Abstract: The invention concerns a method for obtaining potyvirus resistant plants exhibiting one or several mutations in a preserved region of the eIF4E translation factor, defined by the following general sequence (I): DX₆X₂X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆, and X₁₆ represent each a neutral amino acid; X₉ and X₁₄ represent a basic amino acid; X₁₁ represents an acidic amino acid; D, K, N, S, C, Q, A, W, G, R, Y, T, F, V, E, N, I, H, P, and L have their usual one-letter code meaning.

Abridged: La présente invention concerne l'obtention de plantes résistantes au potyvirus présentant une ou plusieurs mutations dans une région conservée du facteur de traduction eIF4E, définie par la séquence générale (I) suivante: DX₆X₂X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆ et X₁₆ représentent chacun un acide aminé neutre; - X₉ et X₁₄ représentent un acide aminé basique; - X₁₁ représente un acide aminé acide; - D, K, N, S, C, Q, A, W, G, R, Y, T, F, V, E, N, I, H, P, et L ont leur signification usuelle en code 1-letter.
1

MUTATIONS DU GENE eIF4E ET RESISTANCE AUX POTYVIRUS

La présente invention concerne un procédé de sélection ou d'obtention de plantes résistantes aux potyvirus. Le procédé est particulièrement applicable aux plantes de la famille des solanacées, des cucurbitacées, des crucifères et des composées. L'invention comprend également les séquences permettant de conférer la résistance aux potyvirus et/ou de marquer les gènes de résistance ou de sensibilité à ces potyvirus.

Le groupe des potyvirus dont le membre type est le virus Y de la pomme de terre ou PVY pour Potato Virus Y est le groupe de virus végétaux le plus important. En effet, les potyvirus sont capables d'infecter plus de 30 familles de plantes actuellement recensées. Ce groupe comprend au moins 180 membres ce qui correspond au tiers des virus de plantes actuellement connus. La transmission des potyvirus est réalisée par les pucerons (par exemple, *Myzus persicae*) selon le mode non-persistant. Les symptômes causés par les potyvirus sont des anomalies de coloration des feuilles (mosaiques, jaunissement des nervures), des déformations des feuilles, des nécroses nervaires pouvant conduire à la nécrose de la plante entière, et des réductions importantes de la taille de la plante malade influant fortement sur la productivité.

Les solanacées, cucurbitacées, crucifères et composées sont particulièrement sensibles aux potyvirus. Les solanacées et plus particulièrement la tomate et le piment (ou poivron) sont infectées par au moins sept potyvirus distincts à travers le monde : le virus Y de la pomme de terre (PVY) est présent sur l'ensemble des zones de culture alors que les autres sont cantonnés à un continent (Tobacco Mottle Virus et Perou Tomato Virus sur le continent américain, Pepper Veinal Mottle Virus et Potyvirus E en Afrique, et Chili Veinal Mottle Virus en Asie). Cette compartimentation n'est cependant plus absolue, plusieurs potyvirus ayant été identifiés hors de leur zone d'origine. En France, et plus généralement dans le bassin méditerranéen, le potyvirus prédominant est le PVY. Apparues dans les années 70, les épidémies de PVY se sont développées dans les cultures de plein champ puis dans les cultures sous abri où ont été mis en évidence, à partir de 1982, de nouveaux isolats de PVY causant des symptômes de nécrose particulièrement graves sur la tomate (Gebre-Selassie *et al.*, 1987).

Pour certains de ces potyvirus, il est possible de classer les isolats selon leur aptitude à contourner des allèles de résistance. C'est le cas du PVY vis-à-vis du gène *pvr2* chez le piment, seul gène de résistance utilisé de longue date par les sélectionneurs mais contourné dans les zones du pourtour méditerranéen et dans les zones tropicales. Malgré la prédominance du PVY en France, l'internationalisation du marché de la semence rend nécessaire l'utilisation de gènes contrôlant la résistance à ces différents potyvirus par les sélectionneurs qui vendent leurs semences à l'étranger. Plus généralement, considérant l'importance économique des infections par potyvirus et l'absence de moyens directs de
lutte contre ce type d’infection, la recherche de variétés végétales résistantes constitue un des axes principaux de l’amélioration des plantes.

Les potyvirus ont une structure filamentueuse non-envolopée (Langenberg et Zhang, 1997) de 680 à 900 nm de long et de 11 à 15 nm de large (Dougherty et Carrington, 1988 ; Riechmann et al., 1992). Le génome viral est constitué d’un ARN simple brin sens d’une longueur approximative de 10 kb. L’ARN simple brin possède à son extrémité 3’ une queue poly A et se lie en 5’ à une protéine virale appelée VPG (Murphy et al., 1990, Takahashi et al., 1997). L’ARN viral code pour 10 protéines impliquées dans le clivage des polyprotéines, la réplication du génome, le mouvement de cellule-à-cellule et le mouvement longue distance, la transmission par pucerons... La lutte contre les virus n’est réalisable qu’indirectement. En effet, il est seulement possible d’éliminer le vecteur de la maladie (les pucerons dans ce cas) ou de cultiver des variétés résistantes à l’infection virale et/ou aux vecteurs.

Face à une agression par un pathogène (virus, bactéries, champignons ou nématodes), la plante possède plusieurs stratégies pour se défendre ou résister à l’infection. Parmi les stratégies de défense, la plante peut mettre en place :

- des systèmes de défense mécaniques en élaborant et en renforçant des barrières physiques constituées d’une cuticule épaisse sur les feuilles et/ou d’un dépôt de callose ou de lignines sur les parois cellulaires. Ainsi, l’entrée et le mouvement des pathogènes dans la plante sont rendus plus difficiles.

- des systèmes de défense chimiques ou biochimiques en synthétisant des composés toxiques comme par exemple, les tanins, les phytoalexines et différents complexes protéiques.

Parmi les stratégies de résistance, on distingue la résistance non-hôte (lorsque toutes les entités d’une espèce sont résistantes à un pathogène donné) de la résistance hôte (lorsque au moins une entité de l’espèce est sensible à une souche de l’agent pathogène). La résistance hôte, la plus connue à ce jour et la mieux caractérisée, est celle faisant intervenir un gène majeur, dominant. Lorsque le gène majeur se trouve en présence d’un gène spécifique d’avirulence de l’agent pathogène, l’incompatibilité entre la plante et le pathogène est mise en place et la plante est résistante. Cette interaction, décrite par Flor (1955) est également appelée "modèle gène-à-gène" et est très souvent associée à une nécrose localisée du tissu végétal au site d’infection (réaction d’hypersensibilité). Bien qu’assez largement répandu, ce modèle "gène-à-gène" n’est pas universel car certains systèmes de résistance décrits ne fonctionnent pas selon ce modèle, les différences résidant notamment dans le mode d'action du gène de résistance. Il existe des gènes récessifs, superdominants ou exerçant une dominance incomplète. Plusieurs gènes d'avirulence peuvent interagir avec un même gène de résistance. De nombreuses résistances sont également polygéniques, plusieurs gènes présents dans la plante sont alors
impliqués dans la résistance, chacun d'eux ayant un effet de protection partielle et pouvant contrôler des mécanismes différents.

A ce jour, de nombreux gènes dominants suivant le modèle "gène-à-gène" ont été clonés. Ils possèdent des structures géniques apparentées bien qu'ils agissent contre des agents pathogènes variés (virus, champignons, bactéries, insectes, nématodes). La présence de domaines conservés a permis de définir 4 grandes classes (Hammond-Kosack et Jones, 1997) de gènes dominants.

Singulièrement, on estime que 40% des résistances aux potyvirus sont récessives alors que dans les autres groupes viraux, cette proportion n'atteint que 20% en moyenne. Fraser (1992) a émis l'hypothèse que les résistances récessives seraient différentes des résistances dominantes de type "gène-à-gène" et résulteraient d'un déficit ou d'une altération spécifique du produit d'un gène de l'hôte nécessaire à l'accomplissement du cycle viral dans la plante. Les allèles dominants de sensibilité correspondaient donc à la disponibilité de ce produit impliqué dans les interactions plante/pathogène.

Il a été montré que des mutations ponctuelles dans le gène viral codant pour la protéine VPg sont impliquées dans le contournement de la résistance aux potyvirus chez plusieurs couples hôtes-pathogènes. Ceci a été montré chez les couples TVMV/Nicotiana tabacum (gène va), PVY/tomate (gène pot-1), LMV/Laitue (gène mo1) et PSbMV/pois (gène sbm1), (Keller et al., 1998, Morel, 2001, Redondo, 2001, Nicolas et al., 1997). Cela n'exclut pas que d'autres gènes viraux puissent également intervenir.

Par ailleurs, Wittman et al. (1997) ont montré qu'une isoforme du facteur d'initiation de la traduction eucaryotique eIF4E d'Arabidopsis thaliana interagit avec la protéine virale VPg du virus de la mosaïque du navet (TuMV). Cette même interaction a été détectée entre la VPg du TEV et le eIF4E de tabac et de tomate (Schaad et al., 2000).

Le gène eIF4E code pour un facteur eucaryotique d'initiation de la traduction des ARN. eIF4E correspond à une des sous-unités du facteur de traduction eIF4F (chez le germe de blé, il correspond à la sous-unité p26). Le facteur de traduction eIF4E se fixe à la coiffe des ARNnm au niveau des m7G. La structure de eIF4E se caractérise par une région riche en résidus tryptophane (10 chez Arabidopsis thaliana, 11 chez le blé et 12 chez les mammifères). Ces résidus tryptophane seraient impliqués dans la liaison au groupe fonctionnel m7G (Rudd, K. et al., 1998). Le facteur de traduction eIF4E est codé par une famille multigénique. Par exemple chez Arabidopsis thaliana, 4 copies de eIF4E ont été identifiées (Rodriguez et al., 1998, Robaglia et coll., com. pers.). Ces copies présentent, deux à deux, entre 44 et 82% d'identité.

Tous ces travaux font état de la corrélation entre l'interaction eIF4E/VPg et la sensibilité de la plante aux potyvirus; mais aucun ne souligne ni même ne suggère
que cette interaction pourrait conduire à une résistance. Au contraire, il est même indiqué dans Schaad et al., 2000 que l’interaction VPg/eIF4E ne joue pas de rôle dans la résistance, car les déterminants génétiques de l’interaction VPg/eIF4E sont distincts de ceux permettant aux potyviruses (via la VPg) de contourner la résistance.

Il est donc du mérite des Inventeurs, dans un tel état de la technique, d’avoir mis en évidence des protéines eIF4E, ainsi que les gènes correspondants, intervenant dans la résistance ou la sensibilité des plantes aux potyviruses.

Les Inventeurs ont notamment constaté que différentes plantes résistantes aux potyviruses présentaient des mutations ponctuelles situées dans une même région de la protéine eIF4E ; cette région, qui est très conservée entre les protéines eIF4E issues de diverses espèces végétales, notamment de solanacées, est définie par la séquence générale (I) suivante :

\[DX_1X_2X_3X_4KX_5QX_6WGSSX_7RX_8X_9YTXS_10VEX_11FWX_12X_13YNNHX_14PSKLX_{15}X_{16}GAD \]

dans laquelle :

- \(X_1, X_2, X_3, X_4, X_6, X_7, X_8, X_9, X_{10}, X_{12}, X_{13}, X_{15}, \) et \(X_{16} \) représentent chacun un acide aminé neutre ;
- \(X_5 \) et \(X_{14} \) représentent un acide aminé basique ;
- \(X_{11} \) représente un acide aminé acide ;

La séquence (I) est également représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO:1.

Les mutations mises en évidence par les Inventeurs chez le poivron sont les suivantes :

- la substitution de l’acide aminé neutre \(X_2 \) de la séquence (I) par un acide aminé basique ;
- la substitution de l’acide aminé neutre \(X_7 \) de la séquence (I) par un acide aminé basique ;
- la substitution du résidu aspartate en position C-terminale de la séquence (I) par un acide aminé neutre.
La mutation de X_3 a été observée chez des lignées de poivron présentant deux types différents de résistance aux potyvirus ($pvr2^I$ et $pvr2^2$); les poivrons présentant le phénotype $pvr2^I$ possèdent en outre la mutation en position X_7, et les poivrons présentant le phénotype $pvr2^2$ possèdent en outre la mutation en position C-terminale.

Chez la tomate, les Inventeurs ont notamment observé les mutations suivantes :

- la substitution de l’acide aminé neutre X_1 de la séquence (I) par un acide aminé basique ;
- la substitution du résidu Ala du motif WGSS de la séquence (I) par un acide aminé acide ;

Grâce à la très forte conservation de séquence des gènes eIF4E chez les eucaryotes et à la disponibilité de structure 3D des protéines eIF4E de la souris et de la levure (Marcotrigiano et al., 1997, Cell 89 : 951-961 ; Matsuo et al., 1997, Nat. Struct. Biol. 4 : 717-724), les positions des mutations par rapport à la structure 3D de eIF4E chez le piment et la tomate peuvent être déterminées. Toutes ces mutations sont physiquement proches et en surface de la protéine. Par ailleurs, ces mutations ne concernent pas des acides aminés très conservés chez les eucaryotes, ni ceux impliqués dans les fonctions essentielles de eIF4E, à savoir la reconnaissance de la coiffe ou l’interaction entre eIF4E et eIF4G ou les 4E-binding protein.

Toutefois, il est probable que ces mutations exercent un effet sur l’interaction VPg/eIF4E par modification de la structure de eIF4E au niveau de la ou des régions de celle-ci impliquées dans cette interaction. Cette modification de la structure résulte vraisemblablement de la substitution d’acides aminés par des acides aminés de charge différente (remplacement d’acides aminés neutres par des acides aminés chargés, ou à l’inverse d’acides aminés chargés par des acides aminés neutres, ou des acides aminés de charge opposée) qui constitue le point commun à l’ensemble des mutations mises en évidence par les Inventeurs. On peut donc raisonnablement supposer que d’autres mutations de même type dans une protéine eIF4E végétale, au niveau de la région définie par la séquence (I) entraîneront des modifications de structure similaire, produisant le même effet sur l’interaction VPg/eIF4E.

En particulier, il apparaît que la substitution d’au moins un des acides aminés neutres X_1, X_2, X_3 ou X_4 par un acide aminé chargé, notamment un acide aminé basique, joue un rôle important dans la résistance aux potyvirus.

Ces observations permettent de proposer des outils, notamment des outils génétiques, de criblage et/ou d’obtention de plantes résistantes ou sensibles aux potyvirus.
La présente invention concerne plus particulièrement un procédé de sélection de plantes résistantes aux potyvirus, caractérisé en ce qu'il comprend la détection dans les plantes à tester :

- de la présence ou de l'absence d'une protéine eIF4E (dénommée ci-après :
 « protéine eIF4E de type sauvage ») comprenant une région définie par la séquence (I) ci-dessus, ou d'une séquence codant pour ladite protéine ;
- de la présence ou de l'absence d'une protéine eIF4E mutante comprenant une région dérivée de celle définie par la séquence (I) ci-dessus, par substitution d'au moins un acide aminé neutre de ladite séquence (I) par un acide aminé chargé, de préférence un acide aminé basique et/ou substitution d'au moins un acide aminé chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée, ou d'une séquence codant pour ladite protéine ;
- et la sélection des plantes où l'on détecte une protéine eIF4E mutante ou une séquence codant pour ladite protéine, et où l'on ne détecte pas de protéine eIF4E de type sauvage ou de séquence codant pour ladite protéine.

