Title: PROCESS AND APPARATUS FOR PATHOGEN REDUCTION IN WASTE

A process for pathogen reduction in waste where dewatered sludge having a solids content in the range of 10-60 % is mixed within a conveyor (10) with calcium oxide or calcium carbonate. Hydration to calcium hydroxide occurs with an attendant release of heat. The pH of the sludge is then elevated and the heat of the hydration reaction is retained resulting in effective neutralization of pathogens. The conveyor (10) is provided with an internal screw (20) driven by shaft (22) and also with heat elements (11) and outer insulation (12).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
FIELD OF INVENTION

The present invention generally relates to a process for the treatment of waste prior to disposal. Additionally, the invention relates to an apparatus for the treatment of waste prior to disposal.

BACKGROUND OF THE INVENTION

The safe and sanitary disposal of waste is an ages old problem. Untreated waste, both in solid and liquid form, may contain any number of substances noxious to humans and the environment, including particulate solids, organic and inorganic compounds and pathogens.

It is desirable, therefore, to treat the waste before disposal. The treatment of the waste to destroy pathogens can be accomplished by a number of methods.

One method to treat waste to kill pathogens is to heat it to a high temperature for a period of time. Commonly known as pasteurization, this process neutralizes pathogens to a degree dependent upon the level of temperature and length of time that the waste is exposed to the elevated level.

Pasteurization, while effective to neutralize pathogens, may not reduce the odors emanating from the waste and may not reduce vector attractiveness. In the absence of reduction of vector attractiveness, vectors such as rats, mice and flies, will be attracted to the untreated waste. Vectors pose a health risk by themselves, as well as potentially spreading any pathogens present in the waste. Therefore, any treatment and subsequent disposal must reduce odors and attendant vector attractiveness.
factors.

One method to reduce vector attractiveness and also neutralize pathogens is by lime stabilization, which elevates the pH of the waste to a sufficient degree, for a sufficient period of time. This method is usually accomplished by the addition of an alkaline substance to the waste. Substances such as calcium oxide or calcium carbonate and compounds consisting of or containing them such as lime or quicklime, lime kiln dust, cement kiln dust, or dolomitic lime are commonly used for this process. The relatively low expense of sufficient quantities of these materials and their high alkalinity makes them well suited to the task.

In addition to the noxious components potentially present in and possible vector attraction to untreated waste, a further disposal problem is presented by the fact that untreated waste rarely is purely solid. Rather it usually has both solid and liquid components, with the solid component further potentially containing some degree of bound liquid, usually water. Thus the percent of liquid in the waste may be a sum of both the free liquid component as well as the liquid bound to the solid component.

Due to these presence of both these components, waste may vary from a liquid type consistency and appearance to a thick solid consistency and appearance. The need to deal with this variety of phases complicates treatment and disposal. For example, if the waste has mostly a liquid type consistency, the majority of the free liquid portion of waste is separated out and dealt with through techniques known in the art. The remaining solid portion, or sludge, includes the remaining free liquid water, any bound water and the solid. That sludge, which may have a solids content of from 1 to 4%, then undergoes a further dewatering step by any of a number of processes known in the art.
If the waste is of a more solid consistency, then the dewatering is usually done in a single process.

After the waste has been dewatered sufficiently, it is referred to as dewatered sludge, which may have a solids content of anywhere from approximately 10% to 60% with the remainder water. This dewatered sludge is difficult to handle. The varying solids content and percentage of water as bound and free give the sludge physical characteristics ranging from a viscous, colloidal liquid to a dry cake or clay.

