发明名称 具有至少一根液压轴的设备

摘要

本发明建议，对于液压轴的功率控制不在液压系统方面进行，而是通过功率电子设备在电气系统方面进行。这就允许液压系统按开式回路运行，并且是可以用唯一的一台泵顺序传动任意数量的轴。突出的优点在于，一方面可以达到单纯电机传动的轴的调节质量，而尤其是迄今的能量损失不再产生。此新传动装置起特别有利的作用是在它与一个效能处于相互作用的情况下，这一效能确定作用在传动装置上的回行力。内齿轮泵最为有利。尽管整个系统是一个四象限传动装置，但在泵传动装置一侧作为二个象限的传动装置工作。采用此新发明可以做到将电气系统的众所周知的“控制/调整思想”尤其用于在液压传动技术中的功率控制和调整。
权利要求书

1、具有可控式轴传动装置和控制/调整智能装置以及至少一根液压轴的设备，其特征为：力学参数(P/Q)无能耗地传入开式液压回路中，以及，功率的控制/调整通过功率电子调整机构完成。

2、按照权利要求1所述的设备，其特征为：它有一台液压泵，尤其是恒容量泵，其中，泵的传动通过一台转速可变的驱动电机尤其是一台伺服电机实现，以及，转数或转速的控制/调整通过过程控制计算机进行。

3、按照权利要求1或2所述的设备，其特征为：开式液压回路设计为无控制阀的，以及至少一根液压轴设计为直线运动的轴。

4、按照权利要求1至3之一所述的设备，其特征为：控制/调整智能装置有一台计算机/存储器，其中，泵的特征值(尤其是作为转速、压力和温度的函数的液压流量)可储存在计算机/存储器中，并在调整驱动电机转速时可有效地用作特征曲线补偿。

5、按照权利要求1至4之一所述的设备，其特征为：它有一台液压泵，尤其是内齿轮泵，并设计四或二象限传动装置。

6、按照权利要求1至3之一所述的设备，其特征为：此液压回路配备有一个致动器，它的背压侧有一个蓄能器(或势能源)，尤其是一个储罐，它可作为弹簧储力器工作。

7、按照权利要求1至6之一所述的设备，其特征为：可通过开式液压回路驱动一根以上的轴，其中，至少一根或几根或所有的轴都可在无控制阀的情况下工作。

8、按照权利要求1至7之一所述的设备，其特征为：多个致动器有一个公共的背压网络。

9、按照权利要求1至8之一所述的设备，其特征为：在开式液压回路中至少设有一个安全阀，此安全阀设计为开关阀，限压或紧急切断阀，和/或作用在致动器上的力通过液压或电机输入电流加以测量和储存，并对此确定一个用于控制或监测致动器的公差带，此时，当超过公差带时致动器停止和/或反向运动。

10、按照权利要求1至9之一所述的设备，其特征为：它被设计为混合式传动系统，其中，通过功率电子元件和过程控制计算机，至少一
根最好作直线运动的轴可通过液压传动或运动，以及至少另一根轴可由电机和/或按常规在阀控制下传动或运动。

11、按照权利要求10所述的设备，其特征为：多根轴借助于控制/调整智能装置可顺序地由无能耗液压系统控制/调整，以及，除此之外，一根或多根电机轴可与时间无关地控制/调整。

12、按照权利要求1至11之一所述的设备，其特征为：在过程控制计算机内有程序控制部分，用于非线性压力控制，其中，过程控制计算机最好设计为多轴传动计算机，并具有模块式结构的程序控制部分，它们可有选择地使用并可被上一级的驱动智能装置选择；其中，过程控制计算机最好设计用于一根或多根轴作为多参量控制器，在此多参量控制装置中可输入作为目标参数的调节参数极限值(例如力和/或速度和/或行程)；此外，最好将此多参量控制器尤其是设计为串联控制器，并有一个与数据总线或直接与机器计算机的接口；在多参量控制器中可以确定有不同额定值或目标参数(例如力、速度或行程)的多个工作阶段。

13、按照权利要求1至10之一所述的设备，其特征为：电机传动装置可以是持久激励式伺服电机，矢量控制式异步电机，可调直流电机，无电刷式直流电机或开关式磁阻电机或调频电机。

14、按照权利要求1至13之一所述的设备，其特征为：此设备设计为机器人，机床，尤其是注塑机，压铸机，压力机，测试设备或工作平台，其中，至少一根或多根轴设计作为无能耗地在开式回路中的液压式运动的轴。

15、按照权利要求1至14之一所述的设备，其特征为：它设计为铸造机，其中，通过一根或多根轴，将力学参数(P/Q)无能耗地传入开式液压回路中和/或可借助于一个耗能阀控制注射轴和/或模具闭合轴；最好所有的动作器可连接在蓄能器网络上。

16、按照权利要求1至5之一所述的设备，其特征为：可采用内齿或外齿式有补偿或无补偿的齿轮泵、恒定或可调式轴向或径向活塞泵、恒定或可调叶片泵、螺旋泵或其他静压容积式部件。

