
USOO740065OB1

(12) United States Patent (10) Patent No.: US 7400,650 B1
DiMambro (45) Date of Patent: Jul. 15, 2008

(54) SYSTEMAND METHOD FOR ELIMINATING 6,920,635 B1* 7/2005 Lodrige et al. T19,314
STREAMS FRAMEWORK OVERHEAD IN 7.269,171 B2 * 9/2007 Poon et al. 370,392
DATA COMMUNICATIONS 2003/0231659 A1* 12/2003 DiMambro et al. 370/473

OTHER PUBLICATIONS
(75) Inventor: Francesco DiMambro, San Jose, CA

(US) Streams Programming Guide, Sun Microsystems, Inc., Jan. 2005.*

(73) Assignee: Sun Microsystems, Inc., Santa Clara, * cited by examiner
CA (US) Primary Examiner Charles D. Garber

c - Assistant Examiner Cassandra Decker

(*) Notice: Sup Est", SMS,t (74) Attorney, Agent, or Firm Park, Vaughan & Fleming
LLP

U.S.C. 154(b) by 609 days.
(57) ABSTRACT

(21) Appl. No.: 11/047,307
ASVstem and method for improving the efficiencv with which y p 9. y

(22) Filed: Jan. 31, 2005 data communications are passed through a protocol stack.
Protocol layer modules within a protocol stack built upon the

(51) Int. Cl. Streams framework are modified to establish tight embraces
H04.3/16 (2006.01) between adjacent modules. A tight embrace may be estab

(52) U.S. Cl. 370/469; 71.9/314; 719/321; lished by passing from one, upper, protocol layer module to
710/11 its adjacent lower protocol layer module a pointer or refer

(58) Field of Classification Search 370/465, ence to the upper module’s functionality (e.g., rput) for read
370,474, 469 ing a data communication into the upper module from the

See application file for complete search history. lower module. Similarly, the lower module passes the upper
(56) References Cited module a pointer or reference to its functionality (e.g., wput)

U.S. PATENT DOCUMENTS

5,278,834. A 1, 1994 Mazzola 370/469
5,815,707 A * 9/1998 Krause et al. T19,321
5,832,239 A * 1 1/1998 Gavin et al. T10/105
6,070,198 A * 5/2000 Krause et al. T19,321
6,691,175 B1* 2/2004 Lodrige et al. T19,314

for writing a data communication into the lower module from
the upper module. After a tight embrace is established, the
protocol layer modules can directly invoke each other's func
tionality, without incurring the overhead associated with the
Streams framework’s “canputnext and “putnext messages.

16 Claims, 3 Drawing Sheets

User space

Kernel space

Transport Control Protocol (TCP) module
102

1put Y.

Tight
Embrace
request

110

Wput

Response Streams Framework
120 112

Internet Protocol (IP) module
04

Communication Link

U.S. Patent Jul. 15, 2008 Sheet 1 of 3 US 7400,650 B1

User space

Transport Control Protocol (TCP) module
102

1 split,

Tight
Embrace
Request

110

Streams FrameWork
120

Response
112

W N wput
s a

Internet Protocol (IP) module
104

Communication Link

FIG. 1

U.S. Patent Jul. 15, 2008 Sheet 2 of 3

lfconfig is invoked on a
Communications interface

driver
202

Protocol stack is Constructed
Within the Streams frameWork

204

Pass tight embrace request
downward, with reference to

Originator's rput
206

LOWer module receives
request, responds with

reference to Wput
208

Upper module receives
response, verifies identity of

responding module
210

Upper module issues embrace
Complete message

212

FIG. 2

US 7400,650 B1

U.S. Patent Jul. 15, 2008 Sheet 3 of 3

Establish tight embrace
between a first protocol layer
and a second protocol layer

302

Pass a first Communication
from the first protocol layer to
the second protocol layer by
invoking, at the first protocol
layer, the write function of the
second protocol layer, without
invoking a putnext function of

the Streams framework
304

Pass a Second Communication
from the second protocol layer
to the first protocol layer by

invoking, at the second
protocol layer, the read

function of the first protocol
layer, without invoking a

putnext function of the Streams
framework

306

FIG. 3

US 7400,650 B1

US 7,400,650 B1
1.

SYSTEMAND METHOD FOR ELMINATING
STREAMS FRAMEWORK OVERHEAD IN

DATA COMMUNICATIONS

BACKGROUND

This invention relates to the field of computer communi
cations. More particularly, a system and methods are pro
vided for performing data communications through a proto
col stack without incurring the overhead normally imposed
by the Streams framework.

