a2 United States Patent

US007024277B2

(10) Patent No.: US 7,024,277 B2

Schurmann 45) Date of Patent: Apr. 4,2006
(54) DETERMINATION AND CONTROL OF 6,711,467 B1 * 3/2004 Inoue et al.c....... 700/245
ACTIVITIES OF AN EMOTIONAL SYSTEM 6,711,469 Bl * 3/2004 Sakamoto et al. ... 700/245
6,714,840 B1 * 3/2004 Sakaue et al. 700/245
(76) Inventor: Alfred Schurmann, Postfach 1332, g’;}gégé g} : 3@883 ?0_1_1:10 ftalal' - ;88%32
R . ,718, ujita et al. ...
D-76443 Durmersheim (DE) 6,754,560 B1 * 6/2004 Fujita et al. 700/245
(*) Notice: Subject. to any disclaimer,. the term of this 2:;22:23? g} i ;gggj Isif}ﬁlua:;:;;ﬂ' """"""" 7007245
patent is extended or adjusted under 35 6,850,818 Bl * 2/2005 Sabe et al.oooce..... 700/257
U.S.C. 154(b) by 424 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 10/363,157
. WO WO 02/23474 3/2002
(22) PCT Filed: Nov. 11, 2002
OTHER PUBLICATIONS
(86) PCT No.: PCT/DE02/04172
U.S. Appl. No. 10/089,369, filed Aug. 24, 2004, Schurmann.
§ 371 (e)(1), Meystel & Albus: Intelligent Systems: Architecture Design
(2), (4) Date: Mar. 6, 2003 and Control; John Wiley & Sons, New York (2002); Whole

(87) PCT Pub. No.: W02004/044837
PCT Pub. Date: May 27, 2004

(65) Prior Publication Data
US 2004/0093121 Al May 13, 2004

(30) Foreign Application Priority Data
Nov. 11,2002 (DE) .eooeoiiivieeeiciiiiiinene PCT/DE02/04172
(51) Imt.CL
GO6F 19/00 (2006.01)
(52) US.CL ..o 700/245; 700/246; 700/248;

700/257; 700/258; 700/259; 700/260; 700/264;
318/568.1; 318/568.11; 318/568.12; 318/568.2;
318/569; 901/1; 901/15
(58) Field of Classification Search 700/245-246,
700/248, 257-260, 264, 253; 318/568.1,
318/568.11, 568.12, 568.2, 569; 704/31,
704/207, 509, 270, 901/1, 15; 701/23
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,347,261 B1 * 2/2002 Sakaue et al. 700/245
6,470,235 B1 * 10/2002 Kasuga et al. 700/246
6,493,606 B1 * 12/2002 Saijo et al.c........ 700/245
6,505,098 B1 * 1/2003 Sakamoto et al. 700/245
6,516,246 B1 * 2/2003 Derakhshan 700/245

Book.
Schurmann: An Example of a Motivated Agent; (1998);
Whole Docum.

* cited by examiner

Primary Examiner—Thomas G. Black
Assistant Examiner—McDieunel Marc

(57) ABSTRACT

A method and a sub-system, henceforth called method DKA,
for the determination and control of the activities of an
emotional system aS, belonging to the class of autonomous,
motivated agents and robots, is described. The method DKA
determines the current motivation of the system aS to carry
out an activity. Said motivation is determined by stimulus
patterns in situation models and the intensities of the satis-
factions and the desires with regard to the needs of the
system aS. Priorities for the activities of the aS are deter-
mined by motivations. DKA controls sub-activities which, at
the request of the system aS, are carried out by other
agents/robots. The method DKA can assess which objects,
situations and activities are presently good and which are
bad for the system aS. The applied internal representation of
the world of the system aS can include very abstract situa-
tion models. Emotional systems, controlled by the method
DKA, are particularly suitable: for the care of the sick, as
robotic servants for carrying out domestic tasks and for
routine client services.

7 Claims, No Drawings

US 7,024,277 B2

1

DETERMINATION AND CONTROL OF
ACTIVITIES OF AN EMOTIONAL SYSTEM

FIELD OF THE INVENTION

The present invention relates to methods for determining
and controlling activities of a motivated autonomous robot
or agent system, and a method for perceiving objects and
situations by a robot; the invention may be embodied in a
robot/agent as a software and makes this robot/agent
motivated, autonomous and emotional.

DESCRIPTION OF THE RELATED ART

Motivated robots and agent systems are known, s, e.g.
Meystel & Albus [MeA] (2002), d’Inverno & Luck [InL]
(2001) and Muller [JMu] (1996). The existing robots/agents
have very restricted autonomy, do not have internal repre-
sentation of its world, and their motivation to execute
activities (if they have such motivation) do not meet the
requirements of an intelligent autonomous robot.

1 developed an other kind of agents/robots in [AS1]
(1998), [AS2] (1998) and [AS3] (1998); they functions on
basis of situation models, activity schemas (in short
activities) and motivation functions. Because these motiva-
tion functions have very restricted application and they
function not intelligent in some cases, | concluded that an
autonomous intelligent robot/agent must be an emotional
one. This conclusion was not original because, in 1986, M.
Minsky concluded that “the question is not whether intelli-
gent machines can have any emotions, but whether
machines can be intelligent without any emotions™ (in The
Society of the Mind; Simon and Schuster; New Yourk,
1986). Therefore I developed (the inventions [AS5] (2002)
and [AS6] (2002) a representation of emotions and rules
according to which emotions develop, such that they can be
conveniently established in a robot like machine. The inven-
tions [AS5] and [AS6] are basis for the emotional system
described below.

BRIEF SUMMARY OF THE INVENTION

The aim of the invention is to specify the following two
methods embodied in an emotional system, denoted by aS:
(1) a method, denoted by DKA, for steering and controlling
the behavior of the system aS by means of a current
motivation of the system aS to execute an activity or
command, where this motivation depends on current inten-
sities of satisfactions and desires of this system, (ii) a
method for perceiving objects and situations from the actual
surrounding of the system aS. These two methods, espe-
cially the method DKA, specify the frame of the system aS
and make this system motivated, autonomous and emo-
tional.

Said system aS is the preferred embodiment of the inven-
tion and contains additionally the following components:

WP—the subsystem specified by said method for percep-
tion of objects and situations;

Bd(aS)—a set of needs of aS, e.g. AN—the need for
recognition and acknowledgment;

EBV—a system of rules and procedures, such as given in
Schurmann [ASS5] and [AS6], which determine inten-
sities of satisfactions and desires with respect to the
needs of aS;

SeG—a graph of object and situation models representing
the world of aS;

AM-—a set of activities (e.g. activity schema, operations)
which aS can execute;

20

25

30

35

40

45

50

55

60

65

2

KP—a set of cognitive procedures (some of these proce-

dures belong to WP and to EBV);

Ex-contr-motion—a subsystem which executes motion

activities of aS.

A DKA-like method for steering the behavior of an agent
or a robot has not been developed till now. The method DKA
determines the behavior of aS by the current motivations
which are determined by intensities of satisfactions and
desires, and by stimulus patterns in situation models, with
respect to needs in Bd(aS)—motivations of aS are deter-
mined in quite different way than in known agents and
robots (s. e.g. Meystel & Albus [MeA] (2002), d’Inverno &
Luck [InL] (2001) and Muller [JMu] (1996)). The main
advantages of the method DKA, compared with other con-
trolling methods are: (i) it makes the system aS autonomous,
(i) it handles urgent situations with appropriate high
priority, (iii) it can judge which objects, situations and
activities are good (at present time) and which are bad for
the system aS. The method DKA determines the behavior of
aS on the basis of: the current satisfactions and desires of aS,
the internal representation of the world of aS and the current
perceived objects and situations.

The perception method which specify the subsystem WP
uses said internal representation of the world of aS (said
graph Se(3), which contains station models of high abstrac-
tion levels (of low resolution levels, according to Meystel &
Albus [MeA]), which do not occur in other agents and robots
(s, e.g. [MeA], d’Inverno & Luck [InL] and Muller [JMu]).
The perception by this method focuses the attention on
objects and situations for which, at present, the system aS
has high intensities of desires for attention and curiosity.

Learning methods are not considered in this paper.
However, the method DKA can judge how good or bad are
objects and situations, on the basis of changes of satisfac-
tions and desires of aS, when these objects and situations are
perceived. This possibility and the internal representation of
the world of aS enable to build in learning methods into
DKA that can be more effective than the learning methods
given in Meystel & Albus [MeA]. Also cooperation of aS
with other agents and robots are considered only
incidentally—with which robot aS cooperates must follow
from the model of this robot and activity schemas which aS
has. On the basis of the internal world representation SeG of
aS and the used representation of emotions, the meaning of
a natural language, which the system aS could use, can be
determined.

A simplified system aS, with reacting motivation only, can
be specified and used as a robot/agent which would work
autonomously and efficiently in a not very complex sur-
rounding.

Emotional systems aS can be applied everywhere where
autonomous intelligent robots/agents are needed, e.g. as: (i)
robots taking care of ill and old people, (ii) artificial servants
making housemaid works or routine services for clients, (iii)
robots making autonomous activities in a manufacturer, in a
desert or on the moon.

The structure of this description: in Section 2 are given the
notions needed for the description of the method DKA:
intensities of satisfactions and desires, stimulus patterns and
stimulus intensity, models of objects, situations and activi-
ties; the internal representation of the surrounding (the
component SeG) is defined. In Section 3 are described
motivations of aS to execute activities, commands and
sub-activities. The method for perception of objects and
situations is given in Section 4. On the basis of Sections 2,
3 and 4, is described the method DKA (Section 5).

DETAILED DESCRIPTION OF THE
INVENTION

In this section I define notions needed for description of
the method DKA.

US 7,024,277 B2

3

2.1. Satisfaction, Desire, Stimulus Patterns and Stimuli
Below in this paper, we use the following notions und

functions described in my paper [AS5] (2002). Emotional

system aS has a set Bd(aS) of needs. To Bd(aS) belong e.g.

GR (to belong to a community), AN (for recognition,

acknowledgment and self-esteem). The state of desire and

satisfaction (or dissatisfaction) of aS, with regard to need b,

at time t, is described by functions:

0=des(aS,b,H)=60, -30=bef(aS,b,t)=30, for b eBd(aS)
where des(aS,b,t) is the intensity of desire and bef(aS,b,t) the
intensity of satisfaction of the need b at time t. These
functions have the following properties:

i. Increasing function bef(aS,b,t) means aS satisfies need b
(positive stimulus) and is perceived by aS with approval,
joy or happiness.

ii. When bef(aS,b,t)<0 and does not increase then aS per-
ceives bef(aS,b,t) as a negative stimulus (disappointment,
annoyance, sadness, suffering) with respect to need b.
Decreasing values bef(aS,b,t)<0 mean stronger negative
stimulus with regard to need b.

iii. des(aS,b,t) is the intensity of desire of aS to satisfy need
b at time t. The greater des(aS,b,t) the greater is the desire
of aS to satisfy need b. des(aS,b,t)<0.5 means ‘need b of
aS is well satisfied at time t’.

iv. The greater des(aS,b,t) the greater is the approval and joy
of aS when bef{aS,b,t) increases, and the greater is the
dissatisfaction, annoyance and grief of aS when bef(aS,
b,t)<0 and decreases.
aS has models of objects and situations (OSM) of its

world (described in Sect 2.2), and models of activities which

vP can execute (described in Sect. 2.3).

Stimulus patterns. Expected changes of values bef{(aS,b,t)
and des(aS,b,t), caused by object or situation OSM, are
represented in OSM by stimulus patterns of the following
form:

([°[Nba,] fs(aS,b)=([°[p;] n; (y1,21), . . .
OSML.Ej][°; if C])

> (ynzn); q ht) [°)/z eu][®;
@.1)

where [tex1| . . . [texk] denotes one of the words tex1, . . .
, texk, © is the empty word, Nba and n are natural numbers,
(1=n=10), fs denotes name of a stimulus pattern, 0=p=1,
-30=yi=30, -55=7zi=60, yi and zi are simple arithmetical
expressions, q ht denotes a time period (e g: 0.5 h, 3 days,
1 week), n*q ht=720 h, z>0, eu denotes a measure (e g kg,
g, h, km, m,) and e.g. /200 g denotes ‘pro 200 g’. Nba is
increased by 1 when pattern (2.1) is applied. Nba/N is the
probability that the pattern fs(aS,b)=(. . .) is valid, where
N is attached to the model OSM and increases by 1 when the
model OSM is applied. C is a condition. If C occurs then
[°[Nba,] fs(aS,b)=(. . .) can be applied only if C is true. If
OSM1.Ef occurs then the pattern fs(aS,b)=(. . .) concerns
the pattern Ej=(‘ds’,(. . . fse(aS,b)=(...)...)) in OSMI.
Example of a pattern (occurring in OSM):

epb(aS,b)=(n; (y1,21), . . .

Jyn,zn); q hi) [°))z eu] 2.2)

where (fs=epb) yn>1+y1 and z1>1+zn. The meaning: aS can
execute (at time t) an activity, AV, such that when aS uses
OSM in AV then aS expects that OSM will increase bef(vP,
b,.) and decrease des(vP,b,.) according to the pattern (2.2).
Exact description of all patterns and their meanings is given
in Schurmann [AS5], Sect. 2.2.

In Schurmann [AS6] are given rules which determine the
changes of values bef(aS,b,t) and des(aS,b,t), caused by
objects and situations (OS), for some needs b. To perceive
the stimuli of these objects and situations, appropriate stimu-
lus patterns must be built in object and situation models,

20

25

30

35

40

45

50

55

60

65

4

OSM, representing OS (OS is recognized as OSM). The new
stimulus patterns occur in model OSM, as properties, in the
following form

(*dr* Nb,stp(b)=(. . .), [if C]) (2.3)
where Nb increases by 1 when this pattern is applied, C is
a condition (the pattern can be applied only when this
condition holds) and patterns stp(b)=(. . .) are defined
below. This property means: when aS recognizes an object
or a situation as OSM then aS expects that OSM, with
probability Nb/N, will change or support the changes of
bef(aS,b,t) and des(aS,b,t) approximately as given by the
pattern stp(b)=(. . .), where N has the same meaning as
above. In opposition to the stimulus patterns (2.1), patterns
(2.3) are not used to compute the values bef(aS,b,t) and
des(aS,b,t). Patterns (2.3) are used only to compute the
stimulus of OSM. The patterns stp(b)=(. . .) have the
following simple forms:
1. eps(b)=(y,2)
where —29=y =30, 0=z=60. When aS perceives OSM (and
condition C holds) then aS expects that OSM, with prob-
ability Nb/N, will increase the value bef(aS,b,t) approxi-
mately to y and decrease the value des(aS,b, t) approxi-
mately to z.
ii. ens(b)=(yz)
where -30=y=29, 0=z=60. aS expects that OSM, with
probability Nb/N, will decrease bef(aS,b,t) approximately to
y and increase the value des(aS,b,t) approximately to z.
iii. ups(b)=(p,OSM1.Ej)
where O<p=1 and in the model OSM1 is property Ej=(‘dr’,
.eps(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will support in degree p the positive changes of values
bef(aS,b,t) and des(aS,b,t) according to the pattern in Ej.
iv. uns(b)=(p,0SM1.Ej)
where O<p=1 and in the model OSM1 is property Ej=(‘dr’,
ens(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will support in degree p the negative changes of
values bef(aS,b,t) and des(aS,b.t) according to the pattern in
Ej.
v. vps(b)=(p,OSM1.Ej)
where O<p=1 and in the model OSM1 is property Ej=(‘dr’,
.eps(b)=(y,2), . . .). aS expects that OSM, with probability
Nb/N, will prevent in degree p the positive changes of values
bef(aS,b,t) and des(aS,b,t) according to the pattern in Ej.
vi. vns(b)=(p,OSM1.Ej)
where O<p=1 and in the model OSM1 is property Ej=(‘dr’,
ens(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will prevent in degree p the negative changes of
values bef(aS,b,t) and des(aS,b.t) according to the pattern in
Ej.
Stimulus intensity.

The expected (by aS, at time t) intensity of positive
stimulus of pattern (2.1) is given by epr(aS,O0SM.fsp,b,.,t)
(defined in [ASS5], Sect. 2.3.1), where fsp denotes the
following (positive) pattern names: epb, upb, vnb, epbu,
upbu. Let fsn denotes the following names of (negative)
patterns: enb, unb, enbu, unbu, vpb, vnb. The expected (by
aS, at time t) intensity of negative stimulus of pattern (2.1)
(where fs=fsn) is given by enr(aS,0SM,fsn,b,.,t) (defined in
[AS5], Sect 2.3.2).

