(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(40) Internationales Veröffentlichungsnummer
WO 2004/102488 A2

(51) Internationale Patentklassifikation:
G07C 5/00

(21) Internationales Aktenzeichen:
PCT/EP2004/004818

(22) Internationales Anmeldedatum:
6. Mai 2004 (06.05.2004)

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
103 21 523.9 14. Mai 2003 (14.05.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US):
BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; 67056 Ludwigshafen (DE).

Veröffentlicht:
— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweckbucharb-Chodes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR THE DOUBLE-BOND ISOMERISATION OF OLEFINS

(54) Bezeichnung: VERFAHREN ZUR DOPPELBINDUNGSIKISOMERISIERUNG BEI OLEFINEN

(57) Abstract: The invention relates to a method for producing a C₄₋C₁₂ olefin (olefin A) from another C₄₋C₁₂ olefin (olefin B), olefin (A) and olefin (B) differing in terms of the position of the double bond. According to said method, a gaseous mixture containing olefin (B) and between 0.01 and 10 wt. %, in relation to the total quantity of hydrocarbon compounds in said mixture, of a compound having a dipole moment of between 0.5 and 5 Debye (compound P) is brought into contact with a basic catalyst at a temperature of between 200 and 700 °C.

(57) Zusammenfassung: Verfahren zur Herstellung eines C₄₋ bis C₁₂ Olefins (Olefin A) aus einem anderen C₄₋ bis C₁₂-Olefins (Olefin B), wobei sich Olefin (A) und Olefin (B) hinsichtlich der Lage der Doppelbindung unterscheiden, und wobei man eine gasförmige Mischung enthaltend Olefin (B) und 0,01 bis 10 Gew.-%, bezogen auf die Gesamtmengen an Kohlenwasserstoffverbindungen in dieser Mischung, einer Verbindung mit einem Dipolmoment von 0,5 bis 5 Debye (Verbindung P) mit einem basischen Katalysator bei einer Temperatur von 200 bis 700 °C in Kontakt bringt.
Verfahren zur Doppelbindungsisomerisierung bei Olefinen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines C₄- bis C₁₂-Olefin (Olefin A) aus einem anderen C₄- bis C₁₂-Olefin (Olefin B), und wobei sich Olefin (A) und Olefin (B) hinsichtlich der Lage der Doppelbindung unterscheiden, wobei man eine gasförmige Mischung enthaltend Olefin (B) und 0,01 bis 10 Gew.-%, bezogen auf die Gesamtmenge an Kohlenwasserstoffverbindungen in dieser Mischung, einer Verbindung mit einem Dipolmoment von 0,5 bis 5 Debye (Verbindung P) mit einem basischen Katalysator, bei einer Temperatur von 200 bis 700°C in Kontakt bringt.

In diesem Text wird „Isobuten“ nicht unter „Butene“ subsumiert.

In WO 02/094433 wird ein Verfahren zur Herstellung von 1-Buten aus 2-Butenen beschrieben, bei dem als Katalysatoren Magnesiumoxid, Calciumoxid, Bariumoxid Lithiumoxid oder deren Mischungen eingesetzt werden. Es wird jedoch ausdrücklich empfohlen (vgl. S. 7), polare Verbindungen wie Wasser und Alkohol aus dem Einsatzstoff zu entfernen.

Demgemäß wurde die eingangs definierte Erfindung gefunden.

Von besonderer Bedeutung ist das erfindungsgemäße Verfahren, wenn als Olefin (B) cis-2-Buten, trans-2-Buten, 1-Buten oder Mischungen hiervon eingesetzt werden. Meistens liegen die Butene in Form einer Mischung mit anderen Kohlenwasserstoffen wie n-Butan, iso-Butan oder Isobuten vor. Der Begriff Olefin (B) ist in diesem Text also so zu verstehen, dass er sich nicht auf einzelne Verbindungen bezieht sondern auch auf Mischungen verschiedener Olefine, in denen auch das gewünschte Isomerisierungsprodukt (Olefin A) und sonstige Kohlenwasserstoffverbindungen vorhanden sein können. Die Mengen an Olefin (A), die in solchen Mischungen vorhanden sind, liegt jedoch unterhalb der Menge, die im thermodynamischen Gleichgewicht bei der jeweiligen Reaktionstemperatur vorhanden ist. Sinnvoll ist das gleiche gilt für den Begriff Olefin (A). Hierunter werden auch Mischungen verschiedener Olefine und Kohlenwasserstoffe, in denen auch noch das als Ausgangsprodukt dienende Olefin (B) vorhanden sein kann, verstanden. Dies ergibt sich schon allein daraus, dass die Doppelbindungsisomerisierung eine Gleichgewichtsreaktion ist.

Bevorzugt wird das erfindungsgemäße Verfahren so ausgeführt, dass es sich bei Olefin (A) um einen 1-Buten-haltigen C4-Kohlenwasserstoffstrom (1-C4-Buten-Stream) handelt und man zu dessen Herstellung als Olefin (B) einen 1-Buten- und 2-Butene-haltigen C4-Kohlenwasserstoffstrom (1- und 2-C4-Buten-Feedstrom), dessen Gehalt an 1-Buten geringer ist als der, der am thermodynamischen Gleichgewicht der jeweiligen Reakti-
onstemperatur vorhanden ist. Selbstverständlich kann das Verfahren auch dazu ge-
nutzt werden um umgekehrt 1-Buten-reiche C₄-Kohlenwasserstoffströme in solche mit
hohen 2-Butengehalt umzuwandeln.

Bei dem 1- und 2-C₄⁻⁻-Feedstrom handelt es sich um C₄-Schnitte, die im Allgemeinen
einen Gehalt an Butenen von 30 bis 100, bevorzugt 40 bis 98, besonders bevorzugt 50
bis 95 Gew.-% aufweisen. Neben den Butenen können im 1- und 2-C₄⁻⁻-Feedstrom
noch bis zu 10, bevorzugt bis zu 5 Gew.-% mehrfach ungesättigte Verbindungen oder
Alkine, vor allem solche mit 3- oder 4-Kohlenstoffatomen wie Butadiene, Butine, Vinyl-
acetylen, Propin und Propadien enthalten sein. Weiterhin können noch 0,5 bis 60, be-
vorzugt 1 bis 50 Gew.-% C₄-Alkane und Isobuten enthalten sein. Weitere Kohlenwas-
serstoffe mit mehr als 5 Kohlenstoffatomen, insbesondere Pentane und Pentene sind
ggf. in Mengen bis maximal 10 Gew.-% enthalten.

Insbesondere eignen sich sog. Raffinate (Raffinat I oder II) als 1- und 2-C₄⁻⁻-Feedstrom.

Solche Raffinate I sind herstellbar, indem man

- Naphtha oder sonstige Kohlenwasserstoffverbindungen einem Steamcracking-
oder FCC-Prozess unterwirft und aus dem dabei gebildeten Stoffstrom eine
C₄-Kohlenwasserstofffraktion abzieht

- aus der C₄-Kohlenwasserstofffraktion einen im wesentlichen aus Isobuten,
1-Buten, 2-Butenen und Butanen bestehenden C₄-Kohlenwasserstoffstrom (Raffi-
nat I) herstellt, indem man mittels Selektivhydrierung die Butadiene und Butine
to Butenen oder Butanen hydriert oder die Butadiene und Butine durch Extrak-
tivdestillation entfernt.

Weiterhin sind die Raffinate I erhältlich, indem man

- aus einem Butane enthaltenden Kohlenwasserstoffstrom durch Dehydrierung
und nachfolgende Isolierung der C₄-Olefine eine C₄-Olefin-Mischung herstellt

- aus der C₄-Olefin-Mischung einen im wesentlichen aus Isobuten, 1-Buten,
2-Butenen und Butanen bestehenden C₄-Kohlenwasserstoffstrom (Raffinat I)
herstellt, indem man mittels Selektivhydrierung die Butadiene und Butine zu Bu-
tenen oder Butanen hydriert oder die Butadiene und Butine durch Extraktiv-
destillation entfernt.
Aus dem Raffinat I kann das Raffinat II hergestellt werden, indem man aus dem Raffinat I den wesentlichen Anteil des Iso-Butens durch bekannte chemische, physikalisch-chemische oder physikalische Methoden abtrennt.

Zur weiteren Reinigung kann das Raffinat II durch Behandlung mit Adsorbermaterialien von Katalysatortoxen befreit werden.

Bei der Verbindung (P) handelt es sich bevorzugt um eine Verbindung mit einem Dipolmoment von 0,5 bis 5, bevorzugt 0,75 bis 4, besonders bevorzugt 1 bis 3 Deby. Damit die Verbindung (P) unter Reaktionsbedingungen in der Gasphase vorliegen kann, liegt ihr Siedepunkt bei Atmosphärendruck im Allgemeinen unter 200°C. Verbindungen mit solchen Eigenschaften sind dem Fachmann bekannt. Es handelt sich dabei z.B. um Sauerstoff- oder Stickstoff-haltige Verbindungen, bevorzugt C₁- bis C₁₂-Alkylamine, C₂- bis C₅-Alkylendiamine wie Ethyldiamin, cyclischen Amine bei denen 1 oder 2 Stickstoffatome zusammen mit 1 oder 2 Alkandylgruppen 5-, 6- oder 7-gliedrige Ringe bilden wie Piperazin, Triethylendiamin, C₁- bis C₁₂-Alkylalkohole, Alkylenglycole, C₂- bis C₁₂-Dialkylether, cyclischen Ether, bei denen 1 oder 2 Sauerstoffatome zusammen mit 1 oder 2 Alkandylgruppen 5-, 6- oder 7-gliedrige Ringe bilden, wie Tetrahydrofuran oder Dioxan, Wasser oder Ammoniak. Der Begriff der Verbindung (P) umfasst auch Mischungen von Verbindungen, die das definitionsgemäße Dipolmoment aufweisen.

Die gasförmige Mischung, die als Einsatzstoff für das erfindungsgemäße Verfahren dient, enthält 0,01 bis 10 Gew.%, bevorzugt 0,05 bis 5 Gew.% der Verbindung (P), bezogen auf die Gesamtmenge an Kohlenwasserstoffverbindungen in dieser Mischung.

Derartige Katalysatoren sind beispielsweise in folgenden Druckschriften beschrieben:

Die Katalysatoren, die in dem erfindungsgemäßen Verfahren eingesetzt werden, werden im Allgemeinen hergestellt, indem man

a) einen gamma-Aluminiumoxid enthaltenden Träger mit einer Lösung eines Alkali- oder Erdalkalinitrats, -acetats, -oxalats, -oxids, -hydroxyds, -hydrogencarbonats oder -carbonats imprägnierte (Schritt a) und

b) den gemäß Schritt (a) getränkten Träger trocknet und anschließend bei einer Temperatur von 450 bis 850°C calciniert.

Die gamma-Aluminiumoxid enthaltenden Träger sind kommerziell erhältlich und zeichnen sich durch eine Oberfläche von 100 bis 400 m²/g und ein Porenvolumen von 0,1 bis 1,2 ml/g aus (gemessen durch Quecksilberporosimetrie).

Die Lösung, mit der die Träger in Schritt (a) imprägnierte werden, können auch Mischungen von den genannten Salzen umfassen.

Die Menge an Lösung der vorgenannten Salze wird so bemessen, dass, wenn man unterstellt, dass die Gesamtmenge der Salze, mit der die Träger imprägniert werden, in Schritt (b) in die entsprechenden Alkali- oder Erdalkalimetalloxide überführt werden, das Gewicht an Alkali- oder Erdalkalioid, bezogen auf das Gesamtgewicht des Katalysators, 2 bis 20, bevorzugt 5 bis 15 Gew.-% beträgt.
Die Katalysatoren werden üblicherweise im Festbett-, Wirbelbett- oder Wanderbett verwendet. Im praktischen Betrieb hat es sich herausgestellt, dass die Menge des 2-C₄⁻-Stroms, die pro Zeiteinheit über den Katalysator geleitet wird, 0,1 bis 40 g (2-C₄⁻-Strom)/[g (Katalysator) h] beträgt.

Olefin (B) kann flüssig oder gasförmig vorliegen. Wird Olefin (B) flüssig eingesetzt, so muss es vor der Reaktion verdampft werden. Der für die Verdampfung verwendete Apparat unterliegt dabei keiner Beschränkung. Es eignen sich übliche Verdampftertypen wie Naturumlauverdampfer oder Zwangsumlaufverdampfer. Das Aufheizen des gasförmigen Olefin (B)-Stroms auf Reaktionstemperatur erfolgt in den üblicherweise verwendeten Apparaten z.B. Plattenwärmeüberträger oder Rohrbündelwärmeüberträger.

Verbindung P wird dem Olefin (B) vor der Reaktion zugesetzt. Die Zudosierung kann sowohl flüssig wie gasförmig erfolgen. Es ist jedoch sicherzustellen, dass Verbindung P bis zum Eintritt in den Reaktionsraum gasförmig vorliegt und auf Reaktionstemperatur ist. Zweckmäßigerweise wird Verbindung P zusammen mit dem Olefin (B) verdampft und aufgeheizt.

Die Isomerisierung wird bei einer Temperatur durchgeführt, bei der eine Verschiebung der Doppelbindung gewährleistet ist, Crackprozesse, Skelettisomerisierungen, Dehydratisierungen und Oligomerisierungen, hingegen weitestgehend vermieden werden. Die Reaktionstemperatur liegt deshalb im Allgemeinen bei 200 bis 700, bevorzugt 250 bis 600, besonders bevorzugt bei 300 bis 500°C. Der Druck wird so eingestellt, dass das Olefin (B) gasförmig vorliegt. Er beträgt im Allgemeinen 0,1 bis 40, bevorzugt 1 bis 30, besonders bevorzugt 3 bis 20 bar.

Üblicherweise wird aus dem Olefin (A) die Verbindung (P) entfernt. Dies geschieht mit üblichen Trennmethoden. In einer speziellen Ausführungsform kann die abgetrennte Verbindung (P) recycelt werden und erneut dem Olefin (B) vor dem Eintritt in die Reaktionszone zugesetzt werden.
Für den Fall, dass Verbindung (P) Wasser ist, kann die Abtrennung in der kondensierten Phase durch einen Phasenabscheider erfolgen. In geringeren Mengen kann Wasser durch Molsieb oder eine Destillation des Azeotrops vom Olefin (A) getrennt werden.

Besonders bevorzugt lässt sich das erfindungsgemäße Verfahren als Verfahrensschritt (b) in das in der DE-A 10311139.5 beschriebene Verfahren integrieren. Dies betrifft ein Verfahren zur Herstellung eines 1-Buten haltigen C₄-Kohlenwasserstoffstroms (1-C₄⁺-Strom) aus einem 1-Buten- und 2-Butene haltigen C₄-Kohlenwasserstoffstrom (1- und 2-C₄⁺-Feedstrom), dessen Gehalt an 1-Buten geringer ist als der des 1-C₄⁺-Stroms, indem man

a) in einer Destillationskolonne den 1- und 2-C₄⁺-Feedstrom und einen mittels des nachfolgenden Schrittes (b) hergestellten 1-Buten- und 2-Butene-haltigen
C4-Kohlenwasserstoffstrom (1- und 2-C4⁻-Kreisstrom), dessen Gehalt an 1-Buten geringer ist als der des 1-C4⁻-Stroms, einspeist und aus der Destillationskolonne den 1-C4⁻-Strom und einen 2-Butene-haltigen C4-Kohlenwasserstoffstrom (2-C4⁻-Strom), dessen Gehalt an 1-Buten geringer ist als der des 1- und 2-C4⁻-Feedstroms und des 1- und 2-C4⁻-Kreisstroms, abzieht (Schritt a) und

b) aus dem 2-C4⁻-Strom den 1- und 2-C4⁻-Kreisstrom herstellt, indem man den 2-C4⁻-Strom in einer Reaktionszone mit einem Isomerisierungskatalysator in Kontakt bringt, der die Umsetzung von 2-Butenen zu 1-Buten katalysiert (Schritt b).

Experimenteller Teil

Versuch 1

2-Buten der Fa. Linde wurde mit Ammoniak versetzt und die Mischung bei 40°C verdampft. Das Volumenverhältnis Butene zu Ammoniak im Dampf betrug laut GC-Analytik 1 zu 0,012. Über eine Gasdosierung wurden 8 Normliter/h bei Atmosphärendruck in einen Vorheizer (250°C) und anschließend in den auf 400°C geheizten Reaktor geleitet. Bei dem Reaktor handelte es sich um einen Wendelreaktor (d = 6 mm, l = 10 cm) der mit 5 g Katalysator gefüllt war und sich in einem elektrisch beheizten Umluftofen befand. Als Katalysator diente ein mit Kaliumcarbonat getränktes und bei 850°C kalziniertes gamma-Aluminiumoxid mit einem Kaliumgehalt von 5,4 Gew.%. Der Reaktorausstrag wurde über ein GC mit FID geleitet. Dabei wurden die in Tab. 1 aufgeführten Zusammensetzungen erhalten (Angabe erfolgt in GC-Flächen-%). Die Selektivität bezüglich linearer Butene lag über den gesamten Beobachtungszeit bei > 98%.

<table>
<thead>
<tr>
<th>Laufzeit [h]</th>
<th>1-Buten</th>
<th>cis-2-Buten</th>
<th>trans-2-Buten</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Feed)</td>
<td>0,2</td>
<td>72,3</td>
<td>27,2</td>
</tr>
<tr>
<td>11</td>
<td>25,1</td>
<td>37,1</td>
<td>37,2</td>
</tr>
<tr>
<td>41</td>
<td>25,6</td>
<td>36,1</td>
<td>37,8</td>
</tr>
<tr>
<td>71</td>
<td>25,3</td>
<td>38,4</td>
<td>35,7</td>
</tr>
<tr>
<td>100</td>
<td>25,6</td>
<td>35,9</td>
<td>38,0</td>
</tr>
<tr>
<td>130</td>
<td>25,3</td>
<td>34,8</td>
<td>39,3</td>
</tr>
</tbody>
</table>

Versuch 2

2-Buten der Fa. Linde (60 g/h) und Wasser (1,3 g/h) wurden bei 6 bar Druck und 200°C verdampft. Die Mischung wurde auf Reaktionstemperatur (400°C) vorgewärmt und
durch einen auf 400°C beheizten Rohrreaktor (d = 10 mm, l = 1 m, 30 g Katalysator) geleitet. Als Katalysator diente ein mit Kaliumcarbonat getränktes und bei 850°C kalziertes gamma-Aluminiumoxid mit einem Kaliumgehalt von 5,4 Gew.%. Der Reaktoraustrag wurde über ein GC mit FID geleitet. Dabei wurden die in Tab. 2 aufgeführten Zusammensetzungen erhalten (Angabe erfolgt in GC-Flächen-%). Die Selektivität bezüglich linearer Butene lag über den gesamten Beobachtungszeit bei > 98%.

Tab. 2. Zusammensetzung des Reaktionsaustrags, Wasser als Verbindung (P).

<table>
<thead>
<tr>
<th>Laufzeit [h]</th>
<th>1-Buten</th>
<th>cis-2-Buten</th>
<th>trans-2-Buten</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Feed)</td>
<td>0,2</td>
<td>72,3</td>
<td>27,2</td>
</tr>
<tr>
<td>9</td>
<td>25,9</td>
<td>39,7</td>
<td>33,6</td>
</tr>
<tr>
<td>39</td>
<td>26,0</td>
<td>39,9</td>
<td>33,2</td>
</tr>
<tr>
<td>75</td>
<td>25,7</td>
<td>39,9</td>
<td>33,5</td>
</tr>
<tr>
<td>101</td>
<td>26,0</td>
<td>39,4</td>
<td>33,8</td>
</tr>
<tr>
<td>138</td>
<td>25,9</td>
<td>38,9</td>
<td>34,7</td>
</tr>
<tr>
<td>190</td>
<td>26,3</td>
<td>41,6</td>
<td>31,3</td>
</tr>
</tbody>
</table>

Vergleichsversuch
Der Versuch wurde analog Versuch 1 durchgeführt. 2-Buten der Fa. Linde wird bei 40°C verdampft und 8 Normaler/h bei 400°C über den Katalysator geleitet. Der Reaktoraustrag wurde über ein GC mit FID geleitet. Dabei wurden die in Tab. 3 aufgeführten Zusammensetzungen erhalten (Angabe erfolgt in GC-Flächen-%).

Tab. 3. Zusammensetzung des Reaktionsaustrags, ohne Verbindung (P).

<table>
<thead>
<tr>
<th>Laufzeit [h]</th>
<th>1-Buten</th>
<th>cis-2-Buten</th>
<th>trans-2-Buten</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Feed)</td>
<td>0,2</td>
<td>72,3</td>
<td>27,2</td>
</tr>
<tr>
<td>11</td>
<td>25,9</td>
<td>31,8</td>
<td>41,8</td>
</tr>
<tr>
<td>40</td>
<td>26,0</td>
<td>31,8</td>
<td>41,7</td>
</tr>
<tr>
<td>74</td>
<td>26,4</td>
<td>33,4</td>
<td>39,8</td>
</tr>
<tr>
<td>99</td>
<td>25,7</td>
<td>41,7</td>
<td>32,2</td>
</tr>
<tr>
<td>130</td>
<td>21,0</td>
<td>50,4</td>
<td>28,1</td>
</tr>
</tbody>
</table>
Patentansprüche

1. Verfahren zur Herstellung eines C₄⁻ bis C₁₂⁻ Olefins (Olefin A) aus einem anderen C₄⁻ bis C₁₂⁻ Olefin (Olefin B), wobei sich Olefin (A) und Olefin (B) hinsichtlich der Lage der Doppelbindung unterscheiden, und wobei man eine gasförmige Mischung enthaltend Olefin (B) und 0,01 bis 10 Gew.-%, bezogen auf die Gesamtmenge an Kohlenwasserstoffverbindungen in dieser Mischung, einer Verbindung mit einem Dipolmoment von 0,5 bis 5 Debye (Verbindung P) mit einem basischen Katalysator bei einer Temperatur von 200 bis 700°C in Kontakt bringt.

2. Verfahren nach Anspruch 1, wobei es sich bei Olefin (A) um einen 1-Butenhaltigen C₄⁻Kohlenwasserstoffstrom (1-C₄⁻-Strom) handelt und man zu dessen Herstellung als Olefin (B) einen 1-Buten- und 2-Butene-haltigen C₄⁻Kohlenwasserstoffstrom (1- und 2-C₄⁻-Feedstrom) einsetzt, dessen Gehalt an 1-Buten geringer ist als der des 1-C₄⁻-Stroms.

3. Verfahren nach Anspruch 2, wobei man einen 1- und 2-C₄⁻-Feedstrom einsetzt, bei dem das Verhältnis 2-Butene zu 1-Buten 6:1 bis 0,1:1 beträgt.

5. Verfahren nach einem der Ansprüche 2 bis 4, wobei man einen 1- und 2-C₄⁻-Feedstrom einsetzt, bei dem der Gehalt an Butenen 30 bis 100 Gew.-% beträgt.

6. Verfahren nach einem der vorstehenden Ansprüche, wobei es sich bei Verbindung (P) um eine Sauerstoff- oder Stickstoff-haltige Verbindung handelt.

7. Verfahren nach einem der vorstehenden Ansprüche, wobei es sich bei Verbindung (P) um eine Verbindung, ausgewählt aus der Gruppe der C₁⁻ bis C₁₂⁻ Alkylamine, C₂⁻ bis C₆⁻ Alkyldiamine, cyclischen Amine, bei denen 1 oder 2 Stickstoffatome zusammen mit 1 oder 2 Alkandiylgruppen 5-, 6- oder 7-gliederige Ringe bilden, C₁⁻ bis C₁₂⁻ Alkylalkohole, Alkylenglycole, C₂⁻ bis C₁₂⁻ Dialkylether, cyclischen Ether, bei denen 1 oder 2 Sauerstoffatome zusammen mit 1 oder 2 Alkandiylgruppen 5-, 6- oder 7-gliederige Ringe bilden, Wasser oder Ammoniak handelt.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei es sich bei dem Katalysator um basische Metalloide handelt.

9. Verfahren nach einem der vorstehenden Ansprüche, wobei es sich bei dem Katalysator um basische Metalloide handelt, die bevorzugt Natrium oder Kalium enthalten.

12. Verfahren nach einem der vorstehenden Ansprüche, wobei man einen Katalysator einsetzt, der erhältlich ist, indem man

 a) einen gamma-Aluminiumoxid enthaltenden Träger mit einer Lösung eines Alkali- oder Erdalkalinitrats, -acetats, -oxalats, -oxides, -hydroxyds, -hydrogencarbonats oder -carbonats imprägniert (Schritt a) und

 b) den gemäß Schritt (a) getränken Träger trocknet und anschließend bei einer Temperatur von 450 bis 850°C calciniert.