US007400650B1

United States Patent

(12) 10) Patent No.: US 7,400,650 B1
DiMambro 45) Date of Patent: Jul. 15, 2008
(54) SYSTEM AND METHOD FOR ELIMINATING 6,920,635 BL1* 7/2005 Lodrige et al. 719/314
STREAMS FRAMEWORK OVERHEAD IN 7,269,171 B2* 9/2007 Poonetal. 370/392
DATA COMMUNICATIONS 2003/0231659 Al* 12/2003 DiMambro etal. 370/473
OTHER PUBLICATIONS
(75) Inventor: Francesco DiMambro, San Jose, CA
(as) Streams Programming Guide, Sun Microsystems, Inc., Jan. 2005.*
(73) Assignee: Sun Microsystems, Inc., Santa Clara, * cited by examiner
CA (US) Primary Examiner—Charles D. Garber
N . . o . Assistant Examiner—Cassandra Decker
(*) Notice: Subject. to any dlsclalmer,. the term of this (74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
patent is extended or adjusted under 35 LLP
U.S.C. 154(b) by 609 days.
(57) ABSTRACT
(21) Appl. No.: 11/047,307
A system and method for improving the efficiency with which
. Y p g y
(22) Filed: Jan. 31, 2005 data communications are passed through a protocol stack.
Protocol layer modules within a protocol stack built upon the
(1) Int.Cl. Streams framework are modified to establish tight embraces
H04J 3/16 (2006.01) between adjacent modules. A tight embrace may be estab-
(52) US.CL ..covvvnne 370/469; 719/314; 719/321; lished by passing from one, upper, protocol layer module to
710/11 its adjacent lower protocol layer module a pointer or refer-
(58) Field of Classification Search 370/465, ence to the upper module’s functionality (e.g., rput) for read-
370/474, 469 ing a data communication into the upper module from the
See application file for complete search history. lower module. Similarly, the lower module passes the upper
(56) References Cited module a pointer or reference to its functionality (e.g., wput)

U.S. PATENT DOCUMENTS

for writing a data communication into the lower module from
the upper module. After a tight embrace is established, the
protocol layer modules can directly invoke each other’s func-
tionality, without incurring the overhead associated with the

Streams framework’s “canputnext” and “putnext” messages.

16 Claims, 3 Drawing Sheets

5,278,834 A * 1/1994 Mazzola ... 370/469
5,815,707 A * 9/1998 Krauseetal. ... 719/321
5,832,239 A * 11/1998 Gavinetal.eue. 710/105
6,070,198 A * 5/2000 Krauseetal. 719/321
6,691,175 B1* 2/2004 Lodrigeetal. 719/314
User space ?
Kemnel space *

Upper Pratocal Layer module(s)

L rput™

Fanll BN

Transport Control Protocol (TCP) module
102

/
1 7
Tight | | [s
Embrace N ‘<

Request /_ L7 \‘

110 ,
/ !

Response

Streams Framework
112

"‘ |’ ./ /’
" wput’/

Internet Protocol (IP) module
104

T
i Lower Protocol Layer module(s), Device Driver

I

Communication Link

U.S. Patent Jul. 15, 2008 Sheet 1 of 3 US 7,400,650 B1

Kernel space

User space T

Transport Control Protocol (TCP) module

102
R
/
]
iy)
] /
Tight '\ [/ /
Embrace N~ g / Response Streams Framework
Request . 77N 112 120
110 / 7 } \
1/ .,
/ ¥ L
Yy { 0/ /
\ wpu:/ pd
Internet Protocol (IP) module
104

Lower Protocol Layer module(s), Device Driver

Communication Link

FIG. 1

U.S. Patent Jul. 15, 2008 Sheet 2 of 3 US 7,400,650 B1

(Start)

