005/029369 A2 | I 0001 0 OO0 00 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
31 March 2005 (31.03.2005)

A O OO

(10) International Publication Number

WO 2005/029369 A2

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2004/030144

(22) International Filing Date:

15 September 2004 (15.09.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/502,908 15 September 2003 (15.09.2003) US
60/513,038 20 October 2003 (20.10.2003) US
60/532,956 22 December 2003 (22.12.2003) US
(71) Applicant (for all designated States except US): AB

INITIO SOFTWARE CORPORATION [US/US]; 201
Spring Street, Lexington, MA 02421 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GOULD, Joel
[US/US]; 50 Thornberry Rd., Winchester, MA 01890
(US). FEYNMAN, Carl [US/US]; 21 Mossfield Rd.,
Waban, MA 02468 (US). BAY, Paul [US/US]; 7 Gorham
St., Arlington, MA 02474-1417 (US).

(74) Agent: HENNESSEY, Gilbert, H.; Fish and Richardson
P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP,KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, T/,

[Continued on next page]

(54) Title: DATA PROFILING

/ / {' 112
114 >
ST
00 Store Intertace [~ [~
3
Profiling 116 né
r Module
120 124
o N Data Store
Modvle
%} Soyrees Proflragdtead Puckn Storge Sboyib T Sk
, p . 7
9 2o o o
\© /

o (57) Abstract: Processing data includes profiling data from a data source, including reading the data from the data source, computing
summary data characterizing the data while reading the data, and storing profile information that is based on the summary data. The
data is then processed from the data source. This processing includes accessing the stored profile information and processing the

data according to the accessed profile information.

WO 2005/029369 A2

OO RO

TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,

TJ,TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG)

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

Data Profiling

Cross-Reference to Related Applications

This application claims the benefit of U.S. Provisional Applications No. 60/502,908, filed
September 15, 2003, No. 60/513,038, filed October 20, 2003, and No. 60/532,956, filed
December 22, 2003. The above referenced applications are incorporated herein by reference.

Background

This invention relates to data profiling.

Stored data sets often include data for which various characteristics are not known
beforehand. For example, ranges of values or typical values for a data set, relationships between
different fields within the data set, or functional dependencies among values in different fields,
may be unknown. Data profiling can involve examining a source of a data set in order to
determine such characteristics. One use of data profiling systems is to collect information about a
data set which is then used to design a staging area for loading the data set before further
processing. Transformations necessary to map the data set to a desired target format and location
can then be performed in the staging area based on the information collected in the data
profiling. Such transformations may be necessary, for example, to make third-party data
compatible with an existing data store, or to transfer data from a legacy computer system into a

new computer system.

Summary

|
In one aspect, in general, the invention features a method and corresponding software and

a system for processing data. Data from a data source is profiled. This profiling includes reading
the data from the data source, computing summary data characterizing the data while reading the
data, and storing profile information that is based on the summary data. The data is then
processed from the data source. This processing includes accessing the stored profile information

and processing the data according to the accessed profile information.

In another aspect, in general, the invention features a method for processing data. Data
from a data source is profiled. This profiling includes reading the data from the data source,
computing summary data characterizing the data while reading the data, and storing profile
information that is based on the summary data. Profiling the data includes profiling the data in
parallel, including partitioning the data into parts and processing the parts using separate ones of
a first set of parallel components.

-1-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

Aspects of the invention can include one or more of the following features:
Processing the data from the data source includes reading the data from the data source.

Profiling the data is performed without maintaining a copy of the data outside the data
source. For example, the data can include records with a variable record structure such as
conditional fields and/or variable numbers of fields. Computing summary data while reading the
data includes interpreting the variable record structure records while computing summary data

characterizing the data.

The data source includes a data storage system, such as a database system, or a serial or

parallel file system.

Computing the summary data includes counting a number of occurrences for each of a set
of distinct values for a field. The profile information can include statistics for the field based on
the counted number of occurrences for said field.

A metadata store that contains metadata related to the data source is maintained. Storing
the profile information can include updating the metadata related to the data source. Profiling the

data and processing the data can each make use of metadata for the data source

Profiling data from the data source further includes determining a format specification
based on the profile information. It can also include determining a validation specification based
on the profile information. Invalid records can be identified during the processing of the data
based on the format specification and/or the validation specification.

Data transformation instructions are specified based on the profile information.
Processing the data can then include applying the transformation instructions to the data.

Processing the data includes importing the data into a data storage subsystem. The data
can be validated prior to importing the data into a data storage subsystem. Such validating of the
data can include comparing characteristics of the data to reference characteristics for the data,
such as by comparing statistical properties of the data.

The profiling of the data can be performed in parallel. This can include partitioning the
data into parts and processing the parts using separate ones of a first set of parallel components.
Computing the summary data for different fields of the data can include using separate ones of a
second set of parallel components. Outputs of the first set of parallel components can be
repartitioned to form inputs for the second set of parallel components. The data can be read from
a parallel data source, each part of the parallel data source being processed by a different one of
the first set of parallel components.

_2

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

In another aspect, in general, the invention features a method and corresponding software
and a system for processing data. Information characterizing values of a first field in records of ¢
first data source and information characterizing values of a second field in records of a second
data source are accepted. Quantities characterizing a relationship between the first field and the
second field are then computed based on the accepted information. Information relating the first
field and the second field is presented.

Aspects of the invention can include one or more of the following features.
The information relating the first field and the second field is presented to a user.

The first data source and the second data source are either the same data source, or are
separate data sources. Either or both of the data source or sources can be a database table, or a
file.

The quantities characterizing the relationship include quantities characterizing joint

characteristics of the values of the first field and of the second field.

The information. characterizing the values of the first field (or similarly of the second
field) includes information characterizing a distribution of values of that field. Such information
may be stored in a data structure, such as a “census” data structure. The information
characterizing the distribution of values of the first field can include multiple data records, each
associating a different value and a corresponding number of occurrences of that value in the first
field in the first data source. Similarly, information characterizing the distribution of values of
the second field can include multiple records of the same or similar format.

The information. characterizing the distribution of values of the first field and of the
second field is processed to compute quantities related to a multiple different categories of co-

occurrence of values.

The quantities related to the categories of co-occurrence of values include multiple data
records, each associated with one of the categories of co-occurrence and including a number of

different values in the first and the second fields that are in that category.

Information characterizing a distribution of values in a “join” of the first data source and
the second data source on the first field and the second field, respectively, is computed. This
computation can include computing quantities related to a plurality of categories of co-
occurrence of values. Examples of such categories include values that occur at least once in one
of the first and the second fields but not in the other of the fields, values that occur exactly once
in each of the first and the second fields, values that occur exactly once in one of the first and the

_3.

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

second fields and more than once in the other of the fields, and values that occur more than once
in each of the first and the second fields.

The steps of accepting information characterizing values and computing quantities
characterizing joint characteristics of the values are repeated for multiple different pairs of fields,
one of field from the first data source and the other field from the second data source.
Information relating the fields of one or more of the plurality of pairs of fields can then be

presented to the user.

) Presenting the information relating the fields of one or more of the pairs of fields includes
identifying candidate types of relationships of fields. Examples of such types of relationships of

fields include a primary key and foreign key relationship and a common domain relationship.

In another aspect, in general, the invention features a method and corresponding software
and a system for processing data. A plurality of subsets of fields of data records of a data source
are identified. Co-occurrence statistics are determined for each of the plurality of subsets. One
or more of the plurality of subsets is identified as having a functional relationship among the
fields of the identified subset.

Aspects of the invention can include one or more of the following features.
At least one of the subsets of fields is a subset of two fields.

Identifying one or more of the plurality of subsets as having a functional relationship
among the fields of the identified subset includes identifying one or more of the plurality of

subsets as having one of a plurality of possible predetermined functional relationships.

Determining the co-occurrence statistics includes forming data elements each identifying
a pair of fields and identifying a pair of values occurring in the pair of fields in one of the data

records.

Determining the co-occurrence statistics includes partitioning the data records into parts,
the data records having a first field and a second field, determining a quantity based on a
distribution of values that occur in the second field of one or more records in a first of the parts,
the one or more records having a common value occurring in a first field of the one or more
records, and combining the quantity with other quantities from records in other of the parts to

generate a total quantity.

Identifying one or more of the plurality of subsets as having a functional relationship
among the fields of the identified subset includes identifying a functional relationship between
the first and second fields based on the total quantity.

-4-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

The parts are based on values of the first field and of the second field.
The parts are processed using separate ones of a set of parallel components.

Identifying one or more of the plurality of subsets as having a functional relationship
among the fields of the identified subset includes determining a degree of match to the functional

relationship.

The degree of match includes a number of exceptional records that are not consistent with
the functional relationship.

The functional relationship includes a mapping of at least some of the values of a first

field onto at least some of the values of a second field.

The mapping can be, for example, a many-to-one mapping, a one-to-many mapping, or a

one-to-one mapping.

The method further includes filtering the plurality of subsets based on information
characterizing values in fields of the plurality of subsets.

The data records include records of one or more database tables.
Aspects of the invention can include one or more of the following advantages.

Aspects of the invention provide advantages in a variety of scenarios. For example, in
developing an application, a developer may use an input data set to test the application. The
output of the application run using the test data set is compared against expected test results, or
inspected manually. However, when the application is run using a realistic “production data,”
the results may be usually too large to be verified by inspection. Data profiling can be used to
verify the application behavior. Instead of inspecting every record produced by running the
application using production data, a profile of the output is inspected. The data profiling can
detect invalid or unexpected values, as well as unexpected patterns or distributions in the output
that could signal an application design problem.

In another scenario, data profiling can be used as part of a production process. For
example, input data that is part of a regular product run can be profiled. After the data profiling
has finished, a processinng module can load the profiling results and verify that the input data
meets certain quality metrics. If the input data looks bad, the product run can be cancelled and
the appropriate people alerted.

In another scenario, a periodic audit of a large collection of data (e.g., hundreds of
database tables in multiple sets of data) can be performed by profiling the data regularly. For
-5

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

example, data profiling can be performed every night on a subset of the data. The data that is
profiled can be cycled such that all of the data is profiled, e.g., once a quarter so that every
database table will be profiled four times a year. This provides an historic data quality audit on
all of the data that can be referred to later, if necessary.

The data profiling can be performed automatically. For example, the data profiling can
be performed from a script (e.g., a shell script) and integrated with other forms of processing.
Results of the data profiling can be automatically published, e.g., in a form that can be displayed
in a web browser, without having to manually post-process the results or run a separate reporting

application.

Operating on information characterizing values of the records in the data sources rather
than necessarily operating directly on the records of the data sources themselves can reduce the
amount of computation considerably. For example, using census data rather than the raw data
records reduces the complexity of computing characteristics of a join on two fields from being of
the order of the product of the number of data records in the two data sources to being of the

order of the product of the number of unique values in the two data sources.

Profiling the data without maintaining a copy of the data outside the data source can
avoid potential for errors associated with maintaining duplicate copies and avoids using extra
storage space for a copy of the data.

The operations may be parallelized according to data value, thereby enabling efficient
distributed processing.