For the positive stimulus patterns eps, ups and vns, we
define epr as follows:

epr(aS, OSM, eps, b, . , t) = (Nb/N)=des(aS, b, t) =

US 7,024,277 B2

5

-continued
sqrt(((y — bef(aS, b,)% + cr2 =

(des(aS, b,) - z)) xnq(b)),
if y = bef(aS, b, t) and
des(aS, b, t) = z

=0, otherwise

where cr2=0.4 and 0.5<nq(b)=720 may be defined as fol-
lows: nq(GR((G))=270 (GR(G)—the need to belong to the
community G). nq(NEw(OSM))=40 (NEw(OSM)—the
need for curiosity and knowledge when perceiving an object
or a situation OSM). nq(NEk(OSM))=50 (NEk(OSM)—the
need for curiosity and knowledge of properties of OSM),
nq(NEz(SM))=60 (NEz(SM)—the need of knowledge of
how situation SM can be reached), nq(MA))=25 (MA—the
need to have power over people and animals), nq(SE)=200
(SE—the need for sexual relations), nq(Li(OSA))=550 (Li
(OSA)—the need for liking and love of aS to OSA, i. e. to
object, situation or activity OSA), nq(AN)=570 (AN—the
need for recognition, acknowledgment and self-esteem),
nq(MB)=120 (MB—material and financial needs of aS),
nq(BH(OK))=400 (BH(OK)—the need to help OK when
OK needs help), nq(VR(PG))=10 (VR(PG)—the need for
retaliation and revenge on PG). nq(WA(Pa))=240%ag(Pa)
(WA(Pa)—the need to accomplish the commands and
wishes of person or agent Pa). and 0=ag(Pa)=3 is the
weight of authority of Pa over aS.

epr(aS,OSM,ups, b,.,t)=(Nb/N)*cb1*p*epr(aS, OSM1 eps,b,..t)
where c¢b1=0.3 and eps(b)=(. . .) is in OSM1.E;.

epr(aS,OSM,vns,b,.,t)=(Nb/N)*p *enr(aS,OSM1 ens,b,..t), where
ens(b)=(...) in OSM1.E].

For the negative stimulus patterns ens, uns and vps, we
define negative stimulus intensity enr as follows:
enr(aS, OSM, ens, b, . , t) = (Nb/N) =z = sqrt(((bef (aS, b, t) — y)% +
12 #(z — des(a$, b, 1)) #ng(b)).
if y < bef(aS, b, t) and
des(aS, b, t) < z

=0, otherwise.

enr(aS,OSM,uns, b,.,t)=(Nb/N)*cb1*p*enr(aS, OSM1 ens,b,.,1),
where ens(b)=(. ..) is in OSM1.E].

enr(aS,OSM,vps,b,.,t)=(Nb/N)*p *epr(aS,OSM1 eps,b,..t), where
eps(b)=(...) is in OSM1.Ej.

The intensity of positive stimulus of OSM (at time t) is
given by

pros(aS,0SM,1)=%,, g, epr(aS,OSM,f3p,b,..1)

where Bp={be WB|(. . . fsp(aS,b)=. . .) is in OSM}. fsp
denotes a positive stimulus pattern (epb, upb, vnb, epbu,
upbu, eps, ups, vns), WB={be Bd(aS)|des(aS,b,t)
>0.25*mdes(aS,t)} and mdes(aS,t)=max(des(aS,b,t), for b €
Bd(aS)).

The intensity of negative stimulus of OSM (at time 1) is
given by:

nros(aS,OSM,H)=2,. g, enr(aS,OSM,fsn,b,.,1)

20

25

30

35

40

45

50

55

60

65

6

where Bn={be WB|(. . . fsn(aS,b)=. . .) is in OSM} and fsn
denotes a negative stimulus pattern (enb, unb, enbu, unbu,
vpb, ens, uns, vps). The intensity of stimulus of OSM at time
t (s. [ASS5], Sect. 2.3.3):

rosa(aS,0SM, t)=pros(aS,OSM,t)-nros(aS,OSM, 1)

Updating the Stimulus Patterns (2.3).

The following 4 rules are an example of how, on the basis
of satisfactions, aS can learn which objects and situations
(and in what degree) accomplish, support or prevent the
satisfactions and desires of aS. Analogous rules can also be
formulated for activities. Stimulus patterns (‘dr’,Nb, stp
(b)=(...)...)in an object or situation model OSM can be
updated as follows.

RN. When a8 perceives an object or a situation as model
OSM then: N:=N+1.

Rdrl. If object or situation OSM increased (decreased,
respectively) bef(aS,b,.) or decreased (increased,
respectively) des(aS,b,.) and in model OSM is property
(‘dr’,Nb, eps(b)=(y,z) . . .)((‘dr’,Nb, ens(b)=(y,z) . . .),
respectively) then update this property as follows

Nb:=Nb+1;
y:=p+0.5%(beflaS,b,1)-y);
z:=240.5*(des(aS,b,1)-2)

where bef(aS,b,t), des(aS,b,t) are the values after the men-
tioned changes.

Rdr2. If (i) object or situation OSMI1 increased
(decreased, respectively) bef(aS,b,.) or decreased
(increased, respectively) des(aS,b,.) and in model OSM1 is
property Ej=(‘dr’,..eps(b)=(v,2) . . .) (Ej=(‘dr’,..ens(b)=(y,z)
...), respectively), (i) object or situation OSM supported,
in degree pa, the in (i) said changes of bef(aS.b,.) and
des(aS,b,.), (iii) in model OSM is property (‘dr’,Nb, ups
(®)=(p,OSM1.Ej) . . .) ((“dr’,Nb, uns(b)=(p,OSM1.Ej) . . .
), respectively), then update the property in OSM as follows

Nb:=Nb+1;
pr=p+0.5%(pa-p).

Rdr3. If: (i) object or situation OSM1 does activity or is
used to increase (to decrease, respectively) bef(aS,b,.) and in
model OSM1 is property Ej=(‘dr’,..eps(b)=(yz) . . .) (Ej=
(“dr’,.,ens(b)=(y,z) . . .), respectively), (ii) object or situation
OSM prevented, in degree pa, the in (i) said changes of
bef(aS,b,.), (iii) in model OSM is property (‘dr’ ,Nb, vps(b)=
(P, OSMLE)j) . . .) ((“dr’,Nb, vns(b)=(p,OSML.Ej) . . .),
respectively), then update the property in OSM as follows

Nb:=Nb+1;
pr=p+0.5%(pa-p).

2.2. Object and Situation Models
A simple object model of an object O is
M(O)=(‘s-ob’,VR(O); Phl, . .. ,Phm; wF1, . . . ;,wFu)

where: VR(O) is a visual representation (a visual pattern or

scheme) of object O (if a visual representation of object O

does not exist then VR(O)=nil);

Phe=(P(VOe), phre; where Cpe), where P(VOe) is the
pointer to the part VOe of the visual representation
VR(O)—this means that the phrase phre concerns the part
VOe of the object O;

phre is a phrase or a phrase pattern (in abstract situation
models) of a natural language, which is the designation of

US 7,024,277 B2

7

the object O; examples of (P(VOe), phre;, ,.): (P(visual
pattern of a salmon from Alaska), ‘salmon from Alaska’;
...), (P(visual pattern of a head of a salmon), ‘head of
a salmon’; . . .), (P(visual pattern of a fir) “fir’; . . .),
(P(visual pattern of a fir covered with snow), ‘fir covered
with snow’; . . .); Cpe is a condition for words in phre;
the meaning of the phrases in Phe, e=m, is the model
M(O); an idea of the semantics of simple sentences, by
object and situation models, is given in Schurmann
[AS4];

wF1 is a property of object O—it has one of the three forms:
(tf, 1df, P(VOpi), F1; if Cfi), (‘inst-of”, LP), (‘part-of”, LP)

where:

if =‘ex-act’, if Fiis a list of activitiesoperations which object
O can perform,
=‘use-act” if Fi is a list of elements (M(Obh), AOah), where
M(Obh) is an object model and AOah denotes an activity,
operation or action; meaning when object M(Obh) executes

AOah then it can use object M(O),

if =‘act-in’, if Fiis a list of elements (M(Obh), AOah);
meaning object M(Obh) may execute activity AOah in
object M(O),
= ‘act-rem’, if Fiis a list of activities which aS can execute
in order to remove or to avoid unwished objects or
situations from/in object M(O),

= ‘for’, if Fiis a logical formula

‘fea’, if Fi is a property of object M(O),

if =‘res’,if Fiis a result (only if wFi occurs in a situation or
activity model),
=‘ds’, if Fiis a stimulus pattern: epb, upb, vnb, epbu, upbu,
enb, unb, enbu, unbu, vpb,

=‘dr’, if Fiis a stimulus pattern: eps, ups, vns, ens, uns, vps;

idf = ‘id’, if Fi is an identifying property of object M(O),

idf = ‘nid’ otherwise;

P(VOpi) is the pointer to the part VOpi of the visual
representation VR(O); this means that Fi concerns the part
VOpi of the object M(O) (or situation SM, in situation
model SM);

Cfi is a condition—Fi can be applied only when Cfi holds;

LP is a list of pointers to object or situation models;

(‘inst-of’, . . . P(M(Og)), . . .) means that object model M(O)
is an instance of object model M(Og) (P(OSM) denotes
the pointer to object or situation model OSM); we assume
that if (“inst-of”, . . . ,P(M(Og)), . . .) occurs in M(O), then
M(O) has all properties that occur in M(Og);
consequently, in M(O) must be given only the properties
characteristic for object O: example: if O denotes Mrs.
Gleen who is a nurse, married and mother of a child, then
in the model M (Mrs. Gleen) should be the property
(‘inst-of’, P(nurse), P(married woman), P(mother), . . .);

(‘part-of”, . . . ,P(OSM), . ..) means that object M(O) is a
component of object or situation model OSM (if OSM is
an object model, then it is a structured object model).

20

25

30

35

40

45

50

55

60

65

8

Structured object model. If M(O1), . . . ,M(On) are simple
or structured object models and object Q consists of objects
O1,....,0n then

M(Q)=(‘str-ob’, VR(Q); Phl, . .. ,Phm; wF1, . .. ,wFr; (pr(O1),
P(VR(O1)), M(O1)), .. ., (pr(On), P(VR(On)), M(On));
LOS(Q)) (2.4)
is a structured object model (of the object), where: VR(Q),

Phe, wFi are defined above, the model M(Q) is the semantic

meaning of the phrases in Phe;

pr(Oi) is the probability that object M(O1) appears/occurs in
object M(Q);

P(VR(O1)) is the pointer to the location of object M(Oi) in
VR(Q) (@f the location of M(Oi) is not known or not
defined then P(VR(O1))=nil);

LOS(Q) is the list of objects and situations which can appear
in object Q; LOS(Q) may e.g. have the form:

((pr(Oal), M(Oal)), . . . ,(pr(Oav), M(Oav)); (pr(Ssl),
SMsl), . . . ,(pr(Ssq), SMsq); SFQI, . . . ,SFQp)
where: (pr(Oai), M(Oai)) ((pr(Sse), SMse), respectively)
means: object M(Oai) (situation SMse, respectively) appears
in object Q with probability pr(Oai) (pr(Sse), respectively);
SFQe is a situation sequence (Je, SMel, . . . ,SMeu), where
the index Je points to the situation SM, which last
appeared in this sequence; it holds: after situation SMej
must appear situation SMe(j+1); SFQe can be a timetable
showing the days or hours at which situations SM,,
appear in Q (aS can perform some activities according to

the timetable).

By stimulus patterns, aS distinguishes the wished situa-
tions (with rosa(aS,SMsi,t)>5) from the unwished ones (with
rosa(aS,SMsi,t)<-4) in M(Q). It holds

rosa(aS,M(Q),t)=rosa(aS,St-p,t), where St-p={splsp is a

stimulus pattern in wFe, e=1, . . . r}.

An object model is a simple or a structured object model.
We assume that there is a function procedure IdO(O1,M(O))
which determines how good model M(O) represents object
Ol.

Situation model. If M(O1), . . . ,M(On) are object models
then

SM=(‘s-sit’, Sch; Phl, . .. ,Phq; wF1, ... wFp; (pr(O1),

dm(O1), P(VR(01)), M(0O1)), . . ., (pr(On),dm(On),
P(VR(On)), M(On)))

is a simple situation model, where:

Sch is a visual representation of the structure of situation
SM; if SM is a visual situation then Sch can be a 3
dimensional space which aS sees from point (0,0,0); Sch
can be a scheme showing how the situation model is
composed of models M(O1), . . . ,M(On) and the possible
motions of these objects in the situation SM;

Phi has analogous form and meaning as in the definition of
object model; the meaning of a phrase or a pattern of a
phrase, contained in Phi, is the model SM; example: ‘Mr.
and Mrs. Marlow are eating at the table in the dining
room’;

wFe is a property of the situation SM—it has the same form
as in the definition of object model;

pr(Oi) is the probability that object M(O1) appears in situ-
ation SM;

dm(O1) shows motion directions of object M(Oi) in Sch;

P(VR(O1)) and M(Oi) have analogous meaning as in the
definition of structured object.

It holds: rosa(aS,SM,t)=rosa(aS,St-ps,t), where St-ps={sp|sp

is a stimulus pattern in wFe, e<p}.

To represent more complex situations, I introduce meta-
situations. If M(O1), . . . , M(On) are object models and
SM1, . .. ,SMw are simple situation models, then

US 7,024,277 B2

9
mSM=(‘m-sit’, vSch; Phl, . .. ,Phq; wF1, ... ,wFu; SM1,
... ,SMw; (pr(0O1), dm(O1), P(VR(O1)),M(O1)), . . .
> (pr(On),dm(On), P(VR(On)), M(On)))

is a meta-situation model, where:

vSch is a scheme which shows visually the structure of the
meta-situation, e.g. locations where M(O1) and SMe occur
in mSM:

Phe, wFj, (pr(0Oi), dm(O1), P(VR(O1)), M(Oi)) have analo-
gous meaning as in the definition of situation model.

In special cases (when mSM has been identified), mSM
can contain also meta-situations—these meta-situations do
not occur in object models. Remark: property of the form
(“fea’, ‘id’,., SMe), in meta-situation model mSM, means:
meta-situation mSM appears only then when situation SMe
is appeared. It holds

rosa(aS,mSM,t)=rosa(aS,St-pm,t), where St-pm=[sp|sp is

a stimulus pattern in wFe, eEw].

In this patent description, situation (situation model)
means a simple situation (simple situation model,
respectively) or a meta-situation (meta-situation model,
respectively). We assume that a procedure IdS(S,SM) (IdmS
(mS,mSM), respectively) determines how good simple situ-
ation model SM (meta-situation model mSM, respectively)
represents simple situation S (meta-situation mS,
respectively). By ‘object M(O) (situation SM, respectively)’
we understand an object (a situation, respectively) which is
represented by model M(O) (SM, respectively).

Because of recognition of objects and situations, object
and situation models must constitute a directed graph, SeG
(called in this paper semantic graph: SeG is a component of
aS), which shows the abstraction levels of object and situ-
ation models (graph SeG defined the author in [AS4]). SeG,
thus the object and situation models, must be so defined that:
i. a node, K, is an object or situation model,

ii. node Kj is a successor of node K if and only if (‘inst-of”,
.. .,P(K), . ..) occurs in the model Kj,

iii. SeG has 3 root nodes M(object), SM(simp-sit), mSM
(meta-sit) such that: (a) from the node M(object) exists a
path to each object node, (b) from the node SM(simp-sit)
exists a path to each simple situation node, (¢) from the
node mSM(meta-sit) exists a path to each meta-situation
node,

iv. if there is a path from node Ki to node Kj then there is
no path from Kj to Ki.

By the graph SeG and the phrases in object and situation

models can be described the syntax and semantics of simple

natural languages, as shown in [AS4].

2.3. Activity Model
The author defined behavior scheme in [AS3] (1998)—

however such schemes are not sufficient to represent activi-

ties of the system aS.

An activity model (or activity scheme, in short: activity)
has the following form

activity AV(P1, . . . ,Pn), ta, tv, PP1,PPu; resp (rsl:
rl), ... (rsk: rk); Mst-p;

inits (ifb SMal: (pz1(SMzl), SMzl),(pz1(SMzh),
SMzh); (pul(SMul), SMul), . . . ,(pul(SMur),SMur)), . . .
,(ifb SMagq: (pzq(SMzl1), SMzl), . . . ,(pzq(SMzh), SMzh);
(pug(SMul), SMul), . . . ,(puq(SMur),SMur));

goals SMz1, . . . ,SMzh; begin (V, SB) endact
where: P1, ... ,Pn denote parameters used when activity AV
is executed;
ta—period of time needed for execution of activity AV.
tv—period of time which aS personally needs (i.e. its

processor PrA) for execution of the activity; ta, tv and (rsj:

1j) can depend on parameters P1, . . . Pn;

Ppe=(phrfe; where CSe), where phrfe is a phrase (e.g. a
simple sentence) of a natural language, which designates
the activity AV—the activity AV is the meaning of the
phrase phrfi3;

20

25

30

35

40

45

50

55

60

65

10

rsj: rj—resources (means, objects) which aS needs for
execution of the activity AV—rsj denotes the needed
object and rj the needed quantity of rsj;

Mst-p—set of stimulus patterns describing the expected
stimuli which arise when the activity AV is being
executed;

SMai—initial situations of the activity AV—in these situa-
tions aS may begin the execution;

Because of recognition of objects and situations, object
and situation models must constitute a directed graph, SeG
(called in this paper semantic graph; SeG is a component of
aS), which shows the abstraction levels of object and situ-
ation models (graph SeG defined the author in [AS4]). SeG,
thus the object and situation models, must be so defined that:
i. a node, K, is an object or situation model.

ii. node Kj is a successor of node K if and only if (‘inst-of’,
.. .,P(K), .. .) occurs in the model Kj,

iii. SeG has 3 root nodes M(object), SM(simp-sit), mSM
(meta-sit) such that: (a) from the node M(object) exists a
path to each object node, (b) from the node SM(simp-sit)
exists a path to each simple situation node, (c¢) from the
node mSM(meta-sit) exists a path to each meta-situation
node,

iv. if there is a path from node Ki to node Kj then there is
no path from Kj to Ki.

