US 20160147454A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2016/0147454 A1l

Meir et al.

43) Pub. Date: May 26, 2016

(54)

(71)
(72)

@

(22)

(63)

(60)

MEMORY MANAGEMENT SCHEMES FOR
NON-VOLATILE MEMORY DEVICES

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Avraham Meir, Rishon Lezion (IL);
Oren Golov, Hod-Hasharon (IL)

Appl. No.: 15/011,901

Filed: Feb. 1,2016

Related U.S. Application Data

Continuation of application No. 14/164,695, filed on
Jan. 27, 2014, now Pat. No. 9,280,299, which is a
continuation of application No. 12/963,649, filed on
Dec. 9, 2010, now Pat. No. 8,677,054.

Provisional application No. 61/326,858, filed on Apr.
22, 2010, provisional application No. 61/286,814,
filed on Dec. 16, 2009.

Publication Classification

(51) Int.CL
GOGF 3/06 (2006.01)
(52) US.CL
CPC ... GOGF 3/0604 (2013.01); GOGF 3/0643
(2013.01); GOGF 3/0631 (2013.01); GO6F
3/0679 (2013.01)
(57) ABSTRACT

A method includes storing data in a non-volatile memory that
includes multiple memory blocks. At least first and second
regions are defined in the non-volatile memory. A definition is
made of a first over-provisioning ratio between a first logical
address space and a first physical memory space of the first
region, and a second over-provisioning ratio, different from
the first over-provisioning ratio, between a second logical
address space and a second physical memory space of the
second region. Portions of the data are compacted, individu-
ally within each of the first and second regions and indepen-
dently of the other region, by copying the portions from one or
more source memory blocks to one or more destination
memory blocks using the first and second over-provisioning
ratios, respectively.

HOST SYSTEM
24
¢
HOST
PROCESSOR

SSD

INT (.36

SSD 40 39

cTrRL [~ [
—~ MEM 44

Patent Application Publication = May 26, 2016 Sheet 1 of 5 US 2016/0147454 A1
HOST SYSTEM
242
[HOST
A
SSD
INT (.38
I
SSD 40 32
CTRL [~ [~
o~ MEM A4
FIG. 1 20
MEMORY
64A 60A 60B
e ¢
= e =N
- / 64D 5
B64E
REGION 1 REGION 2
844

FIG. 2

Patent Application Publication = May 26, 2016 Sheet 2 of 5

US 2016/0147454 Al

DEFINE MULTIPLE MEMORY REGIONS [~ 70

Y

DEFINE OVER-PROVISIONING
CONFIGURATION SEPARATELY
FOR EACH REGION

™74

COMPACT MEMORY BLOCKS INDEPENDENTLY

IN EACH REGION ACCORDING TO OVER- .78

PROVISIONING CONFIGURATION

FIG. 3

88

¢

v

ACCEPT DATA FOR STORAGE FROM HOST .80

DATA
BELONGS TO PRE-
SPECIFIED
FILE?

84

STORE DATA USING

92

0

STORE DATA USING
3 BITS/CELL 2 BITS/CELL

FIG. 4

Patent Application Publication = May 26, 2016 Sheet 3 of 5 US 2016/0147454 A1

PREDEFINE ORDER OF PRIORITY
AMONG TYPES OF MEMORY ACCESS [~~100
TASKS INDEPENDENTLY OF HOST

A 4

ACCEPT UN-PRIORITIZED MEMORY ACCESS
TASKS FROM HOST

~~104

A 4

APPLY MEMORY ACCESS TASKS TO MEMORY
ACCORDING TO PREDEFINED ORDER OF ~~108
PRIORITY

FIG. 5

Patent Application Publication

QUEUEING
AND

EXECUTION IN)

MEMORY
CONTROLLER

May 26,2016 Sheet 4 of 5

US 2016/0147454 Al

Program command #1

Read command #1

Read command #2

Program command #2

COMMANDS

Read command #3

ACCEPTED 1

Program command #3

FROM HOST

Program command #4

Read command #4

Read command #5

Read command #6

.

Program command #5

- TN

Program command #1

118

Program command #2

Read command #1

Program command #3

Read command #2

Program command #4

Read command #3

Program command #5

Read command #4

Read command #5

Read command #6

/

SELECT COMMANDS FROM

QUEUES IN ACCORDANCE [~~122
WITH PREDEFINED CRITERION
EXECUTE SELECTED 126
COMMANDS

FIG. 6

Patent Application Publication = May 26, 2016 Sheet 5 of 5 US 2016/0147454 A1

ACCEPT DATA FOR STORAGE FROM

HOST AND STORE IN MEMORY 130

Y

AUTOMATICALLY IDENTIFY UN-UTILIZED 134
REGIONS IN DATA
RELEASE (“TRIM”) IDENTIFIED REGIONS FOR 138
MEMORY MANAGEMENT

FIG. 7

US 2016/0147454 Al

MEMORY MANAGEMENT SCHEMES FOR
NON-VOLATILE MEMORY DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 14/164,695, filed Jan. 27, 2014, which is
acontinuation of U.S. patent application Ser. No. 12/963,649,
filed Dec. 9, 2010 which claims the benefit U.S. Provisional
Patent Application 61/326,858, filed Apr. 22, 2010, and U.S.
Provisional Patent Application 61/286,814, filed Dec. 16,
2009, whose disclosures are incorporated herein by refer-
ence.

TECHNICAL FIELD

[0002] The embodiments disclosed herein relate generally
to data storage, and particularly to memory management in
non-volatile storage devices.

