US011258595B2

a2 United States Patent

Nix

US 11,258,595 B2
*Feb. 22, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

SYSTEMS AND METHODS FOR
“MACHINE-TO-MACHINE” (M2M)
COMMUNICATIONS BETWEEN MODULES,
SERVERS, AND AN APPLICATION USING
PUBLIC KEY INFRASTRUCTURE (PKI)

Applicant: Network-1 Technologies, Inc., New
York, NY (US)

Inventor: John A. Nix, Evanston, IL. (US)

Assignee: NETWORK-1 TECHNOLOGIES,
INC., New York, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 205 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 16/593,561

Filed: Oct. 4, 2019

Prior Publication Data

US 2020/0036521 Al Jan. 30, 2020

Related U.S. Application Data

Continuation of application No. 16/036,506, filed on
Jul. 16, 2018, now Pat. No. 10,530,575, which is a

(Continued)
Int. CL.
HO4L 9/08 (2006.01)
HO4W 52/02 (2009.01)
(Continued)
U.S. CL
CPC HO4L 9/0861 (2013.01); GO6F 21/35

(2013.01); GOGF 21/445 (2013.01); H04J
11/00 (2013.01);

(Continued)

(58) Field of Classification Search
CPC . HO4W 12/40; HO4W 52/0216; GO6F 21/445;
GOG6F 2221/2115; HO4L 9/0841,

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS
5,216,715 A 6/1993 Markwitz
5,319,710 A 6/1994 Atalla et al.
(Continued)
FOREIGN PATENT DOCUMENTS
AU 2019246774 10/2019
CA 2775853 Al 12/2012
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/879,325, filed May 20, 2020, Notice of Allow-
ance dated Mar. 31, 2021.

(Continued)

Primary Examiner — David] Pearson
(74) Attorney, Agent, or Firm — Amster, Rothstein &
Ebenstein LLP

(57) ABSTRACT

Methods and systems are provided for supporting efficient
and secure “Machine-to-Machine” (M2M) communications
using a module, a server, and an application. A module can
communicate with the server by accessing the Internet, and
the module can include a sensor and/or an actuator. The
module, server, and application can utilize public key infra-
structure (PKI) such as public keys and private keys. The
module can internally derive pairs of private/public keys
using cryptographic algorithms and a first set of parameters.
A server can authenticate the submission of derived public
keys and an associated module identity. The server can use
a first server private key and a second set of parameters to
(1) send module data to the application and (ii) receive
module instructions from the application. The server can use

(Continued)

Wodle Manutacturing with Module Idetty 170
‘Written to Hardware

si1

512

0
[oaute Distbuton and instaiation win Monitareq urit |
L,

Recaord in Nonvolatiie Memary 107w Sharec Secret
Key 510, Parameters 126, Server Addresses 207
A

513

[Madule Reads Moduls Identity 110 rom Hardware |
T

514

Madule Derives Public Key 711 and Private Key 112 Pair,
and Records Pair in Nonvolalie Memory 101w

515

Receive First Message 208w/ Mocule Gentty 710,

I 515

Parameters 126, and Public Key 711
4

[Authenticate 1+ Message 208 using Shared SacretKay 510] 517

Module Encrypted Data 403

| ‘Receive 2nd Message 208w/ Module Idensity 110,

I 518

¥
[Send Response 208 to Moduie. where Response includes|
Server Encrypted Data 504w/ Moduls Instruction 502

519

Yes Certifcate 722 Expired o
s New Public Koy 111

Required?