17、按照权利要求1至16之一所述的设备，用于借助作用在泵侧和背压侧的压力，控制一根或多根轴，例如压铸机模具闭合轴的运动质量的速度分布和/或行程分布，其特征为：采用考虑了压力侧和背压侧压力的流体液压作为调节参数，其中，控制器最好设计为用于压力、速度和
位置的多参量控制器，或用于控制轴的多参量控制器。
说明书

具有至少一根液压轴的设备

技术领域

本发明涉及一种具有可控式轴传动装置的设备，该轴传动装置具有控制/调整智能装置以及至少一根在开式液压回路中运动的轴。

现有技术

在控制/调整传动轴时至少提出三项基本任务：

首先，轴的传动装置必须与所要求的是直线运动还是旋转运动无关地产生所需要的力或功率。

第二，运动过程必须是完全可以控制的，为此需要一种高速度的控制/调整系统。

第三，在许多实际使用场合必须协调不同的功能或运动，这一任务借助于所谓电子智能装置实现。

机器设计者应用可调整的传动装置，它可以将力学参数(力和/或位置)加到各根轴或机器的自由度上。在这方面处于重要地位的是电气和液压传动装置。这在性质上属于两个分支，每一个分支要分别研究。在专业博览会上表明了这一点，在那里人们将液压传动技术与电气传动技术分开；这也反映在专家的培养教育上。液压传动更趋向于属于机械工程技术，而电气传动则属于电气工程师的知识领域。这种区分贯穿在全部工业中。不同的公司和行业或从事液压传动或从事电气传动。传动专家只是在市场上彼此相遇，在那里他们各自宣传其方案的优点。存在着两个分支这一事实本身证明，除非所有论据只能为一方所占有。电机控制传动装置在将旋转运动转换为直线运动时，尤其在传递大力时是有缺点的。液压传动装置的主要缺点是，到目前为止它的能量效率低，这种争论的一个有代表性的例子表现在液压机市场中。以电子技术为背景的公司试图在市场上推出一种“全电”的机器，而其竞争对手则以“全液压”的与之对抗，双方都有一个正确的理由在各自的一方。人们不带偏见地分析了这两种技术的优缺点，得出了一些值得注意的差别。对于液压传动装置，众所周知，它有非常高的功率和力或力矩浓度(相应构件每单位重量或体积产生的功率、力或力矩)。这一情况便是为什么液压系统在需
要大的传动力时具有其优势的原因，这种大的传动力例如在压力机和压铸机中是必要的。在这一领域内，液压传动装置还有出色的机械效率和极高的坚固性。此外，在不考虑伺服阀或调节阀时，用于液压参数的调节机构和传感器价格低廉。在液压传动装置中的功率控制(压力或流量)，

借助于耗能的调节机构如伺服阀或比例阀进行。在这种情况下，根据传动装置所需要的功率，或多或少的液压功率通过阀的节流孔边缘不可逆地转变成热量，这也就意味着不仅能量损失(更确切地说是能量耗散)而且还有会造成干扰的热量，这种热量必须通过附加的设备导出。调节机构的反应比较缓慢，并需要高的能量进行操纵。液压传动技术试图通过采用调节阀找到一条出路。尽管这样可以降低功率损失，然而在系统中仍保留有可能损失的设备，例如泵的可调式传动装置或用于保持调节机构所需的备用泵。

在绝大多数实际应用中，这两种传动技术还都发展了一种各自的特点，这例如可以通过最近发表的两个例子来说明。DE - PS4303760 介绍了具有一种具有一个开式液压回路的液压传动装置。其中，泵直接从油箱吸油。泵将该介质通过压力调节器输送，这种压力调节器由安全阀和作为控制阀的液压阀(电控比例式压力调节阀)组成。控制阀由智能装置或计算机通过信号线操纵。在阀与具有必要传动轴或质量的工作缸之间，有一个定向逻辑装置。它同样通过计算机电控。真正的调整通过在计算机中处理速度和位置信号，以达到相应的实际值与额定值，并相应地操纵阀门组来进行。由此最简短的说明可知，对于一个开式液压传动装置，控制/调整通过智能阀完成。作为对立面，源出于同一些发明者的 EPA 643472 公开了一种所谓智能传动装置，用于电机传动一根或多根轴。两种方案都达到了目的，即高水平地掌握控制/调整过程，并在一台机器上提供了实际的使用证明。这些发明人可以提供证明，全电的压铸机(按 WO 94/22655)只需要先有技术的相应的液压式机器传动能量的 20 % 至 30 %。液压系统的一个突出的缺点在于，与电子系统相比液压系统只有付出极大的耗费才能达到设定的参数。这给液压系统带来了不同的特殊解决方案。这一情况便是有大量各式各样的不能一目了然的液压调节阀的原因。在液压传动的机器中，往往传动装置极低的成本起了解决作用，尤其是在设计新的需要大的力量的机器时。

发明概述
本发明的目的是提出一种新型高动态和可最大可能广泛应用的传动方案，它将最大可能地将液压与电气的传动装置的优点结合起来，避免各自相应的缺点。本发明人认识到，尽管“或这一种/或那一种”有许多优点，但实际上这往往可能对发展最佳方案甚至恰恰是障碍。发明者为自己提出的任务是从这两种传动方案中取其精华。在这两者之间找到最优“结合点”，尤其用于具有以秒计的运动循环的传动装置，也就是说尤其是用于具有高的加速度/减速度的传动装置。

