(54) Title: IMAGE RECORDING SHEET AND MATERIAL FOR COVERING LAYER OF IMAGE RECORDING SHEET

(54) 発明の名称 画像記録シートおよび画像記録シートの被覆層形成素材

(57) Abstract
An image recording sheet on which a predetermined image is recorded by, e.g., an ink-jet image recorder and a material for a covering layer of the image recording sheet. The covering layer can be formed on its ink image-receiving layer easily at a low cost and the ink image-receiving layer can be firmly covered with the covering layer and is free from damages such as separation from the covering layer, and a high quality analog image, i.e., an image like a silver salt photograph can be recorded. In the image recording sheet for recording an image formed in an ink image-receiving layer provided on the substrate by, e.g., an ink-jet image recorder, in which the surfaces of the ink image-receiving layer and the image are covered with the covering layer to record the image, and the covering layer reassemingly formed on a release sheet is transferred onto the ink image-receiving layer directly or through a transfer assisting layer or a pretreatment covering layer made of the same material as the covering layer.
本発明はインクジェット式等の画像記録装置により、所定の画像を記録するための画像記録シートおよび画像記録シートの被覆層形成素材に関するものであり、インク受用層に対して被覆層を簡単にかつ低コストに形成することができ、しかも被覆層をインク受用層に強固に被覆させることができる。被覆層がインク受用層から剥離する等の損傷を発生することがなく、更に、高品位であり、かつ、アナログ的な画像、即ち銀塩写真版の画像の記録が可能な画像記録シートおよび画像記録シートの被覆層形成素材を提供するものである。そのために、本発明においては、インクジェット式等の画像記録装置により基材の表面に形成されたインク受用層画像を記録し、インク受用層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、前記被覆層を剥離シートに剥離自在に形成された被覆層を前記インク受用層の上に直に、または転写補助層を介在させて、または被覆層と同一素材の前処理被覆層を介在させて転写することにより形成されている。
明細書
画像記録シートおよび画像記録シートの被覆層形成素材

技術分野

5 本発明は画像記録シートおよび画像記録シートの被覆層形成素材に関する、特にインクジェット式等の画像記録装置により、所定の画像を記録するための画像記録シートおよび画像記録シートの被覆層形成素材に関するものである。

背景技術

10 一般に、例えば、インクジェット式等の画像記録装置により、所定の画像を記録するための画像記録シートが多く用いられている。

従来のこの種の画像記録シートに対しては、高解像度の原画像を高品位の画像としてシート面に記録するために、シート面において拡散する性質を有するインクが拡散することを防止してディジタル的な画像を形成することができるインク受像層を形成することが要望されていた。

そのため、従来においては、基材の表面に平均粒子径が0.1 μm以下のベーマイトおよびアルミナ微粒子を主たる組成とした所定厚さのインク受像層を形成するようにしていた。

また、前記インク受像層に記録されたインク画像を保護するために、従来からインク受像層の表面を適宜な被覆素材からなる被覆層によって被覆している。

しかしながら、前記従来の画像記録シートにおいては、次のような不都合があった。

即ち、従来は通常インク受像層に被覆層を形成する場合に、インク受像
層に被覆層を塗布した後に乾燥させて形成していたために、被覆層の形成
に長時間を要するとともに、コストが高くなるという問題点があった。
また、ペーマイトの平均粒子径が非常に小さいので、ペーマイトを適宜
のバインダと合成してソル化して基材にコーティングするものであるが、
そのコーティング時にインク受像層がひび割れしたり、画像記録シート自
体がカールしてしまい、画像記録に用いることができなくなっていた。ま
た、ペーマイトのコーティング層を基材の表面に安定化させるために、当
該コーティング層を予め150℃程度で焼く必要があり、加熱により画像
記録シート自体に凹凸のくせがついてしまい、画像記録に用いることがで
きなくなっていた。また、前記ペーマイトのコーティング層はタバコの煙
等を吸収して色が変化してしまい、画像記録に用いることができなくなっ
ていた。更に、前記ペーマイトのコーティング層はインクの吸込みが良
好で、インクの拡散を防止して、ディジタル的な画像を形成することがで
きるが、その反面、インクはインクドットの大きさ単位で残るために、ア
ナログ的な画像、即ち銀塩写真状の画像の記録はできなかった。

発明の開示

本発明はこれらの点に鑑みてなされたものであり、前記従来の問題点を
解消し、インク受像層に対して被覆層を簡単にかつ低コストに形成するこ
とができる、しかも被覆層をインク受像層に強固に被覆させることができ、
被覆層がインク受像層から剥離する等の損傷を発生することがなく、更に、
高品位であり、かつ、アナログ的な画像、即ち銀塩写真状の画像の記録が
可能であり、光沢を調整することができ、耐水性、耐候性等に優れており、
製造が容易であり、コストも低廉な画像記録シートおよび画像記録シート
の被覆層形成素材を提供することを目的とするものである。