By the graph SeG and the phrases in object and situation

models can be described the syntax and semantics of simple

natural languages, as shown in [AS4].

2.3. Activity Model
The author defined behavior scheme in [AS3] (1998)—

however such schemes are not sufficient to represent activi-

ties of the system aS.

An activity model (or activity scheme, in short: activity)
has the following form

activity AV(P1, . . . ,Pn), ta, tv, PP1, . . . ,PPu; reso (rsl:
rl), . .. (rsk: rk); Mst-p;

inits (ifb SMal: (pz1(SMzl), SMzl), . . . ,(pz1(SMzh),
SMzh); (pul(SMul), SMul), . . . ,(pul(SMur),SMur)), . . .
,(ifb SMagq: (pzq(SMzl), SMzl1), . . . ,(pzq(SMzh), SMzh);
(pug(SMul), SMul), . . . ,(puq(SMur),SMur));

goals SMz1,SMzh; begin (V, SB) endact
where: P1,Pn denote parameters used when activity AV
is executed;
ta—period of time needed for execution of activity AV,
tv—period of time which aS personally needs (i.e. its

processor PrA) for execution of the activity; ta, tv and (rsj:

rj) can depend on parameters P1, . .. ,Pn;

Ppe=(phrfe; where CPe), where phrfie is a phrase (e.g. a
simple sentence) of a natural language, which designates
the activity AV—the activity AV is the meaning of the
phrase phrfe;

rsj: rj—resources (means, objects) which aS needs for
execution of the activity AV—rsj denotes the needed
object and rj the needed quantity of rsj;

Mst-p—set of stimulus patterns describing the expected
stimuli which arise when the activity AV is being
executed;

SMai—initial situations of the activity AV—in these situa-
tions aS may begin the execution:

SMze—goal situations of the activity AV—activity AV is
executed in order to reach a goal situation; SMzi is a final
node of the graph (V, SB);

SMui—a final node of the graph (V, SB) but not goal
situation—not wished situation which can be reached
when the activity is executed;

pzi(SMze) (pui(SMue), respectively)—the probability that
the goal situation SMze (situation SMue, respectively)

US 7,024,277 B2

11

will be reached when the execution of the activity begins

at the initial situation SMai;

(V, SB)—a connected graph the nodes (in V) of which are
situation models, and to each are (SMi, SMj) is ascribed
a sub-activity, su-act(SMi,SMj)e SB.

Sub-activity su-act(SM,SMj) (in activity AV) determines
the eclementary activities, operations and actions which
should be executed to reach the situation SMj, when the
execution of the activity AV reached the situation SM.
Sub-activity su-act(SM,SM;j) has one of the two forms:

(sal) (aS, LPj; (talj, ta2j), reso (rojl: njl), . .. ,(roja: nja);
wj, (Wsj, SMj), (wsjl, SMjl), .. . (wsjv, SMjv); (OAj1;
... ;OAjm)), when aS himself (i.e. its processor PrA)
does this sub-activity,

(sa2) (Mcaj, LPj; (talj, ta2j), reso (rojl: njl), . . . [(roja:
nja); contr-su-actj, wj, (wsj, SMj), (wsjl, SMjl), ...,
(wsjv, SMjv); (Ajl; . . . ;Ajm)), when Mcaj does this
sub-activity and aS controls only the execution,

where: LPj=(pszj(SMz1), . . . ,pszj(SMzh); psuj(SMul), . .

.,psuj(SMul), . . . ,psuj(SMur) is the list which determines

the priority of this sub-activity, where pszj(SMzi), (or psuj

(SMue)) is the probability of reaching the goal situation

SMzi (the situation SMue, respectively) when su-act(SM,

SMj) will be executed; it holds pszj(sMzl)+ . . . +pszj

(SMzh)+psuj(SMul)+ . . . +psuj(SMur)=1;

talj, ta2j is the minimal and maximal time period needed for
execution of this sub-activity;

roji, nji—resources needed for execution of the sub-activity;
nji denotes the needed quantity of object roji;

wj, wsj, wsji are weights—wj increases if this sub-activity is
executed, wsj (wsji, respectively) increases if the execu-
tion of this sub-activity led to situation SMj (SMji,
respectively);

SMj, SMjl, . .. ,SMjv are successors of the node SM in the
graph (V, SB): they are the expected situations which can
be reached when this sub-activity is executed;

OAje is an elementary activity which has one of the fol-
lowing forms:

a) OAje is an elementary activity or action which does not
begin with if or while; OAje can depend on parameters;
OAje is mainly a motion activity which aS should

perform;
b) if Ce then begin OAkl; . . . ;OAkd end else begin
OAfl; ... ;0Afw end

¢) while Ce do begin OAKkl; . . . ;0Akw end

where Ce, in (b) and (¢), is a condition, and OAki, OAfs are

activities of the form (a);

Mcaj denotes a processor, robot, agent, machine or an other
system which does the sub-activity (sa2); aS controls this
execution by the control-activity contr-su-actj;

contr-su-actj denotes the following simple control-activity
contr ctj, atj, grj do OApjl; . . . ;OApjb thenc observ(tatj,

FOS;j,t); CAjl; . . . ;CAjd endc

where: aS should control the execution of sub-activity
(sa2) after each time period ctj,

atj is the time period of execution of the sub-activity by
Mcaj after the last control,

O<grj=2 is a degree of importance of controlling the
execution of the sub-activity,

OApje are elementary activities which aS does to
control the execution of the sub-activity,

observ(tatj,FOSj,t) observes, at least tatj time period,
objects and situations given in FOSj=M(Oxjl), . . .
,M(Oxjg); SM1xj1, . . . ,SM1xjs, where M(Oxji) and
SMixje are (expected) objects and situations which
can appear when the sub-activity is being executed;

20

25

30

35

40

45

50

55

60

65

12

these objects and situations observ(tatj,FOSj,t)
observes with intensities des(aS,AUwW(M(Oxji)),t),
i=g, and des(aS,AUw(SMI1xje),t), e=s;

CAje, e=d, are control activities of the form
ifs sitExpje then begin OAxjel; . . . ;OAxjef end

sitExpje is a situation expression of the form:

1) situations SMxje, e=dl, are situation expressions, where
SMxje are expected between-situations which can appear
when the sub-activity (sa2) is being executed;

i1) when SMEx1 and SMEX2 are situation expressions then
(SMEx1), not (SMEx1), SMEx1 or SMEx2, SMEx1 and

SMEx2

are situation expressions—they have the following meaning:

SMxje, (SMxje)—situation SMxje is appeared, situation not

(SMEx1) is appeared when situation SMEx1 is not

appeared, situation SMEx1 or SMEx2 is appeared when

situation SMEx1 or SMEX2 is appeared, situation SMEx1
and SMEx2 is appeared when situations SMEx1 and SMEx2
are appeared;

OAxje, e=1, . . . 1, are elementary activities which aS
executes when situation sitExpje has appeared.

The Execution of Sub-activity.
aS does himself the sub-activity (sal) (i.e. the (motion)

activities OAjl; . . . OAjm) to reach the situation SMj (with

probability (approximately) wsj/wj) from the situation SM.

However, instead of SMj, aS can reach situation SMje

(e=v), with probability (approximately) wsje/wj. When a

situation SMj, SMje, e=v, appears, then the execution of the

sub-activity (sal) (or (sa2)) is finished. The execution of
sub-activity (sal) or (sa2) is wrong and should be abandoned
if the sub-activity is executed longer than ta2j.
Sub-activity (sa2) does Mcaj to reach situation SMj, with
probability (approximately) wsj/wj; however, Mcaj (and aS)
can reach (with probability (approximately) wsje/wj) situa-
tion SMje, e=v. Activities Ajl, . . . ,Ajm are done by Mcaj,

When Mcaj is doing sub-activity (sa2), then some situations

SMxji, 1=d1, should appear until one of the situations SMj,

SMje, e=v, appears. After every time period ctj, or earlier,

aS should control the execution of the sub-activity by

contr-su-actj; firstly, it executes the elementary motion
activities OApjl; . . . ;OApjb, after that, the observing

activity observ(tatj, M(Oxj1), . . . ,M(Oxjg); SM1xjl, . . .

,SM1xjs;t) at least tatj long; after the time period tatj, aS

does the first activity CAje for which holds: ‘situation

sitExpje is appeared’—i.e. when sitExpje is appeared then
aS does the elementary activities OAxjel; . . . ;0OAxjef

(which are in CAje). In this way, aS may correct or abandon

the execution of the sub-activity if sitExpje represents an

unwished situation. When Mcaj begins the execution of the
sub-activity then: atj:=0. After aS controlled this execution
then: atj:=0. aS is motivated to do the control-activity
contr-su-actj in (sa2). The intensity of this motivation equals
mot-cont(AV,SM,SMji,atj,t)=(atj/ctj)*grj *motsu-act(SM,
SMj,t)

where atj is the duration of execution of the sub-activity

(sa2) (without interruptions) after the last control by contr-

su-actj, and motsu-act(SM,SMj,t) is the motivation of aS to

execute the sub-activity (sa2) (this motivation is defined in

Sect. 3.2).

3. The Motivation to Execute an Activity or a Command

According to the method DKA, the execution of an
activity or a command is determined by the motivation of
aS. This motivation is determined by several kinds of
motivations as follows.

3.1. The Motivation to Execute an Activity
We use the notation applied in the definition of activity.
The reacting motivation of aS (at time t) to execute an

activity AV, starting at initial situation SMai, equals

US 7,024,277 B2

13
reamota(aS,SMai,AV,t)=rosa(aS,Mst-p.t)+pzi(SMz1)
*rosa(aS,SMzl,t)+ . . . +pzi(SMzh)*rosa(aS,SMzh,t)+
pul(SMul)*rosa(aS,SMul,t)+ . . . +pui(SMur)*rosa
(aS,SMur,t)
in normal circumstances should be rosa(aS,SMze,t)>0, for
e=h, and rosa(aS,SMue,t)<0, for eZr.

Reflective motivation. aS may have calculated the
expected satisfactions, bef(aS,b,t+e*g), and desires, des(aS,
bt+e*g), for e=1, . . . ,e,, (e.g. by stimulus patterns, as
shown in [AS5]), for some needs b, where g denotes a
number of hours, days or weeks. If e.g. bef(aS,b,t1)<-5 and
des(aS,b,t1)>12, for t+el *g<tl <t+e2*g, and aS has an activ-
ity AV1 which will increase bef(aS,b,t1) and decrease des
(aS,b,t1) when aS executes AV1 in the time (t, t1), then aS
is motivated to execute this activity. In this case, the moti-
vation is arisen by reflection on the future intensities of
satisfactions and desires.

The motivation of aS (at time t) to execute activity AV,
from initial situation SMai, in order to increase satisfactions
in the future, at time t1, equals

refimota(aS,SMai,AV.t,tl)=rosa(aS,Mst-p,t)+pzi(SMz1)

*rosa(aS,SMzl,t1)+ . . . +pzi(SMzh)*rosa(aS,SMzh,
tD+pui(SMul)*rosa(aS,SMul,tl)+ . . . +pui(SMur)
*rosa(aS,SMur,t1)
where t1>t+ta (ta is the time period needed for execution of
AV).

Compelled motivation. aS may be in an initial situation
SMai of an activity AV such that if aS does not execute the
activity AV then aS will get, after a time period zt, with
probability pg, into an unwished situation SMd such that
rosa(aS,SMd,t1)<—-4, for t1 Zt. Ifhowever aS executes activ-
ity AV and reaches a goal situation of this activity, then aS
will not get into the situation SMd. These relation we denote
by

compst(aS,SMai,AV,zt,pg,SMd) (3.1)

Thus, if the relation (3.1) holds, then aS is motivated to do

the activity AV in order not to get into the unwished

Situation SMd. The relation (3.1) is connected with SMai

and AV by the following set AK(SMai):

i. if SMai is an initial situation of an activity AV then AV
belongs to AK(SMai),

ii. if activity AV belongs to AK(SMai) and (3.1) holds for
SMai and AV, then compst(aS,SMai,AV,zt,pg,SMd)
belongs to AK(SMai).

Compelled reacting motivation. If compst(aS,SMai,AV,zt,
pg,SMd) is in AK(SMai), where zt=1 min, then the com-
pelled reacting motivation (at time t) to do the activity AV
equals:

copreamota(aS,SMai,AV,pg, SMd,t)=reamota(aS,SMai,

AV, t)-pg*rosa(aS,SMd,t).

Compelled reflective motivation. If reflmota(aS,SMai, AV,
t,tl) is defined, where tl>t+ta>t+1 min, and compst(aS,
SMai, AV;t1-t,pg,SMd) is in AK(SMai), then the compelled
reflective motivation (at time t) to do the activity AV equals:

coprefmota(aS,SMai,AV,pg,SMd,t,t1)=reflmota(aS,

SMai,AVt,t1)-pg*rosa(aS,SMd,t1).

The motivation to execute activity. The above described
motivations are used to determine the motivation of aS (at
time t) to execute activity AV, from initial situation SMa, in
the following way. To simplify the description of the pro-
cedure below, we assume that for SMa and activity AV is
only one relation (3.1) in AK(SMa).
procedure mot(aS,SMa,AV t, res motak,pg,SMg,t2.art,zv1);
begin zv1:=0.2 min; pg:=0; SMg:=nil; t2:=t+0.9 min;
if compst(aS,SMa,AV,zt,pd,SMd) is in AK(SMa) and zt<1

min then begin art:=‘coprea’; pg:=pd; motak:=

copreamota(aS,SMa,AV,pd,SMd,t); SMg:=SMd; t2:=t+zt
end else

20

25

30

35

40

45

50

55

60

65

14

begin motak:=reamota(aS,SMa,AV,t); art:=‘rea’ end:
let t1>t+ta>t+1 min, where ta denotes the time period needed

for execution of the activity AV;

Bz(AV):=[b| need b occurs in a stimulus pattern occurring in
a goal situation SMze (e=h) or in an unwished situation
SMui (iZr) of the activity AV];

if cognitive procedures of aS can determine intensities of
satisfactions bef(aS,b,t1) and desires des(aS,b,t1), for
beBz(AV) then begin

if compst(aS,SMa,AV,t1-t,pd,SMd) is in AK(SMa) and rosa
(aS,SMd,t) can be computed then

begin if coprefmota(aS,SMa,AV,pd,SMd,t,t1)>motak then
begin art:=‘copref’; zvl;=tl-t—ta; motak:=coprefmota
(aS,SMa,AV,pd,SMd,t,t1); pg:=pd; SMg:=SMd; t2:=tl
end end else

begin if reflmota(aS,SMa,AV,t,t1)>motak then begin art:=
‘refi’; zv1l;=tl -t—ta; t2:=t1; motak:=reflmota(aS,SMa,AV,
t,t1) end end end end mot.

The result motak of the procedure is the motivation of aS
to execute activity AV, from initial situation SMa. The
priority of execution of activity AV (at time t), from initial
situation SMa, can be determined as follows (if the time is
given in hours)

prior-a(SMa,AV,t)=motak*4.5/sqrt(zv+16), if zv>-0.02 h

(=1.2 min)

where motak and zv are determined by mot(aS,SMa,AVt,

motak,pg,SMg,t2.art,zv) (zv is the reserve time which aS

has, for execution of the activity AV).

3.2. The Motivation to Execute Sub-activity
We use the notation introduced in the definition of sub-

activity su-act(SM,SMj) in Sect. 2.3. Let the execution of

the activity AV began, at time to, in initial situation SMai and
reached, at time t, the situation SM. The operation mot(aS,

SMai,AV,to,motak,pg,SMg,t2.art,zv) has been executed.

The motivation, at time t>to, to execute sub-activity su-act

(SM,SMj) equals

motsu-act(AV, SM, SMj, t) = morea, if art = ‘rea’

= morea- pg+rosa(aS, SMg t),
if art = ‘coprea’
= morefl, if art = ‘refl’

= morefl-pg+rosa(aS, SMg, t2),

if art = ‘copref”

where pg, SMg, art and t2 are determined by the above
mentioned operation mot and
morea=pszj(SMz1)*rosa(aS,SMz1,t)+ . . . +pszj(SMzh)
*rosa(aS,SMzh,t)+psuj(SMul)*rosa(aS,SMul,t)+ . . .
+psuj(SMur)*rosa(aS,SMur,t),
merefl=psuj(SMz1)*rosa(aS,SMz1,t2)+ . . . +pszj(SMzh)
*rosa(aS,SMzh,t2)+psuj(SMul)*rosa(aS,SMul,12)+ . .
. +psuj(SMur)*rosa(aS,SMur,t2).
When activity AV is performing a command received from
Pa, then additionally the operation is executed:
motsu-act(AV,SM,SMj,t):=motsu-act(AV,SM,SMj t)+epr
(aS,M(Pa),eps,WA(Pa),.,t)+epr(aS,M(Pa),eps,AN,..t).
3.3. The Motivation to Perform Command
aS can receive a command/order, BOf, to execute, inter-
rupt or abandon an activity, from an authorized person or an
other emotional system, Pa. For each Pa, authorized to give
orders, aS has weight, ag(Pa), of the authority of Pa over aS.
We assume that 0=ag(Pa)=3; the greater ag(Pa) the greater
is the authority of Pa over aS. When Pla has given aS a
command/order BOf, then are applied the following rules.

US 7,024,277 B2

15

RPal. If ag(Pa)>ag(P1la), then Pa can abandon the execu-
tion of the command BOf or command aS to continue the
execution of the abandoned execution of the order BOf.