Quantities characterizing a relationship between fields can provide an indication of which
fields may be related by different types of relationships. The user may then be able to examine
the data more closely to determine whether the fields truly form that type of relationship.

Determining co-occurrence statistics for each of a plurality of subsets of fields of data
records of a data source enables efficient identification of potential functional relationships
among the fields.

Aspects of the invention can be useful in profiling data sets with which the user is not
familiar. The information that is automatically determined, or which is determined in
cooperation with the user , can be used to populate metadata for the data sources, which can then

be used for further processing.

Other features and advantages of the invention are apparent from the following
description, and from the claims.

10

15

20

WO 2005/029369 PCT/US2004/030144

Description of Drawings

FIG. 1is ablock diagram of a system that includes a data profiling module.

FIG. 2 is a block diagram that illustrates the organization of objects in a metadata store

used for data profiling.
FIG. 3 is a profiling graph for the profiling module.
FIG. 4 1s a tree diagram of a hierarchy for a type object used to interpret a data format.

FIGS. 5A-C are diagrams that illustrates sub-graphs implementing the make census
component, anal yze census component, and make samples component of the profiling graph.

FIG. 6 is a flowchart for a rollup procedure.

FIG. 7 1s a flowchart for a canonicalize procedure.

FIGS. 8A-C are example user interface screen outputs showing profiling results.
FIG. 9 is a flowchart of an exemplary profiling procedure.

FIG. 10 is a flowchart of an exemplary profiling procedure.

FIGS. 11.A-B are two examples of a join operation performed on records from two pairs
of fields.

FIGS. 12 A-B are two examples of a census join operation on census records from two

pairs of fields.

FIG. 13 is an example of extended records used to perform a single census join operation
on two pairs of fields.

FIG. 14 is an extend component used to generate extended records.
FIGS. 15.A-C are graphs used to perform joint-field analysis.
FIG. 16 is an example table with fields having a functional dependency relationship.

FIG. 17 is a graph used to perform functional dependency analysis.

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

Description
1 Overview

Referring to FIG. 1, a data processing system 10 includes a profiling and processing
subsystem 20, which is used to process data from data sources 30 and to update a metadata store
112 and a data store 124 in a data storage subsystem 40. The stored metadata and data is then
accessible to users using an interface subsystem 50.

Data sources 30 in general includes a variety of individual data sources, each of which
may have unique storage formats and interfaces (for example, database tables, spreadsheet files,
flat text files, or a native format used by a mainframe 110). The individual data sources may be
local to the profiling and processing sub-system 20, for example, being hosted on the same
computer system (e.g., file 102), or may be remote to the profiling and processing sub-system 20,
for example, being hosted on a remote computer (e.g., mainframe 110) that is accessed over a

local or wide area data network.

Data storage sub-system 40 includes a data store 124 as well as a metadata store 112.
Metadata store 112 includes information related to data in data sources 30 as well as information
about data in data store 124. Such information can include record formats as well as
specifications for determining the validity of field values in those records (validation

specifications).

The metadata store 112 can be used to store initial information about a data set in data
sources 30 to be profiled, as well as information obtained about such a data set, as well as data
sets in data store 124 derived from that data set, during the profiling process. The data store 124
can be used to store data, which has been read from the data sources 30, optionally transformed

using information derived from data profiling.

The profiling and processing subsystem 20 includes a profiling module 100, which reads
data directly from a data source without necessarily landing a complete copy of the data to a
storage medium before profiling in units of discrete work elements such as individual records.
Typically, a record is associated with a set of data fields, each field having a particular value for
each record (including possibly a null value). The records in a data source may have a fixed
record structure in which each record includes the same fields. Alternatively, records may have a
variable record structure, for example, including variable length vectors or conditional fields. In
the case of variable record structure, the records are processed without necessarily storing a
“flattened” (i.e., fixed record structure) copy of the data prior to profiling.

- 8-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

- When first reading data from a data source, the profiling module 100 typically starts with
some initial format information about records in that data source. (Note that in some
circumstances, even the record structure of the data source may not be known). The initial
information about records can include the number of bits that represent a distinct value (e.g., 16
bits (= 2 bytes)) and the order of values, including values associated with record fields and
values associated with tags or delimiters, and the type of value (e.g., string, signed/unsigned
integer) represented by the bits. This information about records of a data source is specified in a
data manipulation language (DML) file that is stored in a metadata store 112. The profiling
module 100 can use predefined DML files to automatically interpret data from a variety of
common data system formats (e.g., SQL tables, XML files, CSV files) or use a DML file

obtained from the metadata store 112 describing a customized data system format.

Partial, possibly inaccurate, initial information about records of a data source may be
available to the profiling and processing subsystem 20 prior to the profiling module 100 initial
reading of the data. For example, a COBOL copy book associated with a data source may be
available as stored data 114, or entered by a user 118 through a user interface 116. Such existing
information is processed by a metadata import module 115 and stored in the metadata store 112

and/or used to define the DML file used to access the data source.

As the profiling module 100 reads records from a data source, it computes statistics and
other descriptive information that reflect the contents of the data set. The profiling module 100
then writes those statistics and descriptive information in the form of a “profile” into the
metadata store 112 which can then be examined through the user interface 116 or any other
module with access to the metadata store 112. The statistics in the profile preferably include a
histogram of values in each field, maximum, minimum, and mean values, and samples of the
least common and most common values.

The statistics obtained by reading from the data source can be used for a variety of uses.
Such uses can include discovering the contents of unfamiliar data sets, building up a collection of
metadata associated with a data set, examining third-party data before purchasing or using it, and
implementing a quality control scheme for collected data. Procedures for using the data
processing system 10 to perform such tasks are described in detail below.

The metadata store 112 is able to store validation information associated with each
profiled field, for example as a validation specification that encodes the validation information.
Alternatively, the validation information can be stored in an external storage location and
retrieved by the profiling module 100. Before a data set is profiled, the validation information
may specify a valid data type for each field. For example, if a field is a person’s “title”, a default

-0

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

valid value may be any value that is a “string” data type. A user may also supply valid values
such as “Mr.”, “Mrs.” and “Dr.” prior to profiling the data source so that any other value read by
the profiling module 100 would be identified as invalid. Information obtained from a profiling
run can also be used by a user to specify valid values for a particular field. For example, the user
may find that after profiling a data set the values “Ms.” and “Msr.” appear as common values.
The user may add “Ms.” as a valid value, and map the value “Msr.” to the value “Mrs.” as a data
cleaning option. Thus, the validation information can include valid values and mapping
information to permit cleaning of invalid values by mapping them onto valid values. The
profiling of a data source may be undertaken in an iterative manner as more information about
the data source is discovered through sgccessive profiling runs.

The profiling module 100 can also generate executable code to implement other modules
that can access the profiled data systems. For example, a processing module 120 can include
code generated by the profiling module 100. An example of such code might map a value “Msr.”
to “Mrs.” as part of the access procedure to the data source. The processing module 120 may run
in the same runtime environment as the profiling module 100, and preferably can communicate
with the metadata store 112 to access a profile associated with a data set. The processing module
120 can read the same data formats as the profiling module 100 (e.g., by obtaining the same
DML file from the metadata store 112). The processing module 120 can use the data set profile
to obtain values used to validate or clean incoming records before storing them in a data store
124.

Similar to the profiling module 100, the processing module 120 also reads data directly
from a data system in units of discrete work elements. This “data flow” of work elements has the
benefit of allowing the data profiling to be performed on large data sets without necessarily
copying data to local storage (e.g., a disk drive). This data flow model, described in more detail
below, also allows complex data transformations to be performed by a processing module
without the source data being first copied to a staging area, potentially saving storage space and-
time.

2 Metadata store organization

The profiling module 100 uses the metadata store 112 to organize and store various
metadata and profiling preferences and results in data objects. Referring to FIG. 2, the metadata
store 112 may store a group of profile setup objects 201, each for information related to a
profiling job, a group of data set objects 207, each for information related to a data set, and a
group of DML files 211, each describing a particular data format. A profile setup object contains
preferences for a profiling run executed by the profiling module 100. A user 118 can enter

-10-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

information used to create a new profile setup object or select a pre-stored profile setup object
200.

The profile setup object 200 contains a reference 204 to a data set object 206. A data set
setup object 206 contains a data set locator 202 which enables the profiling module 100 to locate
data to be profiled on one or more data systems accessible within the runtime environment. The
data set locator 202 is typically a path/filename, URL, or a list of path/filenames and/or URLs for
a data set spread over multiple locations. The data set object 206 can optionally contain a
reference 208 to one or more DML files 210.

The DML file(s) 210 may be pre-selected based on knowledge about the format of data in
a data set, or may be specified at runtime by a user. The profiling module 100 can obtain an
initial portion of the data set and present to the user over the user interface 116 an interpretation
of the initial portion based on a default DML file. The user may then modify the default DML
file specification based on an interactive view of the interpretation. More than one DML file may

be referenced if the data set includes data with multiple formats.

The data set object 206 contains a reference 212 to a set of field objects 214. There is
one field object for each field within the records of the data set to be profiled. Upon completion
of a profiling run performed by the profiling module 100, a data set profile 216 is contained
within the data set object 206 corresponding to the data set that was profiled. The data set profile
216 contains statistics that relate to the data set, such as total number of records and total number

of valid/invalid records.

A field object 218 can optionally contain validation information 220 that can be used by
the profiling module 100 to determine valid values for the corresponding field, and specify rules
for cleaning invalid values (i.e., mapping invalid values onto valid values). The field object 218
also contains a field profile 222, stored by the profiling module 100 upon completion of a
profiling run, which contains statistics that relate to the corresponding field, such as numbers of
distinct values, null values, and valid/invalid values. The field profile 222 can also include
sample values such as maximum, minimum, most common, and least common values. A
complete “profile” includes the data set profile 216 and field profiles for all of the profiled fields.

Other user preferences for a profiler run can be collected and stored in the profile setup
object 200, or in the data set object 206. For example, the user can select a filter expression
which can be used to limit the fields or number of values profiled, including profiling a random
sample of the values (e.g., 1%).

-11-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

3 Runtime environment

The profiling module 100 executes in a runtime environment that allows data from the
data source(s) to be read and processed as a flow of discrete work elements. The computations
performed by the profiling module 100 and processing module 120 can be expressed in terms of
data flow through a directed graph, with components of the computations being associated with
the vertices of the graph and data flows between the components corresponding to links (arcs,
edges) of the graph. A system that implements such graph-based computations is described in
U.S. Patent 5,966,072, EXECUTING COMPUTATIONS EXPRESSED AS GRAPHS. Graphs made in
accordance with this system provide methods for getting information into and out of individual
processes represented by graph components, for moving information between the processes, and
for defining a running order for the processes. This system includes algorithms that choose
interprocess communication methods (for example, communication paths according to the links
of the graph can use TCP/IP or UNIX domain sockets, or use shared memory to pass data between
the processes).