La présente invention a également pour objet un procédé de sélection de plantes utilisable pour l'obtention de plantes résistantes aux potyvirus, caractérisé en ce qu'il comprend la détection dans les plantes à tester de la présence ou de l'absence d'une protéine eIF4E mutante telle que définie ci-dessus ou d'une séquence codant pour ladite protéine, et la sélection des plantes où l'on détecte ladite protéine eIF4E mutante ou une séquence codant pour ladite protéine.

Selon un mode de mise en œuvre préféré de l'invention, ladite protéine eIF4E mutante comprend une région dérivée de celle définie par la séquence (I) ci-dessus, par :

a) substitution d'au moins un des acides aminés X₁, X₂, X₃ ou X₄ de ladite séquence (I) par un acide aminé chargé, et
b) substitution d'au moins un des autres acides aminés neutres de ladite séquence (I) par un acide aminé chargé et/ou substitution d'au moins un acide aminé chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée.

La détection de la présence ou de l'absence d'une protéine eIF4E de type sauvage ou mutante, peut s'effectuer notamment à l'aide d'anticorps spécifiquement dirigés contre la forme recherchée de la protéine eIF4E. Il peut s'agir notamment d'anticorps dirigés soit contre la forme sauvage soit contre la forme mutante de la région de eIF4E définie par la séquence (I).

Pour la détection de la présence ou de l'absence d'une séquence codant pour une protéine eIF4E de type sauvage ou d'une séquence codant pour une protéine eIF4E mutante, on dispose de nombreux outils ; il peut s'agir notamment de
polynucléotides dérivés de la séquence du gène eIF4E et en particulier de polynucléotides capables de s’hybrider sélectivement soit avec un allèle sauvage soit avec un allèle mutant de eIF4E, tels que définis ci-dessus ou de polynucléotides permettant l’amplification de la région de eIF4E contenant la mutation recherchée ; il peut s’agir également d’enzymes de restriction reconnaissant une séquence-cible présente dans la forme sauvage, mais non dans la forme mutée (ou l’inverse).

La présente invention a ainsi pour objet l’utilisation d’un outil de sélection choisi parmi :

a) un polynucléotide codant pour une protéine eIF4E de type sauvage ou mutante,
 telles que définies ci-dessus ;

b) un polynucléotide complémentaire du polynucléotide a) ;

c) un fragment d’au moins 10 pb d’un polynucléotide a) ou b) ;

d) un anticorps dirigé contre une protéine eIF4E de type sauvage ou mutante, telles
 que définies ci-dessus ;

pour la sélection de plantes résistantes aux potyvirus.

En particulier, l’invention concerne en un procédé de sélection de plantes résistantes aux potyvirus caractérisé en ce qu’il comprend la mise en œuvre d’au moins un moyen de sélection choisi dans le groupe des outils génétiques (ou apparentés) comprenant :

* A / tout ou partie d’une au moins des séquences sélectionnées dans le sous-groupe comportant :
 - SEQ ID NO: 2,
 - SEQ ID NO:4,
 - SEQ ID NO:6 et 8,
 - tout analogue de ces séquences résultant de la dégénérescence du code génétique,
 - toute séquence d’ADNc complémentaire d’au moins l’une de ces séquences et/ou
d’au moins un de leurs analogues;

* B / tout ou partie d’un au moins des produits de transcription des séquences A ;

* C / tout ou partie d’un au moins des produits de traduction des séquences A;

* D / tout ou partie d’au moins un anticorps spécifique d’au moins un produit de traduction de C/;

* E / et toute association des outils A, B, C, D.

De préférence, les moyens de sélection sont sélectionnés parmi les sous-groupes d’outils A/ et/ou B/, et plus préférentiellement encore parmi le sous-groupe d’outils A/.
Par ce repérage simple, aisé et fiable de plantes résistantes ou sensibles aux potyvirus, les inventeurs ont ainsi mis au point un nouveau procédé s’appuyant sur l’utilisation de séquences correspondant au gène eIF4E.

Le procédé objet de l’invention s’applique particulièrement aux solanacées, cucurbitacées, crucifères et composés et plus précisément aux plantes des genres Lycopersicon, Capsicum, Nicotiana, Solanum, Lactuca, Cucumis, Arabidopsis etc....

Les potyvirus concernés sont, par exemple, le virus Y de la pomme de terre (PVY), le virus de la gravure du tabac (TEV) et/ou le virus de la mosaïque de la laitue (LMV), et/ou le virus de la mosaïque jaune de la courgette (ZYMV) et/ou le virus de la mosaïque du navet (TuMV).

Pour mettre en œuvre le procédé selon l’invention, on utilise des séquences nucléotidiques et/ou des séquences peptidiques ou des enzymes de restriction en tant que moyens de détection, sondes ou amorces, pour sélectionner des plantes résistantes ou sensibles aux potyvirus.

Ces moyens de détections comprennent en particulier des sondes ou amorces nucléotidiques.

On entend par « amorce » au sens de la présente invention toute séquence polynucléotidique utilisable pour amplifier une séquence d’un gène eIF4E susceptible de comprendre une mutation associée à la résistance aux potyvirus. Il s’agit notamment de polynucléotides utilisables pour amplifier tout ou partie de la séquence de eIF4E codant pour la région de eIF4E définie par la séquence (I), ou de la séquence mutante qui en est dérivée.

On entend par « sonde » au sens de la présente invention toute séquence polynucléotidique, s’hybridant avec un gène eIF4E de type sauvage ou avec un gène eIF4E mutant tel que définis ci-dessus. Ceci inclut notamment les séquences nucléotidiques capables de s’hybrider sélectivement soit avec un allèle du gène eIF4E associé à la résistance aux potyvirus, soit avec un allèle du gène eIF4E associé à la sensibilité aux potyvirus.

Ces sondes et ces amorces peuvent être employées comme marqueurs spécifiques des plantes résistantes ou sensibles aux potyvirus.

Conformément à l’invention, on est en mesure de faire le tri entre les plantes sensibles et les plantes résistantes aux potyvirus au moyen des outils génétiques (ou apparentés) (A) à (E), voire d’enzymes de restriction spécifiques. Ces dernières seront décrites infra.

Les séquences (A) nucléotidiques SEQ ID NO: 2, 4, 6, et 8 correspondent à des gènes eIF4E de différentes solanacées impliqués dans la résistance aux potyvirus codant pour un facteur eucaryotique d’initiation de la traduction des ARN.
La SEQ ID NO: 8 correspond à un allèle récessif eIF4E de résistance à un potyvirus, tandis que SEQ ID NO: 2, 4, et 6 représentent des allèles dominants eIF4E de sensibilité à un potyvirus.

Il a donc été découvert conformément à l'invention des moyens de sélection ou repères génétiques de résistance ou de sensibilité aux potyvirus. Le procédé de sélection suivant l'invention peut faire intervenir séparément ou ensemble les deux types de moyens de sélection ou repères.

Naturellement, l'invention englobe également tous les équivalents à ces séquences (A) nucléotidiques SEQ ID NO:: 2, 4, 6, et 8, qui conservent la fonction de repère génétique eIF4E de sensibilité/résistance aux potyvirus propres aux séquences de référence. Pour ce qui concerne les ADN, il s'agit notamment des analogues de dégénérescence génétique et des séquences d'ADNe complémentaires des séquences de référence. Les équivalents polynucléotidiques des séquences (A) de référence se trouvent également parmi leurs produits (ARN) de transcription (B). Les protéines (C) issues de (A) et de (B) constituent d'autres repères intracellulaires permettant la sélection de plantes résistantes ou sensibles aux potyvirus. Outre les cibles (A), (B), (C), les moyens de sélection de l'invention peuvent aussi être des sondes nucléotidiques aptes à s'hybrider avec des cibles nucléotidiques (A) et (B) complémentaires, ou bien encore des moyens de détection protéiques (anticorps D) aptes à s'apparier avec des cibles antigéniques (C) spécifiques. Il est envisageable de combiner tous ces moyens équivalents (A), (B), (C) & (D) pour former un outil de sélection (E).

Les moyens selon l'invention couvrent également tout fragment des séquences (A), (B), (C) & (D). Par "fragment" on entend, selon l'invention :

- soit un polynucléotide d'au moins 10, 20, 30, 50, 100, 200, 300, 400, 500 nucléotides contigus de la séquence de référence ; des fragments préférés sont ceux qui sont capables de s'hybrider sélectivement en conditions stringentes avec ladite séquence de référence.

- soit un polyaminoacide d'au moins 3, 6, 10, 15, 30, 60, 100, 150, 200 aminoacides contigus de la séquence de référence ; des fragments préférés sont ceux qui sont capables de s'hybrider sélectivement en conditions stringentes avec ladite séquence de référence.

Selon une modalité avantageuse de l'invention, le procédé est caractérisé en ce que :

- on met en présence au moins un moyen de détection comprenant au moins l'un des outils A,B,C,D,E selon la revendication 1 et/ou au moins une enzyme de restriction, avec au moins un extrait génomique et/ou protéique d'une plante à tester,
- on soumet ledit extrait génomique et/ou protéique, éventuellement apparié et/ou hybridié et/ou digéré, à au moins une séparation,
- on révèle les éventuels appariements et/ou hybridations et/ou digestions susceptibles de se produire,
- et on procède à la lecture des résultats pour conclure finalement sur la présence ou l'absence d'un allèle de résistance \((pvr2^t)\) ou d'un allèle de sensibilité \((pvr^t)\) à au moins un potyvirus.

Ce procédé s'inscrit dans le cadre des méthodologies connues dans le domaine de la détection et de la reconnaissance de caractéristiques génétiques de végétaux.

Selon un premier mode de mise en œuvre du procédé, dans lequel le principe de sélection est fondé sur l'utilisation d'une ou plusieurs enzymes de restriction spécifiques, le procédé peut répondre à la méthodologie suivante :
- on amplifie par PCR la séquence codante du gène \(eIF4E\), à partir de l'ADN de la plante à tester, par exemple à l'aide des amorces SEQ ID NO: 18 et/ou 19,
- on digère le produit d'amplification avec une enzyme de restriction appropriée ;
- on sépare les éventuels fragments obtenus,
- et on sélectionne les plantes résistantes ou sensibles selon le profil de restriction dudit produit d'amplification.

Par exemple, des plantes sensibles aux potyvirus peuvent être détectées par un profil de restriction faisant apparaître la présence d'un site de coupure par l'enzyme \(TspRI\) ou l'un de ses isoschizomères et les plantes résistantes aux potyvirus peuvent être détectées par un profil de restriction faisant apparaître l'absence dudit site de coupure par \(TspRI\) ou l'un de ses isoschizomères et la présence d'un site de coupure par l'enzyme \(MvnI\) ou l'un de ses isoschizomères.

Selon un deuxième mode de mise en œuvre du procédé, correspondant au cas où le mode de sélection est l'hybridation de séquences nucléotidiques complémentaires, le procédé consiste de préférence :
- à extraire l'ADN des plantes,
- à soumettre éventuellement cet ADN à une digestion enzymatique à l'aide d'au moins une enzyme de restriction,
- à dénaturer l'ADN éventuellement digéré,
- à mettre en présence l'ADN ainsi dénaturé, avec la sonde elle-même préalablement dénaturée et dotée d'au moins un marqueur, de façon à réaliser l'hybridation,
- à éliminer l'ADN et la sonde non hybridée,
- à révéler l'hybridation à l'aide du marqueur,
- et à sélectionner des plantes qui possèdent un profil d'hybridation correspondant à la co-ségrégation de la cible hybridée avec la sonde marquée et de l'allèle de résistance ou de sensibilité.

La distinction entre les plantes sensibles et les plantes résistantes peut s'effectuer, dans le cas où l'ADN a été digéré par une enzyme de restriction, par la différence de taille des fragments hybridés.

Elle peut également s'effectuer à l'aide d'une sonde capable de s'hybrider sélectivement avec l'allèle de résistance ou l'allèle de sensibilité. L'hybridation des molécules simple brin de la sonde et de la cible est effectuée de préférence dans des conditions d'hybridation stringentes permettant une hybridation sélective, qui peuvent être déterminées de manière bien connue de l'homme du métier. En général la température d'hybridation et de lavage est inférieure d'au moins 5°C au Tm de la séquence de référence à un pH donné et pour une force ionique donnée. Typiquement la température d'hybridation est d'au moins 30°C pour un polynucléotide de 15 à 50 nucléotides et d'au moins 60°C pour un polynucléotide de plus de 50 nucléotides.

Le niveau du signal généré par l'interaction entre la séquence capable de s'hybrider de manière sélective et les séquences de référence est généralement 10 fois, de préférence 100 fois plus intense que celui de l'interaction des autres séquences d'ADN générant le bruit de fond.

Avec une sonde marquée par exemple à l'aide d'un élément radioactif, tel que le 32P, ou d'une enzyme greffée, telle que la peroxydase, l'hybridation est aisément révélée qualitativement et quantitativement.

L'ADN utilisé dans le premier ou le deuxième mode de mise en œuvre peut être soit de l'ADN total, soit de l'ADNc.

Selon un troisième mode de mise en œuvre (parmi d'autres) du procédé selon l'invention, correspondant au cas où le mode de sélection est l'appariement anticorps/antigène, le procédé consiste, de préférence, à détecter la présence d'un polypeptide en partie constitué de tout ou partie d'une des séquences d'acides aminés décrites ci-dessous et incluses dans l'invention. Le procédé peut consister à mettre en contact l'échantillon à tester avec un anticorps tel que décrit ci-dessus puis à détecter le complexe antigène/anticorps formé.

Quel que soit le mode de sélection, le procédé de sélection selon l'invention est fiable et sensible.

La présente invention a également pour objet un polynucléotide codant pour une protéine eIF4E mutante comprenant une région dérivée de celle définie par la séquence (I) ci-dessus, par substitution d'au moins un acide aminé neutre de ladite séquence (I) par un acide aminé chargé, de préférence un acide aminé basique et/ou
substitution d'au moins un acide aminé chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée.

Selon un mode de réalisation préféré, ledit polynucléotide code pour une protéine eIF4E mutante qui comprend une région dérivée de celle définie par la séquence (I) ci-dessus, par :

a) substitution d'au moins un des acides aminés X_1, X_2, X_3 ou X_4, de ladite séquence (I) par un acide aminé chargé, et

b) substitution d'au moins un des autres acides aminés neutres de ladite séquence (I) par un acide aminé chargé et/ou substitution d'au moins un acide aminé chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée.

Des polynucléotides conformes à l'invention sont par exemple ceux qui codent pour les variants des séquences SEQ ID NO: 22 ou 23 associés à la résistance aux potyvirus.

Selon un autre de ses aspects, l'invention concerne une séquence nucléotidique caractérisée en ce qu'elle est décrite par une séquence choisie dans le groupe comprenant tout ou partie des séquences suivantes :

- SEQ ID NO: 2
- SEQ ID NO: 4
- SEQ ID NO: 6
- SEQ ID NO: 8

La séquence nucléotidique SEQ ID NO:2 est une séquence d'ADNc obtenue à partir d'ADN de tabac et correspondant au gène de tabac. La séquence nucléotidique SEQ ID NO:4 est une séquence codant pour une protéine eIF4E d'une variété de *Lycopersicon esculentum* sensible aux potyvirus. Les séquences SEQ ID NO: 6 et 8 sont des séquences codant pour des protéines eIF4E de piment (*Capsicum annuum*), variétés Yolo Wonder et Yolo Y respectivement.

