wo 2011/060306 A2]I I 0O OO LA O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ,/QT‘ES\
ellectual Property Organizati /{.,, 0T 0 A OO O

(43) International Publication Date '_ (10) International Publication Number

19 May 2011 (19.05.2011) WO 2011/060306 A2

(51) International Patent Classification: Not classitied WOOLLEN, Rob [US/US]; 11 Manderly Road, San

(21) International Application Number: Rafacl, California 94901 (US).
PCT/US2010/056596 (74) Agents: RACZKOWSKI, David, B. et al.; Townsend
and Townsend and Crew LLP, Two Embarcadero Center,

(22) International Filing Date: - . .
12 November 2010 (12.11.2010) 8th Floor, San Francisco, California 94111 (US).

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
61/260,653 12 November 2009 (121 12009) UsS HN, HR, HU, I]), IL, IN, IS, JP, KE, KG, KM, KN, KP,
(71) Applicant (for all designated States except US): SALES- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
FORCE.COM, INC. [US/US]; The Landmark @ One ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
Market, Suite 300, San Francisco, California 94105 (US). NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors; and TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(75) Inventors/Applicants (for US only): LEE, Peter . .
[US/US]; 179 Stockwell Drive, Mountain View, Califor- (84) Designated States (unless otherwise indicated, for every

nia 94043 (US). MEHRA, Vinod [US/US]; 705 Saint kind of regional protection available): ARIPO (BW, GH,
John Circle, Pleasanton, California 94566 (US). GM, KE, LR, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: ENTERPRISE LEVEL BUSINESS INFORMATION NETWORKING FOR CHANGES IN A DATABASE

(57) Abstract: Systems, apparatus, and methods for implementing enterprise

- level social and business information networking are provided. Users can re-

310 ———_ Database system receives a request ceive relevant information about a database system and its users at an appropri-

H to update a first record Pl

ate time. Users can then use this relevant information to reduce errors and limit

redundant efforts. For example, an update of a record in the database can be

, identified, and a story created automatically about the update and sent to the

320 —— Database system writes new data to | users that are following the record. Which updates have stories created and

which stories are to be sent to which users can be configured. Other events be-

sides updating of records can also be tracked. For example, actions of a user

that result in an event can be tracked, where such tracking can also be config-

urable. Subscriptions to follow an object can be automatic, and access checks
can be used to ensure that unauthorized users do not see cettain data.

A

Generate story about update

340 - P v

Add story to feed of first record

350
Y Identify followers of first record

360 {;Add the story to a news feed of each follower

370 i Follower accesses his/her news feed and
\’ sees the story

FIG. 3

WO 2011/060306 A2 I 0000) 00O R RO A

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, __
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

WO 2011/060306 PCT/US2010/056596

ENTERPRISE LEVEL BUSINESS INFORMATION NETWORKING FOR
CHANGES IN A DATABASE

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material which is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark

Office patent file or records, but otherwise reserves all copyright rights whatsoever.

CROSS REFERENCE TO RELATED APPLICATIONS

[0002] This application claims the benefit of U.S. Provisional Application No. 61/260,653,
filed November 12, 2009 entitled “Systems and Methods for Implementing Enterprise Level
Social and Business Information Networking”, the entire contents of which are herein

incorporated by reference for all purposes.

BACKGROUND

[0003] The present invention relates generally to database systems, and more particularly to

implementing enterprise level business information networking.

[0004] The subject matter discussed in the background section should not be assumed to be
prior art merely as a result of its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the subject matter of the background
section should not be assumed to have been previously recognized in the prior art. The subject
matter in the background section merely represents different approaches, which in and of

themselves may also be inventions.

[0005] Using present database systems, it is difficult to know about the activity of others users
of a database system. For example, the activity of another user may be important to the user’s
boss. The user can create a report about what the user has done and send it to the boss, but such
reports may be inefficient, not timely, and incomplete. Also, it may be difficult to know other

people who might benefit from the information in the report.

10

15

20

25

WO 2011/060306 PCT/US2010/056596

[0006] Therefore it is desirable to provide systems and methods that overcome the above and

other problems.

BRIEF SUMMARY

[0007] Embodiments described herein provides systems, apparatus, and methods for
implementing enterprise level social and business information networking. These mechanisms
and methods can provide users with relevant information about a database system and its users at
an appropriate time (e.g. in real-time). Users can then use this relevant information, for example,

to reduce errors and limit redundant efforts.

[0008] As an example, an update of a record in the database can be identified, and a story can
be created automatically by the database system about the update and sent to the users that are’
following the record. The database system can provide configuration of which updates have
stories created and which stories are to be sent to which users. Other events besides updating of
records can also be tracked. For example, actions of a user that result in an event can be tracked,

where such tracking can also be configurable.

[0009] In an embodiment and by way of example, a method of tracking updates to a database
system is provided. The database system receives (e.g. from a first user) a request to update a
first record of a database of the database system. The database system creates a story about the

update. The story is posted to a first feed associated with the update.

[0010] Other embodiments of the invention are directed to systems and computer readable

media associated with methods described herein.

[0011] While the present invention is described with reference to an embodiment in which
techniques for performing searches of feeds in an on-demand enterprise services environment are
implemented in a system having an application server providing a front end for an on-demand
database service capable of supporting multiple tenants, the present invention is not limited to
multi-tenant databases nor deployment on application servers. Embodiments may be practiced
using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without

departing from the scope of the embodiments claimed.

[0012] Any of the above embodiments may be used alone or together with one another in any

combination. Inventions encompassed within this specification may also include embodiments

10

15

20

25

WO 2011/060306 PCT/US2010/056596

that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this

_brief summary or in the abstract. Although various embodiments of the invention may have been

motivated by various deficiencies with the prior art, which may be discussed or alluded to in one
or more places in the specification, the embodiments of the invention do not necessarily address
any of these deficiencies. In other words, different embodiments of the invention may address
different deficiencies that may be discussed in the specification. Some embodiments may only
partially address some deficiencies or just one deficiency that may be discussed in the

specification, and some embodiments may not address any of these deficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] In the following drawings like reference numbers are used to refer to like elements.
Although the following figures depict various examples of the invention, the invention is not

limited to the examples depicted in the figures.

[0014] FIG. 1 illustrates a block diagram of an example of an environment wherein an on-

demand database service might be used.

[0015] FIG. 2 illustrates a block diagram of an embodiment of elements of FIG. 1 and various

possible interconnections between these elements.

[0016] FIG. 3 is a flowchart of a method 300 for tracking updates to a record stored in a

database system according to one or more embodiments.

[0017] FIG. 4 is a block diagram of components of a database system performing a method for

tracking an update to a record according to one or more embodiments.

[0018] FIG. 5 is a flowchart of a method 500 for tracking actions of a user of a database

system according to one or more embodiments.

[0019] FIG. 6 is a flowchart of a method 600 for creating a news feed from messages created

by a first user about a record or another user according to one or more embodiments.

[0020] FIG. 7 shows an example of a group feed on a group page according to one or more

embodiments.

[0021] FIG. 8 shows an example of a record feed containing a story, post, and comments

according to one or more embodiments.

10

15

20

25

WO 2011/060306 PCT/US2010/056596

[0022] FIG. 9A shows a plurality of tables that may be used in tracking events and creating

feeds according to one or more embodiments.

[0023] FIG. 9B shows a flowchart illustrating a method 900 for automatically subscribing a

user to an object in a database system according to embodiments.

[0024] FIG. 10 is a flowchart of a method 1000 for saving information to feed tracking tables

according to one or more embodiments.

[0025] FIG. 11 is a flowchart of a method 1100 for reading a feed item as part of generating a

feed for display according to one or more embodiments.

[0026] FIG. 12 is a flowchart of a method 1200 for reading a feedAitem of a profile feed for

display according to one or more embodiments.

[0027] FIG. 13 is a flowchart of a method 1300 of storing event information for efficient

generation of feed items to display in a feed according to one or more embodiments.

[0028] FIG. 14 is a flowchart of a method 1400 for creating a custom feed for users of a

database system using filtering criteria according to embodiments.

DEFINITIONS

[0029] As used herein, the term “multi-tenant database system” refers to those systems in
which various elements of hardware and software of the database system may be shared by one
or more customers. For example, a given application server may simultaneously process
requests for a great number of customers, and a given database table may store rows for a
potentially much greater number of customers. As used herein, the term “query plan” refers to a

set of steps used to access information in a database system.

[0030] As used herein, the term “user’s profile” includes data about the user of the database
system. The data can include general information, such as title, phone number, a photo, a
biographical summary, and a status (e.g., text describing what the user is currently doing). As
mentioned below, the data can include messages created by other users. Where there are
multiple tenants, a user is typically associated with a particular tenant. For example, a user could
be a salesperson of a company that is a tenant of the database system that provides a database

service.

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0031] As used herein, the term “record” refers to an instance of a data object created by a user
of the database service, for example, about a particular (actual or potential) business relationship
or project. The data object can have a data structure defined by the database service (a standard
object) or defined by a subscriber (custom object). For example, a record can be for a business
partner or potential business partner (e.g. a client, vendor, distributor, etc.) of the user, and can
include an entire company, subsidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an opportunity (e.g. a possible sale)
with an existing partner, or a project that the user is trying to get. In one embodiment
implementing a multi-tenant database, all of the records for the tenants have an identifier stored
in a common table. A record has data fields that are defined by the structure of the object (e.g.
fields of certain data types and purposes). A record can also have custom fields defined by a
user. A field can be another record or include links thereto, thereby providing a parent-child

relationship between the records.

[0032] As used herein, the term “feed” includes a combination (e.g. a list) of feed items. As
user herein, the term “feed item” (or feed element) refers to information about a user (“profile
Jeed”) of the database or about a record (“record feed”) in the database. A user following the‘
user or record can receive the associated feed items. The feed items from all of the followed

users and records can be combined into a single feed for the user.

[0033] As examples, a “feed item” can be a message and story (also called a feed tracked
change). A feed can be a combination of messages and stories. Messages include text created
by a user, and may include other data as well. Examples of messages include posts, status
updates, and comments. Messages can be created for a user’s profile or for a record. Posts can
be created by various users, potentially any user, although some restrictions can be applied. As
an example, posts can be made to a wall section of a user’s profile (which can include a number
of recent posts) or a section of a record that includes multiple posts. The posts can be organized
in chronological order. In contrast to a post, a status update changes a status of a user and is
made by that user. Other similar sections of a user’s profile can also include an “About” section.
A record can also have a status, whose update can be restricted to the owner of the record. The
owner can be a single user, multiple users, or a group. In one embodiment, there is only one
status for a record. In one embodiment, a comment can be made on any feed item. In another

embodiment, comments are organized as a list explicitly tied to a particular story, post, or status

10

15

20

25

WO 2011/060306 PCT/US2010/056596

update. In this embodiment, comments may not be listed in the first layer (in a hierarchal sense)

of feed items, but listed as a second layer branching from a particular first layer feed item.

[0034] A “story” is data representing an event, and can include text generated by the database
system in response to the event. In one embodiment, the data can initially be stored, and then the
database system can later use the data to create text for describing the event. Both the data
and/or the text can be a story, as used herein. In various embodiments, an event can be an update
of a record and/or can be triggered by a specific action by a user. Which actions trigger an event
can be configurable. Which events have stories created and which stories are sent to which users
can also be configurable. Messages and stories can be stored as a field or child object of the

record. For example, the feed can be stored as a child object of the record.

[0035] As used herein, a “group” is a collection of users. In some aspects, the group may be
defined as users with a same or similar attribute, or by membership. In one embodiment, a
“group feed” includes any feed item about any user in a group. In another embodiment, a “group
feed” includes feed items that are about the group as a whole. In one implementation, the feed

items for a group are only posts and comments.

[0036] As used herein, an “entity feed” or “record feed” refers to a feed of feed items about a
particular record in the database, such as stories about changes to the record and posts made by
users about the record. An entity feed can be composed of any type of feed item. Such a feed
can be displayed on a page (e.g. a web page) associated with the record (e.g. a home page of the
record). As used herein, a “profile feed” is a feed of feed items about a particular user. In one
embodiment, the feed items for a profile feed are posts and comments that other users make
about or send to the particular user, and status updates made by the user. Such a profile feed can
be displayed on a page associated with the particular user. In another embodiment, feed items in
a profile feed could include posts made by the particular user and feed tracked changes (stories)

initiated based on actions of the particular user.
DETAILED DESCRIPTION

1. GENERAL OVERVIEW

[0037] Systems, apparatus, and methods are provided for implementing enterprise level social

and business information networking. Such embodiments can provide more efficient use of a

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

database system. For instance, a user of a database system may not easily know when important
information in the database has changed, e.g., about a project or client. Embodiments can

provide stories about such changes and other events, thereby keeping users informed.

[0038] By way of example, a user can update a record (e.g. an opportunity such as a possible
sale of 1000 computers). Once the update has been made, a story about the update can then
automatically be sent (e.g. in a feed) to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding the change in the opportunity, since

the story about the update is sent via a feed right to the manager’s feed page (or other page).

[0039] Next, mechanisms and methods for providing systems and methods for implementing
enterprise level social and business information networking will be described with reference to
example embodiments. First, an overview of an example database system is described, and then
examples of tracking events for a record, actions of a user, and messages about a user or record
are described. Various embodiments about the data structure of feeds, customizing feeds, user
selection of records and users to follow, generating feeds, and displaying feeds are also

described.

II. SYSTEM OVERVIEW

[0040] FIG.1 illustrates a block diagram of an environment 10 wherein an on-demand database
service might be used. Environment 10 may include user systems 12, network 14, system 16,
processor system 17, application platform 18, network interface 20, tenant data storage 22,
system data storage 24, program code 26, and process space 28. In other embodiments,
environment 10 may not have all of the components listed and/or may have other elements

instead of, or in addition to, those listed above.

[0041] Environment 10 is an environment in which an on-demand database service exists.‘
User system 12 may be any machine or system that is used by a user to access a databasé user
system. For example, any of user systems 12 can be a handheld computing device, a mobile
phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated
in FIG. 1 (and in more detail in FIG. 2) user systems 12 might interact via a network 14 with an

on-demand database service, which is system 16.

[0042] An on-demand database service, such as system 16, is a database system that is made
available to outside users that do not need to necessarily be concerned with building and/or

7

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

maintaining the database system, but instead may be available for their use when the users need
the database system (e.g., on the demand of the users). Some on-demand database services may
store information from one or more tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly, “on-demand database service 16” and
“system 16” will be used interchangeably herein. A database image may include one or more
database objects. A relational database management system (RDMS) or the equivalent may
execute storage and retrieval of information against the database object(s). Application platform
18 may be a framework that allows the applications of system 16 to run, such as the hardware
and/or software, e.g., the operating system. In an embodiment, on-demand database service 16
may include an application platform 18 that enables creation, managing and executing one or
more applications developed by the provider of the on-demand database service, users accessing
the on-demand database service via user systems 12, or third party application developers

accessing the on-demand database service via user systems 12.

[0043] The users of user systems 12 may differ in their respective capacities, and the capacity
of a particular user system 12 might be entirely determined by permissions (permission levels)
for the current user. For example, where a salesperson is using a particular user system 12 to
interact with system 16, that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to interact with system 16, that user
system has the capacities allotted to that administrator. In systems with a hierarchical role
model, users at one permission level (profile type) may have access to appliéations, data, and
database information accessible by a lower permission level user, but may not have access to
certain applications, database information, and data accessible by a user at a higher permission
level. Thus, different users will have different capabilities with regard to accessing and
modifying application and database information, depending on a user’s security or permission

level, also called authorization.

[0044] Network 14 is any network or combination of networks of devices that communicate
with one another. For example, network 14 can be any one or any combination of a LAN (local
area network), WAN (wide area network), telephone network, wireless network, point-to-point
network, star network, token ring network, hub network, or other appropriate configuration. As
the most common type of computer network in current use is a TCP/IP (Transfer Control
Protocol and Internet Protocol) network, such as the global internetwork of networks often

referred to as the “Internet” with a capital “I,” that network will be used in many of the examples

8

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

herein. However, it should be understood that the networks that the present invention might use

are not so limited, although TCP/IP is a frequently implemented protocol.

[0045] User systems 12 might communicate with system 16 using TCP/IP and, at a higher
network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client
commonly referred to as a “browser” for sending and receiving HTTP messages to and from an
HTTP server at system 16. Such an HTTP server might be implemented as the sole network
interface between system 16 and network 14, but other techniques might be used as well or
instead. In some implementations, the interface between system 16 and network 14 includes
load sharing functionality, such as round-robin HTTP request distributors to balance loads and
distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users
that are accessing that server, each of the plurality of servers has access to the MTS’ data;

however, other alternative configurations may be used instead.

[0046] In one embodiment, system 16, shown in FIG. 1, implements a web-based customer
relationship management (CRM) system. For example, in one embodiment, system 16 includes
application servers configured to implement and execute CRM software applications as well as
provide related data, code, forms, webpages and other information to and from user systems 12
and to store to, and retrieve from, a database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be stored in the same physical
database object, however, tenant data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant does not have access to another
tenant’s data, unless such data is expressly shared. In certain embodiments, system 16
implements applications other than, or in addition to, a CRM application. For example, system
16 may provide tenant access to multiple hosted (standard and custom) applications, including a
CRM application. User (or third party developer) applications, which may or may not include
CRM, may be supported by the application platform 18, which manages creation, storage of the
applications into one or more database objects and executing of the applications in a virtual

machine in the process space of the system 16.

[0047] One arrangement for elements of system 16 is shown in FIG. 1, including a network
interface 20, application platform 18, tenant data storage 22 for tenant data 23, system data

storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

code 26 for implementing various functions of system 16, and a process space 28 for executing
MTS system processes and tenant-specific processes, such as running applications as part of an
application hosting service. Additional processes that may execute on system 16 include

database indexing processes.

[0048] Several elements in the system shown in FIG. 1 include conventional, well-known
elements that are explained only briefly here. For example, each user system 12 could include a
desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access
protocol (WAP) enabled device or any other computing device capable of interfacing directly or
indirectly to the Internet or other network connection. User system 12 typically runs an HTTP
client, e.g., a browsing program, such as Microsoft’s Internet Explorer browser, Netscape’s
Navigator browser, Opera’s browser, or a WAP-enabled browser in the case of a cell phone,
PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant
database system) of user system 12 to access, process and view information, pages and
applications available to it from system 16 over network 14. Each user system 12 also typically
includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad,
touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by
the browser on a display (e.g., a monitor screen, LCD display, efc.) in conjunction with pages,
forms, applications and other information provided by system 16 or other systems or servers.
For example, the user interface device can be used to access data and applications hosted by
system 16, and to perform searches on stored data, and otherwise allow a user to interact with
various GUI pages that may be presented to a user. As discussed above, embodiments are
suitable for use with the Internet, which refers to a specific global internetwork of networks.
However, it should be understood that other networks can be used instead of the Internet, such as
an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN

or WAN or the like.

