance). The local classifier models

also allow the device processor to prioritize the features that are tested or evaluated in

31



WO 2016/126379 PCT/US2016/012851

accordance with their relative importance to classifying a behavior in that specific

device.

[0092] A device-specific classifier model is a classifier model that includes a focused
data model that includes/tests only computing device-specific features/entries that are
determined to be most relevant to classifying an activity or behavior in a specific

computing device.

[0093] An application-specific classifier model is a classifier model that includes a
focused data model that includes/tests only the features/entries that are most relevant

for evaluating a particular software application.

[0094] A user-specific classifier model may be a local classifier model that includes a
focused data model that includes or prioritizes tests on the features/entries that are
most relevant for identifying a user of the device, determining the persona of the user,
determining whether a device behavior is consistent with the persona of an identified
user, determining whether a device behavior is consistent with the ordinary usage of
that device by one of its identified users, or for determining whether a user’s activities

are indicative of a non-benign device behavior.

[0095] By dynamically generating user-specific, device-specific, and/or application-
specific classifier models locally in the mobile device, the various embodiments allow
the device processor to focus its monitoring and analysis operations on a small
number of features that are most important for determining whether the operations of
that specific mobile device and/or of a specific software application operating in that
device are consistent with the personality, habits, or ordinary usage patterns of a

known user of that specific device.

[0096] In an embodiment, the behavior analyzer module 306 may be configured to
classify a behavior as “suspicious” when the results of its behavioral analysis
operations do not provide sufficient information to classify a device behavior as either

benign or non-benign. The behavior analyzer module 306 may be configured to notify
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the behavior observer module 302 in response to determining that a device behavior 1s
suspicious. In response, the behavior observer module 302 may adjust the granularity
of its observations (i.e., the level of detail at which computing device features are
monitored) and/or change the factors or behaviors that are monitored based on
information received from the behavior analyzer module 306 (e.g., results of the
real-time analysis operations), generate or collect new or additional behavior
information, and send the new/additional information to the behavior analyzer module
306 for further analysis/classification. Such feedback communications between the
behavior observer module 302 and the behavior analyzer module 306 enable the
mobile device 300 to recursively increase the granularity of the observations (i.e.,
make finer or more detailed observations) or change the features/behaviors that are
observed until a collective behavior is classified as benign or non-benign, a source of
a suspicious or performance-degrading behavior is identified, until a processing or
battery consumption threshold is reached, or until the device processor determines that
the source of the suspicious or performance-degrading device behavior cannot be
identified from further changes, adjustments, or increases in observation granularity.
Such feedback communication also enable the mobile device 300 to adjust or modify
the behavior vectors and classifier models without consuming an excessive amount of

the computing device’s processing, memory, or energy resources.

[0097] In an embodiment, the behavior analyzer module 306 may be configured to
receive and analyze information collected by various mobile device sub-systems
and/or over various time periods to learn the normal operational behaviors of the
mobile device under a variety of contexts and conditions, and generate models of
normal mobile device behaviors (e.g., in the form of classifier models, etc.) under the
various contexts/conditions. In an embodiment, the behavior analyzer module 306
may be configured to correlate the collected behavior information or behavior vectors
against the generated behavior models, and perform behavior analysis operations
based on the correlations to determine whether the received observations conflict with

(or do not match) the learned normal operational behaviors.
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[0098] As a high-level example, the mobile device 300 might detect (via the collected
behavior information) that a camera has been used, that the mobile device 300 is
attempting to upload the picture to a server, and that an application on the mobile
device took the picture while the device was holstered and attached to the user’s belt.
The mobile device 300 may determine whether this detected behavior (e.g., usage of
the camera while holstered) 1s a behavior that is acceptable or common to the user.
This may be achieved by comparing the detected behavior (e.g., the generated
behavior vector) with past behaviors of the mobile device 300 or user. Since taking
pictures and uploading them to a server while holstered is an unusual behavior (as
may be determined from observed normal behaviors in the context of being holstered),
in this situation the computing device may recognize this as being inconsistent with a
pattern of ordinary usage of the computing device by the user, and initiate an

appropriate response (e.g., shutting off the camera, sounding an alarm, etc.).

[0099] In the various embodiments, the mobile device 300 may be configured to work
in conjunction with a network server to intelligently and efficiently identify the
features, factors, and data points that are most relevant to determining whether an
activity or behavior is non-benign. For example, the device processor may be
configured to receive a full classifier model from the network server, and use the
received full classifier model to generate lean classifier models (i.e., data/behavior
models) that are specific for the users of the device and/or to the features and
functionalities of the device or its software applications. The device processor may
use the full classifier model to generate a family of lean classifier models of varying
levels of complexity (or “leanness™). The leanest family of lean classifier models (i.e.,
the lean classifier model based on the fewest number of test conditions) may be
applied routinely until a behavior 1s encountered that the classifier model cannot
categorize as either benign or not benign (and therefore is categorized by the model as
suspicious), at which time a more robust (i.e., less lean) lean classifier model may be
applied in an attempt to categorize the behavior. The application of ever more robust

lean classifier models within the family of generated lean classifier models may be
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applied until a definitive classification of the behavior is achieved. In this manner, the
device processor can strike a balance between efficiency and accuracy by limiting the
use of the most complete, but resource-intensive lean classifier models to those

situations where a robust classifier model 1s needed to definitively classify a behavior.

