
US007024277B2

(12) United States Patent (10) Patent No.: US 7,024,277 B2
Schurmann (45) Date of Patent: Apr. 4, 2006

(54) DETERMINATION AND CONTROL OF 6,711,467 B1 3/2004 Inoue et al. TOO.245
ACTIVITES OF AN EMOTIONAL SYSTEM 6,711,469 B1 * 3/2004 Sakamoto et al. ... 700,245

6,714,840 B1 * 3/2004 Sakaue et al. 700,245

(76) Inventor: Alfred Schurmann, Postfach 1332, 87.5 R 2. n - - - - - - - - 28:
Kw ulla et al. - - -

D-76443. Durmersheim (DE) 6.754,560 B1 * 6/2004 Fujita et al. 700,245

(*) Notice: Subject to any disclaimer, the term of this g; R ck 3. SE" - - - - - - - - - - - - - - TOO.245

patent is extended or adjusted under 35 6,850,818 B1 * 2/2005 Sabe et al. 7OO/257
U.S.C. 154(b) by 424 days.

FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 10/363,157

WO WO O2/23474 3, 2002
(22) PCT Filed: Nov. 11, 2002

OTHER PUBLICATIONS
(86). PCT No.: PCT/DEO2/04172

U.S. Appl. No. 10/089,369, filed Aug. 24, 2004, Schurmann.
S371 (c)(1), Meystel & Albus: Intelligent Systems: Architecture Design
(2), (4) Date: Mar. 6, 2003 and Control; John Wiley & Sons, New York (2002); Whole

(87) PCT Pub. No.: WO2004/044837
PCT Pub. Date: May 27, 2004

(65) Prior Publication Data

US 2004/0093.121 A1 May 13, 2004

(30) Foreign Application Priority Data
Nov. 11, 2002 (DE) PCT, DEO2/O4172

(51) Int. Cl.
G6F 9/00 (2006.01)

(52) U.S. Cl. 700/245; 700/246; 700/248;
700/257; 700/258; 700/259; 700/260; 700/264;
318/.568. 1; 318/.568.11: 318/.568. 12; 318/.568.2:

318/569; 901/1901/15
(58) Field of Classification Search 700/245–246,

700/248,257 260, 264, 253; 318/.568.1,
318/.568. 11,568. 12,568.2, 569; 704/31,

704/207,509, 270901/1, 15: 701/23
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,347,261 B1 2/2002 Sakaue et al. TOO.245
6,470.235 B1 * 10/2002 Kasuga et al. TOOf 246
6,493,606 B1 * 12/2002 Saijo et al. TOO.245
6,505.098 B1 * 1/2003 Sakamoto et al. TOO.245
6,516,246 B1 2/2003 Derakhshan TOO.245

Book.
Schurmann: An Example of a Motivated Agent; (1998);
Whole Docum.

* cited by examiner
Primary Examiner Thomas G. Black
Assistant Examiner McDieunel Marc

(57) ABSTRACT

A method and a sub-system, henceforth called method DKA,
for the determination and control of the activities of an
emotional system aS, belonging to the class of autonomous,
motivated agents and robots, is described. The method DKA
determines the current motivation of the system aS to carry
out an activity. Said motivation is determined by stimulus
patterns in situation models and the intensities of the satis
factions and the desires with regard to the needs of the
system aS. Priorities for the activities of the aS are deter
mined by motivations. DKA controls sub-activities which, at
the request of the system aS, are carried out by other
agents/robots. The method DKA can assess which objects,
situations and activities are presently good and which are
bad for the system aS. The applied internal representation of
the world of the system aS can include very abstract situa
tion models. Emotional systems, controlled by the method
DKA, are particularly suitable: for the care of the sick, as
robotic servants for carrying out domestic tasks and for
routine client services.

7 Claims, No Drawings

US 7,024,277 B2
1.

DETERMINATION AND CONTROL OF
ACTIVITIES OF AN EMOTIONAL SYSTEM

FIELD OF THE INVENTION

The present invention relates to methods for determining
and controlling activities of a motivated autonomous robot
or agent system, and a method for perceiving objects and
situations by a robot; the invention may be embodied in a
robot/agent as a software and makes this robot/agent
motivated, autonomous and emotional.

DESCRIPTION OF THE RELATED ART

Motivated robots and agent systems are known, S, e.g.
Meystel & Albus MeA) (2002), d’Inverno & Luck InL
(2001) and MillerJMii) (1996). The existing robots/agents
have very restricted autonomy, do not have internal repre
sentation of its world, and their motivation to execute
activities (if they have such motivation) do not meet the
requirements of an intelligent autonomous robot.

I developed an other kind of agents/robots in AS1
(1998), AS2) (1998) and AS3) (1998); they functions on
basis of situation models, activity Schemas (in short
activities) and motivation functions. Because these motiva
tion functions have very restricted application and they
function not intelligent in Some cases, I concluded that an
autonomous intelligent robot/agent must be an emotional
one. This conclusion was not original because, in 1986, M.
Minsky concluded that “the question is not whether intelli
gent machines can have any emotions, but whether
machines can be intelligent without any emotions (in The
Society of the Mind; Simon and Schuster; New Yourk,
1986). Therefore I developed (the inventions AS5) (2002)
and AS6 (2002) a representation of emotions and rules
according to which emotions develop, such that they can be
conveniently established in a robot like machine. The inven
tions AS5) and AS6) are basis for the emotional system
described below.

BRIEF SUMMARY OF THE INVENTION

The aim of the invention is to specify the following two
methods embodied in an emotional system, denoted by aS:
(i) a method, denoted by DKA, for steering and controlling
the behavior of the system aS by means of a current
motivation of the system aS to execute an activity or
command, where this motivation depends on current inten
sities of satisfactions and desires of this system, (ii) a
method for perceiving objects and situations from the actual
Surrounding of the system aS. These two methods, espe
cially the method DKA, specify the frame of the system aS
and make this system motivated, autonomous and emo
tional.

Said system aS is the preferred embodiment of the inven
tion and contains additionally the following components:
WP the subsystem specified by said method for percep

tion of objects and situations;
Bd(aS)—a set of needs of aS, e.g. AN the need for

recognition and acknowledgment;
EBV -a system of rules and procedures, such as given in
Schurmann AS5) and AS6), which determine inten
sities of satisfactions and desires with respect to the
needs of aS;

SeG—a graph of object and situation models representing
the world of aS;

AM—a set of activities (e.g. activity Schema, operations)
which aS can execute;

10

15

25

30

35

40

45

50

55

60

65

2
KP a set of cognitive procedures (some of these proce

dures belong to WP and to EBV);
Ex-contr-motion—a Subsystem which executes motion

activities of aS.
ADKA-like method for steering the behavior of an agent

or a robot has not been developed till now. The method DKA
determines the behavior of aS by the current motivations
which are determined by intensities of satisfactions and
desires, and by stimulus patterns in situation models, with
respect to needs in Bd.(aS) motivations of aS are deter
mined in quite different way than in known agents and
robots (S. e.g. Meystel & Albus MeA) (2002), d’Inverno &
Luck InL (2001) and Miller JMi (1996)). The main
advantages of the method DKA, compared with other con
trolling methods are: (i) it makes the system aS autonomous,
(ii) it handles urgent situations with appropriate high
priority, (iii) it can judge which objects, situations and
activities are good (at present time) and which are bad for
the system aS. The method DKA determines the behavior of
aS on the basis of the current satisfactions and desires of aS,
the internal representation of the world of aS and the current
perceived objects and situations.
The perception method which specify the subsystem WP

uses said internal representation of the world of aS (said
graph SeG), which contains station models of high abstrac
tion levels (of low resolution levels, according to Meystel &
Albus MeA), which do not occur in other agents and robots
(s, e.g. MeA), d’Inverno & Luck InL) and MillerJMii)).
The perception by this method focuses the attention on
objects and situations for which, at present, the system aS
has high intensities of desires for attention and curiosity.

Learning methods are not considered in this paper.
However, the method DKA can judge how good or bad are
objects and situations, on the basis of changes of satisfac
tions and desires of aS, when these objects and situations are
perceived. This possibility and the internal representation of
the world of aS enable to build in learning methods into
DKA that can be more effective than the learning methods
given in Meystel & Albus MeA). Also cooperation of aS
with other agents and robots are considered only
incidentally with which robot aS cooperates must follow
from the model of this robot and activity schemas which aS
has. On the basis of the internal world representation SeO of
aS and the used representation of emotions, the meaning of
a natural language, which the system aS could use, can be
determined.
A simplified system aS, with reacting motivation only, can

be specified and used as a robot/agent which would work
autonomously and efficiently in a not very complex Sur
rounding.

Emotional systems aS can be applied everywhere where
autonomous intelligent robots/agents are needed, e.g. as: (i)
robots taking care of ill and old people, (ii) artificial servants
making housemaid works or routine services for clients, (iii)
robots making autonomous activities in a manufacturer, in a
desert or on the moon.
The structure of this description: in Section 2 are given the

notions needed for the description of the method DKA:
intensities of satisfactions and desires, stimulus patterns and
stimulus intensity, models of objects, situations and activi
ties; the internal representation of the Surrounding (the
component Seg) is defined. In Section 3 are described
motivations of aS to execute activities, commands and
sub-activities. The method for perception of objects and
situations is given in Section 4. On the basis of Sections 2,
3 and 4, is described the method DKA (Section 5).

DETAILED DESCRIPTION OF THE
INVENTION

In this section I define notions needed for description of
the method DKA.

US 7,024,277 B2
3

2.1. Satisfaction, Desire, Stimulus Patterns and Stimuli
Below in this paper, we use the following notions und

functions described in my paper AS5 (2002). Emotional
system aS has a set Bd(aS) of needs. To Bd(aS) belong e.g.
GR (to belong to a community), AN (for recognition,
acknowledgment and self-esteem). The State of desire and
satisfaction (or dissatisfaction) of aS, with regard to need b,
at time t, is described by functions:
0s des(aS.b.t)s 60, -30s befaS.b.t)s 30, for b eBd(aS)

where des(aS.b.t) is the intensity of desire and befaS.b.t) the
intensity of satisfaction of the need b at time t. These
functions have the following properties:
i. Increasing function befaS.b.t) means aS satisfies need b

(positive stimulus) and is perceived by aS with approval,
joy or happiness.

ii. When befaS.b.t)<0 and does not increase then aS per
ceives befaS.b.t) as a negative stimulus (disappointment,
annoyance, sadness, Suffering) with respect to need b.
Decreasing values befaS.b.t)<0 mean stronger negative
stimulus with regard to need b.

iii. des(aS.b.t) is the intensity of desire of aS to satisfy need
b at time t. The greater des(aS.b.t) the greater is the desire
of aS to satisfy need b. des(aS.b.t)<0.5 means need b of
aS is well satisfied at time t.

iv. The greater des(aS.b.t) the greater is the approval and joy
of aS when befaS.b.t) increases, and the greater is the
dissatisfaction, annoyance and grief of aS when befaS,
b.t)<0 and decreases.
aS has models of objects and situations (OSM) of its

world (described in Sect 2.2), and models of activities which
vP can execute (described in Sect. 2.3).

Stimulus patterns. Expected changes of values befaS.b.t)
and des(aS.b.t), caused by object or situation OSM, are
represented in OSM by stimulus patterns of the following
form:

, (yn,Zn); q ht)/z eu:
(2.1)

where tex1. . . texk) denotes one of the words tex1, . . .
, texk, is the empty word, Nba and n are natural numbers,
(1sns 10), fs denotes name of a stimulus pattern, Osps 1,
-30syis30, -55 szis 60, yi and zi are simple arithmetical
expressions, qht denotes a time period (e.g.: 0.5 h, 3 days,
1 week), nichts 720 h, ZZ0, eu denotes a measure (e.g. kg,
g, h, km, m, f) and e.g. /200 g denotes pro 200 g. Nba is
increased by 1 when pattern (2.1) is applied. Nba/N is the
probability that the pattern fs(aS,b)=(. . .) is valid, where
N is attached to the model OSM and increases by 1 when the
model OSM is applied. C is a condition. If C occurs then
Nba, fs(aS,b)=(...) can be applied only if C is true. If

OSM1.Ef occurs then the pattern fs(aS,b)=(...) concerns
the pattern Eji=(ds.(. . . fse(aS,b)=(...) . . .)) in OSM1.
Example of a pattern (occurring in OSM):

where (fs=epb)yn>1+y 1 and Zld1+Zn. The meaning: aS can
execute (at time t) an activity, AV. Such that when aS uses
OSM in AV then aS expects that OSM will increase befvP.
b.) and decrease des(VPb.) according to the pattern (2.2).
Exact description of all patterns and their meanings is given
in Schurmann AS5). Sect. 2.2.

In Schurmann AS6) are given rules which determine the
changes of values befaS.b.t) and des(aS.b.t), caused by
objects and situations (OS), for some needs b. To perceive
the stimuli of these objects and situations, appropriate stimu
lus patterns must be built in object and situation models,

10

15

25

30

35

40

45

50

55

60

65

4
OSM, representing OS (OS is recognized as OSM). The new
stimulus patterns occur in model OSM, as properties, in the
following form

(dr.Nb.stp(b)=(. . .), if CI) (2.3)

where Nb increases by 1 when this pattern is applied, C is
a condition (the pattern can be applied only when this
condition holds) and patterns stp(b)=(. . .) are defined
below. This property means: when aS recognizes an object
or a situation as OSM then aS expects that OSM, with
probability Nb/N, will change or support the changes of
befaS.b.t) and des(aS.b.t) approximately as given by the
pattern stp(b)=(. . .), where N has the same meaning as
above. In opposition to the stimulus patterns (2.1), patterns
(2.3) are not used to compute the values befaS.b.t) and
des(aS.b.t). Patterns (2.3) are used only to compute the
stimulus of OSM. The patterns stp(b)=(. . .) have the
following simple forms:
i. eps(b)=(y,z)
where -29sys30,0s Zs60. When aS perceives OSM (and
condition C holds) then aS expects that OSM, with prob
ability Nb/N, will increase the value befaS.b.t) approxi
mately to y and decrease the value des(aS,b, t) approxi
mately to Z.
ii. ens(b)=(yZ)
where –30sys 29, 0s Zs G0, aS expects that OSM, with
probability Nb/N, will decrease befaS.b.t) approximately to
y and increase the value des(aS.b.t) approximately to Z.
iii. ups(b)=(p.OSM1.E)
where 0<ps 1 and in the model OSM1 is property Eji=(dr.
..eps(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will support in degreep the positive changes of values
befaS.b.t) and des(aS.b.t) according to the pattern in E.
iv. uns(b)=(p.OSM1.E)
where 0<ps 1 and in the model OSM1 is property Eji=(dr.
...ens(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will support in degree p the negative changes of
values befaS.b.t) and des(aS.b.t) according to the pattern in
E.
v. vps(b)=(p.OSM1.E)
where 0<ps 1 and in the model OSM1 is property Eji=(dr.
..eps(b)=(y,z), . . .). aS expects that OSM, with probability
Nb/N, will prevent in degreep the positive changes of values
befaS.b.t) and des(aS.b.t) according to the pattern in E.
vi. Vns(b)=(p.OSM1.E)
where 0<ps 1 and in the model OSM1 is property Eji=(dr.
...ens(b)=(yz), . . .). aS expects that OSM, with probability
Nb/N, will prevent in degree p the negative changes of
values befaS.b.t) and des(aS.b.t) according to the pattern in
E.
Stimulus intensity.
The expected (by aS, at time t) intensity of positive

stimulus of pattern (2.1) is given by epraSOSM.fsp.b.t)
(defined in AS5). Sect. 2.3.1), where fisp denotes the
following (positive) pattern names: epb., upb., Vnb, epbu,
upbu. Let fsn denotes the following names of (negative)
patterns: enb, unb, enbu, unbu, vpb., Vnb. The expected (by
aS, at time t) intensity of negative stimulus of pattern (2.1)
(where fs=fsn) is given by enraSOSM.fsn,b,...,t) (defined in
AS5), Sect 2.3.2).
For the positive stimulus patterns eps, ups and Vns, we

define epr as follows:

epr(aS, OSM, eps, b, . , t) = (Nbf N): des(aS, b, t):

US 7,024,277 B2
5

-continued
sqrt(((y – befcas, b, t)} + cr2:
(des(aS, b, t) - Z)): nq(b)),

if y > befcas, b, t) and

des(aS, b, t) c. Z.

