发明名称
增强补强型抗静电阻燃母粒及制备方法与应用

摘要
本发明公开了一种补强增强型抗静电阻燃母粒及制备方法与应用。该抗静电阻燃母粒的主要组分有：阻燃剂、抗静电剂、加工助剂和载体树脂。将各种组分按配方比例配制后，先经密炼机或捏合机塑化混炼，再经单螺杆挤出机造粒，或采用高速混机将各组分混合均匀，再经往复式单螺杆挤出机造粒而成。该抗静电阻燃母粒除了具备抗静电阻燃功能外，还具备了补强增强的作用。该母粒主要用于对抗静电阻燃性能以及补强增强性能要求都较高的塑料制品和煤矿井下塑料管材和顶网，煤气运输管道和各种电器塑料制品。
1. 一种补强增韧型抗静电阻燃母粒，其特征在于母粒组成为：阻燃剂、抗静电剂、加工助剂和载体树脂，它们之间重量比例为：阻燃剂：抗静电剂：加工助剂：载体树脂 = 30 : 20 : 30 : 15 : 10 : 15。

2. 根据权利要求1所述的补强增韧型抗静电阻燃母粒，其特征在于：其中所用阻燃剂为：溴联苯醚、溴联苯乙烷、溴联双酚A、溴联丁烷、氯化石蜡、磷酸三甲酚、多聚磷酸铵、包膜红磷、硼酸锌、硅酸镁、三氧化二锑、氢氧化镁和氢氧化铝中的一种或两种以上任意比例的混合物。

3. 根据权利要求1、2所述的补强增韧型抗静电阻燃母粒，其特征在于：其组成中的阻燃剂使用无卤型阻燃剂制得低烟、无卤、环保型抗静电阻燃母粒。

4. 根据权利要求1所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中的抗静电剂为导电碳黑、导电炭黑、烷基磷酸酯二乙醇铵盐、硬脂酰胺、丙基，二甲基-β-羟乙基醚硝酸盐，单硬脂酸甘油酯、烷基磷酸酯、乙二醇醚，十二烷基二甲基甜菜碱和辛基酚聚氧乙烯醚中的一种或两种以上任意比例混合物。

5. 根据权利要求1、2所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中所阻燃剂，抗静电剂中的无机组分选自包膜红磷、硼酸锌、硅酸镁、三氧化二锑、氢氧化镁、氢氧化铝、导电石墨或导电炭黑。

6. 根据权利要求1、2所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中所阻燃剂、抗静电剂中的无机组分，其厚生粒子的粒径小于0.2μm。

7. 根据权利要求1、2所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中所阻燃剂、抗静电剂中的无机组分，其厚生粒子的粒径小于100nm。

8. 根据权利要求1所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中的加工助剂为：PE蜡、PP蜡、固体石蜡、白油、无规PP、硬脂酸及其盐、铝酸酯偶联剂、钛酸酯偶联剂、酸式亚磷酸酯偶联剂、稀土偶联剂和硅油中的一种或两种以上任意比例混合物。

9. 根据权利要求1所述的补强增韧型抗静电阻燃母粒，其特征在于：组成中的载体树脂为：聚乙烯、聚丙烯、乙烯-醋酸乙烯共聚物、乙烯-丙烯酸共聚物、乙烯-丙烯共聚物、聚氯乙烯、ABS、聚苯乙烯、聚酯、聚酰胺中的一种或两种以上任意比例混合物。

10. 一种权利要求1所述的补强增韧型抗静电阻燃母粒制备方法，其特征在于：将母粒组成中各组分按配方比例加入到密炼机内，于160～200℃下塑化混合，15～30min后，再通过单螺杆挤出机于160～200℃下造粒；或者将各组分按比例加入到混炼机内于80～110℃下高速混合10～15min，再通过往复式单螺杆挤出机于160～200℃下造粒，即得到抗静电阻燃母粒。

11. 一种权利要求1所述的补强增韧型抗静电阻燃母粒的应用，其特征在于：将其应用于对阻燃性能要求较高的PA、PP、PS、ABS、PVC、PET和PA等各种塑料制品。

12. 根据权利要求11所述的补强增韧型抗静电阻燃母粒的应用，其特征在于：可应用于煤矿井下塑料制品、煤气、天然气塑料输送管和各种塑料电器制品。根据制品对阻燃性能要求不同，添加比例不同，添加量为10～25%便可达到抗静电阻燃的要求。
增强补韧性抗静电阻燃母粒及制备方法与应用

技术领域：
[0001] 本发明涉及塑料抗静电阻燃材料，尤其涉及对既抗静电又阻燃性能要求高的塑料制品。如：煤矿井下塑料制品，易燃易爆气体输送管道和塑料电器制品等领域。