Ifconfig is invoked on a
communications interface
driver
202

Protocol stack is constructed
within the Streams framework
204

Pass tight embrace request
downward, with reference to
originator’s rput
206

Lower module receives
request, responds with
reference to wput
208

Upper module receives
response; verifies identity of
responding module
210

Upper module issues embrace
complete message
212

End

FIG. 2

U.S. Patent

Jul. 15, 2008 Sheet 3 of 3

(Start)

Establish tight embrace
between a first protocol layer
and a second protocol layer

302

Pass a first communication
from the first protocol layer to
the second protocol layer by
invoking, at the first protocol
layer, the write function of the
second protocol layer, without
invoking a putnext function of

the Streams framework
304

Pass a second communication
from the second protocol layer
to the first protocol layer by
invoking, at the second
protocol layer, the read
function of the first protocol
layer, without invoking a
putnext function of the Streams
framework
306

End

FIG. 3

US 7,400,650 B1

US 7,400,650 B1

1

SYSTEM AND METHOD FOR ELIMINATING
STREAMS FRAMEWORK OVERHEAD IN
DATA COMMUNICATIONS

BACKGROUND

This invention relates to the field of computer communi-
cations. More particularly, a system and methods are pro-
vided for performing data communications through a proto-
col stack without incurring the overhead normally imposed
by the Streams framework.

The Streams framework, or subsystem, provides a flexible
programming model for communication services within
computer systems executing a Unix-based operating system.
The Streams subsystem defines standard interfaces within
kernel space, to provide a modular approach to implementa-
tion of a network protocol stack. Within the Streams frame-
work, each protocol layer’s module normally communicates
through the framework, which provides system calls, kernel
resources (e.g., queues) and kernel routines for transferring
messages along communication streams built upon the pro-
tocol stack.

For each communication stream, the basic Streams model
provides a downstream queue for outgoing messages and an
upstream queue for incoming messages. Messages are passed
up and down the stream, traversing modules which provide
the protocol functionality. Transferring a message or commu-
nication from one module to the next involves two functions,
“canputnext” and “putnext.” The canputnext function deter-
mines whether Streams resources (e.g., the queues) can
accommodate the message, while the putnext function takes
the message and passes it from one module to the next within
the stream. When passed from one module to another, a
message leaves the first module and enters the Streams frame-
work then the streams framework calls the next module to
pass the message on.

It is possible to add and remove modules from a stream at
any time during operation of the stream. The ability to add and
remove modules requires that the stream be stopped so that
the reconfiguration can be effected with no impact to the
communications already queued on the stream.

The Streams framework allows queues to build up between
modules if the modules have perimeters defined. The perim-
eters ensure that once in the perimeter, whether it is an outer
or inner perimeter for the module, mutual exclusive access to
the driver/module-specific data structures is protected by the
perimeter.

While perimeters generalize the locking and queuing
required to implement a protocol stack, they can cause unnec-
essary processing overhead when a streams module is imple-
mented with maximum multi-threading capability. In particu-
lar, while the Streams framework allows completely multi-
threaded modules, it still requires a stream be locked via
canputnext and putnext functions.

While executing these functions, the Streams framework
employs mutual exclusion (i.e., mutex) locks to control
access to a communication stream’s queues and to ensure that
the stream is not changed (e.g., to add or remove a module)
while it is active. Thus, the Streams framework locks the
communication stream, accepts the communication (e.g.,
queues it) and then unlocks the stream. This procedure must
be followed for every communication transfer from one mod-
ule to another.

The continual locking and unlocking of Streams resources
causes a noticeable degradation in communication perfor-
mance. Even though the addition/removal of modules to/from
a communication stream may be relatively rare events, the

20

25

30

35

40

45

50

55

60

65

2

Streams framework imposes a penalty on stream communi-
cations in order to accommodate such changes.

One attempted method for avoiding the Streams frame-
work overhead described above involves merging adjacent
protocol modules. However, this can be quite difficult, in
order to address complexities of both modules. Also, merger
of just two modules may not be enough. For example, when
attempting to improve the efficiency of passing messages
between TCP and 1P, UDP (User Datagram Protocol) may
also need to be merged since IP underlies both TCP and UDP.

