CHROMATOGRAPHY MEMBRANES, DEVICES CONTAINING THEM, AND METHODS OF USE THEREOF

Inventors: Damian Brellisford, Stoney Creek (CA); Donna L. Crossley, Hamilton (CA); Greg McIntosh, Toronto (CA); Robert Ruman, Cambridge (CA); John Rydall, Oakville (CA); Christopher S. Shields, Windham, NH (US)

Correspondence Address:
FOLEY HOAG, LLP PATENT GROUP, WORLD TRADE CENTER WEST
155 SEAPORT BLVD
BOSTON, MA 02110 (US)

Assignee: Natrix Separations Inc., Burlington (CA)

Appl. No.: 12/551,762

Filed: Sep. 1, 2009

Related U.S. Application Data
- Provisional application No. 61/093,600, filed on Sep. 2, 2008, provisional application No. 61/102,797, filed on Oct. 3, 2008.

Publication Classification
- Int. Cl.
 - B01D 15/38 (2006.01)
 - B01D 35/30 (2006.01)
 - C02F 1/42 (2006.01)
 - B01J 49/00 (2006.01)
 - B01D 15/36 (2006.01)

U.S. Cl. 210/656; 210/446; 210/437; 210/449; 210/198.2; 210/679; 210/670

ABSTRACT
Described herein are fluid treatment devices for use in tangential flow filtration, comprising a housing unit and a composite material, wherein the composite material comprises: a support member comprising a plurality of pores extending through the support member; and a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member. The invention also relates to a method of separating a substance from a fluid, comprising the step of placing the fluid in contact with an inventive device, thereby adsorbing or absorbing the substance to the composite material contained therein.
Figure 1

10 mil Susp. Screen

#590 Screen
Egg White, Pre- and Post-Recirculation over "S" Membrane
100mL recirculated over 4 x 28cm² layers, 24 hours
Figure 3

BBNYJO-7: EW recirc. for 16.5 hrs at 4°C, 4 membranes, 0.3L/min
Wash with 25mM PBS+ NaCl

Each sample curve stacked by 0.02 absorbance units more than the previous one
Fig. 4

PROCESS STREAM FLOW

LOAD

BIO-MOLECULES

MEMBRANE

FLUSH

ELUTE 1 THEN 2 (IF PRESENT) USING DIFFERENT BUFFER CONDITIONS AND PRESSURE DROPS

2 1
Figure 5

Performance Differences as a Function of Spacer/Mesh Sizes

Lysozyme Bound (mg/mL)

- Sigma Lysozyme Saturated
- Course - 40 mils
- Fine - 40 mils
- Fine - 30 & 40 mils
- Fine - 30 mils
Figure 6

- End Cap removed for clarity
- Wrapped column with 2 spacer layers
Fig. 7

- Outer Casing
- Spacer, Ideally 23 mil
- Membrane
- Screen Channel
- Feed Channel
Fig. 8
Figure 24
Figure 25

[Chemical diagram showing a reaction between two compounds at room temperature for 16-24 hours, resulting in a new compound.]
Figure 26
Figure 27
Figure 30
CHROMATOGRAPHY MEMBRANES, DEVICES CONTAINING THEM, AND METHODS OF USE THEREOF

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/093,600, filed Sep. 2, 2008; and U.S. Provisional Patent Application Ser. No. 61/102,797, filed Oct. 3, 2008; both of which are hereby incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

Membrane-based water treatment processes were first introduced in the 1970s. Since then, membrane-based separation technologies have been utilized in a number of other industries. In the pharmaceutical and biotechnology industries, the use of preparative chromatography, direct flow filtration (DFF) and tangential flow filtration (TFF), including micro-, ultra-, nano-filtration and diafiltration are well-established methods for the separation of dissolved molecules or suspended particulates. Ultrafiltration (UF) and microfiltration (MF) membranes have become essential to separation and purification in the manufacture of biomolecules. Molecular manufacturing, regardless of its scale, generally employs one or more steps using filtration. The attractiveness of these membrane separations rests on several features including, for example, high separation power, and simplicity, requiring only the application of pressure differentials between the feed stream and the permeate. This simple and reliable one-stage filtering of the sample into two fractions makes membrane separation a valuable approach to separation and purification.

Notably, the separation and recovery of biomolecules, such as enzymes and glycoproteins, are critical cost-determining steps in most of the down-stream processes in the biotechnology industry. For example, separation of lysozyme from crude sources, such as egg white, has been achieved by salt precipitation (U.S. Pat. No. 4,504,583), or ion exchange techniques (U.S. Pat. Nos. 4,705,755; 4,966,851; 4,518,695; and 4,104,125). Due to the viscous, highly concentrated nature of egg white, and the nature of the other protein constituents, recovering high-purity lysozyme in good yield is extremely laborious and costly.

In one class of membrane separations, the species of interest is that which is retained by the membrane, in which case the objective of the separation is typically to remove smaller contaminants, to concentrate the solution, or to affect a buffer exchange using diafiltration. In another class of membrane separations, the species of interest is that which permeates through the filter, and the objective is typically to remove larger contaminants. In MF, the retained species are generally particulates, organelles, bacteria or other microorganisms, while those that permeate are proteins, colloids, peptides, small molecules and ions. In UF the retained species are typically proteins and, in general, macromolecules, while those that permeate are peptides, ions and, in general, small molecules.

In “dead-end,” “normal flow,” or “direct flow” filtration (DFF), a filtration device is used that has one inlet and one outlet. The total (100%) solution volume is forced through a porous filter. DFF devices are commonly single-use devices. Such membrane filters or depth filters are commercially available in different filter area sizes as well as different pore sizes. Depending upon the selected pore size, molecules or particulates smaller than the average membrane pore size will pass (together with solvent) through the filter. Thus, direct flow filtration (DFF) devices allow for the selective removal of particulates, bacteria, viruses, cell debris, and large macromolecules.

Conventional filters in which all of the fluid entering the filter housing passes through the filter element (DFF) typically operate at low shear near the surface of the filter medium. Thus, when a highly flocculating dispersion is delivered into a conventional filter device, by a conventional delivery system, flocs ordinarily tend to form near the surface of the filter medium. The flow field moves the flocs onto the surface and into the bulk of the filter medium, ultimately resulting in plugging of the filter. In practice, a plugged filter may cause a significant amount of downtime for a filter change.

A raw or semi-conditioned process stream that contains high-value materials is often highly viscous or highly contaminated. As such, DFF separation approaches are difficult or challenging due to binding of the membrane with the solute present in the feed stream. Additionally, these processes often require high pressure to maintain a reasonable flux of permeate.

In contrast, tangential flow filtration (TFF) devices, also known as cross-flow filtration devices, have one inlet, one retentate outlet and at least one permeate outlet. Tangential flow denotes a filtration configuration in which a flowing fluid is directed along the surface of a filter medium, substantially parallel (tangential) to the surface of the filter medium. In this configuration, the solute adsorbs or absorbs to the surface or the pores of the membrane as the eluent flows over the surface. The purified portion of fluid that passes through such filter medium has a velocity component which is “crosswise”, i.e., perpendicular to the direction of the fluid flowing along the surface of such filter medium. In TFF, the retentate (or decantate) can be repeatedly re-circulated with the objective of improving filtration efficiency and enhancing the permeate yield. The re-circulated retentate solution pathway runs parallel to the membrane surface and is pumped past the membrane with sufficient velocity to ensure a surface cleaning action. However, only a relatively small amount of permeate is collected during each retentate volume-pass, and thus a significant processing time is typically associated with TFF procedures. If an appropriate membrane is selected for a specific separation, a second liquid can be used to elute the material adsorbed or absorbed to the membrane for harvesting.

Crossflow filtration or tangential filtration is a well known filtration process. Reference may be had e.g., to U.S. Pat. Nos. 5,681,464, 6,461,513; 6,331,253, 6,475,071, 5,783, 085, 4,790,942, the disclosures of which are incorporated herein by reference. Reference may also be had to “Filter and Filtration Handbook”, 4th Ed., T. Christopher Dickenson, Elsevier Advanced Technology, 1997, the disclosure of which is incorporated herein by reference.

