3/062987 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 July 2003 (31.07.2003)

PCT

(10) International Publication Number

WO 03/062987 Al

(51) International Patent Classification’: GO6F 9/45

(21) International Application Number: PCT/US03/01211
(22) International Filing Date: 15 January 2003 (15.01.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/349,432 18 January 2002 (18.01.2002) US
10/341,107 13 January 2003 (13.01.2003) US
(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North

First Street, San Jose, CA 95131 (US).
(72) Inventors: SHINN, Matthew; 714 Hayes Street, San
Francisco, CA 94102 (US). WHITE, Seth; Apartment
B, 1045 Rivera Street, San Francisco, CA 94116 (US).
WOOLEN, Rob; 2531 14th Avenue, San Francisco, CA
94127 (US).
(74) Agents: MEYER, Sheldon, R. etal.; Fliesler Dubb Meyer
& Lovejoy LLP, Suite 400, Four Embarcadero Center, San
Francisco, CA 94111-4156 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR DYNAMIC QUERYING

(57) Abstract: ABSTRACT A user can generate queries dynamically at runtime without having to redeploy the appropriate EJB or
hard-code the query into the user application. A properties object can be generated to accept the query settings from the user. These
settings can be extracted at runtime when the appropriate finder method is invoked, such that the desired query statement, such as a
SQL statement, can be generated and executed against the database. This description is not intended to be a complete description
of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the

specification, the figures, and the claims.

10

WO 03/062987

15

20

25

PCT/US03/01211

SYSTEMS AND METHODS FOR DYNAMIC QUERYING

CLAIM OF PRIORITY

This application claims priority to the following applications each of
which is hereby incorporated herein by reference:

This application claims priority to U.S. Provisional Patent
Application No. 60/349,432, filed January 18, 2002, entitled “SYSTEMS
AND METHODS FOR DYNAMIC QUERYING,” which is hereby
incorporated herein by reference.

U.S. Patent Application No. entitled “SYSTEMS
AND METHODS FOR DYNAMIC QUERYING,” by Matt Shinn, et al., filed
on January 10, 2003.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material

which is subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the patent document
of the patent disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright rights

whatsoever.

FIELD OF THE INVENTION

The present invention relates to executing queries against a

database.

BACKGROUND
The Enterprise JavaBean (EJB) specification, published by Sun

Microsystems, Inc. of Palo Alto, CA, describes ways in which a user can
execute queries against a database, as well as ways in which a user can

communicate queries to an EJB container. Presently, the EJB 2.0

-1-

WO 03/062987 PCT/US03/01211

10

15

20

25

30

specification forces users to hard-code finder queries into a deployment
descriptor for an EJB. A user develops a query before deploying the EJB.
Once the EJB is deployed, the user is able to execute the query. A
problem exists with this approach, however, in that it is necessary to

redeploy the EJB every time the user wishes to run a new query.

BRIEF SUMMARY
Systems and methods in accordance with one embodiment of the

present invention can allow a user to dynamically generate a query to be
executed against a database. A properties object can be generated that
holds settings for the query, which can be specified by a user at runtime.
When the query is to be executed, the user or application can invoke an
appropriate finder method. The server receiving the call from the finder
method can extract the user-specified settings from the properties object
and parse the finder method in order to generate a query statement. The
server can then execute the query statement on the database and return
the appropriate results. The generating of the properties object and the
query statement can happen at runtime.

Other features, aspects, and objects of the invention can be

obtained from a review of the specification, the figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of a system in accordance with one

embodiment of the present invention.
Figure 2 is a flowchart showing the steps of a method that can be

used with the system of Figure 1.

DETAILED DESCRIPTION

Systems and methods in accordance with one embodiment of the

present invention can allow a user to define a query programmatically

rather than defining the query statically. Static queries are defined, for

2.

WO 03/062987 PCT/US03/01211

10

15

20

25

30

example, by hard-coding the static query into the deployment descriptor for
an EJB. Programmatic queries, or “dynamic queries”, allow users to
construct and execute queries in their application code. This can provide
several benefits over static queries which utilize static finder methods.