本発明者等は前記目的を達成するために、鋭意研究し、インク受像層に対して被覆層を転写によって形成する場合に、被覆層の素材とインク受像層の素材との相性がよい場合には、インク受像層の表面に剥離シートに形成されている被覆層を転写すると、被覆層をインク受像層に簡単かつ強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生することがなく、また、前記両者とは異なる素材であって、両者ともに相性のよい素材からなる転写補助層を両者の少なくとも一方に予め被覆形成しておいて、当該転写補助層を介して被覆層をインク受像層の表面に転写すると、前記と同様に被覆層をインク受像層に簡単かつ強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生することがなく、また、前記両者の相性に関係なくインク受像層の表面に被覆層を形成する素材と同一素材を予め薄く形成しておき、その上に剥離シートに形成されている被覆層を転写すると、被覆層をインク受像層に簡単かつ強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生することのないことを見出して本発明を完成させた了。更に、本発明者等は、前記インク受像層の組成分に膨潤性樹脂と固形組成部材を含めるとともに、両組成分の配合割合、前記固形組成部材の最大寸法および平均粒径を調整することにより優れた画像記録シートを得ることができることを見出して本発明を完成させた。

即ち、本発明に係る画像記録シートは、インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するため、用いられる画像記録シートにおいて、前記被覆層は剥離シートに剥離
自在に形成された被覆層を前記インク受像層の上に転写することにより形成されることを特徴とする。このように形成されている記載の画像記録シートによれば、インク受像層の素材と被覆層の素材が相性のよいものとされているために、インク受像層に対して被覆層形成素材の転写シートに剥離自在に形成されている被覆層をインク受像層の表面に直接転写させることができ、互いに相性のよいインク受像層と直接転写された被覆層とが大きな付着力をもって付着させられる。

また、本発明に係る画像記録シートは、インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、剥離シートに剥離自在に形成された被覆層の表面および前記インク受像層の表面の少なくとも一方に転写補助層を予め被覆し、この転写補助層を介在させて前記被覆層を前記インク受像層の上に転写することにより形成されることを特徴とする。このように形成されている画像記録シートによれば、インク受像層の素および被覆層の素材とは異なる素材であって、両者とともに相性のよい素材からなる転写補助層であって、両者の少なくとも一方に予め被覆形成されている転写補助層を介して被覆層をインク受像層の表面に転写させることができる。これにより、転写補助層を介して被覆層をインク受像層に簡単かつ強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生することが皆無となる。また、この結果被覆層全体の厚さを薄く形成しても十分にインク受像層を保護することができる。このように請求項2によれば、インク受像層の素材と被覆層の素材との相性に関係なく両者を強固に付着させることができる。従って、両者の相性が悪くて転写させ
た被覆層がインク受像層から剥離しやすい素材の組合せの場合に用いると極めて有効である。

また、本発明に係る画像記録シートは、インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、前記被覆層は被覆層と同一素材を前記インク受像層の表面に予め前処理被覆層として薄く形成し、剥離シートに剥離自在に形成された被覆層を前記前処理被覆層の上に転写することにより形成されることを特徴とする。このように形成されている画像記録シートによれば、画像記録シートのインク受像層の表面に被覆層と同一素材からなる前処理被覆層が予め薄く形成されているために、インク受像層に形成されている前処理被覆層の上に被覆層形成素材の転写シートに剥離自在に形成されている被覆層を転写させて被覆させることができる。これによりインク受像層の前処理被覆層と転写された被覆層とが強固に一体化して、被覆層全体のインク受像層に対する付着力が大きくなり、被覆層をインク受像層に簡単かつ強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生させることが皆無となる。また、この結果被覆層全体の厚さを薄く形成しても十分にインク受像層を保護することができる。この場合、前処理被覆層の素材は当該前処理被覆層に直接転写される被覆層の素材と同一であればよく、例えば、被覆層の前処理被覆層に直接転写されない部分の素材と前処理被覆層との素材は相違してもよい。このように本発明によれば、インク受像層の素材と被覆層の素材との相性に関係なく両者を強固に付着させることができる。従って、両者の相性が悪くて転写させた被覆層がインク受像層から剥離しやすい素材の組合せ
せの場合に用いると極めて有効である。