In TFF careful attention must be paid in the device design, as flow dynamics play an important role in the efficiency of the system. Turbulent flow must be minimized in these systems, so as to not physically disassociate a desired substance from the membrane surface. Turbulence is flow dominated by recirculation, eddies, and apparent randomness. Flow in which turbulence is not exhibited is called laminar. A steady, laminar flow is desired.
For optimal results, both DFF and TFF demand careful attention to filter porosity and filter area, as well as required differential pressures and selected pump rates. However, filtration devices tend to clog when used over an extended period of time and must be timely replaced. Clogging of a filtration device occurs: (1) when the membrane pores become obstructed, typically with trapped cells, particulate matter, cell debris or the like, or (2) when the feed channel (into a TFF device) becomes obstructed by solids or colloidal material and/or cell debris. This clogging of the feed channel or membrane pores results in a decreased liquid flow across the porous filter membrane. The result is a change in system pressure which, if not properly addressed, runs the risk of serious detriment to the operation which incorporates the filtration procedure.

As such, the choice of membrane in each of the filtration techniques is critical to the efficiency and success of the separation. Composite membranes with high specificity and high binding capacity have been described in U.S. Pat. No. 7,316,919, and U.S. Patent Application Publication Nos. 2008/0314831 and 2008/0312416, which are hereby incorporated by reference in their entirety. These materials are highly versatile and can be designed for specific separation situations.

A wide variety of devices are available for these applications. Typically, devices are categorized by configuration into categories including the following: flat plate (for example, cassette or plate and frame), spiral (or spiral wound), tubular, or hollow fiber. The choice of device configuration is driven by reliability, performance, and cost for each specific application.

Flat plate or cassette devices consist of membranes cast on plates; the plates are then reliably stacked. The devices may or may not have flexible screens in the feed channels to support the membranes. An appealing advantage of a configuration such as this is its very compact design. However, channel height control, defined by plate-to-plate interaction and distance, must be very carefully considered.

Tubular devices consist of a membrane cast on the inside surface or outside diameter of a porous support tube. Typically, a feed solution is pumped through the center of the tube at velocities as high as 20 ft/s. These cross-flow velocities minimize the formation of a concentration polarization layer on the membrane surface, promoting high and stable flux and easy cleaning. The permeate is driven through the membrane. Despite the apparent advantages of using a system such as this, the cost tends to be high.

Spiral-wound devices consist of multiple layers of folded membrane, feed screen, and permeate screen wound around a center permeate collection tube (FIG. 23). Typically found in water purification applications, these devices are also compact and can operate at low pressure to save energy, but are suitable for high pressure applications as well. The cost per membrane area is typically low.

Typical spiral wound filters consist of about 1 to about 6 spiral wound elements coupled in a serial flow mode and placed in a cylindrical pressure vessel. Between two membranes in the roll is placed a permeable porous medium for conduction of fluid, the concentrate spacer, to ensure that the concentrate can flow over the membrane in order to be distributed all over the surface and to continuously rinse the membrane from accumulating solids. The filter elements are kept tightly wound by a hard, impermeable shell. In this configuration flow in and out of the filter element will be through the ends in an axial direction.

An unmet need exists in many applications where high contaminate feed streams will immediately plug or blind the membrane media in a typical DFF mode or, when the membranes employed are incapable of any appreciable substrate capture, in cross-flow modes. Utilizing versatile, high performance, high throughputs membranes capable of high binding capacities in filtration devices would provide separation systems with performances far exceeding any known technology in a variety of art areas.

SUMMARY OF THE INVENTION

In certain embodiments, the invention relates to a fluid treatment device comprising:

- a housing unit, wherein the housing unit comprises
 - (a) an inlet and an outlet;
 - (b) a fluid flow path between the inlet and the outlet; and
 - (c) a composite material within the housing unit, wherein the composite material comprises
- a support member comprising a plurality of pores extending through the support member; and
- a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member;
- wherein said macropores of said macroporous cross-linked gel are smaller than said pores of said support member;
- wherein the pores of the support member are substantially perpendicular to the fluid flow path.

In certain embodiments, the invention relates to a fluid treatment device comprising:

- a plurality of housing units, wherein each housing unit comprises
 - (a) an inlet and an outlet;
 - (b) a fluid flow path between the inlet and the outlet; and
 - (c) a composite material within the housing unit, wherein the composite material comprises
- a support member comprising a plurality of pores extending through the support member; and
- a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member;
- wherein said macropores of said macroporous cross-linked gel are smaller than said pores of said support member;
- wherein the pores of the support member are substantially perpendicular to the fluid flow path.

In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein the composite material is arranged in a substantially coplanar stack of substantially coextensive sheets, a substantially tubular configuration, or a substantially spiral wound configuration.

In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein the macroporous cross-linked gel is a neutral or charged hydrogel, a polyelectrolyte gel, a hydrophobic gel, a neutral gel, or a gel comprising functional groups.
In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein said functional groups are selected from the group consisting of amino acid ligands, antigen and antibody ligands, dye ligands, biological molecules, biological ions, and metal affinity ligands.

In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein said functional groups are metal affinity ligands. In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, further comprising a plurality of metal ions complexed to a plurality of said metal affinity ligands. In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein said metal affinity ligands are iminodiacetic acid ligands; and said metal ions are nickel.

In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein said functional groups are biological molecules or biological ions. In certain embodiments, the invention relates to any one of the aforementioned fluid treatment devices, wherein said functional groups are Protein A.

In certain embodiments, the invention relates to a method comprising the step of:

contacting a first fluid comprising a substance with a composite material in any one of the aforementioned fluid treatment devices, thereby adsorbing or absorbing the substance onto the composite material.

In certain embodiments, the invention relates to any one of the aforementioned methods, further comprising the step of placing the first fluid in an inlet of the fluid treatment device.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the first fluid is passed along a fluid flow path substantially perpendicular to the pores of the support member.

In certain embodiments, the invention relates to any one of the aforementioned methods, further comprising the step of contacting a second fluid with the substance adsorbed or absorbed onto the composite material, thereby releasing the substance from the composite material.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the first fluid is a suspension of cells or a suspension of aggregates.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the substance is a biological molecule or biological ion. In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the biological molecule or biological ion is a protein; and the protein comprises exposed His amino acid residues. In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the biological molecule or biological ion is a monoclonal antibody.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the substance is a metal-containing particle, or a metal-containing ion.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the first fluid is waste water.

In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the first fluid comprises egg white; and the substance is lysozyme.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 depicts the results of dead-end compared to cross-flow modes for viral capture using an ion-exchange membrane. In both cases, the lower value obtained with dead-end flow was due to fouling of the membrane during the experiment.

FIG. 2 depicts a chromatogram from the elution of a mixture proteins (ovalbumin and lysozyme) captured directly from unprocessed egg whites using ion-exchange membranes in cross-flow mode. The results demonstrate that proteins can be selectively removed from an unprocessed, highly viscous feed stream.

FIG. 3 depicts chromatograms of eluent fluids from egg white-loaded ion-exchange membranes. Curves show selectivity of elution, based on buffer (saline solution) selection. This series of curves demonstrates the ability selectively to separate (i.e., chromatographically) captured target materials in high purity, or as mixtures essentially free from other constituents.

FIG. 4 depicts a schematic of the cross-flow and capture steps (top and middle), and a trans-membrane collection step (bottom).

FIG. 5 depicts the effects of wrap design on device performance showing that coarse mesh spacers lead to improved performance in separating lysozyme from egg white using ion-exchange membrane.

FIG. 6 depicts a wrapped column device inserted into a housing. Inlet cap not shown for clarity.

FIG. 7 depicts a simplified cross-section of a cassette showing trans-membrane flow of target material as indicated by arrows. Harvesting could also be accomplished by cross-flow, if required, using a fluid that selectively eluted the bound target materials.

FIG. 8 depicts a schematic illustration of a typical cassette design. Flow is shown with trans-membrane harvesting that is occurring simultaneously with a flowing feed stream.

FIG. 9 depicts a cross-section of a disposable or semi-disposable housing for a 25 mm syringe column comprising a disk-shaped filtration membrane for lab-scale use.

FIG. 10 depicts top view (top left), side view (right), and actual size views (bottom left) of the outlet half of the syringe tip filters for use in the housing shown in FIG. 9 and FIG. 11. All units in the drawings are in inches.

FIG. 11 depicts a cross-section of the disposable or semi-disposable housing for a 25 mm syringe column comprising a disk-shaped filtration membrane for lab-scale use.

FIG. 12 depicts a cross-section of the disposable or semi-disposable housing for a 50 mm syringe column comprising a disk-shaped filtration membrane for lab-scale use.

FIG. 13 depicts the drainage grid in the housing depicted in FIG. 12 for use with a 50 mm disk-shaped membrane.