The runtime environment also provides for the profiling module 100 to execute as a
parallel process. The same type of graphic representation described above may be used to
describe parallel processing systems. For purposes of this discussion, parallel processing systems
include any configuration of computer systems using multiple central processing units (CPUs),
either local (e.g., multiprocessor systems such as SMP computers), or locally distributed (e.g.,
multiple processors coupled as clusters or MPPs), or remotely, or remotely distributed (e.g.,
multiple processors coupled via LAN or WAN networks), or any combination thereof. Again, the
graphs will be composed of components (graph vertices) and flows (graph links). By explicitly
or implicitly replicating elements of the graph (components and flows), it is possible to represent

parallelism in a system.

A flow control mechanism is implemented using input queues for the links entering a
component. This flow control mechanism allows data to flow between the components of a
graph without being written to non-volatile local storage, such as a disk drive, which is typically
large but slow. The input queues can be kept small enough to hold work elements in volatile
memory, typically smaller and faster than non-volatile memory. This potential savings in storage
space and time exists even for very large data sets. Components can use output buffers instead
of, or in addition to, input queues.

When two components are connected by a flow, the upstream component sends work
elements to the downstream component as long as the downstream component keeps consuming
the work elements. If the downstream component falls behind, the upstream component will fill

-12-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

up the input queue of the downstream component and stop working until the input queue clears
out again.

Computation graphs can be specified with various levels of abstraction. So a “sub-graph”
containing components and links can be represented within another graph as a single component,
showing only those links which connect to the rest of the graph.

4 Profiling graph

Referring to FIG. 3, in a preferred embodiment, a profiling graph 400 performs
computations for the profiling module 100. An input data set component 402 represents data
from potentially several types of data systems. The data systems may have different physical
media types (e.g., magnetic, optical, magneto-optical) and/or different data format types (e.g.,
binary, database, spreadsheet, ASCII string, CSV, or XML). The input data set component 402
sends a data flow into a make census component 406. The make census component 406 conducts
a “census” of the data set, creating a separate census record for each unique field/value pair in
the records that flow into the component. Each census record includes a count of the number of
occurrences of the unique field/value pair for that census record.

The make census component 406 has a cleaning option which can map a set of invalid
values onto valid values according to validation information stored in a corresponding field
object. The cleaning option can also store records having fields containing invalid values in a
location represented by an invalid records component 408. The invalid records can then be
examined, for example, by a user wanting to determine the source of an invalid value.

In the illustrated embodiment, the census records flowing out of the make census
component 406 are stored in a file represented by the census file component 410. This
intermediate storage of census records may, in some cases, increase efficiency for multiple graph
components accessing the census records. Alternatively, the census records can flow directly
from the make census component 406 to an analyze census component 412 without being stored
in a file.

The analyze census component 412 creates a histogram of values for each field and
performs other analyses of the data set based on the census records. In the illustrated
embodiment, the field profiles component 414 represents an intermediate storage location for the
field profiles. A load metadata store component 416 loads the field profiles and other profiling
results into the corresponding objects in the metadata store 112.

_13-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

The user interface 116 allows a user to browse through the analyzed data, for example, to
see histograms or common values in fields. A “drill-down” capability is provided, for example,
to view specific records that are associated with a bar in a histogram. The user can also update
preferences through the user interface 116 based on results of the profiling.

The make samples component 418 stores a collection of sample records 420 representing
a sampling of records associated with a value shown on the user interface 116 (e.g., associated
with a bar in a histogram). The phase break line 422 represents two phases of execution in the
graph 400, such that the components on the right side of the line begin execution after all the
components on the left side of the line finish execution. Therefore, the make sal}lples component
418 executes after the analyze census component 412 finishes storing results in the field profiles
component 41 4. Alternatively, sample records can be retrieved from a recorded location in the
input data set 402.

The profiling module 100 can be initiated by a user 118 or by an automated scheduling
program. Upomn initiation of the profiling module 100, a master script (not shown) collects any
DML files and parameters to be used by the profiling graph 400 from the metadata store 112.
Parameters can be obtained from objects such as the profile setup object 200, the data set object
206, and the field objects 218. If necessary, the master script can create a new DML file based on
information supplied about the data set to be profiled. For convenience, the master script can
compile the parameters into a job file. The master script may then execute the profiling graph
400 with the appropriate parameters from the job file, and present a progress display keeping
track of the time elapsed and estimating time remaining before the profiling graph 400 completes
execution. The estimated time remaining is calculated based on data (e.g., work elements) that is

written to the imetadata store 112 as the profiling graph 400 executes.

4.1 Data format interpretation

An import component implements the portion of the profiling module 100 that can
interpret the data format of a wide variety of data systems. The import component is configured
to directly interpret some data formats without using a DML file. For example, the import
component can read data from a data system that uses structured query language (SQL), which is
an ANSI standard computer language for accessing and manipulating databases. Other data
formats that are handled without use of a DML file are, for example, text files formatted

according to an XML standard or using comma-separated values (CSV).

- 14-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

For other data formats the import component uses a DML file specified in the profile
setup object 200. A. DML file can specify various aspects of interpreting and manipulating data
in a data set. For example, a DML file can specify the following for a data set:

type object — defines a correspondence between raw data and the values represented by the

raw data.
key specifier — defines ordering, partitioning, and grouping relationships among records.

expression — defines a computation using values from constants, the fields of data records, or

the results of other expressions to produce a new value.

transform function — defines collections of rules and other logic used to produce one or more

outputs records from zero or more input records.

package —provides a convenient way of grouping type objects, transform functions, and

variables that can be used by a component to perform various tasks.

A type object is the basic mechanism used to read individual work elements (e.g.,
individual records) from raw data in a data system. The runtime environment provides access to
a physical computer-readable storage medium (e.g., a magnetic, optical, or magneto-optical
medium) as a string of raw data bits (e.g., mounted in a file system or flowing over a network
connection). The import component can access a DML file to determine how to read and
interpret the raw data in order to generate a flow of work elements.

Referring to FIG. 4, a type object 502 can be, for example, a base type 504 or a
compound type 506. A base type object 504 specifies how to interpret a string of bits (of a given
length) as a single value. The base type object 504 includes a length specification indicating the
number of raw data bits to be read and parsed. A length specification can indicate a fixed length,
such as a specified mumber of bytes, or a variable length, specifying a delimiter (e.g., a specific
character or string) at the end of the data, or a number of (potentially variable length) characters
to be read.

A void type 514 represents a block of data whose meaning or internal structure is
unnecessary to interpret (e.g., compressed data that will not be interpreted until after it is
decompressed). The length of a void type 514 is specified in bytes. A number type 516
represents a number and is interpreted differently if the number is designated an integer 524, real
526, or decimal 528, according to various encodings that are standard or native to a particular

CPU. A string type 518 is used to interpret text with a specified character set. Date 520 and

-15-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

datetime 522 types are used to interpret a calendar date and/or time with a specified character set
and other formatting information.

A compound type 506 is an object made up of multiple sub-objects which are themselves
either base or compound types. A vector type 508 is an object containing a sequence of objects
of the same type (either a base or compound type). The number of sub-objects in the vector (i.e.,
the length of the vector) can be indicated by a constant in the DML file or by arule (e.g., a
delimiter indicating the end of the vector) enabling profiling of vectors with varying lengths. A
record type 510 is an object containing a sequence of objects, each of which can be a different
base or compound type. Each object in the sequence corresponds to a value associated with a
named field. Using a record type 510, a component can interpret a block of raw data to extract
values for all of the fields of a record. A union type 512 is an object similar to a record type 510
except that objects corresponding to different fields may interpret the same raw data bits as
different values. The union type 512 provides a way to have several interpretations of the same

raw data.

The DML file also enables profiling of data with custom data types. A user can define a
custom type object by supplying a type definition in terms of other DML type objects, either
base or compound. A custom type object can then be used by the profiling module 100 to

interpret data with a non-standard structure.

The DML file also enables profiling of data with a conditional structure. Records may
only include some fields based on values associated with other fields. For example, a record may
only include the field “spouse” if the value of the field “married” is “yes.” The DML file
includes a rule for determining whether a conditional field exists for a given record. If the
conditional field does exist in a record, the value of the field can be interpreted by a DML type
object.

The import component can be used by graphs to efficiently handle various types of record
structures. The ability of the import component to interpret records with variable record structure
such as conditional records or variable length vectors enables graphs to process such data
without the need to first flatten such data into fixed length segments. Another type of processing
that can be performed by graphs using the import component is discovery of relationships
between or among parts of the data (e.g., across different records, tables, or files). Graphs can
use a rule within the import component to find a relationship between a foreign key or field in
one table to a pritnary key or field in another table, or to perform functional dependency

calculations on parts of the data.

-16-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

42 Statistics

Referring to FIG. 5A, a sub-graph 600 implementing one embodiment of the make
census component 406 includes a filter component 602 that passes a portion of incoming records
based on a filter expression stored in the profile setup object 200. The filter expression may limit
the fields or number of values profiled. An example of a filter expression is one that limits
profiling to a single field of each incoming record (e.g., “title”). Another optional function of the
filter component 602 is to implement the cleaning option described above, sending a sample of
invalid records to the invalid records component 408. Records flowing out of the filter
component 602 flow into a local rollup sequence stats component 604 and a partition by round-
robin component 612.

The ability of the profiling graph 400 (and other graphs and sub-graphs) to run in parallel
on multiple processors and/or computers, and the ability of the profiling graph 400 to read a
parallel data set stored across multiple locations, are implicitly represented in the sub-graph 600
by line thicknesses of the components and symbols on the links between components. The thick
border of components representing storage locations such as the input data set component 402
indicates that it may optionally be a parallel data set. The thick border of the process components
such as the filter component 602 indicates that the process may optionally be running in multiple
partitions with each partition running on a different processor or computer. The user can indicate
through the user interface 116 whether to run the optionally parallel graph components in parallel

or serially. A thin border indicates that a data set or process is serial.

The local rollup sequence stats component 604 computes statistics related to the
sequential characteristics of the incoming records. For example, the component 604 may count
the number of sequential pairs of records that have values for a field that increase, decrease, or
increment by 1. In the case of parallel execution, the sequence statistics are calculated for each
partition separatel y. A rollup process involves combining information from multiple input
elements (sequence statistics for the rollup process performed by this component 604) and
producing a single output element in place of the combined input elements. A gather link symbol
606 represents a combination or “gathering” of the data flows from any multiple partitions of a
parallel component into a single data flow for a serial component. The global rollup sequence
stats combines the “local” sequence statistics from multiple partitions into a single “global”
collection of sequence statistics representing records from all of the partitions. The resulting
sequence statistics may be stored in a temporary file 610.

FIG. 6 is a flowchart of an example of a process 700 for performing a rollup process,
including the rollup processes performed by the local rollup sequence stats component 604 and

-17-

10

15

20

25

30

35

WO 2005/029369 PCT/US2004/030144

the global rollup sequence stats component 608. The process 700 begins by receiving 702 an
input element. The process 700 then updates 704 information being compiled, and determines
706 whether there are any more elements to be compiled. If there are more elements, the process
700 receives 702 the next element and updates 704 the information accordingly. When there are
no more elements, the process 700 finalizes 708 the output element based on the compiled rollup
information. A. rollup process can be used to consolidate a group of elements into a single
element, or to determine aggregate properties of a group of elements (such as statistics of values

in those elements).