[0049] According to one embodiment, each user system 12 and all of its components are
operator configurable using applications, such as a browser, including computer code run using a
central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16
(and additional instances of an MTS, where more than one is present) and all of their
components might be operator configurable using application(s) including computer code to run
using a central processing unit such as processor system 17, which may include an Intel

Pentium® processor or the like, and/or multiple processor units. A computer program product

10

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

embodiment includes a machine-readable storage medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
embodiments described herein. Computer code for operating and configuring system 16 to
intercommunicate and to process webpages, applications and other data and media content as
described herein are preferably downloaded and stored on a hard disk, but the entire program
code, or portions thereof, may also be stored in any other volatile or non-volatile memory
medium or device as is well known, such as a ROM or RAM, or provided on any media capable
of storing program code, such as any type of rotating media including floppy disks, optical discs,
digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media
or device suitable for storing instructions and/or data. Additionally, the entire program code, or
portions thereof, may be transmitted and downloaded from a software source over a transmission
medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any
other conventional network connection as is well known (e.g., extranet, VPN, LAN, efc.) using
any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are
well known. It will also be appreciated that computer code for implementing embodiments of
the present invention can be implemented in any programming language that can be executed on
a client system and/or server or server system such as, for example, C, C++, HTML, any other
markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript,
and many other programming languages as are well known may be used. (Java™ is a trademark

of Sun Microsystems, Inc.).

[0050] According to one embodiment, each system 16 is configured to provide webpages,
forms, applications, data and media content to user (client) systems 12 to support the access by
user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to
keep each tenant’s data separate unless the data is shared. If more than one MTS is used, they
may be located in close proximity to one another (e.g., in a server farm located in a single
building or campus), or they may be distributed at locations remote from one another (e.g., one
or more servers located in city A and one or more servers located in city B). As used herein,
each MTS could include one or more logically and/or physically connected servers distributed
locally or across one or more geographic locations. Additionally, the term “server” is meant to
include a computer system, including processing hardware and process space(s), and an

associated storage system and database application (e.g., OODBMS or RDBMS) as is well

11

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

known in the art. It should also be understood that “server system” and “server” are often used
interchangeably herein. Similarly, the database object described herein can be implemented as
single databases, a distributed database, a collection of distributed databases, a database with

redundant online or offline backups or other redundancies, etc., and might include a distributed

database or storage network and associated processing intelligence.

[0051] FIG. 2 also illustrates environment 10. However, in FIG. 2 elements of system 16 and
various interconnections in an embodiment are further illustrated. FIG. 2 shows that user system
12 may include processor system 12A, memory system 12B, input system 12C, and output
system 12D. FIG. 2 shows network 14 and system 16. FIG. 2 also shows that system 16 may
include tenant data storage 22, tenant data 23, system data storage 24, system data 25, User
Interface (UI) 30, Application Program Interface (API) 32, PL/SOQL 34, save routines 36,
application setup mechanism 38, applications servers 100,-100y, system process space 102,
tenant process spaces 104, tenant management process space 110, tenant storage area 112, user
storage 114, and application metadata 116. In other embodiments, environment 10 may not have
the same elements as those listed above and/or may have other elements instead of, or in addition

to, those listed above.

[0052] User system 12, network 14, system 16, tenant data storage 22, and system data storage
24 were discussed above in FIG. 1. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system 12B may be any combination of
one or more memory devices, short term, and/or long term memory. Input system 12C may be
any combination of input devices, such as one or more keyboards, mice, trackballs, scanners,
cameras, and/or interfaces to networks. Output system 12D may be any combination of output
devices, such as one or more monitors, printers, and/or interfaces to networks. As shown by FIG.
2, system 16 may include a network interface 20 (of FIG. 1) implemented as a set of HTTP
application servers 100, an application platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, including individual tenant process spaces
104 and a tenant management process space 110. Each application server 100 may be
configured to tenant data storage 22 and the tenant data 23 therein, and system data storage 24
and the system data 25 therein to serve requests of user systems 12. The tenant data 23 might be
divided into individual tenant storage areas 112, which can be either a physical arrangement
and/or a logical arrangement of data. Within each tenant storage area 112, user storage 114 and

application metadata 116 might be similarly allocated for each user. For example, a copy of a

12

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

user’s most recently used (MRU) items might be stored to user storage 114. Similarly, a copy of
MRU items for an entire organization that is a tenant might be stored to tenant storage area 112.
A UI 30 provides a user interface and an API 32 provides an application programmer interface to
system 16 resident processes to users and/or developers at user systems 12. The tenant data and

the system data may be stored in various databases, such as one or more Oracle™ databases.

[0053] Application platform 18 includes an application setup mechanism 38 that supports
application developers’ creation and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or
more tenant process spaces 104 managed by tenant management process 110 for example.
Invocations to such applications may be coded using PL/SOQL 34 that provides a programming
language style interface extension to API 32. A detailed description of some PL/SOQL language
embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application
60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR
EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig
Weissman, filed October 4, 2006, which is incorporated in its entirety herein for all purposes.
Invocations to applications may be detected by one or more system processes, which manages
retrieving application metadata 116 for the subscriber making the invocation and executing the

metadata as an application in a virtual machine.

[0054] Each application server 100 may be communicably coupled to database systems, e.g.,
having access to system data 25 and tenant data 23, via a different network connection. For
example, one application server 100; might be coupled via the network 14 (e.g., the Internet),
another application server 100y, might be coupled via a direct network link, and another
application server 100y might be coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating
between application servers 100 and the database system. However, it will be apparent to one
skilled in the art that other transport protocols may be used to optimize the system depending on

the network interconnect used.

[0055] In certain embodiments, each application server 100 is configured to handle requests
for any user associated with any organization that is a tenant. Because it is desirable to be able to
add and remove application servers from the server pool at any time for any reason, there is

preferably no server affinity for a user and/or organization to a specific application server 100.

13

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

In one embodiment, therefore, an interface system implementing a load balancing function (e.g.,
an F5 Big-IP load balancer) is communicably coupled between the application servers 100 and
the user systems 12 to distribute requests to the application servers 100. In one embodiment, the
load balancer uses a least connections algorithm to route user requests to the application servers
100. Other examples of load balancing algorithms, such as round robin and observed response
time, also can be used. For example, in certain embodiments, three consecutive requests from
the same user could hit three different application servers 100, and three requests from different
users could hit the same application server 100. In this manner, system 16 is mﬁltiftenant,
wherein system 16 handles storage of, and access to, different objects, data and applications

across disparate users and organizations.

[0056] As an example of storage, one tenant might be a company that employs a sales force
where each salesperson uses system 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data, performance data, goals and progress
data, etc., all applicable to that user’s personal sales process (e.g., in tenant data storage 22). In
an example of a MTS arrangement, since all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having
nothing more than network access, the user can manage his or her sales efforts and cycles from
any of many different user systems. For example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson can obtain critical updates as to that

customer while waiting for the customer to arrive in the lobby.

[0057] While each user’s data might be separate from other users’ data regardless of the
employers of each user, some data might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization that is a tenant. Thus, there might be
some data structures managed by system 16 that are allocated at the tenant level while other data
structures might be managed at the user level. Because an MTS might support multiple tenants
including possible competitors, the MTS should have security protocols that keep data,
applications, and application use separate. Also, because many tenants may opt for access to an
MTS rather than maintain their own system, redundancy, up-time, and backup are additional
functions that may be implemented in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data usable by multiple tenants or other
data. Such system level data might include industry reports, news, postings, and the like that are

sharable among tenants.

14

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0058] In certain embodiments, user systems 12 (which may be client systems) communicate
with application servers 100 to requesf and update system-level and tenant-level data from
system 16 that may require sending one or more queries to tenant data storage 22 and/or system
data storage 24. System 16 (e.g., an application server 100 in system 16) automatically generates
one or more SQL statements (e.g., one or more SQL queries) that are designed to access the
desired information. System data storage 24 may generate query plans to access the requested

data from the database.

[0059] Each database can generally be viewed as a collection of objects, such as a set of
logical tables, containing data fitted into predefined categories. A “table” is one representation
of a data object, and may be used herein to simplify the conceptual description of objects and
custom objects according to the present invention. It should be understood that “table” and
“object type” may be used interchangeably herein. Each table generally contains one or more
data categories logically arranged as columns or fields in a viewable schema. Each row or
record of a table contains an instance of data for each category (type) defined by the fields. For
example, a CRM database may include a table that describes a customer with fields for basic
contact information such as name, address, phone number, fax number, etc. Another table might
describe a purchase order, including fields for information such as customer, product, sale price,
date, etc. In some multi-tenant database systems, standard entity tables might be provided for
use by all tenants. For CRM database applications, such standard entities might include tables
for Account, Contact, Lead, Opportunity data, and other object types, each containing pre-
defined fields. It should be understood that the word “entity” may also be used interchangeably
herein with “object” and “table”, when entity or object is referring to a collection of objects or

entities of a particular type.

[0060] In some multi-tenant database systems, tenants may be allowed to create and store
custom objects, or they may be allowed to customize standard entities or objects, for example by
creating custom fields for standard objects, including custom index fields. U.S. Patent
application Serial No. 10/817,161, filed April 2, 2004, entitled “Custom Entities and Fields in a
Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches
systems and methods for creating custom objects as well as customizing standard objects in a

multi-tenant database system. In certain embodiments, for example, all custom entity data rows

~ are stored in a single multi-tenant physical table, which may contain multiple logical tables per

I5

10

15

20

25

WO 2011/060306 PCT/US2010/056596

organization. It is transparent to customers that their multiple “tables” are in fact stored in one

large table or that their data may be stored in the same table as the data of other customers.

III. TRACKING UPDATES TO A RECORD STORED IN A DATABASE

[0061] As multiple users might be able to change the data of a record, it can be useful for
certain users to be notified when a record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when there is an update. For example, a
vendor may negotiate a new price with a salesperson of company X, where the salesperson is a
user associated with tenant X. As part of creating a new invoice or for accounting purposes, the
salesperson can change the price saved in the database. It may be important for co-workers to
know that the price has changed. The salesperson could send an e-mail to certain people, but this
is onerous and the salesperson might not e-mail all of the people who need to know or want to
know. Accordingly, embodiments can inform others (e.g. co-workers) who want to know about

an update to a record automatically.

[0062] FIG. 3 is a flowchart of a method 300 for tracking updates to a record stored in a
database system according to embodiments. In some embodiments, method 300 (and other
methods described herein) may be implemented at least partially with multi-tenant database
system 16, e.g., by one or more processors configured to receive or retrieve information, process
the information, store results, and the transmit the results. In other embodiments, method 300
may be implemented at least partially with a singlé tenant database system. In various
embodiments, steps may be omitted, combined, or split into additional steps for method 300, as

well as for other methods described herein.

[0063] In step 310, the database system receives a request to update a first record. In one
embodiment, the request is received from a first user. For example, a user may be accessing a
page associated with the first record, and may change a displayed field and hit save. In another
embodiment, the database system can automatically create the request. For instance, the
database system can create the request in response to another event, e.g., a request to change a
field could be sent periodically at a particular date and/or time of day, or a change to another
field or object. The database system can obtain a new value based on other fields of a record

and/or based on parameters in the system.

16

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0064] The request for the update of a field of a record is an example of an event associated
with the first record for which a story may be created. In other embodiments, the database
system can identify other events besides updates to fields of a record. For example, an event can
be a submission of approval to change a field. Such an event can also have an associated field
(e.g., a field showing a status of whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record, converting a record from one type to
another (e.g. converting a lead to an opportunity), closing a record (e.g. a case type record), and
potentially any state change of a record - any of which could include a field change associated
with the state change. Any of these events update the record whether by changing a field of the
record, a state of the record, or some other characteristic or property of the record. In one
embodiment, a list of supported events for creating a story can be maintained within the database

system, e.g., at a server or in a database.

[0065] In step 320, the database system writes new data to the first record. In one
embodiment, the new data may include a new value that replaces old data. For example, a field
is updated with a new value. In another embodiment, the new data can be a value for a field that
did not contain data before. In yet another embodiment, the new data could be a flag, e.g., for a

status of the record, which can be stored as a field of the record.

[0066] In some embodiments, a “field” can also include records that are child objects of the
first record. A child object itself can include further fields. Thus, if a field of a child object is
updated with a new value, the parent record also can be considered to have a field changed. In

one example, a field could be a list of related child objects, also called a related list.

[0067] In step 330, a story is generated about the update. In one embodiment, the story is
created in parts for assembling later into a display version. For example, event entries can be
created and tracked in one table, and changed field entries can be tracked in another table that is
cross-referenced with the first table. More specifics of such embodiments are provided later,
e.g., with respect to FIG. 9A; In another embodiment, the story is automatically generated by the
database system. The story can convey in words that the first record has been updated and
provide details about what was updated in the record and who performed the update. In some
embodiments, a story is generated for only certain types of event and/or updates associated with

the first record.

17

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0068] In one embodiment, a tenant (e.g. through an administrator) can configure the database
system to create (enable) stories only for certain types of records. For example, an administrator
can specify that records of type Account and Opportunity are enabled. When an update (or other
event) is received for the enabled record type, then a story would be generated. In another
embodiment, a tenant can also specify the fields of a record whose changes are to be tracked, and
for which stories are created. In one aspect, a maximum number of fields can be specified for
tracking, and may include custom fields. In one implementation, the type of change can also be
specified, for example, that the value change of a field is required to be larger than a threshold
(e.g. an absolute amount or a percentage change). In yet another embodiment, a tenant can
specify which events are to cause a generation of a story. Also, in one implementation,
individual users can specify configurations specific to them, which can create custom feeds as

described in more detail below.

[0069] In one embodiment, changes to fields of a child object are not tracked to create stories
for the parent record. In another embodiment, the changes to fields of a child object can be

tracked to create stories for the parent record. For example, a child object of the parent type can
be specified for tracking, and certain fields of the child object can be specified for tracking. As
another example, if the child object is of a type specified for tracking, then a tracked change for

the child object is propagated to parent records of the child object.

[0070] In step 340, the story is added to a feed for the first record. In one embodiment, adding
the story to a feed can include adding events to a table (which may be specific to a record or be
for all or a group of objects), where a display version of a story can be performed dynamically
when a user requests a feed for the first record. In another embodiment, a display version of a
story can be added when a record feed is stored and maintained for a record. As mentioned
above, a feed may be maintained for only certain records. In one implementation, the feed of a
record can be stored in the database associated with the feed. For example, the feed can be
stored as a field (e.g. as a child object) of the record. Such a field can store a pointer to the text

to be displayed for the story.

[0071] In some embodiments, only the current story (or other current feed item) may be kept
or temporarily stored, e.g., in some temporary memory structure. For example, a story for only a
most recent change to any particular field is kept. In other embodiments, many previous stories

may be kept in the feed. A time and/or date for each story can be tracked. Herein, a feed of a

18

10

20

25

30

WO 2011/060306 PCT/US2010/056596

record is also referred to as an entity feed, as a record is an instance of a particular entity object

of the database.

[0072] In step 350, followers of the first record can be identified. A follower is a user
following (subscribing to a feed) of the first record. In one embodiment, when a user requests a
feed of a particular record such an identification need not be done. In another embodiment
where a record feed is pushed to a user (e.g. as part of a news feed), then the user can be
identified as a follower of the first record. Accordingly, this step can be the identification of

records and other objects being followed by a particular user.

[0073] In one embodiment, the database system can store a list of the followers for a particular
record. In various implementations, the list can be stored with the first record or associated with
the record using an identifier (e.g. a pointer) to retrieve the list. For example, the list can be
stored in a field of the first record. In another embodiment, a list of the records that a user is
following is used. In one implementation, the database system can have a routine that runs for
each user, where the routine polls the records in the list to determine if a new story has been
added to a feed of the record. In another implementation, the routine for the user can be running

at least partially on a user device, which contacts the database to perform the polling.

[0074] In step 360, the story is added to a feed of each follower. In one embodiment, the story
is pushed to the feed of a user, e.g., by a routine that determines the followers for the record from
a list associated with the record. In another embodiment, the story is pulled to a feed, e.g., by a
user device. This pulling may occur when a user requests the feed, as occurs in step 370. Thus,
these actions may occur in a different order. The creation of the feed for a pull may be a
dynamic creation that identifies records being followed by the requesting user, generates the
display version of relevant stories from stored information (e.g. event and field change), and
adds the stories into the feed. A feed of stories of records and other objects that a user is

following is also called a news feed.

[0075] In yet another embodiment, the story could be sent as an e-mail to the follower, instead
of in a feed. In one implementation, e-mail alerts for events can enable people to be e-mailed
when certain events occur. In another implementation, e-mails can be sent when there are posts
on a user profile and posts on entities to which the user subscribes. In one implementation, a
user can turn on/off email alerts for all or some events. In an embodiment, a user can specify

what kind of stories to receive about a record that the user is following. For example, a user can

19

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

choose to only receive stories about certain fields of a record that the user is following, and
potentially about what kind of update was performed (e.g. a new value input into a specified

field, or the creation of a new field).

[0076] In step 370, a follower can access his/her news feed to see the story. In one
embodiment, the user has just one news feed for all of the records that the user is following. In
one aspect, a user can access his/her own feed by selecting a particular tab or other object on a
page of an interface to the database system. Once selected the feed can be provided as a list, e.g.,
with an identifier (e.g. a time) or including some or all of the text of the story. In another
embodiment, the user can specify how the stories are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of where the feed can be selected and
displayed, amount of text to be displayed, and other text or symbols to be displayed (e.g.

importance flags).

[0077] FIG. 4 is a block diagram 400 of components of a database system performing a
method for tracking an update to a record according to embodiments. Block diagram 400 can

perform embodiments of method 300, as well as embodiments of other method described herein.

[0078] A first user 405 sends a request 1 to update record 425 in database system 416.
Although an update request is described, other events that are being tracked are equally
applicable. In various embodiments, the request 1 can be sent via a user interface (e.g. 30 of
FIG. 2) or an application program interface (e.g. API 32). An I/O port 420 can accommodate
the signals of request 1 via any input interface, and send the signals to one or more processors
417. The processor 417 can analyze the request and determine actions to be performed. Herein,
any reference to a processor 417 can refer to a specific processor or any set of processors in

database system 416, which can be collectively referred to as processor 417.