FIG. 14 depicts an inlet flow deflector in a reusable stainless steel housing for a 50 mm syringe column comprising a disk-shaped filtration membrane for lab-scale use.

FIG. 15 depicts a stainless steel holder for use as a reusable housing for a 25 mm disk-shaped membrane for lab-scale use.
FIG. 16 depicts a component of a reusable stainless steel housing for lab-scale syringe columns.

FIG. 17 depicts two components of a reusable stainless steel housing for lab-scale syringe columns.

FIG. 18 depicts a maxi spin column (left), and a device for supporting a cut disk membrane within the column (right).

FIG. 19 depicts the dimensions of a maxi spin column.

FIG. 20 depicts the dimensions of a maxi spin column with a device for supporting a cut disk membrane within the column.

FIG. 21 depicts a mini spin column with a device for supporting a cut disk membrane within the column.

FIG. 22 depicts the dimensions of a mini spin column with a device for supporting a cut disk membrane within the column.

FIG. 23 depicts an exemplary configuration of a spiral wound device. There are three series of concentric envelopes, wherein each envelope has a spacer material inside and three of the sides are sealed. Each envelope is separated by a feed spacer. Fluid flow is directed such that raw fluid travels on the outside of each envelope and is forced through the membrane. The permeate travels along the permeate spacer to the permeate collection pipe.

FIG. 24 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is the sodium salt of iminodiacetic acid (IDA(Na)₆).

FIG. 25 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is ethylenediamine (EDA).

FIG. 26 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is hexamethylenediamine (HMDA).

FIG. 27 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is diethanolamine.

FIG. 28 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is pentamethylenehexamine (PEHA).

FIG. 29 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is triethylenetetramine (TETA).

FIG. 30 depicts an exemplary synthetic scheme for incorporation of a metal affinity ligand into the membrane. In this case, the metal affinity ligand is the sodium salt of trimethylene diaminotris (carboxymethyl)ethylene diamine (TED(Na)₆).

DETAILED DESCRIPTION OF THE INVENTION

Overview

Disclosed is a hydrophilic, high binding, high throughput chromatography membrane that is effective for selective capture of target materials, such as bio-molecules, from raw or dirty process streams. This capture process can be accomplished by binding of the target molecules at the surface of the membrane media ("cross-flow" mode), as opposed to the more typical trans-membrane mode. The captured target species can be collected in a highly purified form in subsequent procedures. These final steps are chromatographic in nature and allow for controlled separation of the target materials. Importantly, the collection step and the separation step can be done in either tangential flow or in trans-membrane flow or combinations thereof. See, e.g., FIG. 1.

Exemplary device designs suitable for this process include those in which the membrane is incorporated into a modified cassette, wrap, or spiral-wound cross-flow separation device designed for low-shear fluid-flow, and minimization of uncontrolled or undesired trans-membrane flow. For example, such devices were found to be effective for separating proteins or viruses from highly viscous and or highly contaminated feed streams with a minimum of process fluid flux across the membrane. The cross flow (tangential flow) format allows for greater flexibility in washing and eluting the target molecule(s). The cross flow devices can be run in feed-to-retenatate mode and perform a surface ion exchange or affinity separation. Washing can be done in feed-to-retentate mode, feed-to-permeate or permeate-to-feed mode, or in a sequential mode.

The incorporation of the hydrophilic, high performance chromatography membrane into a modified cross flow device provides a separation device that purifies target molecules from highly viscous or highly particulate feed streams, and completes both clarification and capture of target species with no intervening steps. Moreover, the materials and constructs described here do not preclude the use of the same membrane materials in traditional device designs, such as pleated dead-end capsules. Importantly, these products can produce highly purified proteins, vaccines, or nutracentials from feed streams that cannot be processed directly with current commercial technology. Additionally, the devices and methods of the present invention allow for faster processing of large volumes of feed streams than any current technology.

For example, due to the viscous, highly concentrated nature of egg white, typical filtration schemes prove to be problematic when trying to collect constituents present in relatively low concentrations. Using the devices and methods of the present invention, lysozyme can be easily separated from egg white with high recovery and high purity.

In certain embodiments, the invention relates to a device that displays superior performance in comparison to know devices. In certain embodiments, the devices may tolerate about 10x to about 100x higher throughput than resins. In certain embodiments, the devices may display up to about 25x higher binding capacity than existing chromatographic membranes and resins.

In certain embodiments, the invention relates to a device that is scalable and produces predictable results in the transitions from Lab to Pilot to Production, unlike conventional resin products.

In certain embodiments, the invention relates to a device that encompasses a robust technology. In certain embodiments, the superior mechanical strength of the devices and the inherent hydrophilicity of the composite membranes lead to longer in-process product lifetimes and more consistent performance.

In certain embodiments, the invention relates to a device that may be available as a single use or multi-cycle disposable unit. This flexibility may eliminate costly and time consuming cleaning and storage validation. Furthermore, the devices of the invention enable simple process and may improve regulatory compliance.
In certain embodiments, the invention relates to separation processes that may require reduced buffer usage. In certain embodiments, using devices of the present invention may eliminate the need for column cleaning, equilibration, or storage in expensive buffers. In certain embodiments, the devices of the invention may tolerate higher concentration feed streams, so no dilution may be needed.

In certain embodiments, the devices described herein may lower capital expenses and may offer significant operational cost savings for a client. In certain embodiments, the devices of the invention may have a lower initial cost and faster delivery. In certain embodiments, the devices allow for lower staffing requirements and reduced maintenance costs.

In certain embodiments, the invention relates to a device with a small footprint. In certain embodiments, the devices of the invention exhibit higher binding capacity and require less floor space than typical resin bed chromatography devices.

DEFINITIONS

For convenience, before further description of the present invention, certain terms employed in the specification, examples and appended claims are collected here. These definitions should be read in light of the remainder of the disclosure and understood as by a person of skill in the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art.

In describing the present invention, a variety of terms are used in the description. Standard terminology is widely used in filtration, fluid delivery, and general fluid processing art.

The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.

The term “associated with” as used herein in such phrases as, for example, “an inorganic metal oxide associated with an stabilizing compound,” refers to the presence of either weak or strong or both interactions between molecules. For example weak interactions may include, for example, electrostatic, van der Waals, or hydrogen-bonding interactions. Stronger interactions, also referred to as being chemically bonded, refer to, for example, covalent, ionic, or coordinative bonds between two molecules. The term “associated with” also refers to a compound that may be physically intertwined within the foldings of another molecule, even when none of the above types of bonds are present. For example, an inorganic compound may be considered as being in association with a polymer by virtue of it existing within the interstices of the polymer.

The terms “comprise” and “comprising” are used in the inclusive, open sense, meaning that additional elements may be included.

The term “including” is used to mean “including but not limited to.” “Including” and “including but not limited to” are used interchangeably.

The term “polymer” is used to mean a large molecule formed by the union of repeating units (monomers). The term polymer also encompasses copolymers.

The term “co-polymer” is used to mean a polymer of at least two or more different monomers. A co-polymer can be comprised of a cross-linker and a monomer, if the cross-linker is a difunctional monomer.

The term “two phase fluid” is used to mean a fluid comprising a liquid phase in which either substantially solid particles are dispersed therethrough, or a first liquid phase in which droplets or particles of a second liquid phase immiscible with such first liquid phase are dispersed through such first liquid phase. A “multiphase fluid” is used to mean a fluid comprising a first liquid phase in which at least one additional second solid or liquid phase is dispersed therethrough.

The term “particle” is used to mean a discreet liquid droplet or a solid object, with a characteristic dimension such as a diameter or length of between about one nanometer, and about one-tenth of a meter.

The term “particle size” is used to mean a number-average or weight-average particle size as measured by conventional particle size measuring techniques well known to those skilled in the art, such as dynamic or static light-scattering, sedimentation field-flow fractionation, photon-correlation spectroscopy, or disk centrifugation. By “an effective average particle size of less than about 1000 nm” it is meant that at least about 90% of the particles have a number-average or weight-average particle size of less than about 1000 nm when measured by at least one of the above-noted techniques. The particular size of particles in a fluid being processed will depend upon the particular application.

The term “interstices” is used to mean a space, especially a small or narrow one, between things or parts.

The term “dispersion” is used to mean any fluid comprising a liquid phase in which substantially solid particles are suspended, and remain suspended, at least temporarily.