= 0, otherwise

where cr2=0.4 and 0.5<nq(b)s 720 may be defined as fol
lows: nq(GR(G)=270 (GR(G)—the need to belong to the
community G). nq(NEw(OSM))=40 (NEw(OSM) the
need for curiosity and knowledge when perceiving an object
or a situation OSM). nq(NEk(OSM))=50 (NEk(OSM) the
need for curiosity and knowledge of properties of OSM),
nq(NEZ(SM))=60 (NEZ(SM)—the need of knowledge of
how situation SM can be reached), nq(MA))=25 (MA the
need to have power over people and animals), nq(SE)=200
(SE—the need for sexual relations), nq(Li(OSA))=550 (Li
(OSA)—the need for liking and love of aS to OSA, i. e. to
object, situation or activity OSA), nq(AN)=570 (AN the
need for recognition, acknowledgment and self-esteem),
nq(MB)=120 (MB material and financial needs of aS),
nq(BH(OK))=400 (BH(OK)—the need to help OK when
OK needs help), nq(VR(PG))=10 (VR(PG) the need for
retaliation and revenge on PG). nq(WA(Pa))=240* ag(Pa)
(WA(Pa)—the need to accomplish the commands and
wishes of person or agent Pa). and Osag(Pa)s3 is the
weight of authority of Pa over aS.

epr(aS, OSM, ups, b,...,t)=(Nb/N)*cb1 pepr(aS, OSM1.eps,b,...,t)

where cbll=0.3 and eps(b)=(. . .) is in OSM1.E.
epr(aS, OSM,vns,b,...,t)=(Nb/N) penr(aS, OSM1,ens,b,..t), where

ens(b)=(...) in OSM1.E.

For the negative stimulus patterns ens, uns and Vps, we
define negative stimulus intensity enr as follows:

enr(aS, OSM, ens, b, . , t) = (Nb/N) : Z3 sqrt(((befcas, b, t) -y) +

cr2: (Z - des(aS, b, t))):nd(b)).

if y < befcas, b, t) and

des(aS, b, t) is a

= 0, otherwise.

enr(aS, OSM, uns, b,...,t)=(Nb/N)*cb1 penr(aS, OSM1,ens,b,...,t),
where ens(b)=(. . .) is in OSM1.E.

enr(aS, OSM, ps,b,...,t)=(Nb/N) pepr(aS, OSM1.eps,b,...,t), where
eps(b)=(. . .) is in OSM1.E.

The intensity of positive stimulus of OSM (at time t) is
given by

pros(aS, OSM, t)=x repr(aS, OSM.fsp,b,...,t)

where Bp={be WB (. . . fspoaS,b)=. . .) is in OSM. fsp
denotes a positive stimulus pattern (epb, upb., Vnb, epbu,
upbu, eps, ups, Vns), WB = {be Bd(aS) des(aS,b,t)
>0.25*mdes(aS,t)} and mdes(aS,t)=max(des(aS.b.t), for be
Bd(aS)).
The intensity of negative stimulus of OSM (at time t) is

given by:

10

15

25

30

35

40

45

50

55

60

65

6
where Bn={be WB (. . . fsn(aS,b)=...) is in OSM} and fisn
denotes a negative stimulus pattern (enb, unb, enbu, unbu,
Vpb, ens, uns, vps). The intensity of stimulus of OSM at time
t (s. AS5), Sect. 2.3.3):

rosa(aSOSM,t)=pros(aS, OSM,t)-nros(aS, OSM,t)

Updating the Stimulus Patterns (2.3).
The following 4 rules are an example of how, on the basis

of satisfactions, aS can learn which objects and situations
(and in what degree) accomplish, Support or prevent the
satisfactions and desires of aS. Analogous rules can also be
formulated for activities. Stimulus patterns (dr.Nb, stp
(b)=(...) . . .)in an object or situation model OSM can be
updated as follows.
RN. When aS perceives an object or a situation as model

OSM then: N:=N-1.
Rdr1. If object or situation OSM increased (decreased,

respectively) befaS,b,...) or decreased (increased,
respectively) des(aS.b.) and in model OSM is property
(dr.Nb, eps(b)=(y,z) . . .)((dr.Nb, ens(b)=(y,z) . . .),
respectively) then update this property as follows

where befaS.b.t), des(aS.b.t) are the values after the men
tioned changes.

Rdr2. If (i) object or situation OSM1 increased
(decreased, respectively) befaS,b,...) or decreased
(increased, respectively) des(aS.b.) and in model OSM1 is
property E=(dr...eps(b)=(y,z) . . .) (E=(dr...ens(b)=(y,z)
. . .), respectively), (ii) object or situation OSM supported,
in degree pa, the in (i) said changes of befaS.b.) and
des(aS.b.), (iii) in model OSM is property (dr.Nb, ups
(b)=(p.OSM1.E) . . .) ((dr.Nb, uns(b)=(p.OSM1.E) . . .
), respectively), then update the property in OSM as follows

Rdr3. If: (i) object or situation OSM1 does activity or is
used to increase (to decrease, respectively) befaS.b.) and in
model OSM1 is property E=(dr...eps(b)=(yZ) . . .) (E=
(dr...ens(b)=(y,z)...), respectively), (ii) object or situation
OSM prevented, in degree pa, the in (i) said changes of
befaS.b.), (iii) in model OSM is property (dr.Nb, vps(b)=
(p.OSM1.E) . . .) ((dr.Nb, Vns(b)=(p.OSM1.E) . . .),
respectively), then update the property in OSM as follows

2.2. Object and Situation Models
A simple object model of an object O is
M(O)=('s-ob.VR(O); Ph1,Phm; wr1, ... wu)

where: VR(O) is a visual representation (a visual pattern or
scheme) of object O (if a visual representation of object O
does not exist then VR(O)=nil);
Phe=(P(VOe), phre; where Cpe), where P(VOe) is the

pointer to the part VOe of the visual representation
VR(O)—this means that the phrase phre concerns the part
VOe of the object O;

phre is a phrase or a phrase pattern (in abstract situation
models) of a natural language, which is the designation of

US 7,024,277 B2
7

the object O; examples of (P(VOe), phre:, ...): (P(visual
pattern of a salmon from Alaska), salmon from Alaska;
. . .), (P(visual pattern of a head of a salmon), head of
a salmon’: . . .), (P(visual pattern of a fir) fir: . . .),
(P(visual pattern of a fir covered with snow), fir covered
with snow; . . .); Cpe is a condition for words in phre:
the meaning of the phrases in Phe, esm, is the model
M(O); an idea of the semantics of simple sentences, by
object and situation models, is given in Schurmann
AS4):

wFi is a property of object O it has one of the three forms:
(tf, ldf, P(VOpi), Fl; if Cfi), (inst-of, LP), (part-of, LP)

where:

if = ex-act', if Fi is a list of activities operations which object
O can perform,

= "use-act' if Fi is a list of elements (M(Obh), AOah), where
M(Obh) is an object model and AOah denotes an activity,
operation or action; meaning when object M(Obh) executes
AOah then it can use object M(O),

if = 'act-in, if Fi is a list of elements (M(Obh), AOah);
meaning object M(Obh) may execute activity AOah in
object M(O),

= "act-rem, if Fi is a list of activities which aS can execute
in order to remove or to avoid unwished objects or
situations from/in object M(O),

= 'for', if Fi is a logical formula
= fea', if Fi is a property of object M(O),

if = res', if Fi is a result (only if wFi occurs in a situation or
activity model),

= 'ds, if Fi is a stimulus pattern: epb, upb., Vnb, epbu, upbu,
enb, unb, enbu, unbu, vpb,

= 'dr, if Fi is a stimulus pattern: eps, ups, Vns, ens, uns, vps;

idf = id', if Fi is an identifying property of object M(O),
idf = 'nid' otherwise;

P(VOpi) is the pointer to the part VOpi of the visual
representation VR(O); this means that Fi concerns the part
VOpi of the object M(O) (or situation SM, in situation
model SM);

Cfi is a condition-Fi can be applied only when Cfi holds:
LP is a list of pointers to object or situation models:
(inst-of, ... P(M(Og)), ...) means that object model M(O)

is an instance of object model M(Og) (P(OSM) denotes
the pointer to object or situation model OSM); we assume
that if (inst-of.....P(M(Og)), ...) occurs in M(O), then
M(O) has all properties that occur in M(Og):
consequently, in M(O) must be given only the properties
characteristic for object O: example: if O denotes Mrs.
Gleen who is a nurse, married and mother of a child, then
in the model M (Mrs. Gleen) should be the property
(inst-of, P(nurse), P(married woman), P(mother), . . .);

(part-of".P(OSM), . . .) means that object M(O) is a
component of object or situation model OSM (if OSM is
an object model, then it is a structured object model).

5

10

15

8
Structured object model. If M(O1),....M(On) are simple

or structured object models and object Q consists of objects
O1.On then

M(Q)=('str-ob, VR(Q); Phl,Phm; wF1, ...
P(VR(O1)), M(O1)), . . .
LOS(Q)) (2.4)

is a structured object model (of the object Q), where: VR(Q),
Phe, wi are defined above, the model M(Q) is the semantic
meaning of the phrases in Phe;
pr(Oi) is the probability that object M(Oi) appears/occurs in

object M(Q);
P(VR(Oi)) is the pointer to the location of object M(Oi) in
VR(Q) (if the location of M(Oi) is not known or not
defined then P(VR(Oi))=nil);

LOS(Q) is the list of objects and situations which can appear
in object Q; LOS(Q) may e.g. have the form:
((pr(Oa1), M(Oa1)),(pr(Oav), M(Oav)); (pr(SS1),

SMs1),(pr(Ssq), SMsq); SFQ1,SFQp)
0 where: (pr(Oai), M(Oai)) ((pr(Sse), SMse), respectively)

25

30

35

40

45

50

55

60

65

means: object M(Oai) (situation SMse, respectively) appears
in object Q with probability pr(Oai) (pr(Sse), respectively):
SFQe is a situation sequence (Je. SMe1,SMeu), where

the index Je points to the situation SM which last
appeared in this sequence; it holds: after situation SMe
must appear situation SMe(i+1); SFQe can be a timetable
showing the days or hours at which situations SM
appear in Q (aS can perform some activities according to
the timetable).
By stimulus patterns, aS distinguishes the wished situa

tions (with rosa(aS.SMsi,t)>5) from the unwished ones (with
rosa(aS.SMsi,t)<-4) in M(Q). It holds

rosa(aS.M(Q),t)=rosa(aS.St-p.t), where St-p={spsp is a
stimulus pattern in we, e=1,r}.

An object model is a simple or a structured object model.
We assume that there is a function procedure IdO(O1.M(O))
which determines how good model M(O) represents object
O1.

Situation model. If M(O1),....M(On) are object models
then

SM=('s-sit, Sch; Phl,Phq: wl 1, ... wip; (pr(O1),
dm(O1), P(VR(O1)), M(O1)), . . . , (pr(On).dm(On),
P(VR(On)), M(On)))

is a simple situation model, where:
Sch is a visual representation of the structure of situation
SM; if SM is a visual situation then Sch can be a 3
dimensional space which aS sees from point (0,0,0); Sch
can be a scheme showing how the situation model is
composed of models M(O1),M(On) and the possible
motions of these objects in the situation SM;

Phi has analogous form and meaning as in the definition of
object model; the meaning of a phrase or a pattern of a
phrase, contained in Phi, is the model SM; example: “Mr.
and Mrs. Marlow are eating at the table in the dining
room;

wFe is a property of the situation SM it has the same form
as in the definition of object model;

pr(Oi) is the probability that object M(Oi) appears in situ
ation SM;

dm(Oi) shows motion directions of object M(Oi) in Sch:
P(VR(Oi)) and M(Oi) have analogous meaning as in the

definition of structured object.
It holds: rosa(aS.SM,t)=rosa(aS.St-ps,t), where St-ps={spsp
is a stimulus pattern in we, e-p}.
To represent more complex situations, I introduce meta

situations. If M(O1), M(On) are object models and
SM1.SMw are simple situation models, then

US 7,024,277 B2
9

mSM=(m-sit, vSch; Phl, ... Phd: wl 1,wlu: SM1,
. . . .SMw; (pr(O1), dm(O1), P(VR(O1)).M(O1)), . . .
, (pr(On).dm(On), P(VR(On)), M.(On)))

is a meta-situation model, where:
vSch is a scheme which shows visually the structure of the

meta-situation, e.g. locations where M(Oi) and SMe occur
in mSM:

Phe, whi, (pr(Oi), dm(Oi), P(VR(Oi)), M.(Oi)) have analo
gous meaning as in the definition of situation model.
In special cases (when mSM has been identified), mSM

can contain also meta-situations—these meta-situations do
not occur in object models. Remark: property of the form
(fea, id., SMe), in meta-situation model mSM, means:
meta-situation mSM appears only then when situation SMe
is appeared. It holds

rosa(aS.mSM,t)=rosa(aS.St-pm,t), where St-pm=spsp is
a stimulus pattern in we, esw.

In this patent description, situation (situation model)
means a simple situation (simple situation model,
respectively) or a meta-situation (meta-situation model,
respectively). We assume that a procedure IdS(SSM) (IdmS
(mSmSM), respectively) determines how good simple situ
ation model SM (meta-situation model mSM, respectively)
represents simple situation S (meta-situation mS,
respectively). By object M(O) (situation SM, respectively)
we understand an object (a situation, respectively) which is
represented by model M(O) (SM, respectively).

Because of recognition of objects and situations, object
and situation models must constitute a directed graph, SeG
(called in this paper semantic graph: SeO is a component of
aS), which shows the abstraction levels of object and situ
ation models (graph SeC defined the author in AS4). SeC.
thus the object and situation models, must be so defined that:
i. a node, K, is an object or situation model,
ii. node K is a successor of node K if and only if (inst-of,

. . . .P(K), . . .) occurs in the model Kj.
iii. SeC has 3 root nodes M(object), SM(simp-sit), mSM

(meta-sit) such that: (a) from the node M(object) exists a
path to each object node, (b) from the node SM(simp-sit)
exists a path to each simple situation node, (c) from the
node mSM(meta-sit) exists a path to each meta-situation
node,

iv. if there is a path from node Ki to node K then there is
no path from K to Ki.

By the graph SeG and the phrases in object and situation
models can be described the syntax and semantics of simple
natural languages, as shown in AS4).
2.3. Activity Model
The author defined behavior scheme in AS3 (1998)—

however Such schemes are not sufficient to represent activi
ties of the system aS.
An activity model (or activity Scheme, in short: activity)

has the following form
activity AV(P1, ... Pn), ta, tv, PB1, ... Pfu; resp (rs1:

r1),(rsk: rk); Mst-p;
inits (ifb SMal: (pz1(SMZ1), SMZ1),(pz1(SMzh),

SMzh); (pull (SMu1), SMu1),(pul(SMur),SMur)), . . .
(ifb SMaq: (pzq(SMZ1), SMZ1).(pzq(SMZh), SMZh);
(puq(SMu1), SMu 1),(puq(SMur).SMur));

goals SMZ1.SMZh; begin (V. SB) endact
where: P1, ... Pn denote parameters used when activity AV
is executed;
ta—period of time needed for execution of activity AV.
tv period of time which aS personally needs (i.e. its

processor Pra) for execution of the activity; ta, tv and (rs:
r) can depend on parameters P1.Pn;

PBe=(phrfe; where CSe), where phrfe is a phrase (e.g. a
simple sentence) of a natural language, which designates
the activity AV—the activity AV is the meaning of the
phrase phr33;

5

10

15

25

30

35

40

45

50

55

60

65

10
rs: r—resources (means, objects) which aS needs for

execution of the activity AV—rs denotes the needed
object and r the needed quantity of rs;

Mst-p—set of stimulus patterns describing the expected
stimuli which arise when the activity AV is being
executed;

SMai initial situations of the activity AV in these situa
tions aS may begin the execution;
Because of recognition of objects and situations, object

and situation models must constitute a directed graph, SeG
(called in this paper semantic graph; SeO is a component of
aS), which shows the abstraction levels of object and situ
ation models (graph SeC defined the author in AS4). SeC.
thus the object and situation models, must be so defined that:
i. a node, K, is an object or situation model.
ii. node K is a successor of node K if and only if (inst-of,

. . . .P(K), . . .) occurs in the model Kj.
iii. SeC has 3 root nodes M(object), SM(simp-sit), mSM

(meta-sit) such that: (a) from the node M(object) exists a
path to each object node, (b) from the node SM(simp-sit)
exists a path to each simple situation node, (c) from the
node mSM(meta-sit) exists a path to each meta-situation
node,

iv. if there is a path from node Ki to node K then there is
no path from K to Ki.