[0100] In various embodiments, the device processor may be configured to generate
lean classifier models by converting a finite state machine representation or
expression included in a full classifier model into boosted decision stumps. The
device processor may prune or cull the full set of boosted decision stumps based on
the user-persona information or user-specific device features to generate a lean
classifier model that includes a subset of boosted decision stumps included in the full
classifier model. The device processor may then use the lean classifier model to

intelligently monitor, analyze and/or classify a device behavior.

[0101] Boosted decision stumps are one level decision trees that have exactly one node
(and thus one test question or test condition) and a weight value, and thus are well
suited for use in a binary classification of data/behaviors. That is, applying a behavior
vector to boosted decision stump results in a binary answer (e.g., Yes or No). For
example, if the question/condition tested by a boosted decision stump is “is the
frequency of Short Message Service (SMS) transmissions less than x per minute,”
applying a value of “3” to the boosted decision stump will result in either a “yes”
answer (for “less than 3” SMS transmissions) or a “no” answer (for “3 or more” SMS
transmissions). Boosted decision stumps are efficient because they are very simple
and primal (and thus do not require significant processing resources). Boosted
decision stumps are also very parallelizable, and thus many stumps may be applied or
tested in parallel/at the same time (e.g., by multiple cores or processors in the

computing device).

[0102] FIG. 4A illustrates a method 400 of detecting and responding to fake Ul events
in accordance with an embodiment. The method 400 may be performed by a device

processor of a mobile or resource constrained computing device. In block 402, the
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device processor may receive raw data from one or more device drivers of the
computing device. In block 404, the device processor may receive user interaction
(UD) information from high-level operating system (HLOS) of the computing device.
In block 406, the device processor may compare the raw data received from a device
driver to the user interaction event information received from the HLOS to generate a

first analysis result.

[0103] In determination block 408, the device processor may use the generated first
analysis result to determine whether the user interaction (UI) event correlates with a
user interaction. This determination may evaluate whether the raw data received from
one or more device drivers matches or otherwise correlates to the Ul event reported
to/by the HLOS. If the device driver raw data does not correlate (or match) to the Ul
information from the HLOS this may indicate that the received Ul event is a fake, and

the computing device may classify the detected Ul event as a fake Ul event.

[0104] In response to determining that the UI event correlates with a user interaction,
and thus the UTI event is not a fake UI event (i.e., determination block 408 = “Yes”),
the device processor may apply behavior vectors to classifier models to generate a
second analysis result in block 410. In block 412, the device processor may use the
second analysis results to determine whether a device behavior is non-benign. As part
of the operations of blocks 410 and 412, the device processor may perform any or all

of the operations discussed above with reference FIG. 3.

[0105] In response to determining that the UI event does not correlate with a user
interaction, and thus the Ul event 1s a fake Ul event (i.e., determination block 408 =
“No”), the device processor may report the fake Ul event to the behavior-based
security system of the computing device in block 414. In block 414, the device
processor may (e.g., via the behavior-based security system) classify the device
behavior as non-benign. Thus, in an embodiment, the behavior-based security system
may be configured to classify all software application programs that are determined to

be associated with a fake UI event as non-benign.
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[0106] FIG. 4B illustrates another method 420 of detecting and responding to fake UI
events in accordance with another embodiment. The method 420 may be performed
by a device processor of a mobile or resource constrained computing device that is
configured with processor-executable instructions to perform the operations of the
method. In block 422, the device processor may compare raw data received from one
or more device drivers to the Ul information received from HLOS. In determination
block 424, the device processor may use the comparison results to determine whether
the UI event correlates with a user interaction and thus is or is not a fake Ul event. In
response to determining that the UI event correlates with a user interaction, and thus
the UI event is not a fake Ul event (i.e., determination block 424 = “Yes”), the device
processor may generate analysis results by applying a behavior vector to a classifier
model that includes a decision node that tests a condition related to the user interaction
in block 426. In block 428, the device processor may use the analysis results to
determine whether a device behavior (e.g., activity of a software application, etc.) is

non-benign.

[0107] In response to determining that the UI event does not correlate with a user
interaction, and thus the Ul event 1s a fake Ul event (i.e., determination block 424 =
“No”), the device processor may report the fake Ul event to the behavior-based
security system in block 430. In block 432, the device processor may generate
analysis results by applying a behavior vector to a classifier model that does not
include any decision nodes that test conditions related to the user interaction in block
426. In block 428, the use analysis results to determine whether a device behavior

(e.g., activity of a software application, etc.) is non-benign.

[0108] The various embodiments may also be employed to recognize or at least
identify a possibility of a compromised user input sensor device driver. Such
capabilities may be useful for recognize when malware has comprised or is inserting a
face Ul event into the device driver for the user input device or sensor. For example,

if the device driver for a touch screen has been compromised, the raw data received
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from the device driver (e.g., in block 402) may itself be faked, in which case
comparing the Ul information from the HLOS may not be sufficient to detect this

level of attack.