RPa2. If ag(Pa)=ag(P1a), then Pa is not authorized: (a) to
abandon the execution of the command BOf, (b) to com-
mand aS to continue the execution of the abandoned execu-
tion of BOf.

An order BOf must contain the following information:
wg(BOf)—how important is the order BOf, zt(BOf)—the
time period in which the execution of the order BOf should
start. We may interpret wg(BOf) as follows: wg(BOf)=0.5 if
BOf is of little importance to Pa, wg(BOf)=1.3 if BOf is of
not much importance to Pa, wg(BOf)=2.2 if BOf is impor-
tant to Pa, wg(BO1)=3.0 if BOf is of great importance to Pa,
wg(BON=3.8 if BOf is of extreme importance to Pa.

For authorized Pa, aS must have the following needs:
WA(Pa)—the need to fulfil the orders and wishes of Pa,
AN—the need for recognition, acknowledgment and self-
esteem. To make sure that aS has always the desire to satisfy
the mentioned needs, the following rules are applied:

RWANI1. Every na hours aS does the following operations
(for each authorized Pa):

if bef(aS,AN,t)= -9 then bef(aS,AN,t):=max(bef(aS,AN,

1)-0.6*ag(Pa), -3.3*ag(Pa));
des(aS,AN,t):=min(des(aS,AN,t)+1.2*ag(Pa), 18*ag
(Pa));
if bef(as,WA(Pa),t)=-10 then bef(aS,WA(Pa),t):=max
(bet(aS,WA(Pa),t)-0.6*ag(Pa), -3.5*ag(Pa));
des(aS,WA(Pa),t):=min(des(aS,WA(Pa),t)+1.2*ag(Pa),
18*ag(Pa)).

RWAN2. When aS receives a command, BOf, from
authorized Pa (at time t) then:

des(aS,WA(Pa),t):=min(des(aS,WA(Pa),t)+1.1*(wg

(BOD)+2.5*ag(Pa)), 18*ag(Pa));
des(aS,AN,t):=min(des(aS,AN,t)+1.1*(wg(BOf)+2.5%ag
(Pa)), 18*ag(Pa)).

RWAN3. When aS accomplished (at time t) a command,
BOfA, received from Pa, then:

bef(aS,WA(Pa),t):=min(bef(aS,WA(Pa),t)+wg(BO)+

2.5*%ag(Pa), 8.5*ag(Pa));
des(aS,WA(Pa),t):=max(des(aS,WA(Pa),t)-1.9%(wg
(BOD)+2.5*ag(Pa)), 1.6*ag(Pa));
bef(aS,AN,t):=min(bef(aS,AN,t)+(wg(BOf)+2.5*ag
(Pa)), 8.5*ag(Pa));
des(aS,AN,t):=max(des(aS,AN,t)-1.9%(wg(BO)+2.5*%ag
(Pa)), 1.6*ag(Pa)).

The motivation (at time t) of aS to perform a command
BOMf, received (at time to) from authorized Pa, is determined
as follows:

i. 12:=to+zt(BOf); apply the rule RWAN2;

ii. determine the activity, AVf, which will accomplish the
order BOf, and initial situation, SMfae, of this activity;

iii. mot(aS,SMfae, AV{ t,motak,pg,SMg.t3.art,zv); the moti-
vation to perform command BOf equals mot-ord(aS,BOf,

AV{,SMfae,Pa,t)=motak+epr(aS,M(Pa),eps, WA(Pa),.,t)+

epr(aS,M(Pa),eps,AN,t); the motivation to execute the

activity AVT equals mot-ord(aS,BOf,AVf,SMfae,Pa,t);
iv. the priority of performing the order BOf (at time t) and
the activity AV: prior-ord(BOf,AVf SMfae,Pa,t)=mot-ord

(aS,BOf,AVf,SMfae,Pa,t)*4.5/sqrt(t2-t+16), prior-a

(SMtae,AV{.t)=prior-ord(BOf,AVf,SMfae,Pa,t).

4. General Specification of the Subsystem WP of aS

WP identifies objects and simple situations by object and
situation models which are in the semantic graph SeG (s.
Sect. 2.2). If there is a path (in this graph) from an object

20

25

30

35

60

16

model M(Og) (situation model SMg) to an object model
M(O) (situation model SM, respectively), then M(O) (SM,
respectively) is an instance of the model M(Og) (SMg,
respectively). Model M(Og) (SMg, respectively) is a class of
object models (situation models, respectively) to which
M(O) (SM, respectively) belongs. Below, cloM(O)) (cls
(SM), respectively) denotes an object model (situation
model, respectively), in graph SeG, such that from this
model clo(M(0)) (cls(SM), respectively) exists a path to the
model M(O) (SM, respectively). Because WP is very closely
connected with the method DKA, some important properties
of WP must be given.

SPW1. WP perceives the surrounding of aS through
sensors, identifies objects and simple situations (not meta-
situations) as instantiated object and simple situation
models, and stores them in AW(t). Also sentences of a
simple language are identified syntactically and semanti-
cally by WP and stored in AW(t). AW(t) is the internal
representation of the actual world of aS at time t. The main
part of AW(t) is a tree TOS such that:

i. To each node of the tree is ascribed an object which aS has
perceived. KTOS(Wa) is the root of the tree, where
M(Wa) is the model of the greatest spatial object in the
world of aS. aS (“self”) is always in a structured object in
TOS.

ii. KTOS(Qi) is a successor of a node KTOS(Q) if and only
if Q is a structured object which has appeared, and WP has
recognized that object Qi has appeared direct in object Q.

iii. Each node KTOS(Q) has the following form
(P(V),sK(Q),Q,M(Q),apOS(Q),amS(Q),nOS(Q),fOS(Q),

nfOS(Q),fmS(Q),dOS(Q),LOSa(Q),LbOa(Q))

where: P(V)—the pointer to the father of the node KTOS

Q),

sK(Q)—the list of pointers to the successors of the node
KTOS(Q).

M(Q)—WP has identified object Q as M(Q).

apOS(Q)—the list of objects and simple situations which
actually appear in object Q (not foreseen objects and
situations are marked with ‘nexp’),

amS(Q)—the list of meta-situations which actually appear in
structured object QQ (not foreseen meta-situation is marked
with ‘nexp’),

nOS(Q)—the list of objects and simple situations in object
Q, which just have been recognized; elements of the lists
apOS(Q) and nOS(Q) have the form:
(P(VR(011)),01i,M(01),ti,1dO(01i,M(0i)),0x) or (P(VR

(Sle)),Sle,SMe.ti,1dS(S1e,SMe),0x)
where object Oli (situation Sle, respectively) has been
identified by 1dO (1dS, respectively) as M(Oi) (SMe,
respectively) (at time ti); P(VRO11)) (P(VR(S1e))) is pointer
to the location of the object Oli (the situation Sle,
respectively) in VR(Q); Oli (Sle) is an instantiation of the
model M(Oi) (SMe, respectively); ox=‘exp’ if M(O1) (SMe,
respectively) is declared (expected/foreseen) in object

M(Q), ox="nexp’ otherwise;

fos(Q)=(Q.M(Q), ob (pr(Of1),M(Of1)) . . . (pr(Ofa),M
(Ofa)); sit (pr(Sf1),SMf1), . . . ,(pr(Stw),SMfw))—the list
of missed/absent objects and simple situations in object
Q:; WP enters these objects and situations in the list when:
(a) it has recognized object Q as M(Q) and recognizes
now that object M(Ofi) or simple situation SMfe is not in
object Q, although it should be with probability pr(Ofi)
(pr(sfe), respectively) in Q, (b) it recognizes that object
M(Ofj) or simple situation SMfg is disappeared from
object Q, although it should be in Q until now, with the
given probability;

nfOS(Q)—the list of objects and simple situations, just
having been recognized as missed/absent in object Q,

US 7,024,277 B2

17

fmS(Q)—the list of missed/absent meta-situations in object

dOS(Q)=(Q,M(Q), ob (0O1d1,M(0Od1)), . . . ,(O1da,M(Oda));
sit (S1d1,SMd1), . . . ,(S1dw,SMdw))—the list of objects
and simple situations which have disappeared from object
Q; WP has recognized that object Ol1di, identified as
M(Odi), or situation Slde, identified as SMde, was in
object Q and now is not in Q;

LOSa(Q)—the list of objects and situations which are con-
nected with execution of activities (by some objects Masi)
in object Q; an element of this list has the form:

EOSa(Mas)=(Mas,P(exOSa(AVh,su-akh)),P(apOSa(AVh,
su-akh)),nOSa(AVh,su-akh),dOSa(AVh,su-akh) where:
object Mas performs activity AVh in object Q, (i.e. the
current sub-activity su-akh of AVh is being executed or is
waiting for execution); the method DKA enters element
EOSa(Mas) in the list, when it determines that Mas has to
do the sub-activity su-akh;

P(L(Avh,.))—pointer to the list L(AVh,.) in ZuA(AVh) (ZuA
(AVh) is the state of execution of the activity AVh—
described in Sect. 5.1),

exOSa(AVh,su-akh)—the list (in ZuA(AVh)) of objects and
simple situations which can appear when sub-activity
su-akh is being executed (by Mas),

apOSa(AVh,su-akh)—the list (in ZuA(AVh)) of objects and
simple situations which actually appear and are listed in
exOSa(AVh,su-akh),

nOSa(AVh,su-akh)—the list of objects and simple situations
which just have appeared and are listed in exOSa(AVh,
su-akh),

dOSa(AVh,su-akh)—the list of disappeared objects and
simple situations which were listed in apOSa(Avh,su-
akh);

LbOa(Q)—the list of objects, Qi, in which Q was, and
activities which Q executed; an element of this list has the
following form
EbOa(Qi)=((t11,t21),Q1,M(Qi),Lexac(Q1i),ZOSa(Q1)),

where:

(11, t21)—the time in which object Q was or is in object Qi,

Lexac(Qi)—the list of sub-activities which Q executed in
object Qi; an element of this list equals:
Eexac(AVe,s-actej)=(AVe, s-actej, t3etde, P(exOSa(AVe,

s-actej)), P(apOSa(AVe,s-actej)))

when Q executed sub-activity s-actej of the activity AVe, in

object Qi from t3e till t4e; the method DKA puts these

elements in the list Lexac(Qi):

Z0Sa(Qi):=EO0Sa(Q) when Q just left object Qi (at time

121), ZOSa(Qi)=nil if it is in Qi

Besides the tree TOS, AW(t) contains also other data
structures, €. g.

LB—the list of commands which WP has identified.
SpW2. WP enters objects and simple situations in the tree

TOS as follows:

SpW2.1. When WP notices, by sensors and the observing
operation observ(Olr, . . .), an object Olr (direct) in a
structured object Q (which is recognized as M(Q), in TOS)
then:

i. WP searches for an internal representation, O1, of the
object Olr. WP attempts to identify Olas an object model
M(O) (by the operation 1dO(O1,M(0)), s, (ii)) such that
M(O) is declared in the model M(Q) or in a model
clo(M(Q)) or M(O) occurs in a list exOSa(AVe,su-akej) in
the list LOSa(Q) (of the object Q); if this succeeds then
01 is recognized as expected object M(O). If such iden-
tification does not succeed then WP searches for object
model M(Og), representing O1, in the semantic graph
SeG (defined in Sect. 2.2). In this case, O1 is recognized

20

25

30

35

40

45

50

55

60

65

18

as an unexpected (not foreseen) object M(Og) in Q. WP

does the following operations: (a) it puts new object

(P(VR(01)),01,M(0),., ‘exp’), or (P(VR(O1)), O1,M
(0g),., ‘nexp’), in the lists apOS(Q) and nOS(Q), it builds
the node KTOS(O1) and connects it as successor with
KTOS(Q); (b) it puts the element EbOa(Q)=((t,.)Q,M(Q),
Lexac(Q),nil) in LbOa(O1), where Lexac(Q)=nil if O1
does no activity in Q, and Lexac(Q)=(AVol, s-actolj,t,.,
P(exOSa(AVol, s-actolj)), P(apOSa(AVol,s-actol))) if
O1 does sub-activity s-actolj of the activity AVol; in the
latter case (thus if s-actolj=(01, . . .)). WP puts new
element EOSa(01)=(01,P(exOSa(AVol, s-actolj)),
P(apOSa(AVol,s-actolj)),nil,nil) in the list LOSa(Q); (c)
if object M(O), or M(Og), occurs in a list exOSa(AVqe,
s-akqej), in LOSa(Q), then WP puts (P(VR(0)),01, .. .)
in the lists nOSa(AVqe,s-akqej) and apOSa(AVqe,s-
akqej) (in LOSa(Q));

The mentioned identification operation 1dO(O1,M(0O))
instantiates the model M(O) and builds from it the internal
representation O1 of the observed object Olr according to
the following rules: (a) when WP notices that a property
or an object (if Ol is a structured object), EOi, of the
model M(O), does not appear in the observed real object
Olr, then EO1i does not occur in the instantiation O1 of the
model M(O) (if EOi is an object, M(U), which should
appear in Olr with probability greater than 0.75, then WP
puts M(U) in nfOS(O) and fOS(0O1) (in node KTOS(O1))
as absent object), (b) when the properties and objects
EOe, e=el, of the object Olr, noticed by WP, sufficient
good match those of the model M(O), then Olr is recog-
nized as instantiation O1 of the model M(O) (EOe are of
course entered in O1), (c) the properties and objects,
EOnb, which occur in the model M(O) and which WP
does not notice in the real object Olr (because e.g they are
not visible), WP puts into the instantiation O1 and marks
them (in O1) with ‘nver’ (not verified); the not verified
objects in O1 WP does not put in the lists apOS(O1),
nOS(01) etc of KTOS(O1).

iii. WP detects whether new simple situations have appeared
in the following way:

iii.1. If O1 is recognized as expected object (s. (i)), then WP
searches, through all simple situations, declared in M(Q)
or in a model clo(M(Q) or in a list exOSa(AVge,s-akqej)
(in LOSa(Q)), for a model SMi such that SMi contains
model M(O) as a component; if SMi is such situation
model, then WP detects an instantiation, S1i, of the model
SMi (performed by 1dS(S1i,SMi)). If such instantiation
S1i is found then S1i is an expected/foreseen situation
(recognized as SMi) in object Q.

iii.2. If O1 has appeared as unexpected object in Q then WP
searches, in the semantic graph SeG, for a simple situation
model SMgi such that: SMgi contains object M(Og), as a
component, and an instantiation, S1i, of SMgi (performed
by 1dS(S11,SMgi)) exists in Q. If such instantiation S1i is
found in object Q, then S1i is an unexpected/unforeseen
situation (recognized as SMgi) in object Q.

iii.3. WP puts just recognized simple situations (P(VR(S11)),
S1i,SMi,., ‘exp’), or (P(VR(S11)),S1i,SMgi.., ‘nexp’), in
the lists apOS(Q) and nOS(Q). If situation SMi (or SMgi)
occurs in a list exOSa(AVge,s-akqej) (in LOSa(Q)), then
WP puts (P(VR(S11)),S1i, . . .) in the lists nOSa(AVqe,
s-akqej) and apOSa(AVge,s-akqej) (in LOSa(Q)).
SpW2.2. When WP observes by the operation observ that

an object O1 (e.g. aS), recognized as M(O), moved from

structured object Q1 (recognized as M(Q1)) to structured
object Q2 (recognized as M(Q2)) (thus, O1 left object Q1
and appears in object Q2), then:

=

ii.

US 7,024,277 B2

19
i. WP searches for simple situations, S1vi recognized as

SMvi, such that: (a) (.,S1vi,SMvi,.,.) is in the list apOS

(Q1) and contains object O1 as a component, (b) S1vi is

recognized, by 1dS(S1vi,SMvi), as ‘is not in Q1°. WP puts

(,O1,M(O), . . .) and the said disappeared situations

(S1vi,SMvi, . . .) into dOS(Q1) and deletes them in

apOS(Q1). If (,OL,M(O), . . .), or (.,S1vi,SMvi, . . .),

occurs in a list apOSa(AVle,su-aklej) (in LOSa(Q1)),
then WP puts (O1L,M(O), . . .) ((SIviSMvi, . . .),
respectively) in the list dOSa(AVle,su-aklej) (in LOSa

(Q1)). When Ol does a sub-activity, su-akor, of an

activity AVo (i.e. if EOSa(01)=(01,P(exOSa(AVo,su-

akor)), P(apOSa(AVo,su-akor)), . . .) is in LOSa(Q1),
then:

begin E2:=E0Sa(01); delete EOSa(O1) in the list LOSa
(Q1); Z0Sa(Q1):=E2;
put ZOSa(Q1) and the actual time t in the list EbOa(O1) (in
the list LbOa(01)) end. Delete the pointer P(KTOS(O1)) in
sK(Q1) (thus, KTOS(O1) ceased to be successor of KTOS
(QL)).

ii. As said in (i), object O1 was recognized as M(O) in object

Q1, WP recognizes O1 in object Q2 as follows:

Case a: in M(Q2) or clo(M(Q2)) or in a list exOSa(AV2i,
su-ak2ij) (in LOSa(Q2)) is declared a model M(Or)
such that M(Or) belongs to class M(O) (in graph SeG)
and M(Or) is a good model for object O1: then O1 is
an expected object in object Q2 and is recognized as
M(Or).

Case b: M(O) or clo(M(0)) is declared in M(Q2) or in
clo(M(Q2)) or in a list exOSa(AV2i,su-ak2ij) (in LOSa
(Q2)): then O1 is an expected object in object Q2 and
is recognized as M(O).