[0079] Processor 417 can determine an identifier for record 425, and send commands 2 with
the new data to record database 412 to update record 425. In one embodiment, record database
412 is where tenant data 112 is stored. The request I and new data commands 2 can be
encapsulated in a single write transaction sent to record database 412. In one embodiment,

multiple changes to records in the database can be made in a single write transaction.

[0080] Processor 417 can also analyze request 1 to determine whether a story is to be created,

which at this point may include determining whether the event (e.g. a change to a particular

20

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

field) is to be tracked. This determination can be based on an interaction (i.e. an exchange of
data) with record database 412 and/or other databases, or based on information stored locally
(e.g. in cache or RAM) at processor 417. In one embodiment, a list of record types that are being
tracked can be stored. The list may be different for each tenant, e.g. as each tenant may
configure the database system to their own specifications. Thus, if the record 425 is of a type

not being tracked, then the determination of whether to create a story can stop there.

[0081] The same list or a second list (which can be stored in a same location or a different
location) can also include the fields and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being tracked. A list may also contain
information having the granularity of listing specific records that are to be tracked (e.g. if a

tenant can specify the particular records to be tracked, as opposed to just type).

[0082] As an example, processor 417 may obtain an identifier associated with record 425 (e.g.
obtained from request 1 or database 412), potentially along with a tenant identifier, and cross-
reference the identifier with a list of records for which stories are to be created. Specifically, the
record identifier can be used to determine the record type and a list of tracked types can be
searched for a match. The specific record may also be checked if such individual record tracking
was enabled. The name of the field to be changed can also be used to search a list of tracking-
enabled fields. Other criteria besides field and events can be used to determine whether a story is
created, e.g., type of change in the field. If 2 story is to be generated, processor 417 can then

generate the story.

[0083] In some embodiments, a story is created dynamically when a feed (e.g. the entity feed
of record 425) is requested. Thus, in one implementation, a story can be created when a user
requests the entity feed for record 425. In this embodiment, the story may be created (e.g.
assembled), including re-created, each time the entity feed is to be displayed to any user. In one
implementation, one or more history tables can keep track of previous events so that the story

can be re-created.

[0084] In another embodiment, a story can be created at the time the event occurs, and the
story can be added to a list of feed items. The list of feed items may be specific to record 425, or
may be an aggregate of feed items including feed items for many records. Such an aggregate list
can include a record identifier so that the feed items for the entity feed of record 425 can be

easily retrieved. For example, after the story has been generated, processor 417 can add the new

21

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

story 3 to a feed of record 425. As mentioned above, in one embodiment, the feed can be stored
in a field (e.g. as a child object) of record 425. In another embodiment, the feed can be stored in
another location or in another database, but with a link (e.g. a connecting identifier) to record
425. The feed can be organized in various ways, e.g., as a linked list, an array, or other data

structure.

[0085] A second user 430 can access the new story 3 in various ways. In one embodiment,
second user 430 can send a request 4 for the record feed. For example, second user 430 can
access a home page (detail page) of the record 425 (e.g. with a query or by browsing), and the
feed can be obtained through a tab, button, or other activation object on the page. The feed can

be displayed on the screen or downloaded.

[0086] In another embodiment, processor 417 can add the new story in a step 5 to a feed (e.g. a
news feed) of a user that is following record 425. In one implementation, processor 417 can
determine each of the followers of record 425 by accessing a list of the users that have been
registered as followers. This determination can be done for each new event (e.g. update 1). In
another implementation, processor 417 can poll (e.g. with a query) the records that second user
430 is following to determine when new stories (or other feed items) are available. Processor
417 can use a follower profile 435 of second user 430, which can contain a list of the records that
the second user 430 is following. Such a list can be contained in other parts of the database as
well. Second user 430 can then send a request 6 to his/her profile 435 to obtain a feed, which
contains the new story. The user’s profile 435 can be stored in a profile database 414, which can

be the same or different than database 412.

[0087] In some embodiments, a user can define a news feed to include new stories from
various records, which may be limited to a maximum number. In one embodiment, each user
has one news feed. In another embodiment, the follower profile 435 can include the
specifications of each of the records to be followed (with the criteria for what stories are to be

provided and how they are displayed), as well as the feed.

[0088] Some embodiments can provide various types of record feeds. Entity Feeds can exist
for records, e.g., of type Account, Opportunity, Case, and Contact. An entity feed can tell a user
about the actions that people have taken on that particular record or on one its related records.
The entity feed can include who made the action, which field was changed, and the old and new

values. In one embodiment, entity feeds can exist on all supported records as a list that is linked

22

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

to the specific record. For example, a feed could be stored in a field that allows lists (e.g. linked

lists) or as a child object.

IV. TRACKING ACTIONS OF A USER

[0089] In addition to knowing about events associated with a particular record, it can be
helpful for a user to know what a particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the story (e.g. a user submitting a
synopsis of what the user has done). Accordingly, embodiments can automatically track actions

of a user that trigger events, and stories can be generated for certain events.

[0090] FIG. 5 is a flowchart of a method 500 for tracking actions of a user of a database
system according to embodiments. Method 500 may be performed in addition to method 300.
The methods of implementing method 300, including order of steps, can also be applied to
method 500 and other methods described herein. Thus, a feed can be composed of changes to a

record and actions of users.

[0091] In step 510, a database system (e.g. 16) identifies an action of a first user. In one
embodiment, the action triggers an event, and the event is identified. For example, the action of
a user requesting an update to a record can be identified, where the event is receiving a request or
is the resulting update of a record. The action may thus be defined by the resulting event. In
another embodiment, only certain types of actions (events) are identified. Which actions are
identified can be set as a default or can be configurable by a tenant, or even configurable at a

user level. In this way, processing effort can be reduced since only some actions are identified.

[0092] In step 520, it is determined whether the event qualifies for a story. In one
embodiment, a predefined list of events (e.g. as mentioned herein) can be created so that only
certain actions are identified. In one embodiment, an administrator (or other user) of a tenant can
specify the type of actions (events) for which a story is to be generated. This step may also be

performed for method 300.

[0093] In step 530, a story is generated about the action. In an example where the action is an
update of a record, the story can be similar or the same as the story created for the record. The
description can be altered though to focus on the user as opposed to the record. For example,
“John D. has closed a new opportunity for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.”

23

10

20

25

30

WO 2011/060306 PCT/US2010/056596

[0094] In step 540, the story is added to a profile feed of the first user. In one embodiment, a
feed for a particular user can be accessed on a page of the user’s profile, in a similar manner as a
record feed can be accessed on a detail page of the record. In another embodiment, the first user
may not have a profile feed and the story may just be stored temporarily before proceeding. A
profile feed of a user can be stored associated with the user’s profile. This profile feed can be

added to a news feed of another user.

[0095] In step 550, followers of the first user are identified. In one embodiment, a user can
specify which type of actions other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants to follow. In an embodiment where
different followers follow different types of actions, which users are followers of that user and
the particular action can be identified, e.g., using various lists that track what actions and criteria
are being followed by a particular user. In various embodiments, the followers of the first user

can be identified in a similar manner as followers of a record, as described above for step 350.

[0096] In step 560, the story is added to a news feed of each follower of the first user. The
story can be added in a similar manner as the feed items for a record feed. The news feed can
contain stories both about users and reéords. In another embodiment, a user can specify what
kind of stories to receive about a user that the user is following. For example, a user could
specify stories with particular keywords, of certain types of records, of records owned or created

by certain users, particular fields, and other criteria as mentioned herein.

[0097] In step 570, a follower accesses the news feed and sees the story. In one embodiment,
the user has just one news feed for all of the records that the user is following. In another
embodiment, a user can access his/her own feed (i.e. feed about his/her own actions) by selecting
a particular tab or other object on a page of an interface to the database system. Thus, a feed can
include stories about what other users are doing in the database system. When a user becomes
aware of a relevant action of another user, the user can contact the co-worker, thereby fostering

teamwork.

V. GENERATION OF A STORY

[0098] As described above, some embodiments can generate text describing events (e.g.
updates) that have occurred for a record and actions by a user that trigger an event. A database

system can be configured to generate the stories for various events in various ways.

24

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

A. Which Events to generate a story for

[0099] In a database system, there are various events that can be detected. However, the
operator of the database system and/or a tenant may not want to detect every possible event as
this could be costly with regards to performanc.e.. Accordingly, the operator and/or the tenant can
configure the database system to only detect certain events. For example, an update of a record

may be an event that is to be detected.

[0100] Out of the events that are detected, a tenant (including a specific user of the tenant) may
not want a story about each detected event. For example, all updates to a record may be
identified at a first level. Then, based on specifications of an administrator and/or a specific user
of a tenant, another level of inquiry can be made as to whether a story is to be generated about
the detected event. For example, the events that qualify for a story can be restricted to changes
for only certain fields of the record, which can differ depending on which user is receiving the
feed. In one embodiment, a database system can track whether an event qualifies for a story for

any user, and once the story is generated, it can be determined who is to receive the story.

[0101] Supported events (events for which a story is generated) can include actions for
standard fields, custom fields, and standard related lists. Regarding standard fields, for the entity
feed and the profile feed, a standard field update can trigger a story to be published to that feed.
In one embodiment, which standard field can create a story can be set by an administrator to be
the same for every user. In another embodiment, a user can set which standard fields create a
story for that user’s news feed. Custom fields can be treated the same or differently than

standard fields.

[0102] The generation of a feed item can also depend on a relationship of an object to other
objects (e.g. parent-child relationships). For example, if a child object is updated, a story may be
written to a feed of a parent of the child object. The level of relationship can be configured, e.g.,
only 1 level of separation (i.e. no grandparent-grandchild relationship). Also, in one
embodiment, a story is generated only for objects above the objects being updated, i.e., a story is

not written for a child when the parent is updated.

[0103] In some embodiments, for related lists of a record, a story is written to its parent record
(1 level only) when the related list item is added, and not when the list item is changed or

deleted. For example: user A added a new opportunity XYZ for account ABC. In this manner,

25

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

entity feeds can be controlled so as not to be cluttered with stories about changes to their related
items. Any changes to the related list item can be tracked on their own entity feed, if that related
list item has a feed on it. In this embodiment, if a user wants to see a feed of the related list item
then the user can subscribe to it. Such a subscription might be when a user cares about a specific
opportunity related to a specific account. A user can also browse to that object's entity feed.

Other embodiments can create a story when a related entity is changed or deleted.

[0104] In one embodiment, an administrator (of the system or of a specific tenant) can define
which events of which related objects are to have stories written about them in a parent record.
In another embodiment, a user can define which related object events to show. In one
implementation, there are two types of related lists of related objects: first class lookup and
second class lookup. Each of the records in the related lists can have a different rule for whether
a story is generated for a parent record. Each of these related lists can be composed as custom
related lists. In various embodiments, a custom related list can be composed of custom objects,
the lists can contain a variety of records or items (e.g. not restricted to a particular type of record

or item), and can be displayed in a customized manner.

[0105] In one embodiment, a first class lookup contains records of a child record that can exist
by itself. For example, the contacts on an account exist as a separate record and also as a child
record of the account In another embodiment, a record in a first class lookup can have its own

feed, which can be displayed on its detail page.

[0106] In one embodiment, a second class lookup can have line items existing orly in the
context of their parent record (e.g. activities on an opportunity, contact roles on
opportunity/contact). In one implementation, the line items are not objects themselves, and thus
there is no detail page, and no place to put a feed. In another implementation, a change in a

second class lookup can be reported on the feed of the parent.

[0107] Some embodiments can also create stories for dependent field changes. A dependent
field change is a field that changes value when another field changes, and thus the field has a
value that is dependent on the value of the other field. For example, a dependent field might be a
sum (or other formula) that totals values in other fields, and thus the dependent field would
change when one of the fields being summed changes. Accordingly, in one embodiment, a
change in one field could create stories for multiple fields. In other embodiments, stories are not

created for dependent fields.

26

10

15

20

25

WO 2011/060306 PCT/US2010/056596

B. How the story is generated

[0108] After it is determined that a story is going to be generated, some embodiments can also
determine how the story is generated. In one embodiment, different methods can be used for
different events, e.g., in a similar fashion as for the configurability of which events stories are
generated. A story can also include a description of multiple events (e.g. john changed the

account status and amount).

[0109] In one embodiment, the story is a grammatical sentence, thereby being eaéily
understandable by a person. In another embodiment, the story provides detailed information
about the update. In various examples, an old value and new value for a field may be included in
the story, an action for the update may be provided (e.g. submitted for approval), and the names
of particular users that are responsible for replying or acting on the story may be also provided.
The story can also have a level of importance based on settings chosen by the administrator, a
particular user requesting an update, or by a following user who is to receive the story, which
fields is updated, a percentage of the change in a field, the type of event, or any combination of

these factors.

[0110] The system may have a set of heuristics for creating a story from the event (e.g. a
request to update). For example, the subject may be the user, the record, or a field being added
or changed. The verb can be based on the action requested by the user, which can be selected
from a list of verbs (which may be provided as defaults or input by an administrator of a tenant).

In one embodiment, stories can be generic containers with formatting restrictions,

[0111] Asan example of a creation of a New record” "Mark Abramowitz created a new
Opportunity IBM- 20,000 laptops with Amount as $3.5M and Sam Palmisano as Decision
Maker." This event can be posted to the profile feed for Mark Abramowitz and the entity feed
for record of Opportunity for IBM- 20,000 laptops. The pattern can be given by
(AgentFullName) created a new (ObjectName)(RecordName) with [(FieldName) as
(FieldValue) [, / and]]* [[added / changed / removed] (RelatedListRecordName) [as / to / as]
(RelatedListRecordValue) [, / and]]*. Similar patterns can be formed for a changed field

(standard or custom) and an added child record to a related list.

27

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

VI. TRACKING COMMENTARY FROM OR ABOUT A USER

[0112] Some embodiments can also have a user submit text, instead of the database system
generating a story. As the text is submitted by users, the text (also referred generally as
messages) can be about any topic. Thus, more information than just actions of a user and events
of a record can be conveyed. In one embodiment, the messages can be used to ask a question

about a particular record, and users following the record can provide responses (comments).

[0113] FIG. 6 is a flowchart of a method 600 for creating a news feed that includes messages
associated with a first user according to embodiments. In one embodiment, method 600 can be
combined with methods 300 and 500. In one aspect, a message can be associated with the first
user when the first user creates the message (e.g. a post or comment about a record or another
user). In another aspect, a message can be associated with the first user when the message is

about the first user (e.g. posted by another user on the first user’s profile feed).

[0114] In step 610, database system receives a message (e.g. a post or status) associated with a
first user. The message (e.g. a post or status update) can contain text submitted by another user
or by the first user. In one embodiment, a post is for a section of the first user’s profile where
any user can add a post, and where multiple posts can exist. Thus, a post can appear on the first
user’s profile and can be viewed when the first user’s profile is visited. For a message about a
record, the post can appear on a detail page of a record. Note the message can appear in other
feeds as well. In another embodiment, a status update about the first user can only be added by

the first user. In one implementation, a user can only have one status message.

[0115] In step 620, the message is added to a profile of the first user. In one implementation,
the message can be added to a profile feed of the first user, which is associated (e.g. as a related
list) with the first user’s profile. In one embodiment, the posts are listed indefinitely. In another
embodiment, only the most recent posts (e.g. last 50) are kept in the profile feed. Such
embodiments can also be employed with stories. In yet another embodiment, the message can be

added to a profile of the user adding the message.

[0116] In step 630, database system identifies followers of the first user. In one embodiment,
the database system can identify the followers as described above for method 500. In various
embodiments, a follower can select to follow a feed about the actions of the first user, messages

about the first user, or both (potentially in a same feed).

28

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0117] In step 640, the message is added to a news feed of each follower. In one embodiment,
the message is only added to-a news feed of a particular follower if the message matches some
criteria, e.g., the message includes a particular keyword or other criteria. In another
embodiment, a message can be deleted by the user who created the message. In one
implementation, once deleted by the author, the message is deleted from all feeds to which the

message had been added.

[0118] In step 650, the follower accesses a news feed and sees the message. For example, the
follower can access a news feed on the user’s own profile page. As another example, the

follower can have a news feed sent to his/her own desktop without having to first go to a home
page.

[0119] In step 660, database system receives a comment about the message. The database
system can add the comment to a feed of the same first user, much as the original message was
added. In one embodiment, the comment can also be added to a feed of the user adding the
comment. In one implementation, users can also reply to the comment. In another embodiment,
users can add comments to a story, and further comments can be associated with the story. In yet
another embodiment, making a comment or message is not an action to which a story is created.

Thus, the message may be the only feed item created from such an action.

[0120] In one implementation, if a story (or post) is deleted, its corresponding comments are
deleted as well. In another embodiment, new comments on a story (or post) do not update the
story timestamp. Also, the story or post can continue to be shown in a feed (profile feed, record
feed, or news feed) if it has had a comment within a specified timeframe (e.g. within the last

week). Otherwise, the story (post) can be removed in an embodiment.

[0121] In some embodiments, all or most stories can be commented on. In other embodiments,
stories for certain records (e.g. cases or ideas) are not commentable. In various embodiments,
comments can be made for any one or more records of opportunities, accounts, contacts, leads,

and custom objects.

[0122] In step 670, the comment is added to a news feed of each follower. In one
embodiment, a user can make the comment within the user’s news feed. Such a comment can
propagate to the appropriate profile feed or record feed, and then to the news feeds of the

following users. Thus, feeds can include what people are saying, as well as what they are doing.

29

10

15

20

25

WO 2011/060306 PCT/US2010/056596

In one aspect, feeds are a way to stay up-to-date (e.g. on users, opportunities, etc.) as well as an

opportunity to reach out to your co-workers/partners and engage them around common goals.

[0123] In some embodiments, users can rate stories or messages (including comments). A user
can choose to prioritize a display of a feed so that higher rated feed items show up higher on a
display. For example, in an embodiment where comments are answers to a specific question,
users can rate the different status posts so that a best answer can be identified. As another
example, users are able to quickly identify feed items that are most important as those feed items
can be displayed at a top of a list. The order of the feed items can be based on an importance
level (which can be determined by the database system using various factors, some of which are
mentioned herein) and based on a rating from users. In one embodiment, the rating is on a scale

that includes at least 3 values. In another embodiment, the rating is based on a binary scale.

[0124] Besides a profile for a user, a group can also be created. In various embodiments, the
group can be created based on certain criteria that are common to the users, can be created by
inviting users, or can be created by receiving requests to join from a user. In one embodiment, a
group feed can be created, with messages being added to the group feed when someone adds a
message to the group as a whole. For example, a group page may have a section for posts. In
another embodiment, a message can be added to a group feed when a message is added about

any one of the members. In yet another embodiment, a group feed can include stories about

‘actions of the group as a whole (e.g. when an administrator changes data in a group profile or a

record owned by the group), or about actions of an individual member.