When modules are merged, the resulting protocol stack
becomes much less flexible. For example, a third-party mod-
ule that could normally be inserted between the modules (e.g.,
a firewall module inserted between IP and a device driver
module) cannot easily be added to the modules after they are
merged. In addition, it may require substantial time and effort
to combine the modules and test the result to ensure all rami-
fications of the merger are understood and addressed.

Therefore, there is a need for a system and method for
passing data communications between protocol layer mod-
ules within a communication stream, without incurring the
Streams framework overhead normally associated with such
activity, and without merging the modules.

SUMMARY

In one embodiment of the invention, a system and methods
are provided for improving the efficiency with which data
communications are passed through a protocol stack, by
establishing a tight embrace between adjacent protocol layer
modules. In a tight embrace, a first protocol layer module can
directly invoke a second, adjacent, module’s functionality for
transferring a data communication to the second module from
the first, without incurring the overhead associated with the
Streams framework’s canputnext and putnext messages.

Inthis embodiment, a tight embrace is established by pass-
ing from the first protocol layer module to the second protocol
layer module a pointer or reference to the first module’s
functionality (e.g., rput) for reading a data communication
into the first module from the second module. Similarly, the
second protocol layer module passes the first protocol layer
module a pointer or reference to its functionality (e.g., wput)
for writing a data communication into the second module
from the first module.

Tustratively, tight embraces are employed to pass data
communications. Control messages, including messages for
requesting, responding and completing tight embraces, may
continue to be passed via the Streams framework.

DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram depicting a data communication
protocol stack implemented within the Streams framework,
in accordance with an embodiment of the present invention.

FIG. 2is aflowchart illustrating one method of establishing
a tight embrace within a protocol stack implemented within
the Streams framework, in accordance with an embodiment
of the invention.

FIG. 3 is a flowchart illustrating one method of passing
communication between two protocol layers after a tight
embrace is established, in accordance with an embodiment of
the invention.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is

US 7,400,650 B1

3

provided in the context of particular applications of the inven-
tion and their requirements. Various modifications to the dis-
closed embodiments will be readily apparent to those skilled
in the art and the general principles defined herein may be
applied to other embodiments and applications without
departing from the scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown, but is to be accorded the widest scope consis-
tent with the principles and features disclosed herein.

In one embodiment of the invention, a system and method
are provided for conveying data communications through a
protocol stack implemented within the Streams framework.
Inthis embodiment, a communication (e.g., a packet) is trans-
ferred from a first layer of the protocol stack to a second layer
without invoking the “canputnext” or “putnext” functions of
the Streams framework and incurring the processing over-
head normally associated with transferring communications
through the stack.

These functions cause the framework to determine whether
it can accept a communication (“canputnext”) from the first
layer’s module and, if it can, to then accept and queue the
communication (“putnext”) for the second layer’s module. In
implementing these functions the Streams framework applies
mutual exclusion (mutex) locking to maintain the integrity of
the communication stream. The mutex locking allows the
framework to accommodate a change to the protocol stack,
through the addition or removal of a protocol layer. The
mutex locking caused by the canputnext and putnext func-
tions necessarily degrades the throughput of data communi-
cations.

In an embodiment of the invention, adjacent protocol lay-
ers within a protocol stack engage in a “tight embrace.” The
tight embrace allows one layer to directly invoke the other
layer’s communication handling routines to accept a data
communication, thereby bypassing the Streams framework
and avoiding the overhead incurred by the canputnext and
putnext messages.

FIG. 1 is a block diagram illustrating a protocol stack,
implemented within the Streams framework, in which a tight
embrace may be established between two protocol layer mod-
ules, according to one embodiment of the invention.