按照本发明的方案的特点在于，力学参数(P/Q)无能耗地传入开式液压回路中，以及，功率的控制/调整通过功率电子调整机构完成。

人们知道，功率调整必须在电气/电子系统方面进行，因为在电气设备中这可以损失极小地完成。但这样来说到取消了在液压系统中主要的损失点，因为据证实这些损失点正是通过伺服阀的降压造成的。并不是因为系统装置的开/关功能而是通过节流阀被节流，导致压力能转化为热能。大多数工作过程所消耗的热能是不可回收的能量，将热能恢复成一种能做功的技术上可利用的能量是极不经济的。本新发明的出发点在于，液压功率通过控制/调整泵的驱动电机，根据瞬时所需要的瞬时上为供油量(Q)和油压(P)的数量精确地产生。这样一来，迄今在液压系统方面同时带来的所有节流损失完全不再发生，因为在正常情况下根本就不需要任何节流阀。油路系统可以设计为无节流的，至少在涉及功率流的地方。此外，人们认识到，在许多应用场合，最佳方案只能是两种传动技术的组合。在 IGBT 技术中的当代大功率半导体，有能力在几个毫微秒(10^{-9} 秒)的时间内开关大的功率。在这方面，电子技术至少优于液压技术五个数量级。这一优势主要是由于电能和液压能存在不同的信号传播速度，它们的信号传播速度同样差五个数量级。与液压阀所需要的开关能量相比，开关晶体管所需要的能量比较低。半导体快速开关过程有可能使功率在全部四个象限内的功率控制都是无损失或损失极小的。有关的开关电路和性能(例如脉冲宽度调制)是已知的。例如，尤其在机器制动期间，可将制动能量控制地输入电容器或回授到电网中。电气传动装置在空载或停车时的功率损失比液压的小得多。但是纯粹的电气传动装置也有一些缺点，电机功率转为为大能量的运动只有通过昂贵的变速器才有可能。这尤其发生在用于直线运动，力和力矩只能不准确地通过电的参量电流和电压来测定。为了有高的控制质量必须设计专用的传感
器，用以测量大的终端力。在荷载变换时，变速器给位置参数造成明显的滞后。这在控制过程中会在零点附近带来很大的干扰。

本发明可以有许许多多特别有利的设计。这种设备有一台液压泵，最好是恒容排泵，其中，泵的传动通过一台转速可变的驱动电机尤其是一台伺服电机，以及，控制/调整通过过程控制计算机进行。泵可以设计为内齿或外齿式有补偿或无补偿的齿轮泵、恒定或可调式轴向或径向活塞泵、恒定或可调叶片泵、螺旋泵或其他静压容积式部件。泵最好设计为液压式内齿轮泵。内齿轮泵具有有利的运动学，它在抽吸口中的流体加速度很小，从而为良好的抽吸性能和有大的气蚀裕度奠定了基础。本发明的第一个实施例由转速可调的电机或伺服电机组成，它驱动定流量泵。泵与一个液压调节机构相连，例如油缸或液压马达，并直接从油箱抽吸工作流体，后者具有一种开式液压系统的特点。本发明人认为，对于动态特性非常好的电机例如伺服电机，由于流体柱的加速度会在抽吸管路内造成大的真空度。当要求严格时，必须使用这样一些泵，即它们具有良好的抽吸能力，即使在高压情况下也能经受得住转速变化地工作。为此，带齿环支座的内齿轮泵特别适用。若所采用泵的抽吸能力不足，则必须采取对油箱增压的附加措施进行补偿。按本发明的传动装置作为四象限传动装置(4 - Quadrant - Antrieb)特别适合于用于在第一和第二象限中执行传动任务，换句话说只须沿一个方向调整力。为了满足四象限传动装置的要求，液压的背压侧加一个势能。这例如可以通过蓄压器、弹簧或一个质量来实现，上述质量受到重力场的作用。势能对距离的导数定义为力，这个力可以沿另一个运动方向控制/调整新的传动装置，亦即在象限三和四中。这一由电机/泵构成的系统在沿正方向运动时的工作，不仅要克服外力，而且与此同时要克服此力。在这种情况下附加地作出的功作为势能储存起来，并在沿负方向运动时提供使用。这种传动装置的特点在于，泵本身仍只在二个象限工作。尽管旋转方向发生变化，但在液压泵中或在电机与泵之间的离合器内的负荷没有变换。这一点从控制技术的理由而言有重要意义，因为要不然随着每一次的负荷变换产生一次不连续性，这种间断会带来显著的干扰(位置参数的滞后)，开式液压回路最好设计用于无控制阀的至少一根液压轴。按照另一种设计，控制/调整人工智能装置有计算机/存储器，泵的特性值(尤其是作为转速、压力和温度、液压介质粘度的函数的流速)可储存在计算
机/存储器中，并作为附加的给定的额定值有效地用于驱动电机。此新的方案是由电和液压元件组成的四象限传动装置，用于控制和调整机器的一根或几根轴。为了尽可能广泛地作为传动部件应用，建议此传动装置可在全部四个象限中控制/调整，也就是说，在传动装置上可沿被传动机器的两个运行方向施加力学参数，尤其是力、力矩、位置、转角、位置与力的关系(特性曲线)或这些参数的时间导数。