[0125] FIG. 7 shows an example of a group feed on a group page according to embodiments.
As shown, a feed item 710 shows that a user has posted a document to the group object. The text
“Bill Bauer has posted the document Competitive Insights” can be generated by the database
system in a similar manner as stories about a record being changed. A feed item 720 shows a

post to the group, along with comments 730.

[0126] FIG. 8 shows an example of a record feed containing a story, post, and comments
according to embodiments. Feed item 810 shows a story based on the event of submitting a
discount for approval. Other feed items show posts that are made to the record and comments

that are made on the posts.

30

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

VII. INFRASTRUCTURE FOR A FEED

A. Tables Used to Create a Feed

[0127] FIG. 9A shows a plurality of tables that may be used in tracking events and creating
feeds according to embodiments. The tables of FIG. 9A may have entries added, or potentially
removed, as part of tracking events in the database from which feed items are creates or that
correspond to feed items. In one embodiment, each tenant has its own set of tables that are

created based on criteria provided by the tenant.

[0128] An event history table 910 can provide a history of events from which feed items are
created. In one aspect, the events are for objects that are being tracked. Thus; table 910 can
store change histories for feeds, and the changes can be persisted. In various embodiments,
event history table 910 can have columns of event ID 911, object ID 912 (also called parent ID),
and created by ID 913. The event ID 911 can uniquely identify a particular event and can start at

I (or other number or value).

[0129] Each new event can be added chronologically with a new event 1D, which may be
incremented in order. An object ID 912 can be used to track which record or user’s profile is
being changed. For example, the object ID can correspond to the record whose field is being
changed or the user whose feed is receiving a post. The created by ID 913 can track the user
who is performing the action that results in the event, e.g., the user that is changing the field or |

that is posting a message to the profile of another user.

[0130] In some other embodiments, event history table 910 can have one or more of the
following variables with certain attributes: ORGANIZATION _ID being CHAR(15 BYTE),
FEEDS_ENTITY_HISTORY _ID being CHAR(15 BYTE), PARENT ID being CHAR(15
BYTE), CREATED BY being CHAR(15 BYTE), CREATED_DATE being a variable of type
DATE, DIVISION being a NUMBER, KEY PREFIX being CHAR(3 BYTE), and DELETED
being CHAR(1 BYTE). The parent ID can provide an ID of a parent object in case the change is
promulgated to the parent. The key prefix can provide a key that is unique to a group of records,
e.g. custom records (objects). The deleted variable can indicate that the feed items for the event
are deleted, and thus the feed items are not generated. In one embodiment, the variables for each
event entry or any entry in any of the tables may not be nullable. In another embodiment, all

entries in the event history table 910 are used to create feed items for only one object, as

31

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

specified by the object ID 912. For example, one story cannot communicate updates on two

records, such as updates of an account field and an opportunity field.

[0131] In one embodiment, a name of an event can also be stored in table 910. In one
implementation, a tenant can specify events that they want tracked. In an embodiment, event
history table 910 can include the name of the field that changed (e.g. old and new values). In
another embodiment, the name of the field, and the values, are stored in a separate table. Other
information about an event (e.g. text of comment, story, post or status update) can be stored in

event history table 910, or in other tables, as is now described.

[0132] A field change table 920 can provide a history of the changes to the fields. The
columns of table 920 can include an event ID 921 (which correlates to the event 1D 911), an old
value 922 for the field, and the new value 923 for the field. In one embodiment, if an event
changes more than one field value, then there can be an entry for each field changed. As shown,

event ID 921 has two entries for event E37.

[0133] In some other embodiments, field change table 920 can have one or more of the
following variables with certain attributes: ORGANIZATION _ID being CHAR(15 BYTE),
FEEDS ENTITY HISTORY_ FIELDS ID being CHAR(15 BYTE) and identifying each entry,
FEEDS ENTITY_HISTORY ID being CHAR(15 BYTE), FIELD KEY being
VARCHAR2(120 BYTE), DATA_TYPE being CHAR(1 BYTE), OLDVAL_STRING
VARCHAR? being (765 BYTE), NEWVAL _STRING being VARCHAR2(765 BYTE),
OLDVAL_FIRST NAME being VARCHAR2(765 BYTE), NEWVAL FIRST NAME being
VARCHAR?2(765 BYTE), OLDVAL LAST NAME being VARCHAR2(765 BYTE),
NEWVAL LAST NAME being VARCHAR2(765 BYTE), OLDVAL NUMBER being
NUMBER, NEWVAL NUMBER being NUMBER, OLDVAL_DATE being DATE,
NEWVAL DATE being DATE, and DELETED being CHAR(1 BYTE). In one embodiment,

one or more of the variables for each entry in any of the tables may be nullable.

[0134] In one embodiment, the data type variable (and/or other variables) is a non-api-
insertable field. In another embodiment, variable values can be derived from the record whose
field is being changed. Certain values can be transferred into typed columns old/new value
string, old/new value number or old/new value date depending upon the derived values. In
another embodiment, there can exist a data type for capturing add/deletes for child objects. The

child ID can be tracked in the foreign-key column of the record. In yet another embodiment, if

32

15

20

25

WO 2011/060306 PCT/US2010/056596

the field name is pointing to a field in the parent object, a field level security (FLS) can be used
when a user attempts to a view a relevant feed item. Herein, security levels for objects and fields
are also called access checks and determinations of authorization. In one aspect, the access can

be for create, read, write, update, or delete of objects.

[0135] In one embodiment, the field name (or key) can be either a field name of the entity or
one of the values in a separate list. For example, changes that do not involve the update of an
existing field (e.g. a close or open) can have a field name specified in an enumerated list. This-
enumerated list can store "special” field name sentinel values for non-update actions that a tenant
wants to track. In one aspect, the API just surfaces these values and the caller has to check the

enumerated values to see if it is a special field name.

[0136] A comment table 930 can provide a history of the comments made regarding an event,
€.g., a comment on a post or a change of a field value. The columns of table 930 can include an
event ID 921 (which correlates to the event ID 911), the comment column 932 that stores the text
of the comment, and the time/date 933 of the comment. In one embodiment, there can be

multiple comments for each event. As shown, event ID 921 has two entries for event E37.

[0137] In some other embodiments, comment table 930 can have one or more of the following
variables with certain attributes: ORGANIZATION _ID being CHAR(15 BYTE),
FEEDS_COMMENTS 1D being CHAR(15 BYTE) and uniquely identifying each comment,
PARENT _ID being CHAR(15 BYTE), CREATED BY being CHAR(15 BYTE),
CREATED_DATE being DATE, COMMENTS being VARCHAR2(420 BYTE), and
DELETED being CHAR(1 BYTE).

[0138] A user subscription table 940 can provide a list of the objects being followed
(subscribed) by a user. In one embodiment, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object being followed. In one
implementation, the object being followed can be a record or a user. As shown, the user with ID
U819 is following object IDs 0615 and 0O489. If user U819 is following other objects, then
additional entries may exist for user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a user adds or deletes an object that

is being followed.

33

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

'[0139] In some other embodiments, comment table 940 can be composed of two tables (one

for records being followed and one for users being followed). One table can have one or more of
the following variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE),
ENTITY_SUBSCRIPTION ID being CHAR(15 BYTE), PARENT ID being CHAR(15

BYTE), CREATED BY being CHAR(15 BYTE), CREATED_ DATE being DATE, and
DELETED being CHAR(1 BYTE). Another table can have one or more of the following
variables with certain attributes: ORGANIZATION_ID being CHAR(15 BYTE),
USER_SUBSCRIPTIONS_ID being CHAR(15 BYTE), USER_ID being CHAR(15 BYTE),
CREATED_BY being CHAR(15 BYTE), and CREATED DATE being DATE.

[0140] In one embodiment, regarding a profile feed and a news feed, these are read-only views
on the event history table 910 specialized for these feed types. Conceptually the news feed can
be a semi-join between the entity subscriptions table 940 and the event history table 910 on the
object IDs 912 and 942 for the user. In one aspect, these entities can have polymorphic parents
and can be subject to a number of restrictions detailed herein, e.g., to limit the cost of shariﬁg

checks.

[0141] In one embodiment, entity feeds are modeled in the API as a feed associate entity (e.g.
AccountFeed, CaseFeed etc). A feed associate entity includes information composed of events
(e.g. event IDs) for only one particular record type. Such a list can limit the query (and sharing
checks) to a specific record type. In one aspect, this structuring of the entity feeds can make the
query run faster. For example, a request for a feed of a particular account can include the record
type of account. In one implementation, an account feed table can then be searched, where the
table has account record IDs and corresponding event IDs or pointers to particular event entries
in event history table 910. Since the account feed table only contains some of the records (not

all), the query can run faster.

[0142] In one embodiment, there may be objects with no events listed in the event history table
910, even though the record is being tracked. In this case, the database service can return a result

indicating that no feed items exist.

[0143] In another embodiment, tables can also exist for audit tracking, e.g., to examine that
operations of the system (e.g. access checks) are performing accurately. In one embodiment,
audit change-history tables can be persisted (e.g. in bulk) synchronously in the same transaction

as feed events are added to event history table 910. In another embodiment, entries to the two

34

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

sets of table can be persisted in asynchronous manner (e.g. by forking a bulk update into a
separate java thread). In one aspect, some updates to any of the tables can get lost if the instance
of the table goes down while the update has not yet finished. This asynchronous manner can
limit an impact performance on save operations. In some embodiments, a field "persistence
type" (tri state: AUDIT, FEEDS or BOTH) can be added to capture user preferences, as opposed
to being hardcoded. | |

B. Feedltem

[0144] A feed item can represent an individual field change of a record, creation and deletion
of a record, or other events being tracked for a record or a user. In one embodiment, all of the
feed items in a single transaction (event) can be grouped together and have the same event ID. A
single transaction relates to the operations that can be performed in a single communication with
the database. In another embodiment where a feed is an object of the database, a feed item can
be a child of a profile feed, news feed, or entity feed. If a feed item is added to multiple feeds,

the feed item can be replicated as a child of each feed to which the feed item is added.

[0145] In one implementation, a feed item is visible only when its parent feed is visible, which
can be the same as needing read access on the feed's parent (which can be by the type of record
or by a specific record). The feed item's field may be only visible when allowed under field-level
security (FLS). Unfortunately, this can meén that the parent feed may be visible, but the child
may not be because of FLS. Such access rules are described in more detail below. In one
embodiment, a feed item can be read-only. In this embodiment, after being created, the feed

item cannot be changed.

[0146] In multi-currency organizations, a feed item can have an extra currency code field.
This field can give the currency code for the currency value in this field. In one aspect, the value

is undefined when the data type is anything other than currency.
C. FeedComment

[0147] In some embodiments, a comment exists as an item that depends from stories, posts,
status updates, and other items that are independent of each other. Thus, a feed comment object
can exist as a child object of a feed item object. For example, comment table 930 can be
considered a child table of event history table 910. In one embodiment, a feed comment can be a

child of a profile feed, news feed, or entity feed that is separate from other feed items.

35

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0148] In various embodiments, a feed comment can have various permissions for the
following actions. For read permission, a feed comment can be visible if the parent feed is
visible. For create perrhission, if a user has access to the feed (which can be tracked by the ID of
the parent feed), the user can add a comment. For delete, only a user with modify all data
permission or a user who added the comment can delete the comment. Also delete permission
can require access on the parent feed. An update of a comment can be restricted, and thus not be

allowed.

[0149] In one embodiment, regarding a query restriction, a feed comment cannot be queried
directly, but can be queried only via the parent feed. An example is "select id, parentid, (select ...
from feedcomment) from entityfeed". In another embodiment, a feed comment can be directly
queries, e.g., by querying comment table 930. A quéry could include the text of a comment or

any other column of the table.

[0150] In another embodiment, regarding soft delete behavior, a feed comment table does not
have a soft delete column. A soft delete allows an undelete action. In one implementation, a
record can have a soft delete. Thus, when the record is deleted, the feed (and its children) can be
soft deleted. Therefore, in one aspect, a feed comment cannot be retrieved via the "query" verb
(which would retrieve only the comment), but can be retrieved via "queryAll" verb though. An
example is queryAll("select id, (select id, commentbody from feedcomments) from accountfeed
where parentid = '001x000xxx3MKADAAQ™); // where '001x000xxx3MkADAA_O’ has been soft
deleted. When a hard delete (a physical delete) happens, the comment can be hard deleted from

the database.

[0151] In one embodiment, regarding an implicit delete, feeds with comments are not deleted
by a reaper (a routine that performs deletion). In another embodiment, a user cannot delete a
feed. In yet another embodiment, upon lead convert (e.g. to an opportunity or contact), the feed
items of the lead can be hard deleted. This embodiment can be configured to perform such a
deletion for any change in record type. In various implementations, only the comments are hard

deleted upon a lead convert, other convert, or when the object is deleted (as mentioned above).

[0152] In one embodiment, viewing a feed pulls up the most recent messages or stories (e.g.
25) and searches the most recent (e.g. 4) comments for each feed item. The comments can be
identified via the comment table 930. In one implementation, a user can request to see more

comments, e.g., by selecting a see more link.

36

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0153] In some embodiments, user feeds and/or entity feeds have a last comment date field. In
various embodiments, the last comment date field is stored as a field of a record or a user profile.
For feeds with no comments, this can be the same as the created date. Whenever a new comment
is created, the associated feed's last comment date can be updated with the created date of the
comment. The last comment date is unchanged if a feed comment is deleted. A use case is to
allow people to order their queries to see the feeds which have been most recently commented

on.
D. Creating custom feeds by customizing the event history table

[0154] In some embodiments, a tenant (e.g. through an administrator) or a specific user of a
tenant can specify the types of events for which feed items are created. A user can add more
events or remove events from a list of events that get added to the event history table 910. In one
embodiment, a trigger can be added as a piece of code, rule, or item on a list for adding a custom
event to the event history table 910. These custom events can provide customers the ability to
create their own custom feeds and custom feed items to augment or replace implicitly generated
feeds via event history table 910. Implicitly generated feed data can be created when feed-
tracking is enabled for certain entities/field-names. In one embodiment, in order to override
implicit feeds, feed tracking can be turned off and then triggers can be defined by the user to add
events to the event history table 910. In other embodiments, users are not allowed to override
the default list of events that are added to table 910, and thus cannot define their own triggers for

having events tracked.

[0155] For example, upon lead convert or case close, a default action to be taken by the system
may be to add multiple events to event history table 910. 1f a customer (e.g. a tenant or a
specific user) does not want each of these events to show up as feed items, the customer can turn
off tracking for the entities and generate custom feeds by defining customized triggers (e.g. by
using an API) upon the events. As another example, although data is not changed, a customer
may still want to track an action on a record (e.g. status changes if not already being tracked,

views by certain people, retrieval of data, etc.).

[0156] In one embodiment, if a user does not want a feed item to be generated upon every
change on a given field, but only if the change exceeds a certain threshold or range, then such
custom feeds can be conditionally generated with the customized triggers. In one

implementation, the default tracking for the record or user may be turned off for this

37

10

15

20

25

WO 2011/060306 PCT/US2010/056596

customization so that the events are only conditionally tracked. In another implementation, a
trigger can be defined that deletes events that are not desired, so that default tracking can still be
turned on for a particular object type. Such conditional tracking can be used for other events as

well.

[0157] In some embodiments, defining triggers to track certain events can be done as follows.
A user can define an object type to track. This object type can be added to a list of objects that
can be tracked for a particular tenant. The tenant can remove object types from this list as well.
Custom objects and standard objects can be on the list, which may, for example, be stored in
cache or RAM of a server or in the database. Generally only one such list exists for a tenant, and
users do not have individual lists for themselves, although in some embodiments, they may

particularly when the number of users in a tenant is small.

[0158] In one embodiment, a tenant can select which records of an object type are to be
tracked. In another embodiment, once an object type is added to the tracking list of object types,
then all records of that type are tracked. The tenant can then specify the particulars of how the
tracking is to be performed. For example, the tenant can specify triggers as described above,

fields to be tracked, or any of the customizations mentioned herein.

[0159] In some embodiments, when a feed is defined as an object in the database (e.g. as a
child object of entity recofds that can be tracked), a particular instance of the feed object (e.g. for
a particular record) can be create-able and delete-able. In one embodiment, if a user has access
to a record then the user can customize the feed for the record. In one embodiment, a record may

be locked to prevent customization of its feed.

[0160] One method of creating a custom feed for users of a database system according to
embodiments is now described. Any of the following steps can be performed wholly or partially

with the database system, and in particular by one or more processor of the database system.

[0161] Instep A, one or more criteria specifying which events are to be tracked for possible
inclusion into a feed to be displayed are received from a tenant. In step B, data indicative of an
event is received. In step C, the event is analyzed to determine if the criteria are satisfied. In
step D, if the criteria are satisfied, at least a portion of the data is added to a table (e.g. one or

more of the tables in FIG. 9A) that tracks events for inclusion into at least one feed for a user of

38

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

the tenant. The feed in which feed items of an event may ultimately be displayed can be a news

feed, record feed, or a profile feed.
E. Creating cu&tom feeds with filtering

[0162] After feed items have been generated, they can be filtered so that only certain feed
items are displayed, which may be tailored to a specific tenant and/or user. In one embodiment,
a user can specify changes to a field that meet certain criteria for the feed item to show up in a
feed displayed to the user, e.g., a newsfeed or even an entity feed displayed directly to the user.
In one implementation, the criteria can be combined with other factors (e.g. number of feed items
in the feed) to determine which feed items to display. For instance, if a small number of feed

items exist (e.g. below a threshold), then all of the feed items may be displayed.

[0163] In one embodiment, a user can specify the criteria via a query on the feed items in
his/her new feed, and thus a feed may only return objects of a certain type, certain types of
events, stories about certain fields, and 6ther criteria mentioned herein. Messages can also be
filtered according to some criteria, which may be speéiﬁed in a query. Such an added query can
be added onto a standard query that is used to create the newsfeed for a user. A first user could
specify the users and records that the first user is following in this manner, as well as identify the

specific feed items that the first user wants to follow. The query could be created through a

" graphical interface or added by a user directly in a query language. Other criteria could include

receiving only posts directed to a particular user.or record, as opposed to other feed items.