4
Raceive 3 Message 208 with Confirmation 414

521

520 12

No Wait For incoming
Messages w/ Sensor Data

US 11,258,595 B2

Page 2
a second server private key and the first set of parameters to HO4L 2209/72 (2013.01); HO4L 2209/805
communicate with the module. (2013.01); HO4W 84/12 (2013.01); HO4W
88/12 (2013.01); Y02D 30/70 (2020.08)
18 Claims, 17 Drawing Sheets (58) Field of Classification Search

CPC ... HOAL 9/0816; HOAL 9/32; HOAL 63/0272;
HOAL 63/045; HO4L 63/0442; HOAL
63/123; HOAL 63/061

Related U.S. Application Data See application file for complete search history.

continuation of application No. 15/583,968, filed on (56) References Cited

May 1, 2017, now Pat. No. 10,057,059, which is a

continuation of application No. 15/010,905, filed on U.S. PATENT DOCUMENTS
Jan. 29, 2016, now Pat. No. 9,641,327, which is a
continuation of application No. 14/055,606, filed on 5,642,420 A 6/1997 Kuroda et al.
Oct. 16, 2013, now Pat. No. 9,276,740. 5,604,017 A~ 9/1997 Gressel et al.
5,852,665 A 12/1998 Gressel et al.
5,995,625 A 11/1999 Sudia et al.
(1) Int. CL. 6,038,322 A 3/2000 Harkins
HO4W 12/04 (2021.01) 6,256,733 Bl 7/2001 Thakkar et al.
HO4W 4/70 (2018.01) 6,721,886 Bl 4/2004 Uskela
HO4W 76727 (2018.01) 6,804,357 B1 10/2004 Ikonen et al.
GO6F 21/35 (2013.01) 6,975,729 Bl * 12/2005 Perlman H04L3§£)0/§‘7‘;
HO04W 12/033 (2021.01) 7,627,760 B2 12/2009 Lauter et al.
GO6F 21/44 (2013.01) 7,921,292 Bl 4/2011 Pauker et al.
HO4W 12/40 (2021.01) 7,957,532 B2 6/2011 Chen et al.
8,127,142 B2 2/2012 Cuppett
szﬁ/yl/;fo " (383?8? 8,352,739 B2 1/2013 Park et al.
(2021.01) 8,434,139 Bl 4/2013 Ortiz, Jr.
HO04W 12/02 (2009.01) 8,452,017 B2 52013 Sherkin
HO4L 9/14 (2006.01) 8,522,013 B2 82013 Zhang et al.
HO4L 9/30 (2006.01) 8,526,606 B2 9/2013 Muthaiah
8,555,067 B2 10/2013 Schell et al.
HO4T 11/00 (2006.01) 8,577,337 B2 11/2013 O’Leary
HO4L 12/28 (2006.01) 8,590,028 B2 11/2013 Saxena et al.
HO4W 8/08 (2009.01) 8,713,320 B2 4/2014 Xu et al.
HO4W 40/00 (2009.01) 8,782,774 Bl 7/2014 Pahl et al.
HO4W 80/04 (2009.01) 8,843,179 B2 9/2014 Li et al.
8,024,715 B2 12/2014 Schell et al.
HO4L 9/00 (2022.01) 8,948,386 B2 2/2015 Campagna et al.
HO4L 67/04 (2022.01) 8965366 Bl 2/2015 Somayajula et al.
HO4W 84/12 (2009.01) 9,002,018 B2 4/2015 Wilkins et al.
HO4W 88/12 (2009.01) 9,020,479 B1 4/2015 Somayajula et al.
(52) US.Cl 9,100,175 B2 82015 Nix
. &L . 9,118,464 B2 82015 Nix
CPC HO4L 9/006 (2013.01); HO4L 9/085 9.253.643 B2 2/2016 Pattar et al.
(2013.01); HO4L 9/088 (2013.01); HO4L 9,270,653 B2 2/2016 Maria
9/0816 (2013.01); HO4L 9/0841 (2013.01); 9,276,740 B2 3/2016 N@X
HO4L 9/0894 (2013.01); HO4L 9/14 (2013.01); 9300473 B2 3/2016 Nix
HO4L 9/30 (2013.01); HO4L 9/3066 (2013.01); 2,319,223 B2 4/2016 Nix
L) A 9,332,129 B2 52016 Li et al.
HO4L 9/32 (2013.01); HO4L 9/321 (2013.01); 9,351,162 B2 52016 Nix
HO4L 9/3239 (2013.01); HO4L 9/3247 9,408,012 B2 8/2016 Li et al.
(2013.01); HO4L 9/3249 (2013.01); HO4L g’g;é’g%g E% %gg}; %}rmier et al.
. . s s X
ool mi s con0) SR I M
(2013.01); 0.641327 B2 52017 Nix
(2013.01); HO4L 63/0435 (2013.01); HO4L 9,674,690 B2 6/2017 Lee et al.
63/0442 (2013.01); HO4L 63/061 (2013.01); 9,698,981 B2 7/2017 Nix
HO4L 63/0807 (2013.01); HO4L 63/123 9,742,362 B2 1%8}; Nix
. . ,794, uber et al.
(2013.01); HO4L 1.53/166 (2013.01); H041j 0.800.993 B2 10/2017 Lee et al.
67/04 (2013.01); HO4W 4/70 (2018.02); 9.807.605 B2 10/2017 Gao et al.
HO4W 8/082 (2013.01); HO4W 12/02 9.923.724 B2 3/2018 Lee et al.
(2013.01); HO4W 12/033 (2021.01); HO4W 9,961,060 B2 5/2018 N@x
12/04 (2013.01); HO4W 12/06 (2013.01); 9,998,280 B2 6/2018 Nix

