

US008560147B2

(12) United States Patent

Taylor et al.

(45) Date of Patent:

(10) Patent No.:

US 8,560,147 B2 Oct. 15, 2013

(54) APPARATUS, METHOD AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES

(75) Inventors: Matthew Whiting Taylor, North Bend, WA (US); Yi-Tsung Wu, New Taipei (TW); Hok-Sum Horace Luke, Mercer Island, WA (US); Huang-Cheng Hung,

Taoyuan (TW)

(73) Assignee: Gogoro, Inc., Guishan Township (TW)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/559,054

(22) Filed: Jul. 26, 2012

(65) Prior Publication Data

US 2013/0030608 A1 Jan. 31, 2013

Related U.S. Application Data

(60) Provisional application No. 61/511,900, filed on Jul.26, 2011, provisional application No. 61/647,936,

(Continued)

(51) Int. Cl. G05D 1/00 (2006.01) B60L 9/00 (2006.01) G05B 19/00 (2006.01)

(52) **U.S. Cl.** USPC**701/2**; 701/22; 340/5.8

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

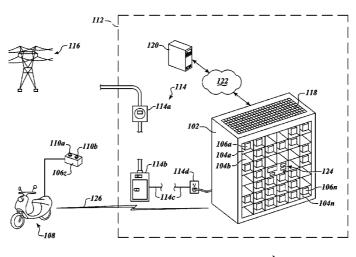
4,087,895 A 4,216,839 A 5/1978 Etienne 8/1980 Gould et al. (Continued)

FOREIGN PATENT DOCUMENTS

EP 2 230 146 A2 9/2010 JP 07-031008 1/1995 (Continued)

Chen et al., "Apparatus, Method and Article for Providing Vehicle Diagnostic Data," U.S. Appl. No. 61/601,404, filed Feb. 21, 2012, 56 pages.

OTHER PUBLICATIONS


(Continued)

Primary Examiner — Mary Cheung
Assistant Examiner — Rodney Butler
(74) Attorney, Agent, or Firm — SeedIP Law Group PLLC

(57) **ABSTRACT**

A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To avoid theft and tampering of the portable electrical energy storage devices, by default, each portable electrical energy storage device is locked in and operably connected to the vehicle to which it provides power unless the vehicle comes within the vicinity of a collection, charging and distribution machine or other authorized external device such as that in a service center. Once within the vicinity of a collection, charging and distribution, charging and distribution machine or other authorized external device a locking mechanism in the vehicle or within the portable electrical energy storage device unlocks and allows the portable electrical energy storage device to be exchanged or serviced.

22 Claims, 8 Drawing Sheets

Related U.S. Application Data

filed on May 16, 2012, provisional application No. 61/534,753, filed on Sep. 14, 2011, provisional application No. 61/534,761, filed on Sep. 14, 2011, provisional application No. 61/534,772, filed on Sep. 14, 2011, provisional application No. 61/511,887, filed on Jul. 26, 2011, provisional application No. 61/647,941, filed on May 16, 2012, provisional application No. 61/511,880, filed on Jul. 26, 2011, provisional application No. 61/557,170, filed on Nov. 8, 2011, provisional application No. 61/581,566, filed on Dec. 29, 2011, provisional application No. 61/601,404, filed on Feb. 21, 2012, provisional application No. 61/601,949, filed on Feb. 22, 2012, provisional application No. 61/601,953, filed on Feb. 22, 2012.

(56) References Cited

U.S. PATENT DOCUMENTS

5,187,423	A *	2/1993	Marton 320/109
5,627,752	A	5/1997	Buck et al.
5,998,963	A	12/1999	Aarseth
6,016,882	A	1/2000	Ishikawa
6,177,879	В1	1/2001	Kokubu et al.
6,403,251	В1	6/2002	Baggaley et al.
7,948,207	B2	5/2011	Scheucher
7,993,155		8/2011	Heichal et al.
8,006,973		8/2011	Toba et al.
8,013,571		9/2011	Agassi et al.
8,164,300]		4/2012	Agassi et al.
8,265,816		9/2012	LaFrance 701/22
2003/0209375	A1	11/2003	Suzuki et al.
	A1	3/2009	Agassi et al.
	A1	9/2009	Bettez et al.
2010/0094496		4/2010	Hershkovitz et al.
2010/0201482		8/2010	Robertson et al.
2011/0031929		2/2011	Asada et al.
2011/0071932	A1	3/2011	Agassi et al.
2011/0114798	A1	5/2011	Gemmati
2011/0148346	A1	6/2011	Gagosz et al.
2011/0270480	A1*	11/2011	Ishibashi et al 701/22
2012/0062361	A1*	3/2012	Kosugi 340/5.62
2012/0068817	A1*	3/2012	Fisher 340/5.61
2012/0316671	A1*	12/2012	Hammerslag et al 700/225

FOREIGN PATENT DOCUMENTS

JP	9-119839	A	5/1997
JР	10-307952	A	11/1998
JP	11-049079		2/1999
JP	11-176487		7/1999
JР	2000-102102	A	4/2000
JP	2000-102103	A	4/2000
JP	2000-341868	A	12/2000
JР	2001-128301		5/2001
JP	2003-118397		4/2003
JР	2003-262525	A	9/2003
JР	2009-171647		7/2009
JP	2009171646	A	7/2009
JР	4319289	B2	8/2009
JР	2010-191636	A	9/2010
JР	2010-200405	A	9/2010
JР	2011-126452		6/2011
KR	20100012401	A	2/2010
KR	20110004292	A	1/2011
KR	20110041783	Α	4/2011
TW	200836452	A	9/2008
TW	I315116	В	9/2009
TW	M371880		1/2010
TW	M379269		4/2010
TW	M385047		7/2010
TW	201043986		12/2010
TW	201044266		12/2010

WO	2010/033517	A2	3/2010
WO	WO2010143483	A1	12/2010
WO	2013/024484	A1	2/2013

OTHER PUBLICATIONS

Chen et al., "Apparatus, Method and Article for Providing Vehicle Diagnostic Data," U.S. Appl. No. 13/559,390, filed Jul. 26, 2012, 61 pages.

Luke et al., "Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries," U.S. Appl. No. 61/534,761, filed Sep. 14, 2011, 55 pages.

Luke et al., "Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries," U.S. Appl. No. 13/559,038, filed Jul. 26, 2012, 59 pages.

Luke et al., "Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles," U.S. Appl. No. 61/534,772, filed Sep. 14, 2011, 55 pages.

Luke et al., "Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries," U.S. Appl. No. 61/511,900, filed Jul. 26, 2011, 73 pages.

Luke et al., "Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries," U.S. Appl. No. 61/647,936, filed May 16, 2012, 76 pages.

Luke et al., "Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries," U.S. Appl. No. 13/559,314, filed Jul. 26, 2012, 81 pages.

Luke et al., "Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines," U.S. Appl. No. 61/534,753, filed Sep. 14, 2011, 65 pages.

Luke et al., "Apparatus, Method and Article for Reserving Power Storage Devices at Reserving Power Storage Device Collection, Charging and Distribution Machines," U.S. Appl. No. 13/559,064, filed Jul. 26, 2012, 72 pages.

Luke et al., "Dynamically Limiting Vehicle Operation for Best Effort Economy," U.S. Appl. No. 61/511,880, filed Jul. 26, 2011, 52 pages. Luke et al., "Dynamically Limiting Vehicle Operation for Best Effort Economy," U.S. Appl. No. 13/559,264, filed Jul. 26, 2012, 56 pages. Luke et al., "Thermal Management of Components in Electric Motor Drive Vehicles," U.S. Appl. No. 61/647,941, filed May 16, 2012, 47

Luke et al., "Thermal Management of Components in Electric Motor Drive Vehicles," U.S. Appl. No. 61/511,887, filed Jul. 26, 2011, 44 pages.

Luke et al., "Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection Charging and Distribution Machines," U.S. Appl. No. 13/559,091, filed Jul. 26, 2012, 69 pages.

Luke et al., "Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles," U.S. Appl. No. 13/559,010, filed Jul. 26, 2012, 58 pages.

Luke et al., "Thermal Management of Components in Electric Motor Drive Vehicles," U.S. Appl. No. 13/559,259, filed Jul. 26, 2012, 51 pages.

Luke et al., "Detectible Indication of an Electric Motor Vehicle Standby Mode," U.S. Appl. No. 13/646,320, filed Oct. 5, 2012, 41 pages.

Luke et al., "Electric Devices," U.S. Appl. No. 13/650,498, filed Oct. 12, 2012, 26 pages.

Luke et al., "Improved Drive Assembly for Electric Device," U.S. Appl. No. 13/650,392, filed Oct. 12, 2012, 43 pages.

Luke et al., "Electric Device Drive Assembly and Cooling System for Electric Device Drive," U.S. Appl. No. 13/650,395, filed Oct. 12, 2012, 62 pages.

Taylor et al., "Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles," U.S. Appl. No. 61/557,170, filed Nov. 8, 2011, 60 pages.

Taylor et al., "Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles," U.S. Appl. No. 13/559,054, filed Jul. 26, 2012, 64 pages.

Wu et al., "Apparatus, Method and Article for a Power Storage Device Compartment," U.S. Appl. No. 61/581,566, filed Dec. 29, 2011, 61 pages.

Wu et al., "Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine," U.S. Appl. No. 61/601,953, filed Feb. 22, 2012, 53 pages.

Wu et al., "Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine," U.S. Appl. No. 13/559,343, filed Jul. 26, 2012, 56 pages.

Wu et al., "Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines," U.S. Appl. No. 61/601,949, filed Feb. 22, 2012, 56 pages. Wu et al., "Apparatus, Method and Article for Security of Vehicles," U.S. Appl. No. 61/557,176, filed Nov. 8, 2011, 37 pages.