BACKGROUND

[0003] Some storage devices, such as Solid-State Disks
(SSD), use arrays of analog memory cells for non-volatile
data storage. Each analog memory cell stores a quantity of an
analog value, also referred to as a storage value, such as an
electrical charge or voltage. This analog value represents the
information stored in the cell. In Flash memories, for
example, each analog memory cell holds a certain amount of
electrical charge. The range of possible analog values is typi-
cally divided into intervals, each interval corresponding to
one or more data bit values. Data is written to an analog
memory cell by writing a nominal analog value that corre-
sponds to the desired bit or bits.

[0004] Some memory devices, commonly referred to as
Single-Level Cell (SLC) devices, store a single bit of infor-
mation in each memory cell, i.e., each memory cell can be
programmed to assume two possible programming levels.
Higher-density devices, often referred to as Multi-Level Cell
(MLC) devices, store two or more bits per memory cell, i.e.,
can be programmed to assume more than two possible pro-
gramming levels.

SUMMARY

[0005] An embodiment that is described herein provides a
method, including:

[0006] storing data in a non-volatile memory that includes
multiple memory blocks;

[0007] defining at least first and second regions in the non-
volatile memory;

[0008] defining a first over-provisioning ratio between a
first logical address space and a first physical memory space
of the first region, and defining a second over-provisioning
ratio, different from the first over-provisioning ratio, between
a second logical address space and a second physical memory
space of the second region;

[0009] individually within each of the first and second
regions and independently of the other region, compacting
portions of the data by copying the portions from one or more
source memory blocks to one or more destination memory
blocks using the first and second over-provisioning ratios,
respectively.

[0010] Insomeembodiments, defining the first and second
regions includes assigning the first region for storing parts of
the data that change at a first frequency, and assigning the

May 26, 2016

second region for storing portions of the data that change at a
second frequency, smaller than the first frequency. In an
embodiment, the method includes setting the first over-pro-
visioning ratio to be larger than the second over-provisioning
ratio.

[0011] In a disclosed embodiment, defining the first and
second regions includes assigning the first region for storing
frequently-changing data, and assigning the second region for
storing rarely-changing data. In another embodiment, the first
region is used for storing a computer file that is known to
change frequently. In an embodiment, defining the first region
includes detecting storage locations of the non-volatile
memory in which the computer file is stored.

[0012] Insomeembodiments, defining the first and second
regions includes assigning the first region for storing parts of
the data that are written sequentially, and assigning the sec-
ond region for storing portions of the data that are written
non-sequentially. In an embodiment, the method includes
modifying at least one of the first and second over-provision-
ing ratios over time. In another embodiment, compacting the
portions of the data includes choosing the source memory
blocks based on a selection criterion that equalizes wear of the
non-volatile memory. In yet another embodiment, storing the
data includes accepting commands to store the data in logical
addresses, translating the logical addresses into respective
physical storage locations in the non-volatile memory and
storing the data in the physical storage locations, and the
method includes modifying translation of the logical
addresses into the physical storage locations based on a cri-
terion that equalizes wear of the non-volatile memory.
[0013] There is additionally provided, in accordance with
an embodiment, a method, including:

[0014] accepting from a host data belonging to a host data-
set;
[0015] identifying, independently of the host, a portion of

the data as belonging to a pre-specified host data-set item;
[0016] storing the identified portion in a non-volatile
memory using a first number of bits per memory cell; and
[0017] storing the data other than the identified portion in
the non-volatile memory using a second number of bits per
memory cell, higher than the first number.

[0018] In some embodiments, the host data-set includes
computer files, and the pre-specified host data-set item
includes a pre-specified computer file. In an embodiment,
identifying the portion includes automatically detecting that
the portion of the data belongs to the pre-specified host data-
set item without receiving from the host any notification that
relates the portion of the data to the pre-specified host data-set
item.

[0019] There is also provided, in accordance with an
embodiment, a method, including:

[0020] in a memory controller that stores data for a host in
a memory, defining independently of the host execution pri-
orities for two or more types of memory access tasks to be
applied to the memory;

[0021] accepting multiple un-prioritized memory access
tasks submitted by the host to the memory controller, each of
the accepted memory access tasks belonging to a respective
one of the types; and

[0022] applying the accepted memory access tasks to the
memory in accordance with the defined execution priorities
responsively to the respective types.

[0023] In some embodiments, defining the execution pri-
orities includes giving precedence to memory readout tasks

US 2016/0147454 Al

over tasks other than the memory readout tasks. In a disclosed
embodiment, defining the execution priorities includes giving
precedence to the memory access tasks relating to selected
storage addresses over the memory access tasks relating to
storage addresses other than the selected storage addresses. In
another embodiment, defining the execution priorities
includes giving precedence to the memory access tasks relat-
ing to a selected file type over the memory access tasks
relating to file types other than the selected file type.

[0024] In yet another embodiment, defining the execution
priorities includes causing the memory controller to execute a
sequence of consecutive memory access tasks belonging to a
given type. In an embodiment, causing the memory controller
to execute the sequence includes queuing subsets of the
memory access tasks belonging to the respective types in
respective type-specific queues, and executing the sequence
of the consecutive memory access tasks drawn from one of
the type-specific queues. In an embodiment, defining the
execution priorities includes modifying the execution priori-
ties over time.

[0025] There is further provided, in accordance with an
embodiment, a method, including:

[0026] accepting from a host a computer file, and storing
the computer file in a non-volatile memory;

[0027] identifying, automatically and independently of the
host, a region of the non-volatile memory that holds a portion
of the computer file that is not utilized by the host; and
[0028] releasing the identified region for use in manage-
ment of the non-volatile memory while continuing to hold the
computer file in the non-volatile memory.

[0029] In some embodiments, the computer file indicates
attributes of other computer files stored in the non-volatile
memory, and identifying the region includes identifying null
entries in the computer file. In a disclosed embodiment,
releasing the region includes assigning the released region to
serve as over-provisioning memory space.