The term “slurry” is used to mean any fluid comprising a liquid phase in which substantially solid particles are present. Such particles may or may not be suspended in such fluid.

The term “emulsion” is used to mean any fluid comprising a first liquid phase within which droplets or particles of a substantially liquid second phase are suspended, and remain suspended, at least temporarily. In reference to discreet entities of a second liquid phase in a first liquid phase, the terms “droplets” and “particles” are used interchangeably herein.

The term “crossflow” in reference to filtration is used to mean a filtration configuration in which a flowing fluid is directed along the surface of a filter medium, and the portion of fluid that passes through such filter medium has a velocity component which is “cross-wise”, i.e., perpendicular to the direction of the fluid flowing along the surface of such filter medium.

The term “tangential filtration” is used to mean a filtration process in which a flowing fluid is directed substantially parallel (i.e., tangential) to the surface of a filter medium, and a portion of fluid passes through such filter medium to provide a permeate. The terms “tangential filtration” and “crossflow filtration” are often used interchangeably in the art.

The term “permeate” is used to mean the portion of the fluid that passes through the filter medium and out through a first outlet port in the filter device that is operatively connected to such filter medium. The term “decanicate” is used to mean the portion of the fluid that flows along the surface of the filter medium, but does not pass through such filter medium, and passes out through a second outlet port in the filter device that is operatively connected to such filter medium.
Crossflow filtration and tangential filtration are well known filtration processes. Reference may be had to, e.g., U.S. Pat. Nos. 5,681,464, 6,461,513; 6,331,253, 6,475,071, 5,783,085, 4,790,942, the disclosures of which are incorporated herein by reference. Reference may also be had to "Filter and Filtration Handbook", 4th Ed., T. Christopher Dickenson, Elsevier Advanced Technology, 1997, the disclosure of which is incorporated herein by reference.

The term "egg white" refers to the clear, aqueous liquid contained within an egg, as opposed to the yellow egg yolk. Egg white typically comprises about 15% proteins dissolved or suspended in water. Egg white proteins typically include ovalbumin, ovotransferrin, ovomucoid, globulins, lysozyme, ovomucin, and avidin.

Exemplary Devices

General Device Properties

In certain embodiments, the invention relates to a fluid treatment device comprising

- a housing unit, wherein the housing unit comprises
- (a) an inlet and an outlet;
- (b) a fluid flow path between the inlet and the outlet; and
- (c) a composite material within the housing unit, wherein the composite material comprises
- (a) a support member comprising a plurality of pores extending through the support member; and
- (b) a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member;
- wherein said macropores of said macroporous cross-linked gel are smaller than said pores of said support member; and

wherein the pores of the support member are substantially perpendicular to the fluid flow path.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the composite material is arranged in a substantially coplanar stack of substantially coextensive sheets, a substantially tubular configuration, or a substantially spiral wound configuration.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the support member is in the form of hollow porous fibers;

each hollow porous fiber defines a lumen;

the lumen is from about 20 μm to about 100 μm in diameter; and

the lumen is substantially perpendicular to the pores in the hollow porous fiber support member.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein a plurality of hollow porous fibers are arranged in a bundle.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the bundle is encased in a shell or a vessel.
In certain embodiments, the invention relates to a fluid treatment device comprising a housing unit, wherein the housing unit comprises at least one inlet and at least one outlet; and a fluid flow path between the inlet and the outlet; wherein any one of the above-mentioned fluid treatment elements is across the fluid flow path.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the composite material comprises:

(a) a support member comprising a plurality of pores extending through the support member; and

(b) a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member;

wherein said macroporous cross-linked gel is present in the pores of the support member in an amount sufficient such that, in use, liquid passing through the composite material passes through said macropores of said macroporous cross-linked gel;

said macropores of said macroporous cross-linked gel are smaller than said pores of said support member;

the support member is in the form of hollow porous fibers;

each hollow porous fiber defines a lumen; the lumen is from about 20 μm to about 100 μm in diameter; and

the lumen is substantially perpendicular to the pores in the hollow porous fiber support member.

In certain embodiments, the fluid treatment devices comprise the above-mentioned composite material, wherein a plurality of hollow porous fibers is arranged in a bundle. In certain embodiments, the fluid treatment devices comprise the above-mentioned composite material, wherein the bundle is encased in a vessel. In certain embodiments, the fluid treatment devices comprise the above-mentioned composite material, wherein the bundle is encased in a vessel. In certain embodiments, the fluid treatment devices comprise the above-mentioned composite material, wherein a plurality of bundles is encased in a vessel.

In certain embodiments, the invention relates to a fluid treatment device comprising a plurality of housing units, wherein each housing unit comprises an inlet and an outlet; and a fluid flow path between the inlet and the outlet; and a composite material within the housing unit, wherein the composite material comprises a support member comprising a plurality of pores extending through the support member; and a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member; wherein said macropores of said macroporous cross-linked gel are smaller than said pores of said support member;

Laboratory-Scale

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the composite material is a cut disk membrane. In certain embodiments, the cut disks are intended to be used in reusable housings. In certain embodiments, the cut disks are intended to be used in disposable housings. In certain embodiments, the cut disk membrane is substantially circular in shape.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the composite material is a cut disk membrane. In certain embodiments, the cut disk membrane is from about 15 to about 60 mm in diameter. In certain embodiments, the cut disk membrane is from about 20 to about 55 mm in diameter. In certain embodiments, the cut disk membrane is about 25 mm in diameter. In certain embodiments, the cut disk membrane is about 50 mm in diameter. For visualization of certain embodiments, see FIGS. 9-17.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a syringe tip. The term “syringe column” is used interchangeably with the term “syringe tip.”

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a syringe column; and the composite material is in the form of a cut disk. In certain embodiments, the syringe column housing unit is semi-disposable.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a spin column. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a spin column; and the composite material is in the form of a cut disk. A spin column is a tube with an upper and a lower half. The lower half is closed at the bottom. In between the two halves is a cut disk membrane held or suspended in some manner. A user
loads the top half with a liquid containing the target (or contaminate) solute and places the spin column into a centrifuge. The centrifuge forces the liquid through the membrane when run at sufficient RPM. Once removed from the centrifuge, the lower half of the device can be removed and the liquid collected (if needed) or the top half can be eluted with additional buffer to remove the retained solute. In certain embodiments, the spin columns can be made in many sizes.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a spin column; and the spin column has a capacity of from about 0.1 ml to about 60 ml. In certain embodiments, the volume of the spin column refer to the quantity of feed stream that may be processed by an exemplary fluid treatment device. In certain embodiments, the spin column has a capacity of from about 0.5 ml to about 55 ml. In certain embodiments, the spin column has a capacity of about 0.5 ml. In certain embodiments, the spin column has a capacity of about 2 ml. In certain embodiments, the spin column has a capacity of up to about 50 ml. For visualization of certain embodiments, see, e.g., FIGS. 18-22.

Process- and Manufacturing-Scale

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a cassette configuration.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a tubular configuration.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a spiral wound configuration.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the housing unit is a plate and frame configuration.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices, wherein the fluid treatment element comprises a hollow porous membrane.

Exemplary Fluid Treatment Elements

In certain embodiments, the invention relates to fluid treatment elements. In certain embodiments, the fluid treatment element is a cartridge for use in a fluid treatment device of the present invention. In certain embodiments, the invention relates to fluid treatment elements comprising membranes. In certain embodiments, the invention relates to fluid treatment elements comprising composite materials for use as membranes.

In certain embodiments, the fluid treatment elements are disposable or reusable.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment elements, wherein the element comprises a hollow, generally cylindrical form.

In certain embodiments, the fluid treatment elements of the present invention accommodate high solid density materials. In certain embodiments, the fluid treatment elements of the present invention are used for their strength. In certain embodiments, the fluid treatment elements of the present invention are used in heavy duty applications. In certain embodiments, the fluid treatment elements of the present invention can tolerate elevated temperatures for sustained periods.

In certain embodiments, the fluid treatment elements of the present invention exhibit reduced capture time in chromatography applications. In certain embodiments, the fluid treatment elements of the present invention exhibit high binding capacities.

Exemplary Composite Materials

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements comprising a composite material. In certain embodiments, the invention comprises a composite material for use as a membrane.