By the graph SeG and the phrases in object and situation
models can be described the syntax and semantics of simple
natural languages, as shown in AS4).
2.3. Activity Model
The author defined behavior scheme in AS3 (1998)—

however Such schemes are not sufficient to represent activi
ties of the system aS.
An activity model (or activity Scheme, in short: activity)

has the following form
activity AV(P1,Pn), ta, tV, PB1,PBu; reso (rs1:

r1),(rsk: rk); Mst-p;
inits (ifb SMal: (pz1(SMZ1), SMZ1),(pz1(SMzh),

SMzh); (pul(SMu1), SMu1),(pul(SMur),SMur)), . . .
(ifb SMaq: (pzq(SMZ1), SMZ1).(pzq(SMZh), SMZh);
(puq(SMu1), SMu 1),(puq(SMur).SMur));

goals SMZ1,SMZh; begin (V. SB) endact
where: P1, ... Pn denote parameters used when activity AV
is executed;
ta period of time needed for execution of activity AV.
tv period of time which aS personally needs (i.e. its

processor Pra) for execution of the activity; ta, tv and (rs:
r) can depend on parameters P1,Pn;

PBe=(phrfe; where CBe), where phrfe is a phrase (e.g. a
simple sentence) of a natural language, which designates
the activity AV the activity AV is the meaning of the
phrase phre:

rs: r—resources (means, objects) which aS needs for
execution of the activity AV—rs denotes the needed
object and r the needed quantity of rs;

Mst-p—set of stimulus patterns describing the expected
stimuli which arise when the activity AV is being
executed;

SMai initial situations of the activity AV in these situa
tions aS may begin the execution:

SMZe goal situations of the activity AV activity AV is
executed in order to reach a goal situation: SMZi is a final
node of the graph (V, SB);

SMui a final node of the graph (V, SB) but not goal
situation—not wished situation which can be reached
when the activity is executed;

pzi(SMZe) (pui (SMue), respectively)—the probability that
the goal situation SMZe (situation SMue, respectively)

US 7,024,277 B2
11

will be reached when the execution of the activity begins
at the initial situation SMai;

(V. SB)—a connected graph the nodes (in V) of which are
situation models, and to each are (SMi, SM) is ascribed
a sub-activity, Su-act(S.Mi.S.M)e SB.
Sub-activity su-act(SM.SM) (in activity AV) determines

the elementary activities, operations and actions which
should be executed to reach the situation SM, when the
execution of the activity AV reached the situation SM.
Sub-activity su-act(SM.SM) has one of the two forms:

(sal) (aS, LP; (talj, ta2), reso (roj1: n1),(roja: na);
wi, (ws, SM), (ws1, SM1),(wsiv, SMV): (OA1;
. . . ;OAjm)), when aS himself (i.e. its processor Pra)
does this sub-activity,

(sa2) (Mcaj, LP; (talj, ta2), reso (rol: n1),(roja:
nja); contr-Su-act, wi. (ws, SM), (ws1, SM1),
(wsiv, SMV); (A1: . . . ; Ajm)), when Mcaj does this
Sub-activity and aS controls only the execution,

where: LP=(psz (SMZ1), . . . psz (SMZh); psu (SMu1), . .
..psuj (SMu1),psuj (SMur) is the list which determines
the priority of this sub-activity, where psz (SMzi), (or psu,
(SMue)) is the probability of reaching the goal situation
SMzi (the situation SMue, respectively) when su-act(SM,
SM) will be executed; it holds psz (sMZ1)+ . . . +psz
(SMZh)+psuj (SMu1)+...+psuj(SMur)=1:
talj, ta2 is the minimal and maximal time period needed for

execution of this sub-activity;
roji, nji—resources needed for execution of the Sub-activity;

nji denotes the needed quantity of object roi;
wi, ws, wsji are weights—w increases if this sub-activity is

executed, ws (wsji, respectively) increases if the execu
tion of this sub-activity led to situation SM (SMji,
respectively);

SM, SM1, ... SMV are successors of the node SM in the
graph (V. SB): they are the expected situations which can
be reached when this sub-activity is executed;

OAje is an elementary activity which has one of the fol
lowing forms:
a) OAje is an elementary activity or action which does not

begin with if or while, OAje can depend on parameters;
OAje is mainly a motion activity which aS should
perform;

b) if Ce then begin OAk1; . . . ;OAkd end else begin
OAfl; . . . ;OAfw end

c) while Ce do begin OAk1; . . . ;OAkw end
where Ce, in (b) and (c), is a condition, and OAki, OAfs are
activities of the form (a):
Micaj denotes a processor, robot, agent, machine or an other

system which does the sub-activity (sa2); aS controls this
execution by the control-activity contr-Su-act;

contr-Su-act denotes the following simple control-activity
contrict, at, grido OAp1; . . . ;OApb thenc observ(tat.

FOS,t); CA1: . . . ;CAjd endc
where: aS should control the execution of sub-activity

(sa2) after each time period ct,
at is the time period of execution of the sub-activity by

Micajafter the last control,
0<gris2 is a degree of importance of controlling the

execution of the sub-activity,
OApje are elementary activities which aS does to

control the execution of the sub-activity,
observ(tat...FOS,t) observes, at least tat time period,

objects and situations given in FOS=M(OX1), . . .
M(Oxjg); SM1x1,SM1Xjs, where M(Oxji) and
SM1Xje are (expected) objects and situations which
can appear when the Sub-activity is being executed;

10

15

25

30

35

40

45

50

55

60

65

12
these objects and situations observ(tat. FOS,t)
observes with intensities des(aS.AUw(M(Oxji),t),
isg, and des(aS.AUw(SM1Xje),t), ess;

CAje, esd, are control activities of the form
ifs sitExpje then begin OAXje1: . . . ;OAXjefend

sitExpje is a situation expression of the form:
i) situations SMXje, esdl, are situation expressions, where
SMXje are expected between-situations which can appear
when the Sub-activity (sa2) is being executed;

ii) when SMEX1 and SMEx2 are situation expressions then
(SMEX1), not (SMEx1), SMEx1 or SMEX2, SMEx1 and
SMEX2

are situation expressions—they have the following meaning:
SMxje, (SMxje)—situation SMXje is appeared, situation not
(SMEX1) is appeared when situation SMEX1 is not
appeared, situation SMEX1 or SMEX2 is appeared when
situation SMEx1 or SMEX2 is appeared, situation SMEx1
and SMEX2 is appeared when situations SMEX1 and SMEx2
are appeared;
OAXje, e=1, . . . f. are elementary activities which aS

executes when situation sitExpje has appeared.
The Execution of Sub-activity.
aS does himself the sub-activity (sal) (i.e. the (motion)

activities OA1: ... O Ajm) to reach the situation SM (with
probability (approximately) ws/wi) from the situation SM.
However, instead of SM, aS can reach situation SMje
(esv), with probability (approximately) wisje?wj. When a
situation SM, SMje, es V, appears, then the execution of the
sub-activity (sal) (or (sa2)) is finished. The execution of
Sub-activity (sal) or (sa2) is wrong and should be abandoned
if the Sub-activity is executed longer than ta2.

Sub-activity (sa2) does Mcaj to reach situation SM, with
probability (approximately) ws/w; however, Mcaj (and aS)
can reach (with probability (approximately) wSefw) situa
tion SMje, es V. Activities A1, ... Ajm are done by Mcaj,
When Micaj is doing Sub-activity (sa2), then some situations
SMxji, isd1, should appear until one of the situations SM,
SMje, es V, appears. After every time period ct, or earlier,
aS should control the execution of the sub-activity by
contr-Su-act; firstly, it executes the elementary motion
activities OAp1: . . . ;OApb, after that, the observing
activity observ(tat.M(OX1),M(Oxjg); SM1x1, . . .
SM1Xjs:t) at least tat long; after the time period tat, aS
does the first activity CAje for which holds: situation
sitExpje is appeared—i.e. when sitExpje is appeared then
aS does the elementary activities OAXje1: . . . ;OAXjef
(which are in CAje). In this way, aS may correct or abandon
the execution of the sub-activity if sitExpje represents an
unwished situation. When Mcaj begins the execution of the
sub-activity then: at:=0. After aS controlled this execution
then: at:=0. aS is motivated to do the control-activity
contr-Su-actin (sa2). The intensity of this motivation equals

mot-cont(AVSM.SMji.at,t)=(at/ct)*grimotsu-act(SM,
SM,t)

where at is the duration of execution of the sub-activity
(sa2) (without interruptions) after the last control by contr
su-act, and motsu-act(SM.SM,t) is the motivation of aS to
execute the sub-activity (sa2) (this motivation is defined in
Sect. 3.2).

3. The Motivation to Execute an Activity or a Command
According to the method DKA, the execution of an

activity or a command is determined by the motivation of
aS. This motivation is determined by several kinds of
motivations as follows.
3.1. The Motivation to Execute an Activity
We use the notation applied in the definition of activity.
The reacting motivation of aS (at time t) to execute an

activity AV. starting at initial situation SMai, equals

US 7,024,277 B2
13

reamota (aS, SMai, AV,t)=rosa(aS, Mst-p,t)+pzi(SMZ 1)
*rosa(aS.SMZ1,t)+ . . . +pzi(SMZh)*rosa(aS.SMZh,t)+
pull(SMu1)*rosa(aS.SMul,t)+ . . . +pui (SMur)*rosa
(aS.S.Murt)

in normal circumstances should be rosa(aS.SMZet)>0, for
esh, and rosa(aS.S.Mue,t)<0, for esr.

Reflective motivation. aS may have calculated the
expected satisfactions, befaS.b.t+eg), and desires, des(aS,
b.t--e.g), for e=1,e., (e.g. by stimulus patterns, as
shown in AS5), for some needs b, where g denotes a
number of hours, days or weeks. If e.g. befaS.b.t1)<-5 and
des(aS.b.t1)>12, for t--e1g-t1<t+e2*g, and aS has an activ
ity AV1 which will increase befaS.b.t1) and decrease des
(aS.b.t1) when aS executes AV1 in the time (t, t1), then aS
is motivated to execute this activity. In this case, the moti
vation is arisen by reflection on the future intensities of
satisfactions and desires.
The motivation of aS (at time t) to execute activity AV.

from initial situation SMai, in order to increase satisfactions
in the future, at time t1, equals

refimota(aS.S.Mai.AV.t. t1)=rosa(aS.Mst-p,t)+pzi(SMZ1)
*rosa(aS.SMZ1.t1)+ . . . +pzi(SMZh)*rosa(aS.SMZh,
t1)+pui (SMu1)*rosa(aS.SMult1)+ . . . +pui (SMur)
*rosa(aS.SMurt1)

where t1 >t+ta (ta is the time period needed for execution of
AV).

Compelled motivation. aS may be in an initial situation
SMai of an activity AV such that if aS does not execute the
activity AV then aS will get, after a time period Zt, with
probability pg, into an unwished situation SMd such that
rosa(aS.SMd, t1)<-4, for t1 et. If howeveraS executes activ
ity AV and reaches a goal situation of this activity, then aS
will not get into the situation SMd. These relation we denote
by

compst(aS.S.Mali.AVztpg,SMd) (3.1)

Thus, if the relation (3.1) holds, then aS is motivated to do
the activity AV in order not to get into the unwished
Situation SMd. The relation (3.1) is connected with SMai
and AV by the following set AK(SMai):
i. if SMai is an initial situation of an activity AV then AV

belongs to AK(SMai),
ii. if activity AV belongs to AKCSMai) and (3.1) holds for
SMai and AV, then compst(aS.S.Mai, AV.Zt, pg.SMd)
belongs to AK(SMai).
Compelled reacting motivation. If compst(aS.S.Mai AV.Zt,

pg.SMd) is in AK(SMai), where Zts 1 min, then the com
pelled reacting motivation (at time t) to do the activity AV
equals:

copreamota (aS.S.Mai, AV, pg.SMd,t)=reamota(aS.S.Mai,
AV,t)-pgrosa(aS.SMd,t).

Compelled reflective motivation. If reflmota(aS.S.Mai, AV.
t, t1) is defined, where t1 >t+ta>t+1 min, and compSt(aS,
SMai, AV.t1-tpg.SMd) is in AK(SMai), then the compelled
reflective motivation (at time t) to do the activity AV equals:

coprefmota (aS, SMai, AV, pg.SMd.t. t1)=reflmota (aS,
SMai,AV.t. t1)-pgrosa(aS.SMd, t1).

The motivation to execute activity. The above described
motivations are used to determine the motivation of aS (at
time t) to execute activity AV. from initial situation SMa, in
the following way. To simplify the description of the pro
cedure below, we assume that for SMa and activity AV is
only one relation (3.1) in AK(SMa).
procedure mot(aS.S.Ma, AV.t, res motak, pg.SMg,t2...art,ZV1);
begin ZV1:=0.2 min: pg:=0; SMg:= nil; t2:=t--0.9 min;
if compst(aS.S.Ma. AV.Ztpd.SMd) is in AK(SMa) and Zt-1
min then begin art:= coprea; pg:=pd; motak:=
copreamota(aS.S.Ma.AV.pd.SMd,t); SMg:=SMd; t2:=t--zt
end else

5

10

15

25

30

35

40

45

50

55

60

65

14
begin motak:=reamota(aS.S.Ma, AV,t); art:="rea end:

lett1>t+ta>t+1 min, where ta denotes the time period needed
for execution of the activity AV:

BZ(AV):=b needb occurs in a stimulus pattern occurring in
a goal situation SMZe (esh) or in an unwished situation
SMui (isr) of the activity AVI;

if cognitive procedures of aS can determine intensities of
satisfactions befaS.b.t1) and desires des(aS.b.t1), for
beBZ(AV) then begin

if compst(aS.S.Ma. AV.t1-tpd.SMd) is in AK(SMa) and rosa
(aS.SMd,t) can be computed then

begin if coprefmota(aS.S.Ma, AV.pd.SMd.t. t1)>motak then
begin art:="copref; ZV1;=t1-t-ta; motak:=coprefnota
(aS.S.Ma, AV.pd.SMd.t. t1); pg:=pd; SMg:=SMd: t2:=t1
end end else

begin if reflmota(aS.S.Ma.AV.t. t1)>motak then begin art:=
refi; ZV 1:=t1-t-ta; t2:=t1; motak:=reflmota(aS.S.Ma. AV.

t.t1) end end end end mot.
The result motak of the procedure is the motivation of aS

to execute activity AV, from initial situation SMa. The
priority of execution of activity AV (at time t), from initial
situation SMa, can be determined as follows (if the time is
given in hours)

prior-a(SMa, AV,t)=motak*4.5/sqrt(ZV+16), if ZV>-0.02 h
(=1.2 min)

where motak and ZV are determined by mot(aS.S.Ma. AV.t,
motak, pg.SMg,t2...art.ZV) (ZV is the reserve time which aS
has, for execution of the activity AV).
3.2. The Motivation to Execute Sub-activity
We use the notation introduced in the definition of Sub

activity su-act(SM.SM) in Sect. 2.3. Let the execution of
the activity AV began, at time to, in initial situation SMai and
reached, at time t, the situation SM. The operation mot(aS,
SMai. AV.to.motak, pg.SMg,t2...art.ZV) has been executed.
The motivation, at time tdto, to execute sub-activity Su-act
(SM.SM) equals

motsu-act (AV, SM, SM, t) = morea, if art = rea

= morea-pg: rosa(aS, SMg, t),

if art = 'coprea

= moref, if art = ref

= morefl-pg: rosa(aS, SMg, t2),

if art = 'copref

where pg. SMg, art and t2 are determined by the above
mentioned operation mot and
morea=psz (SMZ1)*rosa(aS.SMZ1,t)+ . . . +psz (SMZh)

*rosa(aS.SMZh,t)+psuj (SMu1)*rosa(aS.SMul,t)+ . . .
+psuj (SMur)*rosa(aS.S.Murt),

merefl=psuj (SMZ1)*rosa(aS.SMZ1,t2)+...+psz (SMZh)
*rosa(aS.SMZh,t2)+psuj (SMu1)*rosa(aS.SMu1,t2)+ . .
... +psuj (SMur)*rosa(aS.S.Murt2).

When activity AV is performing a command received from
Pa, then additionally the operation is executed:
motsu-act(AVSM.SM,t):=motsu-act (AVSM.SM,t)+epr

(aSM(Pa).eps.WA(Pa),...,t)+epr(aS.M(Pa).eps. AN,...,t).
3.3. The Motivation to Perform Command

aS can receive a command/order, BOf, to execute, inter
rupt or abandon an activity, from an authorized person or an
other emotional system, Pa. For each Pa, authorized to give
orders, aS has weight, ag(Pa), of the authority of Pa over aS.
We assume that Osag(Pa)s3; the greater ag(Pa) the greater
is the authority of Pa over aS. When Pla has given aS a
command/order BOf then are applied the following rules.

US 7,024,277 B2
15

RPa1. If ag(Pa)>ag(P1a), then Pa can abandon the execu
tion of the command BOf or command aS to continue the
execution of the abandoned execution of the order BOf.

RPa2. If ag(Pa)sag(P1a), then Pa is not authorized: (a) to
abandon the execution of the command BOf, (b) to com
mand aS to continue the execution of the abandoned execu
tion of BOf.
An order BOf must contain the following information:

wg(BOf)—how important is the order BOf Zt(BOf)—the
time period in which the execution of the order BOfshould
start. We may interpret wg(BOf) as follows: wg(BOf)=0.5 if
BOfis of little importance to Pa, wg(BOf)=1.3 if BOfis of
not much importance to Pa, wg(BOf)=2.2 if BOf is impor
tant to Pa, wg(BOf)=3.0 if BOf is of great importance to Pa,
wg(BOf)=3.8 if BOf is of extreme importance to Pa.