[0109] To address this potential, FIG. 4C illustrates another method 450 for detecting
and responding to a compromised user input sensor device driver in accordance with
another embodiment. The method 450 may be performed by a device processor of a
mobile or resource constrained computing device, and may be performed in addition
to or as an alternative to either of the methods 400 and 420 described above. In block
452, the device processor may compare raw data received from one or more user input
sensors to data received from the input sensor device drivers. For example, the device
processor may receive the raw output data provided by a touch screen and compare

that data to data received from the touch screen device driver.

[0110] In determination block 454, the device processor may use the comparison
results to determine whether the user input sensor data correlates with the
corresponding device driver data. This determination may take into account the
different format of sensor data and device driver data. For example, the device
processor may apply a transformation or analyze the raw sensor data in a manner
similar to a device driver in order to determine the device driver output data that
should be received based on the raw sensor data, and then compare the received
device driver data to the expected data to determine whether there is a match. For
example, in determination block 454, the device processor may tap into the stream of
output data provided by the touch screen, process the touch screen data stream to
determine an appropriate output from the touch screen device driver, and then
compare the determined appropriate output with the raw data produced by the touch

screen device driver.

[0111] In response to determining that the raw UI sensor data correlates with the raw
data received from the device driver for that sensor (i.e., determination block 454 =

“Yes”), the device processor may generate analysis results by applying a behavior
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vector to a classifier model that includes a decision node that tests a condition related

to the user interaction in block 426 as described above.

[0112] In response to determining that the raw UI sensor data correlates with the raw
data received from the device driver for that sensor (i.e., determination block 424 =
“No”), the device processor may report to the behavior-based security system that the
device driver is potentially corrupted in block 456. In some embodiments the lack of
correlation of raw sensor data to device driver data may be sufficient to determine that
a malware or similarly unacceptable condition exists, in which case the report to the
behavior-based security system may be sufficient to classify a device behavior (e.g.,
the activity of the software application) as non-benign. However, in some
embodiments the comparison of raw sensor data to device driver data may not be
sufficient to definitively determine that the device driver is compromised because data
mismatch may be due to problems with the sensor, noise in the connection between
the sensor and the device driver, the device driver being of a different version than
emulated by the device processor in determination block 454, etc. Thus, in such
embodiments the report to the security system may only be that there is a potential
that the device driver has been compromised, and further analysis by the behavior-
based security system may be necessary (e.g., in blocks 432 and 428) in order to

classify the device behavior as benign or non-benign.

[0113] In block 432, the device processor may generate analysis results by applying a
behavior vector to a classifier model that does not include any decision nodes that test
conditions related to the user interaction as described above. This analysis may avoid
being fooled by a faked UI event initiated at the device driver level, as well as avoid
false positives that could result from malfunctions in or between either of the Ul

sensor and the sensor’s device driver.

[0114] In block 428, the device processor may use the analysis results from either
blocks 426 or 432 to determine whether a device behavior (e.g., activity of a software

application, etc.) is non-benign as described above.
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[0115] FIG. 5 illustrates an embodiment method 500 of using a family of lean
classifier model to classify a device behavior in the computing device. Method 500
may be performed by a device processor of a mobile or resource constrained
computing device that is configured with processor-executable instructions to perform

the operations of the method.

[0116] In block 502, the device processor my perform observations to collect behavior
information from various components that are instrumented at various levels of the
mobile device system. In an embodiment, this may be accomplished via the behavior
observer module 302 discussed above with reference to FIG. 3. In block 504, the
device processor may generate a behavior vector characterizing the collected behavior
information and/or a mobile device behavior. Also in block 504, the device processor
may use a full classifier model received from a network server to generate a lean
classifier model or a family of lean classifier models of varying levels of complexity
(or “leanness™). To accomplish this, the device processor may cull a family of
boosted decision stumps included in the full classifier model to generate lean classifier
models that include a reduced number of boosted decision stumps and/or evaluate a
limited number of test conditions. In an embodiment, one or more of the lean

classifier models may be user-specific classifier models.

[0117] In block 506, the device processor may select the leanest classifier in the
family of lean classifier models (i.e., the model based on the fewest number of
different mobile device states, features, behaviors, or conditions) that has not yet been
evaluated or applied by the mobile device. In an embodiment, this may be
accomplished by the device processor selecting the first classifier model in an ordered
list of classifier models. In block 508, the device processor may apply collected
behavior information or behavior vectors to each boosted decision stump in the
selected lean classifier model. Because boosted decision stumps are binary decisions
and the lean classifier model is generated by selecting many binary decisions that are

based on the same test condition, the process of applying a behavior vector to the
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boosted decision stumps in the lean classifier model may be performed in a parallel
operation. Alternatively, the behavior vector may be truncated or filtered to just
include the limited number of test condition parameters included in the lean classifier

model, thereby further reducing the computational effort in applying the model.