また、本発明に係る画像記録シートは、インク受像層が膨潤性樹脂組成部材100重量部に対して10～300重量部の固形組成部材を混合させた組成を有しており、前記固形組成部材は最大寸法がインク受像層の厚さの1/2以下とされているとともに、平均粒径が1～10μmとされていることを特徴とする。このように形成されている発明によれば、インク受像層の組成分である膨潤性樹脂と固形組成部材との配合割合を膨潤性樹脂組成部材100重量部に対して10～300重量部とすることにより、インクを適正に受像することができ、固形組成部材の最大寸法をインク受像層の厚さ1/2以下とすることにより、インク受像層にピンホールの発生を防止すことができる、固形組成部材の平均粒径を1～10μmとすることにより、高品位であり、かつ、アナログ的な画像、即ち銀塩写真状の画像の記録が可能であり、光沢を調整することができる。

また、本発明に係る画像記録シートは、固形組成部材をシリカとし、たことを特徴とする。このように形成されている発明によれば、画像記録シートをより優れたものとすることができる。

また、本発明に係る画像記録シートは、被覆層を形成する素材がラテックスにより形成されていることを特徴とする。このように形成されている発明によれば、インク受像層に形成された画像を透明なラテックスからなる被覆層により被覆することができ、画像を写真のように見せることができ、画像の品位を大きく向上させることができる。

また、本発明に係る画像記録シートの被覆層形成素材は、剥離シート被覆層が剥離自在に形成されていることを、このように形成されている発明によれば、剥離シートから被覆層を剥離させてインク受像層の表面に転
写させて被覆させることができる。

また、本発明に係る画像記録シートの被覆層形成素材は、被覆層を形成する素材がラテックスにより形成されていることを特徴とする。このように形成されている発明によれば、インク受像層に形成された画像を透明なラテックスからなる被覆層により被覆することができ、画像を写真のように見せることができ、画像の品位を大きく向上させることができる。

以上述べたように本発明の画像記録シートおよび画像記録シートの被覆層形成素材は構成され、作用するものであるから、従来のような問題点を発生することができず、インク受像層に対して被覆層を簡単にかつ低コストに形成することができ、しかも被覆層をインク受像層に強固に被覆させることができ、被覆層がインク受像層から剥離する等の損傷を発生することがなく、更に、高品位であり、かつ、アナログ的な画像、即ち銀塩写真状の画像の記録が可能であり、光沢を調整することができ、耐水性、耐候性等に優れており、製造が容易であり、コストも低廉なものとなる等の効果を奏する。

図面の簡単な説明

第1図は本発明に係る画像記録シートの実施の一形態を示す概略断面図、
第2図は本発明に係る画像記録シートの1実施の形態を製造工程順に示す拡大断面図、
第3図（a）および（b）はそれぞれ画像記録シートの被覆層形成素材の実施形態を示す概略断面図、
第4図（a）および（b）はそれぞれ画像記録シートの他の実施形態を示す概略断面図である。
発明を実施するための最良の形態

以下、本発明の実施形態を図1から図4を参照して説明する。

図1は本発明に係る画像記録シートおよび画像記録シートの被覆層形成

素材の実施の一形態を利用した作成された画像シートを示したもので、この画像記録シート1は、シート状の基材2を有しており、この基材2の表面側には、インク受像層3が形成されている。このインク受像層3に対して画像を形成するインクがインクジェット式の画像記録装置により直接記録され、その表面に被覆層4が形成されて画像の記録が終了する。