For authorized Pa, aS must have the following needs:
WA(Pa)—the need to fulfil the orders and wishes of Pa,
AN the need for recognition, acknowledgment and self
esteem. To make Sure that aS has always the desire to satisfy
the mentioned needs, the following rules are applied:
RWAN1. Every na hours aS does the following operations

(for each authorized Pa):
if befaSAN,t)2-9 then befaSAN,t):=max(befaSAN,

t)-0.6*ag(Pa), -3.3*ag(Pa));
des(aSAN,t):= min(des(aSAN,t)+1.2* ag(Pa), 18* ag

(Pa));
if befas.WA(Pa),t)2-10 then befaS, WA(Pa),t):=max

(befaSWA(Pa),t)-0.6*ag(Pa), -3.5* ag(Pa));
des(aS, WA(Pa),t):= min(des(aS, WA(Pa),t)+1.2* ag(Pa),

18*ag(Pa)).
RWAN2. When aS receives a command, BOf, from

authorized Pa (at time t) then:
des(aS, WA(Pa), t):= min(des(aS, WA(Pa),t)+1.1 * (wg

(BOf)+2.5*ag(Pa)), 18*ag.(Pa));
des(aSAN,t):=min(des(aSAN,t)+1.1*(wg(BOf)+2.5* ag

(Pa)), 18* ag(Pa)).
RWAN3. When aS accomplished (at time t) a command,

BOf, received from Pa, then:
befaS, WA(Pa),t):=min(befaS, WA(Pa),t)+wg (BOf)+

2.5*ag(Pa), 8.5*ag(Pa));
des(aS, WA(Pa),t):= max(des(aS, WA(Pa),t)- 1.9 (wg

(BOf)+2.5*ag(Pa)), 1.6*ag(Pa));
befaS, AN,t):= min(befa S.AN,t)+(wg (BOf)+2.5* ag

(Pa)), 8.5* ag(Pa));
des(aSAN,t):=max(des(aSAN,t)-1.9*(wg(BOf)+2.5*ag

(Pa)), 1.6*ag(Pa)).
The motivation (at time t) of aS to perform a command

BOf, received (at time to) from authorized Pa, is determined
as follows:
i. t2:=to+zt(BOf); apply the rule RWAN2:
ii. determine the activity, AVf, which will accomplish the

order BOf, and initial situation, SMfae, of this activity;
iii. mot(aS.SMfae. AVftmotak, pg.SMg,t3.art.ZV); the moti

vation to perform command BOf equals mot-ord(aSBOf,
AVf.SMfae.Pa,t)=motak+epr(aSM(Pa).eps.WA(Pa),...,t)+
epr(aSM(Pa).eps. AN,t); the motivation to execute the
activity AVf equals mot-ord(aSBOf..AVf.SMfae.Pa,t);

iv. the priority of performing the order BOf (at time t) and
the activity AV: prior-ord(BOfAVfSMfae, Pa,t)=mot-ord
(aSBOf..AVf.SMfae, Pa,t)*4.5/sqrt (t2-t+16), prior-a
(SMfae. AVft)=prior-ord(BOf..AVfSMfae. Pat).

4. General Specification of the Subsystem WP of aS
WP identifies objects and simple situations by object and

situation models which are in the semantic graph SeG (S.
Sect. 2.2). If there is a path (in this graph) from an object

10

15

25

30

35

40

45

50

55

60

65

16
model M(Og) (situation model SMg) to an object model
M(O) (situation model SM, respectively), then M(O) (SM,
respectively) is an instance of the model M(Og) (SMg,
respectively). Model M(Og) (SMg, respectively) is a class of
object models (situation models, respectively) to which
M(O) (SM, respectively) belongs. Below, clo(M(O)) (cls
(SM), respectively) denotes an object model (situation
model, respectively), in graph SeO, such that from this
model clo(M(O)) (cls(SM), respectively) exists a path to the
model M(O) (SM, respectively). Because WP is very closely
connected with the method DKA, some important properties
of WP must be given.
SPW1. WP perceives the surrounding of aS through

sensors, identifies objects and simple situations (not meta
situations) as instantiated object and simple situation
models, and stores them in AW(t). Also sentences of a
simple language are identified syntactically and semanti
cally by WP and stored in AW(t). AW(t) is the internal
representation of the actual world of aS at time t. The main
part of AWOt) is a tree TOS such that:
i. To each node of the tree is ascribed an object which aS has

perceived. KTOS(Wa) is the root of the tree, where
M(Wa) is the model of the greatest spatial object in the
world of aS. aS (“self) is always in a structured object in
TOS.

ii. KTOS(Qi) is a successor of a node KTOS(Q) if and only
if Q is a structured object which has appeared, and WP has
recognized that object Qi has appeared direct in object Q.

iii. Each node KTOS(Q) has the following form

where: P(V)—the pointer to the father of the node KTOS
(Q),
sK(Q)—the list of pointers to the successors of the node
KTOS(Q).

M(Q) WP has identified object Q as M(Q).
apOS(Q)—the list of objects and simple situations which

actually appear in object Q (not foreseen objects and
situations are marked with nexp),

amS(Q)—the list of meta-situations which actually appear in
structured object Q (not foreseen meta-situation is marked
with nexp),

nOS(Q)—the list of objects and simple situations in object
Q, which just have been recognized; elements of the lists
apOS(Q) and nGS(Q) have the form:
(P(VR(O1i)),O1 i.M(Oi),tildO(O1i,M(Oi)).ox) or (P(VR

(S1e)),S1e.SMeti.ldS(S1e.SMe),ox)
where object Oli (situation Sle, respectively) has been
identified by laO (ldS, respectively) as M(Oi) (SMe,
respectively) (at time ti): P(VRO1i)) (P(VR(S1e))) is pointer
to the location of the object Oli (the situation Sle,
respectively) in VR(Q); Oli (Sle) is an instantiation of the
model M(Oi) (SMe, respectively); ox='exp' if M(Oi) (SMe,
respectively) is declared (expected/foreseen) in object
M(Q), ox=nexp’ otherwise:
fos(Q)=(Q.M(Q), ob (pr(Ofl),M(Of1)) . . . (pr(Ofa),M

(Ofa)): sit (pr(Sf1).SMf1), ... (pr(Sfw).SMfw)) the list
of missed/absent objects and simple situations in object
Q: WP enters these objects and situations in the list when:
(a) it has recognized object Q as M(Q) and recognizes
now that object M(Ofi) or simple situation SMfe is not in
object Q, although it should be with probability pr(Ofi)
(pr(sfe), respectively) in Q, (b) it recognizes that object
M(Of) or simple situation SMfg is disappeared from
object Q, although it should be in Q until now, with the
given probability;

infoS(Q)—the list of objects and simple situations, just
having been recognized as missed/absent in object Q,

US 7,024,277 B2
17

fmS(Q)—the list of missed/absent meta-situations in object
Q.

dOS(Q)=(Q.M.(Q), ob (Old 1.M(Od1)), ... (Olda.M(Oda));
sit (S1 d1.SMd1),(Sldw.SMdw))—the list of objects
and simple situations which have disappeared from object
Q: WP has recognized that object Oldi, identified as
M(Odi), or situation Slde, identified as SMde, was in
object Q and now is not in Q;

LOSa(Q)—the list of objects and situations which are con
nected with execution of activities (by some objects Masi)
in object Q; an element of this list has the form:

EOSa(Mas)=(Mas, P(exOSa(AVh,su-akh)).P(apOSa(AVh,
su-akh)).nOSa(AVh, su-akh).dOSa(AVh.su-akh) where:
object Mas performs activity AVh in object Q. (i.e. the
current sub-activity Su-akh of AVh is being executed or is
waiting for execution); the method DKA enters element
EOSa(Mas) in the list, when it determines that Mas has to
do the sub-activity Su-akh;

P(L(AVh.)) pointer to the list L(AVh...) in ZuA(AVh) (ZuA
(AVh) is the state of execution of the activity AVh—
described in Sect. 5.1),

exOSa(AVh, Su-akh)—the list (in ZuA(AVh)) of objects and
simple situations which can appear when Sub-activity
Su-akh is being executed (by Mas),

apOSa(AVh, Su-akh)—the list (in ZuA(AVh)) of objects and
simple situations which actually appear and are listed in
exOSa(AVh.su-akh),

nOSa(AVh.su-akh)—the list of objects and simple situations
which just have appeared and are listed in exOSa(AVh,
Su-akh).

dOSa(AVh.su-akh)—the list of disappeared objects and
simple situations which were listed in apOSa(AVh, Su
akh);

LbOa(Q)—the list of objects, Qi, in which Q was, and
activities which Q executed; an element of this list has the
following form
EbOa(Qi)=((t1i,t2i),Qi,M(Qi), Lexac(Qi), ZOSa(Qi)),

where:
(t11, t21)—the time in which object Q was or is in object Qi,
Lexac(Qi)—the list of sub-activities which Q executed in

object Qi; an element of this list equals:
Eexac(AVes-acte)=(AVe, S-actej, t3e.t4e, P(exOSa(AVe,

S-acte)), P(apOSa(AVes-acte)))
when Q executed sub-activity s-acte of the activity AVe, in
object Qi from t3e till take; the method DKA puts these
elements in the list Lexac(Qi):

ZOSa(Qi):=EOSa(Q) when Q just left object Qi (at time
t2i), ZOSa(Qi)=nil if it is in Qi

Besides the tree TOS, AW(t) contains also other data
Structures, e. g.
LB the list of commands which WP has identified.
SpW2. WP enters objects and simple situations in the tree

TOS as follows:
SpW2.1. When WP notices, by sensors and the observing

operation observ(O1r, . . .), an object O1r (direct) in a
structured object Q (which is recognized as M(Q), in TOS)
then:
i. WP searches for an internal representation, O1, of the

object O1 r. WP attempts to identify Olas an object model
M(O) (by the operation ldO(O1.M(O)), s, (ii)) such that
M(O) is declared in the model M(Q) or in a model
clo(M(Q)) or M(O) occurs in a list exOSa(AVesu-ake) in
the list LOSa(Q) (of the object Q); if this succeeds then
O1 is recognized as expected object M(O). If such iden
tification does not succeed then WP searches for object
model M(Og), representing O1, in the semantic graph
SeG (defined in Sect. 2.2). In this case, O1 is recognized

10

15

25

30

35

40

45

50

55

60

65

18
as an unexpected (not foreseen) object M(Og) in Q. WP
does the following operations: (a) it puts new object
(P(VR(O1)),O1.M(O),..., exp), or (P(VR(O1)), O1M
(Og),..., nexp), in the lists apOS(Q) and nCS(Q), it builds
the node KTOS(O1) and connects it as successor with
KTOS(Q); (b) it puts the element EbOa(Q)=((t.)Q.M(Q),
Lexac(Q).nil) in LbOa(O1), where Lexac(Q)=nil if O1
does no activity in Q, and Lexac(Q)=(AVol. S-acto lit.,
P(exOSa(AVo1, s-acto 1j)), P(apOSa(AVo1.s-acto 1))) if
O1 does sub-activity s-acto 1j of the activity AVo1; in the
latter case (thus if s-acto 1j=(O1, . . .)). WP puts new
element EOSa(O1)=(O1, P(exOSa(AVo1, s-acto 1j)),
P(apOSa(AVols-acto1j)), nil.nil) in the list LOSa(Q); (c)
if object M(O), or M(Og), occurs in a list exOSa(AVce,
S-akde), in LOSa(Q), then WP puts (P(VR(O)).O1, . . .)
in the lists nC)Sa(AVde, S-akde) and apOSa(AVde, S
akde) (in LOSa(Q));

ii. The mentioned identification operation ldO(O1.M(O))
instantiates the model M(O) and builds from it the internal
representation O1 of the observed object O1 raccording to
the following rules: (a) when WP notices that a property
or an object (if O1 is a structured object), EOi, of the
model M(O), does not appear in the observed real object
Olr, then EOi does not occur in the instantiation O1 of the
model M(O) (if EOi is an object, M(U), which should
appear in O1r with probability greater than 0.75, then WP
puts M(U) in nf(OS(O) and foS(O1) (in node KTOS(O1))
as absent object), (b) when the properties and objects
EOe, esel, of the object O1r, noticed by WP sufficient
good match those of the model M(O), then O1 r is recog
nized as instantiation O1 of the model M(O) (EOe are of
course entered in O1), (c) the properties and objects,
EOnb, which occur in the model M(O) and which WP
does not notice in the real object O1r (because e.g. they are
not visible), WP puts into the instantiation O1 and marks
them (in O1) with nver (not verified); the not verified
objects in O1 WP does not put in the lists apOS(O1),
nOS(O1) etc of KTOS(O1).

iii. WP detects whether new simple situations have appeared
in the following way:

iii. 1. If O1 is recognized as expected object (s. (i)), then WP
searches, through all simple situations, declared in M(Q)
or in a model clo(M(Q) or in a list exOSa(AVdes-akde)
(in LOSa(Q)), for a model SMi such that SMi contains
model M(O) as a component; if SMi is such situation
model, then WP detects an instantiation, Sli, of the model
SMi (performed by laS(Sli.S.Mi)). If such instantiation
Sli is found then Sli is an expected/foreseen situation
(recognized as SMi) in object Q.

iii.2. If O1 has appeared as unexpected object in Q then WP
searches, in the semantic graph SeG, for a simple situation
model SMgi such that: SMgi contains object M(Og), as a
component, and an instantiation, Sli, of SMgi (performed
by laS(Sli.SMgi)) exists in Q. If such instantiation Sli is
found in object Q, then Sli is an unexpected/unforeseen
situation (recognized as SMgi) in object Q.

iii.3. WP puts just recognized simple situations (P(VR(S1i)),
S1 i.S.Mi..., exp), or (P(VR(S1i)),S1i,SMgi..., nexp), in
the lists apOS(Q) and nGS(Q). If situation SMi (or SMgi)
occurs in a list exOSa(AVge, S-akde) (in LOSa(Q)), then
WP puts (P(VR(S1i)),Sli, . . .) in the lists nOSa(AVge,
S-akde) and apOSa(AVde, S-akde) (in LOSa(Q)).
SpW2.2. When WP observes by the operation observ that

an object O1 (e.g. aS), recognized as M(O), moved from
structured object Q1 (recognized as M(Q1)) to structured
object Q2 (recognized as M(Q2)) (thus, O1 left object Q1
and appears in object Q2), then:

US 7,024,277 B2
19

i. WP searches for simple situations, S1 vi recognized as
SMvi, such that: (a) (.S1 vi.SMvi,...) is in the list apOS
(Q1) and contains object O1 as a component, (b) S1 vi is
recognized, by laS(S1 vi.SMvi), as is not in Q1. WP puts
(..O1.M(O), . . .) and the said disappeared situations
(S1 vi.SMvi. . . .) into dOS(Q1) and deletes them in
apOS(Q1). If (...O1.M(O), . . .), or (...Silvi.SMvi. . . .),
occurs in a list apOSa(AV1e, Su-akle) (in LOSa(Q1)),
then WP puts (O1.M(O), . . .) ((S1 vi.SMvi, . . .),
respectively) in the list dOSa(AV1e.su-akle) (in LOSa
(Q1)). When O1 does a sub-activity, su-akor, of an
activity AVo (i.e. if EOSa(O1)=(O1.P(exOSa(AVosu
akor)), P(apOSa(AVo, Su-akor)), . . .) is in LOSa(Q1),
then:
begin E2:=EOSa(O1); delete EOSa(O1) in the list LOSa

(Q1); ZOSa(Q1):=E2:
put ZOSa(Q1) and the actual time t in the list EbOa(O1) (in
the list LbOa(O1)) end. Delete the pointer P(KTOS(Ol)) in
sK(Q1) (thus, KTOS(O1) ceased to be successor of KTOS
(Q1)).
ii. As said in (i), object O1 was recognized as M(O) in object

Q1, WP recognizes O1 in object Q2 as follows:
Case a: in M(Q2) or clo(M(Q2)) or in a list exOSa(AV2i,

su-ak2i) (in LOSa(Q2)) is declared a model M(Or)
such that M(Or) belongs to class M(O) (in graph SeC)
and M(Or) is a good model for object O1: then O1 is
an expected object in object Q2 and is recognized as
M(Or).

Case b: M(O) or clo(M(O)) is declared in M(Q2) or in
clo(M(Q2)) or in a list exOSa(AV2i.su-ak2i) (in LOSa
(Q2)): then O1 is an expected object in object Q2 and
is recognized as M(O).

Case c: neither case (a) nor case (b) (i.e. in clo(M(Q2)) is
no good model for object O1): then O1 is an unex
pected object in object Q2 and is recognized as M(O).