The partition by round-robin component 612 takes records from the single or multiple
partitions of the input data set 402 and re-partitions the records among a number of parallel
processors and/or computers (e.g., as selected by the user) in order to balance the work load
among the processors and/or computers. A cross-connect link symbol 614 represents the re-
partitioning of the data flows (performed by the linked component 612).

The canonicalize component 616 takes in a flow of records and sends out a flow of
census elements containing a field/value pair representing values for each field in an input
record. (An input record with ten fields yields a flow of ten census elements.) Each value is
converted into a canonical (i.e., according to a pre-determined format) human readable string
representation. Also included in the census element are flags indicating whether the value is
valid and whether the value is null (i.e., corresponds to a pre-determined “null” value). The
census elements flow into a local rollup field/value component which (for each partition) takes
occurrences of the same value for the same field and combines them into one census element
including a count of the number of occurrences. Another output of the canonicalize component
616 is a count of the total number of fields and values, which are gathered for all the partitions
and combined in a rollup total counts component 618. The total counts are stored in a temporary
file 620 for loading into the data set profile 216.

FIG. 7 1s a flowchart of an example of a process 710 performed by the canonicalize
component that can handle conditional records, which may not all have the same fields, to
produce a flow of census elements containing field/value pairs. The process 710 performs a
nested loop which begins with getting 712 a new record. For each record, the process 710 gets
714 a field in that record and determines 716 whether that field is a conditional field. If the field
is conditional, the process 710 determines 718 whether that field exists for that record. If the
field does exist, the process 710 canonicalizes 720 the record’s value for that field and produces
a corresponding output element containing a field/value pair. If the field does not exist, the
process 710 proceeds to determine 722 whether there is another field or to determine 724
whether there is another record. If the field is not conditional, the process 710 canonicalizes 720

-18-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

the record’s for that field (including possibly a null value) and proceeds to the next field or
record.

The partition by field/value component 624 re-partitions the census elements by field and
value so that the rollup process performed in the global rollup field/value component 626 can
add the occurrences calculated in different partitions to produce a total occurrences count in a
single census element for each unique field/value pair contained within the profiled records. The
global rollup field/value component 626 processes these census elements in potentially multiple
partitions for a potentially parallel file represented by the census file component 410.

FIG. 5B is a diagram that illustrates a sub-graph 630 implementing the analyze census
component 412 of the profiling graph 400. A partition by field component 632 reads a flow of
census elements from the census file component 410 and re-partitions the census elements
according to a hash value based on the field such that census records with the same field (but
different values) are in the same partition. The partition in to string, number, date component 634
further partitions the census elements according to the type of the value in the census element.
Different statistics are computed (using a rollup process) for values that are strings (in the rollup
string component 636), numbers (in the rollup number component 638), or dates/datetimes (in
the rollup date component 640). For example, it may be appropriate to calculate average and

standard deviation for a number, but not for a string.

The results are gathered from all partitions and the compute histogram/decile info
component 642 provides information useful for constructing histograms (e.g., maximum and
minimum values for each field) to a compute buckets component 654, and information useful for
calculating decile statistics (e.g., the number of values for each field) to a compute deciles
component 652. The components of the sub-graph 630 that generate the histograms and decile
statistics (below the phase break line 644) execute after the compute histogram/decile info
component 642 (above the phase break line 644) finishes execution.

The sub-graph 630 constructs a list of values at decile boundaries (e.g., value larger than
10% of values, 20% of values, etc.) by: sorting the census elements by value within each
partition (in the sort component 646), re-partitioning the census elements according to the sorted
value (in the partition by values component 648), and merging the elements into a sorted (serial)

flow into the compute deciles component 652. The compute deciles component 652 counts the

. sorted values for each field in groups of one tenth of the total number of values in that field to

find the values at the decile boundaries.

_ The sub-graph 630 constructs histograms for each field by: calculating the values
defining each bracket of values (or “bucket”), counting values within each partition falling in the

-19-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

same bucket (in the local rollup histogram component 656), counting values within each bucket
from all the partitions (in the global rollup histogram component 658). A combine field profile
parts component 660 then collects all of the information for each field profile, including the
histograms, decile statistics, and the sequence statistics from the temporary file 610, into the field
profiles component 414. FIG. 5C is a diagram that illustrates a sub-graph 662 implementing the
make samples component 418 of the profiling graph 400. As in the sub-graph 600, a partition by
round-robin component 664 takes records from the single or multiple partitions of the input data
set 402 and re-partitions the records among a number of parallel processors and/or computers in
order to balance the work load among the processors and/or computers.

A lookup and select component 666 uses information from the field profiles component
414 to determine whether a record corresponds to a value shown on the user interface 116 that
can be selected by a user for drill-down viewing. Each type of value shown in the user interface
116 corresponds to a different “sample type.” If a value in a record corresponds to a sample type,
the lookup and select component 666 computes a random selection number that determines

whether the record is selected to represent a sample type.

For example, for a total of five sample records of a particular sample type, if the selection
number is one of the five largest seen so far (of a particular sample type within a single partition)
then the corresponding record is passed as an output along with information indicating what
value(s) may correspond to drill-down viewing. With this scheme, the first five records of any
sample type are automatically passed to the next component as well as any other records that

have one of the five largest selection numbers seen so far.

The next component is a partition by sample type component 668 which re-partitions the
records according to sample type so that the sort component 670 can sort by selection number
within each sample type. The scan component 672 then selects the five records with the largest
selection numbers (among all the partitions) for each sample type. The write/link sample
component 674 then writes these sample records to a sample records file 420 and links the

records to the corresponding values in the field profiles component 414.

The load metadata store component 416 loads the data set profile from the temporary file
component 620 into a data set profile 216 object in the metadata store 112, and loads each of the
field profiles from the field profiles component 414 into a field profile 222 object in the metadata
store 112. The user interface 116 can then retrieve the profiling results for a data set and display
it to a user 118 on a screen of produced by the user interface 116. A user can browse through the
profile results to see histograms or common values for fields. A drill-down capability may be
provided, for example, to view specific records that are associated with a bar in a histogram.

-20-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

FIG. 8A-C are example user interface screen outputs showing profiling results. FIG. 8A
shows results from a data set profile 216. Various totals 802 are shown for the data set as a
whole, along with a summary 804 of properties associated with the profiled fields. FIGS. 8B-C
show results from an exemplary field profile 222. A selection of values, such as most common
values 806, and most common invalid values 808, are displayed in various forms including: the
value itself as a human readable string 810, a total count of occurrences of the value 812,
occurrences as a percentage of the total number of values 814, and a bar chart 816. A histogram
of values 818 is displayed showing a bar for each of multiple buckets spanning the range of
values, including buckets with counts of zero. The decile boundaries 820 are also displayed.

5 Examples

5.1 Data discovery

FIG. 9 shows a flowchart for an example of a procedure 900 for profiling a data set to
discover its contents before using it in another process. The procedure 900 can be performed
automatically (e.g., by a scheduling script) or manually (e.g., by a user at a terminal). The
procedure 900 first identifies 902 a data set to be profiled on one or more data systems accessible
within the runtime environment. The procedure 900 may then optionally set a record format 904
and set validation rules 906 based on supplied information or existing metadata. For some types
of data, such as a database table, a default record format and validation rules may be used. The
procedure 900 then runs 908 a profile on the data set (or a subset of the data set). The procedure
900 can refine 910 the record format, or refine 912 the validation rules based on the results of the
initial profile. If any profiling options have changed, the procedure 900 then decides 914 whether
to run another profile on the data using the new options, or to process 916 the data set if enough
information about the data set has been obtained from the (possibly repeated) profiling. The
process would read directly from the one or more data systems using the information obtained
from the profiling.

5.2 Quality testing

 FIG. 10 shows a flowchart for an example of a procedure 1000 for profiling a data set to
test its quality before transforming and loading it into a data store. The procedure 1000 can be
performed automatically or manually. Rules for testing the quality of a data set can come from
prior knowledge of the data set, and/or from results of a profiling procedure such as procedure
900 performed on a similar data set (e.g., a data set from the same source as the data set to be
tested). This procedure 1000 can be used by a business, for example, to profile a periodic (e.g.,

monthly) data feed sent from a business partner before importing or processing the data. This
_21-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

would enable the business to detect “bad” data (e.g., data with a percentage of invalid values
higher than a threshold) so it doesn’t “pollute” an existing data store by actions that may be
difficult to wndo.

The procedure 1000 first identifies 1002 a data set to be tested on one or more data
systems accessible within the runtime environment. The procedure 1000 then runs 1004 a profile
on the data set (or a subset of the data set) and performs 1006 a quality test based on results of
the profile. For example, a percentage of occurrences of a particular common value in the data
set can be compared with a percentage of occurrences of the common value in a prior data set
(based on a prior profiling run), and if the percentages differ from each other by more than 10%,
the quality test fails. This quality test could be applied to a value in a series of data sets that is
known to occur consistently (within 10%). The procedure 1000 determines 1008 the results of
the quality test, and generates 1010 a flag (e.g., a user interface prompt or an entry in a log file)
upon failure. If the quality test is passed, the procedure 1000 then reads directly from the one or
more data systems and transforms (possibly using information from the profile) and loads 1012
data from the data set into a data store. For example, the procedure can then repeat by identifying
1002 another data set.

53 Code generation

The profiling module 100 can generate executable code such as a graph component that
can be used to process a flow of records from a data set. The generated component can filter
incoming records, allowing only valid records to flow out, similar to the cleaning option of the
profiling graph 400. For example, the user can select a profiling option that indicates that a clean
component should be generated upon completion of a profiling run. Code for implementing the
component is directed to a file location (specified by the user). The generated clean component
can then run in the same runtime environment as the profiling module 100 using information

stored in the metadata store 112 during the profiling run.

6 Joint-field analysis

The profiling module 100 can optionally perform an analysis of relationships within one
or more groups of fields. For example, the profiling module 100 is able to perform an analysis
between two of a pair of fields, which may be in the same or in different data sets. Similarly, the
profiling module is able to perform analysis on a number of pairs of fields, for example
analyzing every field in one data set with every field in another data set, or every field in one
data set with every other field in the same data set. An analysis of two fields in different data sets

- 22-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

is related to the characteristics of a join operation on the two data sets on those fields, as
described in more detail below.

In a first approach to joint-field analysis, a join operation is performed on two data sets
(e.g., files or tables). In another approach, described below in section 6.1, after the make census
component 406 generates a census file for a data set, the information in the census file can be
used to perform the joint-field analysis between fields in two different profiled data sets, or
between fields in two different parts of the same profiled data set (or any other data set for which
a census file exists). The result of joint-field analysis includes information about potential

relationships between the fields.

Three types of relationships that are discovered are: a “common domain” relationship, a
“joins well” relationship, and “foreign key” relationship. A pair of fields is categorized as having
one of these three types of relationships if results of the joint-field analysis meet certain criteria,
as described below.

The joint-field analysis includes compiling information such as the number of records produced
from a join operation performed using the two fields as key fields. FIGS. 11A-B illustrate
examples of a join operation performed on records from two database tables. Each of Table A
and Table B has two fields labeled\“Field 1”” and “Field 2,” and four records.