In certain embodiments, the composite materials used as membranes in the present invention are described in U.S. Pat. No. 7,316,919; and U.S. patent application Ser. Nos. 11/950,562, 12/108,178, 12/244,940, 12/250,861, 12/211, 618, and 12/250,869; all of which are hereby incorporated by reference.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material has macropores of average size between about 25 nm and about 1500 nm. In certain embodiments, the macroporous crosslinked gel has macropores of average size between about 50 nm and about 1000 nm. In certain embodiments, the macroporous crosslinked gel has macropores of average size of about 700 nm. In certain embodiments, the macroporous crosslinked gel has macropores of average size of about 300 nm.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material is a hydrogel, a polyelectrolyte gel, a hydrophobic gel, a neutral gel, or a gel comprising functional groups. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material is a neutral or charged hydrogel; and the neutral or charged hydrogel is selected from the group consisting of cross-linked poly(vinyl alcohol), poly(acrylamide), poly(isopropylacrylamide), poly(vinylpyrrolidone), poly (hydroxymethyl acrylate), poly(ethylene oxide), copolymers of acrylic acid or methacrylic acid with acrylamide, isopropylacrylamide, or vinylpyrrolidone, copolymers of acrylamide-2-methyl-1-propanesulfonic acid with acrylamide, isopropylacrylamide, or vinylpyrrolidone, copolymers of (3-acrylamido-propyl)trimethylammonium chloride with acrylamide, isopropylacrylamide, or N-vinylpyrrolidone, and copolymers of diallyldimethylammonium chloride with acrylamide, isopropylacrylamide, or vinylpyrrolidone. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous cross-linked gel of the composite material is a polyelectrolyte gel; and the polyelectrolyte gel is selected from the group consisting of cross-linked poly(acrylamido-2-methyl-1-propanesulfonic acid) and its salts, poly(acrylic acid) and its salts, poly(methacrylic acid) and its salts, poly(styrenesulfonic acid) and its salts, poly(vinylsulfonic acid) and its salts, poly(alginic acid) and its salts, poly[(3-acrylamido-propyl)trimethylammonium] salts, poly(diallyldimethylammonium) salts, poly(4-vinyl-N-
In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous cross-linked gel of the composite material is a hydrophobic gel; and the hydrophobic gel is selected from the group consisting of cross-linked polymers or copolymers of ethyl acrylate, n-butyl acrylate, propyl acrylate, octyl acrylate, dodecyl acrylate, octadecylacrylamide, stearyl acrylate, and styrene. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous cross-linked gel of the composite material is a neutral gel; and the neutral gel is selected from the group consisting of cross-linked polymers or copolymers of acrylamide, N,N-dimethylacrylamide, N-methacryloylacrylamide, N-methyl-N-vinylacetamide, and N-vinylpyrrolidone.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous cross-linked gel of the composite material is a gel comprising functional groups. In certain embodiments, the macroporous cross-linked gel of the composite material comprises monomers, wherein the monomers comprise functional groups. In certain embodiments, the functional groups are thiol or protected thiol. In certain embodiments, the macroporous cross-linked gel comprises monomers, wherein the monomers are selected from the group consisting of bis(2-mercaptopropionate) diacetate, (S-benzoyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (2,2-dimethylpropanoyl-1-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-acetylpropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-acetoacetylpropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-acetoacetylpropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-tetrahydropranyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-(2-methoxy-2-propoxy)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-acetoacetylpropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-tetrahydropranyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-acetyl-3-mercapto-2-hydroxypropyl)-2-methyl-2-propenoate, (S-benzoyl-1-(allyloxy)-3-mercapto-2-hydroxypropyl) and S,2,2-dimethylpropanoyl-1-(allyloxy)-3-mercapto-2-hydroxypropyl)

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises functional groups; and the functional groups are selected from the group consisting of amino acid ligands, antigen and antibody ligands, dye ligands, biological molecules, biological ions, and metal affinity ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises functional groups; and said functional groups are metal affinity ligands. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises functional groups; and said functional groups are metal affinity ligands. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises functional groups; and a plurality of metal ions are complexed to a plurality of said metal affinity ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are polydentate ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are octadentate, hexadentate, tetradeutate, tridentate or bidentate ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are tetradeutate ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are tridentate ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are bidentate ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are iminodicarboxylic acid ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are iminodiaceitic acid ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are salts of iminodiaceitic acid ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are potassium salts of iminodiaceitic acid ligands.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise ethylenediamine moieties. See, e.g., FIG. 25.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise hexamethylene diamine moieties. See, e.g., FIG. 26.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise diethanolamine moieties. See, e.g., FIG. 27.

In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands are polydentate ligands.
ity ligands; and said metal affinity ligands comprise pentaethylenehexamine moieties. See, e.g., FIG. 28.

[0201] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise triethylentetramine moieties. See, e.g., FIG. 29.

[0202] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise tri(carboxymethyl)ethylenediamine. See, e.g., FIG. 30.

[0203] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands; and said metal affinity ligands comprise conjugate bases of carboxylic acids. In certain embodiments, the conjugate bases are available as salts. In certain embodiments, the conjugate bases are available as sodium salts or potassium salts. In certain embodiments, the conjugate bases are available as potassium salts.

[0204] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0205] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0206] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; and said metal ions are nickel or zirconium.

[0207] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; and said metal ions are nickel.

[0208] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; and said metal ions are zirconium.

[0209] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are octadentate, hexadentate, tetradentate, tri-dentate or bidentate ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0210] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are octadentate, hexadentate, tetradentate, tri-dentate or bidentate ligands; and said metal ions are selected from the group consisting of nickel, zirconium, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0211] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are octadentate, hexadentate, tetradentate, tri-dentate or bidentate ligands; and said metal ions are nickel or zirconium.

[0212] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are octadentate, hexadentate, tetradentate, tri-dentate or bidentate ligands; and said metal ions are nickel.

[0213] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are octadentate, hexadentate, tetradentate, tri-dentate or bidentate ligands; and said metal ions are zirconium.

[0214] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tetratentate ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0215] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tetratentate ligands; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0216] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tetratentate ligands; and said metal ions are nickel or zirconium.

[0217] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tetratentate ligands; and said metal ions are nickel.

[0218] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tetratentate ligands; and said metal ions are zirconium.

[0219] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal
affinity ligands are tridentate ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0220] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tridentate ligands; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0221] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tridentate ligands; and said metal ions are nickel or zirconium.

[0222] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tridentate ligands; and said metal ions are nickel.

[0223] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are tridentate ligands; and said metal ions are zirconium.

[0224] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are bidentate ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0225] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are bidentate ligands; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0226] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are bidentate ligands; and said metal ions are nickel or zirconium.

[0227] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are bidentate ligands; and said metal ions are nickel.

[0228] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are bidentate ligands; and said metal ions are zirconium.

[0229] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0230] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0231] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are nickel or zirconium.

[0232] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are nickel.

[0233] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are zirconium.

[0234] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

[0235] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

[0236] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are nickel or zirconium.

[0237] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetoxy acid ligands; and said metal ions are nickel.

[0238] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or ele-
ments, wherein the composite material comprises metal affinity ligands complexed to a plurality of metal ions; said metal affinity ligands are iminodiacetic acid ligands; and said metal ions are zirconium.

[0239] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises functional groups; and the functional groups are biological molecules or biological ions. In certain embodiments, the biological molecules or biological ions are selected from the group consisting of albumins, lysozyme, viruses, cells, γ-globulins of human and animal origins, immunoglobulins of both human and animal origins, proteins of recombinant or natural origin including, polypeptides of synthetic or natural origin, inter- leukin-2 and its receptor, enzymes, monoclonal antibodies, antigens, lectins, bacterial immunoglobulin-binding proteins, trypsin and its inhibitor, cytochrome C, myoglobin, recombinant human interleukin, recombinant fusion protein, Protein A, Protein G, Protein L, Peptide H, nucleic acid derived products, DNA of either synthetic or natural origin, and RNA of either synthetic or natural origin.

[0240] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material comprises Protein A. Protein A is a 40-60 kDa MECRAMM surface protein originally found in the cell wall of the bacteria *Staphylococcus aureus*. It is encoded by the spa gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two-component system called ArsR-ArrR. It has been found useful in biochemical research because of its ability to bind immunoglobulins. It binds proteins from many of mammalian species, most notably IgGs. It binds with the Fe region of immunoglobulins through interaction with the heavy chain. The result of this type of interaction is that, in serum, the bacteria will bind IgG molecules in the wrong orientation (in relation to normal antibody function) on their surface which disrupts opsonization and phagocytosis. It binds with high affinity to human IgG1 and IgG2 as well as mouse IgG2a and IgG2b. Protein A binds with moderate affinity to human IgM, IgA and IgE as well as to mouse IgG3 and IgG1. It does not react with human IgG3 or IgD, nor will it react to mouse IgM, IgA or IgE.