The Environmental Protective Agency (EPA) has promulgated regulations for proper treatment and disposal of waste or sludge. To ensure neutralization of pathogens to what it deems an environmentally safe level, the EPA has currently imposed two statutorily defined levels of processes for disposal of waste: Processes to Significantly Reduce Pathogens (PSRP); and, Processes to Further Reduce Pathogens (PFRP). The use of either or both PSRP and PFRP depends upon the use to which the treated waste is to be put. Currently, PFRP result in a greater degree of pathogen reduction, and waste treated by PFRP has less restriction surrounding its disposal. Although PSRP and PFRP as currently promulgated in Appendix II to 40 CFR 257 are limited to a few named processes, it is possible to qualify a process for either level by meeting, inter alia, the statutorily defined reduction in pathogens.

U.S. Patent 4,781,842 discloses such an invention. Although the process set forth therein is not named as a PSRP or PFRP specifically in Appendix II 40 CFR 257, the process achieves pathogen reduction to current PFRP mandated levels. It does so by mixing the waste with lime or a lime mixture sufficient to raise the pH to 12 for at least a day, and then drying the lime waste mixture, by a natural or aeration process, for a period of time sufficient to reduce pathogens to the
current PFRP regulations set forth in that patent. The disclosure in the '842 patent is limited to current levels of pathogen reduction necessary to achieve PFRP, however. Changing regulations may lead to changing levels of pathogen reduction and the '842 patent does not seem to be easily adaptable to such a circumstance.

Accordingly, it is an object of the present invention to provide an apparatus and method to achieve currently mandated levels of PSRP and PFRP.

It is a further object of the present invention to provide a apparatus and method to achieve different levels than current regulations mandate of pathogen reduction in waste.

It is a further object of the present invention to provide a method and apparatus to achieve effective neutralization of pathogens in waste.

A further object is to provide an apparatus capable of both stabilizing and pasteurizing raw sludge in a low cost, time-efficient manner.

Summary Of The Invention

According to the present invention, a sufficient quantity of lime is added to dewatered sludge, to raise the pH to a predetermined level and for a predetermined period of time in order to neutralize pathogens present in the sludge and reduce vector attractiveness. Furthermore, the heat of the lime-sludge reaction is retained and a measure of additional heat may be added, so that the temperature of the lime-sludge mixture is raised to a predetermined level for a predetermined period of time for further neutralization of pathogens.

Apparatus for performing the method is also disclosed.

Brief Description Of The Drawings

Fig. 1 is a schematic illustration, in side
elevation, of a preferred apparatus embodying the invention.

Fig. 2 is a fragmentary section through Fig. 1.

Description Of The Preferred Embodiments

In the preferred embodiment, dewatered sludge and an additive, usually lime, are deposited in a continuous stream to a chamber. They are thoroughly mixed when deposited, so the pH of the sludge begins to rise, stabilizing at or above the desired level which in the preferred embodiment is a pH of at least about 12. The process is then continued for the desired dwell time which is at least about two and a half hours and the pH level is monitored at about two hours to ensure it is maintained at about or above the desired level. The temperature is maintained at at least about 70°C for the final half hour.

The mixing of the sludge and lime, at atmospheric conditions, leads to a hydration reaction:

\[\text{CaO} + \text{H}_2\text{O} = \text{Ca(OH)}_2 + \text{Heat} \]

Using stoichiometric quantities in the reaction gives:

56 lbs. of CaO + 18 lbs. H\(_2\)O = 74 lbs. of Ca(OH)\(_2\) as well as releasing 27,500 BTU's per pound mole.

Although lime (defined here as substantially pure calcium oxide) is utilized in this embodiment, other substances consisting of or containing calcium oxide or calcium carbonate may be used, such as quicklime, dolomitic lime, or lime kiln dust cement kiln dust. Therefore, although lime is used herein, the additive is selected from the group comprising or consisting of calcium oxide and calcium carbonate. The selection may be dependant on availability and pH level desired, because some members of the group may not be effective enough to raise the pH to the desired predetermined level. For example, if the desired predetermined pH
level is twelve, dolomitic lime may not be volatile enough to raise the mixture to that level.

The dewatered sludge may contain anywhere from 10-60% of dry solids, although 15-50% is more usual.