背景技术：
[0002] 塑料为非导电易燃高分子材料。许多应用领域，如：电器零部件，煤矿井下用塑料管材，板材制品，煤气，天然气等可燃性气体输送用塑料管材或塑料容器，塑料电器制品，为了安全，既要求阻燃，又要求抗静电。目前生产这一类塑料制品，一般采用专用料的形式。如：专利200610043497.0，200610040792.0，02135418.6，200410036589.7中所述：即把抗静电组分和阻燃组分加入到基体树脂中，经双螺杆挤出机造粒制成专用料，再用专用料生产制品。这种做法存在两个缺点，其一：所用树脂在生产制品之前都要走一遍双螺杆，既浪费电能，又对树脂的力学性能造成损害。一般PE经双螺杆挤出机挤出后，综合力学性能要降低5～8%，PP降低幅度更大，要超过10%。其二：不同条件下使用的制品，对静电和阻燃性能要求不完全相同，需要生产多种类的专用料才能满足需要，给生产带来许多不便。采用本发明，补强坚韧型抗静电阻燃母粒的形式，既节省能源，减小对树脂力学性能的损害，使用又非常方便。只要调节母粒与基体树脂比例，便可生产具有不同抗静电阻燃性能的塑料制品。虽然没有目前已有类似母粒形式的专利，如：200410067507.5，92112913.0，但它们的局限性大，仅适用一种材料的制品，不具通用性且性能较差。本发明可适用多种不同材料制品，并能满足各种场合下对抗静电阻燃性能要求高的制品。

发明内容：
[0003] 本发明主要内容是提供一种具有抗静电阻燃功能母粒的制备方法与应用。
[0004] 抗静电阻燃母粒是由阻燃剂，抗静电剂，加工助剂和载体树脂四部分组成，它们之间的重量比例为：阻燃剂：抗静电剂：加工助剂：载体树脂＝30～50：20～30：15：35～10：15。
[0005] 所用阻燃剂有卤素系列，它们是：十溴联苯醚，十溴二苯乙烷，四溴双酚A，四溴丁烷，氯化石蜡；磷系列：多聚磷酸铵，磷酸三甲酯，包膜红磷和其他系列产品：硼酸锌，硅酸铵，三氧化二锑，氢氧化镁和氢氧化铝。可选用其中一种或两种以上任意比例的混合物。采用多种复配比单一品种效果好。不同阻燃剂阻燃机理不尽相同，通过多种复配可以充分发挥各自的优势，获得更佳的阻燃效果。如用非卤素系列阻燃剂，可制成无卤低烟母粒，更符合环保要求。阻燃剂在母粒中所占重量百分比为30～50%，最佳比例为35～45%。
[0006] 所用抗静电剂为：导电石墨，导电炭黑，烷基磷酸酯二乙醇胺盐，硬脂酰胺，丙基，二甲基β-羟乙基胺硝酸盐，单硬脂酸甘油酯，烷基磷酸酯，二乙醇胺盐，十二烷基二甲基甜菜碱和辛基酚聚氧乙烯醚中的一种或两种以上任意比例混合物。如果利用某些抗静电剂之间的协同效应，可以减小用量，并获得较好的抗静电效果。抗静电剂在母粒中所占重量百分比为20～30%，最佳比例为15～25%。
说明书

[0007] 所用加工助剂为：PE 蜡，PP 蜡，固体石蜡，白油，无规 PP，硬脂酸及其盐，铝酸酯偶联剂，钛酸酯偶联剂，酸式磷酸酯偶联剂，稀土偶联剂和硅油中的一种或两种以上任意比例的混合物。这些加工助剂的功能是：润滑作用，降低各组分之间的界面能，增加相溶性，既便于挤出造粒，又利于粉末在基体树脂中分散。多种加工助剂复配使用比单一使用效果更好。加工助剂在母粒中所占比例为：15 ～ 35%，最佳比例为：20 ～ 30%。

[0008] 所用载体树脂为：PE，PP，EVA，EAA，POE，PVC，PS，ABS，PET 和 PA 中的一种或两种以上任意比例的混合物。顾名思义，载体树脂的作用是将所有组分捏合在一起，本身作为载体，将其它组分带入基体树脂中。为此，可用作载体的树脂，应具备两个条件，其一：熔体流动速率要大，其二：与基体树脂相容性要好。载体数值在母粒中所占比例为 10 ～ 15%，最佳比例为：11 ～ 13%。

[0009] 为了保证本发明抗静电阻燃母粒，补强增韧性能，所用到的无机组分的厚生粒子粒径都是纳米级或接近纳米级。只有选得如此小的粒径，才能在增加比例大的情况下，使制品的力学性能不受影响，甚至有所增加。为了使如此小的无机纳米粒子能够均匀分散在塑料中，必须选择高性能的加工助剂和合理加工工艺。

[0010] 本发明抗静电阻燃母粒的制备方法可选择以下两种工艺路线的任何一种：a. 按配方比例将各组分加入到密炼机或捏合机内于 160 ～ 200℃下塑化混炼 15 ～ 30min，当整个物料呈均匀的面团状，取出放入单螺杆挤出机中在 160 ～ 200℃下挤出造粒而成。b. 按配方比例将各组分加入到高速搅拌机内于 80 ～ 110℃高速混合 10 ～ 15min，物料呈湿润细小颗粒状，取出，用往复式单螺杆挤出机于 160 ～ 200℃下挤出造粒而成。