9,998,281 B2 6/2018 Nix

HO4W 12/40 (2021.01); HO4W 40/005 .
(2013.01); HO4W 52/0216 (2013.01); HOAW 100509 Ba* wrots Ne HOAW 52/0235
52/0235 (2013.01); HO4W 52/0277 (2013.01); 10,084,768 B2 9/2018 Nix
HO04W 76/27 (2018.02); HO4W 80/04 10,169,587 Bl 1/2019 NiX
(2013.01); HOSK 999/99 (2013.01); GOGF 10,530,575 B2* = 12020 NIX w.oovovvrrsicrons H04W 12/02

22212105 2013.01); GOGF 2221/2107) 8235a Ba - 42090 Hix

(2013.01); GO6F 222172115 (2013.01); HO4L 2002/0018569 Al 2/2002 Panjwani et al.
63/0464 (2013.01); HO4L 2209/24 (2013.01); 2003/0003895 Al 1/2003 Wallentin et al.

US 11,258,595 B2

Page 3
(56) References Cited 2013/0028184 Al 1/2013 Lee et al.
2013/0122864 Al 5/2013 Haggerty et al.
U.S. PATENT DOCUMENTS 2013/0145151 Al 6/2013 Brown et al.
2013/0157673 Al 6/2013 Brusilovsky
20030211842 AL 112003 Rempf ot al 20130179962 Al 72013 Araleral o
erson et al. :
2004/0179684 Al 9/2004 Appenzeller et al. 2013/0182586 Al 7/2013 Paladugu et al.
2004/0221163 Al 11/2004 Jorgensen ef al. 383;8352% ﬁi ;ggg %Iemllarltr;entetlal
li . aggerty et al.
20030021575 A 112003 Bouthermy et al. 2015025047 A1 102013 Merien et al
H uxham ¢l .
S00y0038004 A1 /3008 Chometal 20130340040 AL 122013 Park et al.
2005/0120202 Al 6/2005 Cuellar et al. ark et al.
2005/0138353 Al 6/2005 Spies et al. 2014/0003604 Al 12014 Campagna et al.
2005/0193199 Al 9/2005 Asokan et al. 2014/0082358 Al 3/2014 Nakhjir et al.
2005/0246282 Al 11/2005 Naslund et al. 2014/0082359 Al 3/2014 Nakhjir et al.
2005/0278787 Al 12/2005 Naslund et al. %8}3;8}42‘8%‘7‘ 2} ggg}j Earll(g ftrt 2111~
1 arK €t al.
oSy AL yao0e Hori 201400219447 Al 82014 Park ef al.
2006/0059344 Al 3/2006 Mononen 2014/0235210 Al 82014 Park et al.
2006/0095771 Al 5/2006 Appenzeller et al. 2014/0237101 Al 82014 Park
2006/0129848 Al 6/2006 Paksoy et al. 3813;8%;‘7‘% ﬁi gggij E’lghatturlo ot al.
€¢c ct al.
20080281440 AL 132005 Leooral 2014030891 A1 102014 Lee ot 1l
2007/0033403 Al 2/2007 Lauter ee et al.
2007/0101400 Al 5/2007 Freeman et al. 2014/0357229 Al 12/2014 Lee et al.
2007/0158439 Al 7/2007 Conner et al. 2015/0113275 Al 4/2015 Kim et al.
2007/0206799 Al 9/2007 Wingert et al. 2015/0121495 Al 4/2015 Gao et al.
2008/0016230 Al 1/2008 Holtmanns et al. %8}2?8355%3 ﬁi lgggig fsshdiwil
€O €t al.
20080031204 A1 312008 Seod 20150350881 Al 122015 Welss o al.
2008/0044032 Al 2/2008 Lou et al. u