[0030] There is additionally provided, in accordance with
an embodiment, an apparatus, including:

[0031] an interface, which is configured to accept data for
storage in a non-volatile memory; and

[0032] a processor, which is configured to define at least
first and second regions in the non-volatile memory, to define
a first over-provisioning ratio between a first logical address
space and a first physical memory space of the first region, to
define a second over-provisioning ratio, different from the
first over-provisioning ratio, between a second logical
address space and a second physical memory space of the
second region, and, individually within each of the first and
second regions and independently of the other region, to
compact portions of the data by copying the portions from one
or more source memory blocks to one or more destination
memory blocks using the first and second over-provisioning
ratios, respectively.

[0033] There is also provided, in accordance with an
embodiment, an apparatus, including:

[0034] an interface, which is configured to accept from a
host data belonging to a host data-set for storage in a non-
volatile memory; and

[0035] a processor, which is configured to identify, inde-
pendently of the host, a portion of the data as belonging to a
pre-specified host data-set item, to store the identified portion
in the non-volatile memory using a first number of bits per
memory cell, and to store the data other than the identified

May 26, 2016

portion in the non-volatile memory using a second number of
bits per memory cell, higher than the first number.

[0036] There is further provided, in accordance with an
embodiment, an apparatus, including:

[0037] an interface, which is configured to accept from a
host memory access tasks for execution in a memory; and
[0038] a processor, which is configured to define, indepen-
dently of the host, execution priorities for two or more types
of'the memory access tasks, to accept multiple un-prioritized
memory access tasks submitted by the host, each of the
accepted memory access tasks belonging to a respective one
of'the types, and to apply the accepted memory access tasks to
the memory in accordance with the defined execution priori-
ties responsively to the respective types.

[0039] There is also provided, in accordance with an
embodiment, an apparatus, including:

[0040] an interface, which is configured to accept from a
host a computer file for storage in a non-volatile memory; and
[0041] a processor, which is configured to store the com-
puter file in the non-volatile memory, to identify, automati-
cally and independently of the host, a region of the non-
volatile memory that holds a portion of the computer file that
is not utilized by the host, and to release the identified region
for use in management of the non-volatile memory while
continuing to hold the computer file in the non-volatile
memory.

[0042] The disclosed embodiments will be more fully
understood from the following detailed description of the
embodiments thereof, taken together with the drawings in
which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] FIG. 1 is a block diagram that schematically illus-
trates a memory system, in accordance with an embodiment;
[0044] FIG. 2 is a diagram that schematically illustrates a
process of compacting memory blocks, in accordance with an
embodiment;

[0045] FIG. 3 is a flow chart that schematically illustrates a
method for compacting memory blocks, in accordance with
an embodiment;

[0046] FIG. 4 is a flow chart that schematically illustrates a
method for data storage, in accordance with an embodiment;
[0047] FIG. 5 is a flow chart that schematically illustrates a
method for prioritized access to memory, in accordance with
an embodiment;

[0048] FIG. 6 is a diagram that schematically illustrates a
process of prioritized execution of programming commands
and read commands, in accordance with an embodiment; and
[0049] FIG. 7 is a flow chart that schematically illustrates a
method for automatic releasing of unutilized memory
regions, in accordance with an embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

[0050] Embodiments disclosed herein provide improved
methods and systems for memory management in memory
systems comprising non-volatile memory devices. Although
the embodiments described herein refer mainly to manage-
ment of Solid State Disks (SSDs) by SSD controllers, the
disclosed techniques can be applied in various other kinds of
memory systems and by various other types of memory con-
trollers.

US 2016/0147454 Al

[0051] Insome ofthe disclosed techniques, a memory con-
troller stores data in a non-volatile memory that includes
multiple memory blocks. The memory controller applies a
compaction (“garbage collection”) process that copies valid
data from partially-filled memory blocks to new storage loca-
tions in order to clear memory blocks for erasure and new
programming. In some embodiments, the memory controller
defines two or more regions in the non-volatile memory, and
carries out the compaction process separately and indepen-
dently in each region. In an embodiment, the memory con-
troller maintains different over-provisioning ratios (i.e., dif-
ferent ratios between the true physical capacity and of the
memory and the capacity available to the host) in different
regions. This technique is useful, for example, for assigning a
high over-provisioning ratio to regions that store frequently-
changing data, and a lower over-provisioning ratio to regions
that store rarely-changing data.

[0052] In other disclosed techniques, the memory control-
ler accepts from a host data belonging to one or more com-
puter files or other host data-set items. The memory controller
automatically identifies a portion of the data as belonging to
a file (or other host data-set item) that is pre-specified as
sensitive, such as an operating system Master File Table
(MFT) or File Allocation Table (FAT) file whose corruption
may have severe consequences on system performance. The
memory controller stores the identified portion robustly using
a relatively small number of bits per cell, and stores the data
other than the identified portion using a higher number of bits
per cell. The memory controller typically identifies the data
portion in question independently of the host, i.e., without
receiving any notification from the host that relates the data
portion to the sensitive file.

[0053] Insome disclosed techniques, the memory control-
ler accepts memory access tasks (referred to as “threads™) for
execution from the host. The memory controller assigns
execution priorities to the threads, independently of the host,
and executes the threads in accordance with the execution
priorities. The memory controller may apply various policies
using the execution priorities, such as giving precedence to
readout commands over other commands or giving prece-
dence to selected memory regions over others.

[0054] In other disclosed techniques, the memory control-
ler accepts one or more computer files from the host, and
stores the files in the non-volatile memory. The memory
controller identifies, automatically and independently from
the host, a memory region holding data that logically belongs
to one of the files but is not actually utilized by the host. In an
example embodiment, the file comprises a MFT or FAT file,
and the identified region comprises one or more NULL
entries in the file. Having identified the unutilized region, the
memory controller releases the region for use in memory
management, such as for increasing the over-provisioning
overhead.