[0118] In block 510, the device processor may compute or determine a weighted
average of the results of applying the collected behavior information to each boosted
decision stump in the lean classifier model. In block 512, the device processor may
compare the computed weighted average to a threshold value. In determination block
514, the device processor may determine whether the results of this comparison and/or
the results generated by applying the selected lean classifier model are suspicious. For
example, the device processor may determine whether these results may be used to
classify a behavior as either malicious or benign with a high degree of confidence, and

if not treat the behavior as suspicious.

[0119] If the device processor determines that the results are suspicious (e.g.,
determination block 514 = “Yes”), the device processor may repeat the operations in
blocks 506-512 to select and apply a stronger (i.e., less lean) classifier model that
evaluates more device states, features, behaviors, or conditions until the behavior 1s
classified as malicious or benign with a high degree of confidence. If the device
processor determines that the results are not suspicious (e.g., determination block 514
= “No"), such as by determining that the behavior can be classified as either malicious
or benign with a high degree of confidence, in block 516, the device processor may
use the result of the comparison generated in block 512 to classify a behavior of the

mobile device as benign or potentially malicious.

[0120] In an alternative embodiment method, the operations described above may be
accomplished by sequentially selecting a boosted decision stump that is not already in
the lean classifier model; identifying all other boosted decision stumps that depend
upon the same mobile device state, feature, behavior, or condition as the selected

decision stump (and thus can be applied based upon one determination result);
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including in the lean classifier model the selected and all identified other boosted
decision stumps that that depend upon the same mobile device state, feature, behavior,
or condition; and repeating the process for a number of times equal to the determined
number of test conditions. Because all boosted decision stumps that depend on the
same test condition as the selected boosted decision stump are added to the lean
classifier model each time, limiting the number of times this process is performed will

limit the number of test conditions included in the lean classifier model.

[0121] FIG. 6 illustrates an example method 600 suitable for generating a decision
tree/classifier that is suitable for use in accordance with various embodiments.
Method 600 may be performed by a device processor of a mobile or resource
constrained computing device that is configured with processor-executable
instructions to perform the operations of the method. In block 602, the device
processor may generate and/or execute a decision tree/classifier, collect a training
sample from the execution of the decision tree/classifier, and generate a new classifier
model (h1(x)) based on the training sample. The training sample may include
information collected from previous observations or analysis of mobile device
behaviors, software applications, or processes in the mobile device. The training
sample and/or new classifier model (h1(x)) may be generated based the types of
question or test conditions included in previous classifiers and/or based on accuracy or
performance characteristics collected from the execution/application of previous

data/behavior models or classifiers.

[0122] In block 604, the device processor may boost (or increase) the weight of the
entries that were misclassified by the generated decision tree/classifier (h1(x)) to
generate a second new tree/classifier (h2(x)). In an embodiment, the training sample
and/or new classifier model (h2(x)) may be generated based on the mistake rate of a
previous execution or use (h1(x)) of a classifier. In an embodiment, the training

sample and/or new classifier model (h2(x)) may be generated based on attributes
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determined to have that contributed to the mistake rate or the misclassification of data

points in the previous execution or use of a classifier.

[0123] In an embodiment, the misclassified entries may be weighted based on their
relatively accuracy or effectiveness. In operation 606, the processor may boost (or
increase) the weight of the entries that were misclassified by the generated second
tree/classifier (h2(x)) to generate a third new tree/classifier (h3(x)). In operation 608,
the operations of 604-606 may be repeated to generate “t” number of new

tree/classifiers (h(x)).

[0124] By boosting or increasing the weight of the entries that were misclassified by
the first decision tree/classifier (h1(x)), the second tree/classifier (h2(x)) may more
accurately classify the entities that were misclassified by the first decision
tree/classifier (h1(x)), but may also misclassify some of the entities that where
correctly classified by the first decision tree/classifier (h1(x)). Similarly, the third
tree/classifier (h3(x)) may more accurately classify the entities that were misclassified
by the second decision tree/classifier (h2(x)) and misclassify some of the entities that
where correctly classified by the second decision tree/classifier (h2(x)). That is,
generating the family of tree/classifiers h1(x) - h(x) may not result in a system that
converges as a whole, but results in a number of decision trees/classifiers that may be

executed in parallel.

[0125] FIG. 7 illustrates an example method 700 for performing dynamic and
adaptive observations in accordance with an embodiment. Method 700 may be
performed by a device processor of a mobile or resource constrained computing
device that is configured with processor-executable instructions to perform the
operations of the method. In block 702, the device processor may perform coarse
observations by monitoring/observing a subset of a large number of factors, behaviors,
and activities that could contribute to the mobile device’s degradation. In block 703,
the device processor may generate a behavior vector characterizing the coarse

observations and/or the mobile device behavior based on the coarse observations. In
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block 704, the device processor may identify subsystems, processes, and/or
applications associated with the coarse observations that may potentially contribute to
the mobile device’s degradation. This may be achieved, for example, by comparing
information received from multiple sources with contextual information received from
sensors of the mobile device. In block 706, the device processor may perform

behavioral analysis operations based on the coarse observations.

[0126] In determination block 708, the device processor may determine whether
suspicious behaviors or potential problems can be identified and corrected based on
the results of the behavioral analysis. When the device processor determines that the
suspicious behaviors or potential problems can be identified and corrected based on
the results of the behavioral analysis (i.e., determination block 708 = “Yes™), in block
718, the processor may initiate a process to correct the behavior and return to block

702 to perform additional coarse observations.