Referring to FIG. 11A, a join component 1100 compares values from a key field of
records from Table A with values from a key field of records from Table B. For Table A, the key
field is Field 1, and for Table B, the key field is Field 2. So the join component 1100 compares
values 1102 from Table A, Field 1 (A1) with values 1104 from Table B, Field 1 (B1). The join
component 1100 receives flows of input records 1110 from the tables, and, based on the
comparison of key-field values, produces a flow of joined records 1112 forming a new joined
table, Table C. The join component 1100 produces a joined record that is a concatenation of the
records with matching key-field values for each pair of matching key-field values in the input
flows.

The number of joined records with a particular key-field value that exit on the joined
output port 1114 is the Cartesian product of the number of records with that key-field value in
each of the inputs, respectively. In the illustrated example, the input flows of records 1110 are
shown labeled by the value of their respective key fields, and the output flow of joined records
1112 are shown labeled by the matched values. Since two “X” values appear in each of the two
mput flows, there are four “X” values in the output flow. Records in one input flow having a

key-field value that does not match with any record in the other input flow exit on “rejected”

-23-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

output ports 1116A and 1116B, for the Table A and Table B input flows, respectively. In the
illustrated example, a “W” value appears on the rejected output port 1116A.

The profiling module 100 compiles statistics of joined and rejected values for
categorizing the relationship between two fields. The statistics are summarized in an occurrence
chart 1118 that categorizes occurrences of values in the two fields. An “occurrence number”
represents the number of times a value occurs in a field. The columns of the chart correspond to
occurrence numbers 0, 1, and N (where N > 1) for the first field (from Table A in this example),
and the rows of the chart correspond to occurrence numbers 0, 1, and N (where N > 1) for the
second field (from Table B in this example). The boxes in the chart contain counts associated
with the corresponding pattern of occurrence: ‘column occurrence number’ X ‘row occurrence
number’. Each box contains two counts: the number of distinct values that have that pattern of
occurrence, and the total number of individual joined records for those values. In some cases the
values occur in both fields (i.e., having a pattérn of occurrence: 1x1, 1xN, Nx1, or NxN), and in
other cases the values occur in only one field (i.e., having a pattern of occurrence: 1x0, 0x1, N0,
or 0xN). The counts are separated by a comma.

The occurrence chart 1118 contains counts corresponding to the joined records 1112 and
the rejected record on port 1116A. The value “W” on the rejected output port 1116A corresponds
to the “1, 17 counts in the box for the 1x0 pattern of occurrence indicating a single value, and a
single record, respectively. The value “X” corresponds to the “1, 4 counts in the box for the
NxN pattern of occurrence since the value “X” occurs twice in each input flow, for a total of four
joined records. The value “Y” corresponds to the “1, 2 counts in the box for the 1xN pattern of
occurrence since the value “Y” occurs once in the first input flow and twice in the second input
flow, for a total of two joined records.

FIG. 11B illustrates an example similar to the example of FIG. 11A, but with a different
pair of key fields. For Table A, the key field is Field 1, and for Table B, the key field is Field 2.
So the join component compares values 1102 from Table A, Field 1 (A1) with values 1120 from
Table B, Field 2 (B2). This example has an occurrence chart 1122 with counts corresponding to
the flows of input records 1124 for these fields. Similar to the example in FIG. 11A, there is a
single rejected value “Z” that corresponds to the “1, 1” counts in the box for the 0x1 pattern of
occurrence. However, in this example, there are two values, “W” and “Y,” that both have thelx1
pattern of occurrence, corresponding to the “2, 2” counts in the fox for the 1x1 pattern of
occurrence since there are two values, and two joined records. The value “X” corresponds to the
“1, 2” counts in the box for the Nx1 pattern of occurrence, indicating a single value and 2 joined
records.

- 24-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

Various totals are calculated from the numbers in the occurrence chart. Some of these totals
include the total number of distinct key-field values occurring in both Table A and Table B, the
total number of distinct key-field values occurring in Table A, the total number of distinct key-
field values occurring in Table B, and the total number unique values (i.e., values occurring only
in a single record of the key field) in each table. Some statistics based on these totals are used to
determine whether a pair of fields has one of the three types of relationships mentioned above.
The statistics include the percentages of total records in a field that have distinct or unique
values, percentages of total records having a particular pattern of occurrence, and the “relative
value overlap’” for each field. The relative value overlap is the percentage of distinct values
occurring one field that also occur in the other. The criteria for determining whether a pair of
fields has one of the three types of relationships (which are not necessarily mutually exclusive)

arc:

foreign key relationship — a first one of the fields has a high relative value overlap (e.g., >99%)
and the second field has a high percentage (e.g., >99%) of unique values. The second field is
potentially a primary key and the second field is potentially a foreign key of the primary key.

Jjoins well relationship —at least one of the fields has a small percentage (e.g., <10%) of rejected
records, and the percentage of individual joined records having a pattern of occurrence of NxN is
small (e.g., <1%).

common domain relationship — at least one of the fields has a high relative value overlap (e.g.,
>95%).

If a pair of fields has both a foreign key and a joins well or common domain relationship,
the foreign key relationship is reported. If a pair of fields has both a joins well relationship and a
common domain relationship, but not a foreign key relationship, the joins well relationship is
reported.

6.1 Census join

Referring to FIG. 12A, in an alternative to actually performing a join operation on the
tables, a census join component 1200 analyzes fields from Table A and Table B and compiles the
statistics for an occurrence chart by performing a “census join” operation from census data for
the tables. Each census record has a field/value pair and a count of the occurrences of the value
in the field. Since each census record has a unique field/value pair, for a given key field, the
values in an input flow of the census join component 1200 are unique. The example of FIG. 12A
corresponds to the join operation on the pair of key fields A1, Bl (illustrated in FIG. 11A). By

comparing census records corresponding to the key fields in the join operation, with filter 1202

-75-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

selecting ““Field 17 (Al) and filter 1204 selecting “Field 1” (B1), the census join component 1200
potentially makes a much smaller number of comparisons than a join component 1100 that
compares key fields of individual records from Table A and Table B. The example of FIG. 12B
corresponds to the join operation on the pair of key fields Al, B2 (illustrated in FIG. 11B), with
filter 1206 selecting “Field 17 (A1) and filter 1208 selecting “Field 2” (B2). The selected census
records 1210-1218 are shown labeled by the value for their respective field in the field/value

pair, and the count of occurrences for that value.

~ If the census join component 1200 finds a match between the values in two input census
records 1210-1218, the output record contains the matched value, the corresponding pattern of
occurrence based on the two counts, and a total number of records that would be generated in a
join operation on the pair of key fields (which is just the product of the two counts). If no match
is found for a value, the value is also output with a corresponding pattern of occurrence and a
total number of records (which is the single count in the single input record). This information
within the output records of the census join component 1200 is sufficient to compile all of the
counts in an occurrence chart for the join operation.

In the example of FIG. 12A, the value “W” appears at the output with an occurrence
pattern of 1x0 and a total of 1, the value “X” appears at the output with an occurrence pattern of
NxN and a total of 4, and the value “Y” appears at the output with an occurrence pattern of 1xN
and a total of 2. This information corresponds to the information in the occurrence chart 1118 of
FIG. 11A. In the example of FIG. 12B, the value “W” appears at the output with an occurrence
pattern of 1x1 and a total of 1, the value “X” appears at the output with an occurrence pattern of
Nx1 and a total of 2, the value “Y”” appears at the output with an occurrence pattern of 1x1 and a
value of 1, and the value “Z” appears at the output with an occurrence pattern of 0x1 and a value
of 1. This information corresponds to the information in the occurrence chart 1122 of FIG. 11B.

6.2 Extended records

A joint-field analysis for multiple field pairs in a single census join operation includes
generating “extended records” based on the census records. In the example illustrated in FIG. 13,
the census join component 1200 compares records for a joint-field analysis of both pairs of key
fields A1, B1 and Al, B2, combining the joint-field analysis illustrated in FIGS. 12A-B. An
extended record is generated from a census records by concatenating a unique identifier for the
pair of key fields that are being joined with the value in the census record, and keeping the same
count of occurrences as the census record.

- 26-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

If a joint-field analysis includes results of a field being joined with multiple other fields, then
multiple extended records are generated for each value in the that field. For example, the census
record 1210 corresponds to two extended records1301-1302, with the value “W” concatenated
with an identifier “A1B1” and “A1B2,” respectively. The census join component 1200 handles
the extended record 1301 just as it would handle a census record with the value “WA1B1.”
Likewise, the census record 1211 corresponds to the two extended records 1303-1304, and

census record 1212 corresponds to the two extended records 1305-1306.

In thee joint-field analysis of FIG. 13, the field B1 is only joined with one other field (A1),
so each census record 1213-1214 corresponds to a single extended record 1307-1308,
respectively. Likewise, the field B2 is joined with one other field (A1), so each census record
1215-1218 corresponds to a single extended record 1309-1312. Each extended record includes a
value based on the original value concatenated with a unique field identifier.

Referring to FIG. 14, an extend component 1400 processes input census records to
generate extended records, based on join information 1401 indicating which fields are being
joined with which other fields in the joint-field analysis. In this example, the join information
1401 indicates that a field F; from census data for table T1 (having four census records 1402) is
being joined with four other fields: field F; from census data for table T2 (having two census
records 1404), field F, from census data for table T2 (having two census records 1406), field F,
from census data for table T3 (having two census records 1408), and field F, from census data
for table T3 (having two census records 1410). A census record 1412 flowing into the extend
component 1400 represents one of the four census records 1402 from census data for table T1
having field Fi, and value V; wherei=1, 2, 3, or 4. The extend component 1400 generates four
extended records 1413-1416 for the input census record 1412.

i

The census join component 1200 uses unique identifiers for fields including fields in
different tables having the same name. The extended record 1413 has a value ¢(T1,F;,T2,F,V))
that is a concatenation of the original value Vi with identifiers for the fields being joined as well
as for the table (or file or other data source) from which the census data for the field was
generated. Including the identifier for the table enables fields having the same name to be
distinguished. The extended record 1415 that has a value ¢(T1,F;,T3,F,V;) that can be
distinguished from the value ¢(T1,F;,T2,F;,V;) of the extended record 1413, where both tables
T2 and T3 have the same field name F,. Alternatively, a unique number can be assigned to each

field and used in place of the field name.

-27-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

6.3 Joint-field analysis graphs

FIGS. 15A-B show graphs used by the profiling module 100 to perform an optional joint-
field analysis of selected fields in sources (e.g., tables or files) within data sources 30. A user
118 selects options for profiling and for joint-field analysis, including the option of performing
profiling without joint-field analysis. The user 118 selects field pairs for joint-field analysis
including two specific fields paired with each other, one field paired with every other field, or
every field paired with every other field. The user 118 selects an option allow pairing of fields
within the same table or file, or to allow pairing of fields only from different tables or files.

These options are stored in the metadata store 112.

Referring to FIG. 15A, for each source (e.g., a table or file) of fields specified in the
joint-field analysis options, the graph 1500 generates a file with prepared census data 1510 for
those specified fields. The graph 1500 executes once for each such source included in the joint-
field analysis. A filter 1504 receives records from census data 1502 generated by the make
census component 406 and prepares the records for joint-field analysis. The filter 1504 discards
records for fields that are not included in the analysis (as determined by user options stored in the
metadata store 112). The filter 1504 also discards invalid values, null values, and other values

not included in a meaningful analysis of the content of data sources (e.g., known data flags).