La présente invention a également pour objet des amorces permettant l'amplification d'un gène eIF4E, ou d'une portion de celui-ci susceptible de contenir au moins une mutation, telle que définie ci-dessus, associée à la résistance aux potyvirus ; il s'agit notamment d'amorces permettant l'amplification de la séquence de eIF4E codant pour la région de eIF4E définie par la séquence (I), ou d'une séquence mutante qui en est dérivée.

Des amorces conformes à l'invention peuvent être aisément définies par l'homme du métier, à partir des séquences nucléotidiques ou peptidiques décrites dans la présente invention.

A titre d'exemples non-limitatifs, on citera : les amorces d'amplification constituées par les séquences-amorces nucléotidiques SEQ ID NO: 18 & 19 ; les amorces
de clonage SEQ ID NO: 10 à 17 ; les amorces de criblage de banque BAC constituées par les séquences nucléotidiques SEQ ID NO: 20 & 21.

Les SEQ ID NO: 18 & 19 sont des amorces issues de la séquence codante de eIF4E du piment Yolo Wonder, permettant notamment par amplification PCR puis par digestion enzymatique, la détection des séquences nucléotidiques porteuses des allèles de résistance pvr2 et de sensibilité pvr+ aux potyvirus. Les amorces de clonage SEQ ID NO: 10 & 11 dégénérées et les SEQ ID NO: 12 à 17 non dégénérées, ont été définies sur un alignement des séquences de eIF4E de tabac, tomate et Arabidopsis et utilisées pour la synthèse (RACE) de sondes ADNc de détection d'eIF4E dans le génome de tomate et de piment. Les amorces SEQ ID NO: 20 & 21 de clonage de banque BAC sont non dégénérées. Ces amorces SEQ ID NO: 10 à 17, 20 & 21 peuvent éventuellement être utilisées directement ou indirectement (construction d'outils de sélection) dans la détection de caractéristiques de résistance ou de sensibilité aux potyvirus.

La présente invention a également pour objet une protéine eIF4E mutante comprenant une région dérivée de celle définie par la séquence (i) ci-dessus, par substitution d’au moins un acide aminé neutre de ladite séquence (i) par un acide aminé chargé, de préférence un acide aminé basique et/ou substitution d’au moins un acide aminé chargé de ladite séquence (i) par un acide aminé neutre ou un acide aminé de charge opposée.

Selon un mode de réalisation préféré, ladite protéine eIF4E mutante comprend une région dérivée de celle définie par la séquence (i) ci-dessus, par :

a) substitution d’au moins un des acides aminés X₁, X₂, X₃ ou X₄, de ladite séquence (i) par un acide aminé chargé, et

b) substitution d’au moins un des autres acides aminés neutres de ladite séquence (i) par un acide aminé chargé et/ou substitution d’au moins un acide aminé chargé de ladite séquence (i) par un acide aminé neutre ou un acide aminé de charge opposée.

La présente invention couvre aussi les produits de traduction des séquences nucléotidiques SEQ ID NO: 2, 4, 6, et 8, à savoir les polypeptides choisis dans le groupe comprenant tout ou partie des séquences suivantes :

- SEQ ID NO: 3
- SEQ ID NO: 5
- SEQ ID NO: 7
- SEQ ID NO: 9.

Les moyens de sélection résistance / sensibilité des plantes aux potyvirus, constitués par des séquences d’acides aminés, sont de préférence utilisés comme cibles permettant le repérage. Il s’agit alors de moyens de sélection indirects qui soutendent la mise en œuvre de moyens de détection spécifiques de ces cibles peptidiques.
Ces moyens de détection sont avantageusement des anticorps qui constituent un autre objet de la présente invention. Ainsi, lesdits anticorps sont caractérisés en ce qu’ils sont spécifiquement dirigés contre tout ou partie d’un au moins des produits de traduction C, et plus particulièrement des séquences d’acides aminés SEQ ID NO: 3, 5, 7, 9, 22, ou 23 ou un fragment d’au moins 6 acides aminés de celle-ci. Ces anticorps peuvent être monoclonaux ou polyclonaux.

Les anticorps contre les polypeptides tels que définis ci-dessus peuvent être préparés selon les techniques classiques bien connues de l’homme de métier (par exemple, Kohler et Milstein, 1975 ; Kozbor et al. 1983, Martineau et al., 1998). Un anticorps selon l’invention pourra comprendre un marqueur détectable isotopique ou non isotopique, par exemple fluorescent, ou encore être couplé à une molécule telle que la biotine selon des techniques bien connues de l’homme de métier.

Un autre volet de l’invention a trait aux moyens de sélection formés par des sondes pour la détection de plantes résistantes à au moins un potyvirus, ces sondes étant prises en elles-mêmes. On définit dans ce volet des sondes pour la détection de plantes résistantes à au moins un potyvirus.

Une première catégorie de sondes est caractérisée en ce que chaque sonde comprend au moins une séquence correspondant à tout ou partie des SEQ ID NO: 2, 4, 6, et 8. Au sein de cette première catégorie, les sondes comprenant au moins une séquence correspondant à tout ou partie de SEQ ID NO: 2, 4, 6, et 8, et notamment à tout ou partie de la portion codant pour la région de la protéine eIF4E définie par la séquence générale (I) sont tout spécialement préférées.

SEQ ID NO: 6 est une sonde de sensibilité issue du piment Yolo Wonder. Elle se distingue de SEQ ID NO: 8, qui est une sonde de résistance issue du piment Yolo Y, par deux bases nucléotidiques. Ces mutations montrées sur SEQ ID NO: 6 & 8, correspondent aux sites de restriction TspRI pour SEQ ID NO: 6 et MnlI pour SEQ ID NO: 8, marquant respectivement la sensibilité aux potyvirus dans Yolo Wonder et la résistance aux potyvirus dans Yolo Y.

Ces sondes sont utilisées pour distinguer les plantes résistantes et sensibles, soit par hybridation sélective et détection de la présence ou de l’absence d’un signal d’hybridation, soit par digestion par une enzyme de restriction appropriée capable de cliver différenciellement l’allèle de sensibilité et l’allèle de résistance, par exemple EcoRI, TspRI, ou MnlI suivie de l’hybridation de la sonde avec le produit de restriction. La distinction entre les plantes sensibles et les plantes résistantes se fait dans ce dernier cas par la différence de taille des fragments hybridés.

La présente invention fournit également des outils permettant de réaliser un autre procédé de sélection conforme au premier mode de mise en oeuvre du procédé selon l’invention, tel que défini ci-dessus. Selon ce premier mode, une amplification par
PCR de la séquence $eIF4E$ est tout d'abord effectuée. L’amplification est suivie d’une digestion sélective par une enzyme de restriction. Les outils qui interviennent sont donc de deux types : enzyme(s) de restriction et amorce(s) PCR permettant d’amplifier la séquence $eIF4E$.

La présente invention a notamment pour objet un kit permettant de détecter un allèle de $eIF4E$ associé à la résistance ou à la sensibilité aux potyvirus, caractérisée en ce qu'il comprend :

- au moins une enzyme de restriction choisie parmi :
 a) une enzyme reconnaissant un site de restriction I présent dans au moins un allèle de $eIF4E$ associé à la sensibilité aux potyvirus, et absent des allèles de $eIF4E$ associés à la résistance aux potyvirus ;
 b) une enzyme reconnaissant un site de restriction II présent dans au moins un allèle de $eIF4E$ associé à la résistance aux potyvirus, et absent des allèles de $eIF4E$ associés à la sensibilité aux potyvirus ; et

- une paire d’amorces nucléotidiques permettant d’amplifier $eIF4E$ ou une portion de celui-ci comprenant le site de restriction I et/ou le site de restriction II.

Par exemple :

- pour détecter un allèle de $eIF4E$ associé à la sensibilité aux potyvirus, tel que celui représenté par la séquence SEQ ID NO: 6, l’ enzyme de restriction est $TspRI$, ou l’un de ses isoschizomères, reconnaissant un site de restriction défini par la séquence sens: NNCASTGNN^ et la séquence antisens ^NNGTSACNN. Les amorces nucléotidiques sont choisies de manière à permettre l’amplification de la totalité de la séquence de $eIF4E$ ou d’au moins une portion de celle-ci comprenant le site $TspRI$;

- pour détecter un allèle de $eIF4E$ associé à la résistance aux potyvirus, tel que celui représenté par la séquence SEQ ID NO: 8 l’ enzyme de restriction est $MvnI$, ou l’un de ses isoschizomères, reconnaissant un site de restriction défini par la séquence sens: CG^CG et la séquence antisens : GC^GC. Les amorces nucléotidiques sont choisies de manière à permettre l’amplification de la totalité de la séquence de $eIF4E$ ou d’au moins une portion de celle-ci comprenant le site $MvnI$;

Dans les deux cas on peut utiliser par exemple les amorces SEQ ID NO: 18 et SEQ ID NO: 19.

Comme indiqué ci-dessus, la détection de plantes sensibles ou résistantes aux potyvirus peut également s’effectuer par détection de la présence ou de l’absence de la forme sauvage ou mutante de la protéine $eIF4E$.
Ainsi, la présente invention englobe l'utilisation d'une protéine eIF4E de type sauvage ou mutante, telles que définies ci-dessus, ou d'un anticorps spécifique d'une desdites protéines, pour la sélection de plantes résistantes aux potyvirus.

De préférence, ladite protéine eIF4E est choisie parmi :

- la protéine représentée par la séquence polypeptidique SEQ ID NO: 3 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 5 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 7 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 9 ;
- le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO: 22 ;
- le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO: 23 ;

Ainsi, une catégorie de moyens de détection de la résistance aux potyvirus conformes à l'invention est caractérisée en ce que chacun de ces moyens comprend au moins un anticorps spécifique de tout ou partie d'une protéine eIF4E mutante conforme à l'invention, et notamment d'un fragment d'au moins 6 acides aminés de celle-ci portant une mutation associée à la résistance, telle que définie ci-dessus.

Par exemple, un moyen de détection de la résistance peut être constitué par un anticorps spécifique de tout ou partie d'une séquence polypeptidique telle que définie ci-dessus, notamment d'un fragment d'au moins 6 acides aminés de celle-ci portant une mutation associée à la résistance.

L'invention concerne également des moyens de détection de la sensibilité ou de la résistance aux potyvirus, constitués chacun par au moins une séquence d'acides aminés choisie dans le groupe comprenant les séquences suivantes :

- SEQ ID NO: 3 ;
- SEQ ID NO: 5 ;
- SEQ ID NO: 7 ;
- SEQ ID NO: 9 ;
- SEQ ID NO: 22 ;
- SEQ ID NO: 23 ;

L'invention concerne plus particulièrement des moyens de détection de la sensibilité aux potyvirus, constitués chacun par au moins un anticorps spécifique d'une séquence d'acides aminés choisie dans le groupe comprenant les séquences suivantes :

- SEQ ID NO: 3 ;
- SEQ ID NO: 5 ;
- SEQ ID NO: 7 ;
- SEQ ID NO: 9 ;
- SEQ ID NO: 22 ;
- SEQ ID NO: 23;

ou un fragment d'au moins 6 acides aminés de l'une desdites séquences, notamment un fragment de la région de celle-ci définie par la séquence (I).

De préférence, chaque sonde nucléotidique ou autre moyen de détection susvisé est pourvu d'au moins un marqueur, utile comme témoin de l'hybridation nucléotidique ou l'appariement antigène/anticorps au cœur de la détection de la séquence sensible. Avantageusement, ce marqueur est détectable par moyens spectroscopiques, photochimiques, biochimiques, immunochimiques ou encore chimiques. Par exemple un tel marqueur peut consister en un isotope radioactif de 32P, 3H, en une molécule fluorescente (5-bromodéoxyuridine, fluorescéine, acétylaminofluorène) ou encore en un ligand tel que la biotine. Concernant plus spécialement les sondes nucléotidiques, leur marquage est fait de préférence par incorporation de molécules marquées au sein des polynucléotides par extension d'amorces ou bien par ajout sur les extrémités 3' ou 5'.

De manière préférentielle, les séquences utilisées pour détecter les plantes résistantes aux potyvirus sont utilisées en tant que sondes ou amorces nucléotidiques.

Il va de soi que tous les moyens de détection susvisés ne sont pas limités strictement aux séquences désignées, mais englobent tous les équivalents constitués notamment par les séquences similaires conservant la fonction concernée et telles que définies ci-dessus.

L'homme du métier connaît parfaitement les différentes méthodes de préparation de sondes et d'amorces, y compris par clonage et par l'action d'enzymes de restriction, ou encore par synthèse chimique directe selon des techniques telles que la méthode au phosphodiester de Brown et al. (1979) ou la technique de support solide décrite dans le brevet européen No EP 0707592. Les acides nucléiques peuvent être marqués, si désiré, en incorporant une molécule ou un marqueur détectable comme exposé ci-dessus. Des exemples de marquage non radioactifs de fragments d'acides nucléiques sont décrits notamment dans le brevet français No FR 78 10 975 ou encore dans les articles de Urdéa et al., (1988) ou Sanchez-Pescador et al. (1988).

Selon un autre de ses aspects, la présente invention concerne l'utilisation des moyens de détection définis ci-dessus pour la détection de plantes résistantes/sensibles à au moins un potyvirus.

Conformément à l'invention, on met en œuvre en tant que repère(s) oligonucléotidique(s) de résistance/sensibilité aux potyvirus, les sites de restriction MvnI et/ou TspRI, au demeurant connus, des séquences eIF4E.

De préférence, les sites de restriction utilisés comme repère(s) oligonucléotidique(s) correspondent:
- à la séquence sens : CG^CG et à la séquence antisens : GC^GC
- et/ou à la séquence sens: NNCASTGNN^ et à la séquence antisens : ^NNGTSACNN.

L'exploitation de ces sites de restriction comme repères (ou marques ou étiquettes) de résistance aux potyvirus sur des séquences exprimées, est à rapprocher du premier mode de mise en œuvre du procédé de détection sus-décrit, dans lequel on a recours à des enzymes de restriction (par exemple : MvnI et/ou TspRI) et à des amorces d'amplification de la séquence eIF4E, par exemple :SEQ ID NO 18 et/ou 19.

Eu égard à la spécificité des sites de restriction MvnI & TspRI, la présente invention englobe également l'utilisation comme repère(s) oligonucléotidique(s) de résistance/sensibilité aux potyvirus, des susdits sites de restriction MvnI & TspRI, et, de préférence, du site de restriction correspondant à la séquence sens : CG^CG et à la séquence antisens : GC^GC et/ou du site de restriction correspondant à la séquence sens: NNCASTGNN^ et à la séquence antisens : ^NNGTSACNN.

Selon encore un autre de ses aspects, la présente invention concerne un kit de sélection de plantes résistantes/ sensibles aux potyvirus comprenant au moins un moyen de détection de type anticorps ou polynucléotide tels que définis supra. Le kit comprend le cas échéant les réactifs nécessaires à la réalisation d'une réaction d'hybridation ou d'amplification.

L'invention a également pour objet les plantes issues du procédé ci-dessus décrit et/ou de la mise en œuvre des outils et/ou de l'utilisation et/ou du kit de sélection définis ci-dessus. De préférence, ces plantes appartiennent à la famille des solanacées, des cucurbitacées, des crucifères et des composées. De manière encore plus préférée, elles sont choisies parmi les tomates, piments et/ou la laitue.