[0164] In one embodiment, the filters can be run by defining code triggers, which run when an
event, specific or otherwise, occurs. The trigger could then run to perform the filtering at the
time the event occurs or when a user (who has certain defined triggers, that is configured for a
particular user) requests a display of the feed. A trigger could search for certain terms (e.g.
vulgar language) and then remove such terms or not create the feed item. A trigger can also be
used to send the feed item to a particular person (e.g. an administrator) who does not normally

receive the feed item were it not for the feed item containing the flagged terms.
F. Access Checks

[0165] In one embodiment, a user can access a feed of a record if the user can access the
record. The security rules for determining whether a user has access to a record can be

performed in a variety of ways, some of which are described in U.S. patent application

39

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

11/866184. For example, a security level table can specify whether a user can see a particular
type of record and/or particular records. In one implementation, a hierarchy of positions within a
tenant is used. For example, a manager can inherit the accéss levels of employees that the
manager supervises. Field level security (FLS) can also be used to determine whether a
particular story about an update to a field can be seen by the user. The field change table 920
can be used to identify a field name or field ID, and then whether the user has read access to that
field can be determined from an FLS table. For example, if a user could not see a field of a
social security number, the feed of the user provided to the user would not include any feed items

related to the social security number field.

[0166] In one embodiment, a user can edit a feed of a record if the user has access to the
record, e.g., deleting or editing a feed item. In another embodiment, a user (besides an
administrator) cannot edit a feed item, except for performing an action from which a feed item
can be created. In one implementation, a user is required to have access to a particular record
and field for a feed item to be created based on an action of the user. In this case, an
administrator can be considered to be a user with MODIFY-ALL-DATA security level. In yet

another embodiment, a user who created the record can edit the feed.
G. Posts

[0167] In one embodiment, the text of posts are stored in a child table (post table 950), which
can be cross-referenced with event history table 910. Post table 950 can include event ID 951 (to
cross-reference with event ID 911), post text 952 to store the text of the post, and time/date 953.
An entry in post table 950 can be considered a feed post object. Posts for a record can also be
subject to access checks. In one implementation, if a user can view a record then all of the posts
can be seen, i.e. there is not an additional level of security check as there is for FLS. In another
implementation, an additional security check could be done, e.g., by checking on whether certain
keywords (or phrases) exist in the post. For instance, a post may not be not provided to specified
users if a certain keyword exists, or only provided to specified users if a keyword exists. In

another embodiment, a table can exist for status updates.

VIII. SUBSCRIBING TO USERS AND RECORDS TO FOLLOW

[0168] As described above, a user can follow users, groups, and records. Embodiments can

provide mechanisms for a user to manage which users, groups, and records that the user is

40

WO 2011/060306 PCT/US2010/056596

currently following. In one embodiment, a user can be limited to the number of users and
records (collectively or separately) that the user can follow. For example, a user may be
restricted to only following 10 users and 15 records, or as another example, 25 total.

Alternatively, the user may be permitted to follow more or less users.

[0169] In one embodiment, a user can go to a page of a record and then select to follow that
object (e.g., with a button marked “follow” or “join”). In another embodiment, a user can search
for a record and have the matching records show up in a list. The search can include criteria of
records that the user might want to follow. Such criteria can include the owner, the creation date,
last comment date, and numerical values of particular fields (e.g. an opportunity with a value of

more than $10,000).

[0170] A follow button (or other activation object) can then reside next to each record in the
resulting list, and the follow button can be selected to start following the record. Similarly, a
user can go to a profile page of a user and select to follow the user, or a search for users can
provide a list, where one or more users can be selected for following from the list. The

selections of subscribing and unsubscribing can add and delete rows in table 920.

[0171] In some embodiments, a subscription center acts as a centralized place in a database
application (e.g. application platform 18) to manage which records a user subscribes to, and
which field updates the user wants to see in stories. The subscription center can use a
subscription table to keep track of the subscriptions of various users. In one embodiment, the
subscription center shows a list of all the items (users and records) a user is subscribed to. In

another embodiment, a user can unsubscribe to subscribed objects from the subscription center.
A. Automatic Subscription

[0172] In one embodiment, an automatic subscription feature can ensure that a user is
receiving certain feeds. In this manner, a user does not have to actively select certain objects to
follow. Also, a tenant can ensure that a user is following objects that the user needs to be

following.

[0173] In various embodiments for automatically following users, a default for small
organizations can be to follow everyone. For big organizations, the default can be to follow a
manager and peers. If a user is a manager, the default can be to follow the manager’s supervisor,

peers, and people that the manager supervises (subordinates). In other embodiments for

41

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

automatically following records, records that the user owns may be automatically followed

and/or records recently viewed (or changed) may be automatically followed.

[0174] In one example, a new record is created. The owner (not necessarily the user who
created the entity) is subscribed to the entity. If ownership is changed, the new owner may
automatically be subscribed to follow the entity. Also, after a lead convert, the user doing the
lead convert may be automatically subscribed to the new account, opportunity, or contact
resulting from the lead convert. In one implementation, the auto subscription is controlled by
user preference. That is a user or tenant can have the auto subscribe feature enabled or not. In

one aspect, the default is to have the auto-subscribe turned on.

[0175] FIG. 9B shows a flowchart illustrating a method 900 for automatically subscribing a
user to an object in a database system according to embodiments. Any of the following steps can
be performed wholly or partially with the database system, and in particular by one or more

processor of the database system.

[0176] In step 901, one or more properties of an object stored in the database system are
received. The properties can be received from administrators of the database system, or from
users of the database system (which may be an administrator of a customer organization). The

properties can be records or users, and can include any of the fields of the object that are stored

in the database system. Examples of properties of a record include: an owner of the record, a

user that converted the record from one record type to another record type, whether the first user
has viewed the record, and a time the first user viewed the record. Examples of properties of a
user include: which organization (tenant) the user is associated with, the second user’s position
in the same organization, and which other users the user had e-mailed or worked with on

projects.

[0177] In step 902, the database system receives one or more criteria about which users are to
automatically follow the object. The criteria can be received from administrators of the database
system, or from one or more users of the database system. The users may be an administrator of
a customer organization, which can set tenant-wide criteria or criteria for specific users (who
may also set the criteria themselves). Examples of the criteria can include: an owner or creator
of a record is to follow the record, subordinates of an owner or creator of a record are to follow
the record, a user is to follow records recently viewed (potentially after a specific number of

views), records that a user has changed values (potentially with a date requirement), records

42

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

created by others in a same business group as the user. Examples of the criteria can also include:
a user is to follow his/her manager, the user’s peers, other users in the same business group as the
user, and other users that the user has e-mailed or worked with on a project. The criteria can be

specific to a user or group of users (e.g. users of a tenant).

[0178] In step 903, the database system determines whether the one or more properties of the
object satisfy the one or more criteria for a first user. In one embodiment, this determination can
occur by first obtaining the criteria and then determining objects that satisfy the criteria. The
determination can occur periodically, at time of creation of an object, or at other times. If
different users have different criteria, then the criteria for a particular user or group could be
searched at the same time. Since users of different tenants normally cannot view objects of
another tenant, certain criteria does not have to be checked. In another embodiment, this
determination can occur by looking at certain properties and then identifying any criteria that are
met. In yet another embodiment, the criteria and properties can be used to find users that satisfy

the criteria.

[0179] In step 904, if the criteria are satisfied, the object is associated with the first user. The
association can be in a list that stores information as to what objects are being followed by the
first user. User subscription table 940 is an example of such a list. In one embodiment, the one
or more criteria are satisfied if one property satisfies at least one criteria. Thus, if the criteria is
that a user follows his/her manager and.the object is the user’s manager, then the first user will

follow the object.

[0180] In one embodiment, a user can also be automatically unsubscribed, e.g. if a certain
action happens. The action could be a change in the user’s position within the organization, e.g.
a demotion or becoming a contractor. As another example, if a case gets closed, then users

following the case may be automatically unsubscribed.
B. Feed and Subscription API

[0181] In one embodiment, a feed and subscription center API can enable tenants to provide
mechanisms for tracking and creating feed items, e.g., as described above for creating custom
feeds by allowing users to add custom events for tracking. For example, after some initial feed
items are created (e.g. by administrators of the database system), outside groups (e.g. tenants or

software providers selling software to the tenants) can 'enable objects' for feeds through a

43

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

standard API. The groups can then integrate into the subscription center and the story feeds on
their own. In one embodiment, the feed and subscription center API can use a graphical user
interface implemented for the default feed tracking. In one embodiment, API examples include
subscribing to an entity by creating a new entity subscription object for a particular user ID, or
for all users of a tenant (e.g. user subscription table 940). In one embodiment, obtaining all
subscriptions for a given user can be performed by using a query, such as “select from

bad

EntitySubscription where userid ="...."

[0182] Some embodiments have restriction on non-admin users, e.g. those without view all
data permissions (VAD). One restriction can be a limit clause on entity subscription queries (e.g.
queries on user. subscription table 940), e.g., where the limit of the number of operations is less
than 100. In one embodiment, users are not required to specify an order-by, but if an order-by is
specified they can only order on fields on the entity subscription entity. In one implementation,
filters on entity subscription can likewise only specify fields on the entity subscription entity. In

one aspect, the object ID being followed can be sorted or filtered, but not the object name.

[0183] In one embodiment, one or more restrictions can also be placed on the identification of
feed items in a feed that a user can access. For example, if a low-level user (i.e. user can access
few objects) is attempting to see a profile feed of a high level user, a maximum number of

checks (e.g. 500) for access rights may be allowed. Such a restriction can minimize a cost of a

feed request. In some embodiments, there are restriction on the type of queries (e.g. fields for

filtering) allowed to construct on feeds (e.g. on tables in F1G. 9A).
C. Sharing

[0184] As mentioned above, users may be restricted from seeing records from other tenants, as
well as certain records from the tenant to which the user belongs (e.g. the user’s employer).
Sharing rules can refer to the access rules that restrict a user from seeing records that the user is
not authorized to see or access. Additionally, in one implementation, a user may be restricted to

only seeing certain fields of a record, field-level security (FLS).

[0185] In an embodiment, access rule checks are done upon subscription. For example, a user
is not allowed to subscribe to a record or type of record that the user cannot access. In one
aspect, this can minimize (but not necessarily eliminate) cases where a user subscribes to entities

they cannot access. Such cases can slow down news feed queries, when an access check is

44

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

performed (which can end up removing much of the feed items). Thus, a minimization of access
checks can speed up operation. In another embodiment, when feed items are created
dynamically, access rule checks may be done dynamically at the time of subsequent access, and

not upon subscription or in addition to at time of subscription.

‘[0186] An example case where access checks are still performed is when a first user follows a

second user, but the second user performs some actions on records or is following records that
the first user is not allowed to see. The first user may be allowed to follow the second user, and
thus the subscription is valid even though the first user may not be able to see all of the feed
items. Before a story is provided to a news feed of the first user, a security check may be
performed to validate whether the first user has access rights to the feed item. If not, the feed
item is not displayed to the first user. In one implementation, users can be blocked from feed
items that contain certain terms, symbols, account numbers, etc. In one embodiment, any user
can follow another user. In another embodiment, users may be restricted as to which users,

objects, and/or records he/she can follow.

[0187] Regarding viewing privileges of a feed, in one embodiment, a user can always see all of
his own subscriptions (even if he's lost read access to a record). For example, a user can become
a contractor, and then the user may lose access to some records. But, the user may still see that
he/she is following the object. This can help if there is a limit to the number of objects that can
be followed. To unsubscribe a user may need to know what they are following so they can
unsubscribe and subscribe to objects the user can see. In another embodiment, for access to
other people's subscriptions, a user can be required to need read-access on the record-id to see
the subscription. In some embodiments, users with authorization to modify all data can
create/delete any subscription. In other embodiments, a user can create/delete subscriptions only

for that user, and not anyone else.
D. Configuration of which field to follow

[0188] There can be various feed settings for which feed items get added to profile and record
feeds, and which get added to news feeds. In one embodiment, for profile feeds and entity feeds,
stories can be written for all standard and custom fields on the supported objects. In one
implementation, feed settings can be set to limit how many and which fields of a record are
tracked for determining whether a story is to be generated. For example, a user or administrator

can choose specific fields to track and/or certain ones not to track. In another embodiment, there

45

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

is a separate limit for the number of trackable fields (e.g. 20) for a record. Thus, only certain
changes may be tracked in an entity history and show up in the feed. In yet another embodiment,
default fields may be chosen for tracking; where the defaults can be exposed in the subscriptions

center.

IX. ADDING ITEMS TO A FEED

[0189] As described above, a feed includes feed items, which include stories and messages, as
defined herein. Various feeds can be generated. For example, a feed can be generated about a
record or about a user. Then, users can view these feeds. A user can separately view a feed of a
record or user, e.g., by going to a home page for the user or the record. As described above, a
user can also subscribe (follow) to user or record and receive the feed items of those feeds
through a separate feed application (e.g. in a page or window), which is termed “chatter’ in
certain examples. The feed application can provide each of the feeds that a user is following in a

single news feed.

[0190] A feed generator can refer to any software program running on a processor or a
dedicated processor (or combination thereof) that can generate feed items (e.g. stories or
messages) and combine them into a feed. In one embodiment, the feed generator can generate a
feed item by receiving a story or message, identifying what feeds the item should be added to,
and adding the feed. Adding the feed can include adding additional information (metadata) to
the story or message (e.g. adding a document, sender of message, a determined importance, etc.).
The feed generator can also check to make sure that no one sees stories for data that they don't
have access to see (e.g. according to sharing rules). A feed generator can run at various times to

pre-compute feeds or to compute them dynamically, or combinations thereof.

[0191] In one embodiment, the feed generator can de-dupe events (i.e. prevent duplicates) that
may come in from numerous records (and users). For example, since a story can be published to
multiple feeds (e.g. John Choe changed the Starbucks Account Status) and a person can be
subscribed to both the Starbucks account and John Choe, embodiments can filter out duplicates
before adding or displaying the items in a news feed. Thus, the Feed Generator can collapse
events with multiple records and users for a single transaction into a single story and ensure the
right number of stories for the particular feed. In some embodiments, an action by a user does
not create a feed item for that user (e.g. for a profile feed of that user), and it is only the feed of

the object being acted upon (e.g. updated) for which a feed item is created. Thus, there should
46

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

not be duplicates. For example, if someone updates the status of a record, the feed item is only

for the record and not the user.

[0192] In one embodiment, processor 417 in FIG. 4 can identify an event that meets criteria for
a story, and then generate the story. Processor 417 can also identify a message. For example, an
application interface can have certain mechanisms for submitting a message (e.g. “submit”
buttons on a profile page, detail page of a record, “comment” button on post), and use of these
mechanisms can be used to identify a message to be added to a table used to create a feed or

added directly to a list of feed items ready for display.
A. Adding Items To A Pre-Computed Feed

[0193] In some embodiments, a feed of feed items is created before a user requests the feed.
Such an embodiment can run fast, but have high overall costs for storage. In one embodiment,
once a profile feed or a record feed has been created, a feed item (messages and stories) can be
added to the feed. The feed can exist in the database system in a variety of ways, such as a

related list. The feed can include mechanisms to remove items as well as add them.

[0194] As described above, a news feed can be an aggregated feed of all the record feeds and
profile feeds to which a user has subscribed. The news feed can be provided on the home page
of the subscribing user. Therefore, a news feed can be created by and exist for a particular user.
For example, a user can subscribe to receive entity feeds of certain records that are of interest to
the user, and to receive profile feeds of people that are of interest (e.g. people on a same team,
that work for the user, are a boss of the user, etc.). A news feed can tell a user about all the
actions across all the records (and people) who have explicitly (or implicitly) subscribed to via

the subscriptions center (described above).

[0195] In one embodiment, only one instance of each story is shown on a user’s news feed,
even if the story is published in multiple entities to which the user is subscribed. In one aspect,
there may be delays in publishing news articles. For example, the delay may be due to queued
up messages for asynchronous entity history persistence. Different feeds may have different
delays (e.g. delay for new feeds, but none of profile and entity feeds). In another embodiment,
certain stories regarding a subscribed profile feed or an entity feed are not shown because the
user is not allowed access, e.g. due to sharing rules (which restrict which users can see which

data). Also, in one embodiment, data of the record that has been updated (which includes

47

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

creation) can be provided in the feed (e.g. a file or updated value of a feed can be added as a

flash rendition).

[0196] Examples are provided below as how it can be determined which feed items to add to
which news feeds. In one embodiment, the addition of items to a news feed is driven by the
following user. For example, the user’s profile can be checked to determine objects the user is
following, and the database may be queried to determine updates to these objects. In another
embodiment, the users and records being followed drive the addition of items to a news feed.
Embodiments can also combine these and other aspects. In one embodiment, a database system
can be follower-driven if the number of subscriptions (users and records the user is following) is
small. For example, since the number subscriptions are small, then changes to a small number of

objects need to be checked for the follower.

[0197] Regarding embodiments that are follower-driven, one embodiment can have a routine.
run for a particular user. The routine knows the users and records that the user is following. The
routine can poll the database system for new stories and messages about the users and records
that are being followed. In one implementation, the polling can be implemented as queries. In

one embodiment, the routine can run at least partially (even wholly) on a user device.

[0198] Regarding embodiments where a news feed is driven by the record (or user) being
followed, processor 417 can identify followers of the record after a feed item is added to the
record feed. Processor 417 can retrieve a list of the followers from the database system. The list
can be associated with the record, and can be stored as a related list or other object that is a field

or child of the record.

[0199] In one embodiment, profile and record feeds can be updated immediately with a new
feed item after an action is taken or an event occurs. A news feed can also be updated
immediately. In another embodiment, a news feed can be updated in batch jobs, which can run

at periodic times.
B. Dynamically Generating Feeds

[0200] In some embodiments, a feed generator can generate the feed items dynamically when a
user requests to see a particular feed, e.g., a profile feed, entity feed, or the user’s news feed. In
one embodiment, the most recent feed items (e.g. top 50) are generated first. In one aspect, the

other feed items can be generated as a background process, e.g., not synchronously with the

48

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

request to view the feed. However, since the background process is likely to complete before a
user gets to the next 50 feed items, the feed generation may appear synchronous. In another
aspect, the most recent feed items may or may not include comments, e.g., that are tied to stories

or posts.

[0201] In one embodiment, the feed generator can query the appropriate subset of tables shown
in FIG. 9A and/or other tables as necessary, to generate the feed items for display. For example,
the feed generator can query the event history table 910 for the updates that occurred for a
particular record. The ID of the particular record can be matched against the ID of the record. In
one embodiment, changes to a whole set of records can be stored in one table. The feed
generator can also query for status updates, posts, and comments, each of which can be stored in
different parts of a record or in separate tables, as shown in FIG. 9A. What gets recorded in the
entity history table (as well as what is displayed) can be controlled by a feed settings page in
setup, which can be configurable by an administrator and can be the same for the entire

organization, as is described above for custom feeds.