本実施形態の画像記録シート1を図2に示す製造工程に沿って説明する。

前記基材2は、図2（a）に示すように、例えば、合成樹脂、布または紙等のシート状の材料によって形成されている。

前記インク受像層3は、図2（b）に示すように、固形組成部材3aと膨溼性樹脂組成部材3bと溶媒との液状混合物を基材2の表面に塗布して、

乾燥させて形成されており、乾燥後のインク受像層3は、固形組成部材3aと膨溼性樹脂組成部材3bとを混合させた組成を有している。固形組成部材3aは膨溼性樹脂組成部材3bの100重量部に対して、10～300重量部の混合割合とされている。この固形組成部材3aは最大寸法がインク受像層3の厚さの1/2以下とされているとともに、平均粒径が1～20μmとされている。前記膨溼性樹脂組成部材3bとしては、前記固形組成部材3aのバインダーとしての機能を発揮したり、インクを吸収する機能を発揮するものであればよく、吸水性を有する高分子剤であればよい。この膨溼性樹脂組成部材3bの具体例としては、高松油脂株式会社製の商品名：NS－120XK、NS－282LK、NS－141LXをあげる
ことができる。前記固形組成部材 3 a としては、例えば、シリカやアルミ
ナ等のセラミック材料や炭酸カルシウム等の固形材料を用いるとよい。例
えば、シリカを用いる場合には、乾式法（気相法ともいう）、湿式法（水
ガラス法ともいう）およびソルゲル法のいずれの合成法によって生成され
たものでも用いることができる。その中でも、特に、湿式法のゲルタイプ
のシリカはインクジェット用の固形組成部材 3 a として最適である。また、
固形組成部材 3 a の形状は、球状、針状、板状、立方状等のどのような形
状であってもよい。この固形組成部材 3 a の膨潤性樹脂組成部材 3 b の 1
0.0 重量部に対する割合を前記のようにするの 10 重量部より少ない
とインクの拡散効果が少なくなり、3 0 0 重量部より多いとインク受像層
3 としての基材 2 対する塗膜強度が弱くなるためである。また、固形組
成部材 3 a の最大寸法をインク受像層 3 の厚さの 1 / 2 以下としてこれにより、インク受像層 3 にピンホールを形成することが皆無となり高品位の
画像記録が可能となる。また、固形組成部材 3 a の平均粒径を 1 〜 1 0 μ
m としているのは、1 μm より小さいとインクの吸収性が悪くなり、しか
もインク受像層 3 を基材 2 に安定的に固着させるために前記乾燥時に焼く
と、インク受像層 3 にひび割れが発生し、1 0 μm より大きくなるとイン
クの拡散度合いが大きくなりすぎて、高品位の画像を記録できないためで
ある。また、インク受像層 3 の厚さは 2 0 〜 5 0 μm 程度とすることとよい。
インク受像層 3 の厚さが 2 0 μm より薄いとインクの吸収性が悪く、高品
位の画像の記録ができなくなり、5 0 μm より厚いと画像記録シート 1 を
カールさせた時にインク受像層 3 にひび割れ等の損傷が発生するおそれが
あるからである。前記インク受像層 3 は基材 2 に転写形成してもよい。
被覆層 4 は、図 2 (c) に示すように、インク受像層 3 の表面に予め薄
く形成されている被覆層 4 と同一素材からなる前処理被覆層 4 a に対して、図 2 (e) に示すように、被覆層形成素材 6 の転写シート 7 に剥離自在に形成されている被覆層 4 b を転写させて形成されている。本実施形態においては、被覆層 4 はラテックス、熱可塑性接着剤等の耐久性を有する被覆素材 5 によって形成されている。

工程順に説明すると、前処理被覆層 4 a は、図 2 (c) に示すように、ラテックス等の耐久性を有する被覆素材 5 と溶媒との液状混合物を、前記のようにして形成されたインク受像層 3 の表面に薄く塗布して、乾燥させることにより形成されている。被覆素材 5 としては耐水性、耐候性等の性質を有するものであればよく、耐紫外線性を有する UV カット素材も含まれるものであり、画像記録シート 1 の用途等に応じて適宜に選択するとよい。また、記録された画像の視認性をよくするためには透明性を有する、例えば透明ラテックス等を被覆素材 5 に用いるとよい。また、透明ラテックス以外の透明被覆素材としては、例えば、日信化学株式会社製のピニープラン（商品名）等のホットメルト素材とあわせることができる。このホットメルト素材は、常温でべたべたせず、加熱および加圧により透明となり接着性を発揮し、転写可能な被覆素材に好適である。また、ラテックスを耐熱性を有する微細カプセル内に封入したものを被覆素材 5 に用いて、被覆層 4 b と加熱圧着する時に微細カプセルを潰壊させて、被覆素材 5 を突出させて前処理被覆層 4 a と一体とさせるようにしてもよい。また、必要に応じて半透明、有彩色の被覆素材 5 を用いてもよい。

この前処理被覆層 4 a の厚さは、次工程において転写される被覆層 4 b と一体となって形成される被覆層 4 全体のインク受像層 3 対に対する付着力を大きくできる十分な厚さ（例えば、被覆素材 5 の 1 分子から複数分子
の厚さ：0.1〜5μm）であり、この前処理被覆層4aを通じてインク受像層3に浸透させられるインクの浸透を阻害しない厚さとするよい。
このようにして形成された前処理被覆層4aにおいては、被覆素材5の間にインクがインク受像層3側に通過できる空所が形成されている。

5 このようにして基材2の表面にインク受像層3および前処理被覆層4aが順に形成された画像記録シート1は、その状態でエンドユーザーに提供するようにしてもよい。この場合、画像記録シート1は所定大にカットしたり、所定幅の長尺物をロール状にして提供するとよい。