按照另一种十分有利的设计，液圧回路有一个致动器，它的背压侧通过蓄能器(或蓄能器)加压，它可作为弹簧储力器工作。也可以有多个致动器通过一个蓄能器网络与一个公共的蓄能器相连。此外，可以通过开式液压回路传动一根以上或轴，其中，至少一根或多根或所有的轴仍可能在无控制阀的情况下工作。因此，本发明提供了一些全新的组合，例如可以将受控制的功率部件的功率，以电的、机械的或液压的方式，切换到多个致动器上。多根传动轴或自由度则只借助于一个可控制的功率部件(调节机构)提供。在开式液压回路中可至少设一个安全阀作为开关阀或限压阀或紧急切断阀。同样地，作用在致动器上的力可通过液压系统的压力或电机的输入电流加以测量和储存，并对此确定一个用于控制或监测致动器的公差带，此时，若超过公差带，致动器停止和/或反向运动。本发明人所提出的任务是，吸收水力学和机电学领域的精华，统一在一种所谓液电式传动装置中，这种装置可以低损失地控制和调整机械功率，并可回收引入的能量。其目的是使力和功率浓度、耐用性和低成本，能与液压传动装置的性能一致。本设备允许构成混合式传动系统，其中，通过功率电子元件以及过程控制计算机至少可以无能耗地液压传动或运动一根最好直线运动的轴，以及可通过电机和/或传统的阀门控制，传动或运动至少另一根轴。

另一个非常重要的设计思想是，将设备设计为混合式传动系统，其中，可通过功率电子元件和过程控制计算机，借助于相应的控制/计算机智能装置，无能耗地液压传动或运动至少一根最好直线运动的轴，以及，可电机传动或运动至少另一根轴。这样就能做到，借助于同一个控制/调整智能装置，可顺序地通过液压系统控制/调整多根轴，以及，可与时间无关地控制/调整一根或多根电机轴。这样一来便第一次给机器的设计师以完全的自由，与传动技术无关地选择用于有关功能的最佳传动装置。仅仅通过唯一的一个控制/调整系统，或只是一种控制/调整基本原理用于
有关的系统部分，便可以把机器的质量提高到一个新的水平。液压介质
失去了它迄今为止作为流体压力调节器的功能，而成为一种近似刚性的
液压传动装置，它几乎可以用在各种地方。根据特别的准则，例如所有
的旋转轴可以电机传动，所有的直线运动的轴可通过液压介质传动。或
在空间特别狭窄的情况下，对于个别轴优先选择液压系统。联系“全电”
传动的压铸机 (WO 94/22655)，众所周知，在过程控制计算机中可设有程
序控制部分，用于非线性压力控制，其中，控制信号例如在小的调节系
统误差时可以是线性的，而在大调节系统误差时则可以是此调节系统
偏差的根函数。过程控制计算机设计为多轴传动计算机，并最好有模块
式结构的程序设计部分，它们可有选择地使用并可被上一级驱动智能装
置选择。此外，过程控制计算机可设计用于一根或多根轴作为多参量控
制器，在此多参量控制器可输入作为目标参数的控制参数参数值(例如
力和/或速度和/或行程)。多参量控制器设计为串联控制器，并有一个与
数据总线或直接与机器计算机的接口，其中，在多参量控制器中可以确
定具有不同额定值或目标参数(例如力或速度或行程)的多个工作阶段。电
机传动装置可以是持久激励式伺服电机、矢量控制式异步电机、可调直流
电机、无电刷式直流电机或开关式磁阻电机或调频电机。

按照另一种最佳设计，此设备设计为机器人/机床，尤其是设计为注
塑机、压铸机、压机、测试设备或工作平台(它们全都有高度动态的运动
过程)，其中一根或多根轴设计为液压运动的轴。此设备可以设计为这样
的铸造机，即将液压传动系统设计为使模具运动和产生模具闭合力。在
一种方案中，此设备可设计为铸造机，其中，过程控制计算机设计用于
顺序控制/调整液压传动装置，例如模具夹紧轴和/或注射轴和/或螺旋挤
压机旋转轴。在两种情况下过程控制计算机都可以设计为多轴传动计
算机，用于控制/调整别的伺服电机，这些伺服电机用于机组移动和/或推料
和/或螺旋挤压机旋转和/或注射的机电式传动装置。

此设备还可设计为这样的铸造机，其中，通过一根或多根轴，将力
学参数 (P/Q) 无能耗地传入开式液压回路中，和可借助于一个调压阀或比
例阀控制注射轴和/或模具闭合轴。