WP puts (...O1.M(Or), ... 'exp) or (...O1.M(O), ..., exp')
or (...O1.M(O), nexp) in the lists apOS(Q2) and
nOS(Q2). If M(Or) (or M(O)) occurs in a list exOSa
(AV2n, su-ak2nj), in LOSa(Q2), then WP puts (...O1.M
(Or), . . .), (or (...O1.M(O), . . .)) in the lists apOSa
(AV2n, Su-ak2nj) and nGSa(AV2n, su-ak2n) (in LOSa
(Q2)). WP puts the pointer P(KTOS(O1)) in sk(Q2) (thus
KTOS(O1) is successor of KTOS(Q2)). When O1 does a
sub-activity Su-akor of an activity AVo (i.e. if element
EOSa(O1) was in LOSa(Q1)), then
begin put new element EbOa(Q2)=(t..Q2.M(Q2).Lexac

(Q2).nil) in the list EbOa(O1), where
Lexac(Q2)=(AVosu-akort,...P(exOSa(AVo, Su-akor)).P

(apOSa(AVo, Su-akor)));
EOSa(O1):=E2: (s, (i)); put element EOSa(O1) in the list
LOSa(Q2) end.

iii. WP performs analogous operations as in (iii), in SpW2.1.
SpW3. WP identifies simple sentences (their syntax and

semantics) of the language which aS uses to communicate
with people, emotional systems and robots/agents. An idea
of Such identification, based on object and situation models
in the graph SeG, is given in Schurmann AS4). WP puts
identified orders in the list LB.
SpW4. WP identifies simple motion actions of objects:

examples: rolling ball, falling plate, eating person, walking
Person. WP identifies such motion actions by motion pat
terns. These motion actions must be registered in object
models. Also the possible results of motion actions must be
given in their models/descriptions.
SpW5. WP observes these objects and simple situations,

OS, (by an observation activity observ(..OS,t)) which have

10

15

25

30

35

40

45

50

55

60

65

20
the greatest value des(aS.AUw(OS),t) (the intensity of desire
for attention when WP perceives OS by sensors, at time t).
WP and the method DKA apply the rules given in Schur
mann AS6), which concern the changes of values befaS
AUw(OS),t), des(aS.AUw(OS),t), befaS.NEw(OS),t) and
des(aS.NEw(SO),t), when object or situation OS is
recognized, where NEW (OS) is the need for curiosity and
knowledge with respect to OS. WP applies also the rule AU3
(given in AS6), when aS does motion activities. When the
attention of WP is focused on part TUr of real surrounding,
then WP compares TUr with its representation, TU, in the
tree TOS, WP recognizes changes of position and shape of
an object O In TUr and puts them in TU. WP detects also
whether situation, S(O), which contains object O. has
changed. WPupdates the modified or new situation S(O) in
TU, where situation S(O) differs from situation S(O) if
they have different situation models.

5. Determination and Control of Activities of aS
In this section I describe the method DKA which is

applied in the sub-system DA of aS. To describe this method
more clear, I assume that aS is not a virtual system and
contains the following simultaneous working processors: at
least one processor, PrWP. for the subsystem WP, at least
one processor. PrDA, for the sub-system DA, at least one
processor, Pra, for the subsystem EX-contr-motion
(execution of motions), some processors, PrCOi, i=1,... ip,
for computer operations which aS can execute, e.g. cogni
tive procedures.
5.1. Notation
We use the notations introduced in the previous sections.

Additional we denote:
ZuA(AV)=(AV, Pb, SMae, xa, P(Ly, Ely), tact, tsa, Su-act
(SM.SM), motak, exOSa(AVsu-act(SM.SM)), apOSa
(AVsu-act(SM.SM)), apSa(AV. Su-act(SM.SM)), . . .
)—the state of execution of activity AV.

where: SMae—the initial situation in which the execution of
the activity AV began,
Pb pointer to command, BOf, in the list LB when AV

performs order BOf, Pb=nil otherwise,
su-act(SM.SM)—the execution of the activity AV

reached situation SM and now this sub-activity is
performed,

Xa="exe' when the sub-activity Su-act(SM.SM) is being
executed, Xa="inter when the execution of this sub
activity (thus also the activity AV) is actually interrupted,

P(Ly, Ely) pointer to element Ely in the list Ly, where Ly
denotes one of the following lists: PAH, LCMR, LuA,
LuCO, LuMR; if Ly=PAH (or Ly=LCMR) then the sub
activity su-act(SM.SM) is being executed by the proces
sor Pra, i.e. by the sub-system Ex-contr-motion, (by a
processor PrCOi, a machine, a robot/agent or an emo
tional system, respectively):

tact (tsa)—the time period of execution of the activity AV
(the sub-activity su-act(SM.SM), respectively),

motak—the intensity of motivation to execute activity AV.
exOSa(AV, Su-act (SM.SMj)) (apOSa(AV, Su-act (SM,
SM)))—the list of objects and simple situations which
can appear (have appeared and are listed in exOSa(AVh,
su-akh), respectively) when sub-activity Su-act(SM, SM)
is executed,

apSa(AV.Su-act(SM.SM)—the list of situations which have
appeared and are expected in Su-act(SM.SM);

PAH=(H1.H11, H2, . . .) registers as follows the state of
execution of a Sub-activity or control-activity by proces
sor PrA: H1=nil if PrA is free, H1=P(Lexint, ZuA(AV))
and H2=act if PrA is executing Su-act(SM.SM),

H5="end if Pra finished the sub- or control-activity regis
tered in H1, if H1=P(Lexint.ZuA(AV))) and H2="co-a

US 7,024,277 B2
21

then Pra is executing the control-activity contr-Su-act of
the sub-activity in ZuA(AV); in this case holds: in H11 is
the pointer to the elementary activities in contr-Su-act
which Pra is now executing, if H3-'ei-ak1 then Pra is
doing the elementary activities OAp1: ... :OApja (before
observ(. . .)) (if these activities are finished then
H5='end'), if H3="obser then observ(. . .) is being
executed and in H4 is the time at which the operation
observ(. . .) began, if H3= c-akt then a control action
CAje is being executed;

Lexint the list of activity states ZuA(AVp), for activities
which actually are executed or interrupted;

LCMR the list of activities being actually executed by a
processor PrCOi, a machine, an agent/robot or an emo
tional system: ECMR(AVy)=(P(Lexint.ZuA(AVy)), Mas,
Resy) is an element of this list, where Mas is the object
which does the sub-activity in ZuA(AVy) and Resy
denotes the resources which are used by the sub-activity
in ZuA(AVy);

LuA the list of pointers P(Lexint.ZuA(AVai)) to ZuA
(AVai) (in Lexint) such that the sub-activity in ZuA(AVai)
is waiting for execution by the processor Pra;

LucO the list of pointers P(Lexint,ZuA(AVci)) to ZuA
(AVci) such that the sub-activity in ZuA(AVci) is waiting
for execution by a processor PrCOn;

LuMR the list of pointers P(Lexint.ZuA(AVri)) to ZuA
(AVri) such that the sub-activity in ZuA(AVri) is waiting
for execution by a machine, an agent/robot or an emo
tional system; EuMR(AVri)=(P(Lexint, ZuA(AVri)).
Resri) is an element of this list, where Resri denotes the
resources which the sub-activity in ZuA(AVri) needs:

LAst the list of activities waiting for start of execution.
The execution of a Sub-activity, Su-aci, or control-activity,

contr-Su-act, by the processor Pra (which can use several
processors) is performed and controlled by a software
Ex-contr-motion. Ex-contr-motion performs and controls
the motion activities of aS. The performance of motions by
Ex-contr-motion is not subject of this patent description.
How such software can be developed is described in Meystel
& Albus MeA) (2002); thereby, motion patterns, for stan
dard motions, and Surface and spatial patterns, where these
motion patterns are applied, should be used.

To make the description of the method DKA more clear,
I give first (in Sect 5.2) the structure of the method and after
that a more detailed general description. In Sect. 5.3, I give
the complete description of the method DKA.
5.2. General Outline of the Method DKA
DKA consists of the following steps:

D1.1. build list LdmS (with elements dimS(Q)) of meta
situations which are disappeared from the Surrounding
represented by TOS, where Q is a structured object; delete
disappeared objects and situations in TOS;

D1.2. build list LS1 of situations which have appeared in
connection with activities which are being executed or
interrupted;

D1.3. build list LS2 of situations which just have appeared
in structured objects in TOS;

D1.4. initiate the performance of received commands—for
commands to execute an activity, AVf, put AVf in the list
LAst of activities which should be executed;

D1.5. build list LnexS of objects and situations which have
appeared in structured objects in TOS, although they are
not expected/not foreseen there:

D1.6. build list LOSf of objects and situations just recog
nized as absent/missed in structured objects in TOS,
although they should be there:

D2. initiate the execution of these activities in the list LAst
(S. D1.4) which have great enough priorities and the
resources needed for their executions are available;

10

15

25

30

35

40

45

50

55

60

65

22
D3. control the execution of sub-activities as follows:
D3.1. when processor Pra executes control-activity of a

Sub-activity, then update the state of this execution;
D3.2. control sub-activities, suAy, listed in LS1 (s. D1.2) as

follows: determine new sub-activity and initiate its execu
tion or close the execution of the activity in which the
Sub-activity Su Ayi occurs, when the execution of the
Sub-activity Su Ayi is finished;

D3.3. if the duration of execution of a sub-activity lasts too
long then abandon the execution of the activity in which
this Sub-activity occurs;

D4. control and determine execution of activities which are
being executed or interrupted as follows:

D4.1. when the duration of execution of an activity lasts too
long then abandon this execution;

D4.2. choose from activities in the list LuA, which are
waiting for execution by the processor Pra, the activity,
AVg, with maximum motivation; if this motivation is
greater than the motivation connected with the Sub
activity or control-activity, Su-contr-ac, actually being
executed by the processor Pra, then interrupt the execu
tion of Su-contr-aci and begin to continue the execution of
the activity AVg:

D4.3. choose from activities in the list Lu(OO, which are
waiting for execution by a processor PrCOn, activities,
AVg1,AVgV, such that the motivation to execute
activity AVgi (in the actual state of execution ZuA(AVgi))
is greater than the motivation to execute activity AVii
actually being executed by a processor PrCOki, for i=1,.
.., V, where AVji=nil if processor PrCOki is free; interrupt
the execution of activities AV1,AViv and begin to
continue the execution of activities AVg1,AVgV by
processors PrCOk1, ... PrCOkV,

D4.4. choose from activities in the list LuMR, which are
waiting for execution by a machine, an agent/robot or an
emotional system, activities, AVW 1.AVwf. Such that:
1) the present motivation to execute activity AVwi is

relatively great;
2) either: (1) there are free resources (needed objects e.g.

devices, machines, rooms) to continue the execution of
the activity AVwi,
or: (ii) (a) the motivation to execute activity AVwi is

greater than the motivation to execute an activity
AVsi actually being executed, (b) if the activity AVsi
is interrupted, then there will be free resources for
execution of the activity AVwi, (c) the activity AVsi
can be interrupted;

for i=1,....fdo: begin if case (2.ii) then interrupt the
activity AVsi; continue the execution of the activity
AVwi end;

D5. for each situation, SMae, (in LS2) which has appeared
in a structured object (in TOS) do: begin determine
activity, AVp, with maximum motivation, which handle
the situation SMae;
if such activity is determined and the motivation to

execute the activity AVp is relatively great, then put
(SMae, AVp) in the list LAst of activities which should
be executed end;

D6. for each situation, SMge, (in the list LnexS, s. D1.5),
which has appeared in a structured object, Q, (in TOS) but
is not foreseen there, determine an activity, AVg. Such
that: it handles the situation SMgie, it can be executed in
object Q and the motivation to execute it is great enough;
put (SMge, AVgi) in the list LAst;

D7. for objects and situations, OSfi, (in the list LOS?, s.
D1.6) that have not appeared in structured objects, Q, (in
TOS), although they should appear there do: begin deter

US 7,024,277 B2
23

mine an activity, AVgi, such that: it copes with the
problem of absent/missed OSfi, it can be executed in
object Q and the motivation to execute it is great enough;
put (OSfi, AVgi) in the list LAst end;

D8. update the relevant lists in AW(t); apply the rule
RWAN1 (s. Sect. 3.3) and the rules given in Schurmann
AS6), which should be applied every time period (e.g.
AU1, GR3, MA4); store the most important objects and
situations, with relevant lists, which are in AW(t), in
AW(t) (L:=L+1), after every given time period; goto
D11

More Detailed Outline of Steps D1.1, ... D7
D1.1. for each non empty list dOS(Q) (the list of disappeared

objects and simple situations in object Q, in TOS) do:
begin dOS1(Q):=dOS(Q); dOS(Q):=nil;
dmS(Q):=the list of disappeared meta-situations in object
Q (they contain at least one object or one situation from
dOS1(Q) as component;

delete the meta-situations in amS(Q) (in KTOS(Q)),
which are listed in dmS(Q):

for objects and situations in the list dOS1 (Q) and dmS(Q)
do: begin determine new values befaS.b.t) and des(aS,
b.t) (intensities of satisfactions and desires) caused by
disappeared objects and situations listed in dOS1(Q)
and dmS(Q), by applying the relevant rules given in
Sect. 2.1 and Schurmann AS6); apply the relevant
rules given in Schurmann AS5), with respect to the
said changes of values befaS.b.t) and des(aS.b.t), to
update emotion intensities end end;

D1.2. LS1:=nil; using the lists LOSa(Q) and dmS(Q) in the
tree TOS build lists:
EnCSa2(AVh)—of objects and simple situations which

just have appeared and are expected when the Sub
activity in ZuA(AVh) is being executed;

EdOSa2(AVh)—of objects and simple situations which
appeared when the sub-activity in ZuA(AVh) has been
executed, and which now have disappeared:

nmSa(AVh)—of just appeared meta-situations which are
expected when the sub-activity in ZuA(AVh) is being
executed;

dmSa(AVh)—of meta-situations which appeared when
the sub-activity in ZuA(AVh) is being executed, and
which now have disappeared;

update the relevant lists in ZuA(AVh) using the lists
EdOSa2(AVh) and dmSa(AVh):

update the list apOSa(AVh) in ZuA(AVh) using the list
EnOSa2(AVh), and after that, build the list ES1(AVh)
(element of the list LS1) of just appeared situations
which are expected in ZuA(AVh), using nmSa(AVh);

D1.3. LS2:= nil; for objects Q in the tree TOS, build list
ES2(Q) (element of the list LS2) as follows: begin put
each simple situation expected in Q and occurring in the
list nCS(Q) (in the node KTOS(Q), marked with exp)
into the list ES2(Q) in the following form:

where: situations SMi are foreseen in structured object
M(Q), object Q is recognized as M(Q), Sli is recognized as
SMi, asi-(sf.SFi) if SMi belongs to situation sequence SFi
(occurring in M(Q)), and asi=(mc.mil) if SMi does not
belong to a situation sequence in M(Q), and loc(S1i) denotes
the actual location of the situation Sli in VR(Q) (if Sli is a
visual situation);

detect meta-situations which just have appeared in Q and
are expected in object M(Q), using the lists nOS1(Q),

5

10

15

25

30

35

40

45

50

55

60

65

24
apOS(Q) and amS(Q), and put them into the lists
ES2(Q) and amS(Q);

apply the relevant rules, given in Sect. 2.1. in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, with regard to
the just appeared new meta-situations end;

D1.4. for each command, BOf, in the list LB of the received
orders, do: begin
increase the desires des(aS, WA(Pa),t) (to do orders

received from Pa) and des(aSAN,t) (for recognition
acknowledgment and self-esteem) according to the rule
RWAN2 (s Sect. 3.3);

if BOf is an order, from authorized Pa, to abandon an (or
to continue the execution of an abandoned) activity,
AVg, then: begin abandon the (continue the execution
of the abandoned, respectively) activity AVg:

update befaS, WA(Pa),t), des(aS, WA(Pa),t), befaSAN,t)
and des(aSAN,t) with regard to the order BOffrom Pa;
apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
'activity AVg has been abandoned—no goal situation
of this activity will be reached” (“probably a goal
situation of the activity AVg will be reached,
respectively) end;

if BOf is an order to execute an activity AVf then put the
activity AVf in the list LAst of activities which should
be executed end;

D1.5. for structured objects, Q, in the tree TOS, build
elements EnexS(Q) of the list LnexS of not foreseen
situations, as follows: begin
put each not expected simple situation (marked with

nexp) from nCS(Q) into the list EnexS(Q);
using lists nCS(Q) and apOS(Q), detect all new meta

situations, mSge, such that: (a) at least one unexpected
object or situation in nGS(Q) is a component of the
meta-situation mSge, (b) mSge is recognized as model
mSMge and mSMge is not foreseen in object M(Q); put
(mSge.mSMge) in the list EnexS(Q);

apply the relevant rules, given in Sect. 2.1. in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“unexpected meta-situation mSge has appeared’ end;

D1.6. for structured objects, Q, in the tree TOS, add new
elements to the lists EOSf(Q) and fmS(Q) (of absent/
missed meta-situations in object Q) as follows:
begin EOSf(Q) (element of the list LOSf) has the form