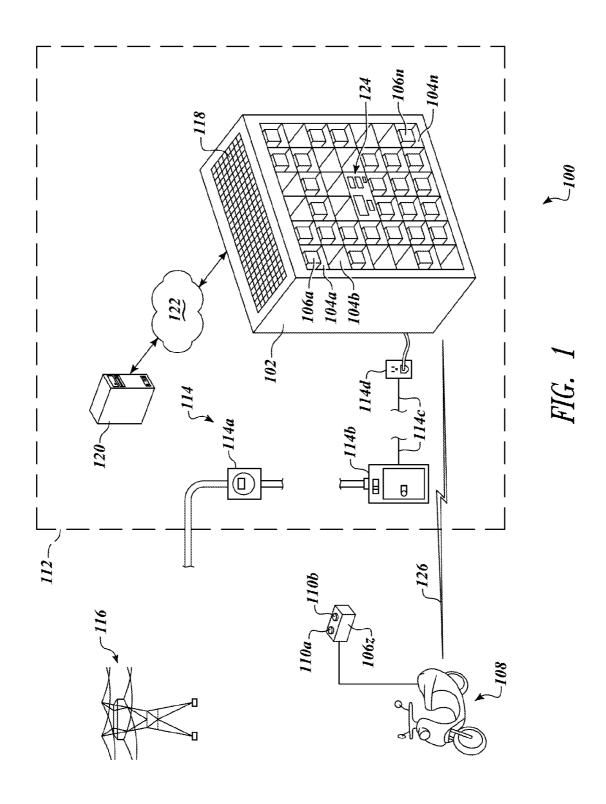
Wu et al., "Apparatus, Method and Article for a Power Storage Device Compartment," U.S. Appl. No. 13/559,125, filed Jul. 26, 2012, 65 pages.

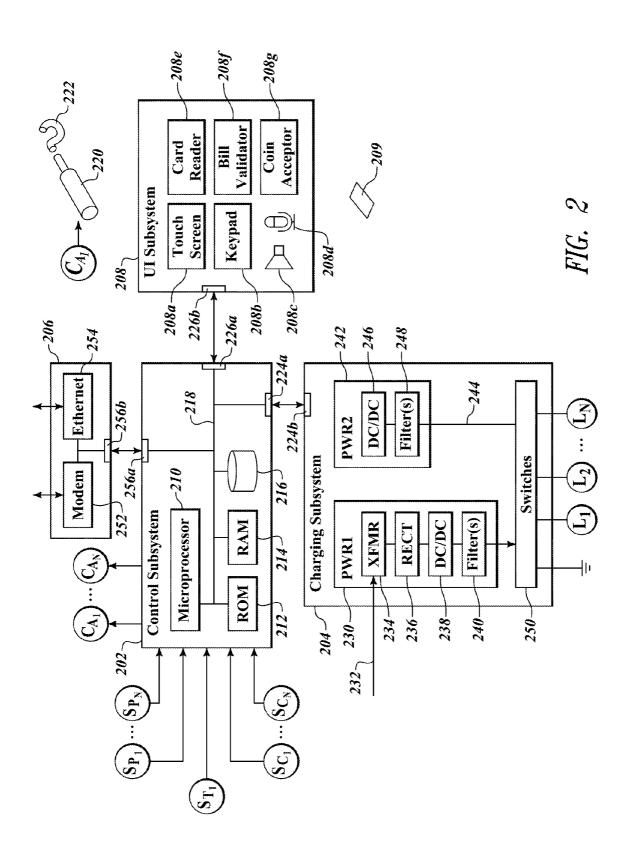
Wu et al., "Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines," U.S. Appl. No. 13/559,333, filed Jul. 26, 2012, 60 pages. International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048349, mailed Feb. 18, 2013, 9 pages.

International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048354, mailed Feb. 18, 2013, 11 pages.

International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048358, mailed Feb. 25, 2013, 9 pages.

International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048366, mailed Jan. 21, 2013, 11 pages.


International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048367, mailed Jan. 17, 2013, 8 pages.


International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048375, mailed Jan. 23, 2013, 9 pages.

International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048379, mailed Dec. 17, 2012, 9 pages.

International Search Report and Written Opinion for corresponding International Application No. PCT/US2012/048391, mailed Dec. 21, 2012, 9 pages.

* cited by examiner

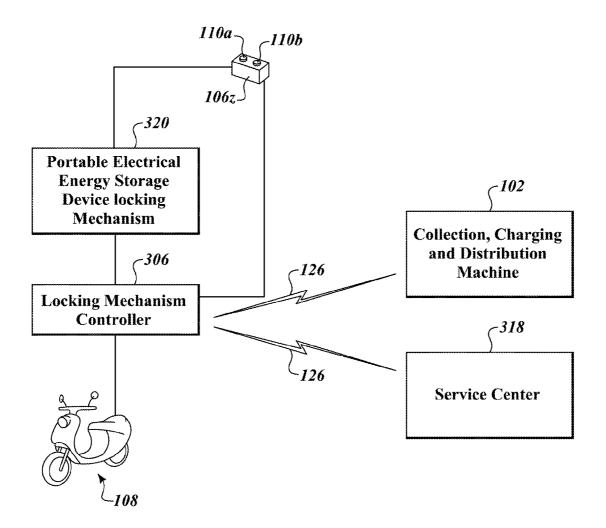


FIG. 3

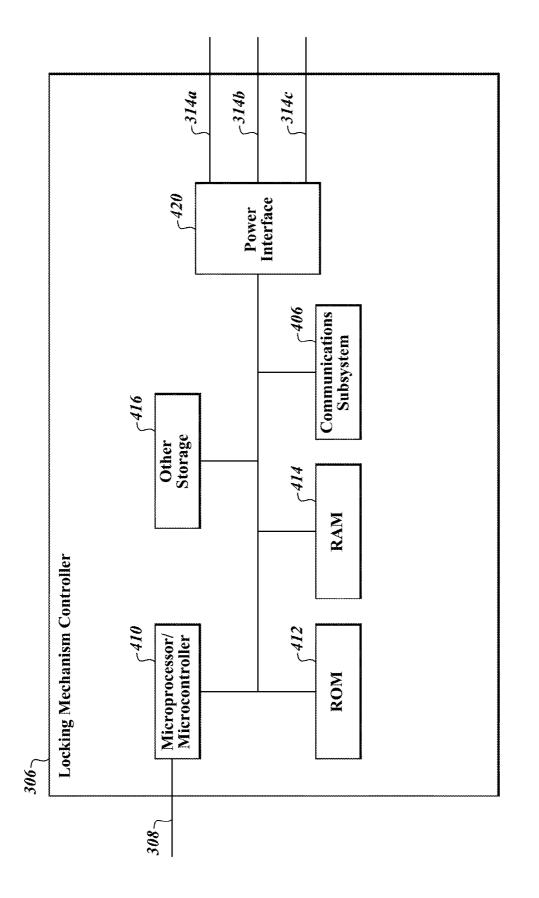
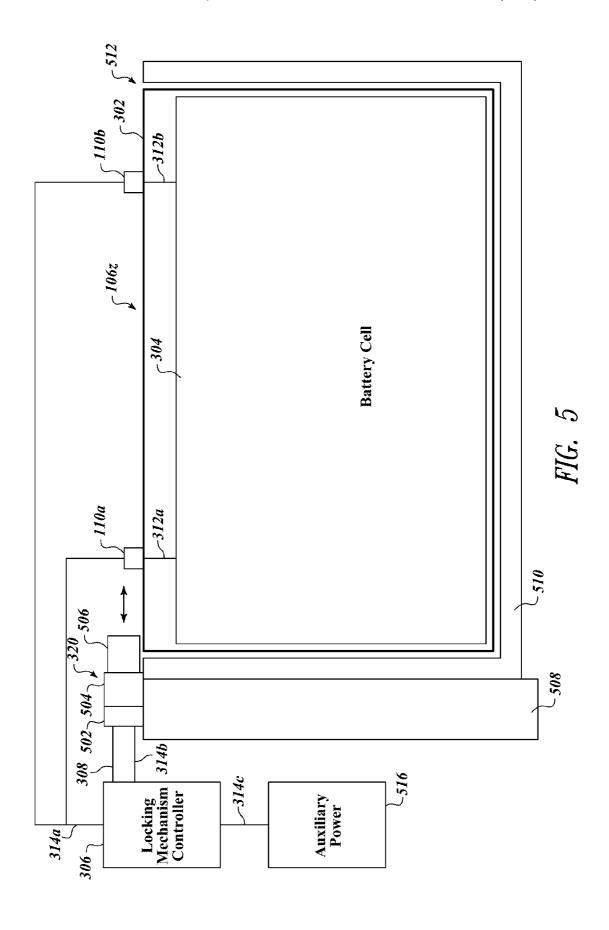
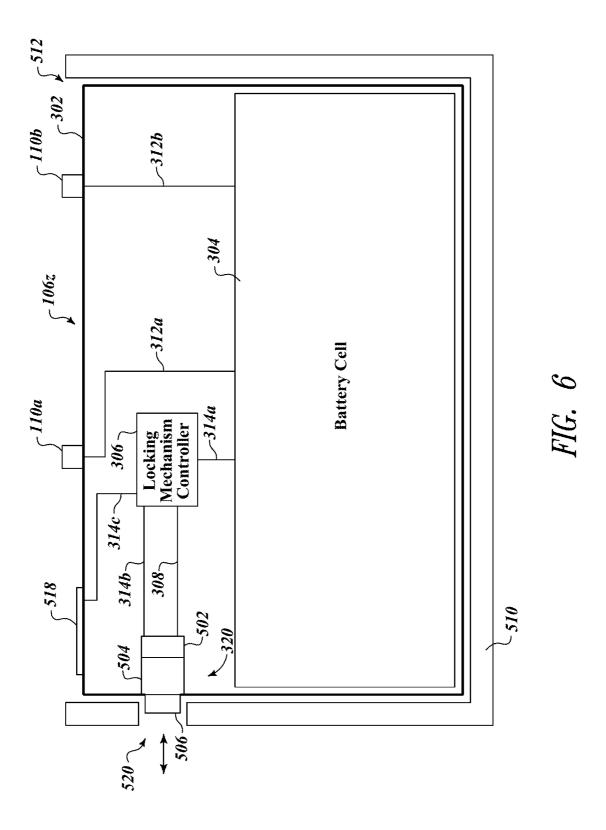
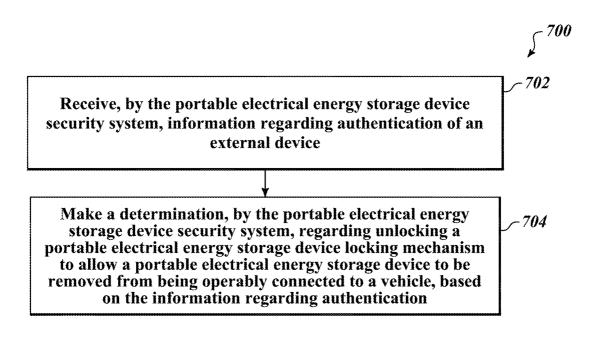





