8. T. TAT.
vame ros raprus miena

$1,014,780$.
Patmed den 10, 1012 cosermanasi.

FIG. 1.

FIG.2.

FIG.4.

1. W. WAT.

vart pos raticter warcta

1,014,780.

Prikntad Jer 18. 1018.

1.
 UNITED STATES PATENT OFFICE.

1,014,730. VANE FOR PROPELLERWheriss. Jome W. War, Edgeworth, l'n. Filed Nov. 15, 1009. Serinl No. 528,100.
To all whom it nay concern:
lic it known thit I, Jome W. War, residing at Edgeworth, in the county of AlleFlieny and State of Pennsylvania, a citizen af the United States, havo inventerl or discovered certnin new and useful Improvements in Vanes for Iropeller-Whecls, of which improvements the following is a specification.

My invention relates to improvements in the constuction of vanes for propeller wherls; nnd, while it is not so limited, the particular object in wiew is n propeller blade \because pecially arlipted to meet the requirements of ierial navigation.

In the necompanying drawings which form a purt of this specification, Figure 1 is un end view of the propeller wheel, the shuft thereof being shown in section and the blades in perspective; Fig. 2 is a side perspective view of the same situcture; Fig. is is a transverse sectional viow through one of the vanes, the plane of section being indicated at III-IIt of Fig. 1; Fig. 4 is a sibe clevation, that is an edgewise vies, of ane of the blacles or wings. It will be undorstood that Figs. 3 nad 4 are drawn to latrer scale lhan ligs. 1 and 2; Figs. 5 and if illustrate dingrammatically the shape of the forword and the rear edges of the vanes of the propeller wheel; Fig. b is n side elefation, nnd lig. © is n plan, showing a surface genernted by n directrix extending nugularly from the shaft, 1 , and following at one cind a helical path upon the shaft. The edges of the vanes of the propeller lie in the surface so generated.

The eference numernls used in the several figures are applied to corresponding parts throughout.

The shinft of the propeller wheel is indirated abel, and the blades or vanes of the propeller are indicated nt. 2; lig. 1 of the drawings shows the wheel equipped with lwo such vanes or blades, hat it will be maleralowil that any desired number of vanes winy be employed; furtherinore, the shaft many te equipped with any desired number of wherels.

The ferture of my invention which I shall first deseribe is the general configurntion of the individunl vane or blade. As the dramings show, the vane extends in curved confour lompitulimally and, as is more particularly illusimated in lig. 3, the contonr of the rane in transverse section is curved also. IInving reference to the transverne contour, it. will 10 nhserved in Fig. 8, that the curve is a apiral one, this apiral curve increasing in its radius from the anterior to the pos-
tetior edge of the blacle or vane. The curved anterior edge of the vanc, through a substanial part of its lengeth, foom the eenfer of revolution outward. exiends in a sin. gle plane, and the same is true of the pose terior edge also; but the planes in which the said edges lic are angular to one nomblier. This is indicated in I'ig. 4, wherein the wo edges are designated 8 and 9 . In ather words, there is a twist in the blade.

The blades are preferably momented on the shaft to incline rearwardly from the center of revolution to the tip, ns is illustrated in Fig. 2; each individual blade is so mounterl that the general plane in which it extends does not coincide with, nor approximately coincide with, the conical or approximately conical path in which the blades revolve, but is nagular thereto. This fenture also is indicated in Fig. 2, where it will be observed that the blade at its inner end extends in a line angular to the general direction of rotation; and it will be seen that, in consequence, as the shaft turns, the blade will ad vance angularly agninst the opposing body of air. The degree of inclination of the blade bears a certain determinnte relation to the speed of revolution, to attuin maximum efficiency; and, since the speed of the blade increases outwardly from the center of revolution to the tip, this inclination of the blade is changed in corresponding defrec. This is the purpose of the twist in the blade. nbove refered to; it is not my invention, but is understood by those familiar with the art. Or, expressed differently, the edges of the blade lie in a surface generated by a directrix which extends at a constant angle to the axis of the shaft and one end of which in its movement follows n helical path on the shinft. This detail is believed to be adequately shown in Figs. b and G of the drawings.
The vane is so mounted on the shaft that the convex side of the vane is the forward side; and, ns said above, the mounting is such that the blade inclines rearwardly wilh respect to the direction in which the vessel is intended to go, from its point of altachment to the shaft, to the tip.