One such benefit is the ability to create and execute new queries
without having to update and redeploy an EJB. When deploying an EJB
with static queries, each query is read and parsed in order to generate the
SQL to be sent to the database. Finder methods can be utilized in
executing the query, which can be defined in the home interface of an
entity bean. An example of a finder method is findByPrimaryKey(), which
can accept an instance of a primary key and return an instance of that
entity type (or throw an exception). Additional finder methods can be
defined in local home or remote home interfaces, with each finder method
being associated with a query in the deployment descriptor. With dynamic
queries, however, the query and corresponding SQL can be generated at
runtime.

Another benefif is that the size of an EJB deployment descriptor is
reduced. Since the finder queries can be created dynamically, they do not
have to be statically defined in the deployment descriptor. For some
applications this approach may be a little slower, but the added flexibility
will outweigh the slight hit in performance for many users.

One system and method for implementing dynamic queries utilizes
the generation of a class such as an ejpHome class. Such a class can be
used to implement an extra interface with a method that can execute the
query. As shown in Figure 1, when a user 100 wants to execute a query
against a database 112 at runtime, an object such as a Java properties
object 104 can be generated that can be populated with the settings for the
finder method 106, such as a container-managed or bean-managed finder
method. The finder method 106 can then be invoked on the query home
of the appropriate EJB 108, which can be stored on a server 110 or EJB
container in communication with, and capable of executing SQL queries

-3-

WO 03/062987 PCT/US03/01211

10

15

20

25

30

against, a database 112. Once the call makes it into the server 110, the
properties object 104 can be inspected and the user settings extracted.
The finder method 106 can be parsed and the SQL query statement
generated that is to be sent to the database 112. The query is executed
and, depending on the user settings, the use of the results can be
determined. One possible result of such a query is a collection of EJBs.
Another possible result is a number of values or fields on certain EJBs that
match the query.

A method that can be used in accordance with the system of Figure
1 is shown in the flowchart of Figure 2. In the method, a properties object
is generated that contains user-specified settings for the query or the finder
method, as can be implemented through a user interface of an ejpHome
class 200. The appropriate finder method is invoked when the user or
application wishes to execute the query 202. The settings are extracted
from the properties object and the finder method is parsed in order to
generate the appropriate SQL query statement, although other database
or data source querying language statements may be generated by the
method 204. The SQL query statement is then executed against the
database 206.

One embodiment can be implemented through a simple API. To
enable the use of dynamic queries, users can add an element to their

deployment descriptor, such as:
<IELEMENT enable-dynamic-queries (#PCDATA)>
The enable-dynamic-queries element can be a sub-element of a descriptor

such as entity-descriptor. The value of enable-dynamic-queries can be
either “true” or “false” in this embodiment. Invoking a dynamic query when
dynamic queries have not been enabled can result in an exception being
thrown, such as java.rmi.AccessException or
javax.ejb.AccessLocalException, depending on whether it was invoked
from a Remote or Local interface.

A generated implementation class, such as Homelmpl that can be

A4

WO 03/062987 PCT/US03/01211

10

15

20

25

used for all EJB 2.0 Container-Managed Persistence (CMP) beans, can
implement a new interface such as QueryHome. A QueryHome interface

can declare a single method, such as:

public Object executeQuery(String query, Properties props) throws
FinderException, RemoteException;

There can also be a local version of QueryHome which may be referred to
as QueryLocalHome. The only difference between the interfaces can be
the “throws” clause of the executeQuery method. The QueryLocalHome

iinterface can declare a single method:

public Object executeQuery(String query, Properties props) throws
FinderException, EJBException;

The application code can make use of this interface as follows:

InitialContext ic = new InitialContext();

FooHome fh = (FooHome)ic.lookup(“fooHome")’

QueryHome gh = (QueryHome)fh;

String query = “SELECT OBJECT(e) FROM EmployeeBean e WHERE e.name
=‘rob’ *;