(Q.M(Q).ob (pr(Of1)M(Of1)),(pr(Ofa). M(Ofa));
sit (pr(Sfl),SMfl),(pr(Sfs).SMfs))

where pr(Ofi), or pr(Sfe), (given in M(Q)) denotes the
probability that object M(Ofi) (situation SMfe,
respectively) appears in object Q—for these elements
hold: pr(Ofi)>0.75, pr(Sfe)>0.75:

using the absent/missed objects and simple situations
registered in EOSf(Q) and foS(Q) (the latter list is built
by WP), recognize meta-situations, mSMfe, which are
not in object Q, although they should appear there, and
are not in the list fmS(Q);

put these situations (pr(mSfe).msMfe) in the lists EOSf
(Q) and fmS(Q) end;

D2. initiate the execution of activities in the list LAst as
follows: for each activity, AVg, in the list LAst do:
if (a) aS can reach an initial situation of the activity AVg
by motions or by sending a message, (b) the resources
for execution of the activity may be available, (c) the

US 7,024,277 B2
25

priority prior-a(..AVg,t) of the activity AVg is great
enough, compared with priorities prior-a(..AVxW,t) of
activities AVXw waiting for execution then begin build
the initial execution state ZuA(AVg) of the activity
AVg:
put ZuA(AVg) in the list Lexint; put the pointer to
ZuA(AVg), in Lexint, into the relevant list (LuA,
LucO or LuMR) of activities waiting for execution;

apply the rule BZ1 given in AS6 end else begin if
AVg has to perform an order then issue a message
explaining the reason why this order is not done till
now end;

D3. control the execution of sub-activities as follows:
D3.1. when processor Pra executes a control-activity, contr

Su-act, then update the execution state of contr-Su-act;
D3.2. for each element ES1 (AVy) in the list LS1 do: begin
when the execution of the Sub-activity, SuAy, occurring in
ZuA(AVy) is finished then begin update the execution
state ZuA(AVy);
if the execution of the activity AVy is finished then

begin close the execution of the activity AVy;
put the reached end situation, SMyi, of the activity AVy,

in the list LS2;
if AVy performed a command then apply the rule
RWAN3 (s. Sect. 3.3);

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“activity AVy is finished and the end situation SMyi
has been reached’ end else

begin apply the rules BZ2.1, BZ2.3, . . . given in AS6),
the rules in Sect. 2.1 and the relevant rules given in
AS5) to update the relevant values befaS.b.t), des
(aS.b.t) and other emotion intensities, in the case
“between situation SMyi of the activity AVy is
reached'; determine the next sub-activity in AVy which
should be executed;

if this next Sub-activity contains a control-activity then
put the pointer to this control-activity into the list LuA;

update ZuA(AVy) end end;
D3.3. Sn:=Sn+1; if snd sn1 then begin

for each activity, AVy, being executed or interrupted do
begin
if the duration of execution of the sub-activity in
ZuA(AVy) lasts too long then begin

abandon the execution of this sub-activity and the
activity AVy;

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“activity AVy is abandoned—none goal situation of
this activity will be reached end end end;

D4. control the execution of activities as follows:
D4.1. an:=an+1; if an>an1 then begin

for each activity, AVy, being executed or interrupted do
begin if the duration of execution of the activity AVy
lasts too long then begin abandon the execution of the
activity AVy;

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensifies, in the case
“activity AVy is abandoned—none goal situation of this
activity will be reached end end end;

D4.2 control the execution of sub- and control-activities by
processor PrA as follows:
begin choose from activities in the list LuA, which are

waiting for execution or control by the processor Pra,

10

15

25

30

35

40

45

50

55

60

65

26
the activity, AVg, with the maximum motivation to

execute its current Sub- or control-activity, Su-co
actgi, which is in ZuA(AVg);

if processor Pra is free then begin begin the execution
of Su-co-actg. by the processor Pra;

update ZuA(AVg) and the list LuA end else begin
let Sub- or control-activity, Su-co-act-vh, of an activity

AVa, is being executed by processor Pra:
if the execution of su-co-act-vh can be interrupted then

begin
if the motivation to execute Su-co-actgi is greater than

the motivation to execute Su-co-act-vh then
begin interrupt the execution of Su-co-act-vh; update
ZuA(AVa) and the list LuA:

begin the execution of Su-co-actgi by the processor
PrA; update ZuA(AVg) and the list LuA end end end
end;

D4.3. control the execution of activities by processors
PrCOn as follows:

if LuCOznil then begin nex:=false; repeat
choose from activities in the list Lu(OO, which are

waiting for execution by a processor PrCOn, activity,
AVg, with the maximum motivation to execute its
current Sub-activity, Su-actgi, which is in ZuA(AVg);

if a processor, PrCOf, is free then m:=felse begin choose
from the set
{AVyactivity AVy (i.e. its current sub-activity,

Su-actye, which is in ZuA(AVy)) is being executed
by a processor PrCOky and the sub-activity su-actye
can be interrupted

the activity, AVs, with the minimum motivation to
execute its current Sub-activity, Su-actse:

if such activity AVs is chosen and the motivation to
execute the Sub-activity Su-actgi is greater than the
motivation to execute the Sub-activity Su-actise then
begin interrupt the execution of the sub-activity
Su-actse (thus, also the activity AVs) by the processor
PrCOks; m:=ks:
update ZuA(AVs) and the lists LucO and LCMR end

else nex:=true end;
if nex=false then begin begin the execution of the sub

activity Su-actgi (of the activity AVg) by the processor
PrCOm; delete the element with the pointer to ZuA
(AVg), in the list LucO:
update ZuA(AVs) and the lists LucO and LCMR end
until nex=true v LuCO=nil end;

D4.4. control the execution of activities by a machine, robot,
agent (MaxS) as follows:
LuM1:=LuMR (the list of activities waiting for execution
by a Maxs);

while LuM1znil do begin choose, from activities in the
list LuM1, activity, AVg, with the maximum motivation
to execute its current Sub-activity, Su-actgi, which is in
ZuA(AVg);

let the Sub-activity Su-actg. should be executed by Magi
and let Resgare the resources needed for execution of
Su-actg.

if there are free resources Resg and Magi is free then
isf=true else begin
find, in the list LCMR of activities actually being

executed by objects, activity, AVs, such that (a) AVs,
i.e. the Sub-activity (Su-actse) in ZuA(AVs), is actu
ally being executed by Mag, if Magi is not free, (b)
the motivation to execute the Sub-activity Su-actg. is
greater than the motivation to execute the Sub
activity Su-actse, (c) the execution of the Sub-activity

US 7,024,277 B2
27

Su-actse can be interrupted at present time, (d) if the
execution of the Sub-activity Su-actse is interrupted
then there will be free Magi and the resources Resg
(for execution of the Sub-activity Su-actg);

if such activity AVs is found then begin isf:=true:
interrupt the execution of the sub-activity Su-actse

(thus, also the activity AVs);
update ZuA(AVs) and the lists LuMR and LCMR end

else isf=false end;
if isf=true then begin begin the execution of the sub

activity Su-actg. (of the activity AVg) by Magi:
delete the element EuMR(AVg) in the list LuMR, and

update ZuA(AVg) and LCMR end; delete the ele
ment EuM1 (AVg) in the list LuM1 end;

D5. handle each foreseen situation which has appeared in a
structured object, Q, and is registered in the list LS2 (built
in D1.3 and D3.2) as follows:
for each element ES2(Q)=(Q.M(Q), (as 1.Sa1.SMa1,...), ..

. (ask.Sak.SMak...)) in LS2 (s. (5.1)) do:
begin for each situation SMae in ES2(Q) do: begin

if SMae belongs to a situation sequence, FSh, then
register in FSh that SMae has appeared:

find activity, AVp, in AK(SMae), with the greatest
motivation such that: (a) the resources needed for
execution of the activity AVp could be available, (b)
AVp can be executed in object Q, (c) the motivation
to execute AVp is great enough;

if such activity AVp is found then begin put (SMae. AVp)
in the list LAst of activities which should be executed;
delete (ase.Sae.SMae,...) in ES2(Q) end end end;

D6. handle not foreseen situations which have appeared in
structured objects in TOS and are registered in the list
LnexS (s. D1.5) as follows:
for each element EnexS(Q)=(Q.M(Q), (as 1.Sa1.S.Ma1,...),

. . . .(ass.Sas.SMas....)) in LineXS do:
begin determine activities, AVg.j=1,....W. Such that: (a)

a situation, SMge, in EnexS(Q) is initial situation of
the activity AVg, (b) AVg can be executed in object Q,
(c) the motivation to execute AVg is great enough, (d)
the resources needed for execution of AVg may be
available;

put these activities (SMge. AVg), j=1,....W., in the list
LAst to execute them end;

D7. handle objects and situations, in the list LOSf (with
elements EOSf(Q), s. D1.6), which are not appeared in
structured objects in TOS, although they should be there,
as follows:
for each element EOSf(Q)=(Q.M(Q), ob (pr(Of1).M

(Of1)),(pr(Ofa). M(Ofa)): sit (pr(Sfl),SMfl), . . .
, (pr(Sfcd).SMfd)) in LOSf do: begin build the following
situations:
SOfi:=object M(Ofi) is not appeared in object Q,

although it should be there with probability pr(Ofi),
for i=1,. a.

SMFe:=situation SMfe is not appeared in object Q,
although it should be there with probability pr(Sfe),
for e=1,d;

increase the attention to situations SOfi, i=1,....a, and
SMFe, e=1,d, according to the relevant rules
given in AS6; apply the relevant rules, given in
Sect. 2.1. in AS6 and in AS5) to update the
relevant values befaS.b.t), des(aS.b.t) and other
emotion intensities, with regard to the appeared
situations SOfi, i=1,....a, and SMFe, e=1,...,d;

WSF:={SFSF=SOfi, isa, and rosa(aS,SOfit) >10 or
SF =SMFe, esd, and rosa(aS, SMFe,t) > 10}
(situations which are not in WSF are unimportant for
aS);

10

15

25

30

35

40

45

50

55

60

65

28
determine activities, AVgi, i=1,....W. Such that: (a) a

situation, SFgi, in WSF, is an initial situation of the
activity AVgi, (b) AVgi can be executed in object Q,
(c) the motivation to execute AVgi is great enough,
(d) the resources needed for execution of AVgi may
be available;

put these activities (SFgij, AVgi), i=1,..
LAst, to execute them end;

5.3. Complete Description of the Steps D1.1,D7
D1.1. for each structured object, Q, in the tree TOS build

lists: begin
nCS1(Q):=nOS(Q); nCS(Q):=nil (in KTOS): dOS1(Q):=

dOS(Q); dOS(Q):=nil;
EOSf(Q):=nfCS(Q) (EOSf(Q) is new element of the list

LOSf); nf(OS(Q):=nil; for elements EOSa(Masi) of the
list LOSa(Q), build elements: begin
nOSa1 (AVh, su-akhj):= nOSa(AVh, su-akhj); nGSa

(AVh, Su-akhj):=nil (in EOSa(Masi));
dOSal (AVh, su-akhj):=dOSa(AVh, su-akhj); dOSa

(AVh, Su-akhj):=nil;
EOSal (Q.Masi)=(nOSal (AVh.su-akhj), dOSal (AVh,

Su-akh) end;
for each list dOS1 (Q) (of disappeared objects and simple

situations in Q) do: build list dmS(Q) of disappeared
meta-situations, mSMds, in object Q using the lists
dOS1(Q) and amS(Q) (mSMds must have at least an
object or a situation, listed in dOS1(Q), as component,
and mSMds must be registered in the list amS(Q) and
recognized by the procedure lamS as not present in Q);

delete these meta-situations in the list amS(Q), which are
in dmS(Q):

for objects, Odi, and situations, SMde, in the lists dOS1
(Q) and dmS(Q) do: begin
decrease the attention and the desire for curiosity with

regard to Odi and SMde, i.e. decrease the values
des(aS.AUw(Odi), t), des(aS.AUw(SMde),t), des
(aS.NEw(Odi),t), des(aS.NEw(SMde),t), according
to relevant rules in AS6):

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“object Odi, or situation SMde, is disappeared from
object Q' (examples of such rules in AS6): MA3.1.1,
MA3.2.1, MA3.3.1) end;

D1.2. LS1:=nil; for each list LOSa(Q) in the tree TOS do:
begin
using the lists nCSal (AVh.su-akhj) and dOSa1 (AVh.su

akhj) in the lists EOSal (Q.Masi), and the lists dmS(Q)
in TOS, build lists: begin

EnCSa2(AVh)—of just appeared objects and simple situ
ations (with the time point of identification by WP)
which are expected when the Sub-activity Su-akhj.
which is in ZuA(AVh), is being executed;

EdOSa2(AVh)—of objects and simple situations which
appeared when the Sub-activity Su-akh, which is in
ZuA(AVh), is being executed, and which now have
disappeared;

dmSa(AVh)—of meta-situations which appeared when
the Sub-activity Su-akh is being executed, and which
now have disappeared (meta-situations in this list are in
the list apSa(AVh, Su-akhj), in ZuA(AVh), and in a list
dmS(Q));

nmSa(AVh)—of new appeared meta-situations (with the
time point of identification) which are declared as
expected in the Sub-activity Su-akh (these meta

..w, in the list

US 7,024,277 B2
29

situations must contain as component at least one
object or situation from EnCSa2(AVh)) end;

for elements EnOSa2(AVh), EdOSa2(AVh) and dmSa(AVh)
do: begin
mark these situations with was (as was been), in the list

apSa(AVh.su-akhj), which are in the lists EdOSa2
(AVh) and dmSa(AVh);

mark these objects and simple situations with was (as
was been), in the list apOSa(AVh.su-akhj) (in ZuA
(AVh)), which are in the list EdOSa2(AVh):

put all objects and situations from EnOSa2(AVh) into
apSa(AVh.su-akhj) and mark them with is:

ES 1 (AVh):=the list of new situations which have
appeared when the sub-activity Su-akhj (in ZuA(AVh))
is being executed, and which are expected in Su-akh—
each situation in ES1 (AVh) is either in EnOSa2(AVh)
or in nmSa(AVh), and is foreseen in Su-akh (ES1(AVh)
is an element of the list LS1);

put all situations from the list ES1(AVh) into the list
apSa(AVh) (in ZuA(AVh)) end end;

D1.3. LS2:=nit; build lists ES2(Q) (elements of the list
LS2) of just appeared and expected situations in structured
objects, Q, as follows: begin

put all new simple situations which are expected in M(Q),
from the list nGS1 (Q) (expected situations are marked
with exp) into the list ES2(Q), as given in (5.1);

using the lists nCS1(Q), apOS1 (Q) and amS(Q) detect
(using the procedure lamS) new appeared meta
situations, mSMne, such that mSMne contains at least
one object or simple situation from nGS1(Q) as com
ponent and mSMne is not in amS(Q); if such situation
mSMne is recognized then put mSMne in the lists
ES2(Q) and amS(Q);

delete these object and situation models in foS(Q), EOSf
(Q) and fmS(Q), which are in nGS1 (Q) and ES2(Q);

for objects, Oli, in nGS1 (Q) and situations, Sle, in
ES2(Q) do: begin increase the attention and the desire
for curiosity with regard to Oli and Sle, i.e. increase
the values des(aS.AUw(Oli),t), des(aS.AUw(S1e),t),
des(aS.NEw(Oli),t), des(aS.NEw(S1e),t), according to
the relevant rules in AS6;

apply the relevant rules, given in Sect 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“object Oli, or situation Sle, is appeared in object Q'
end end;

D1.4. for each command, BOf, in the list LB of received
orders do: begin

if order BOfis given from an authorized person or system,
Pa then begin
des(aSWA(Pa),t):=min(des(aS, WA(Pa),t)+1.5*(wg

(BOf)+2.5* ag(Pa)), 18* ag(Pa));
des(aS, AN,t):= min(des(aS, AN,t)+1.5* (wg (BOf)+

2.5* ag(Pa)), 18* ag(Pa));
where WACPa), wg(BOf) and ag(Pa) are explained in

Sect 3.3 end;
if BOf is an order, from authorized Pa, to abandon the

execution of an activity, AVg (S. rules RPa1, RPa2 in
Sect. 3.3) then begin abandon the execution of the
activity AVg:
put (BOf, ZuA(AVg), . . .) in the list Lab Ao of

abandoned activities (by a command);
delete ZuA(AVg) in Lexint and update the relevant list
PAH, LCMR, LuA, LuCO, LuMR;

befaS, WA(Pa),t):=min(befaS, WA(Pa),t)+wg(BOf)+
2.5* ag(Pa), 8.5* ag(Pa)) (s. Sect. 3.3);