The Streams framework, or subsystem, provides a flexible
programming model for communication services within
computer systems executing a Unix-based operating system.
The Streams subsystem defines standard interfaces within
kernel space, to provide a modular approach to implementa
tion of a network protocol stack. Within the Streams frame
work, each protocol layer's module normally communicates
through the framework, which provides system calls, kernel
resources (e.g., queues) and kernel routines for transferring
messages along communication streams built upon the pro
tocol stack.

For each communication stream, the basic Streams model
provides a downstream queue for outgoing messages and an
upstream queue for incoming messages. Messages are passed
up and down the stream, traversing modules which provide
the protocol functionality. Transferring a message or commu
nication from one module to the next involves two functions,
“canputnext and “putnext.” The canputnext function deter
mines whether Streams resources (e.g., the queues) can
accommodate the message, while the putnext function takes
the message and passes it from one module to the next within
the stream. When passed from one module to another, a
message leaves the first module and enters the Streams frame
work then the streams framework calls the next module to
pass the message on.

It is possible to add and remove modules from a stream at
any time during operation of the stream. The ability to add and
remove modules requires that the stream be stopped so that
the reconfiguration can be effected with no impact to the
communications already queued on the stream.
The Streams framework allows queues to buildup between

modules if the modules have perimeters defined. The perim
eters ensure that once in the perimeter, whether it is an outer
or inner perimeter for the module, mutual exclusive access to
the driver/module-specific data structures is protected by the
perimeter.

While perimeters generalize the locking and queuing
required to implementaprotocol stack, they can cause unnec
essary processing overhead when a streams module is imple
mented with maximum multi-threading capability. In particu
lar, while the Streams framework allows completely multi
threaded modules, it still requires a stream be locked via
canputnext and putnext functions.

While executing these functions, the Streams framework
employs mutual exclusion (i.e., mutex) locks to control
access to a communication streams queues and to ensure that
the stream is not changed (e.g., to add or remove a module)
while it is active. Thus, the Streams framework locks the
communication stream, accepts the communication (e.g.,
queues it) and then unlocks the stream. This procedure must
be followed for every communication transfer from one mod
ule to another.

The continual locking and unlocking of Streams resources
causes a noticeable degradation in communication perfor
mance. Eventhough the addition/removal of modules to/from
a communication stream may be relatively rare events, the

10

15

25

30

35

40

45

50

55

60

65

2
Streams framework imposes a penalty on stream communi
cations in order to accommodate Such changes.
One attempted method for avoiding the Streams frame

work overhead described above involves merging adjacent
protocol modules. However, this can be quite difficult, in
order to address complexities of both modules. Also, merger
of just two modules may not be enough. For example, when
attempting to improve the efficiency of passing messages
between TCP and IP, UDP (User Datagram Protocol) may
also need to be merged since IP underlies both TCP and UDP.
When modules are merged, the resulting protocol stack

becomes much less flexible. For example, a third-party mod
ule that could normally be inserted between the modules (e.g.,
a firewall module inserted between IP and a device driver
module) cannot easily be added to the modules after they are
merged. In addition, it may require Substantial time and effort
to combine the modules and test the result to ensure all rami
fications of the merger are understood and addressed.

Therefore, there is a need for a system and method for
passing data communications between protocol layer mod
ules within a communication stream, without incurring the
Streams framework overhead normally associated with such
activity, and without merging the modules.

SUMMARY

In one embodiment of the invention, a system and methods
are provided for improving the efficiency with which data
communications are passed through a protocol stack, by
establishing a tight embrace between adjacent protocol layer
modules. In a tight embrace, a first protocol layer module can
directly invoke a second, adjacent, module’s functionality for
transferring a data communication to the second module from
the first, without incurring the overhead associated with the
Streams framework's canputnext and putnext messages.

In this embodiment, a tight embrace is established by pass
ing from the first protocol layer module to the second protocol
layer module a pointer or reference to the first modules
functionality (e.g. rput) for reading a data communication
into the first module from the second module. Similarly, the
second protocol layer module passes the first protocol layer
module a pointer or reference to its functionality (e.g., wput)
for writing a data communication into the second module
from the first module.

Illustratively, tight embraces are employed to pass data
communications. Control messages, including messages for
requesting, responding and completing tight embraces, may
continue to be passed via the Streams framework.

DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram depicting a data communication
protocol stack implemented within the Streams framework,
in accordance with an embodiment of the present invention.

FIG. 2 is a flowchart illustrating one method of establishing
a tight embrace within a protocol stack implemented within
the Streams framework, in accordance with an embodiment
of the invention.

FIG. 3 is a flowchart illustrating one method of passing
communication between two protocol layers after a tight
embrace is established, in accordance with an embodiment of
the invention.

DETAILED DESCRIPTION

The following description is presented to enable any per
son skilled in the art to make and use the invention, and is

US 7,400,650 B1
3

provided in the context of particular applications of the inven
tion and their requirements. Various modifications to the dis
closed embodiments will be readily apparent to those skilled
in the art and the general principles defined herein may be
applied to other embodiments and applications without
departing from the scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi
ments shown, but is to be accorded the widest scope consis
tent with the principles and features disclosed herein.

In one embodiment of the invention, a system and method
are provided for conveying data communications through a
protocol stack implemented within the Streams framework.
In this embodiment, a communication (e.g., a packet) is trans
ferred from a first layer of the protocol stack to a second layer
without invoking the “canputnext or “putnext functions of
the Streams framework and incurring the processing over
head normally associated with transferring communications
through the stack.

These functions cause the framework to determine whether
it can accept a communication (“camputnext) from the first
layer's module and, if it can, to then accept and queue the
communication (“putnext) for the second layer's module. In
implementing these functions the Streams framework applies
mutual exclusion (mutex) locking to maintain the integrity of
the communication stream. The mutex locking allows the
framework to accommodate a change to the protocol stack,
through the addition or removal of a protocol layer. The
mutex locking caused by the canputnext and putnext func
tions necessarily degrades the throughput of data communi
cations.

In an embodiment of the invention, adjacent protocol lay
ers within a protocol stack engage in a "tight embrace.” The
tight embrace allows one layer to directly invoke the other
layer's communication handling routines to accept a data
communication, thereby bypassing the Streams framework
and avoiding the overhead incurred by the canputnext and
putnext messages.

FIG. 1 is a block diagram illustrating a protocol stack,
implemented within the Streams framework, in which a tight
embrace may be established between two protocol layer mod
ules, according to one embodiment of the invention.

The protocol stack may include any number of protocol
layers; for each layer, a module of executable code (e.g.,
firmware, Software) is configured to implement the corre
sponding protocol. Although only modules 102 and 104 for
the Transport Control Protocol (TCP) and Internet Protocol
(IP) layers are shown in FIG. 1, in other embodiments of the
invention any number of additional protocol layers may be
included. For example, in a computer system executing the
Solaris(R operating system by Sun MicroSystems, Inc., a pro
tocol layer module for sockfs (socket file system) may be
situated between the TCP module and user space, and a
device driver module may be situated between the IP module
and the communication link.

As described above, Streams framework 120 provides
functions for conveying messages (e.g., data communica
tions, control messages) within the protocol stack. In the
illustrated embodiment of the invention, the Streams frame
work may continue to be used to convey control messages
through the protocol stack (i.e., in the control plane) while
data communications (i.e., in the data plane) are passed
through a tight embrace.

To establish a tight embrace, a first protocol layer module
(e.g., TCP module 102) issues a tight embrace request (e.g.,
request 110) to a second module (e.g., IP module 104). The
request may be passed as a control (e.g., M. CTL) message.

10

15

25

30

35

40

45

50

55

60

65

4
The request includes a pointer, entry point or other refer

ence to the first module’s function(s) for transferring a mes
sage into the first module from the second. The function(s)
may include the functionality normally invoked by the
Streams framework as part of a putnext function call for
reading a packet or other communication from the second
module into the first module. For example, the functions may
include TCP rput and/or TCP rSrv.

If the second module is capable of engaging in a tight
embrace, its response (e.g., response 112), which may be
copied from the request, will include a pointer, entry point or
other reference to the second module’s function(s) for trans
ferring a message into the second module from the first. The
function(s) may include the functionality normally invoked
by the Streams framework as part of a putnext function call
for writing a packet or other communication from the first
module into the second module. For example, the functions
may include IP wput and/or IP wsrV.
The first module may ensure that the response came from

the correct module, by examining an identifier of the issuing
module, for example.
Any number of protocol layer modules may establish tight

embraces with adjacent protocol layer modules. Illustra
tively, if the protocol stack is changed or reconfigured (e.g., to
add or remove a protocol layer module), tight embraces may
be re-established afterward. A first control message may pre
cede a reconfiguration event, to stop a communication stream
or resume using the canputnext and putnext messages to pass
data communications. After the reconfiguration, another con
trol message may be used to restart the stream and re-establish
tight embraces.

For example, a firewall module may be installed between
an IP protocol layer module and an underlying driver module.
This would disrupt a tight embrace previously established
between the IP and driver modules. The firewall module may
be inserted in a normal manner, by stopping the data plane,
installing the module, and restarting the data plane. After
wards, the IP module could then attempt to establish a tight
embrace with the firewall module, and the firewall module
could attempt to establish a tight embrace with the driver
module.

In different embodiments of the invention, a protocol layer
module’s ability to Support or engage in a tight embrace may
be implemented in different ways. For example, instead of
calling the Streams functions canputnext and/or putnext, a
module may directly call an adjacent module's wput or rput
function (and, possibly, wSrv or rSrv). Alternatively, a mod
ule's calls to the Streams framework’s putnext and/or canput
next functions may be modified to callwput or rput instead of
the Streams functions.

FIG. 2 demonstrates a method of establishing a tight
embrace to improve data communication through a protocol
stack within a Streams system, according to one embodiment
of the invention.

In operation 202, an ifconfig configuration file is invoked
on a DLPI (Data Link Provider Interface) driver or commu
nication interface driver.

In operation 204, a protocol stack is built on top of the
device driver. Illustratively, the device driver is opened and
attached, and other protocol layer modules (e.g., IP, TCP,
sockfs) are pushed on top of the driver module.

In operation 206, creation of a tight embrace is initiated.
For example, ifconfig may cause a first, upper, protocol layer
module Such as Sockfs to send a tight embrace request control
message to its adjacent, lower, module, such as TCP. Within
the request message is a pointer or reference to the first

US 7,400,650 B1
5

module's rput function (and possibly rSrv), which is config
ured to read a data communication into the upper module
from the lower module.

Illustratively, tight embrace requests are initiated by the
upper layer protocol of two adjacent protocol layers. The
lower will respond and then initiate a request to the next
lower layer, and so on. Each requestor may wait a predeter
mined period of time for a response before aborting a request.
A requester may retry a failed request, and will eventually
report upward that all lower-level protocols have completed
their attempts to establish tight embraces. The upper-most
protocol (e.g., Sockfs) can then report completion to ifconfig.

In operation 208, the recipient of the tight embrace request
message, the TCP module, determines whether it can partici
pate in a tight embrace. If it cannot, it may simply respond
with a failure or error message, but may still send a control
message downward to the adjacent module to cause it to
attempt a tight embrace with the next module.

However, if the TCP module is capable of a tight embrace,
it will generate and return a message including a pointer or
other reference to its wiput function (and possibly wSrv),
which is configured to write a data communication into the
lower module from the upper module.

Until a tight embrace is established, each module may
continue employing the standard canputnext and putnext
Streams functions to pass communications through the
Streams framework. If a tight embrace cannot be established,
data communications may continue to be passed via the
Streams framework (i.e., using the camputnext and putnext
functions).

In operation 210, the upper module receives the tight
embrace response. In this embodiment of the invention, the
upper module Verifies that the tight embrace response was
sent by the lower module. In the Streams framework, a control
message passed between modules may contain an identifier
of the module that passed the message. The upper module
may therefore compare the identifier within the response with
an identifier of the module it expected to receive the response
from.

This verification is useful because a protocol layer module
may not be capable of a tight embrace. In this case, it would
not recognize a tight embrace request message, and would
simply pass it downward to the next module. If that next
module is capable of a tight embrace, it will respond to the
incapable module, and that response will be passed back up to
the originator of the request. However, the identity of the
responder will not match the identity of the module that the
originator expected a response from, and therefore the tight
embrace will fail.

Illustratively, if an originator of a tight embrace request
message never receives a response, or receives an error, it may
simply continue to employ the Streams framework's canput
next and putnext functions to pass data communications.

In operation 212, the upper module issues a tight embrace
complete message, and each module can begin invoking the
other module’s function (i.e., rput orwput) to pass data com
munications to the other module.

In one embodiment of the invention, the upper module
verifies that the tight embrace response was issued by the
lower module before issuing the tight embrace complete mes
sage. For example, a message passed between modules may
contain an identifier of the module that originated the mes
sage. The upper module may therefore compare the identifier
within the response with an identifier of the module it
expected to receive the response from.

This verification is useful because there may be a possibil
ity of a protocol module not being capable of a tight embrace.

10

15

25

30

35

40

45

50

55

60

65

6
It may therefore not recognize a tight embrace request mes
sage, and simply pass it on to the next module. If that next
module is capable of a tight embrace, it will respond, and that
response will be passed back up to the originator of the
request. However, the identity of the responder will not match
the identity of the module that the originator expected a
response from, and therefore the tight embrace will fail.

After operation 212, the illustrated method ends.
Operations 206-212 may be repeated as often as necessary

to establish or to attempt to establish tight embraces between
other protocol modules. Thus, a first tight embrace may be
established between a sockfs module and an adjacent TCP
module as described above. The TCP module may then ini
tiate a second tight embrace with an adjacent IP module. The
IP module may then initiate a third tight embrace with a
device driver module, and so on.

Thus, from the top protocol layer on down, each protocol
module may issue a tight embrace request message to its
lower module neighbor. Whether the two modules success
fully establish a tight embrace or not, the lower module dupli
cates the message and passes it to the next module.

In one alternative embodiment of the invention, the lower
module may begin using (e.g., invoking) the upper module’s
rput function to cause it to read data communications into the
upper module from the lower module immediately after
responding to the tight embrace request. The lower module
may first, however, verify that the request was received from
the upper module (e.g., by examining the originating mod
ule’s identifier in the request message).

Similarly, in this alternative embodiment, the upper mod
ule may begin using the lower module’s wput function to
write data communications into the lower module from the
upper module as soon as the upper module receives the tight
embrace response message (and, possibly, verifies that it is
from the lower module). Thus, in this alternative embodi
ment, a tight embrace complete message may be unnecessary.

Tight embraces need not be established between all proto
col modules in a communication stream. Some modules may
continue to use the Streams framework to convey communi
cations (via putnext) rather than convey them directly (via
rput orwput). In the illustrated embodiment of the invention,
tight embrace requests and responses are conveyed as control
messages in the control plane, and therefore transit the
Streams framework.

FIG. 3 is a flowchart illustrating one method of passing
communication between to protocol layers after a tight
embrace is established, in accordance with an embodiment of
the invention. The system first establishes a tight embrace
between a first protocol layer and a second protocol layer
(operation 302). The system then passes a first communica
tion from the first protocol layer to the second protocol layer
by invoking, at the first protocol layer, the write function of
the second protocol layer, without invoking a putnext func
tion of the Streams framework (operation 304). The system
further passes a second communication from the second pro
tocol layer to the first protocol layer by invoking, at the second
protocol layer, the read function of the first protocol layer,
without invoking a putnext function of the Streams frame
work (operation 304).
The program environment in which a present embodiment

of the invention is executed illustratively incorporates agen
eral-purpose computer or a special purpose device Such as a
hand-held computer. Details of such devices (e.g., processor,
memory, data storage, display) may be omitted for the sake of
clarity.

It should also be understood that the techniques of the
present invention may be implemented using a variety of

US 7,400,650 B1
7

technologies. For example, the methods described herein
may be implemented in Software executing on a computer
system, or implemented in hardware utilizing either a com
bination of microprocessors or other specially designed
application specific integrated circuits, programmable logic
devices, or various combinations thereof. In particular, the
methods described herein may be implemented by a series of
computer-executable instructions residing on a Suitable com
puter-readable medium. Suitable computer-readable media
may include Volatile (e.g., RAM) and/or non-volatile (e.g.,
ROM, disk) memory, carrier waves and transmission media
(e.g., copper wire, coaxial cable, fiber optic media). Exem
plary carrier waves may take the form of electrical, electro
magnetic or optical signals conveying digital data streams
along a local network, a publicly accessible network Such as
the Internet or some other communication link.

The foregoing embodiments of the invention have been
presented for purposes of illustration and description only.
They are not intended to be exhaustive or to limit the inven
tion to the forms disclosed. Accordingly, the scope of the
invention is defined by the appended claims, not the preced
ing disclosure.
What is claimed is:
1. An automated method of establishing a communication

path through a protocol stack implemented within a Streams
framework, the method comprising:

(a) establishing a first tight embrace between a first proto
collayer and a second protocol layer by:
(a1) at the first protocol layer, issuing a first request to

the second protocol layer, said first request identify
ing an entry point for a read function of the first
protocol layer;

(a2) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write func
tion of the second protocol layer, and

(a3) at the first protocol layer, receiving said first
response; and

(b) establishing one or more additional tight embraces
between other protocol layers.

2. The method of claim 1, further comprising, after said
establishing a first tight embrace:

passing a first communication from the first protocol layer
to the second protocol layer by invoking, at the first
protocol layer, the write function of the second protocol
layer.

3. The method of claim 2, further comprising, after said
establishing a first tight embrace:

passing a second communication from the second protocol
layer to the first protocol layer by invoking, at the second
protocol layer, the read function of the first protocol
layer.

4. The method of claim 3, wherein the second communi
cation is passed without invoking a putnext function of the
Streams framework.

5. The method of claim 2, wherein the first communication
is passed without invoking a putnext function of the Streams
framework.

6. The method of claim 1, wherein said first tight embrace
allows a communication to be exchanged between the first
protocol layer and the second protocol layer without invoking
a putnext function of the Streams framework.

7. The method of claim 1, wherein:
establishing the first tight embrace further comprises con

figuring said first response with an identifier of the sec
ond protocol layer, and

10

15

25

30

35

40

45

50

55

60

65

8
receiving said first response comprises identifying an

originator of said first response to ensure said first
response was issued by the second protocol layer.

8. The method of claim 1, wherein receiving said first
response further comprises:

issuing a first completion message to the second protocol
layer to inform the second protocol layer that said first
tight embrace is established.

9. A computer readable medium storing instructions that,
when executed by a computer, cause the computer to perform
a method of establishing a communication path through a
protocol stack implemented withina Streams framework, the
method comprising:

(a) establishing a first tight embrace between a first proto
collayer and a second protocol layer by:
(a1) at the first protocol layer, issuing a first request to

the second protocol layer, said first request identify
ing an entry point for a read function of the first
protocol layer,

(a2) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write func
tion of the second protocol layer; and

(a3) at the first protocol layer, receiving said first
response; and

(b) establishing one or more additional tight embraces
between other protocol layers.

10. A computer-implemented method of establishing a
tight embrace between a first protocol layer and a second
protocol layer within a protocol stack implemented within a
Streams framework, the method comprising:

(a) at the first protocol layer, issuing a first request to the
second protocol layer, said first request identifying an
entry point for a receive message function of the first
protocol layer;

(b) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write mes
sage function of the second protocol layer;

(c) at the first protocol layer:
receiving said first response; and
determining whether said first response was issued by

the second protocol layer, and
(d) exchanging a communication between the first protocol

layer and the second protocol layer without invoking a
putnext function of the Streams framework.

11. A computer readable medium storing instructions that,
when executed by a computer, cause the computer to perform
a method of establishing a tight embrace between a first
protocol layer and a second protocol layer within a protocol
stack implemented within a Streams framework, the method
comprising:

(a) at the first protocol layer, issuing a first request to a
second protocol layer, said first request identifying an
entry point for a receive message function of the first
protocol layer;

(b) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write mes
sage function of the second protocol layer;

(c) at the first protocol layer:
receiving said first response; and
determining whether said first response was issued by

the second protocol layer, and

US 7,400,650 B1

(d) exchanging a communication between the first protocol
layer and the second protocol layer without invoking a
putnext function of the Streams framework.

12. An apparatus for conveying data communications, the
apparatus comprising:

a first protocol module configured to:
implement a first data communication protocol; and
issue a first tight embrace request to a second protocol

module, said first tight embrace request comprising a
reference to a read communication function of the
first protocol module:

the second protocol module, configured to:
implement a second data communication protocol;
respond to said first tight embrace request with a first

response comprising a reference to a write communi
cation function of the second protocol module; and

issue a second tight embrace request to a third protocol
module, said second tight embrace request compris
ing a reference to a read communication function of
the second protocol module; and

5

10

15

10
a Streams framework configured to provide a putnext func

tion for passing a communication between protocol
modules.

13. The apparatus of claim 12, wherein the first protocol
module is further configured to:

issue a first tight embrace completion message to the sec
ond protocol module.

14. The apparatus of claim 13, wherein the first protocol
module is further configured to:

verify an originator of said first response.
15. The apparatus of claim 13, wherein after issuing said

first tight embrace completion message, the first protocol
module is configured to convey a data communication to the
second protocol module by invoking the write communica
tion function of the second protocol module.

16. The apparatus of claim 13, wherein after receiving said
first tight embrace completion message, the second protocol
module is configured to convey a data communication to the
first protocol module by invoking the read communication

20 function of the first protocol module.
k k k k k