画像記録は、図2（d）に示すように、画像記録シート1の前処理被覆層4aに向けてインクジェット記録装置から画像データに基づいてインク8を吐出（噴出）させることにより行なわれる。前処理被覆層4aに飛着したインク8は、相互に隣接する被覆素材5の間を通じて下層のインク受像層3へ進行する。その後、インク受像層3の相互に隣接する固形組成部材3aと膨潤性樹脂組成部材3bとの間に浸透して行く。即ち、インク8はインクジェット記録装置から吐出されたドットの大きさを維持したまま被覆素材5の間を通じてインク受像層3に到達し、続いてインク受像層3の厚さ方向に浸透すると同時に厚さ方向と直交する方向に若干浸透拡散して、アナログ的な画像の記録を可能とさせる。これは、インク受像層3を構成する固形組成部材3aと膨潤性樹脂組成部材3bとの割合、固形組成部材3aの平均粒子径、インク受像層3の厚さ等が前記のように形成されているからである。インク8としてはインクジェット用に利用できるものであれば、どのようなものもの利用することができ、インク受像層3の固形組成部材3aおよび膨潤性樹脂組成部材3bとの相性のよいものを用いるとよい。
最後に、図２（e）に示すように、前処理被覆層４ａの表面に被覆層形成素材６の転写シート７に剥離自在に形成されている被覆層４ｂをラミネートさせる。即ち、前処理被覆層４ａの表面に被覆層４ｂを重ねるとともに、全体を図示しない加熱圧着ロール間で図の左から右に向けて順に通過させる。これにより、前処理被覆層４ａと被覆層４ｂとの同一素材からなる被覆素材５が互いに強固に融着して一体状の被覆層４となるとともに、特に前処理被覆層４ａの被覆素材５がインク受像層３の固形組成部材３ａと膨潤性樹脂組成部材３ｂとの間に浸入していって、インク受像層３に対して大きな付着力をもって転写形成される。そして、剝離シート７は被覆層４から剥離され、図１に示す画像記録シート１が形成される。

このような形成された被覆層形成素材６はその単独状態でエンドユーザーに提供するようにしてもよい。この場合、被覆層形成素材６は所定大にカットしたり、所定幅の長尺物をロール状にして提供するとよい。

また、一体状とされた被覆層４の厚さは、少なくともインク受像層３に形成された画像を保護するのに十分な厚さとすることがよい。

このように実施形態によれば、画像記録シート１のインク受像層３の表面に被覆層４と同一素材からなる前処理被覆層４ａが予め薄く形成されているために、被覆層形成素材６の転写シート７に剥離自在に形成されている被覆層４ｂを転写させると、前処理被覆層４ａと転写された被覆層４ｂとが強固に一体化して、被覆層４全体のインク受像層３に対する付着力が大きくなり、被覆層４をインク受像層３に簡単かつ強固に被覆させることが可能であり、被覆層４がインク受像層３から剝離する等の損傷を発生させることが皆無となる。即ち、画像記録シート１は耐水性、耐候性、耐紫外線性等の耐久性の優れたものとなる。これにより被覆層４全体の厚さを薄く
形成しても十分にインク受像層3を保護することができる。また、簡単に
強固な被覆層を形成することができるために、コストが非常に低廉となる。
具体的には、通常のインクジェット用の画像記録シートの約1/5となり、
銀塩写真用の印画紙の約1/3となる。

5 また、被覆層4を形成する素材を透明なラテックスにより形成すると、
インク受像層3に形成された画像を透明な被覆層4により被覆することが
でき、光沢を上げて画像を写真のように見せることができ、画像の品位を
大きく向上させることができる。

本発明においては、基材2にインク受像層3を形成した図2（b）に示
す素材は如何なる構成のものも利用することができるものである。

一方、本実施形態のように、インク受像層3の組成分である膨溼性樹脂
組成部材3bに対する固形組成部3aの配合割合を、膨溼性樹脂組成部材
3bの100重量部に対して10～300重量部することにより、イン
ク8を適正に受像することができ、固形組成部材3aの最大寸法をインク
15 受像層3の厚さの1/2以下とすることにより、インク受像層3にピンホ
ールの発生を防止することができ、固形組成部材3aの平均粒径を1～1
0 μmとすることにより、高品位であり、かつ、アナログ的な画像、即ち
銀塩写真状の画像の記録が可能であり、光沢を調整することができる。ま
た、インク受像層3の厚さを20～50 μmとすることにより、インク8
20 をより適正に受像することができ、更に被覆層4によって耐水性、耐候性
等を付与して極めて耐久性の優れた画像記録シート1を得ることができる。
また、前記固形組成部材3aをシリカとし、被覆層4の被覆素材6を透明
なラテックスとしているために、より優れた画像記録シート1を得ること
ができる。また、固形組成部材3aのシリカの平均粒径を調節することに
より画像の光沢度合いを調整することができ、例えば、シリカの平均粒径を3μmより小さくすると、画像記録シート1は光沢を有する画像を記録させることができ、5μmより大きくすると、画像記録シート1は非光沢の画像を記録させることができる。なお、光沢性をより確実に付与するため、インク受像層3と被覆層4との間に適量の光沢化層を設けるようにしてもよい。