[0241] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material comprises a macromonomer. In certain embodiments, the macromonomer is selected from the group consisting of poly(ethylene glycol) acrylate and poly(ethylene glycol) methacrylate.

[0242] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material is cross-linked by N,N-methylenebisacrylamide or a polyfunctional macromonomer. In certain embodiments, the macroporous crosslinked gel of the composite material is cross-linked by a polyfunctional macromonomer; and the polyfunctional macromonomer is selected from the group consisting of poly(ethylene glycol) diacrylate and poly(ethylene glycol) dimethacrylate. In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material is cross-linked by N,N-methylenebisacrylamide.

[0243] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the macroporous crosslinked gel of the composite material is positively charged hydrogel comprising a co-polymer of (3-acrylamidopropyl)trimethylammonium chloride (APTAC) and N-(hydroxymethyl)acrylamide cross-linked by N,N'-methylenebisacrylamide.

[0244] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material is a membrane; and the macroporous crosslinked gel bears charged moieties.

[0245] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite material is a membrane for use as a filter in size exclusion separation.

[0246] In certain embodiments, the fluid treatment devices or elements of the invention comprise any one of the above-mentioned composite materials, wherein the composite materials comprise negatively-charged moieties. Negatively-charged membranes repel foulants at the membrane surface resulting in higher flux, easier cleanings, and lower system costs.

[0247] In certain embodiments, the fluid treatment devices or elements of the invention comprise any one of the above-mentioned composite materials, wherein the composite materials are hydrophilic in nature. Fouling is typically hydrophilic species.

[0248] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the support member of the composite material consists essentially of polymeric material in the form of a membrane that has a thickness of from about 10 μm to about 500 μm and comprises pores of average size between about 0.1 to about 25 μm.

[0249] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the support member of the composite material consists essentially of a polyolefin.

[0250] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the support member of the composite material comprises a polymeric material selected from the group consisting of polysulfones, polyethersulfones, polyphenyleneoxides, polycarbonates, polyesters, cellulose and cellulose derivatives.

[0251] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the support member of the composite material consists essentially of a polymeric material in the form of a fibrous fabric that has a thickness of from about 10 μm to about 2000 μm and comprises pores of average size from about 0.1 to about 25 μm.

[0252] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the support member of the composite material comprises a stack of 2 to 10 separate support members.

[0253] In certain embodiments, the invention relates to any one of the above-mentioned fluid treatment devices or elements, wherein the composite materials are disk-shaped, thereby forming cut disk membranes. In certain embodiments, the cut disk membranes are from about 5 mm in diameter to about 100 mm in diameter. In certain embodiments, the cut disk membranes are from about 10 mm in diameter to about 75 mm in diameter. In certain embodi-
ments, the cut disk membranes are from about 15 mm in diameter to about 55 mm in diameter. In certain embodiments, the cut disk membranes are about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 mm in diameter. In certain embodiments, the cut disk membranes are about 18 mm in diameter. In certain embodiments, the cut disk membranes are about 25 mm in diameter. In certain embodiments, the cut disk membranes are about 50 mm in diameter. In certain embodiments, the cut disk membranes are made by simply cutting from sheets of composite material.

Exemplary Methods

[0254] In certain embodiments, the invention relates to a method comprising the step of:

[0255] contacting a first fluid comprising a substance with a composite material in any one of the above-mentioned fluid treatment devices, thereby adsorbing or absorbing the substance onto the composite material.

[0256] In certain embodiments, the invention relates to any one of the above-mentioned methods, further comprising the step of:

[0257] placing the first fluid in an inlet of the fluid treatment device.

[0258] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is passed along a fluid flow path substantially perpendicular to the pores of the support member.

[0259] In certain embodiments, the invention relates to any one of the above-mentioned methods, further comprising the step of:

[0260] contacting a second fluid with the substance adsorbed or absorbed onto the composite material, thereby releasing the substance from the composite material.

[0261] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the second fluid is passed through the macropores of the composite material, thereby releasing the substance from the composite material.

[0262] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the second fluid is passed along the fluid flow path substantially perpendicular to the pores of the support member, thereby releasing the substance from the composite material.

[0263] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the substance is separated based on size exclusion.

[0264] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the macroporous gel displays a specific interaction for the substance.

[0265] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the specific interactions are electrostatic interactions, affinity interactions, or hydrophobic interactions.

[0266] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the specific interactions are electrostatic interactions, the composite material bears charges on the macroporous gel; the substance is charged; and the substance is separated based on Donnan exclusion.

[0267] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is a suspension of cells or a suspension of aggregates.

[0268] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the substance is a biological molecule or biological ion.

[0269] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the biological molecule or biological ion is selected from the group consisting of albumins, lysozyme, viruses, cells, γ-globulins of human and animal origins, immunoglobulins of both human and animal origins, proteins of recombinant or natural origin including, poly-peptides of synthetic or natural origin, interleukin-2 and its receptor, enzymes, monoclonal antibodies, trypsin and its inhibitor, cytochrome C, myoglobin, recombinant human interleukin, recombinant fusion protein, nucleic acid derived products, DNA of either synthetic or natural origin, and RNA of either synthetic or natural origin.

[0270] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the biological molecule or biological ion is a protein; and the protein comprises exposed amino acid residues selected from the group consisting of Glu, Asp, Try, Arg, Lys, Met, and His.

[0271] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the biological molecule or biological ion is a protein; and the protein comprises exposed His amino acid residues.

[0272] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the biological molecule or biological ion is a monoclonal antibody.

[0273] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the biological molecule or biological ion is a monoclonal antibody.

[0274] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the metal-containing particle or metal-containing ion comprises a transition metal, a lanthanide, a poor metal, or an alkaline earth metal.

[0275] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the metal-containing particle or metal-containing ion comprises a transition metal, a lanthanide, a poor metal, or an alkaline earth metal.

[0276] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is waste water.

[0277] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is waste water from one refining, or seawater.

[0278] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the substance is lead or mercury.

[0279] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the substance is lead or mercury.

[0280] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the fluid is waste water; and the metal-containing particle or metal-containing ion comprises lead or mercury.

[0281] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is
waste water from ore refining; and the metal-containing particle or metal-containing ion comprises lead or mercury.

[0282] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid is seawater; and the metal-containing particle or metal-containing ion comprises platinum, palladium, copper, gold, or silver.

[0283] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid comprises egg white.

[0284] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the first fluid comprises egg white; and the substance is lysozyme.

[0285] In certain embodiments, the invention relates to a method in which, in tangential flow separation mode, no pre-processing of the raw reaction mixtures is required due to the high specificity of the composite materials in the devices of the present invention. In certain embodiments, the invention relates to a method in which separations can be carried out on a large scale. In certain embodiments, the invention relates to a method in which separations can be carried out in a shorter amount of time. In certain embodiments, the invention relates to a method in which the devices have a high binding capacity.

[0286] In certain embodiments, the invention relates to a method that comprises two steps collecting the desired substance onto the composite material and harvesting the desired substance from the composite material. In certain embodiments, the first step is run in tangential separation mode. In certain embodiments, the first step is run in tangential separation mode and the second step is run in direct filtration mode with a second fluid.

[0287] In certain embodiments, the invention relates to a method of separating a substance from a fluid, comprising the step of:

1. placing the fluid in contact with a composite material in any one of the above-mentioned fluid treatment devices; thereby adsorbing or absorbing the substance to the composite material.

[0288] In certain embodiments, the invention relates to a method of separating a substance from a fluid, comprising the step of:

1. placing the fluid in an inlet of any one of the above-mentioned fluid treatment devices, thereby adsorbing or absorbing the substance to the composite material; and collecting the permeate from an outlet of the fluid treatment device.

[0289] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the composite material; and the substance is adsorbed or absorbed onto the surface of the composite material.

[0290] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed through the macro pores of the composite material; and the substance is adsorbed or absorbed within the macro pores of the composite material.

[0291] In certain embodiments, the invention relates to a method of separating a substance from a fluid, comprising the step of:

1. placing the fluid in an inlet of any one of the above-mentioned fluid treatment devices, thereby adsorbing or absorbing the substance to the composite material; and collecting the permeate from an outlet of the fluid treatment device; thereby releasing the substance from the composite material.