System Description

[0055] FIG. 1 is a block diagram that schematically illus-
trates a host system 20, inaccordance with an embodiment. In
the present example, system 20 comprises a mobile comput-
ing device such as a notebook or laptop computer. Alterna-
tively, the methods and systems described herein can be used
in other computing devices such as Personal Digital Assis-
tants (PDAs), in mobile communication terminals such as
mobile phones, or in any other suitable host system.

May 26, 2016

[0056] Host system 20 comprises a host processor 24. The
host processor typically runs a certain Operating System
(OS), and may run any desired number of software applica-
tions. Host system 20 comprises a non-volatile storage
device, in the present example a Solid-State Disk (SSD) 32.
SSD 32 comprises a host interface 36 for communicating with
host processor 24, an SSD controller 40, and one or more
non-volatile memory devices 44. Each memory device 44
comprises an array 48 of multiple analog memory cells 52. A
Read/Write (R/W)unit 56 writes data into memory cells 52 of
array 48, and retrieves data from the memory cells.

[0057] In the context of the present patent application and
in the claims, the term “analog memory cell” is used to
describe any memory cell that holds a continuous, analog
value of a physical parameter, such as an electrical voltage or
charge. Array 48 may comprise analog memory cells of any
kind, such as, for example, NAND, NOR and Charge Trap
Flash (CTF) Flash cells, phase change RAM (PRAM, also
referred to as Phase Change Memory—PCM), Nitride Read
Only Memory (NROM), Ferroelectric RAM (FRAM), mag-
netic RAM (MRAM) and/or Dynamic RAM (DRAM) cells.
Flash memory devices are described, for example, by Bez et
al., in “Introduction to Flash Memory,” Proceedings of the
IEEE, volume 91, number 4, April, 2003, pages 489-502,
which is incorporated herein by reference. Multi-level Flash
cells and devices are described, for example, by Eitan etal., in
“Multilevel Flash Cells and their Trade-Offs,” Proceedings of
the 1996 IEEE International Electron Devices Meeting
(IEDM), New York, N.Y., pages 169-172, which is incorpo-
rated herein by reference. The paper compares several kinds
of multilevel Flash cells, such as common ground, DINOR,
AND, NOR and NAND cells.

[0058] NROM cells are described by Fitan et al., in “Can
NROM, a 2-bit, Trapping Storage NVM Cell, Give a Real
Challenge to Floating Gate Cells?” Proceedings of the 1999
International Conference on Solid State Devices and Materi-
als (SSDM), Tokyo, Japan, Sep. 21-24, 1999, pages 522-524,
which is incorporated herein by reference. NROM cells are
also described by Maayan et al., in “A 512 Mb NROM Flash
Data Storage Memory with 8 MB/s Data Rate,” Proceedings
of the 2002 IEEE International Solid-State Circuits Confer-
ence (ISSCC 2002), San Francisco, Calif., Feb. 3-7, 2002,
pages 100-101, which is incorporated herein by reference.
FRAM, MRAM and PRAM cells are described, for example,
by Kim and Koh in “Future Memory Technology including
Emerging New Memories,” Proceedings of the 24” Interna-
tional Conference on Microelectronics (MIEL), Nis, Serbia
and Montenegro, May 16-19, 2004, volume 1, pages 377-
384, which is incorporated herein by reference.

[0059] The charge levels stored in memory cells 52 and/or
the analog voltages or currents written into and read out of the
memory cells are referred to herein collectively as analog
values or storage values. The storage values may comprise
threshold voltages, electrical charge levels, or any other suit-
able kind of storage values. R/W unit 56 stores data in the
analog memory cells by programming the cells to assume
respective memory states, which are also referred to as pro-
gramming levels. The programming levels are selected from
a finite set of possible levels, and each level corresponds to a
certain nominal storage value. For example, a 2 bit/cell ML.C
can be programmed to assume one of four possible program-
ming levels by writing one of four possible nominal storage
values into the cell. Typically, R/W unit 56 converts data for
storage in the memory device to analog storage values, and

US 2016/0147454 Al

writes them into memory cells 52. When reading data out of
array 48, R/W unit 56 converts the storage values of memory
cells 52 into digital samples. Data is typically written to and
read from the memory cells in groups that are referred to as
pages. The R/W unit erases a block of cells 52 by applying
one or more negative erasure pulses to the cells.

[0060] Some or all of the functions of SSD controller 40
may be implemented in hardware. Alternatively, SSD con-
troller 40 may comprise a microprocessor that runs suitable
software, or a combination of hardware and software ele-
ments. In some embodiments, SSD controller 40 comprises a
general-purpose processor, which is programmed in software
to carry out the functions described herein. The software may
be downloaded to the processor in electronic form, over a
network, for example, or it may, alternatively or additionally,
be provided and/or stored on non-transitory tangible media,
such as magnetic, optical, or electronic memory. The configu-
ration of FIG. 1 is an exemplary system configuration, which
is shown purely for the sake of conceptual clarity. Any other
suitable memory system configuration can also be used. Ele-
ments that are not necessary for understanding the principles
of the embodiments have been omitted from the figure for
clarity. In the example system configuration shown in FIG. 1,
memory devices 44 and SSD controller 40 are implemented
as two separate Integrated Circuits (ICs). In alternative
embodiments, however, the memory devices and the SSD
controller may be integrated on separate semiconductor dies
in a single Multi-Chip Package (MCP) or System on Chip
(SoC), and may be interconnected by an internal bus. Further
alternatively, some or all of the SSD circuitry may reside on
the same die on which one or more of the memory devices are
disposed. Further alternatively, some or all of the functional-
ity of SSD controller 40 can be implemented in software and
carried out by host processor 24. In some embodiments, host
processor 24 and SSD controller 40 may be fabricated on the
same die, or on separate dies in the same device package.

[0061] In an example configuration of array 48, memory
cells 52 are arranged in multiple rows and columns, and each
memory cell comprises a floating-gate transistor. The gates of
the transistors in each row are connected by word lines, and
the sources of the transistors in each column are connected by
bit lines. The memory array is typically divided into multiple
pages, i.e., groups of memory cells that are programmed and
read simultaneously. Pages are sometimes sub-divided into
sectors. In some embodiments, each page comprises an entire
row of the array. In alternative embodiments, each row (word
line) can be divided into two or more pages. For example, in
some devices each row is divided into two pages, one com-
prising the odd-order cells and the other comprising the even-
order cells. In a typical implementation, a two-bit-per-cell
memory device may have four pages per row, a three-bit-per-
cell memory device may have six pages per row, and a four-
bit-per-cell memory device may have eight pages per row.

[0062] Erasing of cells is usually carried out in blocks that
contain multiple pages. Typical memory devices may com-
prise several thousand erasure blocks. In some two-bit-per-
cell MLC devices, each erasure block is on the order of
thirty-two word lines, each comprising several tens of thou-
sands of memory cells. Each word line of such a device is
often partitioned into four pages (odd/even order cells, least/
most significant bit of the cells). Three-bit-per cell devices
having thirty-two word lines per erasure block would have
192 pages per erasure block, and four-bit-per-cell devices
would have 256 pages per block. Alternatively, other block

May 26, 2016

sizes and configurations can also be used. Some memory
devices comprise two or more separate memory cell arrays,
often referred to as planes. Since each plane has a certain
“busy” period between successive write operations, data can
be written alternately to the different planes in order to
increase programming speed.

[0063] Typically, host processor 24 reads and writes data in
SSD 32 by specifying logical addresses of the data (e.g., using
Logical Block Addressing—I.BA). SSD controller 40 trans-
lates the logical addresses into respective physical storage
locations in memory devices 44. Typically, the host processor
is unaware of the actual physical storage locations in which
the data is stored, and the logical-to-physical address trans-
lation may change over time.

Independent Memory Block Compaction in Separate
Memory Regions

[0064] In some embodiments, each memory array 48 is
partitioned into multiple memory blocks, each block com-
prises multiple pages, and SSD controller 40 stores data by
writing data pages into the memory. In a typical Flash
memory, data can be programmed page-by-page, but erasure
can only be performed on entire blocks. Therefore, SSD
controller 40 typically uses logical-to-physical address trans-
lation. In such a scheme, storage commands received from
host processor 24 typically specify logical addresses. SSD
controller 40 translates the logical addresses into physical
storage locations in memory devices 44.

[0065] In particular, when the data of a certain logical page
is updated, the SSD controller writes the new data in a new
physical page (since the old physical page holding the old
data of that logical page cannot be erased individually). Over
time, more and more physical pages in the memory blocks of
SSD 32 gradually become invalid, since their data was
updated and stored in other physical pages.

[0066] SSD controller 40 typically applies a compaction
process, which copies valid data from partially-filled memory
blocks (referred to as source blocks) to new physical locations
(referred to as destination blocks) in a compact manner. The
compaction process, which is also referred to as “garbage
collection,” reduces regions of invalid data in the memory
blocks and clears memory blocks for erasure and new pro-
gramming.

[0067] In order to increase the efficiency of the garbage
collection process, SSD 32 is typically over-provisioned in
terms of memory size. In other words, the actual physical
storage capacity of the SSD is larger than the specified logical
capacity available to host processor 24. The aggregated size
of the memory areas that do not hold valid data (“holes™) is
referred to as an over-provisioning overhead. The over-pro-
visioning overhead can be specified as an over-provisioning
ratio, which is defined as a fraction of the specified system
capacity. For example, when the SSD uses an over-provision-
ing ratio of 5% and the memory is full from the host’s per-
spective, each memory block is only 95% programmed, on
average.

[0068] When SSD 32 is over-provisioned, garbage collec-
tion can be performed more efficiently. In other words, the
number of copy operations per block compaction can be
reduced. The efficiency of the garbage collection process
increases as a function of the over-provisioning ratio used in
the system. Thus, increasing the over-provisioning ratio
reduces the wearing of memory cells, and also increases the
programming throughput. The effect of the over-provisioning

US 2016/0147454 Al

overhead on cell wearing and storage throughput is particu-
larly strong when the memory is full or nearly full.

[0069] In some embodiments, SSD controller 40 defines
two or more separate regions in memory devices 44, and
carries out a separate and independent compaction process
within each region. Each region comprises multiple blocks,
and may be defined in a single memory device 44 or in
multiple memory devices 44. Any desired number of regions
may be defined. The regions may be specified in terms of
logical or physical addresses. Typically, SSD controller 40
maintains different over-provisioning ratios in different
regions.

[0070] FIG. 2 is a diagram that schematically illustrates a
process of compacting memory blocks, in accordance with an
embodiment. In the present example, SSD controller 44
defines two memory regions denoted 60A and 60B in a cer-
tain memory device 44. Each region comprises multiple
memory blocks. SSD controller 40 performs memory block
compaction (“‘garbage collection™) separately in each of the
two regions, independently of the compaction process carried
outin the other region. In the example of FIG. 2, inregion 60A
the SSD controller compacts two source blocks 64A and 64B
into a destination block 64C. In region 60B, the SSD control-
ler compacts a source block 64D into a destination block 64E.
[0071] Applying compaction separately in different
regions, and in particular setting different over-provisioning
ratios in different regions, may improve the performance of
SSD 32. For example, different data types may have difterent
characteristics, which can be exploited by matching the over-
provisioning ratio to the data type.

[0072] Inan example embodiment, SSD controller 40 may
define one region for storing data that changes frequently, and
another region for data that changes rarely. The SSD control-
ler may set a relatively high over-provisioning ratio in the
region holding the frequently-changing data, and a relatively
low over-provisioning ratio in the region holding the rarely-
changing data. Matching the over-provisioning ratio to the
frequency at which the data changes provides an improved
compromise between storage capacity and storage through-
put. Although the example above refers to two regions (hold-
ing frequently-changing and rarely-changing data), the SSD
controller may alternatively define three or more regions cor-
responding to three or more update frequencies of the data.
Each such region may be provided with a different over-
provisioning ratio.

[0073] In an alternative embodiment, SSD controller 40
defines one region for storing data that is written in a sequen-
tial manner, i.e., to blocks of data that are written to succes-
sive storage addresses, and another region for data that is
written non-sequentially. The SSD controller may assign dif-
ferent over-provisioning ratios to the two regions, e.g., a
lower over-provisioning ratio to the region holding sequen-
tially-written data.

[0074] Insomeembodiments, SSD controller 40 adapts the
over-provisioning ratios of different memory regions over
time in an adaptive manner. For example, the SSD controller
may track the frequency-of-use of various memory regions
over time, and assign each memory region a respective over-
provisioning ratio based on the current frequency-of-use of
that region. Further aspects of adaptive over-provisioning are
addressed in U.S. patent application Ser. No. 12/822,207,
which is assigned to the assignee of the present patent appli-
cation and whose disclosure is incorporated herein by refer-
ence. In some embodiments, certain computer files that are

May 26, 2016

used by the OS of host processor 24 are modified frequently.
Frequently-changing files may comprise, for example, File
System (FS) files that indicate file storage locations and other
file attributes in the host processor’s file system. Such files
may comprise, for example, a Master File Table (MFT) or File
Allocation Table (FAT) file. As another example, files that
store e-mail messages, calendar entries and related informa-
tion also change frequently. Such files may comprise, for
example, Personal Storage Table (PST) or Offline Storage
Table (OST) files.

[0075] In some embodiments, SSD controller 40 recog-
nizes a certain file as a frequently changing file, and assigns a
high over-provisioning ratio to the memory region in SSD 32
in which this file is stored. The SSD controller may recognize
any of the file type examples given above, or any other suit-
able type of file that changes frequently. Memory regions that
hold other files are assigned lower over-provisioning ratios.
[0076] In some embodiments, SSD controller automati-
cally identifies the memory region in which the file in ques-
tion is stored, e.g., by detecting a file header or other charac-
teristic that is indicative of the sought file. The automatic
identification in these embodiments is performed by the SSD
controller without any indication or guidance from host pro-
cessor 24 as to the storage location of the file. In alternative
embodiments, SSD controller 40 recognizes the file by
accepting an indication from host processor 24 as to the
storage location of the file.

[0077] FIG. 3 is a flow chart that schematically illustrates a
method for compacting memory blocks, in accordance with
an embodiment. The method begins with SSD controller 40
defining multiple memory regions in memory devices 44, at a
region definition step 70. The SSD controller defines a sepa-
rate over-provisioning configuration for each memory region,
atan over-provisioning definition step 74. The SSD controller
compacts memory blocks independently in each region, at a
compaction step 78. The compaction in each region is per-
formed in accordance using the over-provisioning overhead
defined for that region, and independently of the compaction
that takes place in other regions.

[0078] When carrying out the compaction process in a
given region, SSD controller 40 may choose memory blocks
for compaction using any suitable criterion. In an embodi-
ment, the SSD controller chooses memory blocks for com-
paction depending on the wear level and/or endurance of the
memory blocks. For example, the SSD controller may prefer
to compact memory blocks that have gone through relatively
few Programming and Erasure (P/E) cycles, and which are
expected to have high endurance.

[0079] In some embodiments, the SSD controller modifies
the logical-to-physical address mapping in order to equalize
the wear levels of the different physical memory blocks. For
example, if certain LBAs are updated frequently, the SSD
controller may re-map these LBAs to other physical memory
blocks, in order to equalize the wearing of memory cells.

Reliable Storage of Sensitive Files

[0080] Some computer files used by the OS of host proces-
sor 24 may be sensitive to errors. Errors in some files may
have severe consequences on the host system functionality or
performance. Sensitive files may comprise, for example, file-
system files such as MFT and FAT files, e-mail files such as
PST and OST files, or any other suitable file.

[0081] (Some host systems may use various kinds of host
data-sets that specify data-set items, not necessarily file sys-

US 2016/0147454 Al

tems that specify computer files. Host data-set items may
comprise, for example, a file, a data structure, or any other
suitable data item. In a given host data-set, certain data-set
items may be regarded as sensitive. Although the example
embodiments described herein refer mainly to computer files,
the disclosed techniques can be used for reliable storage of
any other suitable kind of host data-set items in any other
suitable kind of host data-set.)

[0082] Insomeembodiments, SSD controller 40 automati-
cally identifies incoming data that belongs to a file that is
pre-specified as sensitive, and stores this data in a robust
manner that is resilient to errors. This identification is carried
out independently of the host, i.e., without relying on any
notification from the host that relates the data to the sensitive
file. For example, the SSD controller may store sensitive files
using a small number of bits per cell, in comparison with the
number of bits per cell used for storing other data. In an
example embodiment, the SSD controller may store the data
of a sensitive file at a density of one or two bits-per-cell, and
store other data at a density of three bits-per-cell.

[0083] FIG. 4 is a flow chart that schematically illustrates a
method for data storage, in accordance with an embodiment.
The method begins with SSD controller 40 accepts data for
storage from host processor 24, at a data input step 80. The
SSD controller checks whether the accepted data belongs to a
sensitive file that was pre-specified for robust storage, at a
checking step 84. [fthe data does not belong to a sensitive file,
the SSD controller stores the data at a density of three bits-
per-cell, at a normal storage step 88. If, on the other hand, the
data is identified as belonging to a pre-specified sensitive file,
the SSD controller stores the data at a density of two bits-per-
cell, at a robust storage step 92.

[0084] The SSD controller may identify incoming data as
belonging to a sensitive file using any suitable method, e.g.,
by identifying a file header or other characteristic data pat-
tern.

Host-Independent Prioritization of Memory Access
Tasks

[0085] Insomeembodiments, hostprocessor 24 sends mul-
tiple memory access tasks to SSD controller 40 for execution
in SSD 32. Each memory access task is referred to as a tag or
thread, and may comprise, for example, a read command or a
write command. The terms “memory access task,” “task,”
“tag” and “thread” are all used interchangeably herein. The
host processor sends subsequent threads without waiting for
completion of previous threads, and the SSD controller has
certain flexibility in defining the thread execution order.
[0086] In some embodiments, SSD controller 40 assigns
execution priorities to incoming threads independently of the
host, and executes the threads in SSD 32 in accordance with
the assigned execution priorities. In some embodiments, each
memory access task is of a certain type, and the SSD control-
ler assigns the priority of each memory access task based on
its type.

[0087] Inanembodiment, SSD controller 40 assigns a high
priority to readout tasks (i.e., to memory access tasks that
request data readout from the memory), and lower priority to
other tasks (e.g., programming tasks and status request tasks).
In these embodiments, when multiple tasks are pending, the
SSD controller gives precedence to execution of pending
readout tasks. In many system configurations it is advanta-
geous to give high priority to readout tasks, since the
requested data may be needed for immediate use by the host

May 26, 2016

system. Programming tasks are often less sensitive to delay,
for example because the data to be programmed is already
cached.

[0088] In another embodiment, the SSD controller assigns
high priority to tasks relating to certain storage addresses. In
an example embodiment, the SSD controller assigns high
priority to one or more ranges of Logical Block Addresses
(LBAs), and lower priorities to other LBAs. Memory access
tasks relating to the high-priority LBAs will be executed first,
at the expense of higher execution latency for memory access
tasks relating to other LBAs.

[0089] In yet another embodiment, SSD controller 40
assigns high priority to tasks relating to certain files or file
types. High-priority files may comprise, for example, file-
system files such as MFT or FAT files, e-mail files such as
PST or OST files, or any other suitable file type. SSD con-
troller 40 will execute tasks relating to the high-priority files
first, at the expense of higher execution latency for tasks
relating to other files.

[0090] In alternative embodiments, SSD controller 40 may
assign priorities to memory access tasks independently of the
host processor based on any other suitable criteria. In some
embodiments, the SSD controller may modify the priorities
adaptively over time. For example, the SSD controller may
identify, e.g., using statistical analysis, which memory
regions are most important to the host processor, and increase
the relative priority of tasks relating to these regions.

[0091] FIG. 5 is a flow chart that schematically illustrates a
method for prioritized access to memory, in accordance with
an embodiment. The method begins with SSD controller 40
defining execution priorities for different types of memory
access tasks, at a priority definition step 100. The SSD con-
troller assigns the execution priorities independently of the
host processor.

[0092] SSD controller 40 accepts from host processor 24
memory access tasks for execution in SSD 32, at a task input
step 104. Each accepted task belongs to one of the above-
defined types, and the host processor typically does not define
execution priorities for the tasks. SSD controller 40 executes
the accepted tasks in SSD 32, at a task execution step 108. The
SSD controller executes the tasks in accordance with the
execution priorities defined at step 100 above.

[0093] Insome embodiments, SSD 32 is highly efficient in
executing sequences of read commands or sequences of write
commands, but is less efficient in executing sequences of
intermixed read and write commands. In some embodiments,
SSD controller 40 prioritizes the execution of memory access
tasks such that multiple tasks of the same type (e.g., multiple
readout tasks or multiple programming tasks) are executed
consecutively. As a result, the overall throughput and effi-
ciency of SSD 32 is improved.

[0094] In some embodiments, SSD controller 40 applies
this sort of prioritization by queuing readout commands and
programming commands in separate queues, and then select-
ing between the queues based on a certain selection criterion.
The criterion typically causes the SSD controller to execute
multiple readout tasks consecutively, or multiple program-
ming tasks consecutively.

[0095] FIG. 6 is a diagram that schematically illustrates a
process of prioritized execution of programming commands
and read commands, in accordance with an embodiment. A
list 110 shows a sequence of memory access tasks in the order

US 2016/0147454 Al

they are provided to SSD controller 40 by host processor 24.
The example list comprises five programming commands and
six readout commands.

[0096] SSD controller 40 separates the readout commands
from the programming commands, and stores the program-
ming commands in a write queue 114 and the readout com-
mands in a read queue 118. At a selection step 122, the SSD
controller selects the next task for execution from one of
queues 114 and 118.

[0097] The selection criterion typically forms sequences of
programming commands, and/or sequences of readout com-
mands. For example, the selection criterion may define an
order that serves M successive programming commands from
queue 114, then N successive readout commands from queue
118, and so on. Selection of M and N enables setting of
various trade-offs between execution efficiency and amount
of re-ordering. Selection of M and N also enables setting
different relative priority for readout commands vs. program-
ming commands. At an execution step 126, the SSD control-
ler executes the commands selected from the two queues.

[0098] As noted above, in some embodiments the SSD
controller gives precedence to execution of readout tasks over
other tasks. The queuing configuration of FIG. 6 can be used
to implement this sort of prioritization, as well.

Host-Independent Trimming of Unused Memory
Regions

[0099] In some embodiments, host processor 24 sends
computer files for storage in SSD 32, and SSD controller
stores the files in memory devices 44. In some practical sce-
narios, some portions of the computer files are not actually
utilized by the host processor. In some cases, certain regions
in memory devices 44 logically belong to a valid computer
file but do not contain data that is actually utilized by the host
processor. In other cases, a file has been deleted (or rewritten
to different logical addresses) by the host, leaving behind
unutilized memory regions. In some embodiments, SSD con-
troller 40 automatically identifies such unutilized memory
regions, and releases (“trims”) them for use in memory man-
agement while continuing to hold the file in question in
memory.

[0100] Forexample, in some embodiments the host proces-
sor stores a MFT or FAT file, which indicates storage loca-
tions and other attributes of files stored in SSD 32. Real-life
MEFT and FAT files often comprise many NULL entries that
do not represent any active file. The NULL entries occupy
storage space, but are not actually accessed by the host pro-
Cessor.

[0101] Insomeembodiments, SSD controller 40 automati-
cally identifies the storage locations used for storing the MFT
or FAT file, and identifies the NULL entries in the file. The
identification of the storage locations and NULL entries is
typically performed by the SSD controller independently of
the host processor, i.e., without using any indication from the
host processor as to the storage locations or NULL entries of
the file.

[0102] Having identified the memory regions that hold the
unutilized portions of the file, SSD controller 40 releases
these memory regions for use in memory management. The
released memory regions can be used, for example, as an
additional over-provisioning overhead, or for any other suit-
able memory management function.

May 26, 2016

[0103] Althoughthe embodiments described herein refer to
MEFT or FAT files, the disclosed technique can be used to
release unutilized memory areas that logically belong to any
other suitable file.

[0104] FIG. 7 is a flow chart that schematically illustrates a
method for automatic releasing of unutilized memory
regions, in accordance with an embodiment. The method
begins with SSD controller 40 accepting from host processor
24 data of one or more computer files for storage in SSD 32,
ata file input step 130. The SSD controller stores the accepted
data in memory devices 44.

[0105] The SSD controller automatically identifies
memory regions that hold portions of the files that are not
utilized by the host processor, at a region identification step
134. This identification is typically carried out independently
of the host processor. The SSD controller then releases
(“trims™) the identified memory regions, at a trimming step
138. The released memory regions are made available for
increasing the over-provisioning ratio in SSD 32, or for car-
rying out any other memory management task by SSD con-
troller 40.

[0106] It will be appreciated that the embodiments
described above are cited by way of example, and are not
limited to what has been particularly shown and described
hereinabove. Rather, the scope of the embodiments includes
both combinations and sub-combinations of the various fea-
tures described hereinabove, as well as variations and modi-
fications thereof which would occur to persons skilled in the
art upon reading the foregoing description and which are not
disclosed in the prior art.

1. An apparatus, comprising:
a memory including a plurality of memory cells; and

a controller coupled to the memory, wherein the controller
is configured to:

receive data from a host for storage in the memory;

store the data using a first storage density in response to
a determination that the data is included in a file of a
first file type; and

store the data using a second storage density in response
to a determination that the data is included in a file of
a second file type.

2. The apparatus of claim 1, wherein the first file type
includes sensitive files, and wherein the second file type
includes non-sensitive files.

3. The apparatus of claim 1, wherein the first storage den-
sity is less than the second storage density.

4. The apparatus of claim 1, wherein to store the data using
the first storage density, the controller is further configured to
store the data using a first number of data bits per memory
cell, and wherein to store the data using the second storage
density, the controller is further configured to store the data
using a second number of data bits per memory cell, wherein
the second number of data bits is greater than the first number
of data bits.

5. The apparatus of claim 1, wherein to receive the data
from the host for storage, the controller is further configured
to identify a file header included in the data.

US 2016/0147454 Al

6. The apparatus of claim 1, wherein each memory cell of
the plurality of memory cells includes a non-volatile memory
cell.

7. A method, comprising:

receiving data from a host for storage in a memory;

storing the data in the memory using a first storage density
in response to determining that the data is included in a
file of a first file type; and

storing the data in the memory using a second storage

density in response to determining that the data is
included in a file of a second file type.

8. The method of claim 7, wherein the first file type
includes sensitive files, and wherein the second file type
include non-sensitive file.

9. The method of claim 7, wherein the first storage density
is less than the second storage density.

10. The method of claim 7, wherein storing the data using
the first storage density includes storing the data using a first
number of data bits per memory cell, and wherein storing the
data using the second storage density includes storing the data
using a second number of data bits per memory cell.

11. The method of claim 7, wherein the first file type
includes file included in a file allocation table (FAT).

12. The method of claim 7, wherein receiving the data from
the host for storage includes identifying a file header included
in the data.

13. The method of claim 7, wherein the memory includes a
plurality of non-volatile memory cells.

May 26, 2016

14. A system, comprising:

a processor; and

a memory configured to:

receive data from the processor;

store the data using a first storage density in the response
to a determination that the data is included in a file of
a first file type; and

store the data using a second storage density in response
to a determination that the data is included in a file of
a second file type.

15. The system of claim 14, wherein the first file type
includes sensitive files, and wherein the second file type
includes non-sensitive files.

16. The system of claim 14, wherein the first storage den-
sity is less than the second storage density.

17. The system of claim 14, wherein to store the data using
the first storage density, the memory is further configured to
store the data using a first number of data bits per memory
cell, and wherein to store the data using the second storage
density, the memory is further configured to store the data
using a second number of data bits per cells, wherein the
second number of data bits is greater than the first number of
data bits.

18. The system of claim 14, wherein to receive the data
from the host for storage, the memory is further configured to
identify a file header included in the data.

19. The system of claim 14, wherein the first file type
includes file included in a file allocation table (FAT).

20. The system of claim 14, wherein the memory includes
a plurality of non-volatile memory cells.

#* #* #* #* #*