また、前記実施形態においては、インク受像層3の表面に前処理被覆層4aを形成しているが、この前処理被覆層4aを省略することもできる。

即ち、インク受像層3の素材とこれに転写する被覆層4の素材との漏れ性、相溶性等の相性がよいものとすると、インク受像層3の表面に剥離シート7に形成されている被覆層4を転写すると、被覆層4をインク受像層3に簡単かつ強固に被覆させることができ、被覆層4がインク受像層3から剥離する等の損傷を発生を皆無にすることができる。また、前記実施形態同様の作用効果を奏することができる。

また、被覆層形成素材6については図3により更に説明する。

図3（a）は被覆層形成素材6の1実施形態を示すものであり、PETフィルム等の素材からなる剥離シート7に剥離層9を介してラテックス等からなる被覆層4bを積層したものであり、被覆層4bは剥離層9により剥離シート7に対して剥離自在に形成されている。被覆層4bが剥離シート7に対して直接剥離自在に付着されれば、剥離層9を省くことができる。剥離シート7の表面が平坦である場合には、インク受像層3に転写された被覆層4bの表面が平坦に形成され、光沢が付与される。また、剥離シート7の表面に微細な凹凸を付与すると、インク受像層3に転写された被覆層4bの表面が微細な凹凸を付与され、防眩処理を施されることとなる。
この防紙処理を施された部分には簡単に文字を書いたり印字することができる。従って、剥離シート7の表面に平坦部と凹凸部とを所望位置に設けることにより、画像記録シート1の被覆部4の表面の所望位置に平坦部と凹凸部とをデザイン配置することができる。更に、剥離シート7を転写時に加圧・加熱する図示しない加熱圧着ロールの表面にエンボス処理を施して所定の凹凸模様を形成しておいて、その凹凸模様をもって剥離シート7、剥離層9を介して転写時に転写される被覆層4の表面を押圧して、画像記録シート1の被覆部4の表面の所望位置に平坦部と凹凸部とをデザイン配置させるとよい。また、前記熱ロールの表面にシリコーン樹脂やフッ素系樹脂をコーティングして剝離性を付与しておくと、加熱圧着ロールにより加圧・加熱を受けている基材2側と被覆層形成素材6とが幅方向に適正な相対位置からずれてしまってしまい、基材2側のインク受像層3の表面に形成されている前処理被覆層4aが加熱圧着ロールに直接接触しても、前処理被覆層4aおよびインク受像層3が加熱圧着ロール側に誤って転写されることが防止される。また、被覆層4bの前処理被覆層4aに対する転写は、図2（e）に示すように基材2側と被覆層形成素材6側とを直接密着させるようにして行なう他に、被覆層形成素材6から被覆層4bのみを中間転写ロール（図示せず）に転写し、その後中間転写ロールから基材2側の前処理被覆層4aの表面に転写させるようにしてもよい。この転写ロールの表面に、オフセット印刷を行う場合と同様にして、被覆層4bを転写すべきパターンを形成しておけば、所定パターンに対応した被覆層4をインク受像層3の表面に形成することができる。

図3（b）は被覆層形成素材6の他の実施形態を示すものであり、同図（a）の被覆層形成素材6の実施形態における被覆層4bと剝離層9との
間に他の機能を有する層としての他機能層 10 を設けたものである。この他機能層 10 はインク受像層 3 の表面に形成されている前処理被覆層 4 a に直接転写されないので、当該前処理被覆層 4 a および被覆層 4 b と異なる素材であってもよい。この他機能層 10 としては、どのような機能を備えたものであってもよく、例えば、紫外線による影響を防止する U V カット層、画像記録シートに硬さを付与するハードコート層、前記の両機能を有する U V カットハードコート層、耐候性を付与する耐候性層、耐溶剤性を付与する耐溶剤性層等をあげることができる。これらの機能を発揮する他機能層 10 の素材としては、公知の樹脂剤を付与する機能の内容において 1 種若しくは複数種を組み合わせて用いるとよい。これらの樹脂としては、メラミン樹脂、アルキド樹脂、アクリル樹脂、ポリエステル系樹脂、フッ素樹脂、シリコン樹脂、アクリルシリコン樹脂等をあげることができる。具体的には他機能層 10 として U V カット層を設ける場合には、U V カット層素材としては、例えば大塚化学株式会社製の商品名：RUV A－93、PUVA－30M等の素材を用いるとよい。このU V カット層の厚さとしては、紫外線を吸収してインクの退色を防止できるものであればよく、例えば 2.5 μm程度とするとよい。また、他機能層 10 として更に被覆層を形成してもよい。この場合、一方のインク受像層 3 の表面に形成されることとなる前処理被覆層 4 a および被覆層 4 b を形成する素材として、最低成膜温度（M F T）およびガラス転位点（T g）が低い素材を用いて、低温による転写を可能とするとともに前処理被覆層 4 a および被覆層 4 b の密着強度を向上させ、他方の他機能層 10 を形成する被覆層を形成する素材として、最低成膜温度（M F T）およびガラス転位点（T g）が高い素材を用いて、耐候性を向上させることができる。一方の最低