[0127] When the device processor determines that the suspicious behaviors or
potential problems cannot be identified and/or corrected based on the results of the
behavioral analysis (i.e., determination block 708 = “No”), in determination block 709
the device processor may determine whether there is a likelihood of a problem. In an
embodiment, the device processor may determine that there is a likelihood of a
problem by computing a probability of the mobile device encountering potential
problems and/or engaging in suspicious behaviors, and determining whether the
computed probability is greater than a predetermined threshold. When the device
processor determines that the computed probability is not greater than the
predetermined threshold and/or there is not a likelihood that suspicious behaviors or
potential problems exist and/or are detectable (i.e., determination block 709 = “No”),

the processor may return to block 702 to perform additional coarse observations.

[0128] When the device processor determines that there is a likelihood that suspicious
behaviors or potential problems exist and/or are detectable (i.e., determination block

709 =*“Yes”), in block 710, the device processor may perform deeper
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logging/observations or final logging on the identified subsystems, processes or
applications. In block 712, the device processor may perform deeper and more
detailed observations on the identified subsystems, processes or applications. In block
714, the device processor may perform further and/or deeper behavioral analysis
based on the deeper and more detailed observations. In determination block 708, the
device processor may again determine whether the suspicious behaviors or potential
problems can be identified and corrected based on the results of the deeper behavioral
analysis. When the device processor determines that the suspicious behaviors or
potential problems cannot be identified and corrected based on the results of the
deeper behavioral analysis (i.e., determination block 708 = “No”), the processor may
repeat the operations in blocks 710-714 until the level of detail is fine enough to
identify the problem or until it is determined that the problem cannot be i1dentified

with additional detail or that no problem exists.

[0129] When the device processor determines that the suspicious behaviors or
potential problems can be identified and corrected based on the results of the deeper
behavioral analysis (i.e., determination block 708 = “Yes™), in block 718, the device
processor may perform operations to correct the problem/behavior, and the processor

may return to block 702 to perform additional operations.

[0130] In an embodiment, as part of blocks 702-718 of method 700, the device
processor may perform real-time behavior analysis of the system’s behaviors to
identify suspicious behaviors from limited and coarse observations, to dynamically
determine the behaviors to observe in greater detail, and to dynamically determine the
precise level of detail required for the observations. This enables the device processor
to efficiently identify and prevent problems from occurring, without requiring the use

of a large amount of processor, memory, or battery resources on the device.

[0131] The various embodiments improve upon existing solutions by using behavior
analysis and/or machine learning techniques (as opposed to a permissions, policy, or

rules-based approaches) to monitor and analyze the collective behavior of a select
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group of software applications. The use of behavior analysis or machine learning
techniques is important because modern computing devices are highly configurable
and complex systems, and the factors that are most important for determining whether
software applications are colluding may be different in each device. Further, different
combinations of device features/factors may require an analysis in each device in
order for that device to determine whether software applications are colluding. Yet,
the precise combination of features/factors that require monitoring and analysis often
can only be determined using information obtained from the specific computing
device in which the activity or activities is/are performed and at the time the
activity/activities is/are underway. For these and other reasons, existing solutions are
not adequate for monitoring, detecting, and characterizing the collective behavior of,
or the relationships between, a plurality of software applications in the computing
device, in real-time, while the behavior is underway, and without consuming a
significant amount of the computing device’s processing, memory, or power

resources.

[0132] The various embodiments, including the embodiment discussed above with
reference to FIGs. 2-7, may be implemented on a variety of computing devices
configured with processor-executable instruction, an example of which is illustrated in
FIG. 8 in the form of a smartphone. A smartphone 800 may include a processor 8§02
coupled to internal memory 804, a display 812, and to a speaker 814. Additionally,
the smartphone 800 may include an antenna for sending and receiving electromagnetic
radiation that may be connected to a wireless data link and/or cellular telephone
transceiver 808 coupled to the processor 802. Smartphones 800 typically also include

menu selection buttons or rocker switches 820 for receiving user inputs.

[0133] A typical smartphone 800 also includes a sound encoding/decoding (CODEC)
circuit 806, which digitizes sound received from a microphone into data packets
suitable for wireless transmission and decodes received sound data packets to generate

analog signals that are provided to the speaker to generate sound. Also, one or more
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of the processor 802, wireless transceiver 808 and CODEC 806 may include a digital

signal processor (DSP) circuit (not shown separately).

[0134] The processor 802 may be any programmable microprocessor, microcomputer
or multiple processor chip or chips that can be configured by processor-executable
instructions (applications) to perform a variety of functions and operations, including
the operations of the various embodiments described below. In some mobile devices,
multiple processors 802 may be provided, such as one processor dedicated to wireless
communication functions and one processor dedicated to running other applications.
Typically, software applications may be stored in the internal memory 804 before they
are accessed and loaded into the processor 802. The processor 802 may include
internal memory sufficient to store the application software instructions. In various
embodiments, the processor 802 may be a device processor, processing core, or an
SOC (such as the example SOC 100 illustrated in FIG. 1). In an embodiment, the
smartphone 800 may include an SOC, and the processor 802 may be one of the
processors included in the SOC (such as one of the processors 102, 104, 106, 108, 110
illustrated in FIG. 1).