Case c: neither case (a) nor case (b) (i.e. in clo(M(Q2)) is
no good model for object O1); then O1 is an unex-
pected object in object Q2 and is recognized as M(O).

WP puts (.,O1,M(Or), . .. ‘exp’) or (,OLLM(O), ..., ‘exp’)
or (,LOL,M(O), . . ., ‘nexp’) in the lists apOS(Q2) and
nOS(Q2). If M(Or) (or M(O)) occurs in a list exOSa

(AV2n,su-ak2nj), in LOSa(Q2), then WP puts (,O1,.M

(Or), . ..), (or (LOLM(O), . . .)) in the lists apOSa

(AV2n,su-ak2nj) and nOSa(AV2n,su-ak2nj) (in LOSa

(Q2)). WP puts the pointer P(KTOS(01)) in sK(Q2) (thus

KTOS(01) is successor of KTOS(Q2)). When O1 does a

sub-activity su-akor of an activity AVo (i.e. if element

EOSa(01) was in LOSa(Q1)), then

begin put new element EbOa(Q2)=(t,.Q2,M(Q2),Lexac
(Q2),nil) in the list EbOa(O1), where

Lexac(Q2)=(AVo,su-akor.t,.,P(exOSa(AVo,su-akor)),P
(apOSa(AVo,su-akor)));

EOSa(01):=E2; (s, (1)); put element EOSa(O1) in the list
LOSa(Q2) end.

iii. WP performs analogous operations as in (iii), in SpW2.1.

SpW3. WP identifies simple sentences (their syntax and
semantics) of the language which aS uses to communicate
with people, emotional systems and robots/agents. An idea
of such identification, based on object and situation models
in the graph SeG, is given in Schurmann [AS4]. WP puts
identified orders in the list LB.

SpW4. WP identifies simple motion actions of objects;
examples: rolling ball, falling plate, eating person, walking
Person. WP identifies such motion actions by motion pat-
terns. These motion actions must be registered in object
models. Also the possible results of motion actions must be
given in their models/descriptions.

SpWS5. WP observes these objects and simple situations,
OS, (by an observation activity observ(.,0S.t)) which have

5

20

25

30

35

40

45

50

55

60

65

20

the greatest value des(aS,AUw(OS),t) (the intensity of desire

for attention when WP perceives OS by sensors, at time t).

WP and the method DKA apply the rules given in Schur-

mann [AS6], which concern the changes of values bef(aS

AUwW(OS),1), des(aS,AUw(OS),t), bef(aS,NEw(OS),t) and

des(aS,NEw(S0O),t), when object or situation OS is

recognized, where NEW(OS) is the need for curiosity and
knowledge with respect to OS. WP applies also the rule AU3

(given in [AS6]), when aS does motion activities. When the

attention of WP is focused on part TUr of real surrounding,

then WP compares TUr with its representation, TU, in the
tree TOS, WP recognizes changes of position and shape of
an object O In TUr and puts them in TU. WP detects also
whether situation, S(O), which contains object O, has
changed. WP updates the modified or new situation S(O°)’ in

TU, where situation S(O) differs from situation S(O°)” if

they have different situation models.

5. Determination and Control of Activities of aS

In this section I describe the method DKA which is
applied in the sub-system DA of aS. To describe this method
more clear, I assume that aS is not a virtual system and
contains the following simultaneous working processors: at
least one processor, PrWP, for the subsystem WP, at least
one processor. PrDA, for the sub-system DA, at least one
processor, PrA, for the subsystem EX-contr-motion

(execution of motions), some processors, PrCOi, i=1, . . . ip,

for computer operations which aS can execute, e.g. cogni-

tive procedures.

5.1. Notation
We use the notations introduced in the previous sections.

Additional we denote:

ZuA(AV)=(AV, Pb, SMae, xa, P(Ly,Ely), tact, tsa, su-act
(SM,SMj), motak, exOSa(AV,su-act(SM,SMj)), apOSa
(AV,su-act(SM,SMj)), apSa(AV,su-act(SM,SMj)), . . .
)—the state of execution of activity AV,

where: SMae—the initial situation in which the execution of

the activity AV began,

Pb—pointer to command, BOf, in the list LB when AV
performs order BOf, Pb=nil otherwise,
su-act(SM,SMj)—the execution of the activity AV

reached situation SM and now this sub-activity is
performed,

xa=‘exe’ when the sub-activity su-act(SM,SMj) is being
executed, xa=‘inter’ when the execution of this sub-
activity (thus also the activity AV) is actually interrupted,

P(Ly,Ely)—pointer to element Ely in the list Ly, where Ly
denotes one of the following lists: PAH, LCMR, LuA,
LuCO, LuMR; if Ly=PAH (or Ly=LCMR) then the sub-
activity su-act(SM,SM;j) is being executed by the proces-
sor PrA, ie. by the sub-system Ex-contr-motion, (by a
processor PrCOi, a machine, a robot/agent or an emo-
tional system, respectively);

tact (tsa)—the time period of execution of the activity AV
(the sub-activity su-act(SM,SMj), respectively),

motak—the intensity of motivation to execute activity AV,

exOSa(AV,su-act(SM,SMj)) (apOSa(AV,su-act(SM,
SMj)))—the list of objects and simple situations which
can appear (have appeared and are listed in exOSa(AVh,
su-akh), respectively) when sub-activity su-act(SM, SMj)
is executed,

apSa(AV,su-act(SM,SMj)—the list of situations which have
appeared and are expected in su-act(SM,SMj);

PAH=(H1,H11,H2, . . .) registers as follows the state of
execution of a sub-activity or control-activity by proces-
sor PrA: Hl=nil if PrA is free, H1=P(Lexint, ZuA(AV))
and H2="act’ if PrA is executing su-act(SM,SMj),

H5=‘end’ if PrA finished the sub- or control-activity regis-
tered in H1, if H1=P(Lexint,ZuA(AV))) and H2=‘co-a’

US 7,024,277 B2

21

then PrA is executing the control-activity contr-su-actj of
the sub-activity in ZuA(AV); in this case holds: in H11 is
the pointer to the elementary activities in contr-su-actj
which PrA is now executing, if H3="‘ei-ak1’ then PrA is
doing the elementary activities OApjl; . .. ;OApja (before
observ(. . .)) (if these activities are finished then
H5=‘end’), if H3="obser’ then observ(. . .) is being
executed and in H4 is the time at which the operation
observ(. . .) began, if H3=‘c-akt’ then a control action
CAje is being executed;

Lexint—the list of activity states ZuA(AVp), for activities
which actually are executed or interrupted;

LCMR—the list of activities being actually executed by a
processor PrCOi, a machine, an agent/robot or an emo-
tional system; ECMR(AVy)=(P(Lexint,ZuA(AVy)), Mas,
Resyj) is an element of this list, where Mas is the object
which does the sub-activity in ZuA(AVy) and Resyj
denotes the resources which are used by the sub-activity
in ZuA(AVy);

LuA—the list of pointers P(Lexint,ZuA(AVai)) to ZuA
(AVai) (in Lexint) such that the sub-activity in ZuA(AVai)
is waiting for execution by the processor PrA;

LuCO—the list of pointers P(Lexint,ZuA(AVci)) to ZuA
(AVci) such that the sub-activity in ZuA(AVci) is waiting
for execution by a processor PrCOn;

LuMR—the list of pointers P(Lexint,ZuA(AVri)) to ZuA
(AVri) such that the sub-activity in ZuA(AVri) is waiting
for execution by a machine, an agent/robot or an emo-
tional system; BuMR(AVri)=(P(Lexint,ZuA(AVri)),
Resrj) is an element of this list, where Resrj denotes the
resources which the sub-activity in ZuA(AVri) needs;

LAst—the list of activities waiting for start of execution.
The execution of a sub-activity, su-acj, or control-activity,

contr-su-actj, by the processor PrA (which can use several

processors) is performed and controlled by a software

Ex-contr-motion. Ex-contr-motion performs and controls

the motion activities of aS. The performance of motions by

Ex-contr-motion is not subject of this patent description.

How such software can be developed is described in Meystel

& Albus [MeA] (2002); thereby, motion patterns, for stan-

dard motions, and surface and spatial patterns, where these

motion patterns are applied, should be used.
To make the description of the method DKA more clear,

1 give first (in Sect 5.2) the structure of the method and after

that a more detailed general description. In Sect. 5.3, I give

the complete description of the method DKA.

5.2. General Outline of the Method DKA
DKA consists of the following steps:

D1.1. build list LdmS (with elements dmS(Q)) of meta-
situations which are disappeared from the surrounding
represented by TOS, where Q is a structured object; delete
disappeared objects and situations in TOS;

D1.2. build list LS1 of situations which have appeared in
connection with activities which are being executed or
interrupted;

D1.3. build list L.S2 of situations which just have appeared
in structured objects in TOS;

D1.4. initiate the performance of received commands—for
commands to execute an activity, AVT, put AVT in the list
LAst of activities which should be executed;

D1.5. build list LnexS of objects and situations which have
appeared in structured objects in TOS, although they are
not expected/not foreseen there;

D1.6. build list LOST of objects and situations just recog-
nized as absent/missed in structured objects in TOS,
although they should be there;

D2. initiate the execution of these activities in the list LAst
(s. D1.4) which have great enough priorities and the
resources needed for their executions are available;

20

25

30

35

40

45

55

60

65

22

D3. control the execution of sub-activities as follows:

D3.1. when processor PrA executes control-activity of a
sub-activity, then update the state of this execution;

D3.2. control sub-activities, suAyj, listed in LS1 (s. D1.2) as
follows: determine new sub-activity and initiate its execu-
tion or close the execution of the activity in which the
sub-activity suAyj occurs, when the execution of the
sub-activity suAyj is finished;

D3.3. if the duration of execution of a sub-activity lasts too
long then abandon the execution of the activity in which
this sub-activity occurs;

D4. control and determine execution of activities which are
being executed or interrupted as follows:

D4.1. when the duration of execution of an activity lasts too
long then abandon this execution;

D4.2. choose from activities in the list LuA, which are
waiting for execution by the processor PrA, the activity,
AVg, with maximum motivation; if this motivation is
greater than the motivation connected with the sub-
activity or control-activity, su-contr-acj, actually being
executed by the processor PrA, then interrupt the execu-
tion of su-contr-acj and begin to continue the execution of
the activity AVg;

D4.3. choose from activities in the list LuCO, which are
waiting for execution by a processor PrCOn, activities,
AvVgl, . .. ,AVgv, such that the motivation to execute
activity AVgi (in the actual state of execution ZuA(AVgi))
is greater than the motivation to execute activity AVji
actually being executed by a processor PrCOki, for i=1, .
.., v, where AVji=nil if processor PrCOKi is free; interrupt

the execution of activities AVjl, . .. ,AVjv and begin to
continue the execution of activities AVgl, . .. ,AVgv by
processors PrCOKkl, . . . ,PrCOkv,

D4.4. choose from activities in the list LuMR, which are
waiting for execution by a machine, an agent/robot or an
emotional system, activities, AVw1, . .. ,/AVwf, such that:
1) the present motivation to execute activity AVwi is

relatively great;

2) either: (1) there are free resources (needed objects e.g.
devices, machines, rooms) to continue the execution of
the activity AVwi,
or: (ii) (a) the motivation to execute activity AVwi is

greater than the motivation to execute an activity
AVsi actually being executed, (b) if the activity AVsi
is interrupted, then there will be free resources for
execution of the activity AVwi, (c) the activity AVsi
can be interrupted;
fori=1, ... ,fdo: begin if case (2.ii) then interrupt the
activity AVsi; continue the execution of the activity
AVwi end;

DS5. for each situation, SMae, (in L.S2) which has appeared
in a structured object (in TOS) do: begin determine
activity, AVp, with maximum motivation, which handle
the situation SMae;
if such activity is determined and the motivation to

execute the activity AVp is relatively great, then put
(SMae, AVp) in the list LAst of activities which should
be executed end;

D6. for each situation, SMgje, (in the list LnexS, s. D1.5),
which has appeared in a structured object, Q, (in TOS) but
is not foreseen there, determine an activity, AVgj, such
that: it handles the situation SMgie, it can be executed in
object Q and the motivation to execute it is great enough;
put (SMgje, AVgi) in the list LAst;

D7. for objects and situations, OSfi, (in the list LOSH, s.
D1.6) that have not appeared in structured objects, Q, (in
TOS), although they should appear there do: begin deter-

US 7,024,277 B2

23

mine an activity, AVgi, such that: it copes with the
problem of absent/missed OSfi, it can be executed in
object Q and the motivation to execute it is great enough;
put (OSfi, AVgi) in the list LAst end;

D8. update the relevant lists in AW(t); apply the rule
RWANT (s. Sect. 3.3) and the rules given in Schurmann
[AS6], which should be applied every time period (e.g.
AUL, GR3, MA4); store the most important objects and
situations, with relevant lists, which are in AW(1), in
AW(tW) (w=p+l), after every given time period; goto
D1.1

More Detailed Outline of Steps D1.1, . . . ,D7

D1.1. for each non empty list dOS(Q) (the list of disappeared
objects and simple situations in object Q, in TOS) do:
begin dOS1(Q):=d0S(Q); dOS(Q):=nil;

dmS(Q):=the list of disappeared meta-situations in object
Q (they contain at least one object or one situation from
dOS1(Q) as component;

delete the meta-situations in amS(Q) (in KTOS(Q)),
which are listed in dmS(Q);

for objects and situations in the list JOS1(Q) and dmS(Q)
do: begin determine new values bef(aS,b,t) and des(aS,
b,t) (intensities of satisfactions and desires) caused by
disappeared objects and situations listed in dOS1(Q)
and dmS(Q), by applying the relevant rules given in
Sect. 2.1 and Schurmann [AS6]; apply the relevant
rules given in Schurmann [ASS5], with respect to the
said changes of values bef(aS,b,t) and des(aS,b,t), to
update emotion intensities end end;

D1.2. LS1:=nil; using the lists LOSa(Q) and dmS(Q) in the
tree TOS build lists:

EnOSa2(AVh)—of objects and simple situations which
just have appeared and are expected when the sub-
activity in ZuA(AVh) is being executed;

EdOSa2(AVh)—of objects and simple situations which
appeared when the sub-activity in ZuA(AVh) has been
executed, and which now have disappeared:

nmSa(AVh)—of just appeared meta-situations which are
expected when the sub-activity in ZuA(AVh) is being
executed;

dmSa(AVh)—of meta-situations which appeared when
the sub-activity in ZuA(AVh) is being executed, and
which now have disappeared;

update the relevant lists in ZuA(AVh) using the lists
EdOSa2(AVh) and dmSa(AVh);

update the list apOSa(AVh) in ZuA(AVh) using the list
EnOSa2(AVh), and after that, build the list ES1(AVh)
(element of the list LS1) of just appeared situations
which are expected in ZuA(AVh), using nmSa(AVh);

D1.3. LS2:=nil; for objects Q in the tree TOS, build list

ES2(Q) (element of the list .S2) as follows: begin put

each simple situation expected in Q and occurring in the

list nOS(Q) (in the node KTOS(Q), marked with ‘exp’)
into the list ES2(Q) in the following form:

ES2(Q)=(Q, M(Q), (as1,811,SM1,1dS(S11,SM1),loc(S11)), . . .
(ask,S 1k, SMk,1dS (S1k,SMK),loc(S1k))), .1

where: situations SMi are foreseen in structured object
M(Q), object Q is recognized as M(Q), S1i is recognized as
SMi, asi=(‘sf”,SFi) if SMi belongs to situation sequence SFi
(occurring in M(Q)), and asi=(‘mc’,nil) if SMi does not
belong to a situation sequence in M(Q), and loc(S11) denotes
the actual location of the situation S1i in VR(Q) (if Sliis a

visual situation);
detect meta-situations which just have appeared in Q and
are expected in object M(Q), using the lists nOS1(Q),

5

10

20

25

30

35

40

45

50

55

60

24

apOS(Q) and amS(Q), and put them into the lists
ES2(Q) and amS(Q);

apply the relevant rules, given in Sect. 2.1. in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, with regard to
the just appeared new meta-situations end;
D1.4. for each command, BO{, in the list LB of the received
orders, do: begin
increase the desires des(aS,WA(Pa),t) (to do orders
received from Pa) and des(aS,AN,t) (for recognition
acknowledgment and self-esteem) according to the rule
RWAN?2 (s Sect. 3.3);

if BOf is an order, from authorized Pa, to abandon an (or
to continue the execution of an abandoned) activity,
AVg, then: begin abandon the (continue the execution
of the abandoned, respectively) activity AVg;

update bef(aS,WA(Pa),t), des(aS,WA(Pa),t), bef(aS,AN,t)
and des(aS,AN,t) with regard to the order BOf from Pa;
apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVg has been abandoned—no goal situation
of this activity will be reached” (“probably a goal
situation of the activity AVg will be reached”,
respectively) end;

if BOf is an order to execute an activity AV{ then put the
activity AVT in the list LAst of activities which should
be executed end;

D1.5. for structured objects, Q, in the tree TOS, build
elements EnexS(Q) of the list LnexS of not foreseen
situations, as follows: begin
put each not expected simple situation (marked with