- 16 -
造膜温度（MFT）およびガラス転位点（Tg）が低い素材としては、前記した日信化学株式会社製のビニプラン（商品名）の品番240をあげることができ、被覆層4bの厚さは10μm程度とするとよい。他方の最低造膜温度（MFT）およびガラス転位点（Tg）が高い素材としては、前記した日信化学株式会社製のビニプラン（商品名）の品番602をあげることができ、他機能層10としての厚さは2μm程度とするとよい。

また、前記各実施形態の被覆層形成素材6においては、被覆層4を転写した後の剥離シート7を回収して、再度被覆層4を形成することにより素材の再利用を図ることができ、環境汚染を未然に防止することもできる。また、被覆層4を転写する際には、熱ロールによって基材2および剥離シート7がともに加熱されるために、両者の熱収縮率が異なると、熱収縮率の高い方の面が凹入るように完成された画像記録シート1が湾曲することとなるので、両者の熱収縮率がほぼ等しい素材を選択するとよい。例えば、基材2として紙等の熱収縮率が低い素材を用いた場合には、剥離シート7として低熱収縮率の樹脂フィルムを用いるとよい。低熱収縮率の樹脂フィルムとしては、低熱収縮率性を有するPET、PEN、PPS、PES、PAR、PA、PI等の樹脂をあげることができる。これらの低熱収縮率の樹脂フィルムは、転写時の熱ロールの表面温度が140℃以上になる場合においても十分に使用に耐え得るものである。また、転写時の加熱圧着ロールの表面温度が120℃程度の場合には、前記の低熱収縮率性を有するPETフィルムに代えて標準のPETフィルムを用いることができる。また、基材2および剥離シート7の熱収縮率が異なる場合には、いずれか一方の裏面にラテックスやPV A等をバックコートして合成熱収縮率を他方の熱収縮率とほぼ等しくなるようにするとよい。
また、本発明においては、インク受像層3の上に形成される層の厚さ（被覆層4単独の場合の厚さまたは被覆層4と他機能層10との合計厚さ）と剝離シート7の厚さの一方若しくは双方を調整することにより、完成された画像記録シート1の表面の光沢度を調整することができる。即ち、

5 平坦な表面を有する剝離シート7の厚さが所定厚さ以下の場合は、完成された画像記録シート1の表面の光沢度は銀塩写真の光沢を有しており、当該所定値を越えると光沢度は更に大きく光沢度を上げた超光沢となる。インク受像層3の上に形成される層の厚さが所定厚さ以下の場合は、完成された画像記録シート1の表面の光沢度は銀塩写真の光沢を有しており、当該所定値を越えると光沢度は更に大きく光沢度を上げた超光沢となる。

例えば、基材2として上質紙（157 g/m²）を用い、被覆層4の素材としてラテックスを用い、剝離シート7としてPETフィルム（帝人株式会社製：商品名テトロンSタイプ）を用いて、被覆層4および剝離シート7の厚さを変化させて完成された画像記録シート1の表面の光沢度を調べると下表の通りとなった。

<table>
<thead>
<tr>
<th>PETフィルムの厚さ</th>
<th>ラテックスの厚さ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 μm</td>
</tr>
<tr>
<td>100 μm</td>
<td>超光沢</td>
</tr>
<tr>
<td>50 μm</td>
<td>超光沢</td>
</tr>
<tr>
<td>38 μm</td>
<td>銀塩写真の光沢</td>
</tr>
</tbody>
</table>
この結果より、剥離シート7としてのPETフィルムは厚さが50μm以上であれば画像記録シート1の表面は超光沢となり、38μm以下であると銀塩写真状の光沢となることがわかる。また、被覆層4の素材としてのラテックスは厚さが4μm以上であれば画像記録シート1の表面は超光沢となることがわかる。

図4は本発明の更に他の実施形態を示す。

前記各実施例においては、インク受像層3に被覆層4を転写させるために、被覆層4と同一素材を予めインク受像層3に形成しているが、本実施形態においては、インク受像層3および被覆層4とは異なる素材であって、両者ともに相性のよい素材からなる転写補助層11をインク受像層3および被覆層4の対向面のいずれか一方に若しくは両方に予め薄く形成し（図4の（a）および（b）参照）、その後図4（c）に示すように、転写させたものである。図4（a）に示すように、転写補助層11をインク受像層3の表面に形成する場合には、転写補助層11越しにインク8によるインク受像層3への書込が可能になるようにしておく。図4（b）に示すように、転写補助層11を被覆層4の表面に形成する場合には、インク8によるインク受像層3への書込については考慮しなくてもよい。