[0135] Various embodiments may further include a computing device that includes
means for comparing raw data received from a user input device to user interaction
event information to generate analysis results, and means for using the generated
analysis results to determine whether a user interaction (UI) event correlates with a
user of the computing device. In some embodiments, the means for comparing raw
data received from the user input device to the user interaction event information to
generate the analysis results may include means for comparing raw data received from
a device driver to interaction information received from a high level operating system.
In some embodiments, the computing device may further include means for
classifying an activity of a software application as non-benign in response to
determining that the UI event does not correlate with a user of the computing device.

In some embodiments, the computing device may further include means for
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generating a behavior vector that characterizes an activity of a software application,
means for applying the generated behavior vector to a classifier model that includes a
decision node that evaluates whether there is a UI event that corresponds to the
activity in response to determining that the Ul event does not correlate with a user of
the computing device, and means for using a result of applying the generated behavior
vector to the classifier model to determine whether the activity of the software
application is non-benign. In some embodiments, the computing device may further
include means for generating a behavior vector that characterizes an activity of a
software application, means for selecting a classifier model that does not include a
decision node that tests whether there 1s a Ul event that corresponds to the activity in
response to determining that the UI event does not correlate with a user of the
computing device, means for applying the generated behavior vector to the selected
classifier model to generate additional analysis results, and means for using the
generated additional analysis results to determine whether the activity of the software
application is non-benign. In some embodiments, the computing device may further
include means for selecting a family of robust classifier models in response to
determining that the UI event does not correlate with a user of the computing device,
and means for applying a plurality of behavior vectors to the selected family of robust
classifier models to determine whether an activity of a software application 1s non-

benign.

2% <¢

[0136] As used in this application, the terms “component,” “module,” and the like are
intended to include a computer-related entity, such as, but not limited to, hardware,
firmware, a combination of hardware and software, software, or software in execution,
which are configured to perform particular operations or functions. For example, a
component may be, but is not limited to, a process running on a processor, a
processor, an object, an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application running on a computing device

and the computing device may be referred to as a component. One or more

components may reside within a process and/or thread of execution, and a component
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may be localized on one processor or core and/or distributed between two or more
processors or cores. In addition, these components may execute from various non-
transitory computer readable media having various instructions and/or data structures
stored thereon. Components may communicate by way of local and/or remote
processes, function or procedure calls, electronic signals, data packets, memory
read/writes, and other known network, computer, processor, and/or process related

communication methodologies.

[0137] Computer program code or “program code” for execution on a programmable
processor for carrying out operations of the various embodiments may be written in a
high level programming language such as C, C++, C#, Smalltalk, Java, JavaScript,
Visual Basic, a Structured Query Language (e.g., Transact-SQL), Perl, or in various
other programming languages. Program code or programs stored on a computer
readable storage medium as used in this application may refer to machine language

code (such as object code) whose format is understandable by a processor.

[0138] Many mobile computing devices operating system kernels are organized into a
user space (where non-privileged code runs) and a kernel space (where privileged
code runs). This separation is of particular importance in Android® and other general
public license (GPL) environments where code that is part of the kernel space must be
GPL licensed, while code running in the user-space may not be GPL licensed. It
should be understood that the various software components/modules discussed here
may be implemented in either the kernel space or the user space, unless expressly

stated otherwise.

[0139] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples, and are not intended to require or imply that
the operations of the various embodiments must be performed in the order presented.
As will be appreciated by one of skill in the art the order of operations in the
foregoing embodiments may be performed in any order. Words such as “thereafter,”

“then,” “next,” etc. are not intended to limit the order of the operations; these words
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are simply used to guide the reader through the description of the methods. Further,
any reference to claim elements in the singular, for example, using the articles “a,”

“an” or “the” 1s not to be construed as limiting the element to the singular.

[0140] The various illustrative logical blocks, modules, circuits, and algorithm
operations described in connection with the embodiments disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been described above generally
in terms of their functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application and design constraints
imposed on the overall system. Skilled artisans may implement the described
functionality in varying ways for each particular application, but such implementation
decisions should not be interpreted as causing a departure from the scope of the

present invention.

[0141] The hardware used to implement the various illustrative logics, logical blocks,
modules, and circuits described in connection with the embodiments disclosed herein
may be implemented or performed with a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any combination thereof designed
to perform the functions described herein. A general-purpose processor may be a
multiprocessor, but, in the alternative, the processor may be any conventional
processor, controller, microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a combination of a DSP
and a multiprocessor, a plurality of multiprocessors, one or more multiprocessors in
conjunction with a DSP core, or any other such configuration. Alternatively, some

steps or methods may be performed by circuitry that is specific to a given function.
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[0142] In one or more exemplary embodiments, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one or more processor-
executable instructions or code on a non-transitory computer-readable storage medium
or non-transitory processor-readable storage medium. The operations of a method or
algorithm disclosed herein may be embodied in a processor-executable software
module which may be in the form of stored processor-executable software instruction
store on a non-transitory computer-readable storage medium or processor-readable
storage medium. Non-transitory computer-readable or processor-readable storage
media may be any storage media that may be accessed by a computer or a processor.
By way of example but not limitation, such non-transitory computer-readable or
processor-readable media may include RAM, ROM, EEPROM, FLASH memory,
CD-ROM or other optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to store desired program code
in the form of instructions or data structures and that may be accessed by a computer.
Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk, and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above are also included within the scope of non-transitory
computer-readable and processor-readable media. Additionally, the operations of a
method or algorithm may reside as one or any combination or set of codes and/or
instructions on a non-transitory processor-readable medium and/or computer-readable

medium, which may be incorporated into a computer program product.