The lime-sludge ratio, by weight, can vary from 25% to 200%, so that for every pound of dry solids of sludge, from .25 to 2.0 pounds of lime may be added. As this equation shows, the hydration of the lime requires water. The free (and perhaps some or all of the bound) water in the dewatered sludge is utilized in the reaction.

The resultant hydroxide, which in this embodiment is Ca(OH)₂, is the alkali utilized to elevate the pH of the sludge, and so cause lime stabilization.

Elevation of the pH occurs quickly, and the sludge then remains at or above a predetermined level for a predetermined period of time. In the preferred embodiment the pH rises quickly to above 12. At about two hours the sludge is withdrawn and is tested to ensure it is at least about 12.

The predetermined period of time that the sludge dwells in the chamber is, in the preferred embodiment, at least two and a half hours during which, for the first about two hours, the sludge is at or above a pH of about 12. However, it should be noted that the dwell time is able to be shortened or lengthened. It can be as long as a number of days, or even weeks, depending on the degree of lime stabilization desired. The longer the dwell time, the greater the degree of stabilization. Additionally, the desired pH level may decrease over time, so that, for example, during a 24 hour dwell time, a pH of greater than or about 12 may be reached after 2 hours, and then, after 22 more hours, the pH may decline to at least about 11.5. The dwell time may also be shortened to be less than the two and one half hours. The lime may then be transferred another container or location. In an
alternative preferred embodiment, the pasteurization is deemed to occur contemporaneously with the lime stabilization, and the dwell time is about thirty minutes. The pH is monitored at the end of two hours after initial mixing of the lime and sludge to ensure that it has remained at about or above 12. The temperature would be monitored for the initial at least about a half hour, to ensure it remains at about or above the desired 70°C. A further alternative is to monitor the temperature during the desired half hour pasteurization period at any time during the two hour time of lime stabilization.

In the first preferred embodiment having a two and one half hour dwell time, the sludge is exposed, after the two hour lime stabilization, for at least a half hour more to the elevated temperature of the chamber, caused by the heat released from the reaction and retained in the chamber. The chamber itself is substantially closed, which assists in retaining in the sludge at least a substantial amount of the heat released during the hydration reaction.

Although the preferred embodiment utilizes a single chamber to retain the sludge during pasteurization and lime stabilization, it is possible to have the steps occur in separate chambers and have the sludge pass through to each. It is also possible for the process to occur without any enclosure in a chamber, or partial enclosure during the process, as long as heat from the hydration reaction is retained within the sludge.

In the preferred embodiment enough heat is retained in the sludge during the course of the ongoing hydration reaction to maintain a temperature of at least about 70 degrees Celsius for at least 30 minutes and thereby pasteurize the sludge. It is also preferred to insulate the chamber to retain the heat in order to effect efficient pasteurization as well as
increase the reaction rate. An increase in the
temperature of 10° Celsius, for example, may double
the reaction rate. A doubled reaction rate provides
for increased heat and therefore temperature which in
5 turn provides itself for a potentially further
increase in temperature and as a result, further
increase in reaction rate. This is a "snowball" or
"avalanche" effect. If the heat is not released from
the reaction in sufficient quantities to enable the
sludge to reach the desired temperature, supplemental
heat may be added.

The addition of supplemental heat may also be
necessary because although a substantial amount of
heat is released during the hydration reaction, excess
water in the chamber may absorb the heat. It may be
possible to bleed off or release some of the excess
water, or use it in slaking the lime (which usually
requires three parts water to one part lime), but the
amount remaining may still absorb undesirable
quantities of heat. For example, if .25 pound lime is
added to every 1 pound sludge, and the sludge used has
15% solids content, then approximately 252 pounds of
water will be released from the sludge during the
reaction of stoichiometric quantities of lime and
sludge. Insofar as 27,500 BTU's per pound mole are
released during the reaction, the excess water will
potentially absorb much of the heat released.
Therefore, supplemental heat may be desirably added by
controllable means. Note that, if the means are not
controlled, due to the varying nature of the
components, heat far in excess of that needed may be
produced. For example, assuming that 2 pounds of lime
are added to every 1 pound of sludge (in a 2:1 ratio)
and the sludge utilized has 50% solids content, then
only 18.5 pounds of water will be released by the
sludge. This is barely enough for the hydration
reaction to occur, and will lead to almost the entire
27,500 BTU's released in the reaction being utilized to heat the mixture. In this instance, little, if any supplemental heat may be necessary to reach desired or pasteurization temperature.