The values in the census data 1502 have been canonicalized by a canonicalize component
616 within the make census component 406. However, these canonicalized values may have
portions that should not be used in a logical comparison of values (e.g., strings with leading or
trailing spaces or numbers with leading or trailing zeros). The user 118 can select an option for
these values to be compared “literally” or “logically.” If the user 118 selects “literal”
comparison, then the values in the census records are left in the canonicalized form. If the user
118 selects “logical” comparison, then the filter 1504 converts values in the census records
according to rules such as stripping leading and trailing spaces, and stripping leading and trailing

zeros for numbers.

The partition by value component 1506 re-partitions the records based on the value in the
census record. Any census records with the same value are put into the same partition. This
allows the joint-field analysis to be run in parallel across any number partition. Since the census
join component 1200 only produces an output record for input records with matching values,
census records (or any extended records generated from them) in different partitions do not need

to be compared with one another.

A rollup logical values component 1508 combines any census records that have matching

field/value pairs due to the conversion performed by the filter 1504. The combined record has a
-28-

10

15

20

25

30

35

WO 2005/029369 PCT/US2004/030144

count of occurrences that is the sum of the count for all of the combined records. For example, if
a census record with a field, value, count of “amount, 01.00, 5” is converted to “amount, 1, 5
and a census record with a field, value, count of “amount, 1.0, 3” is converted to “amount, 1, 3,”
then the rollup logical values component 1508 combines these two converted records to a single
record with a field, value, count of “amount, 1, 8.”

Referring to FIG. 15B, for each pair of sources, source A and source B, having one or
more fields to be compared, as specified in the joint-field analysis options, the graph 1512
executes using the prepared census data A 1514 and prepared census data B 1516, each prepared
by graph 1500. Two extend components 1400 receive records from these sets of prepared census
data, along with join information 1515 specifying the specific fields in source A to be compared
with specific fields in source B. Extended records flow into a census join component 1200 that
generates records containing values, patterns of occurrence, and counts for occurrence charts for
the fields being compared. A local rollup join statistics component 1518 compiles the
information in these records within each partition. The records in the various partitions are then
gathered and complied by a global rollup join statistics component 1520 that outputs a file 1522
all of the joint-field analysis statistics for the fields in all of the pairs of sources that are analyzed.
The results of the joint-field analysis including which of the three types of relationship
potentially exists between various fields is loaded into the metadata store 112 for presentation to
the user 118. For example, the user 118 can select a link on the user interface 116 for a pair of
fields with a potential relationship and view a page on the user interface 116 with detailed

analysis results including counts from an occurrence chart for the pair of fields.

Referring to FIG. 15C, when a joint-field analysis is performed for two fields within the
same source (source C), the graph 1524 executes using the prepared census data C 1526 prepared
by graph 1500. A single extend component 1400 receives records from the set of prepared census
data C 1526, along with join information 1528 specifying the specific fields in source C to be
compared. Extended records flow into both ports of a census join component 1200 that generates
records containing values, patterns of occurrence, and counts for occurrence charts for the fields
being compared.

In the case of joint-field analysis options indicating that every field in source C is to be
compared with every other field in source C (having four fields: F1, F2, F3, F4), one approach is
for the join information 1528 to specify twelve pairs of fields (F1-F2, F1-F3, F1-F4, F2-F1, F2-
F3,F2-F4, F3-F1, F3-F2, F3-F4, F4-F1, F4-F2, F4-F3). However, since the same operations are
performed for the pairs F1-F3 and F3-F1, some operations are repeated. Accordingly, another
approach is for the join information to specify only the six unique pairs F1-F2, F1-F3, F1-F4, F2-
F3, F2-F4, F3-F4. In this case, the results in the output file 1530 are augmented to include results

-29--

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

for the other six field pairs by reversing the order of the fields in the analysis results for the six
pairs that were analyzed.

7 Functional dependency analysis

Another type of analysis that the profiling module 100 is able to perform is a test for a
functional relationship between values of fields. The fields tested can be from a single table that
has a set of fields or from a “virtual table” that includes fields from multiple sources that are
related (e.g., through a join operation on the fields using a common key field, as described in
more detail in section 7.3). One type of functional relationship between a pair of fields is
“functional dependency” where the value associated with one field of a record can be uniquely
determined by the value associated with another field of the record. For example, if a database
has a State field and a Zip Code field, the value of the Zip Code field (e.g., 90019) determines
the value of the State field (e.g., CA). Each value of the Zip Code field maps onto a unique
value of the State field (i.e., a “many-to-one” mapping). A functional dependency relationship
can also exist among a subset of fields where the value associated with one field of a record can
be uniquely determined by the values associated with other fields of the record. For example, the
value of the Zip Code field can be uniquely determined by the values of a City field and a Street
field.

The functional dependency can also be an “approximate functional dependency” where
some but not necessarily all of the values associated with one field map onto a unique value of
another field, with a percentage of exceptions that do not map onto the unique value. For
example, some records may have an unknown Zip Code that is indicated by a special value
00000. In this case, the value 00000 of the Zip Code field may map onto more than one value of
the State field (e.g., CA, FL, and TX). Exceptions can also occur due to records with incorrect
values, or other errors. If the percentage of exceptions is smaller than a pre-determined (e.g., as
entered by a user) threshold, then a field may still be determined to be functionally dependent on
another field.

Referring to FIG. 16, an example table 1600 with records (rows) and fields (columns) to
be tested for functional dependency or approximate functional dependency is shown. A Last
Name field has twelve values corresponding to twelve records (rows 1-12). Ten of the values are
unique, and two of the records have the same repeated value name g. A Citizenship field has two
unique values: US occurring eleven times and CANADA occurring once. A Zip Code field has
various values each corresponding to one of three values CA, FL, and TX for a State field. Each
value of Zip Code uniquely determines a value of State, except for the Zip Code value 00000 that
corresponds to FL in one record (row 10) and to TX in another record (row 12).

-30-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

7.1 Functional dependency analysis eraph

FIG. 17 shows an example of a graph 1700 used by the profiling module 100 to perform
an optional functional dependency analysis of selected fields in one or more sources (e.g., in a
single table or file, or in multiple tables and/or files as described in section 7.3) within data
sources 30. A user 118 selects options for profiling and for functional dependency analysis,
including the option of performing profiling without functional dependency analysis. The user
118 may choose which pair or pairs of fields are tested for a functional relationship. The user 118
selects particular fields of a data source (e.g., a table or file), and chooses, for example, “all to
selected” or “selected to selected” to determine which pairs of fields are tested or chooses “all to
all” to test all pairs of fields in the data source. The user may also select a threshold for
determining a degree of functional dependency before deciding that a field is or is not
functionally dependent on another field. For example, the user may select a threshold for
determining how many exceptions to allow (as a percentage of records). These options are stored

in the metadata store 112.

For each pair of fields (f1, {2) that is to be analyzed, the graph 1700 determines whether a
functional dependency relationship exists, and if so, classifies the relationship between field f1
and field f2 as: “f1 determines f2”, “f2 determines f1”, “one-to-one” (a one-to-one mapping
exists between fl and f2), or “identical” (f1 has identically the same value as f2 in each of the
records). The graph 1700 reads field information 1702 stored by the profiling module 100 to
determine unique identifiers for fields to be analyzed. A make pairs component 1704 generates a
flow of field pairs (f1, f2) using a pair of unique identifiers for each of the pairs of fields to be
tested. The pair (f1, £2) is an ordered pair since the relationship between f1 and £2 is not
necessarily symmetric. So both pairs (f1, £2) and (2, f1) are included in the flow.

A select pairs component 1706 limits the field pairs that flow to the rest of the graph
1700 by selecting the field pairs chosen for analysis by the user. The select pairs component
1706 further limits the pairs that flow to the rest of the graph based on a variety of optimizations.
For example, a field is not paired with itself since such a pair is classified as “identical” by
definition. So the pairs (f1, f1), (£2, £2), ... etc. are not included in the flow. Other optimizations
may remove one or more pairs of fields from the flow, as described in more detail below in

section 7.2.

A broadcast component 1708 broadcasts the serial flow of field pairs to each of the
partitions of a (potentially parallel) attach values component 1718, as represented by a broadcast
link symbol 1710. Each partition of the attach values component 1718 takes as input a flow of
field pairs (e.g., (LastName, Citizenship), (Zip, State), ... etc.) and a flow of field/value pairs

-31-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

(e.g., (LastName, name_a), (LastName, name_b), (LastName, name_c), ..., (Citizenship,
Canada), (Citizenship, US), (Citizenship, US), ... etc.).

T o obtain the flow of field/value pairs, a filter component 1712 extracts records from the
input data set 402, and optionally removes a portion of the records based on a filter expression.
The records flowing out of the filter component 1712 flow into a partition by round-robin
component 1714. The partition by round-robin component 1714 takes records from the partitions
of the input data set 402 and re-partitions the records among a number of parallel processors
and/or computers in order to balance the work load among the processors and/or computers. The
canonicalize component 1716 (similar to the canonicalize component 616 described above) takes
in a flow of records and sends out a flow of field/value pair representing values for each field in
an input record. As described above, each value is converted into a canonical human readable
string representation.

The attach values component 1718 performs a series of join operations to generate a flow
of f1/f2/v1/v2 quadruples where f1 and {2 correspond to one of the field pairs received at the
input, and v1 and v2 corresponds to values that are paired with those fields in a record. In the
example of table 1600, when the Last Name field corresponds to f1 and the Citizenship field
corresponids to f2, the attach value component 1718 generates a flow of twelve f1/£2/v1/v2
quadruples including: (LastName/Citizenship/name a/Canada),
(LastName/Citizenship/name_b/US), ..., (LastName/Citizenship/name k/US),
(LastName/Citizenship/name_g/US). The attach values component 1718 generates similar series
of f1/f2/~v1/v2 quadruples for (Zip, State) and any other pairs of fields that are analyzed.

The attach values component 1718 outputs the flow of f1/f2/v1/v2 quadruples into a
“local rollup f1/£2/v1/v2” component 1720 which (for each partition) accumulates multiple
quadruples with the same fields and values f1, f2, v1, v2 and represents them as a single
quadruple with a count of the number of occurrences of the quadruple in the input flow. The
output flow of the “local rollup f1/f2/v1/v2” component 1720 consists of quadruples with counts
(or “accumulated quadruples™).