5

10

15

25

30

40

45

50

55

60

65

30
des(aS, WA(Pa),t):=max(des(aSWA(Pa),t)-1.9*(wg

(BOf)+2.5* ag(Pa)), 1.6*ag(Pa));
befaSAN,t):=min (befaSAN,t)+(wg (BOf)+2.5* ag

(Pa)), 8.5*ag(Pa));
des (aS, AN,t):=max(des(aSAN,t)- 1.9*(wg(BOf)+

2.5* ag(Pa)), 1.6*ag(Pa));
apply the relevant rules, given in Sect. 2.1. in AS6 and

in AS5) to update the relevant values befaS.b.t),
des(aS.b.t) and other emotion intensities, in the case
“activity AVg is abandoned—no goal situation of
this activity will be reached end

else begin if BOf is an order, from authorized Pa, to
continue the execution of an abandoned activity, AVg,
which is registered in the list Lab Ao or LabD then
begin
put ZuA(AVg) from the list Lab Ao or LabD into the list

Lexint,
update ZuA(AVg) and put the pointer P(Lexint,ZuA

(AVg)) to ZuA(AVg), in Lexint, into the relevant list
LuA, LucO or LuMR (of interrupted activities wait
ing for execution);

befaS, WA(Pa),t):=min(befaS, WA(Pa),t)+wg(BOf)+
2.5* ag(Pa), 8.5* ag(Pa)) (s. Sect. 3.3);

des(aS, WA(Pa),t):=max(des(aS, WA(Pa),t)-19*(wg
(BOf)+2.5* ag(Pa)), 1.6*ag(Pa));

befaSAN,t):=min (befaSAN,t)+(wg (BOf)+2.5* ag
(Pa)), 8.5*ag(Pa));

des (aS, AN,t):=max(des(aSAN,t)- 1.9*(wg(BOf)+
2.5* ag(Pa)), 1.6*ag(Pa));

apply the relevant rules, given in Sect. 2.1. in AS6 and
in AS5) to update the relevant values befaS.b.t),
des(aS.b.t) and other emotion intensities, in the case
“activity AVg will be executed—a goal situation of
this activity can be reached end

else begin if BOf is an order, from authorized Pa, to
execute an activity, AVf then begin

determine an initial situation, SMfae, of the activity AVf
Such that: (a) from SMfae can be reached a good goal
situation of the activity AVf, i.e. motakt is relative
great, where motakt is the result of the operation
mot(aS.SMfae. AVftmotakt, pg.SMfg.t2...art.ZV), (b) aS
can reach the situation SMfae by some elementary
(motion) activities OAfa1: . . . ;OAfar:

if such initial situation SMfae is determined then put
(“ord.BOf Pa. AVfSMfae.OAf1,OAfr; ...) in the
list LAst (the list of activities which should be
executed)

else inform Pa that no initial situation of the activity AVf
is within reach at the present time end

else inform Pa that “I” will not perform the command BOf
end end end;

D1.5. for structured objects, Q, in the tree TOS, build lists
EnexS(Q) (element of the list LnexS) of not foreseen
situations in object Q as follows: begin LnexS:= nil;

put each not foreseen simple situation, marked with nex,
from the list nGS1 (Q) into EnexS(Q);

using the lists nCS1(Q) and apOS(Q), detect all new
appeared meta-situations, mSge, such that: (a) at least
one unexpected object or unexpected simple situation
in nGS1 (Q) is an essential component of meta-situation
mSge, (b) mSge is recognized by the procedure lamS
as model mSMge and mSMge is not expected in the
object model M(Q), (c) all components of the situation
mSge have appeared in Q;

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).

US 7,024,277 B2
31

des(aS.b.t) and other emotion intensities, in the case
“new unexpected situation mSge is appeared in Q', put
the new recognized meta-situations (mSge.mSMge)
into EnexS(Q) and amS(Q) (with nexp) end;

D1.6. in elements EOSf(Q) of the list LOSf are the
recognized objects and simple situations which are not
appeared in object Q, although they should be present in Q;
let (s. D1.6 in Sect 5.2):

using the objects and simple situations in EOSf(Q) and
fCS(Q), detect meta-situations, mSMfe, which are not
appeared in Q, although they should be present in Q
(according to the model M(Q)). and which do not occur
in the list fmS(Q);

put these situations (pr(mSfe).mSMfe) (for pr(mSfe)
>0.75) into the lists EOSf(Q) and fmS(Q):

D2. we use the procedure mot and functions introduced in
Sect. 3.1 and 3.3: let function priority((SMae. AVy,t): real;

begin mot(aS.S.Mae. AVy,t, motacty.pc.SMc,t3.art.ZV);
if Zvs -1.2 min then priority:=-100000 else begin if

activity AVy is not performing a command then
priority:=motacty4.5/sqrt(ZV+16) else priority:=mot-ord

(aS.BOf..AVy,SMae, Pa,t)*4.5/sqrt(t2-t-16), where
t2=to+zt(BOf) and aS received the order BOf at time to
end end;

initiate the execution of activities in the list LAst as
follows: begin LAst1:= nil; for elements EAst(AVi) in
LAst do begin

if EAst(AVi)=(ord.BOfi.Pai, AVSMaie, . . .) then begin
if t2-ts -1.2 min then begin because the execution of
activity AV is behind time, ask Pai whether the activity
AVi should be executed end else

begin if the initial situation SMaie in EAst(AVi) can still
be reached then EAstl (AVi):=EAst(AVi) where EAst1
(AVi) is element of the list LAst1 else begin detect new
initial situation, SMain, such that aS can reach SMain
by some motion activities OAin1,OAinr and from
SMain can be reached an acceptable goal situation by
the activity AVii;

if such initial situation is detected then begin put SMain
and OAinj, j=1,.r, in EASt(AVi);
EAst1 (AVi):=EAst(AVi) end else begin inform Pai that,

at present, no good initial situation of the activity AVi
can be reached end end end end end;

while LAst1 znil do begin choose activity, AVg, from
LAst1, such that
priority (SMgae, AVg,t)=max(priority (SMsai, AVs,t),

for EAst1 (AVs) in LAst1);
if the needed resources (also processor Pra and agents/

robots) for execution of activity AVg are not free then
fr:=true else

begin detect activities AVX1, ... AVxm, in the list Lexint,
such that (a) the sub-activities in ZuA(AVxi), is m, are
being executed now, (b) priority (SMgae, AVg,t)
21.1*max(priority(SMxian, AVxi,t), for is m), where
SMxian is the initial situation at which the execution of
AVxi began, (c) if the executions of the sub-activities in
ZuA(AVxi), is m, are interrupted, then the resources
needed for execution of the activity AVg will be free;

if such activities AVxi, ism, are determined then fr=true
else fr:=false end;

if fr=true then begin build the initial execution state,
ZuA(AVg), of the activity AVg (e.g. put motactg. in

10

15

25

30

35

40

45

50

55

60

65

32
ZuA(AVg)) and put this state in the list Lexint, and put
the pointer to ZuA(AVg) (in Lexint) into the relevant
list LuA, LucO.LuMR;
apply the rule BZ1 given in AS6: delete EAst1(AVg)

and EAst(AVg) in the lists LAst1 and LAst end else
delete EAst1 (AVg) in LAst1 end end;

D3. control the execution of sub-activities in the list
Lexint as follows:

D3.1. if processor Pra is executing a control-activity,
contr-Su-acty, of a sub-activity in ZuA(AVy), i.e. in PAH are
values H1=pointer to ZuA(AVy) in Lexint and H2="co-ac
then begin

if H3='ei-ak1 then begin if H5="end1 then begin H3:=
obser: H5:=nil; H4:=t; H 11:=pointer to observ(tatyj,
FOSMy,t) in contr-Su-acty end end else begin

if H3="obser then begin if H5="end-obs' (this value
assigns to H5 the Subsystem Ex-contr-motion, after
execution of observ(taty. . . .)) then begin H3:="obs
sit: H4:=t; H5:=nil end end else begin

if H3="obs-sit and t-H42ctob then begin using the list
apSa((AVy,su-act(...)) in ZuA(AVy) and ES1 (AVy), find
the first situation expression sitExpyje in contr-Su-acty
which holds (i.e. the situation sitExpyje is appeared);
H3:= c-akt: H5:= nil; H 11:=pointer to the elementary
activities OAXyje1: . . . ;OAXyief (in CAyje) in contr
Su-acty end else begin

if H3="c-akt then begin if H5="end then begin (contr
Su-acty is performed) aty:=O (in contr-Su-acty);
PAH:=nil end end end end end end;

D3.2. for each element ES1(AVy)=(AVy, P(Lexint,ZuA
(AVy)), (sy1.SMy1):(Syp.SMyp)) of the list LS1 (s.
D1.2), where Syi (recognized as SMyi, is p) are just
appeared situations which are expected when sub-activity,
su-act(SMySMy), in ZuA(AVy), is being executed, do:

if the execution of the sub-activity su-act(SMySMy) is
finished. i.e. a situation SMyi is successor (in the
activity schema AVy) of the node SMy then begin
update ZuA(AVy) in Lexint;
delete pointer P(Lexint.ZuA(AVy)) in the relevant lists
PAH, LCMR, LuA:

if processor Pra is actually performing control-activity
contr-Su-acty of this Sub-activity then begin close this
control-activity; PAH:=nil end;

if the execution of the activity AVy is finished then begin
close the execution of the activity AVy;
put the reached final situation SMyi of the activity AVy

in the list LS2, as given in D1.3:
if AVy performed a command and SMyi is a goal

situation then apply the rule RWAN3 (Sect. 3.3);
apply the relevant rules, given in Sect. 2.1, in AS6 and

in AS5) to update the relevant values befaS.b.t),
des(aS.b.t) and other emotion intensities, in the case
“activity AVy is finished and its final situation SMyi
is reached’’:

delete the element ES1(AVy) in LS1 and ZuA(AVy) in
Lexint end else begin

apply the relevant rules, given in Sect. 2.1, in AS6 and
in AS5) to update the relevant values befaS.b.t).
des(aS.b.t) and other emotion intensities, in the case
“between situation SMyi of the activity AVy is
reached’;

su-act(SMyi.SMy2e):=the next sub-activity of the activity
AVy, which will be executed, such that motsu-act
(SMyi.SMy2e,t)=max(motsu-act(SMyi.SMy2n,t), for
each successor SMy2n of the node SMyi, such that the
resources for execution of the sub-activity Su-act(SMyi,
SMy2n) will be available), (motsu-act is defined in
Sect. 3.2):

US 7,024,277 B2
33

update ZuA(AVy) in Lexint and put the pointer P(Lexint,
ZuA(AVy)) in the relevant list LuA, LuMR or LucO:

using the expected situations given in Su-act(SMyi,
SMy2e), build the list exOSa(AVy, su-act(SMyi,
SMy2e)) of objects and simple situations which can
appear when this Sub-activity is being executed;

update the list EOSa(Mas2e) in the object QX (if this list
is not in Qx then build it) in which the object Mas2e is
being, where Mas2e is the object (e.g. machine, agent,
processor Pra) which will execute this sub-activity and
EOSa(Mas2e) is element of the list LOSa(Qx);

if su-act(SMyi.SMy2e) contains control-activity contr-su
acty2e then begin aty2e:=0 (in contr-Su-acty2e); put the
pointer to contr-Su-acty2e, in ZuA(AVy), into the list
LuA end end end;

D3.3. control whether the duration of execution of a
Sub-activity lasts too long as follows:

Sn:=Sn+1; if Sn>Snl then begin
for each state ZuA(AVx) in Lexint do begin

if the sub-activity in ZuA(AVx) is executed (without
interruptions) longer than ta2X, where ta2X is the
maximum time period of execution of this Sub-activity
then begin
abandon the execution of this sub-activity and the

activity AVx;
put ZuA(AVx) in the list LabD and delete ZuA(AVx) in

Lexint;
update relevant lists PAH, LuA, LCMR, LucO, LuMR

end end end;
D4. control activities which are waiting for execution as

follows:
D4.1. control whether the duration of execution of an

activity lasts too long as follows:
an:=an+1; if an>an1 then begin

for each state ZuA(AVx) in Lexint do begin
if activity AVX is executed (without interruptions)

longer than 1.3*tax, where tax is the time period
needed for execution of this activity then begin
abandon the execution of the activity AVx;

put ZuA(AVx) in the list LabD and delete ZuA(AVx) in
Lexint;

update relevant lists PAH, LuA, LCMR, LucO, LuMR
end end end;

D4.2. control sub- and control-activities registered in the
list LuA, which are waiting for execution by processor PrA
as follows:

let EuA(AVy)=(P(Lexint,ZuA(AVy)),axy. . . .) be an
element of the list LuA, where axy=act if Pra should
perform the sub-activity in ZuA(AVy), axy=' co-a if
PrA should perform the control-activity in ZuA(AVy);

let, for elements EuA(AVy) in LuA,
mots-c-a(AVy,SMyi,SMyi,t)=motsu-act (AVy,SMyi,

SMyit), if axy=act (s. Sect 3.2)
=mot-cont(AVy.SMyi.SMyity,t), if axy='co-a(S. end
of Sect. 2.3)

where tyi denotes the duration of execution (without
interruptions) of the sub-activity in ZuA(AVy), after the
last control;

if the software Ex-contr-motion of the processor Pra has
interrupted sub- or control-activity of an activity AVx
(this information is in PAH) then begin put new ele
ment EuA(AVx) in LuA;
update ZuA(AVx) in Lexint; PAH:=nil end:

if processor Pra is free and LuAznil then begin choose
the element EuA(AVg), from the following set MuA,
with the maximum value mots-c-a(AVg.SMgi.SMgt),

10

15

25

30

35

40

45

50

55

60

65

34
MuA={EuA(AVy) the sub- or control-activity, s-c-ayj,

in EuA(AVy), can be executed by the processor Pra
(when aS, i.e. PrA, before executes some motion
activities BAy 1: . . . BAya) and the resources for
execution of s-c-ayi are available:

let BAg1: ... BAga are the mentioned motion activi
ties which PrA has to perform before s-c-ag; register
BAF=BAgl; . . . ;BAga:S-c-ag (for execution) in
PAH (i.e. H2:=axg: H11:=the pointer to BAF; H5:=
nil, etc.);

update ZuA(AVg) in Lexint and delete element EuA
(AVg) in LuA end else

begin if LuAznil then begin choose the element EuA
(AVg), from the following set MA1, with the maximum
value mots-c-a(AVg.SMgi.SMgt).
MA1=(EuA(AVy) the sub- or control-activity, s-c-ayj,

in EuA(AVy), can be executed by the processor Pra
(when aS, i.e. PrA, before executes motion activities
BA1: ... BAya) and the resources for execution of
s-c-ay will be available if the sub- or control-activity
(Su-co-actaw in ZuA(AVa)), which actually is being
performed by Pra, is interrupted);

if mots-c-a(AVg,SMgi.SMgt)> 1.35*mots-c-a(AVa,
SMav.SMaw,t) then begin order the software
Ex-contr-motion (in Pra) to interrupt the execution
of Su-co-actaw end end end;

D4.3. control sub-activities, registered in Lu(OO, waiting
for execution by a processor PrCOn as follows:

begin if LucOznil then begin nex:=false;
repeat choose element EuCO(AVg), from the list LucO,

with the greatest value motsu-act(AVg.SMgi.SMgt)
(motsu-act is defined in Sect. 3.2), where Su-act(Smgi,
SMg) is in ZuA(AVg);

ifa processor PrCof (1sfsip) is free then m:=felse begin
choose element ECMR(AVs), from the following set
MC, with the minimum value motsu-act(AVs.SMse,
SMSV,t)

MC={ECMR(AVy) is in LCMRECMR(AVy)=(P(Lexint,
ZuA(AVy)), PrCOn, activ. . . .), 1 sinsip, and the
sub-activity su-act(SMye,SMy V) (in ZuA(AVy)) can be
interrupted;

if such element ECMR(AVs) is chosen and motsu-act
(AVg, SMgi, SMg,t)> 1.15 motsu-act (AVs, SMse,
SMSV,t) then begin interrupt the execution of the sub
activity su-act(SMse.SMSV) being executed by the
processor PrCOm, where ECMR(AVs)=(...PrCOm,
activ. . . .);
delete the element (P(Lexint.ZuA(AVs)), co-a) in
LuA or PAH, if such element is there;

delete element ECMR(AVs) in LCMR and put the
pointer P(Lexint.ZuA(AVs)) in the list LucO:

update ZuA(AVs) in Lexint and update the node KTOS
(PrCOm) end else nex:=true end:

if nex=false then begin put the element (P(Lexint,ZuA
(AVg)), PrCOm, “activ”, . . .) in LCMR:
delete the element EuCO(AVg) in LucO and update the

node KTOS(PrCOm);
if the sub-activity in ZuA(AVg) contains control-activity

then put the element (P(Lexint.ZuA(AVg)), co-a) in
the list LuA;
update ZuA(AVg) in Lexint and begin to execute the

sub-activity in ZuA(AVg) by the processor PrCOm
end until nex=true or Lu(OO=nil end end:

D4.4. control sub-activities registered in the list LuMR,
waiting for execution by an object, Max, (machine, robot,
agent, emotional system), as follows: begin LuM1:=LuMR;

US 7,024,277 B2
35

for each Element ECMR(AVx) in LCMR do begin
if ECMR(AVx)=(...Maxj, interup-st'. . . .) (i.e. when
Maxi received, from DKA, order “interrupt the sub
activity which is in ZuA(AVx)) then begin

if in the list ES2(Maxi) or amS(Maxi) or apOS(Maxi) (in
node KTOS(Maxj)) is the state “Maxi has interrupted
the sub-activity, sub-acxj. (which is actually in ZuA
(AVx))” then begin
delete the control-activity, given in sub-acxj, in the

relevant list PAH or LuA;
put EuMR(AVx) in LuMR and delete ECMR(AVx) in

the list LCMR:
update ZuA(AVx) and put the engagement state free

in node KTOS(Maxi);
mark the resources, RXve, which were used by the

sub-activity sub-acx as free end end end;
while LuM1znil do begin choose the element EuM1

(AVy)=(P(Lexint.ZuA(AVg)).Magi. . . .), from the list
LuM1, with the maximum value motsu-act(AVg.SMgi,
SMgt);

let Resg are the resources needed for execution of the
sub-activity su-act(SMgi.SMg);

if object Magi is free and resources Resgj are free then
begin put element ECMR(AVg)=(P(Lexint, ZuA
(AVg)). Magi, activ. . . .) in LCMR;

if su-act(SMgi.SMg) contains control-activity then put
(P(Lexint.ZuA(AVg)), co-a. . . .) in LuA:
for objects Rgje in Resgj. update KTOS(Rgje)—e.g.

engagement state:="engag:
update ZuA(AVg) in Lexint, and delete the elements
EuMR(AVg) in LuMR and EuM1 (AVg) in LuM1;

update KTOS(Magi)—e.g. engagement state:="engag
activ;

begin the execution of the sub-activity su-act(SMgi,
SMg) by the object Magjend else

begin if in LCMR is no element (...Magi, interup-st'. . .
...) then begin

search for element ECMR(AVs)=(p(Lexint.ZuA(AVs)),
Magi, activ. . . .) in LCMR such that: (a) when the
sub-activity in ZuA(AVs) is interrupted then resources
Resg will be free, (b) motsu-act(AVg.SMgi.SMg,t)
>1.35*motsu-act(AVs,SMsu,SMsw.t);

if such element ECMR(AVs) is determined then begin
command Magi to interrupt the execution of the Sub

activity su-act(SMsu.SMsw);
put interup-st’ in ECMR(AVs) and update ZuA(AVs)

end end;
delete EuM1 (AVg) in the list LuM1 end end end;
D5. handle each foreseen situation, which just has

appeared in an object in TOS and is registered in the list LS2
(built in D1.3 and D3.2), as follows:

actmamot:=max(motacty, for activities AVy in Lexint,
where motacty is in ZuA(AVy) and denotes the moti
vation to execute the activity AVy);

for each element ES2(Q)=(Q.M(Q), (as1.Sa1.SMa1,...), ..
..(ask.Sak.SMak....)) in LS2 (s. (5.1)) do begin for each
situation SMae in ES2(Q) do begin

if SMae belongs to a situation sequence, FSh, in Q then
register in FSh that SMae has appeared;

AK1:={AVy is in AK(SMae) (s. Sect. 3.1) activity AVy is
in one of the following lists LA1,LA4 in object
model M(Q) (s. Sect. 2.2): (ex-act.....LA1, . . .).
(use-act'.....LA2, . . .), (act-in'.....LA3, . . .), (act
rem',LA4, . . .)}:

acf:=true; while AK1z () and acf=true do begin

10

15

25

30

35

40

45

50

55

60

65

36
choose activity AVp, from AK1, with the greatest

motivation, motactp, determined by the operation
mot(aS.S.Mae.AVp, t, motactippg.SMg,t2...art.ZVp) (s.
Sect. 3.1);

if motactp>0.25*actmamot then begin
if resources for execution of the activity AVp are

available then begin acf=false;
put the element (ac-sit.SMae, AVp,...) in the list LAst

and delete (ase.Sae.SMae. . . .) in ES2(Q)
end else begin search for activities AVX1, ... AVXr, in

the lists PAH and LCMR, such that: (a) if the
sub-activities in ZuA(AVxi), is r, are interrupted
then the resources for execution of the activity AVp
will be free, (b) motactpa1.3*motactxi, for i=1,...
r, where motactxi is in Zua(Vxi) and denotes the
motivation to execute activity AVxi;

if such activities AVX1,AVxr are determined then
begin put (ac-sit'.SMae.AVp, ...) in the list LAst and
delete (ase.Sae.SMae...) in ES2(Q); acf:=false end else
delete AVp in AK1 end end else acf=false end end end;

D6. handle not foreseen situations which just have
appeared in structured objects, Q, in TOS and are registered
in the list LnexS (s. D1.5) as follows:

actmamot:=max(motacty, for activities AVy in Lexint,
where motacty is in ZuA(AVy) and denotes the moti
vation to execute the activity AVy);

for each element EnexS(Q)=(Q.M(Q),(as 1...Sul.SMul....).
. (ass.Sus,SMus,...)) in LnexS do begin

for each situation (Sui.S.Mui) in EnexS(Q) do if|rosa
(aS.SMui,t)>500 then inform: “unexpected situation
(Sui.S.Mui) has appeared in object Q';

Ene1:=EnexS(Q); acs:=true; Aa:=0; while acs=true do
begin

AKU:={AVria situation SMure in En1 is initial situation
of the activity AVr, and AVr is not in Aa and occurs in
the list (act-in'.....LA3. . . .) or (act-rem.....LA4. . .
...) occurring in object model M(Q) or clo(M(Q)));

if AKUz() then begin choose activity, AVg, from AKU,
with the greatest motivation, motactg. determined by
the operation mot(aS.S.Muge, AVg.t.motactg.pX.SMX,
t2...art.Zvg) (s. Sect. 3.1);

if motactg>0.2*actmamot then begin
if resources for execution of the activity AVg are free then

begin Aa:=Aau(AVg);
put the element (ac-sit.SMuge. AVg....) in the list

LAst, to execute AVg, and delete (ase.Suge. SMuge,
. . .) in Enel end else

begin search for activities AVx1,AVXd, in the lists
PAH and LCMR, such that: (a) if the sub-activities in
ZuA(AVxi), is d, are interrupted then the resources for
execution of the activity AVg will be free, (b)
motactg>1.2*motactXi, for i=1,...,d, where motactXi
is in Zua(Vxi) and denotes the motivation to execute
activity AVxi;

if such activities AVX1,AVxd are determined then
begin Aa:=Aau(AVg);

put (ac-sit'.SMuge. AVg, ...) in the list LAst, and delete
(ase.Suge.SMuge...) in Enel, end else Aa:=Aau(AVg)
end end else acs:=false end else acs:=false end end;

D7. handle objects and situations, in the list LOSf (with
elements EOSf(Q), s. D1.6), which have not appeared in
structured objects in TOS, although they should be there
now, as follows:

actmamot:=max(motacty, for activities AVy in Lexint,
where the motivation motacty is in Zu.A(AVy));

US 7,024,277 B2
37

for each element EOSf(Q)=(QM(Q), ob (pr(Of1).M
(Of1)),(pr(Ofa). M(Ofa)): sit (pr(Sfl),SMfl), . . .
, (pr(Sfcd).SMfd)) in LOSf do begin build the following
situations:
SOfi:=object M(Ofi) is not appeared in object Q

although it should be there now with probability
pr(Ofi), for i=1,.a;

SMFe:=situation SMfe is not appeared in object Q
although it should be there now with probability
pr(Sfe), for e=1,d;

increase the attention to situations SOfi, i=1,. . . .a, and
SMFe, e=1,...,d, according to the relevant rules given
in AS6); apply the relevant rules, given in Sect. 2.1, in
AS6 and in AS5) to update the relevant values
bet(aS.b.t), des(aS.b.t) and other emotion intensities,
with respect to the appeared situations SOfi, i=1,....a,
and SMFe, e=1,...,d;

WSF:={SFSF=SOfi, isa, and rosa(aS,SOfi,t)>10 or
SF=SMFe, esd, and rosa(aS.SMFe,t)>10} (situations
which are not in WSF are unimportant for aS);

for each situation SF in WSF do if rosa(aS.SF,t)>500
then inform: "situation SF has arisen':

A1:={AVZuA(AV) is in the list Lexint or AV is in LAst
and the execution of the activity AV began or begins
from a situation in WSF};

acs:=true; while acs=true do begin
AKF:=(AVfa situation SF in WSF is initial situation of

the activity AVf and AVf is not in A1 and occurs in one
of the following lists (use-act.....LA2, . . .), (act-in,
...LA3, . . .), (act-rem.....LA4. . . .) occurring in
object model M(Q) or clo(M(Q))}:

if AKFz0 then begin choose activity, AVg, from AKF,
with the greatest motivation, motactg., determined by
the operation mot(aS.SFgi,AVg.t.motactg.pX.SMX,t2.
art,ZVg) (S. Sect 3.1);

if motactg>0.3*actmamot then begin
if resources for execution of the activity AVg are available

then begin A1:=A1U(AVg);
put the element (ac-sit.SFgi,AVg...) in the list LAst, to

execute AVg, and delete the situation SFgi in WSF
end else begin

search for activities AVX1, ... AVxd, in the lists PAH
and LCMR, such that (a) if the sub-activities in
ZuA(AVxi), isd, are interrupted then the resources
for execution of the activity AVg will be available,
(b) motactg>1.3*motactxi, for i=1,.d, where
motactXi is in Zua(Vxi) and denotes the motivation
to execute activity AVxi;

if such activities AVX1,AVXd are determined then
begin A1:=A1U(AVg);
put (ac-sit. SFg. AVg, . . .) in the list LAst and delete
SFg in WSF end else

A1:=A1U(AVg) end end else acs:=false end else acs:=
false end end.

References

InLM. d’Inverno, M. Luck: Understanding agent systems:
Springer-Verlag Berlin Heidelberg (2001).

MeA). A. M. Meystel, J. S. Albus: Intelligent systems:
architecture, design and control; John Wiley & Sons, New
York (2002).

JMu) J. P. Miller: The design of intelligent agents, a layered
approach; Lecture notes in artificial intelligence, Vol.
1177, Springer-Verlag Berlin Heidelberg, (1996).

AS1A. Schurmann: An Example of a motivated Agent; (15
pages), (1998).

10

15

25

30

35

40

45

50

55

60

65

38
AS2 A. Schurmann: Cooperation in a motivated, Behav
iour based Multi-Agent System; (16 pages), (1998).

AS3 A. Schurmann: A simple thinking artificial Servant;
(48 pages), (1998).

AS4 A. Schurmann: An idea how to define Semantics for
a simple natural Language; (48 pages), (1999).

AS5 A. Schurmann: Darstellung von Emotionen in elek
tronischen Geraten; international Patent Application No.
PCT/DE00/03210; WIPO, Internation. publication num
ber WO 02/23474 A2. March 2002; English translation
“Representation of emotions in electronic devices” is
submitted to United States Patent and Trademark Office
(March 2002), U.S. application Ser. No. 10/089,369

AS.6 A. Schurmann: Determination der Befriedigung und
des Verlangens in virtuellen Wesen; international Patent
Application No. PCT/DE01/01416: WIPO, Internation.
publication number WO 02/084589 A1, October 2002:
English translation “Determination of satisfaction and
desire in virtual creatures’ U.S. Pat. No. 6,782,341 B2:
Aug. 24, 2004.
What is claimed is:
1. A method for determination and control of activities of

a non-biological emotional system, denoted by aS, said
system comprising: (i) a subsystem, denoted by WP for
perception of objects and situations, (ii) a set of needs, (iii)
rules and procedures for determining emotional intensities,
and (iv) models of objects and situations which can occur in
the Surrounding of the system aS, where to Such model can
be connected stimulus patterns with respect to said needs,
said method, comprising:

(a) a set of activity Schemas, or in short activities, which
the system aS can execute and which include said in
(iv) situation models some of which are initial and end
situations of the activity, and some of the end situations
are goal situations;

(b) determining the activity which handles a situation
currently perceived and which is not an expected
situation of an activity being executed or interrupted,
putting this activity with this situation into the list of
activities waiting for execution, and updating the emo
tional intensities depending on said perceived situation
using said in (iii) rules and procedures;

(c) intensities of satisfactions and desires with regard to
said in (ii) needs, and other emotional intensities of the
system aS, where these intensities are updated by using
said in (iii) rules and procedures;

(d) associating to each currently perceived situation the
activity which is being executed or interrupted, when
this situation is expected in this activity at present;

(e) associating to each command currently perceived the
activity which accomplishes this command and the
actual initial situation of this activity, and putting this
command with the associated activity and said initial
situation into the list of activities waiting for execution;

(f) determining the execution of activities and commands
waiting for execution by means of the present motiva
tions of the system aS to execute these activities and
commands;

(g) updating the intensities of satisfactions and desires and
other emotional intensities of the system aS with regard
to the needs occurring in the stimulus patterns which
are in the achieved or not achieved end situation of the
activity which has been finished or abandoned; and

(h) updating the intensities of satisfactions and desires of
the system aS with regard to the need to perform
commands and wishes of an authorized person or

US 7,024,277 B2
39

system, and the need for recognition and
acknowledgement, when a command has been finished
or abandoned.

2. The method according to claim 1 wherein the present

40
chosen sub-activity with the greatest motivation, if this
motivation is greater than the motivation to execute the
sub-activity being executed till now.

6. The method according to claim 4, wherein controlling
motivation of the emotional system aS to execute an activity 5 the execution of a Sub-activity by an other object comprising
is determined by stimulus intensities of the end situations of
this activity at the present time and in the future, wherein a
stimulus intensity of a situation is determined by stimulus
patterns connected with this situation, where a stimulus
pattern shows the changes of satisfaction and desire inten
sities with regard to the need connected with this stimulus
pattern in a period of time, and

the intensities of satisfactions and desires of the systems
aS at the present time and in the future with regard to
the needs which are connected with said stimulus
patterns.

3. The method according to claim 1, wherein the present
motivation of the emotional system aS to execute a com
mand is determined by the motivation of the system aS to
execute the activity which accomplishes this command, and
the intensities of satisfactions and desires of the system aS
with regard to the need to perform and fulfil the commands
and wishes of an authorized person or system, and the need
for recognition and acknowledgment.

4. The method according to claim 1, wherein an activity
schema, or in short activity, contains a connected graph,
wherein:

the nodes are said in claim 1 situation models, or in short
situations, wherein some of these situations are initial
or end situations of the activity and some end situations
are goal situations, and to each end situation is con
nected at least one stimulus pattern with respect to a
need of the system aS:

to each arc is associated a Sub-activity, which specifies the
actions and operations which should be executed to
achieve the next node/situation of the sub-activity,
wherein the motivation to execute a sub-activity is
determined by the stimulus intensities of the end situ
ations of the activity, and Sub-activity includes a
control-activity if this sub-activity should be executed
not by the system aS but by an other object.

5. The method according to claim 4, wherein determining
and controlling the execution of activities waiting for execu
tion comprising the steps of

choosing from the list of activities waiting for execution
the activity with the maximum motivation to execute its
current Sub-activity, and

interrupting the execution of the sub-activity which is
being executed and continuing the execution of the

10

15

25

30

35

40

45

a control-activity connected with said Sub-activity com
prising situation models for expected situations which
can appear when this Sub-activity is executed by said
object, and elementary activities/operations, especially
an observation activity, which the emotional system aS
executes:

a motivation of the system aS to execute said control
activity where this motivation is determined by
the duration of the execution of this sub-activity after

the last execution of the control-activity by the
system aS, and

the motivation to execute the sub-activity in which said
control-activity occurs;

executing said elementary activities/operations to recog
nize whether a new said expected situation appeared;

and executing said elementary activities/operations to
correct or abandon the execution of this sub-activity by
said object, if said appeared situation shows that the
execution of this sub-activity is not optimal or wrong.

7. A method for perception of objects and situations,
which specify said perception subsystem WP of the emo
tional system aS of claim 1, comprising:

focusing the observation activity of the system aS on
these objects and situations, in the actual Surrounding
of the system aS, for which aS, at present time, has high
intensities of desires for attention and curiosity/
knowledge;

building an internal representation of the currently iden
tified Surrounding by means of a tree, wherein:
each node of the tree represents an actually recognized

object,
the Successors of a node are the recognized objects

which are at present in the object represented by said
node, and

recognized situations which are actually in an object
are registered in the node representing this object;
and

identifying objects and situations by means of a directed
graph which represents the structures and relations of
the object and situation models in the world of the
emotional system aS, where the nodes of the graph are,
said in (iv) of claim 1, object and situation models.

k k k k k