As the lime and sludge travel from point a to point b they are mixed continuously. The hydration reaction occurs upon mixing and at least a substantial amount of the heat released during the reaction is retained within the sludge. Use of the screw conveyor also permits treatment of the sludge on the preferred first-in, first-out basis. Additionally, use of a screw conveyor permits the desired dwell time, or the time required for the sludge to travel from point a to point b to be easily set, by merely adjusting the speed of the screw. Furthermore, supplemental heating of the sludge, if desired, is easily done as shown at Figure 2. Heat elements, which provide supplemental heat to the sludge, are shown generally at 11 are placed around the conveyor shell 21. Insulation 12 is then wrapped around the heat elements 11. The heat elements 11, of a type known in the art, run the entire length of the conveyor 10 in a manner shown. This permits heating of the sludge during its travel through the conveyor. The insulation 12 also of a type known in the art, runs the entire length of the conveyor as well. The insulation 12 and heat elements 11 may be desirably combined in a unit or heat jacket for ease of assembly. The insulation 12 may also, in an embodiment not shown herein, be located on and run the entire length of the conveyor without any supplemental heat source.

Alternately, although this is not shown, the screws 20 of the conveyor on the shaft 22 on which they are carried can be hollow, and steam, hot air or hot water could be transported therethrough for a supplemental heat source.

Returning to Figure 1, the monitors 13 serve to
monitor the temperature to ensure that the desired, predetermined level of temperature is maintained. They may be placed wherever monitoring is desired. The monitors are any sort of thermometer known in the art including a tracking thermometer to view the temperature over time.

The pH may also be monitored during the dwell time of the sludge mixture. In the preferred embodiment, the monitoring is accomplished by withdrawal of a sample of sludge from the conveyor, from an access port (not shown), after about two hours. The sample is tested by a conventional type of pH sensor or meter known in the art to ensure it is at or above the desired level of about 12.

A spigot 15 is also shown, which permits the addition of additional water if desired for the reaction. Spigots may be located throughout the conveyor if desired, in a manner not shown here.

The above description and the view depicted by the Figure are for purposes of illustration only and are not intended to be, and should not be construed as, limitations on the invention.

Moreover, certain modifications or alternatives may suggest themselves to those skilled in the art upon reading of this specification, all of which are intended to be within the spirit and scope of the present invention as defined in the appended claims.
Claims

1. A process for treatment of sludge, which comprises:
(a) mixing dewatered sludge with a solids content in the range of 10-60% with an additive selected from the group consisting of calcium oxide and calcium carbonate, with said additive present in sufficient quantity to adjust the pH of the sludge to at least a predetermined level; and,
(b)- retaining within the sludge at least a substantial amount of the heat released during the mixing.

2. The process of Claim 1, wherein said steps (a) and (b) occur in a substantially closed chamber.

3. The process of Claim 1, additionally including the step of retaining the sludge in a substantially closed chamber for a predetermined period of time.

4. The process of Claim 1, additionally including the step of maintaining the predetermined pH level of the sludge for a predetermined period of time.

5. The process of Claim 4, additionally including the step of maintaining the sludge at a second, predetermined pH level for an additional, predetermined period of time.

6. The process of Claim 1, additionally including the step of maintaining the sludge at a predetermined temperature.

7. The process of Claim 6, wherein the sludge is maintained at the predetermined temperature for a predetermined period of time.
8. The process of Claim 1, including the additional step of applying supplemental heat to the sludge.