[0202] In one embodiment, there can be two feed generators. For example, one generator can
generate the record and profile feeds and another generator can generate news feeds. For the
former, the feed generator can query identifiers of the record or the user profile. For the latter,
the news feed generator can query the subscribed profile feeds and record feeds, e.g., user
subscription table 940. In one embodinﬁent, the feed generator looks at a person's subscription
center to decide which feeds to query for and return a list of feed items for the user. The list can
be de-duped, e.g., by looking at the event number and values for the respective table, such as

field name or 1D, comment ID, or other information.
C. Adding information to feed history tables

[0203] FIG. 10 is a flowchart of a method 1000 for saving information to feed tracking tables
according to embodiments. In one embodiment, some of the steps may be ioerformed regardless
of whether a specific event or part of an event (e.g. only one field of an update is being tracked)
is being tracked. In various embodiments, a processor or set of processors (hardwired or

programmed) can perform method 1000 and any other method described herein.

[0204] In step 1010, data indicative of an event is received. The data may have a particular

identifier that specifies the event. For example, there may be a particular identifier for a field

49

10

15

20

25

WO 2011/060306 PCT/US2010/056596

update. In another embodiment, the transaction may be investigated for keywords identifying

the event (e.g., terms in a query indicating a close, change field, or create operations).

[0205] In step 1020, it is determined whether the event is being tracked for inclusion into feed
tables. The determination of what is being tracked can be based on a tenant’s configuration as
described above. In one aspect, the event has an actor (person performing an event), and an

object of the event (e.g. record or user profile being changed).

[0206] In step 1030, the event is written to an event history table (e.g. table 910). In one
embodiment, this feed tracking operation can be performed in the same transaction that performs
a save operation for updating a record. In another embodiment, a transaction includes at least
two roundtrip database operations, with one roundtrip being the database save (write), and the
second database operation being the saving of the update in the history table. In one
implementation, the event history table is chronological. In another implementation, if user A
posts on user B’s profile, then user A is under the “created by” 913 and user B is under the object

ID 912.

[0207] In step 1040, a field change table (e.g. field change table 920) can be updated with an
entry having the event identifier and fields that were changed in the update. In one embodiment,
the field change table is a child table of the event history table. This table can include
information about each of the ﬁelds that are changed. For example, for an event that changes the
name and balance for an account record, an entry can have the event identifier, the old and new
name, and the old and new balance. Alternatively, each field change can be in a different row
with the same event identifier. The field name or ID can also be included to determine which

field the values are associated.

[0208] In step 1050, when the event is a post, a post table (e.g. post table 950) can be updated
with an entry having the event identifier and text of the post. In one embodiment, the field
change table is a child table of the event history table. In another embodiment, the text can be
identified in the transaction (e.g. a query command), stripped out, and put into the entry at the
appropriate column. The various tables described herein can be combined or separated in
various ways. For example, the post table and the field change table may be part of the same

table or distinct tables, or may include overlapping portions of data.

50

10

15

20

25

WO 2011/060306 PCT/US2010/056596

[0209] In step 1060, a comment is received for an event and the comment is added to a
comment table (e.g. comment table 930). The comment could be for a post or an update of a
record, from which a story can be generated for display. In one embodiment, the text can be
identified in the transaction (e.g. a query command), stripped out, and put into the entry at the

appropriate column.
D. Reading information from feed history tables

[0210] FIG. 11 is a flowchart of a method 1100 for reading a feed item as part of generating a
feed for display according to embodiments. In one embodiment, the feed item may be read as

part of creating a feed for a record.

[0211] Instep 1110, a query is received for an event history table (e.g. event history table 910)
for events related to a particular record. In one embodiment, the query includes an identifier of
the record for which the feed is being requested. In various embodiments, the query may be
initiated from a detail page of the record, a home page of a user requesting the record feed, or

from a listing of different records (e.g. obtained from a search or from browsing).

[0212] In step 1120, the user’s security level can be checked to determine if the user can view -
the record feed. Typically, a user can view a record feed, if the user can access the record. This
security check can be performed in various ways. In one embodiment, a first table is checked to
see if the user has a classification (e.g. a security level that allows him to view records of the
given type). In'another embodiment, a second table is checked to see if the user is allowed to see
the specific record. The first table can be checked before the second table, and both tables can be
different sections of a same table. If the user has requested the feed from the detail page of the
record, one embodiment can skip the security level check for the record since the check was

already done when the user requested to view the detail page.

[0213] In one embodiment, a security check is determined upon each request to view the
record feed. Thus, whether or not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a record or a news feed of all the
objects the user is following. In this manner, if a user’s security changes, a feed automatically
adapts to the user’s security level when it is changed. In another embodiment, a feed can be

computed before being requested and a subsequent security check can be made to determine

51

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

whether the person still has access right to view the feed items. The security (access) check may

be at the field level, as well as at the record level.

[0214] Instep 1130, if the user can access the record, the a field level security table can be
checked to determine whether the user can see particular fields. In one implementation, only
those fields are displayed to the user. Alternatively, a subset of those the user has access to is
displayed. The field level security check may optionally be performed at the same time and even
using the same operation as the record level check. In addition, the record type check may also
be performed at this time. If the user can only see certain fields, then any feed items related to
those fields (e.g. as determined from field change table 920) can be removed from the feed being

displayed.

[0215] In step 1140, the feed items that the user has access to are displayed. In one
embodiment, a predetermined number (e.g. 20) of feed items are displayed at a time. The
method can display the first 20 feed items that are found to be readable, and then determine
others while the user is viewing the first 20. In another embodiment, the other feed items are not

determined until the user requests to see them, e.g., by activating a see more link.

[0216] FIG. 12 is a flowchart of a method 1200 for reading a feed item of a profile feed for
display according to embodiments. In one embodiment, the query includes an identifier of the
user profile feed that is being requested. Certain steps may be optional, as is also true for other

methods described herein. For example, security checks may not be performed.

[0217] Instep 1210, a query is directed to an event history table (e.g. event history table 910)
for events having a first user as the actor of the event (e.g. creation of an account) or on which
the event occurred (e.g. a post to the user’s profile). In various embodiments, the query may be
initiated by a second user from the user’s profile page, a home page of a user requesting the
profile feed (e.g. from a list of users being followed), or from a listing of different users (e.g.
obtained from a search or from browsing). Various mechanisms for determining aspects of
events and obtaining information from tables can be the same across any of the methods

described herein.

[0218] In step 1220, a security check may also be performed on whether the second user can
see the first user’s profile. In one embodiment any user can see the profile of another user of the

same tenant, and step 1220 is optional.

52

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0219] In step 1230, a security (access) check can be performed for the stories based on record
types, records, and/or fields, as well security checks for messages. In one embodiment, only the
stories related to records that the person has updated are the ones that need security check as the
feed items about the user are readable by any user of the same tenant. Users of other tenants are
not navigable, and thus security can be enforced at a tenant level. In another embodiment,

messages can be checked for keywords or links to a record or field that the second user does not

have access.

[0220] As users can have different security classifications, it is important that a user with a
low-level security cannot see changes to records that have been performed by a user with high-
level security. In one implementation, each feed item can be checked and then the viewable
results displayed, but this can be inefficient. For example, such a security check may take a
long time, and the second user would like to get some results sooner rather than later. The
following steps illustrate one embodiment of how security might be checked for a first user that
has a lot of feed items, but the second user cannot see most of them. This embodiment can be

used for all situations, but can be effective in the above situation.

[0221] In step 1231, a predetermined number of entries are retrieved from the event history
table (e.g. starting from the most recent, which may be determined from the event identifier).
The retrieved entries may just be ones that match the user ID of the query. In one embodiment,
entries are checked to find the entries that are associated with the user and with a record (i.e. not
just posts to the user account). In another embodiment, those entries associated with the user are
allowed to be viewed, e.g. because the second user can see the profile of the first user as

determined in step 1220.

[0222] Instep 1232, the record identifiers are organized by type and the type is checked on
whether the second user can see the record types. Other checks such as whether a record was
manually shared (e.g. by the owner) can also be performed. In one embodiment, the queries for

the different types can be done in parallel.

[0223] Instep 1233, if a user can see the record type, then a check can be performed on the
specific record. In one embodiment, if a user can see a record type, then the user can see all of
the records of that type, and so this step can be skipped. In another embodiment, the sharing
model can account for whether a user below the second user (e.g. the second user is a manager)

can see the record. In such an embodiment, the second user may see such a record. In one

53

10

15

20

25

WO 2011/060306 PCT/US2010/056596

implementation, if a user cannot see a specific record, then comments on that record are also not

viewable.

[0224] In step 1234, field level sharing rules can be used to determine whether the second user
can see information about an update or value of certain fields. In one embodiment, messages can
be analyzed to determine if reference to a particular field name is made. If so, then field level

security can be applied to the messages.

[0225] In step 1280, steps 1231-1234 are repeated until a stopping criteria is met. In one
embodiment, the stopping criteria rhay be when a maximum number (e.g. 100) of entries that are
viewable have been identified. In another embodiment, the stopping criteria can be that a
maximum number (e.g. 500) of entries from the entity history table have been analyzed,

regardless of whether the entries are viewable or not.

[0226] In one embodiment, a news feed can be generated as a combination of the profile feeds
and the entity feeds, e.g. as described above. In one implementation, a list of records and user
profiles for the queries in steps 1110 and 1210 can be obtained form user subscription table 940.

In one embodiment, there is a maximum number of objects that can be followed.

[0227] In various embodiments, the entity history table can be queried for any one or more of
the following matching variables as part of determining items for a feed: CreatedDate,
CreatedByld, CreatedBy.FirstName, CreatedBy.LastName, Parentld, and Parent.Name. The
child tables can also be queried for any one or more of the follbwing matching variables as part
of determining items for a feed: DataType, FieldName, OldValue, and NewValue. A query can
also specify how the resulting feed items can be sorted for display, e.g., by event number, date,
importance, etc. The query can also include a number of items to be returned, which can be

enforced at the server.

[0228] The two examples provided above can be done periodically to create the feeds ahead of
time or done dynamically at the time the display of a feed is requested. Such a dynamic
calculation can be computationally intensive for a news feed, particularly if many users and
records are being followed, although there can be a low demand for storage. Accordingly, one
embodiment performs some calculations ahead of time and stores the results in order to create a

news feed.

54

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

E. Partial Pre-Computing of items for a feed

[0229] FIG. 13 is a flowchart of a method 1300 of storing event information for efficient
generation of feed items to display in a feed according to embodiments. In various
embodiments, method 1300 can be performed each time an event is written to the events history
table, or periodically based on some other criteria (e.g. every minute, after five updates have

been made, etc.).

[0230] In step 1310, data indicative of an event is received. The data may be the same and
identified in the same way as described for step 1010. The event may be written to an event

history table (e.g. table 910).

[0231] In step 1320, the object(s) associated with the event are identified. In various
embodiments, the object may be identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a message, and a user whose profile

the message is being posted to.

[0232] In step 1330, the users following the event are determined. In one embodiment, one or
more objects that are associated with the event are used to determine the users following the
event. In one implementation, a subscription table (e.g. table 940) can be used to find the
identified objects. The entries of the identified objects can contain an identifier (e.g. user ID

941) of each the users following the object

[0233] In step 1340, the followers of the event are written to a news feed table along with an
event identifier. In one embodiment, each follower is added as a separate entry into the news
feed table along with the event ID. In another embodiment, each of the events for a user is added
as a new column for the row of the user. In yet another embodiment, more columns (e.g.

columns from the other tables) can be added.

[0234] News feed table 960 shows an example of such a table with user ID 961 and event ID
or pointer 962. The table can be organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for each subscriber) in the news feed
table 960. In one embodiment, all of the entries for a same user are grouped together, e.g., as
shown. The user U819 is shown as following events E37 and E90, and thus any of the individual
feed items resulting from those events. In another embodiment, any new entries are added at the

end of the table. Thus, all of the followers for a new event can be added as a group. In such an

55

10

15

20

25

WO 2011/060306 PCT/US2010/056596

embodiment, the event IDs would generally be grouped together in the table. Of course, the

table can be sorted in any suitable manner.

[0235] In an embodiment, if the number of users is small, then the feed items in one or more of
the tables may be written as part of the same write transaction. In one implementation, the
determination of small depends on the number of updates performed for the event (e.g. a
maximum number of update operations may be allowed), and if more operations are performed,
then the addition of the feed items is performed. In one aspect, the number of operations can be
counted by the number of rows to be updated, including the rows of the record (which depends
on the update event), and the rows of the history tables, which can depend on the number of
followers. In another embodiment, if the number of users is large, the rest of the feed items can
be created by batch. In one embodiment, the feed items are always written as part of a different

transaction, i.e., by batch job.

[0236] In one embodiment, security checks can be performed before an entry is added to the
news feed table 960. In this manner, security checks can be performed during batch jobs and
may not have to be performed at the time of requesting a news feed. In one implementation, the
event can be analyzed and if access is not allowed to a feed item of the event, then an entry is not
added. In one aspect, multiple feed items for a same user may not result from a same event (e.g.
by how an event is defined in table 910), and thus there is no concern about a user missing a feed

item that he/she should be able to view.

[0237] In step 1350, a request for a news feed is received from a user. In one embodiment, the
request is obtained when a user navigates to the user’s home page. In another embodiment, the

user selects a table, link, or other page item that causes the request to be sent.

[0238] In step 1360, the news feed table and other tables are accessed to provide displayable
feed items of the news feed. The news feed can then be displayed. In one embodiment, the news
feed table can then be joined with the event history table to determine the feed items. For
example, the news feed table 960 can be searched for entries with a particular user ID. These
entries can be used to identify event entries in event history table 910, and the proper information
from any child tables can be retrieved. The feed items (e.g., stories and messages) can then be

generated for display.

56

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0239] In one embodiment, the most recent feed items (e.g. 100 most recent) are determined
first. The other feed items may then be determined in a batch process. Thus, the feed item that a
user is most likely to view can come up first, and the user may not recognize that the other feed
items are being done in batch. In one implementation, the most recent feed items can be gauged
by the event identifiers. In another embodiment, the feed items with a highest importance level
can be displayed first. The highest importance being determined by one or more criteria, such

as, who posted the feed item, how recently, how related to other feed items, etc.

[0240] In one embodiment where the user subscription table 940 is used to dynamically create
a news feed, the query would search the subscription table, and then use the object IDs to search
the event history table (one search for each object the user is following). Thus, the query for the
news feed can be proportional to the number of objects that one was subscribing to. The news
feed table allows the intermediate step of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the determination of the feed is no

longer proportional to the number of object being followed.

[0241] In some embodiments, a news feed table can include a pointer (as opposed to an event
identifier) to the event history table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved without having to perform a search on the
event history table. Security checks can be made at this time, and the text for the stories can be

generated.
X. DISPLAY OF A FEED

[0242] Feeds include messages and stories and can show up in many places in an application
interface with the database system. In one embodiment, feeds can be scoped to the context of the
page on which they are being displayed. For example, how a story is presented can vary
depending on which page it is being displayed (e.g. in news feeds, on a detail page of a record,
and even based on how the user ended up at a particular page). In another embodiment, only a
finite number of feed items are displayed (e.g. 50). In one implementation, there can be a limit
specifically on the number of stories or messages displayed. Alternatively, the limit can be
applied to particular types of stories or messages. For example, only the most recent changes
(e.g. 5 most recent) for a field may be displayed. Also, the number of fields for which changes

are displayed can also be limited. Such limits can also be placed on profile feeds and news

57

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

feeds. In one embodiment, feed items may also be subject to certain filtering criteria before

being displayed, e.g., as described below.

A. Sharing rules for feeds

[0243] As mentioned above, a user may not be allowed to see all of the records in the database,
and not even all of the records of the organization to which the user belongs. A user can also be
restricted from viewing certain fields of a record that the user is otherwise authorized to view.
Accordingly, certain embodiments use access rules (also called sharing rules and field-level
security FLS) to ensure that a user does not view a story or message that the user is not

authorized to see. A feed of a record can be subject to the same access rules as the parent record.

[0244] In one embodiment, access rules can be used to prevent subscription to a record that the
user cannot see. In one implementation, a user can see a record, but only some of the fields. In
such instances, only items about fields that the user can access may be displayed. In another
embodiment, sharing rules and FLS are applied before a feed item is being added to a feed. In
another embodiment, sharing rules and FLS are applied after a feed item has been added and
when the feed is being displayed. When a restriction of display is mentioned, the enforcement of

access rules may occur at any stage before display.

[0245] In some implementations, the access rules can be enforced when a query is provided to
a record or a user’s profile to obtain feed items for a news feed of a user. The access rules can be
checked and cross-references with the feed items that are in the feed. Then, the query can only

return feed items for which the user has access.

[0246] In other implementations, the access rules can be enforced when a user selects a
specific profile feed or record feed. For example, when a user arrives on a home page (or selects
a tab to see the record feed), the database system can check to see which feed items the user can
see. In such an embodiment, each feed item can be associated with metadata that identifies
which field the feed item is about. Thus, in one embodiment, a story is not visible unless the

associated record and/or field are visible to the user.

[0247] In one example, when a user accesses a feed of a record, an access check can be
performed to identify whether the user can access the object type of the record. In one

implementation, users are assigned a profile type, and the profile type is cross-referenced (e.g. by

58

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

checking a table) to determine whether the profile type of the user can see the object type of the

record.

[0248] In some embodiments, access to specific records can be checked, e.g., after it has been
determined that the user can access the record type. Rules can be used to determine the records
viewable by a user. Such rules can determine the viewable records as a combination of those
viewable by profile type, viewable due to a profile hierarchy (e.g. a boss can view records of
profile types lower in the hierarchy), and viewable by manual sharing (e.g. as may be done by an
owner of a record). In one embodiment, the records viewable by a user can be determined
beforehand and stored in a table. In one implementation, the table can be cross-referenced by
user (or profile type of a user) to provide a list of the records that the user can see, and the list
can be searched to determine if the record at issue is among the list. In another implementation,
the table can be cross-referenced by record to determine a list of the profile types that can access
the record, and the list can be searched to find out if the requesting user is in the list. In another
embodiment, the records viewable by a user can be determined dynamically at the time of the
access check, e.g., by applying rules to data (such as user profile and hierarchy information)

obtained from querying one or more tables.

[0249] In other embodiments, checks can be made as to whether a user has access to certain
fields of a record, e.g., after it has been determined that the user can access the record. In one
aspect, the access check on fields can be performed on results already obtained from the
database, to filter out fields that the user cannot see. In one embodiment, the fields associated
with retrieved feed items are determined, and these fields are cross-referenced with an access
table that contains the fields accessible by the user (e.g. using the profile type of the user). Such
an access table could also be a negative access table by specifying fields that the user cannot see,
as can other access tables mentioned herein. In one embodiment, the field level access table is

stored in cache at a server.