2008/0107083 Al 5/2008 Shirota et al. 2016/0088096 Al 3/2016 Quiriconi et al.
2008/0114978 Al 5/2008 Lehtovirta et al. %8}2;8%;3% i} ggg}g éeﬁ et al.
H UL
OIS AL A pemonen et OleBsDen AL a0l Koimin ol
2008/0307218 Al 12/2008 Logvinov 2016/0269386 Al 9/2016 Nix
2009/0011320 A1 1/2009 Senda 2016/0294829 Al 102016 Angus
2009/0028341 Al 1/2009 Hamachi 2017/0206532 Al 7/2017 Choi
2009/0041110 Al 2/2009 Malladi 2017/0373845 Al 122017 Nix
2009/0060197 Al 3/2009 Taylor et al. 2018/0254897 Al 9/2018 Nix
2009/0077643 Al 3/2009 Schmidt et al. 2018/0262329 Al 9/2018 Nix
2009/0113203 Al 4/2009 Tsuge et al. 2018/0270059 Al 972018 Nix
2009/0116642 Al 5/2009 Yang et al. 2019/0313246 Al 10/2019 Nix
2009/0125996 Al 5/2009 Guccione et al. 2019/0332774 Al 10/2019 Nix
2009/0132806 Al 5/2009 Blommaert et al. 2019/0356482 Al 11/2019 Nix
2009/0183541 Al 7/2009 Sadighi et al. 2020/0162247 Al 52020 Nix
2009/0191857 Al 7/2009 Horn et al. 2020/0162269 Al 52020 Nix
2009/0209232 Al 82009 Cha et al. 2020/0226258 Al 7/2020 Nix
2009/0217348 Al 8/2000 Salmela et al. 2020/0280436 Al 9/2020 Nix
2009/0268909 Al 10/2009 Girao et al. 2021/0126801 Al 4/2021 Nix
2009/0274306 Al 11/2009 Nolte 2021/0184842 Al 6/2021 Nix
2009/0282246 Al 11/2009 Gunther 2021/0194681 Al 62021 Nix
2009/0313472 Al 12/2009 Guccione et al. 2021/0211279 A1 7/2021 Nix
2010/0023771 Al 1/2010 Struik 2021/0218560 Al 7/2021 Nix
2010/0031042 Al 2/2010 Di Crescenzo et al.
2010/0062808 Al 3/2010 Cha et al. FOREIGN PATENT DOCUMENTS
2010/0093347 Al 4/2010 Hahn et al.
2010/0098253 Al 4/2010 Delerablee
2010/0166167 Al 7/2010 Karimi-Cherkandi et al. gﬁ §3§§;§3 }2@8}3
2010/0211779 Al 82010 Sundaram CA 3110468 Al 112019
2011/0035604 A1 2/2011 Habraken DE 10803936 Al 8/1999
2011/0167272 A1 7/2011 Kolesnikov Ep 1081234 Al 10/2008
2011/0213959 A1 9/2011 Bodi et al. EP 3766922 Al 12021
2011/0268022 A1 11/2011 Xu GB 1608573 102014
2011/0269461 Al 11/2011 Xu et al. GB 2518976 A 4/2015
2011/0270747 A1 11/2011 Xu HK 17106540 3 122014
2012/0011362 Al 1/2012 Lambert KR 20130026351 A 32013
2012/0033613 AL 2/2012 Lin et al. KR 1020130026352 A 32013
2012/0190354 Al 7/2012 Merrien et al. WO 2011-138238 Al 112011
2012/0263298 Al 10/2012 Suh et al. WO 2011138238 A1 112011
2012/0272064 Al 10/2012 Sundaram et al. WO 2013027085 Al 2/2013
2012/0331287 Al 12/2012 Bowman et al. WO 2013/048084 A2 4/2013