本发明另一种非常有利的设计是，它有一个调速装置以及一个带一
台或多台内部信号计算机的控制和调整设备，一台或多台内部信号计算
机主要包括下列功能：相位角调节器 (j)，电流调节器 (I) 和速度调节器
(V)，其中设有与机器计算机无关可分开联装的模块，用于自主控制或调整多根轴，除了一台或多台信号计算机外，还有一台在它或它们之上的上级过程控制计算机，它设计为无滞后地控制或调整这些轴，以及，它所需要的信息取自设于模块内的存储器。在这种情况下，至少其中一根轴可液压传动，而至少其中一根轴由电机传动。因此，本发明另一种设计的特征在于，此设计有一个用于控制一根机器轴的参数的可调传动装置，它具有一个带内部信号计算机的控制和调整设备，信号计算机主要包括下列控制和/或调整调节参数的功能：相位角调节器(j)、电流调节器(I)、速度调节器(V)、压力(P)和轴向位置(X)，其中设有与机器计算机无关的可分开联装的多参数控制器，用于自主控制或调整调节参数，除了信号计算机外，它还有另一个在信号计算机之上的过程控制计算机，设计用于无滞后有选择地控制或调整调节参数，以及，它所需要的信息取自设于多参数控制器内的存储器。

发明简述

下面借助于一些实施例更详细地说明本发明。其中：
图1 新发明的基本结构；
图2和2a 先有技术的开式调节回路和压力变化曲线；
图3和3a 示意表示新发明和压力变化曲线；
图4 作为举例说明一个工作循环期间的往复运动；
图5和5a 新发明的系统图和曲线图；
图6 新发明的P/Q随时间的变化曲线；
图7 具有多参数控制器的应用举例；
图8 具有一台泵和若干致动器的应用举例；
图9 具有液电式传动装置的注塑部件；
图10 作为应用举例的工作平台；
图11 注塑机；
图12 用于混合式方案的控制/调整原理图。

实施本发明的途径

下面参见图1，图中表示了新发明的核心部件。液压泵1经抽吸管4

从油箱2吸出液压介质3，例如油，并通过压力接头5以及压力管6将液压介质3输往轴7。轴7意味着是一个简单的致动器，它有简单的液压缸8、活塞9和活塞杆10，并通过一个旋转铰链11和支板12支承在
设备或机器部分或者说底座 13 上。活塞杆 10 直接与一个要运动的构件或工作构件 14 连接。在泵侧压力介质 15 的对面有可压缩的背压介质 16 例如氮气，氮气在本例中最好是溶液，可经过交换管 17 在储罐 18 中膨胀。液压泵 1 的传动由驱动电机 20 进行，驱动电机 20 通过离合器 19 在机械上与泵 1 相应的传动轴直接连接起来。用 1’表示的点划线勾画了整个增压器，它设计为有如先有技术那样的工作能力。点划线 20’表示泵的传动装置和调整装置以及有关的功能构件。点划线方框 21 包括功率电子调节机构 24 以及控制/调整智能装置、换流器和/或蓄能器，后者包括在方框 22 中。电网的交流电变换为直流电按传统的实施的方法进行。其中，蓄能也可以是回流的能量湍入蓄能器中或电容器中。控制/调整智能装置控制功率晶体管的网络。通过信号线 23 实施调节参数和测量参数的输入/输出，例如电机转角、转速、电流或电压。C 表示输入/输出设备，它可以设计为计算机或例如设计为 PC 机。在所表示的实施例中进行了多次能量转换。第一次从市电接头 25(作为交流电)转换成直流电。基本上与此同时，通过功率电子调节机构 24，根据给定的调节参数，在驱动电机中产生电磁场。驱动电机将此能量转换成在泵 1 传动轴上的相应的机械能，机械能再次在泵 1 的压力接头 5 处产生液压能。电机作用在泵 1 上，泵 1 从油箱吸油，并可准确控制地直接供入液压缸。这一传动装置可在没有控制阀的情况下在所有四个象限控制和调整全部力学参数。此外没有任何液压调节机构或开关元件。所有的控制/调整任务在电的一方完成，并以可改变的转速或转数带动等容积式泵。

图 2 表示有先技术的开式液压调节系统简化后的例子。所产生的例如 120 巴的压力，实际上通过节流(控制阀)降到 50 巴。图 3 表示了没有控制阀的新方案举例，亦即在调节系统内没有任何控制阀。在这里功率控制完全在电的一方进行。因此，这一系统是完全不耗能的。在图 3a 中和在图 2a 中对比了按本发明方案和先有技术的力和压力随行程的变化。其中，曲线 stn 是先有技术的，而曲线 Et 是新发明的。

在先有技术中显然看出有大的能量损失，这一损失是作往复运动所必须的(用 2 × 120 巴代表)。因为在新方案中无论是势能还是运动质量 m 的动能都是可以回收的，因此为了移动此质量只需克服很小的摩擦力(作用在滑块上)。在新发明的最大设计状态，若沿整个循环(前进→1，后退→2)最佳化(图 3a 和图 4)，只剩小部分(20 巴)不能回收的能量。
下面参见图5，它表示了伺服泵控制器的控制方案。伺服泵控制器的压力调节分为三个串联式套叠的控制回路(图5)。中央硬件设备由轴传动装置构成(A-Drive)，并包括扭矩控制和转速控制的两个内部回路(RN，RM)。其中，转速控制(RN)置于扭矩控制(RM)之上。在扭矩控制部件的入口，数字调节信号被上一级的转速控制器按照电机转角(整流)，分为两个数字的电流调节信号，并输入两个脉冲宽度调制的电流控制回路中。如已提及的那样，同样处在传动装置中的外部的电机转速控制器，设计为数字的PID控制器。此控制器从上一级的压力控制组件得到额定值，它提供每分钟转数的数字信号。转速的实际值按照电机绝对转角通过差分解器信号得出，以例如3KHz的频率对此进行扫描。