A titre d'exemple, les inventeurs réalisent le procédé objet de l'invention en suivant le protocole d'analyse RFLP (polymorphisme de longueur de fragments de restriction). Pour ce faire, les inventeurs ont utilisés un protocole classique de RFLP dans lequel les sondes objets de l'invention sont marquées au 32P et dans lequel l'ADN des plantes de piment à analyser est digéré par l'enzyme de restriction EcoRI. A l'issue de ce procédé, les inventeurs obtiennent des profils d'hybridation différents entre les plantes résistantes aux potyvirus et les plantes sensibles, permettant ainsi de sélectionner les plantes sensibles ou résistantes. Ces dernières pourront ensuite entrer dans un programme d'amélioration des plantes par croisements successifs.

L'invention ne concerne pas seulement la sélection de plantes résistantes ou sensibles aux potyvirus. En effet, dans la mesure où les inventeurs ont pu identifier le gène eIF4E déterminant une résistance récessive aux potyvirus, il est désormais envisageable d'obtenir de nouvelles variétés de plantes génétiquement modifiées, résistantes (ou sensibles) à au moins un potyvirus.
L'invention concerne donc un procédé non biologique d'obtention de nouvelles variétés de plantes génétiquement modifiées, résistantes (ou sensibles) à au moins un potyvirus, caractérisé en ce qu'il consiste essentiellement à faire en sorte qu'apparaisse et/ou à introduire un allèle de eIF4E associé à la résistance (ou à la sensibilité) audit potyvirus dans le génome de ces plantes.

Selon un mode avantageux de mise en œuvre de ce procédé, l'apparition de l'allèle de résistance est provoquée par la mise en œuvre d'une méthode sélectionnée dans le groupe comprenant :
- mutagenèse, avantageusement "Tilling",
- recombinaison homologue,
- surexpression,
- insertion/déletion,
- "gene silencing" / transgenèse,
- et leurs combinaisons.

Les outils susceptibles d'être mis en œuvre dans le susdit procédé non biologique d'obtention font également partie intégrante de la présente invention.

La présente invention a ainsi pour objet toute unité génétique construite comprenant un polynucléotide conforme à l'invention codant pour une protéine eIF4E mutante, placé sous contrôle d'éléments appropriés de contrôle de la transcription, et éventuellement de la traduction.

Ladite protéine eIF4E mutante peut avantageusement être choisie parmi les variants des séquences SEQ ID NO: 22 ou 23 associés à la résistance aux potyvirus.

La présente invention a aussi pour objet toute unité génétique construite caractérisée en ce qu'elle comprend :
- au moins un outil génétique A/ et/ou B/ tel que défini supra,
- et/ou au moins une séquence nucléotidique choisie dans le groupe comprenant tout ou partie des séquences suivantes :
 - SEQ ID NO: 6
 - SEQ ID NO: 8
- et/ou au moins une séquence nucléotidique codant pour facteur eIF4E et comprenant au moins un site de restriction MvnI. et/ou TspRI, et, de préférence, au moins un site de restriction correspondant à la séquence sens : CG^CG et à la séquence antisens : GC^GC et/ou un site de restriction correspondant à la séquence sens: NNCASTGNN^ et à la séquence antisens : ^NNGTSACNN.

Un autre outil de transformation génétique couvert par l'invention est constitué par tout vecteur de transformation de cellules végétales comportant au moins une unité génétique construite telle que visée ci-dessus. Il peut s'agir de tout vecteur de clonage connu et approprié (phages / plasmides / cosmides).
Les cellules végétales et les microorganismes transformés au moyen d'au moins un vecteur ou d'au moins une unité génétique construite tels que définis supra, sont également visées par l'invention.

A un niveau supérieur, l'invention englobe les plantes transformées au moyen d'au moins un vecteur et/ou d'au moins une unité génétique construite et/ou de cellules végétales transformées et/ou de microorganismes transformés, tels qu'ils ont été décrits ci-dessus.

L'homme du métier connaît bien toutes les techniques directes ou indirectes de modification génétique. Des détails complémentaires sont donnés dans les exemples qui suivent.

DESCRIPTION DES FIGURES

- La Figure 1 représente le gel issu d'une analyse par southern blot et montrant les différences de profils du marqueur eIF4E de résistance aux potyvirus, observées pour différents piments sensibles ou résistants. L'ADN génomique de piment est digéré par l'enzyme EcoRI et hybridé avec le cDNA eIF4E de tabac – SEQ ID NO: 2 – (exemple 3).

- La Figure 2 représente le gel montrant les amplifications PCR du gène eIF4E impliqué dans la résistance aux potyvirus chez le piment et met en évidence un site de restriction MvnI différentiel entre sensible et résistant. (exemple 4).

- La Figure 3 représente l'alignement de la séquence protéique de eIF4E de différentes variétés de piment, sensibles ou résistantes aux potyvirus.

- La Figure 4 représente l'alignement de la séquence protéique de eIF4E de différentes variétés de tomate, sensibles ou résistantes aux potyvirus.

EXEMPLES :

Exemple 1 : Obtention des sondes tomate et piment

Les cDNA de tomate et de piment ont été obtenus par la technique de 3' et 5' RACE (System for Rapid Amplification of cDNA Ends commercialisé par la société Invitrogen™) à partir de l'extraction d'ARN total de tomate et de piment et à l'aide d'amorces dégénérées définies sur un alignement des séquences de eIF4E de tabac, tomate et Arabidopsis. La partie 3' du cDNA a été clonée par 3'RACE. Des amorces définies entre le TAG et la queue polyA des séquences obtenues par 3'RACE ont été utilisées pour obtenir les cDNA complets par 5'RACE.

Amorces utilisées pour les deux étapes de la 3'RACE :

Etape 1 : TCTAGATACAAYAATATCCAYCACCCAAGCAA = SEQ ID NO: 10

Etape 2 : TCTAGATGGRGGCAGACTTTCCAYTGTCTT= SEQ ID NO: 11

Les amorces utilisées pour les trois étapes de la 5'RACE sont illustrées par le Tableau I ci-après:
<table>
<thead>
<tr>
<th>Etape 1</th>
<th>Piment</th>
<th>Tomate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTA TGA GAA ACT AAA CTA</td>
<td>AAA TGA GAA ACT AAA CTA</td>
</tr>
<tr>
<td></td>
<td>= SEQ ID NO: 12</td>
<td>= SEQ ID NO: 15</td>
</tr>
<tr>
<td>Etape 2</td>
<td>CAA CTT TTC AGT ACG AAT TGT GTT T</td>
<td>CTT TCC AGT ACG AAT TGT GTT TCT T</td>
</tr>
<tr>
<td></td>
<td>= SEQ ID NO: 13</td>
<td>= SEQ ID NO: 16</td>
</tr>
<tr>
<td>Etape 3</td>
<td>TCC GAC ATT GCA TCA AGA ATT ATA C</td>
<td>CTG CAT CAA GAA CTA TAC GGT GTA A</td>
</tr>
<tr>
<td></td>
<td>= SEQ ID NO: 14</td>
<td>= SEQ ID NO: 17</td>
</tr>
</tbody>
</table>

Exemple 2 : Test d'hybridation et de sélection des plantes résistantes aux potyvirus (résistance contrôlée par le locus pvr2/pvr1/pvr5)

Extraction de l'ADN des plantes à analyser

L'extraction de l'ADN des plantes (Solanacées, Cucurbitacées, Crucifères et Composées) suit les protocoles d'extraction standard basée sur le protocole de micro-extraction d'ADN de Fulton et Tanksley, 1995

Digestion de l'ADN et séparation sur gel d'agarose

Le protocole suivi utilise 2,5U d'enzyme / µg d'ADN. Le volume enzymatique doit être inférieur à 10% du volume réactionnel. Le volume réactionnel est calculé en fonction de la taille du puits : il dépend du type de cuve et de peigne utilisés et du volume du gel (300ml en général). Le volume du tampon spécifique de l'enzyme et de spermidine doivent représenter chacun 10% du volume réactionnel :

- x µl ADN
- 1X tampon
- 1X spermidine (4 mM)
- 2,5 U d'enzyme / µg d'ADN
- qsp H2O volume réactionnel

La digestion est réalisée à 37°C toute la nuit. En parallèle, sont préparés des échantillons de phages λ digérés par Hind III : 0,5µg / puits. Après digestion, la bonne digestion des ADN est vérifiée sur gel d’agarose 1%, TAE 1X avec 1 µl de produit de digestion. Si la digestion est correcte, le tampon de charge est alors ajouté. Le tampon de charge doit représenter au minimum 10% du volume total (ou 20%). Le dépôt est alors effectué sur un gel de 300ml, NEB 1X, 1% d'agarose contenant 10µl de BET. La migration se fait à 25V pendant 24h dans du tampon NEB 1X (arrêt de la migration à 2 cm du bord du gel).

Transfert sur membrane de nylon

Une membrane Hybond N+ et 1 papier Wattman à la taille du gel sont découpés. Dans une cuve plate contenant 1L HCl 0,25N, le gel est mis à tremper 30 min. sous agitation (le bleu devient jaune).
Pendant ce temps, le blotteur est préparé en :
- mouillant une feuille de papier Wattman dans du SSC 2X et en la plaçant sur la plaque poreuse du blotteur.
- puis en mouillant la membrane et en la plaçant sur le Wattman qui sera recouvert par le cache plastique.

Le gel est rincé dans une cuve contenant de l’H₂O distillée, puis placé sur le cache du blotteur en évitant les bulles et en vérifiant l’étanchéité du système. Le blotteur est mis en route à 50 mb max. Un peu de soude 0,4N est versée sur le gel. Deux éponges imbibées de soude sont placées sur le gel qui sera recouvert de soude jusqu’à saturation.

Le transfert s’effectue en 2h à 3h. Les membranes sont rincées dans un bain de SSC 2X durant 10 à 15 min puis séchées à l’air libre et cuites 2h à 80°C.

Préparation des sondes

La préparation des sondes par marquage PCR au ³²P concerne des sondes de 3 kb maximum, amplifiées par PCR ou directement sur plasmides, permettant de révéler les bandes majeures pour une sonde, de concentration entre 1 et 5 ng/µl.

Les conditions de réaction sont résumées dans le tableau 2 ci-après

TABLEAU 2

<table>
<thead>
<tr>
<th></th>
<th>Concentration finale</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>25,6 µl</td>
</tr>
<tr>
<td>Tp Promega 10 X</td>
<td>4 µl 1X</td>
</tr>
<tr>
<td>MgCl₂ Promega</td>
<td>2,4 µl</td>
</tr>
<tr>
<td>Mix (ATG 50 µM+dCTP 5µM)*</td>
<td>2 µl ATG 2,5µM ; dCTP 0,25 µM</td>
</tr>
<tr>
<td>Taq 2U/µl</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (5pM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>α³²P-dCTP (1000Ci/mmole, 10µCi/µl)</td>
<td>3 µl</td>
</tr>
<tr>
<td>ADN sonde</td>
<td>1 µl</td>
</tr>
<tr>
<td>Volume réactionnel final</td>
<td>40 µl</td>
</tr>
</tbody>
</table>

* : Mix (ATG 50µM+dCTP5µM) pour marquage des sondes RFLP par PCR.

20 Dilution de dATP, dTTP, dGTP à 10 mM, à partir des solutions mères à 100mM :
- 5 µl dNTP à 100mM
- 45µl H₂O

25 Dilution de dCTP à 1 mM, à partir de la solution mère à 100 mM :
- 0,5µl dCTP à 100 mM
- 49,5 µl H₂O

Mix ATG + dCTP :
- 2,5 µl dATP à 10 mM concentration finale : 50µM
- 2,5 µl dTTP à 10 mM concentration finale : 50µM
- 2,5 µl dGTP à 10 mM concentration finale : 50µM
- 2,5 µl dCTP à 1 mM concentration finale : 5µM
- 490 µl H₂O

Le marquage des sondes se fait au cours de 30 cycles PCR de :
- 30 s à 94°C
- 45 s à 52 °C
- 1 min 30 à 72 °C

Une fois marquées, les sondes sont ensuite dénaturées selon le protocole suivant :
- ajouter chaque sonde dans un tube contenant 160 µl de NaOH 0,8 N + 2 à 5 µl de Lambda marqué (par random priming)
- incuber 5 min
- neutraliser avec 200 µl de Tris HCl 1M

Hybridation

Protocole d'après Church et Gilbert, (1984)

a- Préhybridation à 65°C toute la nuit

On utilise 20 ml de tampon d'hybridation* par tube pour 2 à 6 demi blots. 25 ml de tampon au-delà, sans dépasser 10 demi blots par tube. Les membranes sont humidifiées dans une boîte contenant le tampon d'hybridation avant d'être légèrement égouttées puis roulees (toutes ensemble) et mises dans le tube.

Vérifier pendant la préhybridation que les tubes sont étanches et que les membranes se déroulent bien, sinon les changer de sens.

*composition du tampon de pré-hybridation et d'hybridation :

Pour 500 mL : 21,91 g NaCl; 18,38 g Na Citrate; 380 mL H₂O; 15 mL SDS 20%; 25 mL NaPO₄ 1M pH 7,5; 25 mL Denhardt 100X; 5 mL EDTA 0,25M; 50 mL Dextran sulfate 50%.

b- Hybridation à 65°C au moins 16 heures

On laisse décroître la température des tubes avant de les ouvrir pour éviter de mouiller le pas de vis. On ajoute la sonde dénaturée (5 min dans NaOH 0,8 M puis arrêt de la dénaturation Tris-HCl 1M). Dans ces conditions, l'hybridation peut durer 48 ou 72 heures.

c- Lavages

Les boîtes (ou bacs) sont lavées dans un large excès de tampon (1% SDS (Serva) 40mM NaPi préchauffé à 65°C. Pour environ 5-10 demi membranes :
- 1 lavage de 20 min. à 65°C sous agitation. Pour laver, transférer membrane par membrane dans un nouveau bac contenant le tampon préchauffé. Les tampons de
lavage radioactifs (au moins les 2 premiers) sont versés dans un bidon prévu à cet effet.
- 1 rinçage de 2-3 min. dans un tampon neuf chauffé à 65°C.

d- Exposition

Les membranes sont essorées sur un lit de papier absorbant constitué d'un champ de papier bleu recouvert de papier blanc type rouleau de Tork ; elles ne doivent pas sécher. Elles sont ensuite mises dans des pochettes plastiques pour l'exposition, placées dans une cassette avec 1 écran intensificateur.

Selon le signal mesuré au compteur Geiger, elles sont exposées à -80°C de une nuit à quelques jours.

e - Déshybridation des membranes avant réhybridation

Les membranes sont déshybridées dans une solution 0,1% SDS 1 mM EDTA chauffée à 80°C (1 litre pour 40 demi-membranes) pendant 20 min à température ambiante. Les membranes sont ensuite rincées 10 min. dans une solution 2X SSC. Enfin, les membranes sont essorées puis stockées humides dans des pochettes en plastique à 4°C.

Exemple 3 : Corrélation entre la résistance aux potyvirus et eIF4E

Le gel présenté en Figure 1 annexée montre la différence de profils observée entre le marqueur _eIF4E_ et la résistance aux potyvirus contrôlée par le locus
pvr2. Cette co-ségrégation complète entre la résistance aux potyvirus et une copie du gène \(eIF4E \) a été observée sur une descendance en ségrégation de plus de 500 plantes.