FIG. 4

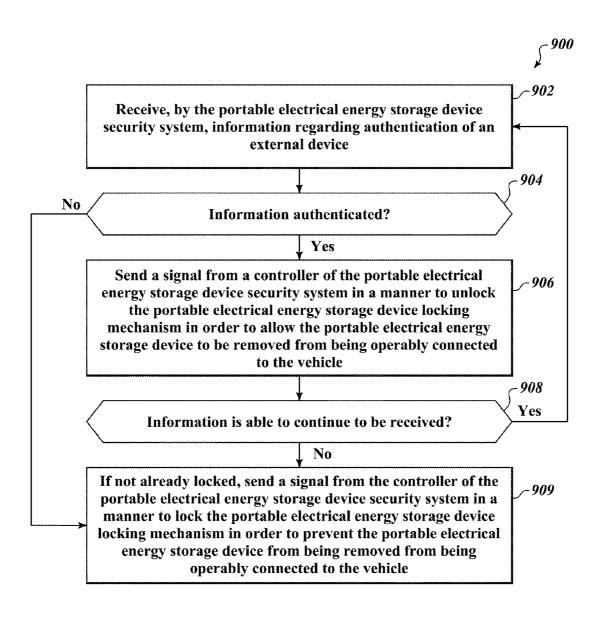

-800

FIG. 7

Receive the information regarding authentication via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system

FIG. 8

APPARATUS, METHOD AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. 119(e) of the filing date of U.S. provisional patent application Ser. No. 61/511,900 entitled "APPARATUS, METHOD AND $_{10}$ ARTICLE FOR COLLECTION, CHARGING AND DIS-TRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,936 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARG-ING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/534,753 entitled "APPARATUS, METHOD AND ARTICLE FOR $_{20}$ REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,761 entitled "APPARATUS, METHOD AND 25 ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,772 entitled "APPARA-30 TUS, METHOD AND ARTICLE FOR AUTHENTICA-TION, SECURITY AND CONTROL OF POWER STOR-AGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/511,887 entitled "THERMAL 35 MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES" and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,941 entitled "THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES" and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/511,880 entitled "DYNAMICALLY LIMITING VEHICLE OPERA-TION FOR BEST EFFORT ECONOMY" and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/557,170 45 entitled "APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES" and filed Nov. 8, 2011, U.S. provisional patent application Ser. No. 61/581,566 entitled "APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT" and filed Dec. 29, 2011, U.S. provisional patent application Ser. No. 61/601,404 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA" and filed 55 Feb. 21, 2012, U.S. provisional patent application Ser. No. 61/601,949 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed Feb. 22, 2012, and U.S. provisional patent application Ser. No. 61/601,953 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAIL-ABILITY OF POWER STORAGE DEVICES AT A POWER 65 STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE" and filed Feb. 22, 2012.

2

BACKGROUND

1. Technical Field

The present disclosure generally relates to the physical security of power storage devices, and particularly to the physical security of power storage devices in vehicles.

2. Description of the Related Art

There are a wide variety of uses or applications for portable electrical power storage devices.

One such application is in the field of transportation. Hybrid and all-electric vehicles are becoming increasingly common. Such vehicles may achieve a number of advantages over traditional internal combustion engine vehicles. For example, hybrid or electrical vehicles may achieve higher fuel economy and may have little or even zero tail pipe pollution. In particular, all-electric vehicles may not only have zero tail pipe pollution, but may be associated with lower overall pollution. For example, electrical power may be generated from renewable sources (e.g., solar, hydro). Also for example, electrical power may be generated at generation plants that produce no air pollution (e.g., nuclear plants). Also for example, electrical power may be generated at generation plants that burn relatively "clean burning" fuels (e.g., natural gas), which have higher efficiency than internal combustion engines, and/or which employ pollution control or removal systems (e.g., industrial air scrubbers) which are too large, costly or expensive for use with individual vehicles.

Personal transportation vehicles such as combustion engine powered scooters and/or motorbikes are ubiquitous in many places, for example in the many large cities of Asia. Such scooters and/or motorbikes tend to be relatively inexpensive, particular as compared to automobiles, cars or trucks. Cities with high numbers of combustion engine scooters and/or motorbikes also tend to be very densely populated and suffer from high levels of air pollution. When new, many combustion engine scooters and/or motorbikes are equipped with a relatively low polluting source of personal transportation. For instance, such scooters and/or motorbikes may have higher mileage ratings than larger vehicles. Some scooters and/or motorbikes may even be equipped with basic pollution control equipment (e.g., catalytic converter). Unfortunately, factory specified levels of emission are quickly exceeded as the scooters and/or motorbikes are used and either not maintained and/or as the scooters and/or motorbikes are modified, for example by intentional or unintentional removal of catalytic converters. Often owners or operators of scooters and/or motorbikes lack the financial resources or the motivation to maintain their vehicles.

It is known that air pollution has a negative effect on human health, being associated with causing or exacerbating various diseases (e.g., various reports tie air pollution to emphysema, asthma, pneumonia, cystic fibrosis as well as various cardiovascular diseases). Such diseases take large numbers of lives and severely reduce the quality of life of countless others.

BRIEF SUMMARY

A portable electrical energy storage device security system for a portable electrical energy storage device may be summarized as including at least one controller; and at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external device via the communications module; and in response to receiving the information regarding authentication, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

The at least one controller may be configured to make a determination regarding unlocking the portable electrical

energy storage device locking mechanism based on the received information regarding authentication. The least one controller may be further configured to: generate a challenge key to send to the external device; send the challenge key to the external device; receive a response from the external 5 device to the sending of the challenge key, the response including a response code as part of the information regarding authentication; generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to 10 the portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical 15 energy storage device locking mechanism based at least on the comparison. The configured portable electrical energy storage device security system may be coupled to the vehicle or may be integrated as part of the portable electrical energy storage device. The external device may be a portable elec- 20 trical energy storage device collection and charging machine. The external device may be a device located at a vehicle service center. The at least one communications module may be configured to receive the information regarding authentication of the external device via a wireless signal and com- 25 municate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle. The portable electrical energy storage device 30 security system may further include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by 35 a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to: send the signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the por- 40 table electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and send the signal in a manner to lock the portable electrical energy storage device locking mechanism in order 45 to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via the communications module. The at least one 50 controller may be configured to receive the information regarding authentication via a wireless signal transmitted from the external device. In some embodiments, the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electri- 55 cal energy storage device security system communications module. The wireless signal may include a rolling code for the authentication of the external device by the at least one controller. The portable electrical energy storage device security system may further include a power interface coupled to the at 60 least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism. The power interface may be configured to be coupled to an aux- 65 iliary power source other than the portable electrical energy storage device to provide power to the electrical energy stor4

age device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism

A method of operating a portable electrical energy storage device security system may be summarized as including receiving, by the portable electrical energy storage device security system, information regarding authentication of an external device; and making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication.

The receiving the information may include receiving the information regarding authentication via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine may not be detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system. The method may further include sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer continue to be received via a communications module of the portable electrical energy storage device. The portable electrical energy storage device security system may be integrated as part of the portable electrical energy storage device. The portable electrical energy storage device security system may be coupled to the vehicle. The making the determination may include comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system and may further include unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system. The method may further include generating a challenge key to send to the external device; sending the challenge key to the external device; receiving a response from the external device to the sending of the challenge key, the response including a response code

as part of the information regarding authentication; generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.

A portable electrical energy storage device may be summarized as including a battery cell; and a security system operably coupled to the cell, the security system configured to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle, based on information received wirelessly regarding authentication of an external device.

The security system may include at least one controller; and at least one communications module coupled to the at 20 least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external device via the communications module; and make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow the 25 portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication. The security system may further include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For 45 example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual 50 shape of the particular elements, and have been solely selected for ease of recognition in the drawings.

FIG. 1 is a schematic view of a collection, charging and distribution machine along with a number of electrical power storage devices according to one non-limiting illustrated 55 embodiment, along with an electric scooter or motorbike, and an electrical service provided via an electrical grid.

FIG. 2 is a block diagram of the collection, charging and distribution machine of FIG. 1, according to one non-limiting illustrated embodiment.

FIG. 3 is a block diagram of a portable electrical energy storage device physical security system for the portable electrical energy storage device of the scooter or motorbike of FIG. 1 in wireless communication in one instance with the collection, charging and distribution machine of FIG. 1 and in 65 another instance with a scooter or motorbike service center, according to one non-limiting illustrated embodiment.

6

FIG. 4 is a schematic view of the locking mechanism controller of FIG. 3, according to one non-limiting illustrated embodiment.