由图7和8所示的应用举例可以看出，在至少加入其他一些设计思想的情况下，本新发明可以把电传动和液压传动的所有重要优点结合起来。在电气/电子系统方面有下列基本要素：机器计算机30，指令仪31，数据总线32，传感器或传感器接口33，控制器34，控制/调整部件35，传动装置计算机36及控制器Re，传动装置智能装置37，特征曲线/方案存储器38及控制器40，它们共同构成一个多参量过程控制器39。因此提供了一种将电的和液压的传动装置的特性组合起来的传动装置，从而形成一种新的动态的四象限传动装置。这种新的组合又具有新的特性。由液压传动装置可使此新的方案尤其是获得下列优点：

高的功率密度(致动器单位体积的功率或致动器单位重量的功率);高的力或力矩密度(致动器单位体积和/或单位重量的力);小的结构体积;在功率较小必须产生大的力或力矩时传动装置有高的机械效率(在机械式变速器中高减速比带来损失);价廉并可借助于开关阀方便地接通高功率;采用价廉的传感器可以坚固耐用和准确地测量大的压力以及力(力的控制)。与传动装置的尺寸或功率无关地总是可以采用相同的传感器，因为典型的压力总是相同的。对于全电机器制造商而言，这意味着用少量类型的更多的件数代替多种多样不同的零件(减少管理费用, 改善购买条件);提高致动器和泵的使用寿命(耐磨);采用限压阀可以建立防止过载的准确、可靠和价廉的安全性功能;总之，通过力学参数压力和体积流量，采用阀可以建成开关逻辑装置。在电气设备的情况下这只有在电气方面才有可能，而不是在力学方面(力和速度)。

由电传动装置可以吸收下列优点：在IGBT技术中当代的大功率半
导体可以在几毫微秒（10^{-9} 秒）的时间内接通高的功率。在这方面电子技术优于液压系统至少有五个数量级；以光速 3 \times 10^8 m/s 进行信号传播，这同样比液压系统（2-3 \times 10^3 m/s）快五个数量级；与液压阀所需的开关能量相比，开关晶体管所需的开关能量比较低；大功率半导体快速的开关过程可以在全部四个象限内无损失地控制功率；最通用的控制方法是脉冲宽度调制（PWM）；这种大功率半导体传统已知的电路可以有控制地回收机械运动能量，只要在被传动的机器制动时将能量输入到容器，或作为三相交流电回授到电网中；实际上负载功率可忽略不计；实际工作可提供任何生产厂使用的宽分支的世界变电网，既可用于供能，亦可用于储能。因此取消了机器中相应器件的投资费用，如电容器或蓄压器。

这样就做到了各自避免另一种系统的缺点。尤其在将新方案设计为智能型四象限传动装置时获得了许多优点，其中有些是出人意料的，例如：取消了耗能的调节机构；由于取消了伺服和/或比例阀降低了对过滤的要求。在许多情况下可以取消过滤器。减少维护量，良好的时间特性曲线（磨损实际上只取决于泵）；低噪声（使用低噪声的定量泵（IZP），没有噪声的可控制泵或机械变矩器）；蓄压器压力可以监测，流速可以发现（行程－压力测量）；泵和电机在二个象限工作，四象限的传动装置；外负荷变换时滞后很小；高动态特性；开式系统，亦即介质更替，没有辅助装置，如用于可控制的调节机构，用于控制调节机构或增压的辅助泵；非常简单并因而价廉的结构；在低输出功率时功率损失很小，紧凑、轻而价廉的致动器；可以与纯电的传动装置组合；同样的传动，接口，用于液压和电传动装置的灵巧的多轴控制器；采用智能型传动装置可以将整个运动过程，上一级的控制可例如简化为一个简单的数字信号，它引发全部运动；通过转换供应多根液压轴；停车时的损失功率控制为最低功率；用于向传动装置电子设备供电。电机、泵和液压缸不产生任何损失。

通过按本发明具有四象限传动装置的伺服泵机组控制力、位置和速度，得到各种有关液压系统特性的新知识。申请人认识到，同时控制上述参数是绝对重要的。在许多应用中（例如在压铸机的压入过程中），实际上不上冲的压力控制是特别重要的。在液压传动装置中，广泛采用压力控制以保证力不超过预定值或允许值。控制液压的一个明显的可能性是调制扭矩信号。但根据申请人的研究，通过扭矩调节信号直接影响压力，大多导致难以阻尼的低频的调节振荡，因为电机和泵的质量惯性再加上
液压系统中的弹性，倾向于发生这种难以阻尼的低频固有振荡。一方面人们认识到，通过调节参数泵的体积流量（作为特征曲线补偿值）进行压力控制，显著提高了控制质量。这里提出了一个问题，即受压缩的容积或系统中的弹性，对控制品质或传动特性究竟有什么影响。有关压力控制尤其采用压力控制阀的论述，发表在1979年出版的教授博士工学士W. Backe的教科书240页中。书中阐明了，在体积流量影响元件，例如一个连接阀的液压回路中，受压缩的体积越小，则控制特性尤其是控制阻尼就越好。申请人有与上述论述不同的看法，通过伺服泵的压力控制，与受压缩体积的大小有很大的关系，亦即受压缩体积越大，越能更好地控制住预定的压力值（5a）。一种解释是，可使用于改变体积流量的时间长得多，因为在相同的体积流量时压力的变化速度低。为了获得最佳结果，本发明人认为，调节参数体积流量，主要按下列与受压缩体积和额定/实际值之间偏差的函数关系，受液压系统压力的限制或调整：