[0292] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the composite material; the substance is adsorbed or absorbed onto the surface of the composite material; and the second fluid is passed through the macro pores of the composite material, thereby releasing the substance from the composite material.

[0293] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the composite material; the substance is adsorbed or absorbed onto the surface of the composite material; and the second fluid is passed over the surface of the composite material, thereby releasing the substance from the surface of the composite material.

[0294] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed through the macro pores of the composite material; the substance is adsorbed or absorbed within the macro pores of the composite material; and the second fluid is passed over the surface of the composite material, thereby releasing the substance from the composite material.

[0295] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed through the macro pores of the composite material; the substance is adsorbed or absorbed within the macro pores of the composite material; and the second fluid is passed through the macro pores of the composite material, thereby releasing the substance from the surface of the composite material.

[0296] In certain embodiments, the invention relates to any one of the above-mentioned methods, wherein the substance is radioactive.

[0297] In certain embodiments, the invention relates to a method of separating a substance from a fluid, comprising the steps of:

1. placing the fluid in an inlet of any one of the above-mentioned fluid treatment devices, thereby adsorbing or absorbing the substance to the composite material and producing a permeate; and

2. collecting the permeate from an outlet of the fluid treatment device.

[0298] In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the fluid treatment element; and the substance is adsorbed or absorbed onto the surface of the fluid treatment element.

[0299] In certain embodiments, the invention relates to a method of separating a substance from a first fluid, comprising the steps of:

1. placing the first fluid in an inlet of any one of the above-mentioned fluid treatment devices, thereby adsorbing or absorbing the substance to the composite material; and

2. collecting the permeate from an outlet of the fluid treatment device.

[0300] In certain embodiments, the invention relates to a method of separating a substance from a fluid, comprising the steps of:

1. placing the second fluid in the inlet of the fluid treatment device, thereby releasing the substance from the composite material; and

2. wherein the first fluid comprises egg white; and the substance is lysozyme.
In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the fluid treatment element; the substance is adsorbed or absorbed onto the surface of the fluid treatment element; and the second fluid is passed through the macropores of the fluid treatment element, thereby releasing the substance from the macropores. In certain embodiments, the invention relates to the above-mentioned method, wherein the fluid is passed over the surface of the fluid treatment element; the substance is adsorbed or absorbed onto the surface of the fluid treatment element; and the second fluid is passed over the surface of the fluid treatment element, thereby releasing the substance from the surface of the fluid treatment element.

EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.

Example 1

Dead-End versus Cross-Flow Modes for Viral Capture

An example of the improvement of cross-flow technology versus dead-end technology can be realized when the two modes are compared directly to each other. FIG. 1 shows two experiments in which a specific device was run as a dead-end and as cross-flow device. The material of interest is a virus. In both cases, the capture of the cross-flow device exceeded the dead-end version, as indicated by the amount to the pure target material capture after washing and elution.

Example 2

Chromatographic Capture and Harvest: Elution of Ovalbumin and Lysozyme

The membrane can selectively adsorb two protein materials from the feed stream and then, through the use of an altering buffer fluid, selectively elute the target bio-molecules. FIGS. 2 and 3 illustrate this effect. The initial feed stream of egg white was exposed to a membrane surface in cross-flow mode. Once the feed stream was removed and the membrane washed, both Ovalbumin and lysozyme were found adhered to the membrane (FIG. 2). Under specific buffer conditions, the proteins were selectively eluted (FIG. 3), which demonstrates the chromatographic nature of the membrane in cross-flow mode.

Example 3

Orthogonal Two-Step Capture and Harvest

See FIG. 4.

Example 4

Device Design: Wrap Design Data and Schematics

The effect of selecting an optimal spacer material in a simple wrapped design was observed and is depicted in FIG. 5. In this design, a roll was made by layering the necessary membrane sheet between two identical spacer sheets and rolling the multi-layered structure into a column. This column was then placed into a metal tube housing that was fitted with end-caps which have both an inlet(s) and outlet(s) attached (FIG. 6). The larger spacer material and loose-wind structure enabled the ideal cross-flow or tangential-flow adsorption. Importantly, this design eliminated any direct trans-membrane flow, as the process fluid was run on either side of the membrane. Thus, the improvements stemmed, at least partially, from the low shear environment. The purified lysozyme control was run on the device and was used to represent 100% or maximum adsorption of the target species. The remaining data were generated directly from process fluid streams (egg whites). In this embodiment, the spacer layer materials on either side of the membrane were identical but there is no requirement for this symmetry and the “roll” could have differing layers or one layer could be completely absent.

Example 5

Device Design: Cassettes

The height of the feed channel may impact the ability to maximize the amount of adsorbed target molecule. Smaller feed channel heights may induce greater shear or turbulence at the membrane surface, which either inhibits adsorption or removes target material that does deposit. The channel height needs to be at least 10 mm and more ideally >20 mm, typically 23 mm (FIG. 7).

Example 6

Device Design: Spiral

FIG. 23 depicts a spiral wound device. When membranes of the current invention are incorporated into this device, highly contaminated or very viscus feed streams can be effectively separated into their desired parts.

Example 7

Antibody Purification: Membrane Functionalized with Protein A

A 0.01 SQM Protein A cassette with an open channel, suspended screen design which enabled a fluid flow tangential to the plane of the membrane was evaluated using an un-clarified feed stream which contained the monoclonal antibody (mAb) target. Traditional resin chromatographic separation processes cannot process un-clarified feed streams. The only method that had been demonstrated able to capture the mAb target on bench scale was an expanded bed column functioning in batch mode with a static soak. This modified expanded bed was uneconomical and impractical at larger scale. On the other hand, the cassettes were effective in capturing the target MAb product when used a simple flow through mode. This mode allowed the process stream to flow across the membrane such that debris in the fluid did not blind the membrane. Binding of the target species in this mode was a surface effect only.

Lysis Procedure: 270 g mAb 4420 pellet diluted 1 part pellet, 3 parts 10x phosphate buffer solution (PBS), 1 part 5x Phenix lysis buffer. Homogenized for 5 minutes, and sonicated for 10 minutes. Loaded onto the membrane as an un-clarified and undiluted feed stream.

Membrane Procedure: A membrane cassette with an active surface area of 0.01 m² and pore size of 0.3 μm was
equilibrated in PBS at pH 7.4. This device was then loaded by complete system recirculation with lysed mAb 4420 for one hour. The device was then washed with 1 L of 1× PBS pH 7.4, and eluted using a 10 minute recirculation of 0.1 M Glycine at pH 2.9 followed by 100 mL system flush with 0.1 M Glycine pH 2.9. The feed was run in flow through mode at 100 mL/min with permeate shut off which limited the device to surface binding only from the un-clarified lysate. A gel electrophoresis qualitative analysis indicated that significant amounts of mAb had been captured.

[0319] Conclusion: The cross-flow product provided a simple, on-off bind-elute capture process that could capture and concentrate intact mAb (observed binding was in the range of 5-10 mg/mL) as well as a lot of contaminants. With development, membrane could serve as a scalable capture method for un-clarified mAb *Pseudomonas* feed streams.

Example 8
His-Tagged Protein Purification: Membrane Functionalized with IMAC Ni

[0320] A 0.02 SQM IMAC-Ni (iminodiacetic acid complexed to Ni) cassette with an open channel, suspended screen design which enabled a fluid flow tangential to the plane of the membrane was evaluated using a feed stream containing a his-tagged protein target. Traditional resin-based chromatographic separation processes cannot process un-clarified feed streams. In this experiment, the cassettes were effective in capturing the target product in a simple flow through mode. This mode allowed the process stream to flow across the membrane such that debris in the fluid did not blind the membrane. Binding of the target species in this mode was a surface effect only. The product was able to be run with multiple cycles with no loss in binding capacity.

[0321] Lysis Procedure: 8 L of cell harvest material was diluted with 2 L of 5x Pen/lys/lysis buffer. This mixture was allowed to mix for 2 hours until the material had liquefied.

[0322] Membrane Process: A membrane cassette with an active surface area of 0.02 m² was equilibrated in 50 mM PBS, 500 mM NaCl, 5% (wt) glycerol and 25 mM Imidazole at pH 8.0. The cassette was then run with the liquefied cell harvest material at a 100 mL/min feed rate with no permeate flow. This was flowed by elution using 500 mL 1× PBS, 500 mM Imidazole at pH 7.4. This process was repeated 5 times in sequence with the following details:

[0323] Run 1: 1 L of Lysate was centrifuged and diluted by a factor of 5 in equilibration buffer. The device was then loaded by complete system recirculation for 1 hour time and material was able to permeate through the pores at 20 PSI inlet pressure. A gel electrophoresis qualitative analysis indicated that significant amounts his-tagged protein had been captured.