L'ADN génomique de piment est digéré par l'enzyme \(EcoRI \) et hybridé avec le cDNA \(eIF4E \) de tabac - SEQ ID NO: 2 - (les mêmes profils RFLP sont obtenus par hybridation avec le cDNA de tomate ou le cDNA de piment).

Les plantes sensibles (S) possèdent le fragment de restriction à 7 kb "bas" alors que les plantes réistantes (R) possèdent les fragments de restriction à 7 kb "haut". Les plantes hétérozygotes (Ht) présentent les deux fragment de restriction et sont sensibles (car gène récessif).

Exemple 4 : Mise en évidence de mutations de \(eIF4E \) associées à la résistance aux potyvirus

1) **Mise en évidence de sites de restriction différentiels entre les copies de d'un génotype de piment sensible aux potyvirus et d'un génotype résistant.**

Par les techniques de séquençage classique, des mutations ponctuelles entre le gène \(eIF4E \) de la variété de piment "Yolo Wonder" (sensible au potyvirus et porteuse de l'allèle \(pvr2^1 \)) et celui de la variété de piment "Yolo Y" (résistant aux potyvirus et porteur de l'allèle \(pvr2^2 \)) ont été mises en évidence. Ainsi, en position 200, la séquence SEQ ID NO: 6 codante du \(eIF4E \) dans Yolo Wonder présente un T tandis que la séquence SEQ ID NO: 8 codante du \(eIF4E \) dans Yolo Y présente un A. De la même façon en position 236, la séquence codante de Yolo Wonder présente un T tandis que la séquence codante de Yolo Y présente un G.

La première mutation ponctuelle correspond à un site de restriction \(TspRI \) (ou ses isoschizomères) existant uniquement chez Yolo Wonder. Ce site de restriction différentiel a été validé par PCR sur le cDNA de Yolo Wonder et Yolo Y : définition d'amorces en 5' et en 3' du cDNA et digestion de l'amplifiat PCR par l'enzyme \(TspRI \).

(Même protocole que ci-dessous pour l'enzyme \(MvnI \) sauf que la digestion se fait à 70°C pour cette enzyme).

La seconde mutation ponctuelle correspond à un site de restriction \(MvnI \) (ou ses isoschizomères) existant uniquement chez Yolo Y. Ce site de restriction différentiel a été validé par PCR sur le cDNA de Yolo Wonder et Yolo Y : définition d'amorces en 5' et en 3' du cDNA et digestion de l'amplifiat PCR par l'enzyme \(MvnI \).

Réaction de PCR sur le cDNA :

Amorce sens : AAA AGC ACA CAG CAC CAA CA = SEQ ID NO: 18

Amorce antisens : TAT TCC GAC ATT GCA TCA AGA A = SEQ ID NO: 19

Les conditions de réaction sont illustrées par le tableau 3 ci-après.
TABLEAU 3

<table>
<thead>
<tr>
<th></th>
<th>Concentration finale</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>13.05 µl</td>
</tr>
<tr>
<td>Tp Promega 10 X</td>
<td>2.5 µl 1X</td>
</tr>
<tr>
<td>MgCl₂ Promega</td>
<td>2.0 µl</td>
</tr>
<tr>
<td>dNTP (4 µM @)</td>
<td>1.25 µl</td>
</tr>
<tr>
<td>Taq 2U/µl</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (10 pM)</td>
<td>1.5 de chaque µl</td>
</tr>
<tr>
<td>cDNA (10 ng/µl)</td>
<td>3 µl</td>
</tr>
<tr>
<td>Volume réactionnel final</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

[Volume réactionnel final]

Cycles d'amplification : 93°C-3 min/35 X (93°C-45 s/53°C-1 min/72°C-2 min)/72°C-10 min

Digestion par l'enzyme *MvnI* : 8 µl de produit PCR + 2 U d'enzyme + 1,3 µl de tampon de l'enzyme + 13,5 µl H₂O 2h à 37°C. Migration sur gel d'agarose 1,2% TAE 1X.

Le gel présenté en Figure 2 annexée montre les amplifications PCR du gène *eIF4E* impliqué dans la résistance aux potyvirus chez le piment et met en évidence un site de restriction *MvnI* différentiel entre sensible et résistant.

Bande 1 :
- amplifié PCR du gène *eIF4E* du piment Yolo Wonder sensible (S) au potyvirus - allèle pvr2+ -
- et absence de digestion enzymatique par *MvnI*.

Bande 2 :
- amplifié PCR du gène *eIF4E* du piment Yolo Y résistant (R) au potyvirus - allèle pvr2¹
- et mise en évidence du site de restriction MvnI.

Bande 3 :
- Marqueur de taille 1 kb ladder.

2) Mise en évidence de mutations de *eIF4E* associées à la résistance aux potyvirus.

Le séquençage du gène *eIF4E* de différentes variétés de piment sensibles ou résistantes aux potyvirus a fait apparaître des mutations, associées à la résistance aux potyvirus, dans la même région de *eIF4E*.

L'alignement de la séquence protéique de eIF4E de ces différentes variétés est représenté sur la Figure 3.

Légende de la figure 3 :

- YW = Yolo Wonder S / pvr2⁺
- DDL = Doux Long des Landes S / pvr2⁺
- PM1008 = Résistant au PVY(0)
- YY = Yolo Y / pvr2¹
- Avelar = allèle pvr2¹
- Vania = allèle pvr2¹
- PM994 = Résistant au PVY(0)
- Florida VR2 = Florida / pvr2²
C69 = lignée HD issue de l'hybride F1 entre CM334 et Yolo Wonder / pvr5
CM334 = Criollo de Morelos 334 / pvr5
PM1014 = Résistant au PVY(0)
Per = Perennial / résistance partielle (QTL) au locus pvr2
5 Souligné gras = mutation commune à tous les résistant sauf PM1008
Surligné gris = mutation spécifique à l’allèle pvr2\(^1\)
Gras non souligné = mutation spécifique à l’allèle pvr2\(^2\)
Souligné non gras = mutation spécifique à l’allèle pvr5
Surligné noir = mutation spécifique au génotype PM1008.
10 Ces différents variants sont également représentés dans la séquence SEQ ID NO: 22

Exemple 5 : Mise en évidence de la syténie entre piment et tomate pour les gènes récessifs de résistance aux potyvirus (gène pot-1 chez la tomate et locus pvr2 chez le piment)

Cinq gènes majeurs et plusieurs QTL impliqués dans la résistance aux potyvirus sont cartographiés sur le génome du piment. Grâce à l’utilisation de sondes RFLP communes pour cartographier le génome et grâce à la forte conservation de l’ordre des marqueurs entre le génome de la tomate et celui du piment, les facteurs de résistance aux potyvirus du piment sont placés sur la carte de la tomate. La localisation des loci de résistance aux potyvirus du piment sur les chromosomes de tomate ainsi que celle des marqueurs RFLP liés est récapitulée dans le tableau 4 avec les références d’origine. Dans l’objectif d’établir précisément la correspondance entre les régions génomiques du piment et de la tomate avec les gènes de résistance aux potyvirus, les marqueurs RFLP TG135 et Cab3 sont ajoutés à la carte pré-existante de liaison génétique du piment (Lefebvre et al, soumis).

<table>
<thead>
<tr>
<th>Gène</th>
<th>Spectre</th>
<th>Marqueurs liés(^b)</th>
<th>Position chromosomique chez la tomate</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvr1</td>
<td>TEV, PepMoV(^a)</td>
<td>TG56, TG135</td>
<td>3</td>
<td>Murphy et al. 1998</td>
</tr>
<tr>
<td>pvr2</td>
<td>PVY, TEV(^a)</td>
<td>CT31, TG132</td>
<td>3</td>
<td>Caranta et al. 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caranta et al., unpublished</td>
</tr>
<tr>
<td>pvr3</td>
<td>PepMoV(^a)</td>
<td>nd(^c)</td>
<td>nd(^c)</td>
<td>Murphy et al.1998</td>
</tr>
<tr>
<td>pvr4</td>
<td>PVY, PepMoV</td>
<td>CD72, CT124</td>
<td>10</td>
<td>Caranta et al. 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grube et al. 2000</td>
</tr>
<tr>
<td>pvr5</td>
<td>PVY(^a)</td>
<td>CT31</td>
<td>3</td>
<td>Caranta et al., unpublished</td>
</tr>
<tr>
<td>pvr6</td>
<td>PVMV</td>
<td>TG57</td>
<td>9</td>
<td>Caranta et al. 1996</td>
</tr>
<tr>
<td>pvr7</td>
<td>PepMoV, PVY(^a)</td>
<td>CD72, CT124</td>
<td>10</td>
<td>Grube et al. 2000</td>
</tr>
</tbody>
</table>

\(^{a}\) seul le spectre général de résistance est indiqué pour chaque gène, certains de ces gènes de résistance peuvent être détournés par des souches virulentes.
les marqueurs RFLP sont obtenus en utilisant au hasard d’ADN génomique de tomate (TG) ou des sondes ADNc d’épiderme de feuille de tomate (CD and CT).

\(^{c}\) nd = non déterminé

a- Marquage AFLP et RFLP du gène pot-1

L’ADN total est extrait à partir d’environ 1 g de feuilles fraîches de plantes F2 (Caranta *et al.*, 1997).

Les échantillons d’ADN de 6 plantes F2 (issues de l’autofécondation de l’hybride F1 entre *Lycopersicon esculentum* *Mospomorist* et *L. hirsutum* PI247087) (*pot-1*/∗pot-1∗) ayant généré des familles F3 complètement sensibles au PVY souche N 605 et les échantillons d’ADN de 9 plantes F2 ayant généré des familles F3 complètement résistantes au potyvirus sont groupés pour une analyse ségrégeante en masse (bulked segregate analysis) et pour un étiquetage AFLP de *pot-1*.

Les marqueurs AFLP liés à pot-1 sont cartographiés sur les lignées d’introgression de *L. hirsutum* dans *L. esculentum* (Montforte and Tanksley, 2001) afin d’assigner *pot-1* à un chromosome de la tomate.

L’assignation est validée par la cartographie de marqueurs RFLP localisés sur le chromosome cible. La procédure RFLP est décrite par Saliba-Colombani *et al.* (2000). Le criblage du polymorphisme entre *Lycopersicon esculentum* *Mospomorist* (sensible aux potyvirus) et *L. hirsutum* PI247087 (résistant aux potyvirus) est réalisé avec 3 enzymes de restrictions (∗EcoRI*, *HindIII* et *XbaI*) et des marqueurs RFLP préalablement cartographiés chez la tomate (CT, ADNc de tomate dérivé de l’ARNm de tissu épidermique de tomate, TG, clones d’ADN génomique de tomate ; la sonde CAB3 codant pour un polypeptide lié à la chlorophylle a et b, Tanksley et al., 1992) Ce criblage permet de cartographier des marqueurs supplémentaires sur le chromosome 3.

L’analyse de ségrégation pour les marqueurs moléculaires (AFLP, RFLP) et pour les données de résistance sont analysés par le logiciel Mapmaker/Exp v. 3.0 avec un Lod minimum de 4.0 et un pourcentage de recombinaison maximum de 0,3. Le pourcentage de recombinaison est alors converti en distance de cartographie en centiMorgans (cM) en utilisant la fonction de cartographie Kosambi (Kosambi, 1944).

Ces résultats ont permis de localiser le gène *pot-1* de résistance au PVY chez la tomate sur le chromosome 3 et de montrer que ce gène est encadré par les mêmes marqueurs RFLP que le locus *pvr2* chez le piment.
b- Cartographie de eIF4E chez la tomate

En parallèle, le cDNA eIF4E de tomate a été cartographié par la méthode RFLP décrite précédemment sur les lignées d'introgression de *L. pennellii* dans *L. esculentum* (Eshed and Zamir, 1995). Ce travail a permis de localiser 5 copies du gène *eIF4E* chez la tomate. Une de ces copies a été localisée sur le chromosome 3, dans la même région génomique que le gène *pot-1* confirmant ainsi la synténie entre piment et tomate pour la résistance aux potyvirus et par conséquent la possibilité d'utiliser *eIF4E* comme marqueurs et outils de sélection de la résistance.

Cette mise en évidence de synténie entre le piment et la tomate pour les gènes récessifs de résistance aux potyvirus permet de dire que si *eIF4E* est le gène de résistance chez le piment, alors *eIF4E* est également le gène de résistance chez la tomate.

c-Clonage d'un gène eIF4E de tomate associé à la résistance aux potyvirus.

Selon la méthode 3' et 5' RACE PCR décrite dans l'exemple 1, l'ADNc d'un gène *eIF4E* de tomate similaire à celui isolé chez le piment a été isolé et cloné chez la tomate ; ce gène a été dénommé *eIF4E-2*.

La séquence codante de ce gène (variété 'Mospomorist' de *L. Esulentum*, sensible au PVY et au TEV) est représentée dans la liste de séquences sous le numéro SEQ ID NO: 2.

Par des techniques de séquençage classique, des mutations ponctuelles entre le gène *eIF4E-2* des génotypes de tomate *L. esculentum* 'Mospomorist' et *L. hirsutum* PI134417 (sensibles aux PVY et au TEV) et celui du génotype *L. hirsutum* PI247087 (résistant au PVY et au TEV, résistance contrôlée par le gène récessif *pot-1*) ont été mises en évidence.

L'alignement de séquences est représenté sur la Figure 4.

Légende : Mosp=Mospomorist; PI13=PI134417; PI24=PI247087
En gras et souligné : mutation observée seulement chez PI247087 ; En gras non souligné : mutation interspécifique entre *L. esculentum* et *L. hirsutum*.
La protéine eIF4E de *L. hirsutum* PI134417 et celle de *L. hirsutum* PI247087 sont également représentées par la séquence SEQ ID NO: 23

Exemple 6 : Criblage de la banque BAC du génome du piment avec des amorces définies sur la séquence codante eIF4E du génotype Yolo Wonder, démonstration de la co-ségrégation avec la résistance et détermination de la structure génomique du gène eIF4E qui co-ségrège avec pvr2.

Une banque BAC de piment a été construite à partir d'une lignée haploïde doublée HD208 issue de l'hybride F1 d'un croisement entre *Capsicum annuum* Yolo Wonder et *C. annuum* Perennial. HD208 contient l'allèle dominant de sensibilité pvr2+.
L’ADN de haut poids moléculaire a été extrait selon la méthode décrite dans http://www.ncgr.org/research/jag/papers00/paper300/indexpage300.html. L’ADN a ensuite été digéré partiellement et séparément par trois enzymes de restriction (EcoRI, BamHI et HindIII) afin d’augmenter la représentativité de l’ensemble du génome. L’ADN digéré a été cloné dans le vecteur pCUGIBAC1.

La banque BAC de piment est constituée de 239 232 clones avec une taille moyenne d’insert de 125kb ce qui correspond à une représentativité théorique de 10 équivalents génome (taille du génome du piment 3000 Mpb). Cette banque BAC a été organisée en 623 pools d’ADN en vue d’un criblage par PCR (1 pool correspond au mélange d’ADN de 384 clones).

Les amorces suivantes ont été définies sur la séquence codante de eIF4E de Yolo Wonder :
- Pim1 : 5’ AGA CTT TCA TTG TTT CAA GCA TAA 3’ = SEQ ID NO: 20
- Pim4 : 5’ GAT TAG AAA GTG CAA ACA CCA ATA C 3’ = SEQ ID NO: 21

Ce couple d’amorces amplifie sur le cDNA une bande de 493 pb et sur l’ADN génomique de HD208 une bande de 1800 pb. Ce couple d’amorces a été utilisé pour cribler la banque BAC de piment. Quatre clones BAC ont été identifiés portant la bande de 1800 pb (Clones 27-BI, 5-2H, 111-4H et 184-4H).