The protocol stack may include any number of protocol
layers; for each layer, a module of executable code (e.g.,
firmware, software) is configured to implement the corre-
sponding protocol. Although only modules 102 and 104 for
the Transport Control Protocol (TCP) and Internet Protocol
(IP) layers are shown in FIG. 1, in other embodiments of the
invention any number of additional protocol layers may be
included. For example, in a computer system executing the
Solaris® operating system by Sun Microsystems, Inc., a pro-
tocol layer module for sockfs (socket file system) may be
situated between the TCP module and user space, and a
device driver module may be situated between the IP module
and the communication link.

As described above, Streams framework 120 provides
functions for conveying messages (e.g., data communica-
tions, control messages) within the protocol stack. In the
illustrated embodiment of the invention, the Streams frame-
work may continue to be used to convey control messages
through the protocol stack (i.e., in the control plane) while
data communications (i.e., in the data plane) are passed
through a tight embrace.

To establish a tight embrace, a first protocol layer module
(e.g., TCP module 102) issues a tight embrace request (e.g.,
request 110) to a second module (e.g., IP module 104). The
request may be passed as a control (e.g., M_CTL) message.

20

25

30

35

40

45

50

55

60

65

4

The request includes a pointer, entry point or other refer-
ence to the first module’s function(s) for transferring a mes-
sage into the first module from the second. The function(s)
may include the functionality normally invoked by the
Streams framework as part of a putnext function call for
reading a packet or other communication from the second
module into the first module. For example, the functions may
include TCP_rput and/or TCP_rsrv.

If the second module is capable of engaging in a tight
embrace, its response (e.g., response 112), which may be
copied from the request, will include a pointer, entry point or
other reference to the second module’s function(s) for trans-
ferring a message into the second module from the first. The
function(s) may include the functionality normally invoked
by the Streams framework as part of a putnext function call
for writing a packet or other communication from the first
module into the second module. For example, the functions
may include IP_wput and/or IP_wsrv.

The first module may ensure that the response came from
the correct module, by examining an identifier of the issuing
module, for example.

Any number of protocol layer modules may establish tight
embraces with adjacent protocol layer modules. Illustra-
tively, if the protocol stack is changed or reconfigured (e.g., to
add or remove a protocol layer module), tight embraces may
be re-established afterward. A first control message may pre-
cede a reconfiguration event, to stop a communication stream
or resume using the canputnext and putnext messages to pass
data communications. After the reconfiguration, another con-
trol message may be used to restart the stream and re-establish
tight embraces.

For example, a firewall module may be installed between
an IP protocol layer module and an underlying driver module.
This would disrupt a tight embrace previously established
between the IP and driver modules. The firewall module may
be inserted in a normal manner, by stopping the data plane,
installing the module, and restarting the data plane. After-
wards, the IP module could then attempt to establish a tight
embrace with the firewall module, and the firewall module
could attempt to establish a tight embrace with the driver
module.

In different embodiments of the invention, a protocol layer
module’s ability to support or engage in a tight embrace may
be implemented in different ways. For example, instead of
calling the Streams functions canputnext and/or putnext, a
module may directly call an adjacent module’s wput or rput
function (and, possibly, wsrv or rsrv). Alternatively, a mod-
ule’s calls to the Streams framework’s putnext and/or canput-
next functions may be modified to call wput or rput instead of
the Streams functions.

FIG. 2 demonstrates a method of establishing a tight
embrace to improve data communication through a protocol
stack within a Streams system, according to one embodiment
of the invention.

In operation 202, an ifconfig configuration file is invoked
on a DLPI (Data Link Provider Interface) driver or commu-
nication interface driver.

In operation 204, a protocol stack is built on top of the
device driver. Illustratively, the device driver is opened and
attached, and other protocol layer modules (e.g., IP, TCP,
sockfs) are pushed on top of the driver module.

In operation 206, creation of a tight embrace is initiated.
For example, ifconfig may cause a first, upper, protocol layer
module such as sockfs to send a tight embrace request control
message to its adjacent, lower, module, such as TCP. Within
the request message is a pointer or reference to the first

US 7,400,650 B1

5

module’s rput function (and possibly rsrv), which is config-
ured to read a data communication into the upper module
from the lower module.

Tlustratively, tight embrace requests are initiated by the
upper layer protocol of two adjacent protocol layers. The
lower will respond and then initiate a request to the next-
lower layer, and so on. Each requestor may wait a predeter-
mined period of time for a response before aborting a request.
A requester may retry a failed request, and will eventually
report upward that all lower-level protocols have completed
their attempts to establish tight embraces. The upper-most
protocol (e.g., sockfs) can then report completion to ifconfig.

In operation 208, the recipient of the tight embrace request
message, the TCP module, determines whether it can partici-
pate in a tight embrace. If it cannot, it may simply respond
with a failure or error message, but may still send a control
message downward to the adjacent module to cause it to
attempt a tight embrace with the next module.

However, if the TCP module is capable of a tight embrace,
it will generate and return a message including a pointer or
other reference to its wput function (and possibly wsrv),
which is configured to write a data communication into the
lower module from the upper module.

Until a tight embrace is established, each module may
continue employing the standard canputnext and putnext
Streams functions to pass communications through the
Streams framework. Ifa tight embrace cannot be established,
data communications may continue to be passed via the
Streams framework (i.e., using the canputnext and putnext
functions).

In operation 210, the upper module receives the tight
embrace response. In this embodiment of the invention, the
upper module verifies that the tight embrace response was
sent by the lower module. In the Streams framework, a control
message passed between modules may contain an identifier
of the module that passed the message. The upper module
may therefore compare the identifier within the response with
an identifier of the module it expected to receive the response
from.

This verification is useful because a protocol layer module
may not be capable of a tight embrace. In this case, it would
not recognize a tight embrace request message, and would
simply pass it downward to the next module. If that next
module is capable of a tight embrace, it will respond to the
incapable module, and that response will be passed back up to
the originator of the request. However, the identity of the
responder will not match the identity of the module that the
originator expected a response from, and therefore the tight
embrace will fail.

Tlustratively, if an originator of a tight embrace request
message never receives a response, or receives an error, it may
simply continue to employ the Streams framework’s canput-
next and putnext functions to pass data communications.

In operation 212, the upper module issues a tight embrace
complete message, and each module can begin invoking the
other module’s function (i.e., rput or wput) to pass data com-
munications to the other module.

In one embodiment of the invention, the upper module
verifies that the tight embrace response was issued by the
lower module before issuing the tight embrace complete mes-
sage. For example, a message passed between modules may
contain an identifier of the module that originated the mes-
sage. The upper module may therefore compare the identifier
within the response with an identifier of the module it
expected to receive the response from.

This verification is useful because there may be a possibil-
ity of a protocol module not being capable of a tight embrace.

20

25

30

35

40

45

50

55

60

65

6

It may therefore not recognize a tight embrace request mes-
sage, and simply pass it on to the next module. If that next
module is capable of a tight embrace, it will respond, and that
response will be passed back up to the originator of the
request. However, the identity of the responder will not match
the identity of the module that the originator expected a
response from, and therefore the tight embrace will fail.

After operation 212, the illustrated method ends.

Operations 206-212 may be repeated as often as necessary
to establish or to attempt to establish tight embraces between
other protocol modules. Thus, a first tight embrace may be
established between a sockfs module and an adjacent TCP
module as described above. The TCP module may then ini-
tiate a second tight embrace with an adjacent IP module. The
IP module may then initiate a third tight embrace with a
device driver module, and so on.

Thus, from the top protocol layer on down, each protocol
module may issue a tight embrace request message to its
lower module neighbor. Whether the two modules success-
fully establish a tight embrace or not, the lower module dupli-
cates the message and passes it to the next module.

In one alternative embodiment of the invention, the lower
module may begin using (e.g., invoking) the upper module’s
rput function to cause it to read data communications into the
upper module from the lower module immediately after
responding to the tight embrace request. The lower module
may first, however, verify that the request was received from
the upper module (e.g., by examining the originating mod-
ule’s identifier in the request message).

Similarly, in this alternative embodiment, the upper mod-
ule may begin using the lower module’s wput function to
write data communications into the lower module from the
upper module as soon as the upper module receives the tight
embrace response message (and, possibly, verifies that it is
from the lower module). Thus, in this alternative embodi-
ment, a tight embrace complete message may be unnecessary.

Tight embraces need not be established between all proto-
col modules in a communication stream. Some modules may
continue to use the Streams framework to convey communi-
cations (via putnext) rather than convey them directly (via
rput or wput). In the illustrated embodiment of the invention,
tight embrace requests and responses are conveyed as control
messages in the control plane, and therefore transit the
Streams framework.

FIG. 3 is a flowchart illustrating one method of passing
communication between to protocol layers after a tight
embrace is established, in accordance with an embodiment of
the invention. The system first establishes a tight embrace
between a first protocol layer and a second protocol layer
(operation 302). The system then passes a first communica-
tion from the first protocol layer to the second protocol layer
by invoking, at the first protocol layer, the write function of
the second protocol layer, without invoking a putnext func-
tion of the Streams framework (operation 304). The system
further passes a second communication from the second pro-
tocol layerto the first protocol layer by invoking, at the second
protocol layer, the read function of the first protocol layer,
without invoking a putnext function of the Streams frame-
work (operation 304).

The program environment in which a present embodiment
of the invention is executed illustratively incorporates a gen-
eral-purpose computer or a special purpose device such as a
hand-held computer. Details of such devices (e.g., processor,
memory, data storage, display) may be omitted for the sake of
clarity.

It should also be understood that the techniques of the
present invention may be implemented using a variety of

US 7,400,650 B1

7

technologies. For example, the methods described herein
may be implemented in software executing on a computer
system, or implemented in hardware utilizing either a com-
bination of microprocessors or other specially designed
application specific integrated circuits, programmable logic
devices, or various combinations thereof. In particular, the
methods described herein may be implemented by a series of
computer-executable instructions residing on a suitable com-
puter-readable medium. Suitable computer-readable media
may include volatile (e.g., RAM) and/or non-volatile (e.g.,
ROM, disk) memory, carrier waves and transmission media
(e.g., copper wire, coaxial cable, fiber optic media). Exem-
plary carrier waves may take the form of electrical, electro-
magnetic or optical signals conveying digital data streams
along a local network, a publicly accessible network such as
the Internet or some other communication link.

The foregoing embodiments of the invention have been
presented for purposes of illustration and description only.
They are not intended to be exhaustive or to limit the inven-
tion to the forms disclosed. Accordingly, the scope of the
invention is defined by the appended claims, not the preced-
ing disclosure.

What is claimed is:

1. An automated method of establishing a communication
path through a protocol stack implemented within a Streams
framework, the method comprising:

(a) establishing a first tight embrace between a first proto-

col layer and a second protocol layer by:

(al) at the first protocol layer, issuing a first request to
the second protocol layer, said first request identify-
ing an entry point for a read function of the first
protocol layer;

(a2) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write func-
tion of the second protocol layer; and

(a3) at the first protocol layer, receiving said first
response; and

(b) establishing one or more additional tight embraces

between other protocol layers.

2. The method of claim 1, further comprising, after said
establishing a first tight embrace:

passing a first communication from the first protocol layer

to the second protocol layer by invoking, at the first

protocol layer, the write function of the second protocol
layer.

3. The method of claim 2, further comprising, after said
establishing a first tight embrace:

passing a second communication from the second protocol

layer to the first protocol layer by invoking, at the second

protocol layer, the read function of the first protocol
layer.

4. The method of claim 3, wherein the second communi-
cation is passed without invoking a putnext function of the
Streams framework.

5. The method of claim 2, wherein the first communication
is passed without invoking a putnext function of the Streams
framework.

6. The method of claim 1, wherein said first tight embrace
allows a communication to be exchanged between the first
protocol layer and the second protocol layer without invoking
a putnext function of the Streams framework.

7. The method of claim 1, wherein:

establishing the first tight embrace further comprises con-

figuring said first response with an identifier of the sec-

ond protocol layer; and

20

25

30

35

40

45

50

55

60

65

8

receiving said first response comprises identifying an
originator of said first response to ensure said first
response was issued by the second protocol layer.

8. The method of claim 1, wherein receiving said first

response further comprises:

issuing a first completion message to the second protocol
layer to inform the second protocol layer that said first
tight embrace is established.

9. A computer readable medium storing instructions that,
when executed by a computer, cause the computer to perform
a method of establishing a communication path through a
protocol stack implemented within a Streams framework, the
method comprising:

(a) establishing a first tight embrace between a first proto-

col layer and a second protocol layer by:

(al) at the first protocol layer, issuing a first request to
the second protocol layer, said first request identify-
ing an entry point for a read function of the first
protocol layer;

(a2) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write func-
tion of the second protocol layer; and

(a3) at the first protocol layer, receiving said first
response; and

(b) establishing one or more additional tight embraces
between other protocol layers.

10. A computer-implemented method of establishing a
tight embrace between a first protocol layer and a second
protocol layer within a protocol stack implemented within a
Streams framework, the method comprising:

(a) at the first protocol layer, issuing a first request to the
second protocol layer, said first request identifying an
entry point for a receive message function of the first
protocol layer;

(b) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write mes-
sage function of the second protocol layer;

(c) at the first protocol layer:
receiving said first response; and
determining whether said first response was issued by

the second protocol layer; and

(d) exchanging a communication between the first protocol
layer and the second protocol layer without invoking a
putnext function of the Streams framework.

11. A computer readable medium storing instructions that,
when executed by a computer, cause the computer to perform
a method of establishing a tight embrace between a first
protocol layer and a second protocol layer within a protocol
stack implemented within a Streams framework, the method
comprising:

(a) at the first protocol layer, issuing a first request to a
second protocol layer, said first request identifying an
entry point for a receive message function of the first
protocol layer;

(b) at the second protocol layer:
receiving said first request; and
issuing a first response to the first request, said first

response identifying an entry point for a write mes-
sage function of the second protocol layer;

(c) at the first protocol layer:
receiving said first response; and
determining whether said first response was issued by

the second protocol layer; and

US 7,400,650 B1

9

(d) exchanging a communication between the first protocol
layer and the second protocol layer without invoking a
putnext function of the Streams framework.

12. An apparatus for conveying data communications, the

apparatus comprising:

a first protocol module configured to:
implement a first data communication protocol; and

issue a first tight embrace request to a second protocol
module, said first tight embrace request comprising a
reference to a read communication function of the
first protocol module;

the second protocol module, configured to:

implement a second data communication protocol;

respond to said first tight embrace request with a first
response comprising a reference to a write communi-
cation function of the second protocol module; and

issue a second tight embrace request to a third protocol
module, said second tight embrace request compris-
ing a reference to a read communication function of
the second protocol module; and

10

a Streams framework configured to provide a putnext func-
tion for passing a communication between protocol
modules.

13. The apparatus of claim 12, wherein the first protocol

module is further configured to:

issue a first tight embrace completion message to the sec-
ond protocol module.

14. The apparatus of claim 13, wherein the first protocol

module is further configured to:

verify an originator of said first response.

15. The apparatus of claim 13, wherein after issuing said
first tight embrace completion message, the first protocol
module is configured to convey a data communication to the
second protocol module by invoking the write communica-
tion function of the second protocol module.

16. The apparatus of claim 13, wherein after receiving said
first tight embrace completion message, the second protocol
module is configured to convey a data communication to the
first protocol module by invoking the read communication
function of the first protocol module.

#* #* #* #* #*