[0324] Run 2: 1 L of Lysate was only centrifuged prior to use. The device was then loaded by complete system recirculation for 1 hour time and material was able to permeate through the pores at 20 PSI inlet pressure. A gel electrophoresis qualitative analysis indicated that significant amounts his-tagged protein had been captured.

[0325] Run 3: 1 L of Lysate was used without pre-treatment. The device was then loaded by complete system recirculation for 15, 30, 45, 60 minute load times. The device was eluted after each cycle and the membrane not stripped (cleaned) between elutions. When the permeate line was closed, no back pressure increase to system was observed during load indicating that the membrane had not blinded.

[0326] Conclusion: The IMAC-Ni product yielded excellent purification characteristics (observed binding was in the range of 60-80 mg/mL) without optimization. Despite manufacturers designation as “single-use,” 7× reuse demonstrated for IMAC membrane without the need for EDTA strip and re-charged.

INCORPORATION BY REFERENCE

EQUIVALENTS

[0328] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

We claim:
1. A fluid treatment device comprising a housing unit, wherein the housing unit comprises (a) an inlet and an outlet; (b) a fluid flow path between the inlet and the outlet; and (c) a composite material within the housing unit, wherein the composite material comprises a support member comprising a plurality of pores extending through the support member; and a non-self-supporting macroporous cross-linked gel comprising macropores having an average size of 10 nm to 3000 nm, said macroporous gel being located in the pores of the support member; wherein said macropores of said macroporous cross-linked gel are smaller than said pores of said support member; and wherein the pores of the support member are substantially perpendicular to the fluid flow path.

2. The fluid treatment device of claim 1, wherein the composite material is arranged in a substantially co-planar stack of substantially coextensive sheets, a substantially tubular configuration, or a substantially spiral wound configuration.

3. The fluid treatment device of claim 1, wherein the support member is in the form of hollow porous fibers; each hollow porous fibra defines a lumen; the lumen is from about 20 μm to about 100 μm in diameter; and the lumen is substantially perpendicular to the pores in the hollow porous fiber support member.

4. The fluid treatment device of claim 3, wherein a plurality of hollow porous fibers are arranged in a bundle.

5. The fluid treatment device of claim 1, wherein the housing unit is substantially cylindrical.

6. The fluid treatment device of claim 1, wherein the housing unit is disposable or re-usable.

7. The fluid treatment device of claim 1, wherein the housing unit is plastic or stainless steel.

8. The fluid treatment device of claim 1, wherein the inlet or the outlet is a press fit attachment point, a luer lock attachment point, or a hose barb attachment point.
9. The fluid treatment device of claim 1, wherein the macroporous cross-linked gel is a hydrogel, a polyelectrolyte gel, a hydrophobic gel, a neutral gel, or a gel comprising functional groups.

10. The fluid treatment device of claim 9, wherein the macroporous cross-linked gel is a gel comprising functional groups; and said functional groups are selected from the group consisting of amino acid ligands, antigen and antibody ligands, dye ligands, biological molecules, biological ions, and metal affinity ligands.

11. The fluid treatment device of claim 10, wherein said functional groups are metal affinity ligands.

12. The fluid treatment device of claim 11, further comprising a plurality of metal ions complexed to a plurality of said metal affinity ligands.

13. The fluid treatment device of claim 11, wherein said metal affinity ligands are octadentate, hexadentate, tetradentate, tridentate or bidentate ligands.

14. The fluid treatment device of claim 11, wherein said metal affinity ligands are iminoacarboxylic acid ligands.

15. The fluid treatment device of claim 11, wherein said metal affinity ligands are iminodicarboxylic acid ligands.

16. The fluid treatment device of claim 12, wherein said metal ions are transition metal ions, lanthanide ions, poor metal ions or alkaline earth metal ions.

17. The fluid treatment device of claim 12, wherein said metal ions are selected from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

18. The fluid treatment device of claim 12, wherein said metal affinity ligands are iminodicarboxylic acid ligands; and said metal ions are nickel.

19. The fluid treatment device of claim 10, wherein said functional groups are biological molecules or biological ions.

20. The fluid treatment device of claim 19, wherein said functional groups are selected from the group consisting of albumins, lysozyme, viruses, cells, γ-globulins of human and animal origins, immunoglobulins of both human and animal origins, proteins of recombinant or natural origin including, polypeptides of synthetic or natural origin, interleukin-2 and its receptor, enzymes, monoclonal antibodies, antigens, lectins, bacterial immunoglobulin-binding proteins, trypsin and its inhibitor, cytochrome C, myoglobin, recombinant human interleukin, recombinant fusion protein, Protein A, Protein G, Protein L, Peptide H, nucleic acid derived products, DNA of either synthetic or natural origin, and RNA of either synthetic or natural origin.

21. The fluid treatment device of claim 19, wherein said functional groups are Protein A.

22. The fluid treatment device of claim 1, wherein the macroporous crosslinked gel is cross-linked by N,N'-methylenebisacrylamide or a polyfunctional macromonomer.

23. The fluid treatment device of claim 1, wherein the support member consists essentially of polymeric material in the form of a membrane that has a thickness of iron about 10 μm to about 500 μm and comprises pores of average size between about 0.1 to about 25 μm.

24. The fluid treatment device of claim 1, wherein the support member consists essentially of a polyolefin.

25. A method comprising the step of: contacting a first fluid comprising a substance with a composite material in a fluid treatment device of claim 1, thereby adsorbing or absorbing the substance onto the composite material.

26. The method of claim 25, further comprising the step of placing the first fluid in an inlet of the fluid treatment device.

27. The method of claim 26, wherein the first fluid is passed along a fluid flow path substantially perpendicular to the pores of the support member.

28. The method of claim 27, further comprising the step of contacting a second fluid with the substance adsorbed or absorbed onto the composite material, thereby releasing the substance from the composite material.

29. The method of claim 28, wherein the second fluid is passed through the macropores of the composite material, thereby releasing the substance from the composite material.

30. The method of claim 28, wherein the second fluid is passed along the fluid flow path substantially perpendicular to the pores of the support member, thereby releasing the substance from the composite material.

31. The method of claim 25, wherein the macroporous gel displays a specific interaction for the substance; and the specific interactions are electrostatic interactions, affinity interactions, or hydrophobic interactions.

32. The method of claim 31, wherein the specific interactions are electrostatic interactions, the composite material bears charges on the macroporous gel; the substance is charged; and the substance is separated based on Donnan exclusion.

33. The method of claim 27, wherein the first fluid is a suspension of cells or a suspension of aggregates.

34. The method of claim 27, wherein the substance is a biological molecule or biological ion.

35. The method of claim 34, wherein the biological molecule or biological ion is selected from the group consisting of albumins, lysozyme, viruses, cells, γ-globulins of human and animal origins, immunoglobulins of both human and animal origins, proteins of recombinant or natural origin including, polypeptides of synthetic or natural origin, interleukin-2 and its receptor, enzymes, monoclonal antibodies, trypsin and its inhibitor, cytochrome C, myoglobin, recombinant human interleukin, recombinant fusion protein, nucleic acid derived products, DNA of either synthetic or natural origin, and RNA of either synthetic or natural origin.

36. The method of claim 34, wherein the biological molecule or biological ion is a protein, and the protein comprises exposed amino acid residues selected from the group consisting of Gln, Asp, Tyr, Arg, Lys, Met, and His.

37. The method of claim 34, wherein the biological molecule or biological ion is a protein, and the protein comprises exposed His amino acid residues.

38. The method of claim 34, wherein the biological molecule or biological ion is a monoclonal antibody.

39. The method of claim 27, wherein the substance is a metal-containing particle, or a metal-containing ion.

40. The method of claim 39, wherein the metal-containing particle or metal-containing ion comprises a metal selected
from the group consisting of nickel, zirconium, lanthanum, cerium, manganese, titanium, cobalt, iron, copper, zinc, silver, gallium, platinum, palladium, lead, mercury, cadmium and gold.

42. The method of claim 27, wherein the first fluid is waste water.

43. The method of claim 27, wherein the first fluid comprises egg white.

44. The method of claim 27, wherein the first fluid comprises egg white; and the substance is lysozyme.

* * * * *