また、本発明を実施するために、インク受像層3にインク8による画像を形成するプリンタに、被覆層形成素材6の被覆層4をインク受像層3に転写する転写機構を一体的に組込むと、本発明を簡単な構成の装置により低コストに適用することができる。

なお、本発明は前記各実施形態のものに限定されるものではなく、必要に応じて種々変更することが可能である。
請求の範囲

1）インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、前記被覆層は剥離シートに剥離自在に形成された被覆層を前記インク受像層の上に転写することにより形成されることを特徴とする画像記録シート。

2）インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、剥離シートに剥離自在に形成された被覆層の表面および前記インク受像層の表面の少なくとも一方に転写補助層を予め被覆し、この転写補助層を介在させて前記被覆層を前記インク受像層の上に転写することにより形成されることを特徴とする画像記録シート。

3）インクジェット式等の画像記録装置により基材の表面に形成されたインク受像層に画像を記録し、インク受像層および画像の表面を被覆層により被覆して所定の画像を記録するために用いられる画像記録シートにおいて、前記被覆層は被覆層と同一素材を前記インク受像層の表面に予め前処理被覆層として薄く形成し、剥離シートに剥離自在に形成された被覆層を前記前処理被覆層の上に転写することにより形成されることを特徴とする画像記録シート。
4）前記インク受像層は、膨満性樹脂組成部材100重量部に対して
10～300重量部の固形組成部材を混合させた組成を有しており、
前記固形組成部材は最大寸法がインク受像層の厚さの1/2以下とされ
ているとともに、平均粒径が1～10μmとされている
5）ことを特徴とする請求項1または請求項2または請求項3に記載の画像
記録シート。

5）固形組成部材をシリカとしとしたことを特徴とする請求項4に記
載の画像記録シート。

6）被覆層を形成する素材がラテックスにより形成されていることを
特徴とする請求項1から請求項5のいずれか1項に記載の画像記録シート。

7）請求項1から請求項6のいずれか1項に記載の画像記録シートの
被覆層を形成する画像記録シートの被覆層形成素材において、剝離シート
に被覆層が剝離自在に形成されていることを特徴とする画像記録シートの
被覆層形成素材。

8）被覆層を形成する素材がラテックスにより形成されていることを
特徴とする請求項7に記載の画像記録シートの被覆層形成素材

-21-
Fig. 3

(a)

9 7 6

4b

(b)

9 7 6

10 4b
Fig. 4

(a)

(b)

(c)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl6 B41M5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl6 B41M5/00, B41M7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, 7-156568, A (Mitsubishi Chemical Corp.), June 20, 1995 (20. 06. 95) (Family: none)</td>
<td>1-2, 7</td>
</tr>
<tr>
<td>X</td>
<td>JP, 62-202782, A (Canon Inc.), September 7, 1987 (07. 09. 87) (Family: none)</td>
<td>1-2, 7</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 9-254534, A (Mitsubishi Chemical Corp.), September 30, 1997 (30. 09. 97) (Family: none)</td>
<td>2-3</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 8-39226, A (Canon Inc.), February 13, 1996 (13. 02. 96) (Family: none)</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
July 30, 1998 (30. 07. 98)

Date of mailing of the international search report
August 11, 1998 (11. 08. 98)

Name and mailing address of the ISA/Japanese Patent Office
Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1'5 B41M5/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1'5 B41M5/00, B41M7/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-1988年
日本国登録実用新案公報 1994-1998年
日本国実用新案登録公報 1996-1998年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー※</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP. 7 - 15 65 68, A（三菱化学株式会社）20.6月.1995（20.6, 95）（ファミリーなし）</td>
<td>1 - 2, 7</td>
</tr>
<tr>
<td>X</td>
<td>JP. 62-202782, A（キャノン株式会社）7.9月.1987（07.9, 87）（ファミリーなし）</td>
<td>1 - 2, 7</td>
</tr>
<tr>
<td>Y</td>
<td>JP. 9 - 25 45 34, A（三菱化学株式会社）30.9月.1997（30.9, 97）（ファミリーなし）</td>
<td>2 - 3</td>
</tr>
<tr>
<td>Y</td>
<td>JP. 8-392286, A（キャノン株式会社）13.2月.1996（13.2, 96）（ファミリーなし）</td>
<td>4 - 5</td>
</tr>
</tbody>
</table>

※ 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」先行文献ではあるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開票、使用、表示等に言及する文献
「P」国際出願日前、かつ優先権の主張の基礎となる出願

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

国際調査を完了した日 30.07.98
国際調査報告の発送日 11.08.98

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限ある職員）
阿久津 弘印

電話番号03-3581-1101内線3232

様式PCT/ISA/210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
</table>