FIG. 5 is a cross-sectional elevation view of the portable electrical energy storage device of FIG. 1 and FIG. 3 coupled to the portable electrical energy storage device physical security system of FIG. 3 and locked in an operable position within the scooter of FIG. 1 and FIG. 3, according to one non-limiting illustrated embodiment.

FIG. 6 is a cross-sectional elevation view of an alternative embodiment of the portable electrical energy storage device of FIG. 1 and FIG. 3 in which the portable electrical energy storage device physical security system of FIG. 3 is integrated with and part of the portable electrical energy storage device of FIG. 1 and FIG. 3, according to one non-limiting illustrated alternative embodiment.

FIG. 7 is a flow diagram showing a high level method of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment.

FIG. 8 is a flow diagram showing a low level method of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of FIG. 7.

FIG. **9** is a flow diagram showing a low level method of operating the locking mechanism controller of FIGS. **3-6**, according to one non-limiting illustrated embodiment, including sending a signal to lock and unlock the portable electrical energy storage device locking mechanism, useful in the method of FIG. **7** and FIG. **8**.

DETAILED DESCRIPTION

In the following description, certain specific details are set
forth in order to provide a thorough understanding of various
disclosed embodiments. However, one skilled in the relevant
art will recognize that embodiments may be practiced without
one or more of these specific details, or with other methods,
components, materials, etc. In other instances, well-known
structures associated with vending apparatus, batteries, locking mechanisms, wireless technologies, supercapacitors or
ultracapacitors, power converters including but not limited to
transformers, rectifiers, DC/DC power converters, switch
mode power converters, controllers, and communications
systems and structures and networks have not been shown or
described in detail to avoid unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the specification and claims which follow, the word "comprise" and variations thereof, such as, "comprises" and "comprising" are to be construed in an open, inclusive sense that is as "including, but not limited to."

Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment.

The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.

Reference to portable electrical power storage device means any device capable of storing electrical power and releasing stored electrical power including but not limited to batteries, supercapacitors or ultracapacitors. Reference to batteries means chemical storage cell or cells, for instance

rechargeable or secondary battery cells including but not limited to nickel cadmium alloy or lithium ion battery cells.

The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.

FIG. 1 shows an environment 100 including a collection, charging and distribution machine 102, according to one illustrated embodiment.

The collection, charging and distribution machine 102 may take the form of a vending machine or kiosk. The collection, 10 charging and distribution machine 102 has a plurality of receivers, compartments or receptacles 104a, 104b-104n (only three called out in FIG. 1, collectively 104) to removably receive portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors) 106a-106n (collectively 106) for collection, charging and distribution. As illustrated in FIG. 1, some of the receivers 104 are empty, while other receivers 104 hold portable electrical energy storage devices 106. While

FIG. 1 shows a single portable electrical energy storage 20 device 106 per receiver 104, in some embodiments each receiver 104 may hold two or even more portable electrical energy storage devices 106. For example, each of the receivers 104 may be sufficiently deep to receive three portable electrical energy storage devices 106. Thus, for example, the 25 collection, charging and distribution machine 102 illustrated in FIG. 1 may have a capacity capable of simultaneously holding 40, 80 or 120 portable electrical energy storage devices 106.

The portable electrical energy storage devices 106 may 30 take a variety of forms, for example batteries (e.g., array of battery cells) or supercapacitors or ultracapacitors (e.g., array of ultracapacitor cells). For example, the portable electrical energy storage device 106z may take the form of rechargeable batteries (i.e., secondary cells or batteries). The portable elec- 35 trical energy storage device 106z may, for instance, be sized to physically fit, and electrically power, personal transportation vehicles, such as all-electric scooters or motorbikes 108. As previously noted, combustion engine scooters and motorbikes are common in many large cities, for example in Asia, 40 Europe and the Middle East. The ability to conveniently access charged batteries throughout a city or region may facilitate the use of all-electric scooters and motorbikes 108 in place of combustion engine scooters and motorbikes, thereby alleviating air pollution, as well as reducing noise.

The portable electrical energy storage devices 106 (only visible for portable electrical energy storage device 106z) may include a number of electrical terminals 110a, 110b (two illustrated, collectively 110), accessible from an exterior of the portable electrical energy storage device 106z. The elec-50 trical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same. While illustrated in FIG. 1 as posts, the electrical terminals 55 110 may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in a battery housing. As the portable electrical energy storage devices 106 may be lent, leased, and/or rented out to the 60 public, it is desirable to control how and in what circumstances the portable electrical energy storage devices 106 may be removed from being operably connected to the vehicle for which they provide power. This control of the physical security of the portable electrical energy storage devices 106 helps to prevent theft and/or misuse of the portable electrical energy storage devices 106. Systems and

8

methods for physical security of the portable electrical energy storage devices 106, including a security system for controlling removal of the portable electrical energy storage devices 106 from a vehicle, are described in more detail below with reference to FIGS. 3-9, and are useful in the overall system for collection, charging and distribution of the portable electrical energy storage devices 106 described herein.

The collection, charging and distribution machine 102 is positioned at some location 112 at which the collection, charging and distribution machine 102 is conveniently and easily accessible by various end users. The location may take any of a large variety of forms, for example, a retail environment such as a convenience store, supermarket, gas or petrol station, or service or service center. Alternatively, the collection, charging and distribution machine 102 may stand alone at a location 112 not associated with an existing retail or other business, for example in public parks or other public places. Thus, for example, collection, charging and distribution machines 102 may be located at each store of a chain of convenience stores throughout a city or region. Such may advantageously rely on the fact that convenience stores are often sited or distributed based on convenience to the target population or demographic. Such may advantageously rely on pre-existing leases on storefronts or other retail locations to allow an extensive network of collection, charging and distribution machines 102 to be quickly developed in a city or region. Quickly achieving a large network that provides for physical security of the of portable electrical energy storage devices 106 while in the all-electric scooters or motorbikes 108 enhances the ability to depend on such a system and likely commercial success of such an effort.

The location 112 may include an electrical service 114 to receive electrical power from a generating station (not shown) for example via a grid 116. The electrical service 114 may, for example, include one or more of an electrical service meter 114a, a circuit panel (e.g., circuit breaker panel or fuse box) 114b, wiring 114c, and electrical outlet 114d. Where the location 112 is an existing retail or convenience store, the electrical service 114 may be an existing electrical service, so may be somewhat limited in rating (e.g., 120 volts, 240 volts, 220 volts, 230 volts, 15 amps).

Optionally, the collection, charging and distribution machine 102 may include or be coupled to a source of renewable electrical power. For example, where installed in an outside location the collection, charging and distribution machine 102 may include an array of photovoltaic (PV) cells 118 to produce electrical power from solar insolation. Alternatively, the collection, charging and distribution machine 102 may be electrically coupled to a microturbine (e.g., wind turbine) or PV array positioned elsewhere at the location 112, for instance on a roof top or mounted at a top of a pole (not shown).

The collection, charging and distribution machine 102 may be communicatively coupled to one or more remotely located computer systems, such as back end or back office systems (only one shown) 120. The back end or back office systems 120 may collect data from and/or control a plurality of collection, charging and distribution machines 102 distributed about an area, such as a city.

In some embodiments, the back end or back office systems 120 may collect data from and/or control a plurality of the portable electrical energy storage devices 106, such as by generating, tracking, sending and/or receiving one or more codes included in a wireless signal 126 sent by the collection, charging and distribution machine 102 to an all-electric scooter or motorbike 108 or other vehicle. The sending and/or receiving one or more codes enables access to the portable

electrical energy storage devices 106 for removal from a respective all-electric scooter or motorbike 108 while the all-electric scooter or motorbike 108 is in the vicinity of the collection, charging and distribution machine 102. The communications between the back end or back office systems 120 and the collection, charging and distribution machine 102 may occur over one or more communications channels including one or more networks 122, or non-networked communications channels. Communications may be over one or more wired communications channels (e.g., twisted pair wir- 10 ing, optical fiber), wireless communications channels (e.g., radio, microwave, satellite, 801.11 compliant). Networked communications channels may include one or more local area networks (LANs), wide area networks (WANs), extranets, intranets, or the Internet including the World Wide Web por- 15 tion of the Internet.

The collection, charging and distribution machine 102 may include a user interface 124. The user interface may include a variety of input/output (I/O) devices to allow an end user to interact with the collection, charging and distribution 20 machine 102. Various I/O devices are called out and described in reference to FIG. 2, which follows.

FIG. 2 shows the collection, charging and distribution machine 102 of FIG. 1, according to one illustrated embodiment.

The collection, charging and distribution machine 102 includes a control subsystem 202, a charging subsystem 204, a communications subsystem 206, and a user interface subsystem 208.

The control subsystem 202 includes a controller 210, for 30 example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various 35 components. Typically, the controller 210 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The control subsystem 202 may also include one or more non-transitory processor- or computer-readable storage media, for example read only memory (ROM) 212, random access 40 memory (RAM) 214, and data store 216 (e.g., solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 212, 214, 216 may be in addition to any non-transitory storage medium (e.g., 45 registers) which is part of the controller 210. The control subsystem 202 may include one or more buses 218 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 212, or some other one of the non-transitory processor- or computer-readable storage media 212, 214, 216, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a 55 database, etc. The instructions and sets of data or values are executable by the controller 110. Execution of the instructions and sets of data or values causes the controller 110 to perform specific acts to cause the collection, charging and distribution machine 102 to collect, charge, and distribute 60 portable energy storage devices, and to send one or more signals that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of a collection, charging and 65 distribution machine 102. Specific operation of the collection, charging and distribution machine 102 is described

10

herein and also below with reference to FIG. 3 and various flow diagrams (FIGS. 7-9) in the context of being an external device which is authenticated in order to allow the portable electrical energy storage device 106 to be removed from being operably connected to the all-electric scooter or motorbike 108.

