(54) Title: ENHANCED PHASE-CHANGE FRACKING GAS EXTRACTION METHOD FOR LOW-PERMEABILITY COAL BED

(57) Abstract: An enhanced phase-change fracking gas extraction method for a low-permeability coal bed, comprising: injecting water at room temperature into a coal bed (1) through a drilling hole, and shutting off a valve after water injection is complete; freezing the coal bed around the water injection hole (2) using a refrigeration and freezing technique, the free water inside the coal bed fractures gradually transitioning from a liquid state to a solid state during the freezing process to expand and break the coal mass and promote generation and expansion of fractures inside the coal mass; after the freezing process is complete, the coal bed absorbs underground environmental heat and melts, further promoting coal mass pore interconnection and fracture expansion, and enhancing the effect of phase change fracking; after the melting process is complete, connecting the water injection hole to a gas extraction pipe and extracting gas, or drilling a gas extraction drilling hole in the coal bed in a phase-change fracking area and extracting gas. In the gas extraction process, phase-change fracking can be applied repeatedly to the drilling hole depending on gas extraction results, thus achieving objectives of improving coal bed permeability and efficiently extracting gas.
一种低透气性煤层水力相变致裂强化瓦斯抽采方法，将常温的水通过钻孔注入煤层（1），注水结束后关闭阀门；然后通过制冷冷冻技术对注水孔（2）周围煤层进行冻结，冻结过程中煤层裂隙中的自由水逐渐由液态转化为固态，对煤体产生膨胀破坏，促进煤体内部裂隙的产生和扩展；冻结结束后，煤层吸收并下环境热量逐渐融解，融解过程中进一步提高煤体孔隙贯通和裂隙的扩展，增强相变致裂的效果；解冻结束后将注水孔与瓦斯抽采管路连接进行瓦斯抽采，或者在相变致裂区域向煤层实施瓦斯抽采钻孔进行瓦斯抽采。抽采过程中，根据瓦斯抽采效果变化，可以对钻孔进行重复水力相变致裂，达到提高煤层透气性及高效抽取瓦斯的目的。
一种低透气性煤层水力相变致裂强化瓦斯抽采方法

技术领域

本发明涉及一种抽采瓦斯方法，尤其是一种适用于高瓦斯低透气性煤层水力相变致
裂强化瓦斯抽采的方法。

技术背景

煤炭是我国的基础能源，随着开采深度的增加，瓦斯已成为严重威胁煤矿安全生产
的主要因素。我国 90%以上的矿井为井工开采，占矿井总数 51%的高瓦斯和煤与瓦斯突
出矿井在开采过程伴随着大量的瓦斯涌出，瓦斯爆炸和瓦斯突出的威胁也越来越严重，
因此，瓦斯灾害已成为制约高效集约化开采技术发展和安全生产的最重要因素。由于我
国大多数煤层均属于高瓦斯低透气性煤层，解决高瓦斯低透气性煤层开采过程中的瓦斯
问题的主要措施是预先实施煤层瓦斯抽采，常规的瓦斯抽采方法有效影响范围小，钻孔
间距 0.5~2m，工作面钻孔施工作业量大，抽采效率低，有的矿井抽采时间长达一年甚至数
年，仍然达不到国家瓦斯抽采标准，对于高瓦斯低透气性煤层难以起到理想效果。若
要做到抽采达标，消除煤层瓦斯灾害，需要采取增透的方法，扩大单个钻孔有效影响范
围，提高瓦斯抽采效果。目前采用的高瓦斯低透气性煤层抽放增透措施是采用人为方法
预先松动原始煤体，提高煤层的透气性，主要采取的方法有深孔松动爆破、水射流割缝
技术、水力冲孔技术和煤层水力压裂技术等。深孔松动爆破、水射流割缝技术、水
力冲孔技术存在单个措施钻孔有效影响范围小、工作量大、施工工艺复杂等问题。常规
的水力压裂技术相对来说能够实现大范围的煤层卸压，由于采用大流量高压注水，
高压水受到煤层应力分布和煤层主裂隙的影响，无法控制裂隙扩展方向，这样会导致部
分煤体卸压，部分煤体应力集中，在卸压的同时也容易产生高应力集中区，集中应力能
达到原始应力的 3~4 倍左右，难以形成区域性整体卸压增透。

发明内容

技术问题：本发明的目的是针对高瓦斯低透气性煤层，提供一种新的高瓦斯低透气
性煤层强化瓦斯抽采的方法，利用水的相变原理，将煤层注水技术与制冷技术相结合，
通过水的相变对煤层进行致裂，在煤体内形成复杂裂隙网，从而增加煤层内瓦斯流动
通道。

技术方案：本发明的低透气性煤层水力相变致裂强化瓦斯抽采方法，包括以下步骤：

a. 在煤层巷道内沿顺层向煤层方向布置相变致裂单元，每个相变致裂单元包括一个
注水孔、两个冻结孔和两个测温孔，实施过程如下：首先按常规技术向煤层内施工深
为 80~200m 的注水孔，然后在注水孔两侧间隔距离 L 为 5~10m 位置处分别施工一个与注水孔相平行的冻结孔，在两个冻结孔与注水孔之间分别施工一个测温孔，测温孔与注水孔的距离 N 为 3m，测温孔的孔径为 75mm、孔深为 30m；

b. 向注水孔中送入高压注水管，采用胶囊封孔器对注水孔进行封孔，然后向测温孔内送入温度传感器，送入深度不小于 20m，之后对对测温孔进行注浆封孔，封孔段的长度不小于 12m；分别在两个冻结孔内送入冻结管，送入深度不小于冻结孔深度的 80%，之后进行注浆封孔；

c. 将高压注水管与高压注水泵连接，通过高压注水管向注水孔中注入压力为 3-15MPa 高压水，待注水孔周围煤壁出现渗水现象或注水压力突然降低时或持续注水压力无明显变化时停止注水；

d. 将冻结孔内的冻结管与井下冻结系统相连接，通过冻结管向煤层进行冻结相变致裂，相变致裂过程中，设在两个测温孔内温度传感器分别经电缆线将煤层内的温度信号传输给数字温度显示仪，通过数字温度显示仪实时监测两个测温孔内煤层的温度，当两个测温孔内煤层的温度达到-3℃时，则判断出该相变致裂单元内的煤层已经冻结；通过水的相变对煤层进行致裂，在煤体内形成复杂裂隙网，从而增加煤体内瓦斯流动通道；

e. 完成相变致裂之后，关闭冻结系统，冻结后的煤层逐渐吸收井下环境热量开始融解，当数字温度显示仪显示两个测温孔内的温度均大于 3℃时，则认为相变致裂范围内冻结煤层中的水全部从固态转化为液态，完成一个单元的相变致裂过程；

f. 将注水孔与瓦斯抽采管路相连，按常规技术在相变致裂后的单元内进行瓦斯抽采；

g. 重复步骤 a、b、c、d、e、f，进行下一单元的相变致裂和瓦斯抽采，周而复始，直至完成所有单元内的相变致裂和瓦斯抽采。

当相变致裂区域进行瓦斯抽采过程中，瓦斯浓度、流量变化异常时，可对该相变致裂单元重复进行注水、冻结，增强相变致裂区域内的煤层透气性，达到强化瓦斯抽采的效果。

有益效果：由于采用了上述技术方案，利用水的相变原理，将煤层注水技术与制冷技术相结合，通过水的相变对煤层进行致裂，冻结影响区域煤体受到膨胀力的作用，迫使煤层中的较大裂隙扩展联通，并促使微小孔裂缝形成和逐渐张开，形成新的再生裂隙网，促进瓦斯在煤层中的流动通道，改变了煤体力学性质，提高了高瓦斯煤层的透气性，改善了煤层中的瓦斯流动状态。钻孔瓦斯抽采影响半径可达 10~40m，与普通抽采钻孔相比，单孔有效抽采影响半径扩大 5~20 倍，瓦斯抽采钻孔数减少 20%~60%。同时，水力
相变在煤层中产生的次生裂隙不断的产生和扩展，从宏观和微观层面都能有效的增加冻结区域煤层瓦斯的流动通道，煤层的透气性系数可以提高 30~200 倍，单孔瓦斯抽采量平均可达 0.8m³/min，瓦斯抽采浓度可达 30~90%，回采工作面瓦斯抽采率达到 50%以上，解决了高瓦斯地透性煤层瓦斯抽采效率低、抽采周期长、抽采钻孔影响范围小的问题。其方法简单，操作方便，实施效果好，安全性高，具有较强的煤层适用性，在本技术领域内具有广泛的实用性。

附图说明

图 1 是本发明的工作面水平方向施工示意图；
图 2 是图 1 的 A－A 工作面垂直方向施工示意图；
图 3 是图 1 的 B－B 注水孔连接系统剖面图；
图 4 是图 1 的 C－C 冷冻孔连接系统剖面图；
图 5 是图 1 的 D－D 测温孔连接系统剖面图。

图中：1—煤层，2—注水孔，3-1—冻结孔，3-2—冻结孔，4-1—测温孔，4-2—测温孔，5—高压注水管，6—胶囊封孔器，7—温度传感器，8—数据线，9—数字温度显示仪，10—注浆封孔段，11—冻结管，12—高压注水泵，13—截止阀，14—冷冻系统。

具体实施方式

下面结合附图对本发明的一个实施例作进一步的描述：

本发明的低透气性煤层水力相变致裂强化瓦斯抽采方法，具体步骤如下：

a. 在煤层巷道内沿顺层向煤层 1 方向布置相变致裂单元，每个相变致裂单元包括一个注水孔 2、两个冻结孔 3 和两个测温孔 4，实施过程如下：首先按常规技术向煤层 1 内施工孔径 75~130mm，孔深为 80~200m 的注水孔 2，然后在注水孔 2 两侧间隔距离 L 为 5~10m 位置处分别施工一个与注水孔 2 相平行的冻结孔 3，在两个冻结孔 3 与注水孔 2 之间分别施工一个测温孔 4，测温孔 4 与注水孔 2 的距离 N 为 3m，测温孔 4 的孔径为 75mm、孔深为 30m；

b. 向注水孔 2 中送入高压注水管 5，采用常规技术使用的胶囊封孔器 6 对注水孔 2 进行封孔，然后向测温孔 4 内送入温度传感器 7，送入深度不小于 20m，之后对对测温孔 4 进行注浆封孔，封孔段 10 的长度不小于 12m；分别在一个冻结孔 3 内送入冻结管 11，送入深度不小于冻结孔 3 深度的 80%，之后进行注浆封孔；

c. 将高压注水管 5 与高压注水泵 12 连接，通过高压注水管 5 向注水孔 2 中注入压力为 3-15MPa 高压水，使常温的水通过钻孔 2 注入煤层，待注水孔 2 周围煤壁出现渗水现
象或注水压力突然降低时或持续注水压力无明显变化时，关闭注水孔 2 孔口的截止阀 13，
停止注水，注水的水存留在煤层中并持续渗流进入微小的裂隙；

d. 将冻结孔 3 内的冻结管 11 与井下冻结系统 14 相连接，通过制冷冻结技术将注入
煤层钻孔中及周围的水冷冻，冻结过程中煤层裂隙中的自由水逐渐由液态转化为固态，
发生相变变化。在相变的过程中，水的体积会膨胀增加约 9.1%，对煤体产生膨胀性破坏，
促进煤体内部裂隙的产生和扩展；通过冻结管 11 对煤层 1 进行冻结相变致裂，相变致裂
过程中，将两个测温孔 4 内的温度传感器 7 分别经数线 8 将煤层 1 内的温度信号传
输给数字温度显示仪 9，通过数字温度显示仪 9 实时监测两个测温孔 4 内煤层的温度，
当两个测温孔 4 内煤层的温度达到-3℃时，则判断出该相变致裂单元内的煤层已经实现
冻结；

e. 完成相变致裂之后，关闭冻结系统 14，冻结后的煤层 1 逐渐吸收井下环境热量开
始融解，融解过程中进一步提高煤体孔隙贯通和裂隙的扩展，增强相变致裂的效果。当
数字温度显示仪 9 显示两个测温孔 4 内的温度均大于 3℃时，则认为相变致裂范围内冻
结煤层 1 中的水全部从固态转化为液态，完成一个单元的相变致裂过程；

f. 完成融解之后，将注水孔 2 内的高压注水管与瓦斯抽采管路相连，按常规技术在
相变致裂后的单元内进行瓦斯抽采，也可在相变致裂影响区域内向煤层 1 施工多个瓦斯
抽采钻孔进行瓦斯抽采，以提高瓦斯抽采的效率；

当相变致裂区域进行瓦斯抽采过程中，瓦斯浓度、流量变化异常时，可对该相变致
裂单元重复进行注水、冻结，增强相变致裂区域内的煤层透气性，达到强化瓦斯抽采的
效果；异常情况包括瓦斯的流量、浓度突然降低，流量在短时间（<10 天）衰减至较低
水平（<0.005m³/min）

g. 重复步骤 a、b、c、d、e、f，进行下一单元的相变致裂和瓦斯抽采，周而复始，
直至完成所有单元内的相变致裂和瓦斯抽采。
权利要求书

1. 一种低透气性煤层水力相变致裂强化瓦斯抽采方法，其特征在于，包括以下步骤：

a. 在煤层巷道内沿顺层向煤层（1）方向布置相变致裂单元，每个相变致裂单元包括一个注水孔（2）、两个冻结孔（3）和两个测温孔（4），实施过程如下：首先按常规技术向煤层（1）内施工孔深为 80~200m 的注水孔（2），然后在注水孔（2）两侧间隔距离 L 为 5~10m 位置处分别施工一个与注水孔（2）相平行的冻结孔（3），在两个冻结孔（3）与注水孔（2）之间分别施工一个测温孔（4），测温孔（4）与注水孔（2）的距离 N 为 3m，测温孔（4）的孔径为 75mm、孔深为 30m；

b. 向注水孔（2）中送入高压注水管（5），采用橡胶封孔器（6）对注水孔（2）进行封堵，然后向测温孔（4）内注入液体传感器（7），注入深度不小于 20m。之后对对测温孔（4）进行注浆封孔，封孔段（10）的长度不大于 12m：分别在两个冻结孔（3）内送入冻结管（11），注入深度不小于冻结孔（3）深度的 80%，之后进行注浆封孔；

c. 将高压注水管（5）与高压注水泵（12）连接，通过高压注水管（5）向注水孔（2）中注入压力为 3-15MPa 高压水，待注水孔（2）周围煤壁出现渗水现象或注水压力突然降低时或持续注水压力无明显变化时停止注水；

d. 将冻结孔（3）内的冻结管（11）与井下冻结系统（14）相连接，通过冻结管（11）对煤层（1）进行冻结相变致裂，相变致裂过程中，设在两个测温孔（4）内的温度传感器（7）分别传数据线（8）将煤层（1）内的温度信号传输到数字温度显示仪（9），通过数字温度显示仪（9）实时监测两个测温孔（4）内煤层的温度，当两个测温孔（4）内煤层的温度达到-3℃时，则判断出该相变致裂单元内的煤层已经冻结；

e. 完成相变致裂之后，关闭冻结系统（14），冻结后的煤层（1）逐渐吸收井下环境热量开始融解，当数字温度显示仪（9）显示两个测温孔（4）内的温度均大于 3℃时，则认为相变致裂范围内冻结煤层（1）中的水全部从固态转化为液态，完成一个单元的相变致裂过程；

f. 将注水孔（2）与瓦斯抽采管道相连，按常规技术在相变致裂后的单元内进行瓦斯抽采；

g. 重复步骤 a、b、c、d、e、f，进行下一单元的相变致裂和瓦斯抽采，周而复始，直至完成所有单元内的相变致裂和瓦斯抽采。

2. 根据权利要求 1 所述的低透气性煤层水力相变致裂强化瓦斯抽采方法，其特征在于：当相变致裂区进行瓦斯抽采过程中，瓦斯浓度、流量变化异常时，可对该相变致裂单元重复进行注水、冻结，增强相变致裂区域内的煤层透气性，达到强化瓦斯抽采的效果。
果。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

E21F 7/00 (2006.01); E21B 43/26 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E21F; E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS, SIPOABS, DWPI, CNTXT, CNKI: coal, seam, bed, recovery, gas, water, fracture, freeze, frozen

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX A</td>
<td>CN 104265354 A (CHINA MINING UNIVERSITY) 07 January 2015 (07.01.2015) claims 1 and 2</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>CN 102155254 A (CHINA MINING UNIVWESITY) 17 August 2011 (17.08.2011) the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>CN 101575983 A (HENAN COAL SEAM GAS DEV AND UT) 11 November 2009 (11.11.2009) the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>CN 101915085 A (SHANXI JINCHENG ANTHRACITE CM) 15 December 2010 (15.12.2010) the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>CN 101403514 A (UNIV HENAN POLYTECHNIC) 08 April 2009 (08.04.2009) the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>RU 201212635 A (GAZPROM DOBYCHA KUZNETSK LLC) 27 November 2013 (27.11.2013) the whole document</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed
 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “&” document member of the same patent family

Date of the actual completion of the international search 25 August 2015

Date of mailing of the international search report 21 September 2015

Name and mailing address of the ISA
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jiemingqiao Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer
CHENG, Xiaosheng
Telephone No. (86-10) 62085256

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RU 2511329 C1 (UNIV PEOPLE'S FRIENDSHIP) 10 April 2014 (10.04.2014) the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CN 104265354 A</td>
<td>07 January 2015</td>
<td>None</td>
</tr>
<tr>
<td>CN 102155254 A</td>
<td>17 August 2011</td>
<td>None</td>
</tr>
<tr>
<td>CN 101575983 A</td>
<td>11 November 2009</td>
<td>None</td>
</tr>
<tr>
<td>CN 101915085 A</td>
<td>15 December 2010</td>
<td>None</td>
</tr>
<tr>
<td>CN 101403314 A</td>
<td>08 April 2009</td>
<td>None</td>
</tr>
<tr>
<td>RU 2012121635 A</td>
<td>27 November 2013</td>
<td>None</td>
</tr>
<tr>
<td>RU 2511329 C1</td>
<td>10 April 2014</td>
<td>None</td>
</tr>
</tbody>
</table>
A. 主题的分类
E21F 7/00 (2006.01); E21B 43/26 (2006.01)
按照国际专利分类（IPC）或者同时按照国家分类和IPC两种分类

B. 检索领域
检索的最低限度文献（标明分类系统和分类号）
E21F; E21B
包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库（数据库的名称和使用的检索词（如使用））
CNAPS, CNPOABS, WIPO, CNTEXT, CNKI：煤层、煤、瓦斯、水力、相变、压裂、冷冻、coal, seam, bed, recovery, gas, water, fracture, freeze, frozen

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104265354 A (中国矿业大学) 2015年 1月 7日 (2015 - 01 - 07)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>权利要求1-2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CN 102156254 A (中国矿业大学) 2011年 8月 17日 (2011 - 08 - 17)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>全文</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CN 101575983 A (河南省煤层气开发利用有限公司) 2009年 11月 11日 (2009 - 11 - 11)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>全文</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CN 101915085 A (山西晋城无烟煤矿业集团有限责任公司) 2010年 12月 15日 (2010 - 12 - 15)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>全文</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CN 101403314 A (河南理工大学) 2009年 4月 8日 (2009 - 04 - 08)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>全文</td>
<td></td>
</tr>
<tr>
<td></td>
<td>全文</td>
<td></td>
</tr>
</tbody>
</table>

* 引用文件的具体类型：
 * A：表示不特别相关的表示与专利技术相关联的文件
 * P：表示申请日的当天或之后公开的在先申请或专利
 * L：表示参考的已授权的专利和有效的申请文件或公开的申请文件
 * D：涉及口头公开、使用、展览或其他方式公开的文件
 * P：公布日先于国际申请日且用于所要求的优先权日的文件
 * T：在申请日或优先权日之后公布，但为了理解发明之必要或技术的在后文件
 * X：特别相关的文件，单独考虑该文件，认定要求保护的发明与该文件不具有创造性
 * Y：特别相关的文件，该文件与另一篇或更多篇该类文件结合使用在先知识，要求保护的发明不具有创造性

国际检索实际完成的日期：2015年 8月 25日
国际检索报告邮寄日期：2015年 9月 21日

ISA/CN的名称和邮寄地址
中华人民共和国知识产权局(ISA/CN)
北京市海淀区蓟门桥西土城路6号
100088 中国

传真号 (86-10) 62014951

受权官员
程晓盛
电话号码 (86-10) 62085256

表 PCT/ISA/210（第2页）（2009年7月）
<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RU 2511329 Cl (UNIV PEOPLES’S FRIENDSHIP) 2014年 4月 10日 (2014-04-10)</td>
<td>1-2</td>
</tr>
</tbody>
</table>

表 PCT/ISA/210（第2页）（2009年7月）
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日（年/月/日）</th>
<th>同族专利</th>
<th>公布日（年/月/日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104265354 A</td>
<td>2015年 1月 7日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 102155254 A</td>
<td>2011年 8月 17日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 101575983 A</td>
<td>2009年 11月 11日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 101915085 A</td>
<td>2010年 12月 15日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 101403314 A</td>
<td>2009年 4月 8日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>RU 2012121635 A</td>
<td>2013年 11月 27日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>RU 2511329 C1</td>
<td>2014年 4月 10日</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

表 PCT/ISA/210（同族专利附件）（2009年7月）