The accumulation that occurs in the “local rollup f1/£2/v1/v2” component 1720 is within
each partition. So it is possible that some quadruples with the same values of f1, £2, v1, v2 are
not accurmulated by this component 1720. A “partition by f1/f2” component 1721 repartitions the
flow of accumulated quadruples such that quadruples with the same fields f1, {2 are in the same
partition. A “global rollup f1/£2/v1/v2” component 1722 further accumulates the repartitioned
quadruples. The output flow of the “global rollup f1/£2/v1/v2” component 1722 consists of
unique accumulated quadruples. In the example of table 1600, when the Zip field corresponds to

-32-

10

15

20

25

30

35

WO 2005/029369 PCT/US2004/030144

f1 and the State field corresponds to f2, the combined effect of the components 1720-1722
generates the following six accumulated quadruples: (Zip/State /90019/CA, 4), (Zip/State
/90212/CA, 2), (Zip/State /33102/FL, 3), (Zip/State /00000/FL, 1), (Zip/State /77010/TX, 1),
(Zip/State /00000/TX, 1). When the State field corresponds to f1 and the Zip field corresponds to
{2, the combined effect of the components 1720-1722 generates the following six accumulated
quadruples: (State/Zip /CA/90019, 4), (State/Zip /CA/90212, 2), (State/Zip /FL/33102, 3),
(State/Zip /FL/00000, 1), (State/Zip /TX/77010, 1), (State/Zip /TX/00000, 1).

To prepare to test for a functional dependency relationship between a pair of fields, a
“global rollup f1/£2/v1” component 1724 combines accumulated quadruples that have both fields
f1, £2 and the first value v1 in common. In producing an output element, this component 1724
examuines all values of v2 that go with a value of v1 and selects the most frequent v2 to associate
with that v1 value. The number of quadruples sharing the most frequent v2 are counted as
“good” and the rest of the quadruples are counted as “exceptions.” If there is only one value of
v2 for a given v1, then the accumulated quadruples having that value are good and there are no
exceptions. If there is a tie for the most frequent value of v2, then the first value is selected. In
the example of table 1600, when the Zip field corresponds to f1 and the State field corresponds
to f2, the component 1724 generates: (Zip/State/90019/CA, 4 good), (Zip/State/90212/CA, 2
good), (Zip/State/33102/FL, 3 good), (Zip/State/00000/FL, 1 good, 1 exception),
(Zip/State/77010 /TX, 1 good). When the State field corresponds to f1 and the Zip field
corresponds to 2, the component 1724 generates: (State/Zip/CA/90019, 4 good, 2 exceptions),
(State/Zip/FL/33102, 3 good, 1 exception), (State/Zip/TX/77010, 1 good, 1 exception).

A “global rollup f1/f2” component 1726 adds the good counts and the exceptions for each
unique pair of fields f1, £2. In the example of table 1600, when the Zip field corresponds to f1
and the State field corresponds to f2, the component 1726 generates: (Zip/State, 11 good, 1
exception). When the State field corresponds to f1 and the Zip field corresponds to f2, the
component 1726 generates: (State/Zip, 8 good, 4 exceptions).

A find dependencies component 1728 uses the accumulated co-occurrence statistics (i.e.,
numbers of good and exceptional records) from the “global rollup £1/£2” component 1726 to
determine whether a pair of fields has the relationship “f1 determines £2.” If the percentage of
exceptions (give by: number of exceptions/(number of good + number of exceptions)) is less
than the selected threshold for determining how many exceptions to allow, then the pair of fields
has the relationship “f1 determines f2.” In the example of table 1600, for a threshold of 10%,
when the Zip field corresponds to f1 and the State field corresponds to £2, the percentage of
exceptions is 8.3% and the value of the Zip field determines the value of the State field. When
the State field corresponds to f1 and the Zip field corresponds to 2, the percentage of exceptions

-33.

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

is 33%, so the relationship between the Zip and State fields is not a one-to-one mapping.
Alternatively, a value based on a mathematical property of the accumulated values can be used tc
determine whether field f1 determines field f2 (e.g., the conditional entropy of the value of field

2 given the value of field f1, or a standard deviation of a numerical value).

7.2 Field pair selection optimizations

A variety of optimizations can be applied to increase the speed of functional dependency
analysis, for example, by filtering pairs of fields at the select pairs component 1706, or by
filtering records at the filter component 1712. Some optimizations are based on the recognition
that some functional dependency relationships that are discovered by the graph 1700 described
above may not as meaningful to a user as others. For a given pair of fields, some of these cases
can be detected and filtered out by the select pairs component 1706 based on statistics provided
by the profiling module 100, saving computing resources. For example, if all of the values of a
first field f1 are unique (each value occurring in only a single record), then the value of that field
fl determines the value of the second field 2 regardless of the values occurring in the field 2.

The graph 1700 can use census data obtained during profiling to compute a probability
that a first field f1 determines a second field f2 based on a random (e.g., a uniform probability
distribution) pairing of values in the fields. If there is a high probability (e.g., > 10%) that a
random pairing would result in a functional dependency, then the field pair is filtered out by the
select pairs component 1706. In the example of table 1600, when the LastName field
corresponds to f1 and the Citizenship field corresponds to f2, every random pairing of LastName
with Citizenship results in all quadruples being counted as good except when one of the name_g
values, (in row 7 or row 12) is randomly paired with the value Canada. Even when this random
pairing occurs (with a probability of 16.7% (2 out of 12 pairings)), the percentage of exceptions
is only 8.3%, which is under the threshold. So in this example, the select pairs component 1706
filters the pair (LastName, Citizenship).

Another optimization is based on histograms of values calculated by the profiling module
100 from census data. The select pairs component 1706 filters pairs when it is not possible for
field f1 to determine field 2. In the example of table 1600, the most frequent value of State
occurs 6 times and the most frequent value of a Zip occurs only 4 times. So it is not possible for
the value of State to determine the value of Zip since there would be at least 2 out of 6
exceptions for at least half of the values, resulting in at least a 16.7% exception percentage. So in
this example, the select pairs component 1706 filters the pair (State, Zip).

- 34-

10

15

20

25

30

WO 2005/029369 PCT/US2004/030144

For a large number of records, the graph 1700 can increase the speed of testing for
functional dependency by processing a small sample of the records first to eliminate field pairs
that are highly likely not functionally related before processing all of the records. The graph
1700 can use the filter component 1712 to select a portion of the records. Alternatively, the graph
1700 can use the canonicalize component 1716 to select a portion of the field/value pairs.

The records or field/value pairs can be sampled based on a variety of criteria. The graph
1700 can sample based on statistics provided by the profiling module 100. For example, the
graph 1700 can test for functional dependency based on the most frequent value of first field f1
(the “determiner”). If the resulting number of exceptions are higher than the threshold, then there
1s no need to process the rest of values of the determiner. The graph 1700 can also test for
functional dependency based on a random sample of determiner values. If a sufficient number of
quadruples count as good among the sampled values, then the probability of finding a substantial
number exceptions among the other values is assumed to be negligible. Other sampling criteria

are possible.

Another optional optimization is to test for pre-determined functional relationships
between fields based on a library of known functions. This test can be performed on the records
or on the values of the quadruples.

73 Functional dependency analysis across multiple sources

In one approach for testing for functional dependency across multiple sources (e.g.,
database tables), profiling module 100 generates a “virtual table” that includes fields from the
multiple sources. The virtual table can be generated, for example, by performing a join operation
on the sources using a key field that is common to the sources.

i

In an example of functional dependency analysis using a virtual table, a first data source
is a database of motor vehicle registration information (a motor vehicle registry (MVR)
database) and a second data source is a database of issued traffic citations (a traffic citation (TC)
database). The MVR database includes fields such as make, model, color, and includes a license
field that is designated as a “primary key” field. Each record in the MVR database has a unique
value of the license field. The TC database includes fields such as name, date, location,
violation, vehicle make, vehicle model, vehicle color and includes a vehicle license field that is
designated as a “foreign key” field. Each value of the vehicle license field has a corresponding
record in the MVR database with that value in the license field. There may be multiple records

in the TC database having the same value of the vehicle license field.

- 35.

10

15

20

25

30

35

WO 2005/029369 PCT/US2004/030144

The profiling module 100 joins records from the MVR database and TC database to form
a virtual table (e.g., as described above with reference to the join component 1100 shown in
FIG. 11A). Each record of the virtual table has each of the fields from the two databases
including a single license field that has the matched value from the MVR license field and the
TC vehicle license field. A record may, however, have a value of the color field from the MVR
database that is different from the value of the vehicle color field from the TC database. For
example, the MVR database may use a “BLU” code to indicate the color blue and the TC
database uses a “BU” code to indicate the color blue. In this case, if a vehicle has the same color
in both databases, the color field will have a “one-to-one” functional relationship with the
vehicle color field. Alternatively, a record may have different values for the color field and the
vehicle color field if a vehicle has been painted a different color in the time between being

registered and receiving a citation.

Since the joined virtual table includes fields from each of multiple data sets, the profiling
module 100 can discover any of a variety of relationships that my exist between the fields in
those data sets. The same or similar dependency analysis as described above can be run on fields
in joined virtual table.

The approaches described above can be implemented using software for execution on a
computer. For instance, the software forms procedures in one or more computer programs that
execute on one or more programmed or programmable computer systems (which may be of
various architectures, such as distributed, client/server, or grid) each including at least one
processor, at least one data storage system (for example, volatile and non-volatile memory and/or
storage elements), at least one input device or port, and at least one output device or port. The
software may form one or more modules of a larger program, for example, a program that
provides other services related to the design and configuration of graphs.

The software may be provided on a medium or device readable by a general or special
purpose programmable computer or delivered (encoded in a propagated signal) over a network to
the computer where it is executed. All of the functions may be performed on a special purpose
computer, or using special-purpose hardware, such as coprocessors. The software may be
implemented in a distributed manner in which different parts of the computation specified by the
software are performed by different computers. Each such computer program is preferably stored
on or downloaded to a storage media or device (e.g., solid state memory or media, or magnetic or
optical media) readable by a general or special purpose programmable computer, for configuring
and operating the computer when the storage media or device is read by the computer system to
perform the procedures described herein. The inventive system may also be considered to be
implemented as a computer-readable storage medium, configured with a computer program,

- 36-

WO 2005/029369 PCT/US2004/030144

where the storage medium so configured causes a computer system to operate in a specific and
predefined manner to perform the functions described herein.

It is to be understood that the foregoing description is intended to illustrate and not to
limit the scope of the invention, which is defined by the scope of the appended claims. Other
embodiments are within the scope of the following claims.

-37.

10

15

20

WO 2005/029369 PCT/US2004/030144

‘What is claimed is:

1. A method for processing data including:

profiling data from a data source, including reading the data from the data source,
computing summary data characterizing the data while reading the data, and

storing profile information that is based on the summary data; and

processing the data from the data source, including accessing the stored profile

information and processing the data according to the accessed profile information.

2. The method of claim 1 wherein processing the data from the data source further includes
reading the data from the data source.

3. The method of claim 1 wherein profiling the data is performed without maintaining a
copy of the data outside the data source.

4. The method of claim 3 wherein the data includes variable record structure records with at
least one of a conditional field and a variable number of fields.

5. The method of claim 4 wherein computing summary data characterizing the data while
reading the data includes interpreting the variable record structure records while computing

summary data characterizing the data.

6. The method of claim 1 wherein the data source includes a data storage system.
7. The method of claim 6 wherein the data storage system includes a database system.
8. The method of claim 1 wherein computing the summary data includes counting a number

of occurrences for each of a set of distinct values for a field.

o. The method of claim 8 wherein storing profile information includes storing statistics for
the field based on the counted number of occurrences for said field.