Ces quatre clones BAC ont été digérés par EcoRI et les profils de restriction montrent qu’ils sont chevauchants et correspondent donc bien à un même locus. Tous les clones BAC révèlent une bande EcoRI de 7 kb qui a été clonée dans un vecteur pGEM3Zf. Cette bande de 7kb, obtenue par digestion EcoRI correspond à celle qui co-sécrète avec la sensibilité aux potyviruses (voir exemple 3)

\[(1 = clone 27-BI ; 2 = clone 5-2H ; 3 = clone 111-4H ; 4 = clone 184-4H)\]

La présence de l’ampliflat de 1800 pb dans ce fragment de 7 kb confirme que ces quatre clones BAC portent le gène eIF4E correspondant au cDNA cloné. Le séquençage de cet insert de 7 kb a permis de définir la taille du gène qui est de 5500 pb et de définir la structure exon/intron : 5 exons et 4 introns.

Exemple 7 : Expérience d’expression transitoire du cDNA eIF4E de Yolo Wonder dans un génotype de piment résistant (porteur de l’allèle pvr21) pour validation du rôle de eIF4E dans la sensibilité aux Potyvirus.

Afin de valider l’hypothèse que l’allèle de sensibilité pvr2+ correspond au gène eIF4E de Yolo Wonder, des expériences d’expression transitoire du cDNA eIF4E de Yolo Wonder via un vecteur viral PVX (Potato Virus X) (Chapman et al., 1992) sont réalisées sur un génotype résistant Yolo Y, porteur de l’allèle pvr2'.

Le cDNA eIF4E issu du génotype sensible Yolo Wonder est cloné de manière orientée dans un vecteur d’expression PVX-CES-35S au site de clonage Clal et Sall.
Le génotype résistant (porteur de l'allèle pvr2) Yolo Y est co-inoculé avec ce plasmide recombinant et avec le pathotype 0 du Potato Virus Y (PVY). L'expression transitoire du gène eIF4E issu du génotype sensible Yolo Wonder via le vecteur PVX recombinant permet au PVY de se multiplier dans le génotype résistant. Le PVY est détecté par la méthode ELISA ou RT-PCR (Legnani et al., 1995, 1996, Dogimont et al., 1996).

Les deux génotypes de C. annuum Yolo Wonder et Yolo Y ayant reçu le plasmide recombinant sont sensibles au PVY : on détecte le virus par ELISA et RT-PCR sur feuilles inoculées et feuilles systémiques 10 jours après inoculation.

De la même manière, des allèles eIF4E issus de Yolo Wonder et Yolo Y, qui sont tous deux sensibles aux TEV (Tobacco etch virus), ont été exprimés chez un génotype de piment résistant au TEV : Florida VR2. On observe que cette expression permet la multiplication du TEV (détectée par ELISA et RT-PCR) chez ce géniteur résistant.

Le cDNA eIF4E-2 de tomate obtenu à partir de la variété Mospomorist (portant l'allèle de sensibilité SEQ ID NO: 4) a également été exprimé selon le même protocole dans le génotype de piment résistant Yolo Y.

On observe également la restauration de la sensibilité au PVY des piments Yolo Y exprimant le cDNA eIF4E-2 de tomate.

Ces résultats confirment l'implication de eIF4E dans la sensibilité à différents potyvirus, et montre en outre que ce système fonctionne en hétérologue (gène de la tomate qui fonctionne chez le piment).

Exemple 8 : Recherche de mutants dans le gène eIF4E et dans les gènes du complexe d'initiation de la traduction des ARN pour la création de plantes résistantes aux potyvirus.

Les membres de la famille multi-génique eIF4E appartiennent à un complexe d'au moins 8 protéines formant le complexe d'initiation de la traduction dans les cellules eucaryotes (Browning 1996).

L'identification et la caractérisation de mutants dans eIF4E et dans les autres gènes du complexe d'initiation de la traduction pour la création de plantes résistantes aux potyvirus se déroule en 4 étapes et utilise un système de TILLING (Targeting Induced Local Lesions IN Genomes, McCallum et al., 2000) :

(1) Génération d'une collection de mutants de tomate par mutagénèse chimique. Le génotype choisi est une microtomate, Lycopersicon esculentum Microtom qui présente des caractéristiques biologiques intéressantes (Meissner et al., 2000) : sensible aux potyvirus (PVY, TEV et PVMV), croissance à haute densité (1000 plantes/m2) et temps de génération de 3-4 mois. Les mutations sont obtenues par mutagénèse chimique à l’éthyl-méthyl sulfonate (EMS) (Kooimeef et al., 1982) :
mutagénèse sur 30 000 graines, semis des mutants et fabrication de la génération M2 à partir de 5000 plantes M1.

(2) Extraction d'ADN de 20 plantes par famille M2 et constitution de pools d'ADN en 3 dimensions à partir d'une population de 100 000 plantes M2 (5000 familles).

(3) Amplification par PCR des gènes cibles et recherche des mutations par HPLC dénaturante. Les séquences des gènes impliqués dans le complexe d'initiation de la traduction sont disponibles sur le site http://www.tigr.org/tdb/lgi. Les produits PCR sont ensuite dénaturés puis appariés pour permettre la formation d'hétéroduplexes. Les mutations sont ensuite détectées soit par HPLC dénaturante (McCallum et al., 2000) soit par une enzyme qui permet la détection des "mismatch" dans les hétéroduplex (enzyme CEL1, Oleykowski et al., 1998).

(4) Caractérisation des mutants pour évaluation de leur comportement vis-à-vis des potyvirus : passage d'un phénotype sensible à un phénotype résistant. La procédure d'inoculation et de détection des potyvirus (Potato virus Y, Tobacco etch virus, Pepper veinal mottle virus) est identique à celle décrite dans l'exemple 3.

Exemple 9 : Création de plantes résistantes aux potyvirus par des méthodes pouvant impliquer la transgénèse.

Alternativement à l'exemple 8, l'allèle de résistance du gène elf4E (identifié ici chez le piment) ou tout autre allèle de elf4E qui confère la résistance aux potyvirus (identifié à la base des exemples 1 à 8) peut être transféré in planta par des méthodes de type mutagénèse dirigée (Hohn et al., 1999), recombinaison homologue (Kempin et al., 1997) ou par des méthodes de surexpression. Dans les expériences de surexpression, l'allèle d'elf4E qui confère la résistance est exprimé sous un promoteur fort de type 35S du virus CaMV par transgénèse in planta (Jones et al., 1992; Bevan 1984).

Des plantes résistance peuvent également être créées par knock-out du gène elf4E endogène par des méthodes de type "gene silencing" (Post Transcriptionnal Gene Silencing) et l'expression simultanées par transgénèse de la forme de elf4E conférant la résistance aux potyvirus. Un knock-out spécifique par PTGS peut-être réalisé en le digérant contre le 5' UTR du gène elf4E endogène; la forme d'elf4E qui confère la résistance exprimée par transgénèse ne portera pas la séquence 5' UTR du elf4E endogène. Cette spécificité du knock-out par PTGS contre les 5' UTR est basée sur les nouvelles données issues de la compréhension du mécanisme de PTGS (Nishikura 2001).
Bibliographie

Bevan et al., 1984, NAR 12, 8711-8721
Bos, 1969, Meded. Fac. Landbouwwet Gent. 34, 875-887
Browning, 1996. Plant Mol. Biol. 32:107-144
Caranta et al., 1997 Molecular Plant-Microbe Interactions 10(7), 872-878
Church et Gilbert 1984, PNAS 81, 1991-1995
Dogimont et al., 1996. Euphytica 88:231-239
Dougherty et Carrington, 1988. Annual review of Phytopathology 26, 123-143
Fraser, 1992. Euphytica 63:175-185
Fulton et Tanksley, 1995.
Hohn et al., 1999, PNAS 96, 8321-8323
Jones et al., 1992, Transgenic research 1, 285-297
Kempin et al., 1997, Nature 389, 802-803
Kohler et Milstein, 1975 Nature 256, 495
Kozbor et al. 1983, Hybridoma 2 (1), 7-16
Légnani et al, 1996, Plant disease, 80 (3), 306-309
McCormick et al., 1986. Plant Cell Reports 5:81-84
Martineau et al., 1998, Journal of Molecular Biology 280 (1), 117-127
Murphy et al., 1990, Virology 178, 285-288
Nishikura, 2001, Cell 107, 415-418
Oleykowski et al., 1998. Nucleic Acids Res. 26:4597-4602
Rudd K et al., 1998. J. Biol. Chem. 273 (17) : 10325-10330
Sambrook et al., 1989 Molecular Cloning: A Laboratory Manual,
Urdea et al., 1988. Nucleic Acids Research. 11 : 4937-4957
REVENDICATIONS

1) Procédé de sélection de plantes résistantes aux potyviruses, caractérisé en ce qu'il comprend la détection dans les plantes à tester :
 - de la présence ou de l’absence d’une protéine eIF4E (dénommée ci-après : « protéine eIF4E de type sauvage ») comprenant une région définie par la séquence (I) ci-après

\[\text{X}_1\text{X}_2\text{X}_3\text{X}_4\text{X}_5\text{X}_6\text{X}_7\text{X}_8\text{X}_9\text{X}_{10}\text{X}_{11}\text{X}_{12}\text{X}_{13}\text{X}_{14}\text{X}_{15}\text{X}_{16}\text{GAD} \]

dans laquelle :

- \(\text{X}_1, \text{X}_2, \text{X}_3, \text{X}_4, \text{X}_5, \text{X}_6, \text{X}_7, \text{X}_8, \text{X}_9, \text{X}_{10}, \text{X}_{11}, \text{X}_{12}, \text{X}_{13}, \text{X}_{14}, \text{X}_{15}, \text{X}_{16} \) représentent chacun un acide aminé neutre ;
- \(\text{X}_5 \) et \(\text{X}_{14} \) représentent un acide aminé basique ;
- \(\text{X}_{11} \) représente un acide aminé acide ;
- \(\text{D}, \text{K}, \text{S}, \text{Q}, \text{A}, \text{W}, \text{G}, \text{R}, \text{Y}, \text{T}, \text{F}, \text{V}, \text{E}, \text{N}, \text{I}, \text{H}, \text{P}, \text{et L} \) ont leur signification usuelle en code 1-lettre, ou d’une séquence nucléotidique codant pour ladite protéine ;
- de la présence ou de l’absence d’une protéine eIF4E mutante comprenant une région dérivée de celle définie par la séquence (I), par substitution d’au moins un acide aminé neutre de ladite séquence (I) par un acide aminé chargé, et/ou substitution d’au moins un acide aminé chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée, ou d’une séquence codant pour ladite protéine ;
- et la sélection des plantes où l’on détecte une protéine eIF4E mutante ou une séquence nucléotidique codant pour ladite protéine, et où l’on ne détecte pas de protéine eIF4E de type sauvage ou de séquence codant pour ladite protéine.

2) Procédé de sélection de plantes utilisables pour l’obtention de plantes résistantes aux potyviruses, caractérisé en ce qu’il comprend la détection dans les plantes à tester de la présence ou de l’absence d’une protéine eIF4E mutante telle que définie dans la revendication 1, ou d’une séquence codant pour ladite protéine, et la sélection des plantes où l’on détecte ladite protéine eIF4E mutante ou une séquence codant pour ladite protéine.

3) Procédé selon une quelconque des revendications 1 ou 2, caractérisé en ce que ladite protéine eIF4E mutante comprend une région dérivée de celle définie par la séquence (I), par :

a) substitution d’au moins un des acides aminés \(\text{X}_1, \text{X}_2, \text{X}_3 \) ou \(\text{X}_4 \) de ladite séquence (I) par un acide aminé chargé, et

b) substitution d’au moins un des autres acides aminés neutres de ladite séquence (I) par un acide aminé chargé et/ou substitution d’au moins un acide aminé
chargé de ladite séquence (I) par un acide aminé neutre ou un acide aminé de charge opposée.

4) Utilisation d’un outil de sélection choisi parmi :
 a) un polynucléotide codant pour une protéine eIF4E de type sauvage ou mutante,
 telles que définies dans une quelconque des revendications 1 ou 3 ;
 b) un polynucléotide complémentaire du polynucléotide a) ;
 c) un fragment d’au moins 10 pb d’un polynucléotide a) ou b) ;

pour la sélection de plantes résistantes aux potyvirus.

5) Utilisation selon la revendication 4, caractérisée en ce que les plantes

sélectionnées font partie du groupe des solanacées, du groupe des crucifères, du groupe

des composées et/ou du groupe des cucurbitacées.

6) Utilisation selon la revendication 5, caractérisée en ce que les plantes

sélectionnées sont des solanacées.

7) Utilisation selon la revendication 4, caractérisée en ce que ladite

protéine eIF4E est choisie parmi :

 - la protéine représentée par la séquence polypeptidique SEQ ID NO: 3 ;
 - la protéine représentée par la séquence polypeptidique SEQ ID NO: 5 ;
 - la protéine représentée par la séquence polypeptidique SEQ ID NO: 7 ;
 - la protéine représentée par la séquence polypeptidique SEQ ID NO: 9 ;
 - le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO:
 22 ;
 - le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO:
 23 ;

8) Utilisation selon la revendication 4, caractérisée en ce que ledit

polynucléotide est choisi parmi :

 - le polynucléotide de séquence SEQ ID NO: 2 ;
 - le polynucléotide de séquence SEQ ID NO: 4 ;
 - le polynucléotide de séquence SEQ ID NO: 6 ;
 - le polynucléotide de séquence SEQ ID NO: 8 ;

ainsi que leurs complémentaires, ou les fragments d’au moins 10 pb

desdits polynucléotides ou complémentaires.

9) Procédé de sélection de plantes résistantes aux potyvirus, caractérisé

en ce que :

 - on digère l’ADN extrait d’une plante à tester par une enzyme de restriction
 appropriée ;
 - on dénaturer l’ADN digéré ;
 - on met ledit ADN dénaturé en présence d’une sonde constituée par un
 polynucléotide tel que défini dans une quelconque des revendications 4 à 8,
préalablement pourvu d’au moins un marqueur, de façon à réaliser l'hybridation entre ledit polynucléotide et ledit ADN ;
- on élimine l'ADN et la sonde non hybridés ;
- on révèle l'hybridation à l'aide du marqueur ;
- on sélectionne les plantes qui possèdent un profil d’hybridation correspondant à la co-ségrégation de la cible hybridée avec la sonde marquée et de l’allèle de résistance ou de sensibilité, la distinction entre les plantes sensibles et les plantes résistantes se faisant par la différence de taille des fragments hybridés.

10) Procédé selon la revendication 9, caractérisé en ce que l’enzyme de restriction utilisée est EcoRI.

11) Procédé de sélection de plantes résistantes aux potyvirus, caractérisé en ce que :
- on amplifie par PCR la séquence codante du gène eIF4E, à partir de l'ADN de la plante à tester ;
- on digère le produit d’amplification avec une enzyme de restriction appropriée ;
- on sépare les éventuels fragments obtenus ;
- et on sélectionne les plantes résistantes ou sensibles selon le profil de restriction dudit produit d’amplification.

12) Procédé selon la revendication 11, caractérisé en ce que les plantes sensibles aux potyvirus sont détectées par un profil de restriction faisant apparaître la présence d’un site de coupure par l’enzyme TspRI ou l’un de ses isoschizomères et les plantes résistantes aux potyvirus sont détectées par un profil de restriction faisant apparaître l’absence dudit site de coupure par TspRI ou l’un de ses isoschizomères et la présence d’un site de coupure par l’enzyme MvaI ou l’un de ses isoschizomères.

13) Procédé selon une quelconque des revendications 11 ou 12, caractérisé en ce que l’amplification par PCR de la séquence codante du gène eIF4E, est effectuée en utilisant comme amorces les oligonucléotides SEQ ID NO:18 et SEQ ID NO:19.

14) Polynucléotide codant pour une protéine eIF4E mutante telle que définie dans une quelconque des revendications 1 ou 3.

15) Polynucléotide selon la revendication 14, caractérisé en ce qu'il est représenté par la séquence SEQ ID NO: 8

16) Polynucléotide utilisable comme amorce pour l’amplification par PCR d’une séquence codant pour une protéine eIF4E de plante, caractérisé en ce qu’il est choisi dans le groupe défini par les séquences suivantes :
- SEQ ID NO: 18
- SEQ ID NO: 19.
17) Kit pour la mise en œuvre d’un procédé selon la revendication 11, caractérisé en ce qu’il comprend :

- au moins une enzyme de restriction choisie parmi :
 a) une enzyme reconnaissant un site de restriction I présent dans au moins un allèle de eIF4E associé à la sensibilité aux potyvirus, et absent des allèles de eIF4E associés à la résistance aux potyvirus ;
 b) une enzyme reconnaissant un site de restriction II présent dans au moins un allèle de eIF4E associé à la résistance aux potyvirus, et absent des allèles de eIF4E associés à la sensibilité aux potyvirus ; et

- une paire d’amorces nucléotidiques permettant d’amplifier eIF4E ou une portion de celui-ci comprenant le site de restriction I et/ou le site de restriction II.

18) Kit selon la revendication 17, caractérisé en ce qu’il comprend :

- une paire d’amorces définies par les séquences SEQ ID NO: 18 et SEQ ID NO: 19 ;

- au moins une enzyme de restriction choisie parmi TspRI ou l’un de ses isoschizomères et MvnI ou l’un de ses isoschizomères.

19) Utilisation d’un site de restriction par MvnI correspondant de préférence à la séquence sens : CG*CG et à la séquence antisens : GC*GC, et/ou d’un site de restriction par TspRI correspondant de préférence à la séquence sens : NNCATGNN^ et à la séquence antisens : ^NNGTACNN, comme marqueur(s) oligonucléotidique(s) de résistance ou de sensibilité aux potyvirus.

20) Utilisation d’une protéine eIF4E de type sauvage ou mutante, telles que définies dans une quelconque des revendications 1 ou 3 , ou d’un anticorps spécifique d’une des dites protéines, pour la sélection de plantes résistantes aux potyvirus.

21) Utilisation selon la revendication 20, caractérisée en ce que ladite protéine eIF4E est choisie parmi :
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 3 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 5 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 7 ;
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 9 ;
- le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO: 22 ;
- le groupe de protéines représenté par la séquence polypeptidique SEQ ID NO: 23 ;

22) Protéine eIF4E mutante telle que définie dans une quelconque des revendications 1 ou 3.

23) Protéine eIF4E mutante selon la revendication 22 choisie parmi :
- la protéine représentée par la séquence polypeptidique SEQ ID NO: 9 ;
- les variants de la protéine représentée par la séquence polypeptidique SEQ ID NO: 22;
- le groupe de la protéine représentée par la séquence polypeptidique SEQ ID NO: 23;

24) Anticorps spécifiquement dirigés contre une protéine eIF4E mutante selon une quelconque des revendications 1 ou 3, ou un fragment d'au moins 6 acides aminés dudit polypeptide.

25) Procédé non biologique d'obtention de plantes résistantes à au moins un potyvirus caractérisé en ce qu'il comprend l'introduction d'un allèle du gène eIF4E associé à la résistance audit potyvirus dans le génome desdites plantes.

26) Procédé selon la revendication 25, caractérisé en ce que l'apparition de l'allèle de résistance est provoquée par la mise en œuvre d'une méthode sélectionnée dans le groupe comprenant :
- mutagenèse, avantageusement "Tilling",
- recombinaison homologue,
- surexpression,
- insertion/délétion,
- "gene silencing"/ transgenèse,
- et leurs combinaisons.

27) Unité génétique construite, caractérisée en ce qu'elle comprend au moins un polynucléotide tel que défini dans une quelconque des revendications 4 à 6, 8.

28) Vecteur de transformation de cellules végétales, caractérisé en ce qu'il comporte au moins une unité génétique selon la revendication 27.

29) Cellules végétales transformées au moyen d'au moins un vecteur selon la revendication 28 ou d'au moins une unité génétique selon la revendication 27.

30) Microorganismes transformés au moyen d'au moins un vecteur selon la revendication 28 ou d'au moins une unité génétique selon la revendication 27.

31) Plantes transformées au moyen d'au moins un vecteur selon la revendication 28 ou d'au moins une unité génétique selon la revendication 27.
| YW | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| DDL | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| PM1008 | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| YY | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| Avelar | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| Vania | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| PM994 | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| Florida | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| C69 | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| CM334 | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| PM1014 | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |
| Per | MATAEMKTTTFDEAEVKLNANEADVEEGEIEVEETDDTTSYLSKEIATKHPLEHWSWT |

YW	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
DDL	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
PM1008	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
YY	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
Avelar	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
Vania	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
PM994	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
Florida	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
C69	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
CM334	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
PM1014	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK
Per	FWFDNPEAKSKQAAGSSLRNVRSTFEDFWGAYNINHPSKLVVGDALHCFFKHIEPK

YW	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
DDL	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
PM1008	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
YY	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
Avelar	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
Vania	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
PM994	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
Florida	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
C69	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
CM334	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
PM1014	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW
Per	WEDPVCAANGTWKMSFSKGGDSWLYTLAMICQHFDHEICAVGAVSVRGGEKISLW

YW	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
DDL	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
PM1008	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
YY	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
Avelar	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
Vania	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
PM994	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
Florida	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
C69	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
CM334	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
PM1014	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV
Per	TKNAANETAGVSVGKQKQLDYSDSFVFIFHDDAKRLDRNANKNYRTV

Fig 3
Fig 3
Mutations du gène eIF4E et résistance aux potyvirus
<220> (27). (27)
<223> Xaa = D ou E

<220> MISC_FEATURE
<222> (30). (31)

<220> MISC_FEATURE
<222> (37). (37)
<223> Xaa = K, L ou H

<220> MISC_FEATURE
<222> (42). (43)

<400> 1
Asp Xaa Xaa Xaa Lys Ser Xaa Gln Xaa Ala Trp Gly Ser Ser Xaa 1 5 10 15
Arg Xaa Xaa Tyr Thr Phe Ser Xaa Val Glu Xaa Phe Trp Xaa Xaa Tyr 20 25 30 35
Asn Asn Ile His Xaa Pro Ser Lys Leu Xaa Xaa Gly Ala Asp 35 40 45

<210> 2
<211> 961
<212> DNA
<213> Nicotiana sp.

<220> misc_feature
<222> (1). (961)
<223> cDNA du gène eIF4E

<220> CDS
<222> (148). (816)
<223>

<400> 2
 gaatgcagc cagggaaaca ttgactttt cctacgaata caaatccgga atttctgtga 60
gaaagttaac attttcagtt gaaacctac attcacaagggttcaaaatttccaga 120
cgaaagctat gtgttgagaa cacccaa atg gtt gat gaa gta gag aaa ccg gtg 174
 Met Val Asp Glu Val Val Glu Lys Pro Val 1 5
 tcg tta gag gaa tgc aag act aat act cgt gag gtt gaa gga gag gga 222
 Ser Leu Glu Glu Ser Lys Thr Asn Thr Arg Glu Val Glu Glu Gly 10 15 20 25
 gag atc gtg ggg gaa tca gac gat aac gtc ttc tta ggg aac cca 270
 Glu Ile Val Gly Glu Ser Asp Asp Thr Met Ser Ser Leu Gly Asn Pro 30 35 40
agc atg gca atg aaa cac gcg cta gaa cat tca tgg aca ttt tgg ttc 318
Ser Met Ala Met Lys His Ala Leu Glu His Ser Trp Thr Phe Trp Phe
45 50 55
gat aac cca tca ggg aaa tca aaa cag gct gct tgg ggt agt tcc att 366
Asp Asn Pro Ser Gly Lys Ser Lys Gln Ala Ala Trp Gly Ser Ser Ile
60 65 70
cga cca att tac acc ttc tcc act gtc gaa gat ttt tgg agt gtg tac 414
Arg Pro Ile Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Ser Val Tyr
75 80 85
aac aat atc cac cac cca agc aac aa ttg gct gtg ggg gca gac ttt cac 462
Asn Ile His His Pro Ser Lys Leu Ala Val Gly Ala Asp Phe His
90 95 100 105
tgt ttt aag aat aa att gag cca aag tgg gaa gat cct gtc tgc gcc 510
Cys Phe Leu Asn Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Cys Ala
110 115 120
aac gga gga aag tgg aca agc ttt tcg aag gtt aaa tct gat acc 558
Asn Gly Gly Leu Tyr Thr Met Ser Phe Ser Arg Gly Lys Ser Asp Thr
125 130 135
tgc tgg ctg tat acq ctg ctg gct atg att gqa gaa caa ttt gac tgc 606
Cys Leu Tyr Thr Leu Leu Ala Met Ile Gly Glu Gln Phe Asp Cys
140 145 150
gqa gat gaa att tgt gqa gct gtt att aat gtt cga gtt aga caa gaa 654
Gly Asp Glu Ile Cys Gly Ala Val Ile Asn Val Arg Val Arg Glu Glu
155 160 165
aaa ata gct ttg tgg acc aag aat gct gcc aat gaa aca gct cag gtc 702
Lys Ile Ala Leu Thr Arg Asn Ala Ala Asn Glu Thr Ala Glu Val
170 175 180 185
agc att ggt aac cag tgg aag caa ttt ctg gat tac aat gac tcg gtt 750
Ser Ile Gly Lys Gln Trp Lys Glu Phe Leu Asp Tyr Asn Asp Ser Val
190 195 200
ggc ttt ata ttt cat gat gat gca aag aag cta gac aga gct gcc aag 798
Gly Phe Ile Phe His Asp Ala Lys Lys Leu Asp Arg Ala Ala Lys
205 210 215
aat cgt tat tct gtg tag ttctatcgttt acaataggaa ttgtgacgaa 846
Asn Arg Tyr Ser Val
220
cacagttact gagaagcagt cacctgtggtc tgcctgttttt gaccgcttac attggtacct 906
acagtttctca taaggaatt tgtttgtttt tgagaaaaaa aaaaaaa aaaaa
961

<210> 3
<211> 222
<212> PRT
<213> Nicotiana sp.

<220>
<221> misc_feature
<222> (1)..<(961)
cDNA du gène eIF4E

3
Met Val Asp Glu Val Glu Lys Pro Val Ser Leu Glu Glu Ser Lys Thr
1 5 10 15
Asn Thr Arg Glu Val Glu Glu Gly Glu Ile Val Gly Glu Ser Asp
20 25 30
Asp Thr Met Ser Ser Leu Gly Asn Pro Ser Met Ala Met Lys His Ala
35 40 45
Leu Glu His Ser Trp Thr Phe Trp Phe Asp Asn Pro Ser Gly Lys Ser
50 55 60
Lys Gln Ala Ala Trp Gly Ser Ser Ile Arg Pro Ile Tyr Thr Phe Ser
65 70 75 80
Thr Val Glu Asp Phe Trp Ser Val Tyr Asn Asn Ile His His Pro Ser
85 90 95
Lys Leu Ala Val Gly Ala Asp Phe His Cys Phe Lys Asn Lys Ile Glu
100 105 110
Pro Lys Trp Glu Asp Pro Val Cys Ala Asn Gly Gly Lys Trp Thr Met
115 120 125
Ser Phe Ser Arg Gly Lys Ser Asp Thr Cys Trp Leu Tyr Thr Leu Leu
130 135 140
Ala Met Ile Gly Glu Gln Phe Asp Cys Gly Asp Glu Ile Cys Gly Ala
145 150 155 160
Val Ile Asn Val Arg Val Gln Glu Lys Ile Ala Leu Trp Thr Arg
165 170 175
Asn Ala Ala Glu Thr Ala Gln Val Ser Ile Gly Lys Gln Trp Lys
180 185 190
Glu Phe Leu Asp Tyr Asn Asp Ser Val Gly Phe Ile Phe His Asp Asp
195 200 205
Ala Lys Lys Leu Asp Arg Ala Ala Lys Asn Arg Tyr Ser Val
210 215 220

4
696
DNA
Lycopersicon esculentum

CDS
(l) (696)
eIF4E var. Mospomorist

atg gca gca gct gaa atg gag aga acg atg tct gat gca gct gag
1 5 10 15
aag ttg aag gcc gcc gat gga gga gga gag gta gac gat gaa ctt
Lys Leu Lys Ala Ala Asp Gly Gly Gly Gly Gly Glu Val Asp Asp Glu Leu
20 25 30

gaa gaa ggt gaa att gtt gaa gaa tca aat gat acg gca tcg tat tta
Glu Glu Glu Gly Ile Val Glu Glu Ser Asn Asp Thr Ala Ser Tyr Leu
35 40 45

ggg aaa gaa atc aca gtt aag cat cca ttg gag cat tca tgg act ttt
Gly Lys Glu Ile Thr Val Lys His Pro Leu Glu His Ser Trp Thr Phe
50 55 60

tgg ttt gat aac cct acc act aaa tct cga caa act gct tcg gga agc
Trp Phe Asp Asn Pro Thr Thr Lys Ser Arg Gln Thr Ala Trp Gly Ser
65 70 75 80

tca ctt cga aat gtc tac act ttc act gtt gaa gat ttt tgg ggt
Ser Leu Arg Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly
85 90 95

gct tac aat aat atc cat cac cca agc aag tta att atg gga gca gac
Ala Tyr Asn Asn Ile His His Pro Ser Lys Leu Ile Met Gly Ala Asp
100 105 110

ttt cat tgt ttt aag cac aaa att gag cca aag tgg gaa gat cct gta
Phe His Cys Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val
115 120 125

tgt gcc aat gga ggg acg tgg aaa atg agt ttt tgc aag ggt aaa tct
Cys Ala Asn Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser
130 135 140

gat agc cgg cctg tat acg ctg gcag atg att gga cat cca ttc
Asp Thr Ser Arg Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe
145 150 155 160

gat cat gga gat gaa att tgt gga gca gtt agt gtc cgg gct aag
Asp His Gly Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Ala Lys
165 170 175

gga gaa aaa ata gct tgg tgg acc aag aat gct gca aat gaa aca gct
Gly Glu Lys Ile Ala Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala
180 185 190

cag gtt agc att gtt aag cca tgg aag cag ttt cta gat tac agt gat
Gln Val Ser Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp
195 200 205

tcg gtt ggc ttc ata ttt cac gac gat gca aag agg ctc gac aga aat
Ser Val Gly Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Asn
210 215 220

gcc tgg aat cgt tac acc gta tag
Ala Leu Asn Arg Tyr Thr Val
225 230

<210> 5
<211> 231
<212> PRT
<213> Lycopersicon esculentum
<400> 5
Met Ala Ala Ala Glu Met Glu Arg Thr Met Ser Phe Asp Ala Ala Ala Glu
1 5 10 15
Lys Leu Lys Ala Ala Asp Gly Gly Gly Gly Gly Glu Val Asp Asp Glu Leu
20 25 30
Glu Glu Gly Glu Ile Val Glu Glu Ser Asn Thr Ala Ser Tyr Leu
35 40 45
Gly Lys Glu Ile Thr Val Lys His Pro Leu Glu His Ser Trp Thr Phe
50 55 60
Trp Phe Asp Asn Pro Thr Thr Lys Ser Arg Gln Thr Ala Trp Gly Ser
65 70 75 80
Ser Leu Arg Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly
85 90 95
Ala Tyr Asn Asn Ile His His Pro Ser Lys Leu Ile Met Gly Ala Asp
100 105 110
Phe His Cys Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val
115 120 125
Cys Ala Asn Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser
130 135 140
Asp Thr Ser Arg Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe
145 150 155 160
Asp His Gly Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Ala Lys
165 170 175
Gly Glu Lys Ile Ala Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala
180 185 190
Gln Val Ser Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp
195 200 205
Ser Val Gly Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Asn
210 215 220
Ala Leu Asn Arg Tyr Thr Val
225 230

<210> 6
<211> 811
<212> DNA
<213> Capsicum annuum

<220> misc_feature
<222> (1) .. (811)
<223> séquence codante eIF4E et 3’UTR
Génotype Yolo Wonder porteur de l’allèle dominant de sensibilité
pvr2r

<220>
misc_feature
(195)..(204)
Site de restriction TspRI
CDS
(1)..<(687)
3'UTR
(688)..<(811)
6
atg gca aca gct gaa atg gag aaa acg acg acg ttt gat gaa gct gag
Met Ala Thr Ala Glu Met Glu Lys Thr Thr Thr Phe Asp Glu Ala Glu
1 5
48
aag gtt aaa tgt aat gct aat gag gca gat gat gaa gtt gaa gaa ggt
Lys Val Lys Leu Asn Ala Asn Glu Ala Asp Asp Glu Val Gly Glu Gly
15 25 30
96
gaatt gtt gaa gaa act gat gat acg acg tcg tat ttg agc aag gaa
Glu Ile Val Glu Glu Thr Asp Thr Thr Ser Tyr Leu Ser Lys Glu
35 40 45
144
ata gca aca aag cat cca tta gag cat tca tgg act ttc tgg ttt gat
Ile Ala Thr Lys His Pro Leu Glu His Ser Trp Thr Phe Trp Phe Asp
50 60
192
aat cca gtc gcg aaa tcg aaa caa gct gct tgg qgt aqc tcg ctt cgc
Asn Pro Val Ala Lys Ser Lys Gln Ala Ala Trp Gly Ser Ser Leu Arg
65 70 75 80
240
aac gtc tac act ttc tcc act gtt gaa gat ttt tgg ggt gct tac aat
Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly Ala Tyr Asn
85 90
288
aat atc cac cac cca agc aag tta gtt gtc gaa gca gac tta cat tgt
Asn Ile His His Pro Ser Lys Leu Val Val Gly Ala Asp Leu His Cys
100 105 110
336
ttc aag cat aag att gag cca aag tgg gaa gat cct gta tgt gcc aat
Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Lys Ala Asn
115 120 125
384
gga ggg aca tgg aaa atg aag ttc aag ggt aag ttt gat acc acg
Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Ser Asp Thr Ser
130 135
432
tgg cta tat acg ctg ctt gca atg att gga cat cca ttc gat cat gaa
Trp Leu Tyr Thr Leu Ala Met Ile Gly His Gln Phe Asp His Glu
145 150 155 160
480
gat gaa att tgt gga gca gta ggt aag gtt gtc aag gga gaa aag
Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Gly Lys Gly Glu Lys
165 170 175
528
ata tct tgt tgg acc aag aat gct gca aat gaa acg gct cag gtt aag
Ile Ser Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala Gln Val Ser
576
att ggt aag caa tgg aag cag ttt ctt gat tac agc gag agt gtt ggc
Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp Ser Val Gly
195 200

Htc ata ttt cac gac gat gca aag agg ctc gac aga aat gca aag aat
Phe Ile Phe His Asp Ala Lys Arg Leu Asp Arg Asn Ala Lys Asn
210 215 220

cgt tac aca gta taa ttcttgatgc aatgtcggaat tataagaaac acaattcgtat
Arg Tyr Thr Val
225

crgaaaagtt gaatcactag tgaatcgcg gcccgcctgca ggtcgcaccat atgggagac
787
tccccacgcg ttggtgatag ctg
811

210 7
211 228
212 PRT
213 Capsicum annuum

<220>
<221> misc_feature
<222> (1)..<(811)
<223> séquence codante eIF4E et 3'UTR
Génotype Yolo Wonder porteur de l'allèle dominant de sensibilité
pvr2+

<220>
<221> misc_feature
<222> (195)..<(204)
<223> Site de restriction TspRI

400 7
Met Ala Thr Ala Glu Met Glu Lys Thr Thr Thr Phe Asp Glu Ala Glu
1 5 10 15
Lys Val Lys Leu Asn Ala Asn Glu Ala Asp Glu Val Glu Glu Gly
20 25 30
Glu Ile Val Glu Glu Thr Asp Thr Thr Ser Tyr Leu Ser Lys Glu
35 40 45
Ile Ala Thr Lys His Pro Leu Glu His Ser Trp Thr Phe Trp Phe Asp
50 55 60
Asn Pro Val Ala Lys Ser Lys Gln Ala Ala Trp Gly Ser Ser Leu Arg
65 70 75 80
Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly Ala Tyr Asn
85 90 95
Asn Ile His His Pro Ser Lys Leu Val Val Gly Ala Asp Leu His Cys
100 105 110
Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Cys Ala Asn
115 120 125
Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser Asp Thr Ser
130 135
Trp Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe Asp His Glu
145 150 155 160
Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Gly Lys Gly Glu Lys
165 170 175
Ile Ser Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala Gln Val Ser
180 185 190
Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp Ser Val Gly
195 200 205
Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Asn Ala Lys Asn
210 215 220 225
Arg Tyr Thr Val

<210> 8
<211> 811
<212> DNA
<213> Capsicum annuum

<220>
<221> misc_feature
<222> (1)..<811)
<223> séquence codante eIF4E et 3'UTR
Génotype Yolo Y porteur de l'allèle de résistance pvr21

<220>
<221> CDS
<222> (1)..<687)
<223>

<220>
<221> misc_feature
<222> (233)..<236)
<223> Site de restriction MvnI

<220>
<221> 3'UTR
<222> (688)..<811)
<223>

<400> 8
atg gca aca gct gaa atg gag aaa acg acg acg ttt gat gaa gct gag
Met Ala Thr Ala Glu Met Glu Lys Thr Thr Thr Phe Asp Glu Ala Glu
1 5 10 15

aag gtg aaa ttg aat gct aat gag gca gat gat gaa gtt gaa gaa ggt
Lys Val Lys Leu Asn Ala Asn Glu Ala Asp Asp Glu Val Glu Glu Gly
20 25 30

gaa att gtt gaa gaa act gat gac acg acg tcg tat ttg agc aaa gaa
Glu Ile Val Glu Glu Thr Asp Asp Thr Thr Ser Tyr Leu Ser Lys Glu
35 40 45
<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>10/16</th>
<th>192</th>
<th>240</th>
<th>288</th>
<th>336</th>
<th>384</th>
<th>432</th>
<th>480</th>
<th>528</th>
<th>576</th>
<th>624</th>
<th>672</th>
<th>727</th>
<th>787</th>
<th>811</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile Ala Thr Lys His Pro Leu Glu His Ser Trp Thr Phe Trp Phe Asp</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Asn Pro Glu Ala Lys Ser Lys Gln Ala Ala Trp Gly Ser Ser Arg Arg</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly Ala Tyr Asn</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Asn Ile His His Pro Ser Lys Leu Val Val Gly Ala Asp Leu His Cys</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Cys Ala Asn</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser Asp Thr Ser</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Trp Leu Tyr Thr Leu Ala Met Ile Gly His Gln Phe Asp His Glu</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Gly Lys Gly Glu Lys</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ile Ser Leu Thr Lys Asn Ala Ala Asn Glu Thr Ala Glu Val Ser</td>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp Ser Val Gly</td>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Phe Ile Phe His Asp Ala Lys Arg Leu Asp Arg Asn Ala Lys Asn</td>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Arg Tyr Thr Val</td>
<td>225</td>
<td></td>
</tr>
</tbody>
</table>

<210> 9
<211> 228
<212> PRT
<213> Capsicum annuum

<220>
<221> misc_feature
<222> (1) (811)
sequence codante eIF4E et 3'UTR
Génotype Yolo Y porteur de l'allèle de résistance pvr21

misc_feature
(233) ... (236)
Site de restriction MvnI

met Ala Thr Ala Glu Met Glu Lys Thr Thr Thr Phe Asp Glu Ala Glu
1 5 10 15
Lys Val Lys Leu Asn Ala Asn Glu Ala Asp Asp Glu Val Glu Glu Gly
20 25 30
Glu Ile Val Glu Thr Asp Thr Thr Ser Tyr Leu Ser Lys Glu
35 40 45
Ile Ala Thr Lys His Pro Leu Glu His Ser Trp Thr Phe Trp Phe Asp
50 55 60
Asn Pro Glu Ala Lys Ser Lys Gln Ala Ala Ala Trp Gly Ser Ser Arg
65 70 75 80
Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly Ala Tyr Asn
85 90 95
Asn Ile His His Pro Ser Lys Leu Val Val Gly Ala Asp Leu His Cys
100 105 110
Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Cys Ala Asn
115 120 125
Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser Asp Thr Ser
130 135 140
Trp Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe Asp His Glu
145 150 155 160
Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Gly Lys Gly Glu Lys
165 170 175
Ile Ser Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala Gln Val Ser
180 185 190
Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp Ser Val Gly
195 200 205
Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Asn Ala Lys Asn
210 215 220
Arg Tyr Thr Val
225

10
32
DNA
Artificial Sequence
Amorce dégénérée

tctagatgca ayaatatcca ycacccaagc aa

Amorce dégénérée

tctagatggg rgcagacttt caytgttt

gtatgagaa ctaaacta

caccttttca gtacgaattg tgttt

tccgacattg catcaagaat tatac

aaatgagaaa ctaaacta

ccttcccagta cgaattgtgt ttctt
<210> 17
<211> 25
<212> DNA
<213> Lycopersicon esculentum

<400> 17
cattcatcaag aactatacgg tgtaa 25

<210> 18
<211> 20
<212> DNA
<213> Capsicum annuum

<400> 18
aaaagcacac agcacaaca 20

<210> 19
<211> 22
<212> DNA
<213> Capsicum annuum

<400> 19
tatttcgaca ttgcatcaag aa 22

<210> 20
<211> 24
<212> DNA
<213> Capsicum annuum

<400> 20
agactttcct tgtttcaagc ataa 24

<210> 21
<211> 25
<212> DNA
<213> Capsicum annuum

<400> 21
gattgaaag tgcaacacc aatac 25

<210> 22
<211> 228
<212> PRT
<213> Capsicum annuum

<220>
<221> VARIANT
<222> (67) .. (67)
<223> Glu chez Yolo Y, Avelar, Vania, PM994, Florida, C69, CM334, PM1014
, et Per

<220>
<221> VARIANT
<222> (205) .. (205)
Gly chez PM1008, C69, CM334, PM1014, et Per

Asn chez Florida

Asp chez Yolo Y, Avelar, Vania, PM994

Glu chez PM 1008

Asp chez PM 1008

Asp chez PM 1008

Met Ala Thr Ala Glu Met Glu Lys Thr Thr Thr Phe Asp Glu Ala Glu

Lys Val Lys Leu Asn Ala Asn Glu Ala Asp Asp Glu Val Glu Gly

Glu Ile Val Glu Thr Asp Thr Thr Ser Tyr Leu Ser Lys Glu

Ile Ala Thr Lys His Pro Leu Glu His Ser Trp Thr Phe Trp Phe Asp

Asn Pro Val Ala Lys Ser Lys Gln Ala Ala Trp Gly Ser Ser Leu Arg

Asn Val Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly Ala Tyr Asn

Asn Ile His His Ser Lys Leu Val Val Gly Ala Asp Leu His Cys

Phe Lys His Lys Ile Glu Pro Lys Trp Glu Asp Pro Val Cys Ala Asn

Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser Asp Thr Ser

Trp Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe Asp His Glu

Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Gly Lys Gly Glu Lys
Ile Ser Leu Trp Thr Lys Asn Ala Ala Asn Glu Thr Ala Gln Val Ser 180 185 190

Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp Ser Val Gly 195 200 205

Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Asn Ala Lys Asn 210 215 220

Arg Tyr Thr Val 225

<210> 23
<211> 231
<212> PRT
<213> Lycopersicon hirsutum

<220>
<221> VARIANT
<222> (48)...(48)
<223> Phe chez PI247087

<220>
<221> VARIANT
<222> (68)...(68)
<223> Lys chez PI247087

<220>
<221> VARIANT
<222> (77)...(77)
<223> Asp chez PI247087

<220>
<221> VARIANT
<222> (109)...(109)
<223> Met chez PI247087

<400> 23
Met Ala Ala Ala Glu Met Glu Arg Thr Met Ser Phe Asp Ala Ala Glu
1 5 10 15

Lys Leu Lys Ala Ala Asp Gly Gly Gly Gly Glu Val Asp Asp Glu Leu
20 25 30

Glu Glu Gly Glu Ile Val Glu Glu Ser Asn Asp Thr Ala Ser Tyr Leu
35 40 45

Gly Lys Glu Ile Thr Val Lys His Pro Leu Glu His Ser Trp Thr Phe
50 55 60

Trp Phe Asp Asn Ser Thr Lys Ser Arg Gln Thr Ala Trp Gly Ser
65 70 75 80

Ser Leu Arg Asn Leu Tyr Thr Phe Ser Thr Val Glu Asp Phe Trp Gly
85 90 95

Ala Tyr Asn Ile His His Pro Ser Lys Leu Ile Met Gly Ala Asp
100 105 110

Phe His Cys Phe Lys His Lys Ile Glu Pro Gln Trp Glu Asp Pro Val
Cys Ala Asn Gly Gly Thr Trp Lys Met Ser Phe Ser Lys Gly Lys Ser
 115 120 125

Asp Thr Ser Trp Leu Tyr Thr Leu Leu Ala Met Ile Gly His Gln Phe
 130 135 140

Asp His Gly Asp Glu Ile Cys Gly Ala Val Val Ser Val Arg Ala Lys
 145 150 155 160

Gly Glu Lys Ile Ala Leu Thr Lys Asn Ala Ala Asn Glu Thr Ala
 165 170 175

Gln Val Ser Ile Gly Lys Gln Trp Lys Gln Phe Leu Asp Tyr Ser Asp
 180 185 190

Ser Val Gly Phe Ile Phe His Asp Asp Ala Lys Arg Leu Asp Arg Ser
 195 200 205

Ala Leu Asn Arg Tyr Thr Val
 210 215 220

Ala Leu Asn Arg Tyr Thr Val
 225 230