\[Q_{\text{soll}} = \pm \frac{k}{\sqrt{[(p_{\text{soll}} - p_{\text{ist}}) \times (V_0 \times K_C)]}} \]

\[k = \sqrt{[M_0 \times q / (IT \times \pi)]} \]

MM：电机的尤其取决于液压系统压力的可供使用的加速和减速扭矩最大值

q：每转一圈泵的输送体积

IT：电机和泵的总质量惯性

\(Q_{\text{soll}} \)：泵额定体积流量（=消耗流量 - 漏流）

\(p_{\text{soll}} \)：液压系统额定压力

\(p_{\text{ist}} \)：液压系统实际压力

\(ch = V_0 \times K_C \)："液压系统容量"

\(V_0 \)：受压缩体积

\(K_C \)：压缩系数

另一方面模拟结果证明，这一方法给出了很好的结果，以及，采用按本发明对系统中受压缩体积或弹性的考虑，可以获得最佳的亦即无上冲的压力变化过程。试验（图6）证明，这导致极为准确和快速的压力控制。为了保证在零位区如此构成的控制回路的稳定性，这一方程在小信
号范围过渡为相应的直线方程，若在运动中消耗的流量在下面的例子中减少到零，则按新的方法随着达到预定的额定压力，泵(除为了输送漏流之外)将停车。在这里重要的是，供入液压回路中的流量(体积流量)，在达到预定压力值的那一刻，就已经达到了必要的低的体积流量值或转速率，因此，以后没有试图将它们尽最快可能降到接近零。这一发现听起来很空洞，但重要的结果是，有必要与受压缩体积间接地成正比或与泵/电机机组的制动时间成比例地在一定程度上提前开启压力，以避免不可允许的动态压力超载。在大信号区稳态的控制特性线，在理想状态如数学上已详细论证过的那样，必然是抛物线形状的。在小信号区，调节器放大系数必须比较小，以保证回路的总放大系数小于Kp=2dwo。在此总放大系数中，再次出现作为因子的1/(Vo*KC)。通过测试和理论分析证明，可方便地将控制回路控制成基本上与受压缩的体积直接成正比。

现在参见图5a。通常，在液压轴运动时，通过调整流向致动器例如液压缸的体积流量来控制速度。与盛行的许多观点不同，在那里将液压传输介质看作实际上不可压缩的，但对于具有较重运动质量的轴，介质的可压缩性尤其应当加以考虑，因为弹性的油柱再加上运动的质量，倾向于产生比较低频的固有振荡。本申请人认为，这同样适用于压铸机中用于模具闭合轴的特殊质量中。对此可参见DE-PS 4307760全文。事实尤其是，在过去的20年中，液压系统的压力总体上提高了，为的是有更高的功率密度，但在另一方面这样做的结果是，显著恶化了这种液压传动装置的动态特性。换句话说，由于与此相关地减小了液压缸的直径，使固有频率的值进一步降低。本发明人认为，这种引起干扰的低的固有频率可以被彻底消除，只要在按本发明的传动装置中采用被调整的压力作为调节参数，来代替按上面所介绍的方法中用体积流量作为调节参数，用以控制速度(还可是DE-PS 4303760)。为此在受控制的轴上尤其还设有一个行程测量装置(图8)，它一方面用于测量速度，以及在必要时作为上一级的位置控制，在这种情况下所有的三个参数亦即压力，速度和行程，被一起同样地最好以多参数控制器(图7)的方式加以控制。

或许对于特殊的轴，如模具闭合轴，也可以完全取消压力的控制，只要在液压缸到达终端位置前切除的反馈可实现可靠的制动(多参量控制器)。对于压铸机和注塑机的模具闭合的另一项措施是，同样可以按适当
的方式安装合模保险装置。