The nnterior edge of the vane is rounded, as is indicnted at 3 in Fig. 3 , and by its slonpe in this particular, the generntion of eddies nt this point is prevented.

The body of the vane is prefernbly rigis, exocpt at its tip and along ils posterior ectare: those portions of the vanc, however. are profernhly tlexible, and to the end thant the flexibility of these parts of the vane may lo effective the posterior edge is perferilly slitted, ne is indiented at 6 in Pig. 1. The slits will be preforably cut in ares or circles struck from tho conter of rovolution ns a conter. While I do not limit inysolf to par.
dimbar dimemions, I trelieve the effer will be lwat if the llexible prosterior edge be about oue puater of the entire width of the vane, and the flexible tip portion be about one tifth or one sixth of the entire length of the vine.

Upon the itumer concave surface of the vine is formed a projection or projections (fuefombly more lhan one) which are indicaterl at 1 in the drawings, these projections fomming air-menteders. They extend longiludimally of the vance, as is particularly diown in Fig. I, from the inner end outwnelly, hat preferably over so much of the yame noly as is rigid; they are arranged adjurent to the anterior edge of the vanc; and project renrwardy, that is towned the posferion edire. If there be only one, it is arlanged at the very edge, as is indiented in the position of the foremost of the series shown in Fig. 3; nad, if there be mone than our, ench sucreding projection is preferably Ionger than the one standing next in front of it. Thise projections are prefernbly made flexible, nat are preferably provided will ports of aponings 5, to nllow a restricted passace of nir: The ports or openinges may be in the form of slits or in the form of perforations. These air-retarding projections serve to increase the efficiency of the propeller; for, as the blade revolves, n swirl or edily is formed in the concavity of the vane, and the swirling air impituging "pon these projections tends to augment the propulsion:

It remains to note that the vanes are mounted upon tho shaft approximately midwny of their transverse extent, ns is indimated in Fig. 1; and, the nir-retarding projections 4 on the concave side of the vane being neranged (as already described) adjacont to the anterior edge of the vane, the center of rutation of the vane is renrward of these projnetions. The effect of this arrangement is thint, as the blade revolves, centrifugal force further augments the force of the condact of cldying nir agninst these projections, in the direction of their advance.

I chain herein as my invention.

1. A propeller blade of curved contour in conss seetion. the conenve surface thereof being prowided with a rearwnrdly diverging nir-metarding projerlion extending longitarliailly of the binde, substantinfly as deseribed.
2. A propeller hinde of curved contour in cross-section provided on its concave surface with on nir-relarding projection, such projection locing provided with openings to permit a restricted passage of nir, substantially as deseribed.
3. A propeller blade of curved contour in cross-section provided on its inner surface with n flexible air retarder, sald air re-
 surface of the hode, suostantially as describert.
4. A propeller blade of curved contour in cross saction provided on its inner surface with a series of air-retarding projections extending longitudinally thereon, the width of the succeding projections of the series in. crensing from the foremost renrwardly, sul). stantinlly ns described.
\hbar. A projeller blade of spiral contour in cross section, the curve of spiral increasinir in radius from the front to the rear edge of the said blade, and an nir-retarding projection, extending longitudinally of the blade upon the concave surface thereof, and adijacent to the anterior edge thereof, and projecting from said surface renrwardly, sub). stantially as described.
5. A blade for a propeller wheel curved in its longitudinal or radial extent from its inner end to its tip, rigid throughout the major portion of its lingitudinal extent, but flexible at its outermost end, substantially as described.
6. Ablade for n propeller wheel curved in its longitudinal or radial extent from its inner end to its tip rigid throughout the major portion of its longitudinal extent, but flexible along its posterior edge and at its outermost end, substantially as described.

In testimony whereof, I have hereunto set my hand.

Witnesses:
JOHN W. WAY.
Bayard IH. Chrigty,
Alice A. Trile.