Properties props = new Properties();

props.setProperty(DynamicQuery.MAX_ELEMENTS, “10");

Collection results = (Collection)gh.executeQuery(query, props);

All options that can currently be specified for a static finder can be set in
a Properties object passed to the executeQuery method. The Properties
key for all valid options can be defined in a DynamicQuery interface. A list

of some valid entries is as follows:

WO 03/062987

PCT/US03/01211

Property:

Value:

Description:

GROUP_NAME

String

The name of the field-group whose
fields are to be loaded into the cache
upon execution of the query. Note
that in order for this to work, a finders-
load-bean or equivalent option may
need to be enabled for the EJB.

MAX_ELEMENTS

int

The max-elements attribute is used to
specify the maximum number of
elements that should be returned by a
multi-valued query. This option can
be similar to the maxRows feature of
JDBC.

5 INCLUDE_UPDATES

boolean

The include-updates tag is used to
specify that updates made during the
current transaction must be reflected
in the result of a query.

SQL_SELECT_DISTINCT

boolean

Used to control whether the generated
SQL 'SELECT’ will contain a
‘DISTINCT’ qualifier. Use of the
DISTINCT qualifier will cause the
RDBMS to return unique rows.

RETURN_TYPE

Siring

Indicates the return type of the
executeQuery method. Legal values
include Collection,
CursoredCollection, and ResultSet.
The default value is
java.util.Collection.

NEW_TRANSACTION

boolean

Indicates whether a new transaction
should be started for the execution of
the DynamicQuery

ISOLATION_LEVEL

String

Indicates the isolation level to be used
if 2 new transaction is started

10 RESULT_TYPE_MAPPING

String

Indicates whether EJBObjects or
EJBLocalObjects should be returned.
The legal values are Local and
Remote. If the query was executed on
QueryHome, EJBObjects will always
be returned. If the query was
executed on QueryLocalHome,
EJBLocalObjects will be returned by
default. A result-type-mapping of
Remote can be specified in this case if
EJBObjects are desired.

WO 03/062987 PCT/US03/01211

10

15

Ideally, dynamic queries execute nearly as fast as static queries.
Dynamic queries can invariably be somewhat slower since the queries can

require parsing at runtime, whereas static queries are parsed during

- deployment. The speed of dynamic queries can be increased, such as by

extending them to take query parameters and caching the parsed query
String.

The foregoing description of preferred embodiments of the present
invention has been provided for the purposes of illustration and description.
It is not intended to be exhaustive or to limit the invention to the precise
forms disclosed. Many modifications and variations will be apparent to one
of ordinary skill in the relevant arts. The embodiments were chosen and
described in order to best explain the principles of the invention and its
practical application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with various
modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the claims and their

equivalence.

WO 03/062987 PCT/US03/01211

10

15

20

25

30

What is claimed is:
1. A system for dynamically generating a query to be executed on a
database, comprising:

a properties object adapted to contain settings for a query as
specified by a user;

a finder method for initiating the query; and

a server capable of querying the database, the server capable of
receiving a call from the finder method and reading the settings from the
properties object in order to generate the appropriate SQL query
statements to be sent to the database.

2. A system according to claim 1, further comprising:
a user interface adapted to allow a user to specify the settings in the

property object.

3. A system according to claim 1, further comprising:

a client containing the properties object and the finder method.

4. A system according to claim 1, further comprising:
a bean associated with the database upon which the finder method

can be invoked.

5. A system according to claim 1, further comprising:

an element in a deployment descriptor for enabling dynamic
querying.

6. A method for dynamically generating a query to be executed against a
database, comprising:
generating a properties object containing settings for a query;
invoking a finder method;

extracting the settings from the properties object and parsing the

-8-

WO 03/062987 PCT/US03/01211

10

15

20

25

30

finder method in order to generate a query statement; and

executing the query statement on the database.

7. A method according to claim 6, wherein:

generating a properties object occurs at runtime.