[0143] The preceding description of the disclosed embodiments is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments
without departing from the spirit or scope of the invention. Thus, the present

invention is not intended to be limited to the embodiments shown herein but 1s to be
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accorded the widest scope consistent with the following claims and the principles and

novel features disclosed herein.
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CLAIMS
What is claimed is:

1. A method of analyzing an activity of a software application operating on a
computing device, comprising:

comparing raw data received from a user input device of the computing device
to user interaction event information received in the computing device to generate
analysis results; and

using the analysis results to determine whether a user interaction event

correlates with a user of the computing device.

2. The method of claim 1, wherein:

the raw data received from the user input device comprises raw data received
from a device driver; and

the user interaction event information received in the computing device
comprises interaction information received from a high level operating system of the

computing device.

3. The method of claim 2, further comprising classifying the activity of the software
application as non-benign in response to determining that the user interaction event

does not correlate with a user of the computing device.

4. The method of claim 2, further comprising;:

generating a behavior vector that characterizes the activity of the software
application;

applying the behavior vector to a classifier model that includes a decision node
that evaluates whether there is a user interaction event that corresponds to the activity
in response to determining that the user interaction event does not correlate with a user

of the computing device; and
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using a result of applying the behavior vector to the classifier model to

determine whether the activity of the software application is non-benign.

5. The method of claim 2, further comprising;:

generating a behavior vector that characterizes the activity of the software
application;

selecting a classifier model that does not include a decision node that tests
whether there is a user interaction event that corresponds to the activity in response to
determining that the user interaction event does not correlate with a user of the
computing device;

applying the behavior vector to the selected classifier model to generate
additional analysis results; and

using the additional analysis results to determine whether the activity of the

software application is non-benign.

6. The method of claim 1, further comprising:
selecting a family of robust classifier models in response to determining that
the user interaction event does not correlate with a user of the computing device; and
applying a plurality of behavior vectors to the selected family of robust
classifier models to determine whether the activity of the software application is non-

benign.

7. The method of claim 1, further comprising comparing raw data received from a
first sensor of the computing device to raw data received from a second sensor of the
computing device to determine whether the raw data received from the first sensor is
consistent with the raw data received from the second sensor,

wherein comparing the raw data received from the user input device of the
computing device to the user interaction event information received in the computing

device to generate the analysis results is preformed in response to determining that the
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raw data received from the first sensor 1s consistent with the raw data received from

the second sensor.

8. The method of claim 7, wherein comparing raw data received from the first sensor
to the raw data received from the second sensor comprises comparing results of

applying behavior vectors to classifier models.

9. The method of claim 1, wherein:

the raw data received from the user input device comprises raw data received
from a user input sensor;

the user interaction event information received in the computing device
comprises data received from a device driver for the user input sensor; and

using the analysis results to determine whether the user interaction event
correlates with a user of the computing device comprises determining that the user
interaction event does not correlate with a user of the computing device in response to
the raw data received from the user input sensor does not correlate to the data received

from the device driver for the user input sensor.

10. The method of claim 9, wherein:
the user input sensor comprises a touch screen; and

the device driver comprises a touch screen device driver.
11. The method of claim 9, further comprising:

classifying the activity of the software application as non-benign in response to
determining that the user interaction event does not correlate with a user of the

computing device.

12. The method of claim 9, further comprising;:
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generating a behavior vector that characterizes the activity of the software
application;

applying the behavior vector to a classifier model that does not include a
decision node that evaluates conditions related to user interactions with the computing
device in response to determining that the user interaction event does not correlate
with a user of the computing device; and

using a result of applying the behavior vector to the classifier model to

determine whether the activity of the software application is non-benign.

13. A computing device, comprising:

means for comparing raw data received from a user input device to user
interaction event information to generate analysis results; and

means for using the analysis results to determine whether a user interaction

(UI) event correlates with a user of the computing device.

14. The computing device of claim 13, wherein means for comparing raw data
received from the user input device to the user interaction event information to
generate the analysis results comprises means for comparing raw data received from a

device driver to interaction information received from a high level operating system.

15. The computing device of claim 14, further comprising means for classifying an
activity of a software application as non-benign in response to determining that the

user interaction event does not correlate with a user of the computing device.