图 8 表示新发明用于模具运动的基本方案图。此液压传动系统按照图 1 有一台泵，一台带传动装置的伺服电机，一个传动计算机和上一级其他智能装置或存储器以及任何必要的连接总线。对此可参阅 EP - PS643472 的内容。另一个重要的元件是压力传感器 50，它与相应的信号处理装置包括传动装置计算机 - 传动装置 - 伺服电机组成一个压力控制单元 51。通过压力管 52 和定向逻辑装置 53，将油输往一个液压缸 54。活塞杆 55 在液压缸 54 中根据压力控制固定或移动，活塞杆 55 并相应地连接在模具 57 的闭合机构 56 上。位置或行程和速度可通过位置传感器 58 以及信号线 59 传输给传动装置计算机，用于例如相应的运动零件的多参数控制。与背压设备 60 一起，确定合成的加速度压力，尤其用作调节参数。模具闭合机构可以是某种铸造机的，如注塑机或铸造机或也可以是吹塑机。作为液压系统参数主要测量压力和运动机械的位置，并将它们输入控制/调整智能装置。定向逻辑装置可将液压功率输往多个分开工作的液压驱动器。PC 机可以跟踪控制/调整智能装置的测量数据，或将用于一根或多根轴的运动程序装入控制/调整智能装置。在传动装置另一种设计中，也可以将垃圾和液压缸的钢度长度输入控制/调整智能装置，以提高系统的调节质量。图 8 表示得很清楚，采用本发明可以利用开式回路中液压传动装置的最突出优点之一。人们只需要一个控制/调整智能装置、一台泵以及一台驱动电机。然而通过压力管网 52'、52''、52'''，可以用于许多顺序工作的轴 A_1，A_2……A_x。它们有所有由紧凑的当地液压缸或液压马达提供的优点。功率的传输通过定向逻辑装置按时间顺序进行。

与图 8 类似图 9 表示通过液压缸 70 使一个注射螺杆 71 直线运动或固定。旋转运动通过液压马达 72 实现。73 表示压紧机构，74 的蓄压器。采用如图所示的蓄压器 74，可以只用一个马达同时驱动一些轴。图 9 表示了一种传动方案，其中，由于对轴的动力学要求很高，可以使用一个耗能的伺服阀。现在，此设有蓄压器的传统的液压系统，可采用按本发明的传动装置，通过一个定向逻辑装置控制或供应能量。在循环阶段，此时蓄压器是充满的，可应用按本发明的相同的传动装置，控制/调整螺杆的传动装置，或控制/调整其他一些动态过程，例如压紧机构 73，它与定向逻辑装置的连接在图中没有表示。
图 10 示意表示一种混合式方案，作为混合式电机-液压力传动的机器。在图 10 中表示了另一个用于注塑螺杆 71 旋转运动的伺服电机 80。伺服电机 80 通过信号线 81 由传动装置计算机控制/调整。因此图 10 以附加的方式表示了一种组合式的电机-液压力传动系统。但也可以选择任意的组合。哪些轴由液压力传动和哪些轴由电机传动，取决于每种情况的具体边界条件。这一设计思想允许逐步地将现有的液压设备改造为电机传动装置。

下面参见图 11，其中表示了一个工作平台 90，它可通过 6 根可控制的轴 91 至 96 运动。图 11 表示了机器人方案的一种具体情况，例如应用于模拟器。作为传动方案，为 6 根轴各使用一个按本发明的传动装置。为了降低设备费用，在相应的总线中合并相同的参数。唯一的一个蓄电池/电源通过 DC 总线提供给所有的传动装置使用。图中没有表示每一个传动装置的控制/调整智能装置的数据连接技术。它们允许所有被连接的轴同步和协调运动。按本发明所有的轴作用在一个公共的蓄压器网络上，这一网络在所有的轴上施加后座或反作用的潜在力。泵的抽吸管也可以通过一根公共的抽吸管引出(图中没有表示)。最后，传动装置所有必要的传感器/致动器数据可以通过数据场总线输入轴的计算机，或从计算机送往外围设备(例如用于校准传感器)。这些测量数据可例如为：压力、液压缸伸出位置、可变转速电机的转速或系统中的温度。

传动装置组件当然可以含有自己的“智能装置”，所以任务都可以在本地解决：座标转换(工作平台的运动学)；安全性监控；尤其用于控制的参数的匹配；全过程的运动；数据分析；通过人-机接口或其他外围设备的信息交流。所有这些减轻了上一级控制/调整设备的任务，在极限情况下可以完全取代它们。

图 12 简化表示了一种具有混合式传动系统的控制/调整方案。它能控制一根或多根液压力轴 A'、A''、Ax 并与此同时控制一根或多根电机轴 M2、M3。因为所有的轴都通过一个当地控制部件控制，所以工作过程可最佳地进行，因为可以利用尽可能短的通讯路程。图 12 的方案建立在按图 7 所示的方案的基础之上，图 7 的方案表示了一个多参数过程控制系统。在图 12 中，每一个自主的传动装置 M1、M2 和 M3 有多个参数过程控制 39、39''。39'''。在它们上面有一台带内插补器 100 的传动装置计算机 104、一台信号计算机 101 以及一个传动装置的智能装置 102。
作为控制器 34 各组合有一个 V 调节器，一个 I 调节器 (Md) 以及一个 I 控制器。此外，此设备还有一个特征曲线/方案存储器 105。根据应用场合，需要一个上一级的机器计算机 106。其中，在计算机/存储器或程序存储器 107 中，储存所有需要的数据，如程序储存器，额定曲线，特征曲线补偿，起动程序，运行程序等。

在铸造机的情况下，最好还使用一条数据交换用的传感器/致动器总线 108。但这也适用于其他类似的具有同类传动问题的场合。