[0250] In one embodiment, a user can see the same fields across all records of a certain type
(e.g. as long as the user can see the record). In one implementation, there is a field level access
table for each object type. The access table can be cross-referenced by user (e.g. via profile type)
or field. For example, a field can be identified along with the profile types that can see the field,

and it can be determined whether the user’s profile type is listed. In another example, the user

59

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

can be found and the fields to which the user has access can be obtained. In another

embodiment, the accessible fields could be specified for each record.

[0251] Regarding profile feeds and news feeds, a first user may perform an action on a record,
and a story may be generated and added to the first user’s profile feed. A second user who is
allowed to follow the first user may not have access rights to the record. Thus, the story can be
excluded from a news feed of the second user, or when the second user views the first user’s
profile feed directly. In one embodiment, if a user is already on the detail page, then another
access check (at least at the record level) may optionally not be performed since a check was

already done in order to view the detail page.

[0252] In some embodiments, for profile feeds and news feeds, the feed items can be
organized by object type. It can then be determined whether the requesting user can access to
those object types. Other access checks can be done independently or in conjunction with these

access checks, as is described above.

B. API Implementation

[0253] Various embodiments can implement the access rules in various ways. In one
embodiment, all recent feed items (or more generally events) are retrieved from a feed that is
ready for display (e.g. after a feed generator performs formatting) or a table. Then, bulk sharing
checks can be applied on the retrieved items. The viewable feed items of the most recent set can

then be displayed.

[0254] In another embodiment regarding a profile feed, for non-VAD (view all data) users, i.e.
users who can see everything, certain functions can be overridden. In one implementation, a
FROM clause in a query can be overridden to be a pipelined function, e.g., with different parts of
the query being operated on at the same time, but with different operations of a pipeline. This
pipeline function can be given a row limit and the maximum number of sharing checks to run. It
can loop, selecting the next batch of rows, run sharing checks against them in bulk, and pipe
back any IDs which are accessible. In one aspect, in nearly all cases, the user feed can contain
accessible IDs so the sharing checks can pass on the first loop. However, it is possible the
sharing may have changed such that this user's access is greatly reduced. In one worst case,

embodiments can run sharing checks on up to the maximum number of sharing check rows (e.g.

60

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

a default 500) and then terminate the functton with the IDs which passed so far, possibly zero.

Such an example includes a low level person viewing profile feed of CEO.

[0255] In some embodiments, if the user has a small number of subscriptions (e.g. <25), then
embodiments can first run sharing checks on those IDs and then drive the main query from those
accessible 1Ds, as opposéd to a semi-join against the subscription and running sharing checks on
the resulting rows. In other embodiments, FLS is enforced by building up a TABLE CAST of

the accessible field IDs from the cached values. A main query can then join against this table to

filter only accessible fields.

XI. FILTERING AND SEARCHING FEEDS

[0256] It can be possible that a user subscribes to many users and records, which can cause a
user’s news feed to be very long and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some important or interesting feed items
may not be read. In some embodiments, filters may be used to determine which feed items are
added to a feed or displayed in the feed, even though a user may be authorized to see more than

what is displayed. Section VILE also provides a description of filtering based on criteria.

[0257] In one embodiment, an “interestingness” filter can function as a module for
controlling/recommending which stories make it to the news feed when the number of items that
a user subscribes to is large. In one such embodiment, a user can specify a filter, which is
applied to a user’s news feed or to record and profile feeds that the user requests. Different
filters can be used for each. For example, processing can be done on the news feed to figure out
which stories are the most relevant to the user. One embodiment can use an importance level, as
described herein. Other embodiments can include a user specifying keywords for a message and

specifying which records or users are most important.

[0258] In one embodiment, a filter can be used that only allows certain feed items to be added
to a feed and/or to be displayed as part of a feed. A filter can be used such that the removal or
non-addition of certain feed items automatically occur for any new feed items after the filter
criteria are entered. The filter criteria can also be added retroactively. The criteria of such a
filter can be applied via a query mechanism as part of adding a feed item to a table or displaying
a feed, as described in sections above. In various embodiments, a user can directly write a query

or create the query through a graphical user interface.

61

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0259] FIG. 14 is a flowchart of a method 1400 for creating a custom feed for users of a
database system using filtering criteria according to embodiments. Any of the following steps
can be performed wholly or partially with the database system, and in particular by one or more

processor of the database system.

[0260] In step 1410, one or more criteria specifying which feed items are to be displayed to a
first user are received from a tenant. In one embodiment, the criteria specifies which items to
add to the custom feed. For example, the criteria could specify to only include feed items for
certain fields of a record, messages including certain keywords, and other criteria mentioned
herein. In another embodiment, the criteria specifies which items to remove from the custom
feed. For example, the criteria could specify not to include feed items about certain fields or

including certain keywords.

[0261] In step 1420, the database system identifies feed items of one or more selected objects
that match the criteria. The feed items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one embodiment, the one or more selected objects are the objects that the
first user is following. In another embodiment, the one or more selected objects is a single

record whose record feed the first user is requesting.

[0262] In step 1430, the feed items that match the criteria are displayed to the first user in the
custom feed. The generation of text for a story can occur after the identification of the feed

items (e.g. data for a field change) and before the display of the final version of the feed item.

[0263] In one embodiment, the criteria is received before a feed item is created. In another
embodiment, the criteria is received from the first user. In one aspect, the criteria may only used
for determining feeds to display to the first user. In yet another embodiment, the criteria is
received from a first tenant and applies to all of the users of the first tenant. Also, in an
embodiment where a plurality of criteria are specified, the criteria may be satisfied for a feed

item if one criterion is satisfied.

[0264] Some embodiments can provide mechanisms to search for feed items of interest. For
example, the feed items can be searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items about or from a particular user. In
one implementation, only messages (or even just comments) from a particular user can be

selected.

62

10

15

20

25

WO 2011/060306 PCT/US2010/056596

[0265]. In another embodiment, a user can enter search criteria so that the feed items currently
displayed are searched and a new list of matching feed items is displayed. A search box can be
used to enter keywords. Picklists, menus, or other mechanisms can be used to select search
criteria. In yet another embodiment, feed comments are text-indexed and searchable. Feed

comments accessibility and visibility can apply on the search operation too.

[0266] In one embodiment, when a user performs a search of feeds, there can be an implicit
filter of the user (e.g., by user ID). This can restrict the search to only the news feed of the user,
and thus to only record feeds and profile feeds that the user is subscribed. In another
embodiment, searches can also be done across feeds of users and records that are not being

subscribed.

[0267] Besides searching for feed items that match a criteria, one also could search for a
particular feed item. However, in one embodiment, a user cannot directly query a feed item or
feed comment. In such an embodiment, a user can query to obtain a particular profile or record
feed, and then navigate to the feed item (e.g. as child of the parent feed). In another
embodiment, the relationship from a feed to its parent entity (e.g. a record or user profile) is uni-

directional. That is a user can navigate from the feed to the parent but not vice versa.

[0268] In one embodiment, a user can directly query the child tables, e.g., comment table 930.
Thus, a user could search for comments only that user has made, or comments that contain
certain words. In another embodiment, a user can search for a profile feed of only one user. In
yet another embodiment, a user can search for profile feeds of multiple users (e.g. by specifying

multiple user names or 1Ds), which can be combined into a single feed.

XII. MAINTAINING RECORDS FOR FOLLOWER’S FEEDS

[0269] If every feed item is stored and maintained on a follower’s feed or even in the profile
and/or record feeds, the amount of data to be stored could be massive, enough to cause storage
issues in the system. In one embodiment, the N (e.g. 50) most recent feed items for each feed are
kept. However, there can be a need to keep certain older feed items. Thus, embodiments can
remove certain feed items, while keeping others. In other embodiments, old stories may be

archived in a data store separate from where recent feed items are stored.

63

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

[0270] In some embodiments, feeds are purged by a routine (also called a reaper) that can
remove items deemed not worthy to keep (e.g. old items). Any underlying data structures from
which feed items are created can also be purged. In one embodiment, the reaper can remove
certain items when new items are added (e.g. after every 5™ item added). As another example,
feed items may be deleted synchronously during the save operation itself. However, this may
slow down each save operation. In one embodiment, however, this may be better than incurring
a larger cost when the items are removed at longer intervals. In another embodiment, the reaper
can run perlodlca]ly as a batch process. Such routines can ensure that a table size does not
become too large In one aspect, a reaper routine can keep the event history table relatlvely

small so the sharing checks are not extremely expensive.

[0271] In various embodiments, the reaper can maintain a minimum number (e.g. 50 or 100) of
feed items per record, maintain a minimum number of records per user (e.g. per user ID), and not
deleting feed items (or entire records) which have comments against it. Such embodiments can
ensure that the detail page and profile page have sufficient data to display in a feed. Note that
the sharing checks for feed queries can cut down the number of records further for users with

less access. Thus, the number of records finally displayed for specific users can be significantly
less than a minimum number for a specific profile or record feed. In one embodiment, a reaper

deletes data that is older than a specified time (e.g. 6 months or a year).

[0272] In one embodiment, the reaper can perform the deletion of feed.items (purging) as a
batch up deletion. This can avoid deletion of large number of records that may lead to locking
issues. In another embodiment, the reaper can be run often so that the table does not become
difficult to manage (e.g. size-wise). In this way the reaper can work on a limited set of records.
In one implementation, the reaper may have logic that deletes certain items (e.g. by an

identification) from tables (e.g. those in FIG. 9A), or sections of the tables.

[0273] The specific details of particular embodiments may be combined in any suitable
manner without departing from the spirit and scope of embodiments of the invention. However,
other embodiments of the invention may be directed to specific embodiments relating to each

individual aspect, or specific combinations of these individual aspects.

[0274] It should be understood that any of the embodiments of the present invention can be
implemented in the form of control logic using hardware and/or using computer software in a

modular or integrated manner. Based on the disclosure and teachings provided herein, a person

64

10

15

20

25

30

WO 2011/060306 PCT/US2010/056596

of ordinary skill in the art will know and appreciate other ways and/or methods to implement
embodiments of the present invention using hardware and a combination of hardware and

software.

[0275] Any of the software components or functions described in this application may be
implemented as software code to be executed by a processor using any suitable computer
language such as, for example, Java, C++ or Perl using, for example, conventional or object-
oriented techniques. The software code may be stored as a series of instructions or commands
on a computer readable medium for storage and/or transmission, suitable media include random
access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or
a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk),
flash memory, and the like. The computer readable medium may be any combination of such

storage or transmission devices.

[0276] Such programs may also be encoded and transmitted using carrier signals adapted for
transmission via wired, optical, and/or wireless networks conforming to a variety of protocols,
including the Internet. As such, a computer readable medium according to an embodiment of the
present invention may be created using a data signal encoded with such programs. Computer
readable media encoded with the program code may be packaged with a compatible device or
provided separately from other devices (e.g., via Internet download). Any such computer
readable medium may reside on or within a single computer program product (e.g. a hard drive
or an entire computer system), and may be present on or within different computer program
products within a system or network. A computer system may include a monitor, printer, or

other suitable display for providing any of the results mentioned herein to a user.

[0277] Any of the methods described herein may be totally or partially performed with a
computer system including a processor, which can be configured to perform the steps. Thus,
embodiments can be directed to computer systems configured to perform the steps of any of the
methods described herein, potentially with different components performing a respective steps or
a respective group of steps. Although presented as numbered steps, steps of methods herein can
be performed at a same time or in a different order. Additionally, portions of these steps may be
used with portions of other steps from other methods. Also, all or portions of a step may be
optional. Additionally, any of the steps of any of the methods can be performed with modules,

circuits, or other means for performing these steps.

65

WO 2011/060306 PCT/US2010/056596

[0278] The above description of exemplary embodiments of the invention has been presented
for the purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise form described, and many modifications and variations are possible in
light of the teaching above. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical applications to thereby enable others
skilled in the art to best utilize the invention in various embodiments and with various

modifications as are suited to the particular use contemplated.

66

AN B W

WO 2011/060306 PCT/US2010/056596

WHAT IS CLAIMED IS:

1. A method of tracking updates in a database system, the method
comprising:

the database system receiving a request to update a first record of a database of
the database system,;

the database system generating a story about the update; and

adding the story to a first feed associated with the update.

2. The method of claim 1, further comprising:
determining a level of importance for the story; and

marking the story with the level of importance.

3. The method of claim 1, wherein the request to update the first record is

received from a first user.

4. The method of claim 3, wherein the feed is a list of recent updates

requested by the first user.

5. The method of claim 1, wherein the feed is a list of recent updates made to

the first record.

6. The method of claim 1, further comprising:
identifying one or more additional feeds that subscribe to the first feed; and

posting the story to the identified additional feeds.

7. The method of claim 1, wherein creating a story about the update is

performed only when the update satisfies certain criteria.

8. The method of claim 7, wherein the criteria requires that the update is for

one of a group of selected fields of the first record.

9. The method of claim 8, further comprising:
receiving selected fields of a first record from a user of a first tenant to which the

first record belonds.

67

WO 2011/060306 PCT/US2010/056596

10. The method of claim 7, wherein the criteria includes that the update be of

a certain type.

11. The method of claim 10, wherein certain type includes additions, but not

deletions of a record related to the first record.

12. The method of claim 1, further comprising:
keeping only the most recent N stories in the first feed, wherein N is a positive

integer greater than 10.

13. The method of claim 1, wherein the update includes a change to a record

that is related to the first record.

14. The method of claim 13, where the related record is a child of the first

record.

15. The method of claim 13, where the related record is a parent of the first

record.

16. The method of claim 13, further comprising:
posting the story to a second feed associated with the record that is related to the

first record.
17. The method of claim 1, wherein the first feed is a feed for the first record.

18. The method of claim 1, wherein the first feed is an entity feed for a record

that is related to the first record.

19. The method of claim 18, wherein posting the first feed for the entity feed
for a record that is related to the first record is performed only when the update is the creation of

the first record.

20. The method of claim 1, wherein the first feed is a profile feed for a user

that sent the request to update the first record.

68

[T VS B\ EE VS S 0 NN N W B W N W N

W LN

WO 2011/060306 PCT/US2010/056596

21. A computer program product comprising a computer readable medium
storing a plurality of instructions for controlling a processor to perform an operation for tracking

updates to a database, the instructions comprising the steps of any of the claims above.

22. A multi-tenant database system comprising:
a database storing a plurality of records; and
one or more processors configured to perform the steps of any of the claimed

methods.

23. A method of tracking users’ interactions with other users of a computer
system, the method comprising:

receiving a message from a first user about a second user, the first and second
users being of a same organization and being users of the business networking system;

the computer system adding the message as a feed item to a profile feed of the
second user; and

the computer system adding the message to a news feed of a third user based on

the third user following the second user.

24. The method of claim 23, further comprising:
determining whether the third user is allowed to view the message, wherein
adding the message to the news feed is conditional on whether the third user is allowed to view

the message.

25. The method of claim 24, wherein determining whether the third user is
allowed to view the message includes:

identifying whether the message include data of a record;

identifying an access level of the third user; and

determining if the access level includes the record.

26. A method of subscribing to a first user to see a feed of a record stored in a
database system, the method comprising:

the database system sending to the first user an identifier corresponding to the
record, the identifier being associated with an activation object;

receiving a selection of the activation object; and

69

WO 2011/060306 PCT/US2010/056596

in response to the selection, the database system adding the record to a list of

objects that the first user is following.

217. The method of claim 26, wherein the record has a name in text, and

wherein the identifier is the name.

28. The method of claim 26, wherein the activation object is a button labeled

to indicate a function of subscribing to the record.

29. The method of claim 26, wherein the first user is limited to a specified

number of records and other users that the user can follow.

30. The method of claim 26, further comprising:

prior to this displaying, receiving a search request from the user, the search
request including criteria of records that the first is interested in following; and

displaying a list of records that match the search criteria, wherein the record is

displayed as part of the list.

31. The method of claim 30, wherein the criteria includes any one or more
selected from a group consisting of: the owner, the creation date, last comment date, and

numerical values of particular fields.

32. The method of claim 26, further comprising:

the database system displaying to the first user an identifier corresponding to a
second user, the identifier being associated with an activation object;

receiving a selection of the activation object;

in response to the selection, the database system adding the second user to a list of

objects that the first user is following.

33. The method of claim 26, further comprising:
determining whether the first user is allowed to follow the record, wherein adding

the record to the list is conditional on whether the first user is allowed to follow the record.

34. The method of claim 33, wherein determining whether the first user is
allowed to follow the record includes:

identifying an access level of the first user; and

70

S O 0 1N s WL ~N O B W

—

WO 2011/060306 PCT/US2010/056596

determining if the access level includes the record.

35. The method of claim 33, further comprising:

receiving a request to view the objects that the first user is following;

displaying the objects to the first user, wherein the list includes objects that the
first user is no longer aliowed to follow;

receiving a request to unsubscribe from a selected object;

removing the selected object from the list.

36. A method of automatically subscribing a user to an object in a database
system, the method comprising:

receiving one or more properties of an object stored in the database system, the
properties being stored in the database system;

receiving one or more criteria about which users are to automatically follow the
object;

the database system determining whether the one or more properties satisfy the
one or more criteria for a first user; and

if the criteria are satisfied, associating the object with the first user in a list that

stores information as to what objects are being followed by the first user.

37. The method of claim 36, wherein the one or more criteria are satisfied if

one property satisfies one criteria.

38. The method of claim 36, wherein the object is a record stored in the
database system, and wherein the one or more properties of the record are selected from a group
consisting of: an owner of the record, a user that converted the record from one record type to
another record type, whether the first user has viewed the record, and a time the first user viewed

the record.

39. The method of claim 36, wherein the object is a second user of the
database system, the first user and second user being of a same organization, and wherein the one

or more properties of the second user include the second user’s position in the same organization.

40. The method of claim 36, further comprising:

71

WO 2011/060306 PCT/US2010/056596

determining whether the first user is allowed to follow the object, wherein
associating the object with the first user in the list is conditional on whether the first user is

allowed to follow the record.

41 . The method of claim 36, further comprising:
automatically unsubscribing the first user from following the object if the first

user stops being allowed to follow the object.

42. The method of claim 36, further comprising:
automatically unsubscribing the first user from following the object if a criteria is

no longer satisfied by a property of the object for the first user.

43. The method of claim 36, further comprising:
automatically unsubscribing the first user from following the object if a specified

action occurs.

44. The method of claim 43, wherein the object is a record, and wherein the

specified action is a closing of the record.

45. The method of claim 36, wherein the criteria is received from a user of the

database system.