2013/0012168 Al 1/2013 Rajadurai WO 2013066077 Al 5/2013

US 11,258,595 B2
Page 4

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO 2019178312 Al 9/2019
WO 2019209598 Al 10/2019
WO 2019222319 Al 112019
WO 2019246206 Al 12/2019
WO 2020006162 Al 1/2020
WO 2020061023 Al 3/2020
WO 2020123959 Al 6/2020
WO 2020223319 Al 112020
WO 2021007235 Al 1/2021
WO 2021087221 Al 5/2021

OTHER PUBLICATIONS

U.S. Appl. No. 16/843,107, filed Apr. 8, 2020, Docketed for
examination.

U.S. Appl. No. 16/593,561, filed Oct. 4, 2019, Present application.
U.S. Appl. No. 16/453,862, filed Jun. 26, 2019, Response to
Non-Final Office Action filed Mar. 18, 2021.

U.S. Appl. No. 16/200,118, filed Nov. 26, 2018, U.S. Pat. No.
10,498,530.

U.S. Appl. No. 15/972,914, filed filed May 7, 2018, U.S. Pat. No.
10,652,017.

U.S. Appl. No. 14/099,329, filed Dec. 6, 2013, U.S. Pat. No.
9,100,175.

U.S. Appl. No. 14/084,141, filed Nov. 19, 2013, U.S. Pat. No.
9,319,223,

ANSI X9.63 Overview, Key Agreement and Key Transport Using
Elliptic Curve Cryptography, Simon Blake-Wilson, Certicom (2000).
Kirk H.M. Wong et al., A Dynamic User Authentication Scheme for
Wireless Sensor Networks, Proceedings of the IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC’06), pp. 1-8.

Pierre E. Abi-Char, et al., A Fast and Secure Elliptic Curve Based
Authenticated Key Agreement Protocol For Low Power Mobile
Communications, The 2007 International Conference on Next Gen-
eration Mobile Applications, Services and Technologies (NGMAST
2007), pp. 1-6.

Jun Shao, et al., An Improved Deniable Authentication Protocol,
Department of Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai 200030, People’s Republic of China, pp.
1-3, 2006.

Chris Foresman, Embedded SIM could caus carrier conflict for
Apple, Nov. 19, 2010, pp. 1-2.

Embedded UICC Remote Provisioning Discussion, Source: Rogers
Wireless, 3GPP/SA3-LI#46, Quebec City, Canada, Jul. 17-19, 2012,
pp. 1-39.

GSMA Launches Embedded SIM Initiative To Support the Con-
nected Future, Nov. 18, 2010, pp. 1-4.

Chang-Seop Park, On Certificate-Based Security Protocols for
Wireless Mobile Communication Systems, Dankook University,
IEEE Network Sep./Oct. 1997, pp. 50-55.