- 38-

10

15

20

WO 2005/029369 PCT/US2004/030144

10. The method of claim 1 further including maintaining a metadata store that contains

metadata related to the data source

11. The method of claim 10 wherein storing the profile information includes updating the

metadata related to the data source.

12. The method of claim 10 wherein profiling the data and processing the data each make use

of metadata for the data source

13. The method of claim 1 wherein profiling data from the data source further includes

determining a format specification based on the profile information.

14. The method of claim 1 wherein profiling data from the data source further includes

determining a validation specification based on the profile information.

15. The method of claim 14 wherein processing the data includes identifying invalid records

in the data based on the validation specification.

16. The method of claim 1 wherein profiling data from the data source further includes
specifying data transformation instructions based on the profile information.

17. The method of claim 16 wherein processing the data includes applying the transformation

instructions to the data.

18. The method of claim 1 wherein processing the data includes importing the data into a

data storage subsystem.

19. The method of claim 18 wherein processing the data includes validating the data prior to
importing the data into a data storage subsystem.

20. The method of claim 19 wherein validating the data includes comparing characteristics of

the data to reference characteristics for said data.

-39.

10

15

20

25

WO 2005/029369 PCT/US2004/030144

21. The method of claim 20 wherein the reference characteristics include statistical properties
of the data.

22. The method of claim 1 wherein profiling the data includes profiling said data in parallel,
including partitioning the data into parts and processing the parts using separate ones of a first set
of parallel components.

23. The method of claim 22 wherein profiling the data in parallel further includes computing
the summary data for different fields of the data using separate ones of a second set of parallel

components.

24. The method of claim 23 wherein profiling the data in parallel further includes
repartitioning outputs of the first set of parallel components to form inputs for the second set of

parallel components.

25. The method of claim 22 wherein profiling the data in parallel includes reading the data
from a parallel data source, each part of the parallel data source being processed by a different
one of the first set of parallel components.

26. A method for processing data including:

profiling data from a data source, including reading the data from the data source,
computing summary data characterizing the data while reading the data, and
storing profile information that is based on the summary data; wherein

profiling the data includes profiling said data in parallel, including partitioning the data
into parts and processing the parts using separate ones of a first set of parallel

components.

27. Software including instructions adapted to perform all the method steps of aﬁy of claims

1 through 26 when executed on a data processing system.
28. The software of claim 27 embodied on a computer-readable medium.

29. A data processing system including:

- 40-

10

15

20

25

30.

31.

32.

WO 2005/029369 PCT/US2004/030144

a profiling module configured to read data from a data source, to compute summary data
characterizing the data while reading the data, and to store profile information that
is based on the summary data; and

a processing module configured to access the stored profile information and to process

the data from the data source according to the accessed profile information.

A data processing system including:

means for profiling data from a data source, including means for reading the data from
the data source, means for computing summary data characterizing the data while
reading the data, and means for storing profile information that is based on the

summary data; and

means for processing the data from the data source, including means for accessing the
stored profile information and means for processing the data according to the
accessed profile information.

A method for processing data including:

accepting information characterizing values of a first field in records of a first data source
and information characterizing values of a second field in records of a second data

source;

computing quantities characterizing a relationship between the first field and the second
field based on the accepted information; and

presenting information relating the first field and the second field.

The method of claim 31 wherein presenting the information includes presenting the

information to a user.

33.

The method of claim 31 wherein the first data source and the second data source are the

same data source.

34.

The method of claim 31 wherein at least one of the first data source and the second data

source includes a database table.

_41-

10

15

20

WO 2005/029369 PCT/US2004/030144

35. The method of claim 31 wherein the quantities characterizing the relationship include
quantities characterizing joint characteristics of the values of the first field and of the second
field.

36. The method of claim 35 wherein the information characterizing the values of the first

field includes information characterizing a distribution of values of said first field.

37. The method of claim 36 wherein the information characterizing the distribution of values
of the first field includes plurality of data records, each associating a different value and a
corresponding number of occurrences of said value in the first field in the first data source.

38. The method of claim 36 wherein the information characterizing the values of the second
field includes information characterizing a distribution of values of said field.

39. The method of claim 38 wherein computing the quantities characterizing the joint
characteristics includes processing the information characterizing the distribution of values of the
first field and of the second field to compute quantities related to a plurality of categories of co-

occurrence of values.

40. The method of claim 39 wherein the information characterizing the distribution of values
of the first field and of the second field includes a plurality of data records, each associating a
different value and a corresponding number of occurrences of said value and wherein processing
the information characterizing said distributions of values includes computing information
characterizing a distribution of values in a join of the first data source and the second data source
on the first field and the second field, respectively.

41. The method of claim 39 wherein the quantities related to the plurality of categories of co-
occurrence of values includes a plurality of data records, each associated with one of the
categories of co-occurrence and including a number of unique values of the first and the second
fields in said category.

- 42-

10

15

20

25

WO 2005/029369 PCT/US2004/030144

42. The method of claim 35 wherein computing the quantities characterizing the joint
characteristics of the values of the first field and the second field includes computing information
characterizing a distribution of values in a join of the first data source and the second data source

using the first field and the second field, respectively.

43. The method of claim 35 wherein computing the quantities characterizing the joint
characteristics of the values of the first field and the second field includes computing quantities
related to a plurality of categories of co-occurrence of values.

44. The method of claim 42 wherein the categories of co-occurrence of values includes
values that occur at least once in one of the first field and the second field but not in the other of
said fields.

45. The method of claim 42 wherein the categories of co-occurrence of values includes

values that occur exactly once in each of the first field and the second field.

46. The method of claim 42 wherein the categories of co-occurrence of values includes
values that occur exactly once in one of the first field and the second field and more than once in
the other of said fields.

47. The method of claim 42 wherein the categories of co-occurrence of values includes

values that occur more than once in each of the first field and the second field.

48. The method of claim 35 further including the steps of accepting information
characterizing values and computing 'quantities characterizing joint characteristics of the values
are repeated for a plurality of pairs of first and second fields.

49. The method of claim 48 wherein each of the plurality of pairs of fields has é unique
identifier that is included with values in the pairs of fields to compute the quantities

characterizing the joint characteristics of the values.

50. The method of claim 48 further including presenting information relating the fields of

one or more of the plurality of pairs of fields.

- 43-

10

15

20

WO 2005/029369 PCT/US2004/030144

51. The method of claim 50 wherein presenting the information relating the fields of one or
more of the plurality of pairs of fields includes identifying fields as candidate fields of one of a
plurality of types of relationships of fields.

52. The method of claim 51 wherein the plurality of types of relationships of fields includes a
primary key and foreign key relationship.

53. The method of claim 51 wherein the plurality of types of relationships of fields includes a
common domain relationship.

54. The method of claim 31 wherein computing the quantities includes computing said
quantities based on logical values that are converted from literal values of the first field and of
the second field.

55. The method of claim 37 wherein computing the quantities includes computing said
quantities in parallel, including partitioning the data records into parts and processing the parts

using separate ones of a set of parallel components.

56. The method of claim 55 wherein the parts are based on values of the first field and of the
second field.

57. The method of claim 56 wherein data records having the same value are in the same part.

58. Software including instructions adapted to perform all the method steps of any of claims
31 through 57 when executed on a data processing system.

59. The software of claim 58 embodied on a computer-readable medium.

60. A system for processing data including:

a values processing module configured to accept information characterizing values of a
first field in records of a first data source and information characterizing values of
a second field in records of a second data source;

- 44.

10

15

20

25

WO 2005/029369 PCT/US2004/030144

a relationship processing module configured to compute quantities characterizing a
relationship between the first field and the second field based on the accepted

information;

an interface configured to present information relating the first field and the second field.

61. A system for processing data including:

|
means for accepting information characterizing values of a first field in records of a first

data source and information characterizing values of a second field in records of a

second data source;

means for computing quantities characterizing a relationship between the first field and
the second field based on the accepted information;

means for presenting information relating the first field and the second field.

62. A method for processing data including:
identifying a plurality of subsets of fields of data records of a data source;
determining co-occurrence statistics for each of the plurality of subsets; and

identifying one or more of the plurality of subsets as having a functional relationship
among the fields of the identified subset.

63. The method of claim 62 wherein at least one of the subsets of fields is a subset of two
fields.

64. The method of claim 62 wherein identifying one or more of the plurality of subsets as
having a functional relationship among the fields of the identified subset includes identifying one
or more of the plurality of subsets as having one of a plurality of possible predetermined
functional relationships.

65. The method of claim 62 wherein determining the co-occurrence statistics includes
forming data elements each identifying a pair of fields and identifying a pair of values occurring

in the pair of fields in one of the data records.

66. The method of claim 62 wherein determining the co-occurrence statistics includes:

- 45.

10

15

20

WO 2005/029369 PCT/US2004/030144

partitioning the data records into parts, the data records having a first field and a second
field;

determining a quantity based on a distribution of values that occur in the second field of
one or more records in a first of the parts, the one or more records having a

common value occurring in a first field of the one or more records; and

combining the quantity with other quantities from records in other of the parts to generate
a total quantity.

67. The method of claim 66 wherein identifying one or more of the plurality of subsets as
having a functional relationship among the fields of the identified subset includes identifying a

functional relationship between the first and second fields based on the total quantity.

68. The method of claim 66 wherein the parts are based on values of the first field and of the
second field. |

69. The method of claim 66 wherein the parts are processed using separate ones of a set of
parallel components.

70. The method of claim 62 wherein identifying one or more of the plurality of subsets as
having a functional relationship among the fields of the identified subset includes determining a

degree of match to said functional relationship.

71. The method of claim 70 wherein the degree of match includes a number of exceptional

records that are not consistent with said functional relationship.

72. The method of claim 62 wherein the functional relationship includes a mapping of at least
some of the values of a first field onto at least some of the values of a second field.

73. The method of claim 72 wherein the mapping is a many-to-one mapping.
74. The method of claim 72 wherein the mapping is a one-to-many mapping.

75. The method of claim 72 wherein the mapping is a one-to-one mapping.
-46-

76.

WO 2005/029369 PCT/US2004/030144

The method of claim 62 further including filtering the plurality of subsets based on

information characterizing values in fields of the plurality of subsets.

71.

78.

The method of claim 62 wherein the data records include records of a database table.

The method of claim 77 wherein the data records include records of a plurality of

5 database tables.

79.

Software including instructions adapted to perform all the method steps of any of claims

62 through 78 when executed on a data processing system.

80.

81.
10
15

82.
20

The software of claim 79 embodied on a computer-readable medium.

A system for processing data including:

an identification processing module configured to identify a plurality of subsets of fields
of data records of a data source;

a statistics processing module configured to determine co-occurrence statistics for each of
the plurality of subsets; and

a functional relationship processing module configured to identify one or more of the
plurality of subsets as having a functional relationship among the fields of the
identified subset.

A system for processing data including:
means for identifying a plurality of subsets of fields of data records of a data source;
means for determining co-occurrence statistics for each of the plurality of subsets; and

means for identifying one or more of the plurality of subsets as having a functional

relationship among the fields of the identified subset.

-47-

	Abstract
	Bibliographic
	Description
	Claims