46. A method of creating a custom feed for users of a database system, the
method comprising:

receiving, from a tenant, one or more criteria specifying which events are to be
tracked for possible inclusion into a feed to be displayed;

receiving data indicative of an event;

the database system analyzing the event to determine if the criteria are satisfied;

if the criteria are satisfied, adding at least a portion of the data to a table that

tracks events for inclusion into at least one feed for a user of the tenant.

47. The method of claim 46, wherein the one or more criteria received from

the tenant supplement default criteria for tracking events.

48. The method of claim 46, wherein the one or more criteria received from

the tenant replace default criteria for tracking events.

72

WO 2011/060306 PCT/US2010/056596

49. The method of claim 46, wherein the criteria are specified as program
code that analyzes the data and adds the at least a portion of the data to the table through an

application programming interface.

50. The method of claim 46, wherein the criteria specify a record type to be

added to or removed from a list of record types that are tracked.

51. The method of claim 50, wherein the database system is a multi-tenant
database system, wherein the list is specific to the tenant, and wherein other lists exist for other

tenants.

52. The method of claim 46, wherein the criteria specify one or more fields of

particular records that are to be added to or removed from a list of fields that are tracked.

53. A method of creating a custom feed for users of a database system, the
method comprising:
| receiving, from a tenant, one or more criteria specifying which feed items are to
be displayed to a first user;
the database system identifying feed items of one or more selected objects that
match the criteria, the feed items being stored in the database; and
displaying, to the first user, in the custom feed the feed items that match the

criteria.

54. The method of claim 53, wherein the one or more selected objects are the

objects that the first user is following.

55. The method of claim 53, wherein the one or more selected objects is a

single record whose record feed the first user is requesting.

56 . The method of claim 53, wherein the criteria specifies which items to add

to the custom feed.

57. The method of claim 53, wherein the criteria specifies which items to

remove from the custom feed.

58. The method of claim 53, further comprising:
73

bt

O 0 NN N R W

WO 2011/060306 PCT/US2010/056596

after identifying the matching feed items, generating text for displaying in the

custom feed as part of the matching feed items.

59. The method of claim 53, wherein the criteria is received before a feed item

is created.

60. The method of claim 53, wherein the criteria is received from the first

user, and wherein the criteria is only used for determining feeds to display to the first user.

61. The method of claim 53, wherein the criteria is received from a first tenant

and applies to all of the users of the first tenant.

62. The method of claim 53, wherein a plurality of criteria are specified, and

wherein, the criteria are satisfied for a feed item if one criterion is satisfied

63. A method of tracking events in a database system to provide feeds to users
of the database system, the method comprising:

receiving data indicative of a plurality of events;

the database system analyzing each event to determine if the respective event is
being tracked; and

if an event is being tracked, adding a new entry into an event history table, the
new entry including:

an event identifier that identifies the event; and

an object identifier that identifies an object updated by the event.

64. The method of claim 63, wherein the object updated by a first event is a

first record.

65. The method of claim 64, wherein thé first event is a change in a field of
the first record, the method further comprising:

storing an old value of the field and a new value of the field.

66. The method of claim 65, wherein the old value and new value are stored in

a field change table along with the event identifier.

74

NN

~ N v R WD

WO 2011/060306 PCT/US2010/056596

67. The method of claim 63, wherein the object updated by a first event is a
first user’s profile, and wherein the first event is a message to first user’s profile, the method
further comprising:

storing text of the message in a second table along with the event identifier.

68. The method of claim 63, further comprising:
receiving an event that includes a comment on another event; and

storing the comment into a third table along with the event identifier.

69 . The method of claim 63, further comprising:
receiving, from a first tenant, criteria that specifies events that are to be tracked in

the event history table.

70. The method of claim 63, further comprising:
for an event is being tracked, determining one or more users following the object
updated by the event; and

associating the one or more users with the event.

71. The method of claim 70, wherein associating a user with the event
includes:

adding a user identifier and the event identifier to a same entry of a table.

72. The method of claim 71, wherein each user following the object is added
as a separate entry to a news feed table, wherein each separate entry includes the respective user

identifier and the event identifier.

73. A method of displaying a feed to a user of database system, the method
comprising:

receiving, from a first user, a request to view a feed of one or more objects;

the database system querying one or more tables for identifiers associated with the
one or more objects to obtain a plurality of events providing feed items for the feed;

obtaining one or more feed items for each event; and

displaying the obtained one or more feed items.

75

~ N B W N R NN N s W N

0 N N D W

WO 2011/060306 PCT/US2010/056596

74. The method of claim 73, .wherein the feed is a news feed of the first user,
the news feed being an aggregation of feeds of a plurality of objects that the first user is
following, wherein the first user is following the one or more objects, and wherein querying the
one or more tables includes:

querying a user subscription table with an identifier of the first user to obtain one
or more identifiers of the one or more objects that the first user is following; and

using the identifiers to obtain the plurality of events providing feed items for the
feed.

75. The method of claim 74, wherein the request to view a feed of one or more

objects is a request to view the news feed.

76. The method of claim 73, wherein the feed is a news feed of the first user,
the news feed being an aggregation of feeds of a plurality of objects that the first user is
following, wherein the first user is following the one or more objects, and wherein querying the
one or more tables includes:

querying a first table of the one or more tables with an identifier of the first user
to obtain identifiers or pointers corrésponding to the plurality of events providing feed items for

the feed.

77. The method of claim 76, wherein the first table includes a separate entry

for each user identifier for each event identifier.

78. A method of displaying a feed to a user of a database system, the method
comprising:

receiving, from a first user, a request to view a feed of one or more objects that
the first user is following;

determining a plurality of feed items for the feed;

the database system checking whether the first user has authorization to view each
of the feed items; and

displaying the feed items that the first user has authorization to view.

79. The method of claim 78, wherein checking whether the first user has

authorization to view a first feed item includes:

76

(8]

AN A

W N

[N N VS B \S

WO 2011/060306 PCT/US2010/056596

analyzing the first feed item to determine that the first feed item is associated with
a first field of a first record; and

determining whether the first user has authorization to view the first field.

80. The method of claim 79, wherein determining whether the first user has
authorization to view the first field includes:

identifying a record type of the first record; and

searching a field level access table that is associated with the record type of the .

first record.

81. The method of claim 80, wherein the table is stored in a cache of a server

of the database system.

82. The method of claim 80, wherein searching the field level access table
includes:

querying the table for the first field to identify oﬁe or more profile types that can
view the first field; and

determining whether the first user has one of the identified profile types that can

view the first field.

83. The method of claim 78, wherein the feed is a record feed for a first
record, and wherein determining a plurality of feed items for the feed includes:
using an identifier of the first record to identify events in an event history table

that are associated with the first record, wherein the events include information of the feed items.

84. The method of claim 78, wherein the feed is a news feed of the first user,
the news feed being an aggregation of feeds of a plurality of objects that the first user is

following.

85. The method of claim 84, wherein determining a plurality of feed items for
the feed includes:

identifying objects that the first user is following;

determining events associated with the identified objects; and

retrieving the feed items for the determined events.

77

AW B T S B W N N W N

N U AW N

WO 2011/060306 PCT/US2010/056596

86. The method of claim 85, wherein checking whether the first user has
authorization to view each of the feed items includes:

determining an object type shared by a plurality of the identified objects that the
first user is following; and

determining whether the first user has authorization to view objects of the

determined object type.

87. The method of claim 85, wherein the identified objects include a first
record, and wherein checking whether the first user has authorization to view each of the feed
items includes:

determining whether the first user has authorization to view the first record.

88. The method of claim 87, wherein determining whether the first user has
authorization to view the first record includes:
querying a table to determine records that the first user has authorization to view

or querying a table to determines users that are allowed to view the first record.

89. The method of claim 78, wherein the feed is a profile feed of a second

uscr.

90. The method of claim 89, wherein checking whether the first user has
authorization to view a first feed item includes:
analyzing the first feed item to determine that the first feed item is associated a

record or field of the record that the first user does not have authorization to view.

91. The method of claim 89, wherein checking whether the first user has
authorization to view each of the feed items includes:

obtaining a first predetermined number of feed items of the profile feed,

checking whether the first user has authorization to view feed items of the first
predetermined number; and

repeating the obtaining and the checking until a stopping criteria is met.

92. The method of claim 91, wherein the stopping criteria is when a maximum

number of access check are performed.

78

AN W R W N

W

W N

~N N W N

WO 2011/060306 PCT/US2010/056596

93. The method of claim 89, wherein checking whether the first user has
authorization to view each of the feed items includes:

obtaining a first set of feed items of the profile feed;

identifying one or more types of records represented in the first set of feed items;
and

determining whether the first user is authorized to view the identified one or more

types.

94. The method of claim 93, wherein checking whether the first user has
authorization to view each of the feed items further includes:

determining whether the first user has authorization to view specific records of the
first set of feed items and of the record types that the first user is authorized to view; and

determining whether the first use has authorization to view fields of the specific

records and of the first set of feed items.

95. The method of claim 78, wherein the first user is following records and

users of the database system.

96. A computer program product comprising a computer readable medium
storing a plurality of instructions for controlling a processor to perform an operation of any of the

methods above.

97. A system comprising:
the computer program product of claim 96;
one or more processors for executing instructions stored on the computer readable

medium.
98. A system comprising means for performing any of the methods above.
99 . A system configured to perform any of the above methods.
100. A system comprising modules that respectively perform the steps of any

of the above methods.

79

WO 2011/060306 PCT/US2010/056596

115

System Program
Data Code
Storage
K 28
Processor
System Process Space
Application 20
Platform \
' Network System16

Interface

Environment
10

User User
System | s rreees e System
12 12

FIG. 1

WO 2011/060306 PCT/US2010/056596
2/15 - 29
—
— { T
\ /
i 23
112
o4 Tenant .Space
<> :
E 25 Tenant Data 1 114
— Application MetaData [— [~ 116
Tenant DB
Application
Setup Tenant Management System
Mechanism 38 Process Process
110 102
Save
Routines 36
Tenant 1 || Tenant 2 Tenant N
PL/SOQL Process || Process Process
34 C
18 N 104 ——-—/ 28
APl 32 Ul 30
N = ~ ~ — -~ -
Appl. -~ 100, Appl. }~100y
Server Server —
Environment
10
12
R 12 12
Processor Memory]
System 12A | | System 12B .
lnput Output FIG. 2
System 12C| | System 12D

16

WO 2011/060306 PCT/US2010/056596

3/15
300

310 ———_| Database system receives a request
to update a first record

A 4

320 ——| Database system writes new data to
first record

\ 4

330 \
Generate story about update

\ 4

340
\

Add story to feed of first record

A

350
Y Identify followers of first record

A

360 -— Add the story to a news feed of each follower

A

370 —_| Follower accesses histher news feed and
sees the story

FIG. 3

PCT/US2010/056596

4/15

WO 2011/060306

v Old
(0194
(1emoj(oy)
Jasn puoosg
9
14 lesn 2 JO pos)
plodal Jo pes) loj 1senbay
1o} 1sonbay 00v
oLy 145% 194
wajsAg aseqejeq aljo.d
aseqele(a1joid Jamo||o4
g
Ao}
(4% % 3@%
aseqele(¢
pJooaYy Ai01g MON
sz | Ly
piooay | - (s)10ss2001d GOY
ejep meN A Of 1 L esnisiid
\ .
\ X pi0oay
0l alepdn
0cv

WO 2011/060306 PCT/US2010/056596

5/15
500
510 ——| Database system identifies an action
of a first user that triggers an event

A 4 NO

520 — Does the event qualify for a story? » Stop
Yes
A 4
530 —— Generate story about the action

h 4

540 —— Add story to feed of first user

\ 4

550 — Identify followers of first user

A4

Add the story to a news feed of each

560 follower

A 4

570 — Follower accesses the news feed and
sees the story

FIG. 5

WO 2011/060306

6/15

610 —

Database system receives a message
associated with a user

A 4

Add message to a profile (e.g. as a
profile feed) of the user

\ A

Database system identifies followers
of user

A

Add the message to a news feed of
each follower

A 4

Follower accesses a news feed and
sees the message

A 4

640 —
650
—
660
\

Database system receives a comment
about the message

A 4

Add comment to the news feed of
each follower

PCT/US2010/056596

600

FIG. 6

PCT/US2010/056596

WO 2011/060306

7115

“dugesop At Bupes mogs Bunu
‘eramndwod Lk o) @nel |

SEPE T HILS.

1A2p0) Hoomau B Az oy
LZLURIBGULS &

‘HOOLIBU MSU BU] 58S O} R
Lue s Bundy sl SlEEp swosane
Yuwve e Buiion s1 (1Q pIesy |

swepe” wes £

v Bumogog

sSIquiay

s

BUC MU0 BT S ONAS Jepun JBUBIL BUL U0 51 8

58/, |Ad HOUIS SAWR
QNS JON BOXER oL

Y 2 palnaR! USad SBU 3| 4IUSIU0S Ul HD8us nok

\ 1 SBY 4G A § HOSUYOT B

0L

480, ONAS WO 09 SI0UEDY aul m_;mrm/wm,»ﬁm 580 mAwtmI I
0c¢L

‘SIDGLLBLE LIBR] SOIA0U BICLI BYL
10§ ayqepea) Asa 5 adan 1o 1y B ainb oy of 1ou SOk B uBnowy J—

“GS3USNE NG Jo Siuaucdion BuXUepun sl SBURND JUSRINIOPE S| PAOCUIRN

R

syooian - subisy sappsduwon

USWIRRCH 313 DeOd SBY 31eg Jig

/ £ su

600E p7 Ay
0LL

i’

101,

LIRSl

“Saaneage a0l 7 Ax isuiele 2190ui0d 03 sn Mope

dnoxn sanneduio) ZAX

s JBUL UONRLLIOIL 8J2US 0] 20Bid v

L Old

weey fy 8

£ 2

sspunpodde
salld /*
spelag 47
2RRYO iy 8%

spaeoayseq syodoy sepunioddD SWEWIOD SIUN0Y

PCT/US2010/056596

WO 2011/060306

8/15

ABo1ENS SSPOSIP 01 emncA & UL B BW SND 4BaK 1SB| JUNTDDE S UO REXIDH | UBNIBY A8

2 ¢80, DNAS WO BOBP SjouAsy B1) 4By SUAUR S0 SIURH JoREd

£

A
JNO0DE 7 A’ 3t ue 8y Asapen dojde] puncse Luoinsdwoo ybnoy swos Bunsh i s, yseN ou3

6007 87 A Aupasisag

;. abusyeus g g o} Bick s.aue sl ‘59, didey mme

i
i, BUNSBIOWY WEUH MET BouE |

IR U0 1onposd Z pnojs) SDinag JNo sioidxe O) SIUBM ZAY, 1sneg 10g

: SR 3 A
i Ue feaoudde Jo) pallikigNs uaag 1snf sey Junoosp e wsBoin D00 » 0w TAY

BO0T YT Amp Awpag

HUET R yoely

an e Gh BB TR

8 Old

g ajofoey E

s

IBDUBIRD 1

s1aBpi, 0007} - Bwov

S1oBPIML
000G - W00 800)s8i8s 7Y

WO BOI0JS3ES

o (PTEaE BIUBARY
APV JoeUD MWlA L0 | SUBY O HUTT [T
: yDiBag
Mz }-Aiunpoddo ¢ s

spieogyseg - suodey o SPBI0D SMNOSDY maao‘@, aljold Al dwioH

WO 2011/060306

Event Object

9/15

Created by ID

PCT/US2010/056596

User ID Object ID

941 942
U819 0615
U819 0489
U719 0615

User Subscription
Table 940

FIG. 9A

D911 ID 912 913 Event COg‘?:ge“t T‘mgégate
ID 931
E1 0615 us E37 10-21-2010 5:32 PM
E2 0489 U101 E37 9-17-2010
) Event History Table 910) Comment Table 930
Event Old value New Event Post Text Time/Date
1D 921 922 value 923 952 953
ID 951
E37 300 400 £69 10-11-2010 4:12 PM
E37 4.03 4.10 ESC 8-12-2010
¢ Field Change Table 920) Post Table 950

User ID Event
961 ID 962
U819 E37
U819 E90
U719 E37

News Feed Table
960

WO 2011/060306

10/15

901 — Receive one or more properties of an
object stored in the database system

A 4

902 Receive one or more criteria about which
" Y usersareto automatically follow the
object

A

903
\ Determine whether the one or more

properties of the object satisfy the one or
more criteria for a first user

904 T~ [Ifthe criteria are satisfied, the object is
associated with the first user

FIG. 9B

PCT/US2010/056596

900

WO 2011/060306 PCT/US2010/056596

11/15

1000

Receive data indicative of an event

N

1020 — Determine whether the event is being
tracked for inclusion into feed tables

A 4

Write event to an event history table

1050
1040 v A4
\ Update field change

table Update post table

A 4

1060 | Receive a comment for an event and
add to a comment table

FIG. 10

WO 2011/060306

12/15

1110 —| Receive a query for an events history
table

\ 4

1120 —— Check to determine if the user can
view the record feed

A 4

1130 \ Check field level security table to
determine whether the user can see
particular fields

A 4

1140 | Display feed items to which the user
has access

PCT/US2010/056596

1100

FIG. 11

WO 2011/060306 PCT/US2010/056596

13/15

1210 Receive a query from a second user
"N for an events history table to see a 1200
first user’s profile feed

A 4

1220 — Perform security check whether second
user can see first user’s profile feed

A

1230 —~| Perform a security check
on specific feed items

4
Retrieve a predetermined number of
1231 — matching entries from the event
history table

h 4

1232
\ Organize the record identifiers by type and check
whether the second can see the record types

\ 4

1233 | If can see type, then proceed to check access
for specific records

A

1234 — Use field sharing rules to determine if certain
fields are not viewable

A 4

1235 —| Repeat steps 1231-1234 until a stopping
criteria is reached FIG. 12

WO 2011/060306 PCT/US2010/056596

14/15

1300

1310
Y Receive data indicative of an event

\ 4

1320 | Determine objects associated
with the event

A 4

1330
_\ Determine users following the event

A 4

1340 —| Write followers of the event along with an
event identifier to a news feed table

v

1350 ———_| Receive a request for a
news feed from a user

v

1360 ™\ Access news feed table and other tables
to generate feed items for display

FIG. 13

WO 2011/060306

15/15

1410 . - s .
N Receive one or more criteria specifying which

feed items are to be displayed to a first user

A 4

1420 — Identify feed items of one or more selected objects

that match the criteria

\ 4

1430
\

Display the feed items that match the
criteria to the first user in the custom feed

PCT/US2010/056596

1400

FIG. 14

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings

