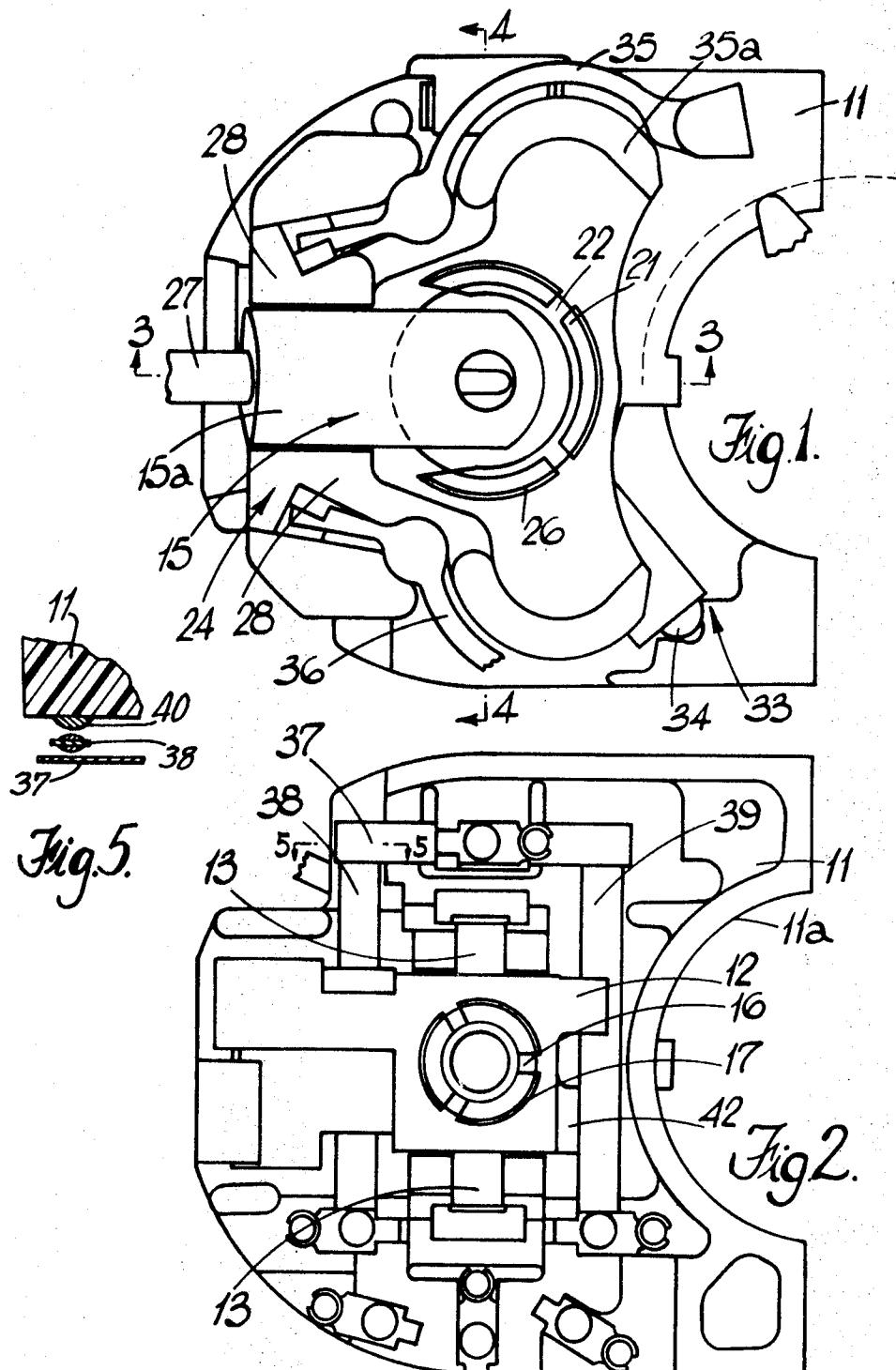


Oct. 13, 1970


N. WILKINSON

3,534,189

DIRECTION INDICATOR SWITCHES FOR ROAD VEHICLES

Filed Dec. 11, 1968

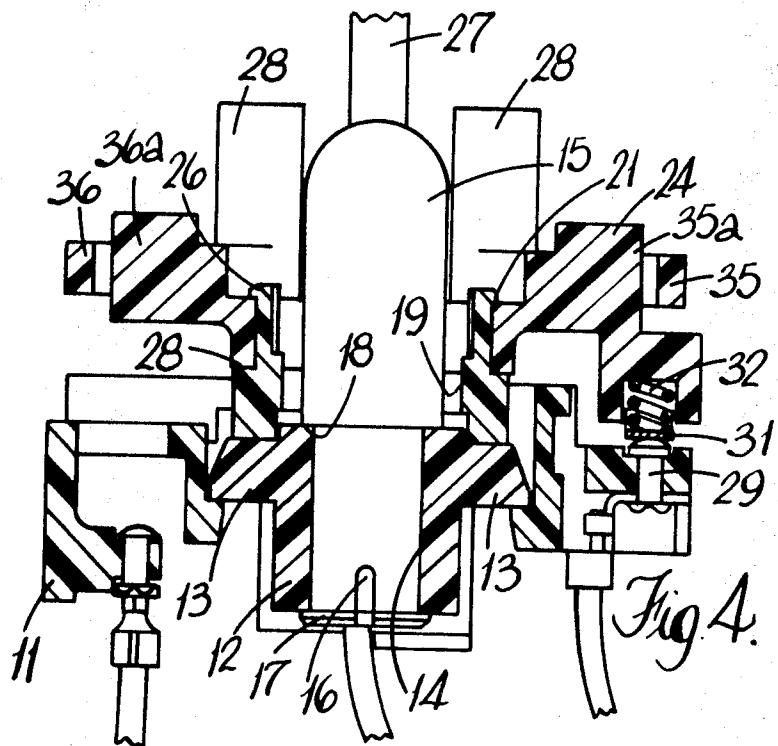
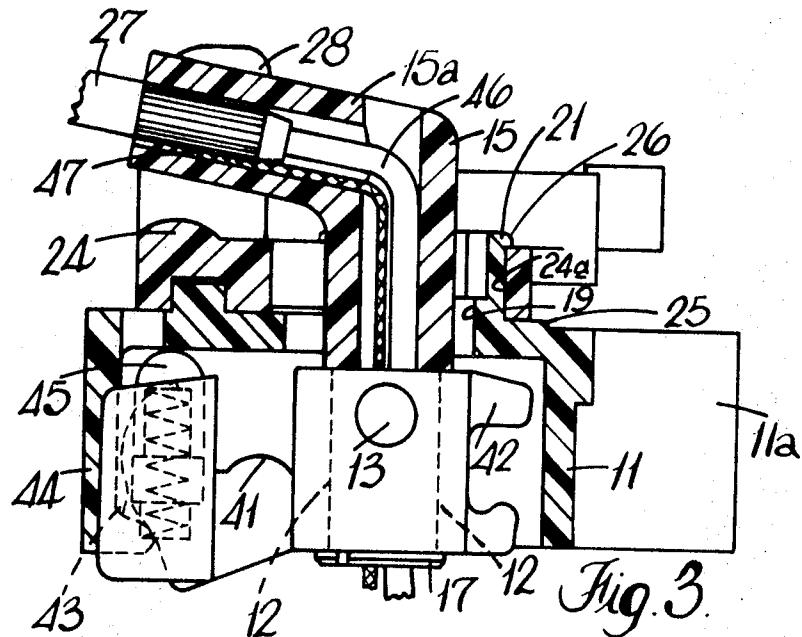
2 Sheets-Sheet 1

INVENTOR

Norman Wilkinson
Holmen, Wisconsin
BY Downing, Seabold

ATTORNEYS

Oct. 13, 1970



N. WILKINSON

3,534,189

DIRECTION INDICATOR SWITCHES FOR ROAD VEHICLES

Filed Dec. 11, 1968

2 Sheets-Sheet 2

INVENTOR

INVENTOR
Norman Wilkison.
BY Holman, Beeson,
Downing & Lebold.
ATTORNEYS

1

3,534,189

DIRECTION INDICATOR SWITCHES FOR ROAD VEHICLES

Norman Wilkinson, Barrowford, near Nelson, England, assignor to Joseph Lucas (Industries) Limited, Birmingham, England, a British company

Filed Dec. 11, 1968, Ser. No. 783,014

Claims priority, application Great Britain, Dec. 20, 1967,
57,863/67

Int. Cl. H01h 3/16

U.S. Cl. 200—61.34

6 Claims

ABSTRACT OF THE DISCLOSURE

A direction indicator switch includes a body carrying a rotor. The rotor is mounted for pivoting movement on the body, and operates a first set of switch contacts. A pivot piece is pivotally mounted on the body for pivotal movement about an axis at right angles to the axis of the rotor and a second set of switch contacts is operable by the pivot piece. An operating member is pivotally connected to the pivot piece for pivotal movement relative thereto and has an axis at right angles to the pivotal axis of the pivot piece, and there is provided means interconnecting the operating member and the rotor so that pivotal movement of the operating member relative to the pivot piece operates the rotor.

This invention relates to direction indicator switches for road vehicles.

A direction indicator switch for a road vehicle according to the invention includes a body, a first set of switch contacts supported by the body, a first pivot piece means mounting the first pivot piece on the body for pivotal movement relative thereto whereby pivotal movement of the first pivot piece operates said first set of switch contacts, an operating member, complementary means on the first pivot piece and operating member mounting the operating member on the first pivot piece for pivotal movement about an axis at right angles to the axis about which the first pivot piece is movable whereby movement of the operating member in a plane at right angles to the axis of pivotal movement of the first pivot piece effects pivotal movement of the first pivot piece, a second set of switch contacts carried by the body, a second pivot piece means mounting the second pivot piece on the body independently of the first pivot piece for movement about an axis at right angles to the axis about which the first pivot piece is movable to operate said second set of switch contacts, said second piece having an aperture therein through which said operating member extends, and means on said second pivot piece cooperable with said operating member so that pivotal movement of the operating member relative to the first pivot piece only is transmitted to the second pivot piece to operate said second set of switch contacts.

One example of the invention is illustrated in the accompanying drawings wherein:

FIG. 1 is a fragmentary plan view of a direction indicator switch,

FIG. 2 is an inverted plan view of the switch shown in FIG. 1,

FIGS. 3 and 4 are sectional views on the lines 3—3 and 4—4 respectively in FIG. 1, and

FIG. 5 is a fragmentary sectional view on the line 5—5 in FIG. 2.

Referring to the drawings the switch includes a body 11 moulded in synthetic resin material, and adapted to receive a moulded pivot piece 12. The pivot piece 12 includes a pair of integral, diametrically opposite outward-

2

ly extending posts 13 which are received in corresponding recesses in the body 11, the pivot piece 12 being engaged with the body 11 as a snap fit. The posts 13 support the pivot piece 12 for pivotal movement relative to the body 11 about a horizontal axis, and the pivot piece 12 is formed with a vertical bore 14 within which is received one end of a hollow, moulded operating member 15. Said one end of the operating member 15 is provided with axially extending slots 16 which render said one end of the operating member resilient, and at the free end of the operating member the operating member includes an integral outwardly extending flange 17. Intermediate its ends the operating member includes an outwardly extending shoulder 18, and the operating member is engaged with the pivot piece 12 by inserting said one end of the operating member through the bore 14 in the pivot piece 12 until the shoulder 18 engages the upper surface of the pivot piece 12. The shoulder 18 and the flange 17 of the operating member 15 are of larger diameter than the bore 14 of the pivot piece 12, and so as the operating member 15 is engaged with the pivot piece 12 the end portion of the operating member 15 is compressed as permitted by the slots 16, by engagement of the flange 17 with the wall of the bore 14. When the shoulder 18 of the operating member 15 engages the upper surface of the pivot piece 12, the flange 17 is clear of the lower end of the bore 14, and so the end portion of the operating member 15 expands to engage the flange 17 with the lower surface of the pivot piece 12. Thus, the operating member 15 is engaged with a snap fit with the pivot piece 12, and is capable of movement relative to the pivot piece 12 about a vertical axis. The operating member 15 extends upwardly from the pivot piece 12 through a bore 19 in the body 11. The wall of the bore 19 of the body 11 is extended upwardly to define a cylindrical hollow spigot 21 which is rendered resilient by providing the walls thereof with slots 22.

A moulded rotor 24 having a central bore 24a is engaged with the body 11 for rotation about a vertical axis. The rotor 24 is engaged as a snap fit on the spigot 21 of the body 11, the spigot 21 being provided adjacent its base with an outwardly extending shoulder 25, and at its free end with an outwardly extending flange 26. During the engagement of the rotor 24 with the body 11, the spigot 21 is compressed inwardly until the lower surface of the rotor engages the shoulder 25, whereupon the flange 26 is clear of the upper end of the bore in the rotor so permitting the spigot 21 to expand outwardly to engage the flange 26 with the upper surface of the rotor. The body 11 is provided with means whereby the direction indicator switch can be secured to the steering column of a road vehicle, the body 11 having a semi-cylindrical depression 11a which engages the outer fixed tube of the steering column of the road vehicle in the manner of a saddle.

The operating member 15 extends upwardly through the spigot 21 of the body and through the rotor 24, and is cranked to extend generally horizontally in a direction away from the depression 11a in the body. The cranked portion 15a of the operating member 15 is adapted to receive an operating lever 27, and extends between a pair of parallel upstanding lugs 28 integral with the rotor 24. Thus, it will be appreciated, that by moving the operating lever 27 in a vertical plane, the pivot piece 12 is pivoted relative to the body 11 about a horizontal axis without affecting the position of the rotor 24. Moreover, by moving the operating lever in a horizontal plane the rotor 24 is caused to pivot relative to the body about a vertical axis, by engagement of the portion 15a of the operating member 15 with one or other of the lugs 28

without affecting the position of the pivot piece 12, the operating member 15 pivoting relative to the pivot piece 12 about said vertical axis.

The upper surface of the body 11 carries a plurality of fixed contacts one of which is shown at 29, the fixed contacts being engageable by a movable bridging piece 31 carried by the rotor 24. The bridging piece 31 is urged into engagement with the fixed contacts by a compression spring 32, the fixed contacts and the bridging piece 31 controlling the direction indicator function of the switch. Thus, by moving the rotor 24 angularly relative to the body 11 about said vertical axis, the bridging piece 31 is caused to electrically connect alternative pairs of the fixed contacts. The rotor 24 has three angularly spaced stable positions relative to the body 11. The three positions of the rotor 24 relative to the body 11 are defined by detent means in the form of a cam track 33 on the body 11 which is engaged by a spring pressed ball 34 carried by the rotor 24. The central position of the three positions is an off position wherein the bridging piece 31 does not complete any circuits between the fixed contacts. By moving the rotor 24 angularly relative to the body 11 in one direction from the central position a first operative position is reached wherein the bridging piece 31 completes a circuit between the supply contact 29 and an adjacent fixed contact to energise the direction indicator lamp on one side of the vehicle, and similarly movement of the rotor 24 relative to the body 11 in the opposite direction from the central off position moves the bridging piece 31 to a position wherein it completes the circuit between the contact 29 and a further fixed contact to energise the direction indicator lamps on the opposite side of the vehicle. It will be appreciated, that the circuits to the direction indicator lamps are made through a flasher unit so that the direction indicator lamps are energised intermittently.

In order to return the rotor to its central off position from either of the operative positions when the turn being indicated has been negotiated, the rotor is provided with a pair of resilient arms 35, 36, the arm 36 being shown broken away in FIG. 1. The arms 35, 36 are engaged as a snap fit in the rotor 24, and extend from the rotor 24 towards the depression 11a in the body 11. The arrangement is such that in use, when the rotor 24 is moved to one or other of its operative positions, then one or other of the arms 35, 36, dependent on which operative position is chosen, is moved into the path of movement of a striker carried by the rotatable part of the steering column of the vehicle. Thus, as the turn is commenced the steering wheel of the vehicle is turned in the required direction and the striker engages the respective arm, and rides past the respective arm as permitted by flexure of the arm outwardly. When the turn has been negotiated, the steering wheel is returned to the straight ahead position and in so doing the striker is caused to engage the arm again. The rotor 24 is provided with walls 35a, 36a which prevent flexure of the arms 35, 36 inwardly, and so when the striker engages the arm during its return movement, the arm cannot flex to permit the striker to reach the straight ahead position, and so the return movement of the striker forces the rotor to rotate back to its central position wherein the arm is out of the path of movement of the striker.

Vertical movement of the operating lever 27 relative to the body 11 in use controls the headlamps of the road vehicle. The body 11 carries an electrical supply contact 37 in the form of a metal strip which is engageable by a pair of leaf spring contacts 38, 39. Moreover, the body carries a further fixed contact 40 which is engageable by the leaf spring contact 38 upon movement of the leaf spring 38 in a direction away from the contact 37. The supply contact 37 is connected to the D.C. source of the vehicle through an on/off switch. Said further contact is electrically connected directly to the D.C. source. The leaf spring contact 38 is electrically connected in the main

beam circuit of the vehicle headlamps, and the leaf spring contact 39 is electrically connected in the dipped beam circuit of the vehicle headlamps. The pivot piece 12 is provided with a pair of cams 41, 42 engageable with the leaf spring contacts 38, 39 respectively. The leaf spring contact 38 is stressed towards the contact 37, so that in its rest position it engages the contact 37, while the leaf spring 39 in its rest position, is spaced from the contact 37. The pivot piece 12 has a pair of stable positions relative to the body 11 which are defined by detent means acting between the pivot piece 12 and the body 11. The pivot piece 12 carries a projection 43 which is engageable with a flexible leg 44 integral with the body 11. Moreover, the pivot piece 12 carries a spring pressed plunger 45 which is engageable with the inner surface of the body 11. In FIG. 3, the pivot piece 12 is shown in its second stable position, and in the second stable position the leaf spring contact 39 is held by the cam 42, in engagement with the contact 37 while the leaf spring contact 38 is held by the cam 41 out of engagement with the contact 37. Thus the second stable position of the pivot piece 12 relative to the body 11 is the dipped beam position, wherein if the main on/off switch is in its on position the dipped beams of the vehicle are energised through the contact 37 and leaf spring contact 39. In order to move the pivot piece to its first stable position from its second stable position the operating lever 27 is moved in a vertical plane towards the body 11. During the movement from the second stable position to the first stable position the projection 43 on the pivot piece 12 is caused to ride over a rib on the leg 44 of the body 11, as permitted by flexure of the leg. When the projection 43 has cleared the rib on the leg 44, the leg 44 is returned to its original position to hold the pivot piece in its first stable position. In the first stable position of the pivot piece 12 relative to the body 11, the cams 41, 42 are moved out of engagement with their respective leaf spring contacts, so that the leaf spring contact 38 engages the contact 37 while the leaf spring contact 39 is disengaged from the contact 37. Thus with the main on/off switch in its on position the main beam headlight circuit of the vehicle will be completed through the contact 37 and the leaf spring contact 38. The main beam headlight circuit of the vehicle can be completed by moving the operating lever 27 in a vertical plane away from the body 11, so that the pivot piece 12 is moved beyond its second stable position. During such movement the leaf spring contact 38 is flexed by the cam 41 into engagement with said further fixed contact thereby completing the main beam headlight circuit regardless of the position of the main on/off switch. This movement of the pivot piece engages the plunger 45 with the body 11 and depresses the plunger into the pivot piece 12 against the action of its respective spring. Thus, upon release of the operating lever 27 the spring pressed plunger 45 urges the pivot piece 12 back to its second position. This function of the switch is particularly useful for flashing the headlights of the vehicle and it will be appreciated that if the main on/off control switch is in its on position, then the main beam circuit of the vehicle can be completed while the dipped beam circuit of the headlamps is completed since the cam 42 will be urging the leaf spring contact 39 into engagement with the contact 37.

At its end remote from the operating member 15, the operating lever 27 carries a pushbutton switch which, in use, controls the horn of the road vehicle. The operating lever 27 is formed from conductive material and constitutes one of the connections to the pushbutton switch, the other connection being made through an insulated lead 46 which extends within the operating lever 27. The operating lever 27 is electrically connected to earth in use, through a conductive braid 47.

It will be appreciated that the terms "vertical" and "horizontal" used throughout the specification are used

in relation to the drawings and not in relation to the physical position of a switch in use.

Having thus described my invention what I claim as new and desire to secure by Letters Patent is:

1. A direction indicator switch for a road vehicle including a body, a first set of switch contacts mounted on the body, a first pivot piece, means mounting the first pivot piece on the body for pivotal movement relative thereto whereby pivotal movement of the first pivot piece operates the first set of switch contacts, an operating member, complementary means on the first pivot piece and operating member mounting the operating member on the first pivot piece for pivotal movement about an axis at right angles to the axis about which the first pivot piece is movable whereby movement of the operating member in a plane at right angles to the axis of pivotal movement of the first pivot piece effects pivotal movement of the first pivot piece, a second set of switch contacts mounted on the body, a second pivot piece, means mounting said second pivot piece on the body independently of the first pivot piece for movement about an axis at right angles to the axis about which the first pivot piece is movable, with movement of the second pivot piece operating the second set of contacts, said second pivot piece having an aperture therein through which the operating member extends, and means on the second pivot piece cooperable with the operating member so that pivotal movement of the operating member relative to the first pivot piece only is transmitted to the second pivot piece for operating said second set of switch contacts.

2. The switch as claimed in claim 1 wherein said second set of switch contacts controls, in use, direction indicator lamps of the road vehicle, said second pivot piece having three angularly spaced stable positions relative to

the body, a central off position and a pair of operative positions, and said second pivot piece carrying a pair of resilient arms which are engageable in the operative positions of the second pivot piece respectively, by a striker carried by a movable part of the steering column of the road vehicle to return the second pivot piece from its operative positions to its central off position.

3. The switch as claimed in claim 2 wherein said arms are detachably engaged with the second pivot piece.

4. The switch as claimed in claim 1 wherein said first pivot piece has a pair of stable positions relative to the body and said first set of contacts controls, in use, headlamps of the road vehicle.

5. The switch as claimed in claim 1 wherein said first set of contacts is operable by at least one cam on said first pivot piece during movement of the first pivot piece relative to the body.

6. The switch as claimed in claim 1 wherein said first set of contacts includes a pair of independently movable contacts which are movable by respective cams on said first pivot piece during movement of the first pivot piece relative to the body.

References Cited

UNITED STATES PATENTS

25 3,331,932 7/1967 Winogrocki et al. --- 200—61.34

FOREIGN PATENTS

30 1,031,759 6/1966 Great Britain.

ROBERT K. SCHAEFER, Primary Examiner

M. GINSBURG, Assistant Examiner