‘nexp’) from nOS(Q) into the list EnexS(Q);

using lists nOS(Q) and apOS(Q), detect all new meta-
situations, mSge, such that: (a) at least one unexpected
object or situation in nOS(Q) is a component of the
meta-situation mSge, (b) mSge is recognized as model
mSMge and mSMge is not foreseen in object M(Q); put
(mSge,mSMge) in the list EnexS(Q);

apply the relevant rules, given in Sect. 2.1. in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“unexpected meta-situation mSge has appeared” end;

D1.6. for structured objects, Q, in the tree TOS, add new

elements to the lists EOSf(Q) and fmS(Q) (of absent/

missed meta-situations in object Q) as follows:

begin EOS(Q) (element of the list LOSY) has the form
(Q.M(Q),0b (pr(Of1),M(Of1)), . . . ,(pr(Ofa),M(Ofa));

sit (pr(St1),SMf1), . . . ,(pr(Sfs),SMfs))

where pr(Ofi), or pr(Sfe), (given in M(Q)) denotes the
probability that object M(Ofi) (situation SMfe,
respectively) appears in object Q—for these elements
hold: pr(Ofi)>0.75, pr(Ste)>0.75;

using the absent/missed objects and simple situations
registered in EOSH{(Q) and fOS(Q) (the latter list is built
by WP), recognize meta-situations, mSMfe, which are
not in object Q, although they should appear there, and
are not in the list fmS(Q);

put these situations (pr(mSfe),msMfe) in the lists EOST
(Q) and fmS(Q) end;

D2. initiate the execution of activities in the list LAst as

follows: for each activity, AVg, in the list LAst do:

if (a) aS can reach an initial situation of the activity AVg
by motions or by sending a message, (b) the resources
for execution of the activity may be available, (c) the

US 7,024,277 B2

25
priority prior-a(.,AVg,t) of the activity AVg is great
enough, compared with priorities prior-a(.,AVxw,t) of
activities AVXw waiting for execution then begin build
the initial execution state ZuA(AVg) of the activity
AVg;
puthuA(AVg) in the list Lexint; put the pointer to
ZuA(AVyg), in Lexint, into the relevant list (LuA,
LuCO or LuMR) of activities waiting for execution;
apply the rule BZ1 given in [AS6] end else begin if
AVg has to perform an order then issue a message
explaining the reason why this order is not done till
now end;
D3. control the execution of sub-activities as follows:
D3.1. when processor PrA executes a control-activity, contr-
su-actj, then update the execution state of contr-su-actj;
D3.2. for each element ES1(AVY) in the list LS1 do: begin
when the execution of the sub-activity, suAyj, occurring in
ZuA(AVy) is finished then begin update the execution
state ZUA(AVY);
if the execution of the activity AVy is finished then
begin close the execution of the activity AVy;
put the reached end situation, SMyi, of the activity AVy,
in the list LS2;
if AVy performed a command then apply the rule
RWAN3 (s. Sect. 3.3);
apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVy is finished and the end situation SMyi
has been reached” end else
begin apply the rules BZ2.1, BZ2.3, . . . given in [AS6],
the rules in Sect. 2.1 and the relevant rules given in
[AS5], to update the relevant values bef(aS,b,t), des
(aS,b,t) and other emotion intensities, in the case
“between situation SMyi of the activity AVy is
reached”; determine the next sub-activity in AVy which
should be executed;
if this next sub-activity contains a control-activity then
put the pointer to this control-activity into the list LuA;
update ZuA(AVy) end end;
D3.3. sn:=sn+1; if sn>snl then begin
for each activity, AVy, being executed or interrupted do
begin
if the duration of execution of the sub-activity in
ZuA(AVY) lasts too long then begin
abandon the execution of this sub-activity and the
activity AVy;
apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVy is abandoned—none goal situation of
this activity will be reached” end end end;
D4. control the execution of activities as follows:
D4.1. an:=an+1; if an>anl then begin
for each activity, AVy, being executed or interrupted do
begin if the duration of execution of the activity AVy
lasts too long then begin abandon the execution of the
activity AVy;
apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensifies, in the case
“activity AVy is abandoned—none goal situation of this
activity will be reached” end end end;
D4.2 control the execution of sub- and control-activities by
processor PrA as follows:
begin choose from activities in the list LuA, which are
waiting for execution or control by the processor PrA,

15

20

25

30

35

40

45

50

55

60

65

26

the activity, AVg, with the maximum motivation to
execute its current sub- or control-activity, su-co-
actgi, which is in ZuA(AVg);

if processor PrA is free then begin begin the execution
of su-co-actgj by the processor PrA;

update ZuA(AVg) and the list LuA end else begin

let sub- or control-activity, su-co-act-vh, of an activity
AVa, is being executed by processor PrA;

if the execution of su-co-act-vh can be interrupted then
begin
if the motivation to execute su-co-actgi is greater than
the motivation to execute su-co-act-vh then
begin interrupt the execution of su-co-act-vh; update
ZuA(AVa) and the list LuA;
begin the execution of su-co-actgi by the processor
PrA; update ZuA(AVg) and the list LuA end end end
end;
D4.3. control the execution of activities by processors
PrCOn as follows:
if LuCO=nil then begin nex:=false; repeat
choose from activities in the list LuCO, which are
waiting for execution by a processor PrCOn, activity,
AVg, with the maximum motivation to execute its
current sub-activity, su-actgi, which is in ZuA(AVg);
if a processor, PrCOf; is free then m:=f else begin choose
from the set
{AVylactivity AVy (i.e. its current sub-activity,
su-actye, which is in ZuA(AVY)) is being executed
by a processor PrCOky and the sub-activity su-actye
can be interrupted}
the activity, AVs, with the minimum motivation to
execute its current sub-activity, su-actse;
if such activity AVs is chosen and the motivation to
execute the sub-activity su-actgi is greater than the
motivation to execute the sub-activity su-actse then
begin interrupt the execution of the sub-activity
su-actse (thus, also the activity AVs) by the processor
PrCOks; m:=ks:
update ZuA(AVs) and the lists LuCO and LCMR end
else nex:=true end,
if nex=false then begin begin the execution of the sub-
activity su-actgi (of the activity AVg) by the processor
PrCOm; delete the element with the pointer to ZuA
(AVyg), in the list LuCO:
update ZuA(AVs) and the lists LuCO and LCMR end
until nex=true v LuCO=nil end;
D4 .4. control the execution of activities by a machine, robot,
agent (Maxs) as follows:
LuM1:=LuMR (the list of activities waiting for execution
by a Maxs);
while LuM1=nil do begin choose, from activities in the
list LuM1, activity, AVg, with the maximum motivation
to execute its current sub-activity, su-actgi, which is in
ZuA(AVg);
let the sub-activity su-actgj should be executed by Magj
and let Resgj are the resources needed for execution of
su-actgj;
if there are free resources Resgj and Magj is free then
isf:=true else begin
find, in the list LCMR of activities actually being
executed by objects, activity, AVs, such that (a) AVs,
i.e. the sub-activity (su-actse) in ZuA(AVs), is actu-
ally being executed by Magj, if Magj is not free, (b)
the motivation to execute the sub-activity su-actgj is
greater than the motivation to execute the sub-
activity su-actse, (c) the execution of the sub-activity

US 7,024,277 B2

27

su-actse can be interrupted at present time, (d) if the
execution of the sub-activity su-actse is interrupted
then there will be free Magj and the resources Resgj
(for execution of the sub-activity su-actgj);
if such activity AVs is found then begin isf:=true:
interrupt the execution of the sub-activity su-actse
(thus, also the activity AVs);

update ZuA(AVs) and the lists LuMR and LCMR end

else isf:=false end;
if isf=true then begin begin the execution of the sub-
activity su-actgj (of the activity AVg) by Magj;

delete the element EUMR(AVg) in the list LuMR, and
update ZuA(AVg) and LCMR end; delete the ele-
ment EuM1(AVg) in the list LuM1 end;

DS5. handle each foreseen situation which has appeared in a
structured object, Q, and is registered in the list L.S2 (built
in D1.3 and D3.2) as follows:
for each element ES2(Q)=(Q,M(Q),(as1,Sal,SMal,.,.), . .

. (ask,Sak,SMak...)) in L.S2 (s. (5.1)) do:

begin for each situation SMae in ES2(Q) do: begin

if SMae belongs to a situation sequence, FSh, then
register in FSh that SMae has appeared;

find activity, AVp, in AK(SMae), with the greatest
motivation such that: (a) the resources needed for
execution of the activity AVp could be available, (b)
AVp can be executed in object Q, (¢) the motivation
to execute AVp is great enough;

if such activity AVp is found then begin put (SMae,AVp)
in the list LAst of activities which should be executed;
delete (ase,Sae,SMae,.,.) in ES2(Q) end end end;

D6. handle not foreseen situations which have appeared in
structured objects in TOS and are registered in the list
LnexS (s. D1.5) as follows:
for each element EnexS(Q)=(Q,M(Q),(as1,Sal,SMal,.,.),

. ,(ass,Sas,SMas,.,.)) in LnexS do:
begin determine activities, AVgj, j=1, ... ,w, such that: (a)

a situation, SMgje, in EnexS(Q) is initial situation of

the activity AVgj, (b) AVgj can be executed in object Q,

(c) the motivation to execute AVgj is great enough, (d)

the resources needed for execution of AVgj may be

available;
put these activities (SMgje,AVgj), j=1, ...,

LAst to execute them end;

D7. handle objects and situations, in the list LOSf (with
elements EOS{(Q), s. D1.6), which are not appeared in
structured objects in TOS, although they should be there,
as follows:
for each element EOS{(Q)=(Q,M(Q), ob (pr(Ofl),M

(Of1)), . . . ,(pr(Ofa),M(Ofa)); sit (pr(Sf1),SMf1), . . .

, (pr(Sfd),SM{fd)) in LOSf do: begin build the following

situations:

SOfi:=object M(Ofi) is not appeared in object Q,
although it should be there with probability pr(Ofi),
fori=1, ..., a;

SMFe:=situation SMfe is not appeared in object Q,
although it should be there with probability pr(Sfe),
fore=1,d;

increase the attentlon to situations SOfj, i=1, . . . ,a, and
SMFe, e=1, . . . ,d, according to the relevant rules
given in [AS6]; apply the relevant rules, given in
Sect. 2.1. in [AS6] and in [AS5], to update the
relevant values bef(aS,b,t), des(aS,b,t) and other
emotion intensities, with regard to the appeared
situations SOfi, i=1, ,a, and SMFe, e=1, . .. d;

WSF:={SF|SF=S0fi, 1fa and |rosa(aS,SOfi t)\>10 or
SF=SMFe, e=d, and |rosa(aS,SMFe,t)|>10}
(situations which are not in WSF are unimportant for
aS);

w, in the list

5

10

20

25

30

35

40

45

50

55

60

65

28

determine activities, AVgi, i=1, . . . ,w, such that: (a) a
situation, SFgij, in WSF, is an initial situation of the
activity AVgi, (b) AVgi can be executed in object Q,
(c) the motivation to execute AVgi is great enough,
(d) the resources needed for execution of AVgi may
be available;

put these activities (SFgij, AVgi), i=1, . . . ,w, in the list
LAst, to execute them end;
5.3. Complete Description of the Steps D1.1, . . . ,D7
D1.1. for each structured object, Q, in the tree TOS build
lists: begin

n0S1(Q):=n08S(Q); nOS(Q):=nil (in KTOS); dOS1(Q):=
dOS(Q); dOS(Q):=nil;

EOS{(Q):=nfOS(Q) (EOSH(Q) is new element of the list
LOSY); nfOS(Q):=nil; for elements EOSa(Masi) of the
list LOSa(Q), build elements: begin
nOSal (AVh,su-akhj):=nOSa(AVh,su-akhj); nOSa

(AVh,su-akhj):=nil (in EOSa(Masi));
dOSal(AVh,su-akhj):=dOSa(AVh,su-akhj); dOSa
(AVh,su-akhj):=nil;
EOSal(Q,Masi)=(nOSal(AVh,su-akhj), dOSal(AVh,
su-akhj) end;

for each list dOS1(Q) (of disappeared objects and simple
situations in Q) do: build list dmS(Q) of disappeared
meta-situations, mSMds, in object Q using the lists
dOS1(Q) and amS(Q) (mSMds must have at least an
object or a situation, listed in dOS1(Q), as component,
and mSMds must be registered in the list amS(Q) and
recognized by the procedure 1dmS as not present in Q);

delete these meta-situations in the list amS(Q), which are
in dmS(Q);

for objects, Odi, and situations, SMde, in the lists dOS1
(Q) and dmS(Q) do: begin
decrease the attention and the desire for curiosity with

regard to Odi and SMde, i.e. decrease the values
des(aS,AUw(Odi), t), des(aS,AUw(SMde),t), des
(aS,NEw(0Odi),t), des(aS,NEw(SMde),t), according
to relevant rules in [AS6];

apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“object Odi, or situation SMde, is disappeared from
object Q” (examples of such rules in [AS6]: MA3.1.1,
MA3.2.1, MA3.3.1) end,

D1.2. LS1:=nil; for each list LOSa(Q) in the tree TOS do:
begin

using the lists nOSal(AVh,su-akhj) and dOSal(AVh,su-
akhyj) in the lists EOSal(Q,Masi), and the lists dmS(Q)
n TOS, build lists: begin

EnOSa2(AVh)—of just appeared objects and simple situ-
ations (with the time point of identification by WP)
which are expected when the sub-activity su-akhj,
which is in ZuA(AVh), is being executed;

EdOSa2(AVh)—of objects and simple situations which
appeared when the sub-activity su-akhj, which is in
ZuA(AVh), is being executed, and which now have
disappeared;

dmSa(AVh)—of meta-situations which appeared when
the sub-activity su-akhj is being executed, and which
now have disappeared (meta-situations in this list are in
the list apSa(AVh,su-akhj), in ZuA(AVh), and in a list
dmS(Q));

nmSa(AVh)—of new appeared meta-situations (with the
time point of identification) which are declared as
expected in the sub-activity su-akhj (these meta-

US 7,024,277 B2

29
situations must contain as component at least one
object or situation from EnOSa2(AVh)) end;
for elements EnOSa2(AVh), EdOSa2(AVh) and dmSa(AVh)
do: begin
mark these situations with ‘was’ (as was been), in the list
apSa(AVh,su-akhj), which are in the lists EdOSa2
(AVh) and dmSa(AVh);

mark these objects and simple situations with ‘was’ (as
was been), in the list apOSa(AVh,su-akhj) (in ZuA
(AVh)), which are in the list EdOSa2(AVh);

put all objects and situations from EnOSa2(AVh) into

apSa(AVh,su-akhj) and mark them with “is’;

ES1(AVh):=the list of new situations which have

appeared when the sub-activity su-akhj (in ZuA(AVh))
is being executed, and which are expected in su-akhj—
each situation in ES1(AVh) is either in EnOSa2(AVh)
or in nmSa(AVh), and is foreseen in su-akhj (ES1(AVh)
is an element of the list LS1);

put all situations from the list ES1(AVh) into the list

apSa(AVh) (in ZuA(AVh)) end end;
D1.3. LS2:=nit; build lists ES2(Q) (elements of the list
L.S2) of just appeared and expected situations in structured
objects, Q, as follows: begin
put all new simple situations which are expected in M(Q),
from the list nOS1(Q) (expected situations are marked
with ‘exp’) into the list ES2(Q), as given in (5.1);

using the lists nOS1(Q), apOS1(Q) and amS(Q) detect
(using the procedure 1dmS) new appeared meta-
situations, mSMne, such that mSMne contains at least
one object or simple situation from nOS1(Q) as com-
ponent and mSMne is not in amS(Q)); if such situation
mSMne is recognized then put mSMne in the lists
ES2(Q) and amS(Q);

delete these object and situation models in fOS(Q), EOSt
(Q) and fmS(Q), which are in nOS1(Q) and ES2(Q);

for objects, Oli, in nOS1(Q) and situations, Sle, in
ES2(Q) do: begin increase the attention and the desire
for curiosity with regard to O1i and Sle, i.e. increase
the values des(aS,AUw(O1i),t), des(aS,AUw(Sle),t),
des(aS,NEw(O1i),t), des(aS,NEw(S1e),t), according to
the relevant rules in [AS6];

apply the relevant rules, given in Sect 2.1, in [AS6] and

in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“object Oli, or situation Sle, is appeared in object Q”
end end;

D1.4. for each command, BOf, in the list LB of received
orders do: begin

if order BOf is given from an authorized person or system,

Pa then begin

des(aS,WA(Pa),t):=min(des(aS,WA(Pa),t)+1.5*(wg
(BOf)+2.5*ag(Pa)), 18*ag(Pa));

des(aS,AN,t):=min(des(aS,AN,t)+1.5*(wg(BOf)+
2.5*ag(Pa)), 18*ag(Pa));

where WA(Pa), wg(BOf) and ag(Pa) are explained in
Sect 3.3 end;

if BOf is an order, from authorized Pa, to abandon the

execution of an activity, AVg (s. rules RPal, RPa2 in

Sect. 3.3) then begin abandon the execution of the
activity AVg:
put (BOf, ZuA(AVg), . . .) in the list LabAo of

abandoned activities (by a command);
delete ZuA(AVg) in Lexint and update the relevant list
PAH, LCMR, LuA, LuCO, LuMR,;
bef(aS,WA(Pa),t):=min(bef(aS, WA(Pa),t)+wg(BO)+
2.5*ag(Pa), 8.5%ag(Pa)) (s. Sect. 3.3);