The controller 210 may use RAM 214 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 210 may use data store 216 to log or retain information, for example one or more codes that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of the collection, charging and distribution machine 102, and/or information related to operation of the collection, charging and distribution machine 102 itself. The instructions are executable by the controller 210 to control operation of the collection, charging and distribution machine 102 in response to end user or operator input, and using data or values for the variables or parameters.

The control subsystem 202 receives signals from various sensors and/or other components of the collection, charging and distribution machine 102 which include information that characterizes or is indicative of operation, status, or condition of such other components. Sensors are represented in FIG. 2 by the letter S appearing in a circle along with appropriate subscript letters.

For example, one or more position sensors S_{P1} - S_{PN} may detect the presence or absence of a portable electrical power storage device 106 at each of the receivers 104. The position sensors S_{P1} - S_{PN} may take a variety of forms. For example, the position sensors S_{P1} - S_{PN} may take the form of mechanical switches that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors S_{P1} - S_{PN} may take the form of optical switches (i.e., optical source and receiver) that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors S_{P1} - S_{PN} may take the form of electrical sensors or switches that are closed, or alternatively opened, in response to detecting a closed circuit condition created by contact with the terminals 110 of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or an open circuit condition that results from the lack of a respective portable electrical power storage device 106 in the receiver 104. These examples are intended to be non-limiting, and it is noted that any other structures and devices for detecting the presence/absence or even the insertion of the portable electrical power storage devices 106 into receivers may be employed.

For example, one or more charge sensors S_{C1} - S_{CN} may detect charge of the portable electrical power storage devices ${\bf 106}$ at each of the receivers ${\bf 104}$. Charge sensors S_{C1} - S_{CN} may detect the amount of charge stored by the portable electrical power storage devices ${\bf 106}$. Charge sensors S_{C1} - S_{CN} may additionally detect an amount of charge and/or rate of charging being supplied to ones of the portable electrical power storage devices ${\bf 106}$ at each of the receivers ${\bf 104}$. Such may allow assessment of current (i.e., temporal) charge condition or status of each portable electrical power storage device ${\bf 106}$, as well as allow feedback control over charging of same,

including control over rate of charging. Charge sensors \mathbf{S}_{C1} - \mathbf{S}_{CN} may include any variety of current and/or voltage sensors

For example, one or more charge sensors S_{T1} (only one shown) may detect or sense a temperature at the receivers 104 or in the ambient environment.

The control subsystem **202** provides signals to various actuators and/or other components responsive to control signals, which signals include information that characterizes or is indicative of an operation the component is to perform or a state or condition into which the components should enter. Control signals, actuators or other components responsive to control signals are represented in FIG. **2** by the letter C appearing in a circle along with appropriate subscript letters.

For example, one or more engine control signals C_{A1} - C_{AN} may affect the operation of one or more actuators 220 (only one illustrated). For instance, a control signal C_{41} may cause movement of an actuator 220 between a first and a second position or change a magnetic field produced by the actuator 20 220. The actuator 220 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 220 may be coupled to operate a latch, lock or other retainer mechanism 222. The latch, lock or other retainer mechanism 222 25 may selectively secure or retain one or more portable electrical power storage devices 106 (FIG. 1) in the receiver 104 (FIG. 1). For instance, the latch, lock or other retainer mechanism 222 may physically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Alternatively, the latch, lock or other retainer mechanism 222 may magnetically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Also for instance, the latch, lock or other retainer mechanism 222 may open a receiver 104 (FIG. 1), or may allow a receiver 104 to be opened, to receive a partially or fully discharged portable electrical power storage device 106 for charging. For example, the actuator may open and/or close a door to the 40 receiver 104 (FIG. 1), to selectively provide access to a portable electrical power storage device 106 (FIG. 1) received therein. Also for example, the actuator may open and/or close a latch or lock, allowing an end user to open and/or close a door to the receiver 104 (FIG. 1), to selectively provide access 45 to a portable electrical power storage device 106 (FIG. 1) received therein.

The control subsystem **202** may include one or more ports **224***a* to provide control signals to one or more ports **224***b* of the charging subsystem **204**. The ports **224***a*, **224***b* may provide bi-directional communications. The control subsystem **202** may include one or more ports **226***a* to provide control signals to one or more ports **226***b* of the user interface subsystem **208**. The ports **226***a*, **226***b* may provide bi-directional communications.

The charging subsystem 204 includes various electrical and electronic components to charge portable electrical power storage devices 106 when positioned or received in the receivers 104. For example, the charging subsystem 204 may include one or more power buses or power bus bars, relays, 60 contactors or other switches (e.g., insulated gate bipolar transistors or IGBTs, metal oxide semiconductor transistors or MOSFETs), rectifier bridge(s), current sensors, ground fault circuitry, etc. The electrical power is supplied via contacts that can take any of a variety of forms, for instance terminals, 65 leads, posts, etc. The contacts allow electrical coupling of various components. Some possible implementations are

12

illustrated in FIG. 2. Such is not intended to be exhaustive. Additional components may be employed while other components may be omitted.

The illustrated charging subsystem 204 includes a first power converter 230 that receives electrical power from the electrical service 114 (FIG. 1) via a line or cord 232. The power will typically be in the form of single two- or three-phase AC electrical power. As such, the first power converter 230 may need to convert and otherwise condition the electrical power received via the electrical services 114 (FIG. 1), for example for rectifying an AC waveform to DC, transforming voltage, current, and phase, as well as reducing transients and noise. Thus, the first power converter 230 may include a transformer 234, rectifier 236, DC/DC power converter 238, and filter(s) 240.

The transformer 234 may take the form of any variety of commercially available transformers with suitable ratings for handling the power received via the electrical service 114 (FIG. 1). Some embodiments may employ multiple transformers. The transformer 234 may advantageously provide galvanic isolation between the components of the collection, charging and distribution machine 102 and the grid 116 (FIG. 1). The rectifier 236 may take any of variety of forms, for example a full bridge diode rectifier or a switch mode rectifier. The rectifier 236 may be operated to transform AC electrical power to DC electrical power. The DC/DC power converter 238 may take any of a large variety of forms. For example, DC/DC power converter 238 may take the form a switch mode DC/DC power converter, for instance employing IGBTs or MOSFETs in a half or full bridge configuration, and may include one or more inductors. The DC/DC power converter 238 may have any number of topologies including a boost converter, buck converter, synchronous buck converter, buck-boost converter or fly-back converter. The filter(s) 240 may include one or more capacitors, resistors, Zener diodes or other elements to suppress voltage spikes, or to remove or reduce transients and/or noise.

The illustrated charging subsystem 204 may also receive electrical power from a renewable power source, for example the PV array 118 (FIG. 1). Such may be converted or conditioned by the first power converter 230, for example being supplied directly to the DC/DC power converter 238, bypassing the transformer 236 and/or rectifier 236. Alternatively, the illustrated charging subsystem 204 may include a dedicated power converter to convert or otherwise condition such electrical power.

The illustrated charging subsystem 204 may optionally include second power converter 242 that receives electrical power from one or more portable electrical power storage 50 devices 106 (FIG. 1) via one or more lines 244, for charging other ones of the portable electrical power storage devices 106. As such, the second power converter 242 may need to convert and/or otherwise condition the electrical power received from portable electrical power storage devices 106, 55 for example optionally transforming voltage or current, as well as reducing transients and noise. Thus, the second power converter 242 may optionally include a DC/DC power converter 246 and/or filter(s) 248. Various types of DC/DC power converters and filters are discussed above.

The illustrated charging subsystem 204 includes a plurality of switches 250 responsive to the control signals delivered via ports 224a, 224b from the control subsystem 202. The switches may be operable to selectively couple a first number or set of portable electrical power storage devices 106 to be charged from electrical power supplied by both the electrical service via the first power converter 230 and from electrical power supplied by a second number or set of portable elec-

trical power storage devices 106. The first number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The second number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The portable electrical power storage devices 106 are represented in FIG. 2 as loads L_1, L_2 - L_{N} .

The communications subsystem 206 may additionally include one or more communications modules or components which facilitate communications with the various components of a back end or back office system 120 (FIG. 1), various components of the all-electric scooter or motorbike 108, and/ or various components of the portable electrical power storage devices 106. The communications subsystem 206 may, for example, include one or more modems 252 and/or one or more Ethernet cards or other types of communications cards or components 254. A port 256a of the control subsystem 202 20 may communicatively couple the control subsystem 202 with a port 256b of the communications subsystem 206. The communications subsystem 206 may provide wired and/or wireless communications. For example, the communications subsystem 206 may provide components enabling short range 25 (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution 30 machine 102, including various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106. The communications subsystem 206 may include one or more ports, wireless receivers, wireless transmitters or wireless trans- 35 ceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 206 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking pro- 40 tocols.

The user interface subsystem **208** includes one or more user input/output (I/O) components. For example, user interface subsystem **208** may include a touch screen display **208** a operable to present information to an end user, and a graphical 45 user interface (GUI) to receive indications of user selections. The user interface subsystem **208** may include a keyboard or keypad **208**b, and/or a cursor controller (e.g., mouse, trackball, trackpad) (not illustrated) to allow an end user to enter information and/or select user selectable icons in a GUI. The 50 user interface subsystem **208** may include a speaker **208**c to provide aural messages to an end user and/or a microphone **208**d to receive spoken user input such as spoken commands.

The user interface subsystem **208** may include a card reader **208**e to read information from card type media **209**. 55 The card reader **208**e may take a variety of forms. For instance, the card reader **208**e may take the form of, or include, a magnetic stripe reader for reading information encoded in a magnetic stripe carried by a card **209**. For instance, the card reader **208**e may take the form of, or 60 include, a machine-readable symbol (e.g., barcode, matrix code) card reader for reading information encoded in a machine-readable symbol carried by a card **209**. For instance, the card reader **208**e may take the form of, or include, a smart card reader for reading information encoded in a non-transitory medium carried by a card **209**. Such may, for instance, include media employing radio frequency identification

14

(RFID) transponders or electronic payment chips (e.g., near filed communications (NFC) chips). Thus, the card reader **208***e* may be able to read information from a variety of card media 209, for instance credit cards, debit cards, gift cards, prepaid cards, as well as identification media such as drivers licenses. The card reader 208e may also be able to read information encoded in a non-transitory medium carried by the portable electrical energy storage devices 106, and may also include RFID transponders, transceivers, NFC chips and/or other communications devices to communicate information to various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106 (e.g., for authentication of the collection, charging and distribution machine 102 to the portable electrical energy storage devices 106 and/or the allelectric scooter or motorbike 108, or for authentication of the portable electrical energy storage devices 106 to the collection, charging and distribution machine 102).