16. The computing device of claim 14, further comprising:

means for generating a behavior vector that characterizes an activity of a
software application;

means for applying the behavior vector to a classifier model that includes a

decision node that evaluates whether there is a user interaction event that corresponds
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to the activity in response to determining that the user interaction event does not
correlate with a user of the computing device; and
means for using a result of applying the behavior vector to the classifier model

to determine whether the activity of the software application 1s non-benign.

17. The computing device of claim 14, further comprising:

means for generating a behavior vector that characterizes an activity of a
software application;

means for selecting a classifier model that does not include a decision node that
tests whether there is a user interaction event that corresponds to the activity in
response to determining that the user interaction event does not correlate with a user
of the computing device;

means for applying the behavior vector to the selected classifier model to
generate additional analysis results; and

means for using the additional analysis results to determine whether the activity

of the software application is non-benign.

18. The computing device of claim 13, further comprising:

means for selecting a family of robust classifier models in response to
determining that the user interaction event does not correlate with a user of the
computing device; and

means for applying a plurality of behavior vectors to the selected family of
robust classifier models to determine whether an activity of a software application is

non-benign.
19. A computing device, comprising:

a processor configured with processor-executable instructions to perform

operations comprising:
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comparing raw data received from a user input device to user interaction
event information to generate analysis results; and
using the analysis results to determine whether a user interaction (UI)

event correlates with a user of the computing device.

20. The computing device of claim 19, wherein the processor 1s configured with
processor-executable instructions to perform operations such that comparing raw data
received from the user input device to the user interaction event information to
generate the analysis results comprises comparing raw data received from a device

driver to interaction information received from a high level operating system.

21. The computing device of claim 20, wherein the processor 1s configured with
processor-executable instructions to perform operations further comprising classifying
an activity of a software application as non-benign in response to determining that the

user interaction event does not correlate with a user of the computing device.

22. The computing device of claim 20, wherein the processor is configured with
processor-executable instructions to perform operations further comprising:

generating a behavior vector that characterizes an activity of a software
application;

applying the behavior vector to a classifier model that includes a decision node
that evaluates whether there is a user interaction event that corresponds to the activity
in response to determining that the user interaction event does not correlate with a user
of the computing device; and

using a result of applying the behavior vector to the classifier model to

determine whether the activity of the software application is non-benign.

23. The computing device of claim 20, wherein the processor 1s configured with

processor-executable instructions to perform operations further comprising:
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generating a behavior vector that characterizes an activity of a software
application;

selecting a classifier model that does not include a decision node that tests
whether there is a user interaction event that corresponds to the activity in response to
determining that the user interaction event does not correlate with a user of the
computing device;

applying the behavior vector to the selected classifier model to generate
additional analysis results; and

using the additional analysis results to determine whether the activity of the

software application is non-benign.

24. The computing device of claim 19, wherein the processor 1s configured with
processor-executable instructions to perform operations further comprising:
selecting a family of robust classifier models in response to determining that
the user interaction event does not correlate with a user of the computing device; and
applying a plurality of behavior vectors to the selected family of robust
classifier models to determine whether an activity of a software application 1s non-

benign.

25. A non-transitory computer-readable storage medium having stored thereon
processor-executable instructions configured to cause a processor of a computing
device to perform operations comprising:

comparing raw data received from a user input device to user interaction event
information to generate analysis results; and

using the analysis results to determine whether a user interaction (UI) event

correlates with a user of the computing device.

26. The non-transitory computer-readable storage medium of claim 25, wherein the

stored processor-executable instructions are configured to cause a processor to
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perform operations such that comparing raw data received from the user input device
to the user interaction event information comprises comparing raw data received from

a device driver to interaction information received from a high level operating system.

27. The non-transitory computer-readable storage medium of claim 26, wherein the
stored processor-executable instructions are configured to cause a processor to
perform operations further comprising classifying an activity of a software application
as non-benign in response to determining that the user interaction event does not

correlate with a user of the computing device.

28. The non-transitory computer-readable storage medium of claim 27, wherein the
stored processor-executable instructions are configured to cause a processor to
perform operations further comprising:

generating a behavior vector that characterizes the activity of the software
application;

applying the behavior vector to a classifier model that includes a decision node
that evaluates whether there is a user interaction event that corresponds to the activity
in response to determining that the user interaction event does not correlate with a user
of the computing device; and

using a result of applying the behavior vector to the classifier model to

determine whether the activity of the software application is non-benign.

29. The non-transitory computer-readable storage medium of claim 27, wherein the
stored processor-executable instructions are configured to cause a processor to
perform operations further comprising:

generating a behavior vector that characterizes the activity of the software
application;

selecting a classifier model that does not include a decision node that tests

whether there is a user interaction event that corresponds to the activity in response to
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determining that the user interaction event does not correlate with a user of the
computing device;

applying the behavior vector to the selected classifier model to generate
additional analysis results; and

using the additional analysis results to determine whether the activity of the

software application is non-benign.

30. The non-transitory computer-readable storage medium of claim 26, wherein the
stored processor-executable instructions are configured to cause a processor to
perform operations further comprising:
selecting a family of robust classifier models in response to determining that
the user interaction event does not correlate with a user of the computing device; and
applying a plurality of behavior vectors to the selected family of robust
classifier models to determine whether an activity of a software application 1s non-

benign.
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