8. A method according to claim 6, wherein:
extracting the settings from the properties object and parsing the
finder method in order to generate a SQL query statement occurs at

runtime.

9. A method according to claim 6, further comprising:
enabling dynamic querying by setting an element in a deployment

descriptor.

10. A method according to claim 6, further comprising:

allowing the user to specify the settings for the query at runtime.

11. A method for generating dynamic queries, comprising:

specifying settings to be used in generating the query using a user
interface;

generating a properties object to hold the settings;

invoking a finder method; and

parsing the finder method and reading the settings from the property

object in order to generate the query.

12. A system for generating dynamic queries, comprising:

means for generating a properties object to hold settings to be used
in generating a query;

means for invoking a finder method; and

means for parsing the finder method and reading the settings from

9-

WO 03/062987 PCT/US03/01211

10

15

20

25

30

the property object in order to generate the query.

13. A computer-readable medium, comprising:

means for generating a properties object to hold settings to be used
in generating a query;

means for invoking a finder method; and

means for parsing the finder method and reading the settings from
the property object in order to generate the query.

14. A computer program product for execution by a server computer for
generating dynamic queries, comprising:

computer code for generating a properties object to hold settings to
be used in generating a query;

computer code for invoking a finder method; and

computer code for parsing the finder method and reading the
settings from the property object in order to generate the query.

15. A computer system comprising:
a processor;
object code executed by said processor, said object code configured
to:
generate a properties object to-hold settings to be used in
generating a query;
invoke a finder method; and
parse the finder method and reading the settings from the
property object in order to generate the query.

16. A computer data signal embodied in a transmission medium,
comprising:

a code segment including instructions to generate a properties
object to hold settings to be used in generating a query;

-10-

WO 03/062987 PCT/US03/01211

a code segment including instructions to invoke a finder method:;
and

a code segment including instructions to parse the finder method

and reading the settings from the property object in order to generate the
5 query.

-11-

PCT/US03/01211

1/2

WO 03/062987

; amSy

a a
FEVVET Juald
T R
ZIT 90}
POYI9N 1apul4 00T
< 0L
aseqejeq 80} ars — -— NE-TTp)
70l
\\J
~— j99[qO souadolayd

WO 03/062987 PCT/US03/01211

2/2

Generate a properties object containing user-specified
settings for the query 200
Invoke an appropriate finder method
202

Y

Extract the settings from the properties object
and parse the finder method in order to
generate a SQL query statement 204

Y

Execute the SQL query statement on the database

N

0

Figure 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/01211

A. CLASSIFICATION OF SUBJECT MATTER
1PC(7) GOGF 9/45
US CL 707/3

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/3, 4, 10, 100-102; 717/1-3, 5; 709/100-332

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

col. 8, lines 6-36; Figures 2-7.

col. 3, lines 5-22; Figures 1-8B.

Y US 6,199,195 Bl (GOODWIN at al.) 06 March 2001 (06.03.2001), col. 1, line 50 - col. 2,
line 20; col. 2, lines 29-56; col. 2, line 64 - col. 3, line 2, lines 14-25; col. 7, lines 39-65;

Y US 5,499,371 A (HENNINGER at al.) 12 March 1996 (12.03.1996), col. 2, lines 56-65;

US 6,466,933 B1 (HUANG at al.) 15 October 2002 (15.10.2002), All

1-16

[:I Further documents are listed in the continuation of Box C.

[]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“p” document published prior to the international filing date but later than the
priority date claimed

“r later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“xY" document of particular relevance; the claimed invention cannat be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the ast

“&” document member of the same patent farnily

Date of the actual completion of the international search

14 April 2003 (14.04.2003)

Date of maiting of the i'r'zeréatiﬂ‘nﬁ ﬁaznagrt

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer

I Bt 9s f
TCYC};ZI;'V! ','_J‘ P . ‘:l/‘! ;o] .

7 EREA
¢ ontra P ena S0

w3y

L0

S
Telephone No. (703)308-6296

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