The user interface subsystem 208 may include a bill acceptor 208f and a validator and/or coin acceptor 208g to accept and validate cash payments. Such may be highly useful in servicing populations lacking access to credit. Bill acceptor and validator 208f and/or coin acceptor 208g may take any variety of forms, for example those that are currently commercially available and used in various vending machines and kiosks.

FIG. 3 shows a portable electrical energy storage device physical security system for the portable electrical energy storage device 106z of the scooter or motorbike 108 in wireless communication in one instance with the collection, charging and distribution machine 102 and in another instance with a device at a scooter or motorbike service center 318, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device locking mechanism 320 operably coupled to a locking mechanism controller 306. In some embodiments, the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are part of the scooter or motorbike 108. In other embodiments, the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are integrated with or part of the portable electrical energy storage device 106z.

Also shown is the collection, charging and distribution machine 102 in wireless communication with the locking mechanism controller 306. For example, the communications subsystem 206 (shown in FIG. 2) of the collection, charging and distribution machine 102 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution machine 102, including the locking mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the locking mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may also or instead include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The portable electrical energy storage device 106z may be lent, leased, and/or rented out to the public. Since the portable electrical energy storage device 106z is typically a relatively expensive component, it is desirable to control how and in

what circumstances the portable electrical energy storage device 106z may be removed from being operably connected or attached to the scooter or motorbike 108 for which it provides power. This control of the physical security of the portable electrical energy storage device 106z helps to pre- 5 vent theft and/or misuse of the portable electrical energy storage device 106z. For example, the portable electrical energy storage device 106z may be operably connected to and physically locked or otherwise physically secured in the scooter or motorbike 108 until the locking mechanism controller 306 detects a wireless signal including authentication information from an external device such as the collection, charging and distribution machine 102 or a device at a service center 306 with one or more wireless communications subsystems such as that described above of the collection, charg- 15 ing and distribution machine 102. Other such external devices (not shown) with one or more wireless communications subsystems such as that described above of the collection, charging and distribution machine 102 may include, but are not limited to: card keys, access cards, credit cards, access control 20 key fobs, mobile computing devices, cellular telephones, personal digital assistants (PDAs), smart phones, battery chargers, other access control devices, etc.

The collection, charging and distribution machine 102 may periodically, constantly or aperiodically emit a wireless sig- 25 nal 126 for a locking mechanism controller 306 listening for such a signal to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage 30 device 106z to be removed from the scooter or motorbike 108. Also or instead, the locking mechanism controller 306 may periodically or constantly emit a wireless signal 126 to which a collection, charging and distribution machine 102 listening for such a signal will respond with a wireless signal for the 35 locking mechanism controller 306 to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage device 106z to be removed from the scooter or 40 motorbike 108

In some embodiments, the wireless signal received from the collection, charging and distribution machine 102 may include a code that may be authenticated by the locking mechanism controller 306 in order to ensure the signal is 45 being received from an authorized device. For example, the code may be time-sensitive code such as a "hopping" code or a "rolling" code to provide such security. In the case of a 40-bit rolling code, forty bits provide 240 (about 1 trillion) possible codes. However, codes of other bit lengths may be 50 used instead. The collection, charging and distribution machine 102 memory (e.g., ROM 212) may hold the current 40-bit code. The collection, charging and distribution machine 102 then sends that 40-bit code to the locking mechanism controller 306 for the locking mechanism con- 55 troller 306 to unlock the portable electrical energy storage device locking mechanism 320. The locking mechanism controller 306 also holds the current 40-bit code. If the locking mechanism controller 306 receives the 40-bit code it expects, then it unlocks the portable electrical energy storage device 60 locking mechanism 320. If the locking mechanism controller 306 does not receive the 40-bit code it expects, the locking mechanism controller 306 does nothing. In some embodiments, the locking mechanism controller 306 will lock the portable electrical energy storage device locking mechanism 65 320 if the portable electrical energy storage device locking mechanism 320 is in an unlocked state and the locking

16

mechanism controller 306 does not receive the 40-bit code it expects, or is not able to receive any signal over a determined period of time

Both the collection, charging and distribution machine 102 and the locking mechanism controller 306 use the same pseudo-random number generator (e.g., implemented by the respective processors of the collection, charging and distribution machine 102 and the locking mechanism controller 306) to generate the 40-bit code. The collection, charging and distribution machine 102 may have different pseudo-random number generators to match the pseudo-random number generator of each locking mechanism controller 306 of each scooter or motorbike 108 or of each of the portable electrical energy storage devices 106. When the locking mechanism controller 306 receives a valid code form the collection, charging and distribution machine 102, it uses the same pseudo-random number generator to generate the next code relative to the valid code received and communicates wirelessly with the collection, charging and distribution machine 102 to instruct it to also generate the next code using the same pseudo-random number generator, which the collection, charging and distribution machine 102 stores for the next use. In this way, the collection, charging and distribution machine 102 and the locking mechanism controller 306 are synchronized. The locking mechanism controller 306 only unlocks the portable electrical energy storage device locking mechanism 320 if it receives the code it expects.

Also, the current 40-bit code or other time-sensitive rolling code may be generated and communicated to one or more other collection, charging and distribution machines within a network of collection, charging and distribution machines (e.g., via the network 122 shown in FIG. 1) so that any collection, charging and distribution machine 102 may communicate the correct current code to the locking mechanism controller 306 when the scooter or motorbike having the locking mechanism controller 306 or the portable electrical energy storage device 106z having the locking mechanism controller 306 comes within wireless signal range of the other collection, charging and distribution machines. In some embodiments, the locking mechanism controller 306 may accept any of the next 256 possible valid codes in the pseudorandom number sequence. This way, if the locking mechanism controller 306 and the collection, charging and distribution machine 102 for some reason become unsynchronized by 256 rolling codes or less, the locking mechanism controller 306 would still accept the transmission from the collection, charging and distribution machine 102, unlock the portable electrical energy storage device locking mechanism 320 and generate the next code relative to the valid code received.

In other embodiments, the hopping, rolling or time-sensitive code may be a universal code communicated by the back end or back office system 120 to the collection, charging and distribution machine 102 and communicated wirelessly to the locking mechanism controller 306. For example, this may occur over a WAN, LAN and/or when the locking mechanism controller 306 comes within wireless communications range of the collection, charging and distribution machine 102 such as when the scooter or motorbike 108 visits the collection, charging and distribution machine 102.

In some embodiments, the locking mechanism controller 306 and the collection, charging and distribution machine store a common secret key or code and use a common secret algorithm for authentication of the collection, charging and distribution machine. The common secret algorithm, for example, can be a hash function or other algorithm which takes the secret key and at least one other key or code as input and generates different output based on the secret key and

different input. The common secret algorithm may be executed by respective processors of the locking mechanism controller 306 and the collection, charging and distribution machine using stored instructions on respective computer readable media of the locking mechanism controller 306 and 5 the collection, charging and distribution machine or on respective configured hardware or firmware components of the of locking mechanism controller 306 and collection, charging and distribution machine. The common secret algorithm and common secret key or code may be initially encoded, programmed or installed in the locking mechanism controller 306 and collection, charging and distribution machine in a secure fashion such that they are irretrievable or otherwise protected from being discovered. The common secret algorithm and common secret key or code are not 15 communicated between the locking mechanism controller 306 and collection, charging and distribution machine during the authentication process.

In response to receiving an authentication beacon or request from the collection, charging and distribution 20 machine via the wireless signal 126 (which may have been sent in response to a wireless signal or beacon received from the locking mechanism controller 306), the locking mechanism controller 306 generates a challenge key and sends this challenge key to the collection, charging and distribution 25 machine. In response to receiving the challenge key, the collection, charging and distribution machine uses the secret algorithm and the common secret key to generate a response value and sends this response value to the locking mechanism controller 306. The locking mechanism controller 306 then 30 verifies the response value by using the generated challenge key and secret key as input to the secret algorithm to generate an output value from the secret algorithm. The locking mechanism controller 306 then compares this output value from the secret algorithm to the response value received from 35 the collection, charging and distribution machine. If the output from the secret algorithm generated by the locking mechanism controller 306 and the response value received from the collection, charging and distribution machine match, then the collection, charging and distribution machine 40 is authenticated and the locking mechanism controller 306 may then take actions accordingly, such as sending a control signal to the locking mechanism 320 to unlock. If the output from the secret algorithm generated by the locking mechanism controller 306 and the response value received from the 45 collection, charging and distribution machine do not match, then the collection, charging and distribution machine is not authenticated and the locking mechanism controller 306 may then take no action, or take other actions accordingly, such as sending a control signal to the locking mechanism 320 to lock 50 if not already locked. In some embodiments any authentication process involving using any combination of a public key and or public algorithm may be used.

Once the locking mechanism controller 306 can no longer receive the wireless signal 126 from the collection, charging 55 and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging and distribution machine 102 and is no longer within range of the collection, charging and distribution machine 102 wireless signal 60 126), the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike 65 108. Also, as described above, if the signal received from the collection, charging and distribution machine 102 or other

device contains an invalid code, if not already locked, the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike. In some instances, where the locking mechanism controller 306 is not part of the portable electrical energy storage device 106z, the locking mechanism controller 306 must detect the presence of the portable electrical energy storage device 106z in the scooter or motorbike 108 before sending a signal to cause the portable electrical energy storage device locking mechanism 320 to lock.