20

25

30

35

40

45

50

55

60

65

30
des(aS,WA(Pa),t):=max(des(aS,WA(Pa),t)-1.9%(wg
(BO)+2.5%ag(Pa)), 1.6%ag(Pa));
bef(aS,AN,t):=min(bef(aS,AN,t)+(wg(BOf)+2.5*ag
(Pa)). 8.5%ag(Pa));
des(aS,AN,t):=max(des(aS,AN,t)-1.9*(wg(BOf)+
2.5*ag(Pa)), 1.6%ag(Pa));
apply the relevant rules, given in Sect. 2.1. in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVg is abandoned—no goal situation of
this activity will be reached” end

else begin if BOf is an order, from authorized Pa, to

continue the execution of an abandoned activity, AVg,

which is registered in the list LabAo or LabD then

begin

put ZuA(AVg) from the list LabAo or LabD into the list
Lexint,

update ZuA(AVg) and put the pointer P(Lexint,ZuA
(AVg)) to ZuA(AVg), in Lexint, into the relevant list
LuA, LuCO or LuMR (of interrupted activities wait-
ing for execution);

bef(aS,WA(Pa),t):=min(bef(aS, WA (Pa),t)+wg(BO)+
2.5*ag(Pa), 8.5%ag(Pa)) (s. Sect. 3.3);

des(aS,WA(Pa),t):=max(des(aS,WA(Pa),t)-19*(wg
(BO)+2.5%ag(Pa)), 1.6%ag(Pa));

bef(aS,AN,t):=min(bef(aS,AN,t)+(wg(BOf)+2.5*ag
(Pa)). 8.5%ag(Pa));

des(aS,AN,t):=max(des(aS,AN,t)-1.9*(wg(BOf)+
2.5*ag(Pa)), 1.6%ag(Pa));

apply the relevant rules, given in Sect. 2.1. in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVg will be executed—a goal situation of
this activity can be reached” end

else begin if BOf is an order, from authorized Pa, to

execute an activity, AVf then begin
determine an initial situation, SMfae, of the activity AVf
such that: (a) from SMfae can be reached a good goal
situation of the activity AVL, i.e. motakt is relative
great, where motakt is the result of the operation
mot(aS,SMfae, AV{t,motakt,pg SMfg t2 art,zv), (b) aS
can reach the situation SMfae by some elementary
(motion) activities OAfal; . . . ;OAfar;

if such initial situation SMfae is determined then put
(‘ord’,BOf,Pa,AVE,SMfae,OAfl, . .. ,OAfr; ...) inthe
list LAst (the list of activities which should be
executed)

else inform Pa that no initial situation of the activity AVf

is within reach at the present time end

else inform Pa that “T” will not perform the command BOf

end end end;

D1.5. for structured objects, Q, in the tree TOS, build lists
EnexS(Q) (element of the list LnexS) of not foreseen
situations in object Q as follows: begin LnexS:=nil;

put each not foreseen simple situation, marked with ‘nex’,

from the list nOS1(Q) into EnexS(Q);

using the lists nOS1(Q) and apOS(Q), detect all new

appeared meta-situations, mSge, such that: (a) at least
one unexpected object or unexpected simple situation
in nOS1(Q) is an essential component of meta-situation
mSge, (b) mSge is recognized by the procedure IdmS
as model mSMge and mSMge is not expected in the
object model M(Q), (¢) all components of the situation
mSge have appeared in Q;

apply the relevant rules, given in Sect. 2.1, in [AS6] and

in [AS5], to update the relevant values bef(aS,b,t),

US 7,024,277 B2

31

des(aS,b,t) and other emotion intensities, in the case
“new unexpected situation mSge is appeared in Q”’; put
the new recognized meta-situations (mSge,mSMge)
into EnexS(Q) and amS(Q) (with ‘nexp’) end;
D1.6. in elements EOSf(Q) of the list LOSt are the
recognized objects and simple situations which are not
appeared in object Q, although they should be present in Q;
let (s. D1.6 in Sect 5.2):
BOS(Q):=(QM(Q),0b (pr(Of1),M(Of1)), . . . ,(pr(Ofa),
M(Ofa)); sit (pr(Sf1),SMf1), . . . ,(pr(Sfs),SMfs));

using the objects and simple situations in EOS{(Q) and
fOS(Q), detect meta-situations, mSMfe, which are not
appeared in Q, although they should be present in Q
(according to the model M(Q)). and which do not occur
in the list fmS(Q);

put these situations (pr(mSfe),mSMfe) (for pr(mSfe)

>0.75) into the lists EOSf(Q) and fmS(Q);

D2. we use the procedure mot and functions introduced in
Sect. 3.1 and 3.3: let function priority((SMae,AVy,t): real;

begin mot(aS,SMae,AVy,t,motacty,pc,SMc,t3,art,zv);
if zZv=-1.2 min then priority:=—100000 else begin if
activity AVy is not performing a command then

priority:=motacty*4.5/sqrt(zv+16) else priority:=mot-ord
(aS,BOf,AVy,SMae,Pa,t)*4.5/sqrt(t2-t-16), where
2=to+zt(BOf) and aS received the order BOf at time to
end end;
initiate the execution of activities in the list LAst as
follows: begin LAstl:=nil; for elements EAst(AVi) in
LAst do begin

if EAst(AVi)=(‘ord’,BOfi,Pai,AV,SMaie, . . .) then begin
if t2-t=-1.2 min then begin because the execution of
activity AV is behind time, ask Pai whether the activity
AVi should be executed end else

begin if the initial situation SMaie in EAst(AVi) can still
be reached then EAst1(AVi):=EAst(AVi) where EAstl
(AVi) is element of the list LAst] else begin detect new
initial situation, SMain, such that aS can reach SMain
by some motion activities OAinl, . . . ,OAinr and from
SMain can be reached an acceptable goal situation by
the activity AVi;
if such initial situation is detected then begin put SMain
and OAinj, j=1, . . . ,r, in EAst(AVi);
EAst1(AVi):=EAst(AVi) end else begin inform Pai that,
at present, no good initial situation of the activity AVi
can be reached end end end end end;
while LAstl=nil do begin choose activity, AVg, from
LAstl, such that
priority(SMgae, AVg,t)=max(priority(SMsai,AVs,t),
for EAst1(AVs) in LAstl);
if the needed resources (also processor PrA and agents/
robots) for execution of activity AVg are not free then
fr:=true else

begin detect activities AVx1, .. . ,AVxm, in the list Lexint,
such that (a) the sub-activities in ZuA(AVxi), i=m, are
being executed now, (b) priority(SMgae,AVg,t)
Z1.1*max(priority(SMxian,AVxi,t), for i=m), where
SMxian is the initial situation at which the execution of
AVxi began, (c) if the executions of the sub-activities in
ZuA(AVxi), i=m, are interrupted, then the resources
needed for execution of the activity AVg will be free;

if such activities AVxi, i=m, are determined then fr:=true
else fr:=false end;

if fr=true then begin build the initial execution state,
ZuA(AVyg), of the activity AVg (e.g. put motactg in

20

25

30

35

40

45

50

55

60

65

32
ZuA(AVg)) and put this state in the list Lexint, and put
the pointer to ZuA(AVg) (in Lexint) into the relevant
list LuA, LuCO,LuMR;
apply the rule BZ1 given in [AS6]: delete EAst1(AVg)
and EAst(AVg) in the lists LAst]l and LAst end else
delete EAst1(AVg) in LAst] end end;
D3. control the execution of sub-activities in the list
Lexint as follows:
D3.1. if processor PrA is executing a control-activity,
contr-su-actyj, of a sub-activity in ZuA(AVy), i.e. in PAH are
values Hl=pointer to ZuA(AVy) in Lexint and H2=‘co-ac’
then begin
if H3="ei-ak1’ then begin if H5=‘end1’ then begin H3:=
‘obser’; H5:=nil; H4:=t; H11:=pointer to observ(tatyj,
FOSMy,t) in contr-su-actyj end end else begin

if H3=‘obser’ then begin if HS5=‘end-obs’ (this value
assigns to HS5 the subsystem Ex-contr-motion, after
execution of observ(tatyj, . . .)) then begin H3:="0bs-
sit’; H4:=t; HS:=nil end end else begin

if H3="obs-sit” and t-H4>ctob then begin using the list

apSa((AVy,su-act(.,.)) in ZuA(AVy) and ES1(AVy), find
the first situation expression sitExpyje in contr-su-actyj
which holds (i.e. the situation sitExpyje is appeared);
H3:=‘c-akt’; HS5:=nil; H11:=pointer to the elementary
activities OAxyjel; . . . ;OAxyjef (in CAyje) in contr-
su-actyj end else begin

if H3=‘c-akt’ then begin if H5=‘end’ then begin (contr-

su-actyj is performed) atyj:=O (in contr-su-actyj);
PAH:=nil end end end end end end;
D3.2. for each element ES1(AVy)=(AVy, P(Lexint,ZuA
(AVY)), (syl,SMyl); . . . ,(Syp.SMyp)) of the list L.S1 (s.
D1.2), where Syi (recognized as SMyi, i=p) are just
appeared situations which are expected when sub-activity,
su-act(SMy,SMyj), in ZuA(AVy), is being executed, do:
if the execution of the sub-activity su-act(SMy,SMyj) is
finished. i.e. a situation SMyi is successor (in the
activity schema AVy) of the node SMy then begin
update ZuA(AVY) in Lexint;
delete pointer P(Lexint,ZuA(AVYy)) in the relevant lists
PAH, LCMR, LuA;

if processor PrA is actually performing control-activity
contr-su-actyj of this sub-activity then begin close this
control-activity; PAH:=nil end;

if the execution of the activity AVy is finished then begin

close the execution of the activity AVy;

put the reached final situation SMyi of the activity AVy
in the list L.S2, as given in D1.3;

if AVy performed a command and SMyi is a goal
situation then apply the rule RWAN3 (Sect. 3.3);

apply the relevant rules, given in Sect. 2.1, in [AS6] and
in [AS5], to update the relevant values bef(aS,b,t),
des(aS,b,t) and other emotion intensities, in the case
“activity AVy is finished and its final situation SMyi
is reached”;

delete the element ES1(AVy) in LS1 and ZuA(AVy) in
Lexint end else begin

apply the relevant rules, given in Sect. 2.1, in [AS6] and

in [AS5], to update the relevant values bef(aS,b,t),

des(aS,b,t) and other emotion intensities, in the case

“between situation SMyi of the activity AVy is

reached”;

su-act(SMyi,SMy2e): =the next sub-activity of the activity

AVy, which will be executed, such that motsu-act
(SMyi,SMy2e,t)=max(motsu-act(SMyi,SMy2n,t), for
each successor SMy2n of the node SMyi, such that the
resources for execution of the sub-activity su-act(SMyi,
SMy2n) will be available), (motsu-act is defined in
Sect. 3.2);

US 7,024,277 B2

33

update ZuA(AVy) in Lexint and put the pointer P(Lexint,
ZuA(AVy)) in the relevant list LuA, LuMR or LuCO;

using the expected situations given in su-act(SMyi,
SMy2e), build the list exOSa(AVy,su-act(SMyi,
SMy2e)) of objects and simple situations which can
appear when this sub-activity is being executed;

update the list EOSa(Mas2e) in the object Qx (if this list
is not in Qx then build it) in which the object Mas2e is
being, where Mas2e is the object (e.g. machine, agent,
processor PrA) which will execute this sub-activity and
EOSa(Mas2e) is element of the list LOSa(Qx);

if su-act(SMyi,SMy2e) contains control-activity contr-su-
acty2e then begin aty2e:=0 (in contr-su-acty2e); put the
pointer to contr-su-acty2e, in ZuA(AVy), into the list
LuA end end end;

D3.3. control whether the duration of execution of a
sub-activity lasts too long as follows:

sn:=sn+1; if sn>snl then begin

for each state ZuUA(AVX) in Lexint do begin

if the sub-activity in ZuA(AVx) is executed (without

interruptions) longer than ta2xj, where ta2xj is the

maximum time period of execution of this sub-activity

then begin

abandon the execution of this sub-activity and the
activity AVx;

put ZuA(AVX) in the list LabD and delete ZuA(AVXx) in
Lexint;

update relevant lists PAH, LuA, LCMR, LuCO, LuMR
end end end;

D4. control activities which are waiting for execution as
follows:

D4.1. control whether the duration of execution of an
activity lasts too long as follows:

an:=an+1; if an>anl then begin

for each state ZuUA(AVX) in Lexint do begin

if activity AVx is executed (without interruptions)
longer than 1.3*tax, where tax is the time period
needed for execution of this activity then begin
abandon the execution of the activity AVx;

put ZuA(AVX) in the list LabD and delete ZuA(AVXx) in
Lexint;

update relevant lists PAH, LuA, LCMR, LuCO, LuMR
end end end;

D4.2. control sub- and control-activities registered in the
list LuA, which are waiting for execution by processor PrA
as follows:

let EuA(AVY)=(P(Lexint,ZUA(AVY)),axy, . . .) be an

element of the list LuA, where axy="‘act’ if PrA should
perform the sub-activity in ZuA(AVy), axy=‘co-a’ if
PrA should perform the control-activity in ZuA(AVY);
let, for elements EuA(AVY) in LuA,
mots-c-a(AVy,SMyi,SMyi,t)=motsu-act(AVy,SMyi,
SMyi,t), if axy=‘act’ (s. Sect 3.2)
=mot-cont(AVy,SMyi,SMyj,tyj,t), if axy=‘co-a’(s. end
of Sect. 2.3)
where tyj denotes the duration of execution (without
interruptions) of the sub-activity in ZuA(AVy), after the
last control;
if the software Ex-contr-motion of the processor PrA has
interrupted sub- or control-activity of an activity AVx
(this information is in PAH) then begin put new ele-
ment EuA(AVX) in LuA;
update ZuA(AVXx) in Lexint; PAH:=nil end:

if processor PrA is free and LuA=nil then begin choose
the element EuA(AVg), from the following set MuA,
with the maximum value mots-c-a(AVg,SMgi,SMgj,t),

20

25

35

40

45

50

55

60

65

34
MuA={EuA(AVy)lthe sub- or control-activity, s-c-ayj,
in EuA(AVy), can be executed by the processor PrA
(when aS, i.e. PrA, before executes some motion
activities BAyl; . . . ;BAya) and the resources for
execution of s-c-ayj are available};
let BAgl; . .. ;BAga are the mentioned motion activi-
ties which PrA has to perform before s-c-agj; register
BAF=BAgl; . . . ;:BAga;s-c-agj (for execution) in
PAH (i.e. H2:=axg; H11:=the pointer to BAF; H5:=
nil, etc.);
update ZuA(AVg) in Lexint and delete element EuA
(AVg) in LuA end else
begin if LuA=nil then begin choose the element EuA
(AVyg), from the following set MA1, with the maximum
value mots-c-a(AVg,SMgi,SMgj.t),
MA1=(BuA(AVy)|the sub- or control-activity, s-c-ayj,
in EuA(AVy), can be executed by the processor PrA
(when a8, i.e. PrA, before executes motion activities
BAL; . . . ;BAya) and the resources for execution of
s-c-ayj will be available if the sub- or control-activity
(su-co-actaw in ZuA(AVa)), which actually is being
performed by PrA, is interrupted);
if mots-c-a(AVg,SMgi,SMgj,t)>1.35*mots-c-a(AVa,
SMav,SMaw,t) then begin order the software
Ex-contr-motion (in PrA) to interrupt the execution
of su-co-actaw end end end;
D4.3. control sub-activities, registered in LuCO, waiting
for execution by a processor PrCOn as follows:
begin if LuCO=nil then begin nex:=false;

repeat choose element EuCO(AVg), from the list LuCO,
with the greatest value motsu-act(AVg,SMgi,SMgj,t)
(motsu-act is defined in Sect. 3.2), where su-act(Smgi,
SMgj) is in ZuA(AVyg);

if a processor PrCof (1 =f=ip) is free then m:=f else begin
choose element ECMR(AVs), from the following set
MC, with the minimum value motsu-act(AVs,SMse,
SMsv,t)

MC={ECMR(AVY) is in LCMR|ECMR(AVy)=(P(Lexint,
ZuA(AVy)), PrCOn, ‘activ’, . . .), 1=n=ip, and the
sub-activity su-act(SMye,SMyv) (in ZuA(AVy)) can be
interrupted};

if such element ECMR(AVs) is chosen and motsu-act
(AVg,SMgi,SMgj,t)>1.15*motsu-act(AVs,SMse,
SMsv,t) then begin interrupt the execution of the sub-
activity su-act(SMse,SMsv) being executed by the
processor PrCOm, where ECMR(AVs)=(.,PrCOm,
‘activ’y . . .);
delete the element (P(Lexint,ZuA(AVs)), ‘co-a’) in

LuA or PAH, if such element is there;
delete element ECMR(AVs) in LCMR and put the
pointer P(Lexint,ZuA(AVs)) in the list LuCO;
update ZuA(AVs) in Lexint and update the node KTOS
(PrCOm) end else nex:=true end:

if nex=false then begin put the element (P(Lexint,ZuA
(AVg)), PrCOm, ‘activ’, . . .) in LCMR;
delete the element EuCO(AVg) in LuCO and update the

node KTOS(PrCOm);

if the sub-activity in ZuA(AVg) contains control-activity
then put the element (P(Lexint,ZuA(AVg)), ‘co-a’) in
the list LuA;
update ZuA(AVg) in Lexint and begin to execute the

sub-activity in ZuA(AVg) by the processor PrCOm
end until nex=true or LuCO=nil end end:

D4 .4. control sub-activities registered in the list LuMR,

waiting for execution by an object, Maxj, (machine, robot,
agent, emotional system), as follows: begin LuM1:=LuMR;

US 7,024,277 B2

35
for each Element ECMR(AVX) in LCMR do begin
if ECMR(AVX)=(.,Maxj, ‘interup-st’, . . .) (i.e. when
Maxj received, from DKA, order “interrupt the sub-
activity which is in ZuA(AVx)”) then begin
if in the list ES2(Maxj) or amS(Maxj) or apOS(Maxj) (in
node KTOS(Maxj)) is the state “Max]j has interrupted
the sub-activity, sub-acxj, (which is actually in ZuA
(AVx))” then begin
delete the control-activity, given in sub-acxj, in the
relevant list PAH or LuA;

put EUMR(AVX) in LuMR and delete ECMR(AVX) in
the list LCMR;

update ZuA(AVx) and put the engagement state ‘free’
in node KTOS(Maxj);

mark the resources, Rxve, which were used by the
sub-activity sub-acxj as ‘free’ end end end;
while LuM1=nil do begin choose the element EuM1
(AVY)=(P(Lexint,ZuA(AVg)),Magj, . . .), from the list
LuM1, with the maximum value motsu-act(AVg, SMgi,
SMgj.t);
let Resgj are the resources needed for execution of the
sub-activity su-act(SMgi,SMgj);
if object Magj is free and resources Resgj are free then
begin put element ECMR(AVg)=(P(Lexint,ZuA
(AVg)),Magj, ‘activ’, . ..) in LCMR;
if su-act(SMgi,SMgj) contains control-activity then put
(P(Lexint,ZuA(AVg)), ‘co-a’, . . .) in LuA;
for objects Rgje in Resgj, update KTOS(Rgje)—e.g.
engagement state:=‘engag’;

update ZuA(AVg) in Lexint, and delete the elements
EuMR(AVg) in LuMR and FuM1(AVg) in LuM1;

update KTOS(Magj)—e.g. engagement state:=‘engag-
activ’;

begin the execution of the sub-activity su-act(SMgi,
SMgj) by the object Magj end else

begin if in LCMR is no element (.,Magj, ‘interup-st’, . .
.) then begin

search for element ECMR(AVs)=(p(Lexint,ZuA(AVs)),
Magj, ‘activ’, . . .) in LCMR such that: (a) when the
sub-activity in ZuA(AVs) is interrupted then resources
Resgj will be free, (b) motsu-act(AVg,SMgi,SMgj,t)
>1.35*motsu-act(AVs,SMsu,SMsw;,t);

if such element ECMR(AVs) is determined then begin
command Magj to interrupt the execution of the sub-

activity su-act(SMsu,SMsw);
put ‘interup-st” in ECMR(AVs) and update ZuA(AVs)
end end;

delete EuM1(AVg) in the list LuM1 end end end;

D5. handle each foreseen situation, which just has
appeared in an object in TOS and is registered in the list LS2
(built in D1.3 and D3.2), as follows:

actmamot:=max(motacty, for activities AVy in Lexint,
where motacty is in ZuA(AVy) and denotes the moti-
vation to execute the activity AVy);

for each element ES2(Q)=(Q,M(Q),(as1,Sal,SMal,.,.), . .
. ,(ask,Sak,SMak,.,.)) in LS2 (s. (5.1)) do begin for each
situation SMae in ES2(Q) do begin

if SMae belongs to a situation sequence, FSh, in Q then
register in FSh that SMae has appeared;

AK1:={AVy is in AK(SMae) (s. Sect. 3.1)[activity AVy is
in one of the following lists LA1, . . . ,LA4 in object
model M(Q) (s. Sect. 2.2): (‘ex-act’,.,.,.LAl, . . .),
(‘use-act’,.,.,LA2, . . .), (‘act-in’,.,.,LA3, . . .), (‘act-
rem’, .,,.LA4, ..)},

act:=true; while AK1=0 and acf=true do begin

5

25

30

35

40

45

50

55

65

36

choose activity AVp, from AKI1, with the greatest
motivation, motactp, determined by the operation
mot(aS,SMae, AV p,t,motactp,pg,SMg,t2 art,zvp) (s.
Sect. 3.1);
if motactp>0.25*actmamot then begin
if resources for execution of the activity AVp are
available then begin acf:=false;
put the element (‘ac-sit’,SMae,AVp,.,.) in the list LAst
and delete (ase,Sae,SMae, . . .) in ES2(Q)
end else begin search for activities AVx1, . .. , AVxr, in
the lists PAH and LCMR, such that: (a) if the
sub-activities in ZuA(AVxi), i=r, are interrupted
then the resources for execution of the activity AVp
will be free, (b) motactp>1.3*motactxi, for i=1, . . .
,I, where motactxi is in Zua(Vxi) and denotes the
motivation to execute activity AVxi;
if such activities AVx1, . . . ,AVxr are determined then
begin put (‘ac-sit’,SMae,AVp, . . .) in the list LAst and
delete (ase,Sae,SMae,.,.) in ES2(Q); acf:=false end else
delete AVp in AK1 end end else acf:=false end end end;
D6. handle not foreseen situations which just have
appeared in structured objects, Q, in TOS and are registered
in the list LnexS (s. D1.5) as follows:
actmamot:=max(motacty, for activities AVy in Lexint,
where motacty is in ZuA(AVy) and denotes the moti-
vation to execute the activity AVy);
for each element EnexS(Q)=(Q,M(Q),(as1,Sul,SMul,.,.),
. .. ,(ass,Sus,SMus,.,.)) in LnexS do begin
for each situation (Sui,SMui) in EnexS(Q) do if |rosa
(aS,SMui,t)|>500 then inform: “unexpected situation
(Sui,SMui) has appeared in object Q”;
Enel:=EnexS(Q); acs:=true; Aa:=0); while acs=true do
begin
AKU:={AVrj a situation SMure in Enl is initial situation
of the activity AVr, and AVr is not in Aa and occurs in
the list (‘act-in’,.,.,LA3, . . .) or (‘act-rem’,.,.,LA4, . .
.) occurring in object model M(Q) or clo(M(Q)));
if AKU=@ then begin choose activity, AVg, from AKU,
with the greatest motivation, motactg, determined by
the operation mot(aS,SMuge,AVg t.motactg,px,SMx,
12,art,zvg) (s. Sect. 3.1);
if motactg>0.2*actmamot then begin
if resources for execution of the activity AVg are free then
begin Aa:=AaU(AVg);
put the element (‘ac-sit’,SMuge,AVg,.,.) in the list
LAst, to execute AVg, and delete (ase,Suge,SMuge,
...) in Enel end else
begin search for activities AVx1, . . . ,Avxd, in the lists
PAH and LCMR, such that: (a) if the sub-activities in
ZuA(AVxi), 1=d, are interrupted then the resources for
execution of the activity AVg will be free, (b)
motactg>1.2*motactxi, for i=1, . . . ,d, where motactxi
is in Zua(Vxi) and denotes the motivation to execute
activity AVxi;
if such activities AVx1, . . . ,AVxd are determined then
begin Aa:=AaU(AVg);
put (‘ac-sit’,.SMuge,AVg, . . .) in the list LAst, and delete
(ase,Suge,SMuge,.,.) in Enel, end else Aa:=AalU(AVg)
end end else acs:=false end else acs:=false end end;
D7. handle objects and situations, in the list LOSf (with
elements EOS{(Q), s. D1.6), which have not appeared in
structured objects in TOS, although they should be there
now, as follows:
actmamot:=max(motacty, for activities AVy in Lexint,
where the motivation motacty is in ZuA(AVy));

US 7,024,277 B2

37

for each element EOS{(Q)=(QM(Q), ob (pr(Of1),M
(Of1)), . . . ,(pr(Ofa),M(Ofa)); sit (pr(Sf1),SMf1), . . .
, (pr(Sfd),SMfd)) in LOSt do begin build the following
situations:

SOfi:=object M(Ofi) is not appeared in object Q
although it should be there now with probability
pr(Ofi), for i=1, . . . ,a;

SMFe:=situation SMfe is not appeared in object Q
although it should be there now with probability
pr(Sfe), for e=1, . . . ,d;

increase the attention to situations SOfi, i=1, . . . ,a, and
SMFe, e=1, . . . ,d, according to the relevant rules given
in [AS6]; apply the relevant rules, given in Sect. 2.1, in
[AS6] and in [ASS5], to update the relevant values
bet(aS,b,t), des(aS,b,t) and other emotion intensities,
with respect to the appeared situations SOfj, i=1, . . . ,a,
and SMFe, e=1, . .. d;

WSF:={SF|SF=SOfi, iZa, and [rosa(aS,SOfi,t)|>10 or
SF=SMFe, e=d, and |rosa(aS,SMFe,t)|>10} (situations
which are not in WSF are unimportant for aS);

for each situation SF in WSF do if |rosa(aS,SF;t)|>500
then inform: “situation SF has arisen”;

Al:={AV|ZuA(AV) is in the list Lexint or AV is in LAst
and the execution of the activity AV began or begins
from a situation in WSF};

acs:=true; while acs=true do begin

AKF:=(AVfla situation SFj in WSF is initial situation of
the activity AVfand AVTis not in Al and occurs in one
of the following lists (‘use-act’,.,.,LA2, .. .), (‘act-in’,
»,LA3, ..), (‘act-rem’,.,..LA4, . . .) occurring in
object model M(Q) or cloM(Q))};

if AKF=@ then begin choose activity, AVg, from AKF,
with the greatest motivation, motactg, determined by
the operation mot(aS,SFgi,AVg t.motactg,px,SMx,t2,
art,zvg) (s. Sect 3.1);

if motactg>0.3*actmamot then begin

if resources for execution of the activity AVg are available
then begin Al:=A1U(AVg);
put the element (‘ac-sit’,SFgi,AVg.,.) in the list LAst, to

execute AVg, and delete the situation SFgi in WSF
end else begin

search for activities AVx1, . .. ,AVxd, in the lists PAH
and LCMR, such that (a) if the sub-activities in
ZuA(AVxi), 1=d, are interrupted then the resources
for execution of the activity AVg will be available,
(b) motactg>1.3*motactxi, for i=1, . . . ,d, where
motactxi is in Zua(Vxi) and denotes the motivation
to execute activity AVxi;

if such activities AVx1, . . . ,AVxd are determined then
begin Al:=A1U(AVg);
put (‘ac-sit’, SFgj,AVg, ...) in the list LAst and delete

SFgj in WSF end else

Al:=A1U(AVg) end end else acs:=false end else acs:=

false end end.

References

[InL] M. d’Inverno, M. Luck: Understanding agent systems;
Springer-Verlag Berlin Heidelberg (2001).

[MeA] A. M. Meystel, J. S. Albus: Intelligent systems:
architecture, design and control; John Wiley & Sons, New
York (2002).

[IMu]J. P. Muller: The design of intelligent agents, a layered
approach; Lecture notes in artificial intelligence, Vol.
1177, Springer-Verlag Berlin Heidelberg, (1996).

[AS1]A. Schurmann: An Example of a motivated Agent; (15
pages), (1998).

20

25

30

35

40

45

50

55

60

65

38

[AS2] A. Schurmann: Cooperation in a motivated, Behav-
iour based Multi-Agent System; (16 pages), (1998).

[AS3] A. Schurmann: A simple thinking artificial Servant;
(48 pages), (1998).

[AS4] A. Schurmann: An idea how to define Semantics for
a simple natural Language; (48 pages), (1999).

[AS5] A. Schurmann: Darstellung von Emotionen in elek-
tronischen Geraten; international Patent Application No.
PCT/DE00/03210; WIPO, Internation. publication num-
ber WO 02/23474 A2. March 2002; English translation
“Representation of emotions in electronic devices” is
submitted to United States Patent and Trademark Office
(March 2002), U.S. application Ser. No. 10/089,369

[AS6] A. Schurmann: Determination der Befriedigung und
des Verlangens in virtuellen Wesen; international Patent
Application No. PCT/DE01/01416; WIPO, Internation.
publication number WO 02/084589 A1, October 2002;
English translation “Determination of satisfaction and
desire in virtual creatures” U.S. Pat. No. 6,782,341 B2;
Aug. 24, 2004.

What is claimed is:

1. A method for determination and control of activities of

a non-biological emotional system, denoted by aS, said
system comprising: (i) a subsystem, denoted by WP, for
perception of objects and situations, (ii) a set of needs, (iii)
rules and procedures for determining emotional intensities,
and (iv) models of objects and situations which can occur in
the surrounding of the system aS, where to such model can
be connected stimulus patterns with respect to said needs,
said method, comprising:

(a) a set of activity schemas, or in short activities, which
the system aS can execute and which include said in
(iv) situation models some of which are initial and end
situations of the activity, and some of the end situations
are goal situations;

(b) determining the activity which handles a situation
currently perceived and which is not an expected
situation of an activity being executed or interrupted,
putting this activity with this situation into the list of
activities waiting for execution, and updating the emo-
tional intensities depending on said perceived situation
using said in (iii) rules and procedures;

(c) intensities of satisfactions and desires with regard to
said in (ii) needs, and other emotional intensities of the
system aS, where these intensities are updated by using
said in (iii) rules and procedures;

(d) associating to each currently perceived situation the
activity which is being executed or interrupted, when
this situation is expected in this activity at present;

(e) associating to each command currently perceived the
activity which accomplishes this command and the
actual initial situation of this activity, and putting this
command with the associated activity and said initial
situation into the list of activities waiting for execution;

() determining the execution of activities and commands
waiting for execution by means of the present motiva-
tions of the system aS to execute these activities and
commands;

(g) updating the intensities of satisfactions and desires and
other emotional intensities of the system aS with regard
to the needs occurring in the stimulus patterns which
are in the achieved or not achieved end situation of the
activity which has been finished or abandoned; and

(h) updating the intensities of satisfactions and desires of
the system aS with regard to the need to perform
commands and wishes of an authorized person or

US 7,024,277 B2

39

system, and the need for recognition and
acknowledgement, when a command has been finished
or abandoned.

2. The method according to claim 1 wherein the present
motivation of the emotional system aS to execute an activity
is determined by stimulus intensities of the end situations of
this activity at the present time and in the future, wherein a
stimulus intensity of a situation is determined by stimulus
patterns connected with this situation, where a stimulus
pattern shows the changes of satisfaction and desire inten-
sities with regard to the need connected with this stimulus
pattern in a period of time, and

the intensities of satisfactions and desires of the systems
aS at the present time and in the future with regard to
the needs which are connected with said stimulus
patterns.

3. The method according to claim 1, wherein the present
motivation of the emotional system aS to execute a com-
mand is determined by the motivation of the system aS to
execute the activity which accomplishes this command, and
the intensities of satisfactions and desires of the system aS
with regard to the need to perform and fulfil the commands
and wishes of an authorized person or system, and the need
for recognition and acknowledgment.

4. The method according to claim 1, wherein an activity
schema, or in short activity, contains a connected graph,
wherein:

the nodes are said in claim 1 situation models, or in short
situations, wherein some of these situations are initial
or end situations of the activity and some end situations
are goal situations, and to each end situation is con-
nected at least one stimulus pattern with respect to a
need of the system aS;

to each arc is associated a sub-activity, which specifies the
actions and operations which should be executed to
achieve the next node/situation of the sub-activity,
wherein the motivation to execute a sub-activity is
determined by the stimulus intensities of the end situ-
ations of the activity, and sub-activity includes a
control-activity if this sub-activity should be executed
not by the system aS but by an other object.

5. The method according to claim 4, wherein determining
and controlling the execution of activities waiting for execu-
tion comprising the steps of

choosing from the list of activities waiting for execution

the activity with the maximum motivation to execute its
current sub-activity, and

interrupting the execution of the sub-activity which is

being executed and continuing the execution of the

5

20

25

35

40

45

40

chosen sub-activity with the greatest motivation, if this
motivation is greater than the motivation to execute the
sub-activity being executed till now.
6. The method according to claim 4, wherein controlling
the execution of a sub-activity by an other object comprising
a control-activity connected with said sub-activity com-
prising situation models for expected situations which
can appear when this sub-activity is executed by said
object, and elementary activities/operations, especially
an observation activity, which the emotional system aS
executes;
a motivation of the system aS to execute said control-
activity where this motivation is determined by
the duration of the execution of this sub-activity after
the last execution of the control-activity by the
system aS, and
the motivation to execute the sub-activity in which said
control-activity occurs;
executing said elementary activities/operations to recog-
nize whether a new said expected situation appeared;
and executing said elementary activities/operations to
correct or abandon the execution of this sub-activity by
said object, if said appeared situation shows that the
execution of this sub-activity is not optimal or wrong.
7. A method for perception of objects and situations,
which specify said perception subsystem WP of the emo-
tional system aS of claim 1, comprising:
focusing the observation activity of the system aS on
these objects and situations, in the actual surrounding
of the system aS, for which aS, at present time, has high
intensities of desires for attention and curiosity/
knowledge;
building an internal representation of the currently iden-
tified surrounding by means of a tree, wherein:
each node of the tree represents an actually recognized
object,
the successors of a node are the recognized objects
which are at present in the object represented by said
node, and
recognized situations which are actually in an object
are registered in the node representing this object;
and
identifying objects and situations by means of a directed
graph which represents the structures and relations of
the object and situation models in the world of the
emotional system aS, where the nodes of the graph are,
said in (iv) of claim 1, object and situation models.

#* #* #* #* #*