9. The process of Claim 1, wherein said additive is lime.

10. The process of Claim 1, wherein said additive is dolomitic lime.

11. The process of Claim 1, wherein the predetermined level of pH for the sludge is at least about twelve.

12. The process of Claim 5, wherein the second predetermined pH level is at least about eleven and one half.

13. The process of Claim 4, wherein the predetermined period of time at which the sludge is maintained at the predetermined pH level is at least about two hours.

14. The process of Claim 5, wherein the additional predetermined period of time is at least about twenty-two hours.

15. The process of Claim 3, wherein the predetermined period of time during which the sludge is retained in the chamber is at least about two hours.

16. The process of Claim 1, including the additional step of adding water to the mixing step.

17. The process of Claim 4, including the additional step of testing the pH of the sludge, after a predetermined period of time.

18. The process of Claim 17 wherein the predetermined period of time is at least about two
hours.

19. The process of Claim 6, wherein the predetermined temperature is at least about 70° Celcius.

20. The process of Claim 7, wherein the predetermined period of time is at least about one half hour.

21. The process of Claim 5, including the additional step of monitoring the temperature of the sludge.

22. The process of Claim 1, additionally including the step of preheating the sludge before mixing.

23. An apparatus for treatment of sludge, which comprises:
 (a) means for mixing dewatered sludge with a solids content in the range of 10-60% with an additive selected from the group consisting of calcium oxide and calcium carbonate, with said additive present in sufficient quantity to adjust the pH of the sludge to at least a predetermined level; and,
 (b) means for retaining within the sludge at least a substantial amount of the heat released during the mixing.

24. The apparatus of Claim 23, wherein said means for retaining further comprise substantially closed chamber means.

25. The apparatus of Claim 23, further comprising means for retaining the sludge in a substantially closed chamber means for a predetermined period of time.

26. The apparatus of Claim 23, further comprising means for maintaining the predetermined pH
level of the sludge for a predetermined period of time.

27. The apparatus of Claim 23, further comprising means for maintaining the sludge at a predetermined temperature.

28. The apparatus of Claim 23, further comprising means for applying supplemental heat to the sludge.

29. The apparatus of Claim 23, wherein said additive is lime.

30. The apparatus of Claim 23, wherein said additive is dolomitic lime.

31. The apparatus of Claim 23, wherein the predetermined level of pH for the sludge is at least about twelve.

32. The apparatus of Claim 26, wherein the predetermined period of time at which the sludge is maintained at the predetermined pH level is at least about two hours.

33. The apparatus of Claim 25, wherein the predetermined period of time during which the sludge is retained in the chamber is at least about two hours.

34. The apparatus of Claim 23, further comprising means for adding water to the mixing means.

35. The apparatus of Claim 26, further comprising means for monitoring the pH of the sludge.

36. The apparatus of Claim 27, further comprising means for monitoring the temperature of the sludge.
37. The apparatus of Claim 23, wherein said means for mixing is a screw conveyor.

38. The apparatus of Claim 23, wherein said means for mixing is a helical flight conveyor.

39. The apparatus of Claim 23, further comprising means for preheating the sludge prior to mixing.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/01987

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(5): C02F 11/14
US CL.: 210/751

II. FIELDS SEARCHED

Minimum Documentation Searched *

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>210/724,742,743,749,751,766,198.1,205,206</td>
</tr>
<tr>
<td></td>
<td>210/208,219,764</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 4,781,842 (NICHOLSON) 01 November 1988 See entire document.</td>
<td>1-39</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

Y later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

6 document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 02 JULY 1991

Date of Mailing of this International Search Report: 15 JULY 1991

International Searching Authority: ISA/US

Signature of Authorized Officer: NEIL M. MCCARTHY

Form PCT/ISA/210 (second sheet) (Rev.11-87)