In some embodiments, the wireless portion of the authentication is strongly phased. Nearby, the system challenges some or all portable electrical energy storage device collection, charging and distribution machines that would wirelessly tell the vehicle to disengage the portable electrical energy storage device in order to swap the portable electrical energy storage device. Also, the portable electrical energy storage device collection, charging and distribution machine/ service center may be mobile. For example, a service vehicle may come to a broken down/out of charge vehicle on the side of the road and the portable electrical energy storage device can only release when the authenticated service vehicle is nearby. "Nearby", may be any range of distance selected by the system within range of short range wireless signal. A very short close distance may also be used, for example, as in some embodiments, the system may use technology such as near field communications (NFC) or other near field or very short range technologies.

FIG. 4 is a schematic view of the locking mechanism controller of FIG. 3, according to one non-limiting illustrated embodiment.

The locking mechanism controller 306 includes a controller 410, a communications subsystem 406, and a power interface 420.

The controller 410, for example, is a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 410 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The locking mechanism controller 306 may also include one or more non-transitory processoror computer-readable storage media, for example read only memory (ROM) 412, random access memory (RAM) 414, and other storage 416 (e.g., solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 412, 414, 416 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 410. The locking mechanism controller 306 may include one or more buses 418 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM **412**, or some other one of the non-transitory processor- or computer-readable storage media **412**, **414**, **416**, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller **410**. Execution of the instructions and sets of data or values causes the controller **410** to perform specific acts to compare a code received from an external device and cause the locking mechanism controller

306 to generate control signals to lock or unlock the portable electrical energy storage device locking mechanism 320 based on the comparison. Also, such acts may include, for example, operations implementing a pseudo-random number to generate a rolling code as described above. Specific operation of the locking mechanism controller 306 is described herein and also below with reference to various flow diagrams (FIGS. 7-9).

The controller **410** may use RAM **414** in a conventional fashion, for volatile storage of instructions, data, etc. The 10 controller **410** may use data store **416** to log or retain information, for example, information regarding user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, vehicle information, etc. The instructions are executable by the controller **410** to 15 control operation of the locking mechanism controller **306** in response to input from remote systems such as those of external devices including but not limited to: charging devices, vehicles, user identification devices (cards, electronic keys, etc.) vehicles, collection, charging and distribution machines, 20 collection, charging and distribution machine service systems, service centers, user mobile devices, user vehicles, and end user or operator input.

The controller **410** may also receive signals from various sensors and/or components of an external device via the communications subsystem **406** of the locking mechanism controller **306**. This information may include information that characterizes or is indicative of the authenticity, authorization level, operation, status, or condition of such components and/or external devices.

The communications subsystem 406 may include one or more communications modules or components which facilitate communications with the various components of the collection, charging and distribution machine 102 of FIG. 1 (e.g., such as to receive a security code) and/or of other 35 external devices and also, such that data may be exchanged between the locking mechanism controller 306 and the external devices for authentication purposes. The communications subsystem 406 may provide wired and/or wireless communications. The communications subsystem 406 may include 40 one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 406 may, for example, include components enabling short range (e.g., via Bluetooth, near field commu- 45 nication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) and may include one or more modems or one or more Ethernet or other types of communications cards or components for 50 doing so. The remote communications subsystem 406 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking pro-

In some embodiments, some or all of the components of the locking mechanism controller 306 may be located outside of the portable electrical energy storage device 106z as a separate device that actuates one or more actuators 502 (shown in FIG. 6 and FIG. 7) of the portable electrical energy storage 60 device 106z (e.g., by a wireless control signal) sent via the communications subsystem 406.

The power interface 420 is controllable by the controller 410 and is configured to receive power from the portable electrical energy storage device 106z via connection 314a to 65 provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking

20

mechanism 320 (via connection 314b). Also, the power interface 420 is controllable by the controller 410 and is configured to receive power from an auxiliary source other than the portable electrical energy storage device 106z via connection 314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306. The power interface 420 includes various components operable for performing the above functions such as electrical transformers, converters, rectifiers, etc.

FIG. 5 shows a cross-sectional elevation view of the portable electrical energy storage device 106z of FIG. 1 and FIG. 3 coupled to the portable electrical energy storage device physical security system of FIG. 3 and locked in an operable position within the scooter 108 of FIG. 1 and FIG. 3, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device holder 510, a part of a vehicle 508, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, a locking mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an auxiliary power source 516. The battery cell 304 may be any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. Also, the battery cell 304 may comprise any type of rechargeable ultracapacitor array or fuel cell array. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same through conductive terminal connections 312a and 312b to the battery cell 304. While illustrated in FIG. 3 as posts, the electrical terminals 110a and 110b may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in the battery housing 302.

The portable electrical energy storage device locking mechanism 320 is located outside the portable electrical energy storage device housing 302 and fixedly attached to a vehicle part 508 (e.g., a vehicle frame or chassis) that is attached to a holder 510 in which the portable electrical energy storage device 106z is placed. The holder 510 has a top opening 512 through which the portable electrical energy storage device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has a slidable bolt 506 which partially covers the opening 512 (as shown in FIG. 5) in a locked state to block passage of the portable electrical energy storage device 106z through the opening 512 and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510. The slidable bolt 506 is slidable on a bolt track or through bolt housing 504 fixedly attached to the vehicle part 508. When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) into the bolt housing 504 to not cover the opening 512 and thus allow passage of the portable

electrical energy storage device 106z through the opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism control- 5 ler 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt **506** to move. For 10 instance, a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an 15 electromagnet. The actuator 502 may alternatively be coupled to operate a different latch, lock or other type of retainer mechanism for the portable electrical energy storage device 106z.

The locking mechanism controller **306** is configured to 20 receive power from the portable electrical energy storage device **106**z via connection **314**a to provide power to the locking mechanism controller **306** and also to the portable electrical energy storage device locking mechanism **320** (via connection **314**b).

Also, the locking mechanism controller 306 is optionally configured to receive power from an auxiliary source 516 other than the portable electrical energy storage device 106z via connection 314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306.

The housing 302 may provide a protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may 40 include a strong outer layer of a first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange) therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

It is also noted that the housing **302** may serve as a frangible 45 substrate, or a frangible substrate may be secured to an inner portion of the housing **302**, for instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device **106z** inoperable.

FIG. 6 shows a cross-sectional elevation view of an alternative embodiment the portable electrical energy storage device 106z of FIG. 1 and FIG. 3 in which the portable electrical energy storage device physical security system of FIG. 3 is integrated with and part of the portable electrical 55 energy storage device 106z of FIG. 1 and FIG. 3, according to one non-limiting illustrated alternative embodiment.

Shown is a portable electrical energy storage device holder 510, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, a locking 60 mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an access panel 518 to plug in an auxiliary power source. The battery cell 304 is any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. As described above, 65 the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z.

22

The portable electrical energy storage device locking mechanism 320 is located inside the portable electrical energy storage device housing 302 and fixedly attached to the interior of the portable electrical energy storage device housing 302. The holder 510 has a top opening 512 through which the portable electrical energy storage device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has a slidable bolt 506 which is configured to slide on a bolt track or through bolt housing 504 fixedly attached to an interior wall of the portable electrical energy storage device housing 502. The slidable bolt 506 is configured to slide through an opening 520 in the side of the housing 302 and into an opening 520 in the side wall of the holder 510 aligned with the opening in the side of the housing 302 to block passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510, and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510 (as shown in FIG. 6). When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) back into the bolt housing 504 inside the portable electrical energy storage device 106z, and thus allows passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism controller 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from 35 the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt 506 to move. For instance, a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 502 may alternatively be coupled to operate a different latch, lock or other type of retainer mechanism for the portable electrical energy storage device 106z.

The locking mechanism controller 306 is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the 50 locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via power line 314b). Also, the locking mechanism controller 306 is configured to receive power from an auxiliary source other than the portable electrical energy storage device 106z via line 314c. The auxiliary source may be connected to line 314b through an access panel 518 in the housing 302 to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/ or the locking mechanism controller 306.

The housing 302 may provide protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may

include a strong outer layer of a first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange) therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

It is also noted that the housing 302 may serve as a frangible 5 substrate, or a frangible substrate may be secured to an inner portion of the housing 302, for instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device 106z inoperable.

FIG. 7 shows a high level method 700 of operating the locking mechanism controller of FIGS. 3-6, according to one non-limiting illustrated embodiment.

At 702, the portable electric storage device security system receives information regarding authentication of an external 15 device such as the collection, charging and distribution machine 102.

At 704, the portable electrical energy storage device security system makes a determination regarding unlocking the portable electrical energy storage device locking mechanism 20 320 to allow the portable electrical energy storage device 106z to be removed from being operably connected to a vehicle, based on the information regarding authentication.

FIG. 8 shows a low level method 800 of operating the locking mechanism controller of FIGS. 3-6, according to one 25 non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of FIG. 7.

At 802, the portable electric storage device security system receives the information regarding authentication via a wire- 30 less signal transmitted from the collection, charging and distribution machine 102. The wireless signal received from the collection, charging and distribution machine 102 is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage 35 device security system.

FIG. 9 shows a low level method 900 of operating the portable electrical energy storage device security system controller 306 of FIGS. 3 and 4, according to one non-limiting illustrated embodiment, including determining how much 40 energy to release, based on a vehicle performance profile of the vehicle, useful in the method of FIG. 8.

At 902, the portable electric storage device security system receives information regarding authentication of an external machine 102.

At 904 the portable electric storage device security system determines whether the information received is authentic.

At 906, if the information received was determined to be authentic (e.g., by matching a code received), then the por- 50 table electrical energy storage device security system sends a signal from locking mechanism controller 306 in a manner to unlock the portable electrical energy storage device locking mechanism 320 in order to allow the portable electrical energy storage device to be removed from being operably 55 connected to the vehicle.

At 908, the portable electric storage device security system determines whether the information is able to continue to be received. For example, the information may not be able to continue to be received once the locking mechanism control- 60 ler 306 can no longer receive the wireless signal from the collection, charging and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging and distribution machine 102 and is no longer within 65 range of the collection, charging and distribution machine 102 wireless signal 126).

24

At 909, if the information received was determined not to be authentic or the information is not able to continue to be received by the portable electric storage device security system, and if the portable electrical energy storage device locking mechanism 320 is not already locked, the portable electrical energy storage device security system sends a signal from the locking mechanism controller 306 in a manner to lock the portable electrical energy storage device locking mechanism 320 in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle. If the information is able to continue to be received by the portable electric storage device security system, the method 900 repeats by proceeding again to 902 to perform the authentication of the information. The method may repeat at periodic intervals or continuously.

The various methods described herein may include additional acts, omit some acts, and/or may perform the acts in a different order than set out in the various flow diagrams.

The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by on one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.

When logic is implemented as software and stored in device such as the collection, charging and distribution 45 memory, logic or information can be stored on any nontransitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a nontransitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.

> In the context of this specification, a "computer-readable medium" can be any physical element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaus-

tive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or 5 Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.

The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions 10 herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to: U.S. provisional patent applica- 15 tion Ser. No. 61/511,900 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,936 entitled "APPARA- 20 TUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/534,753 entitled "APPARATUS, METHOD AND ARTICLE FOR 25 REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,761 entitled "APPARATUS, METHOD AND 30 ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/534,772 entitled "APPARA-TUS, METHOD AND ARTICLE FOR AUTHENTICA- 35 TION, SECURITY AND CONTROL OF POWER STOR-AGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES" and filed Sep. 14, 2011, U.S. provisional patent application Ser. No. 61/511,887 entitled "THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC 40 MOTOR DRIVE VEHICLES" and filed Jul. 26, 2011, U.S. provisional patent application Ser. No. 61/647,941 entitled "THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES" and filed May 16, 2012, U.S. provisional patent application Ser. No. 61/511,880 45 entitled "DYNAMICALLY LIMITING VEHICLE OPERA-TION FOR BEST EFFORT ECONOMY" and filed Jul. 26, 2011 provisional patent application Ser. No. 61/557,170 entitled "APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE 50 DEVICES IN VEHICLES" and filed Nov. 8, 2011, U.S. provisional patent application Ser. No. 61/581,566 entitled APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT' and filed Dec. 29, 2011, U.S. provisional patent application Ser. No. 61/601,404 55 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA" and filed Feb. 21, 2012, U.S. provisional patent application Ser. No. 61/601,949 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER 60 STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed Feb. 22, 2012, and U.S. provisional patent application Ser. No. 61/601,953 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAIL- 65 ABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND

26

DISTRIBUTION MACHINE" and filed Feb. 22, 2012, U.S. application Ser. No. 13/559,314 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Matthew Whiting Taylor and Huang-Cheng Hung as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARG-ING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES", U.S. application Ser. No. 13/559,038 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES" U.S. application Ser. No. 13/559,264 filed on Jul. 26, 2012 naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled "DYNAMICALLY LIMITING OPERATION FOR BEST ECONOMY", U.S. application Ser. No. 13/559,390 filed on Jul. 26, 2012, naming Ching Chen, Hok-Sum Horace Luke, Matthew Whiting Taylor, Yi-Tsung Wu as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA", U.S. application Ser. No. 13/559,343 filed on Jul. 26, 2012, naming Yi-Tsung Wu, Matthew Whiting Taylor, Hok-Sum Horace Luke and Jung-Hsiu Chen as inventors and entitled "APPA-RATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBU-TION MACHINE", and U.S. application Ser. No. 13/559,064 filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Yi-Tsung Wu, Jung-Hsiu Chen, Yulin Wu, Chien Ming Huang, TsungTing Chan, Shen-Chi Chen and Feng Kai Yang as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR RESERVING POWER STORAGE DEVICES AT RESERVING POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES" are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.

While generally discussed in the environment and context of collection, charging and distribution of portable electrical energy storage devices for use with personal transportation vehicle such as all-electric scooters and/or motorbikes, the teachings herein can be applied in a wide variety of other environments, including other vehicular as well as non-vehicular environments.

The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.

These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

We claim:

- 1. A portable electrical energy storage device security system comprising:
 - at least one controller; and
 - at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:

receive information regarding authentication of an external device via the communications module; and

make a determination regarding unlocking the portable 10 electrical energy storage device locking mechanism based on the received information regarding authentication, the at least one controller being configured to make the determination at least by being configured to:

generate a challenge key to send to the external device:

send the challenge key to the external device;

receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;

generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be 25 known only to the portable electrical energy storage device security system and one or more authorized external devices; and

compare the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison; and

in response to receiving the information regarding 35 authentication and, based on the determination, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

- 2. The portable electrical energy storage device security system of claim 1 wherein the configured portable electrical energy storage device security system is coupled to the vehicle or is integrated as part of the portable electrical energy storage device.
- 3. The portable electrical energy storage device security system of claim 1 wherein the external device is a device located at a vehicle service center.
- **4.** The portable electrical energy storage device security system of claim, wherein the at least one communications 50 module is configured to receive the information regarding authentication of the external device via a wireless signal and communicate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy 55 storage device to be removed from being operably connected to the vehicle.
- 5. A portable electrical energy storage device security system comprising:
 - at least one controller;
 - at least one communications module coupled to the at least one controller:

60

- a portable electrical energy storage device locking mechanism coupled to the at least one controller; and
- a switch coupled to the portable electrical energy storage 65 device locking mechanism and the at least one controller, the switch configured to be activated by a control

28

signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to: receive information regarding authentication of an external device via the communications module;

in response to receiving the information regarding authentication, unlock the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle by at least being configured to send the control signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

send the control signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module.

- 6. The portable electrical energy storage device security system of claim 5 wherein the at least one controller is configured to receive the information regarding authentication via a wireless signal transmitted from the external device, and wherein the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electrical energy storage device security system communications module.
- 7. The portable electrical energy storage device security system of claim 6 wherein the wireless signal includes a rolling code for the authentication of the external device by the at least one controller.
- **8**. The portable electrical energy storage device security system of claim **5**, further comprising:
 - a power interface coupled to the at least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism.
- 9. The portable electrical energy storage device security system of claim 8 wherein the power interface is configured to be coupled to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.
- 10. A method of operating a portable electric energy storage device security system, the method comprising:
 - receiving, by the portable electrical storage device security system, information regarding authentication of an external device;
 - making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication;
 - sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device

locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being 10 operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device.

11. The method of claim 10 wherein the portable electrical energy storage device security system is integrated as part of the portable electrical energy storage device.

12. The method of claim 10 wherein the portable electrical energy storage device security system is coupled to the 20 vehicle.

13. A method of operating a portable electrical energy storage device security system, the method comprising:

receiving, by the portable electrical energy storage device security system. information regarding authentication of 25 an external device;

making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device 30 to be removed from being operably connected to a vehicle, based on the information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with 35 the portable electrical energy storage device security system:

unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and

locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if after a defined period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage 55 device security system.

14. The method of claim 10, wherein the making the determination regarding unlocking the portable electrical energy storage device locking mechanism includes:

generating a challenge key to send to the external device; 60 sending the challenge key to the external device;

receiving a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;

generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm 30

and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and

comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.

15. A portable electrical energy storage device, comprising:

a battery cell; and

a security system operably coupled to the cell, the security system including:

at least one controller; at least one communications module coupled to the at least one controller;

a portable electrical energy storage device locking mechanism coupled to the at least one controller; and

a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to:

receive information regarding authentication of an external device via the communications module;

in response to receiving the information regarding authentication, unlock the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle by at least being configured to send the control signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

send the control signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module.

period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device of claim of the external device has not been received via a communications module of the portable electrical energy storage device of claim of the external device has not been received via a communications module coupled to the at least one controller, wherein the at least one controller is configured to:

make a determination regarding unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication.

17. The portable electrical energy storage device of claim 15 further comprising:

a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

18. The portable electrical energy storage device of claim **15** wherein a security system operably coupled to the cell, the security system is configured to:

receive the information regarding authentication of an external device via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system; and

allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information received wirelessly regarding authentication of the external device.

19. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least 20 one computer processor to:

cause a portable electrical energy storage device security system to receive information regarding authentication of an external device via a communications module;

make a determination, by the portable electrical energy 25 storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication:

send a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

send a signal from the controller of the portable electrical 40 energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined 45 period of time, the information regarding authentication of the external device has not been received via a communications module of the portable electrical energy storage device.

20. A portable electrical energy storage device security 50 system comprising:

at least one controller; and

at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:

receive, via the communications module, information regarding authentication of an external device;

make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to 60 be removed from being operably connected to a vehicle, based on the information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system;

32

send a signal to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and send a signal to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module of the portable electrical energy storage device security system or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.

21. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to:

receive information regarding authentication of an external device via a communications module; and

make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication, wherein the computer-executable instructions cause the at least one computer processor to make the determination at least by causing the at least one computer processor to:

generate a challenge key to send to the external device; send the challenge key to the external device;

receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;

generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices:

compare the output from the secret algorithm to the response code, and wherein the computer-executable instructions cause the at least one computer processor to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison; and

in response to receiving the information regarding authentication and, based on the determination, cause a controller to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

22. A non-transitory computer-readable medium having computer-executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to:

receive, via a communication module, information regarding authentication of an external device;

make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the

25

information regarding authentication, wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system;

send a signal to unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and

send a signal to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being 15 removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device has not been received via the communications module of the portable electrical energy storage device or if, after a defined 20 period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.

* * * * *