[0011] 两种工艺中的加工温度取决于载体树脂的软化点。软化点越高，加工温度也就越高。两种工艺虽然不同但效果一样，都可以制成质量好的抗静电阻燃母粒。

[0012] 本发明补强增韧型抗静电阻燃母粒，通过选择不同载体树脂制得的母粒，可以适用各种树脂，如：PE，PP，PVC，PS，ABS，PET，PA 等。母粒抗静电性和阻燃性能好，是目前类似产品无法比拟的，而且不影响制品的力学性能。

[0013] 本发明补强增韧型抗静电阻燃母粒的应用领域是对抗静电性、阻燃性二者要求较高的塑料制品，如煤矿井下各种塑料制品，各种易燃易爆的可燃性气体输送用塑料管道和塑料电器零部件。用户可根据制品对抗静性和阻燃性不同要求选择添加比例，添加量越大，抗静电和阻燃性能越好。一般添加 10 ～ 25%便可达到标准要求，如在 PE 中添加 20%母粒制成的管材，管材内外壁电阻小于 1.0×10^4Ω，有焰燃烧时间小于 3 秒，无焰燃烧时间小于 20 秒，力学性能等各项指标均达到或超过国家煤炭行业 MT558.1-2005 并下用塑料管材标准要求。

具体实施方式：

[0014] 为了进一步阐明本发明具体内容，特列出以下实施例。但这些实施例仅仅是示范性的，并不对本发明的应用范围构成任何限制。在不偏离本发明精神和范围的情况下，对本发明的细节和描述方式进行的任何常规替换均将落入本发明保护范围。

[0015] 实施例一：

[0016] 称取溴二苯乙烷 18kg，氯化石蜡 2kg，三氧化二锑 5kg，氯氧化铝 2kg，氢氧化镁 6kg，硼酸锌 2kg，导电炭黑 16kg，硬脂酸胺 2kg，烷基磷酸酯 3kg，单硬脂酸甘油酯 2kg，二乙
醇酸盐 2kg, PE 蜡 4kg, 固体石蜡 6kg, 白油 4kg, 硬脂酸 4kg, 硬脂酸锌 2kg, 铝酸酯偶联剂 4kg, 无规 PP 4kg, PE 8kg, EVA 4kg, 加入到 75 立升密炼机内于 165℃下密炼 20 分钟, 取出：
用单螺杆挤出机于 165℃下挤出造粒, 即得 100kg 抗静电电阻母粒。
[0017] 用该母粒按 20%比例与 PE 混合均匀。制成煤矿井下用 φ110×3.4mm 管材。放置一周后测试表面电阻和阻燃性能, 结果如下：

<table>
<thead>
<tr>
<th></th>
<th>有焰燃烧 /s</th>
<th>无焰燃烧 /s</th>
<th>表面电阻 /Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>国家标准</td>
<td>3</td>
<td>20</td>
<td>1.0×10⁶</td>
</tr>
<tr>
<td>实测结果</td>
<td>2.83</td>
<td>1.83</td>
<td>1.0×10⁵</td>
</tr>
</tbody>
</table>

[0019] 管材的各项力学指标均超过国家标准要求。

[0020] 实施例二：

[0021] 取聚磷酸钠 20kg, 多聚磷酸铵 6kg, 砷酸铵 4kg, 氢氧化镁 8kg, 硅酸镁 2kg, 导电石墨 16kg, 丙基, 二甲基-β-羟乙基磷酸铵 4kg, 聚磷酸酯 2kg, 十二烷基二甲基甜菜碱 3kg, 白油 6kg, PP 蜡 4kg, 硬脂酸 4kg, 硬脂酸锌 2kg, 铝酸酯偶联剂 4kg, 二甲硅油 1kg, PP 10kg, PE 4kg, 加入到 300 立升高速搅拌机内, 于 105℃下高速搅拌 12min, 取出, 用往复式双螺杆挤出机于 180℃下挤出造粒, 制得 100kg 低烟无卤环保型抗静电电阻母粒。

[0022] 用该母粒按 10%的比例与 PP 混合均匀, 拉制成煤矿井下用厚度为 6mm 的顶面网材。放置一周后测其表面电阻和阻燃性能, 结果如下：

<table>
<thead>
<tr>
<th></th>
<th>有焰燃烧 /s</th>
<th>无焰燃烧 /s</th>
<th>表面电阻 /Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>国家标准</td>
<td>3</td>
<td>20</td>
<td>1.0×10⁶</td>
</tr>
<tr>
<td>实测结果</td>
<td>1.6</td>
<td>12</td>
<td>1.0×10⁵</td>
</tr>
</tbody>
</table>

[0024] 顶面网点各项力学性能均超过国家标准要求。