M. Prasad, et al., Secure Authentication Key Agreement Protocol
for Long Term Evolution—Advanced, Research Scholar, Associate
Professor, Department of Computer Science & Engineering, Pondicherry
Engineering College, Puducherry, India, Elsevier, 2012, pp. 158-
162.

Eun-Jun Yoon, et al., Secure Deniable Authentication Protocol
Based on FlGamal Cryptography, 2008 International Conference on
Information Security and Assurance, pp. 36-39.

CSMG, Reprogrammable SIMs: Technology, Evolution and Impli-
cations, Sep. 25, 2012, pp. 1-95.

GlobalPlatform Inc., GlobalPlatform Card Specification, Version
2.2.1, Jan. 2011, pp. 1-303.

GlobalPlatform Inc., GlobalPlatform Card Security Upgrade for
Card Content Management, Card Specification v 2.2.—Amendment
E, Version 1.0, Nov. 2011, pp. 1-35.

GSM Association, Embedded SIM Task Force Requirements and
Use Cases, Version 1.0, Feb. 21, 2011, pp. 1-38.

Pietre-Cambacedes et al., Cryptographic key management for SCADA
systems—issues and perspectives, 2008 International Conference
on Information Security and Assurance, IEEE, pp. 156-161.
Bender et al., Evolution of SIM provisioning towards a flexible
MCIM provisioning in M2M vertical industries, 16th International
Conference on Intelligence in Next Generation Networks, IEEE,
2012, pp. 57-64.

Park et al., Secure Profile Provisioning Architecture for Embedded
UICC, 2013 International Conference on Availability, Reliability
and Security, IEEE, 2013, pp. 297-303.

International Search Report and Written Opinion for PCT/US2014/
062435 dated Feb. 6, 2015.

3GPP, 3rd Generation Partnership Project; Technical Specification
Group Core Network and Terminals; Non-Access-Stratum (NAS)
protocol for Evolved Packet System (EPS); Stage 3, 3GPP TS
24.301 v12.2.0, Sep. 2013 pp. 1-6, 63-100.

3GPP, 3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3GPP System Architecture
Evolution (SAE); Security architecture, 3GPP TS 33.401 V12.9.0
(Sep. 2013-) pp. 1-75.

A. Wander et al. Energy Analysis of Public-Key Cryptography on
Small Wireless Devices, Sun Microsystems Laboratories, pp. 1-16,
2005.

Appenzeller et al., Identity-Based Encryption Architecture and
Supporting Data Structures RFC 5408, 2009, pp. 1-30.

Baugher et al., Group Key Management Architecture, RFC Draft,
2001, pp. 1-20.

Ben Saied, Yosra; Olivereau, Alexis; Laurent, Maryline; “A Dis-
tributed Approach for Secure M2M Communications”, 5th Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), May 7-10, 2012, pp. 1-7.

Boyen et al., Anonymous Hierarchical Identity-Based Encyrption
(Without Random Oracles), 2006.

Boyen et al., Identity-Based Cryptography Standard (IBCS) #l1:
Supersingular Curve Implementations of the BF and BBI1
Cryptosystems, RFC 5091, 2007, pp. 1-63.

C. Downey, Migrating Legacy M2M Systems to the Cloud, http://
www.ecnmag.com/articles/2013/02/migratingegacy-m2m-systems-
cloud, Feb. 2013, pp. 1-2.

Cakulev et al., “An EAP Authentication Method Based on Identity-
Based Authenticated Key Exchange,” Aug. 2012, pp. 1-32.

Chris Foresman, Embedded SIM could caus carrier conftict for
Apple, Nov. 19, 2010, pp. 1-2.

CSMG, SMG, Reprogrammable SIMs: Technology, Evolution and
Implications, Sep. 25, 2012, pp. 1-95.

D. Cooper, Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, Internet Engineering
Task Force RFC 528 2, pp. 1-133, 2008.

D. McGrew et al, Fundamental Elliptic Curve Cryptography Algo-
rithms, Internet Engineering Task Force RFC 6090, Feb. 2011, pp.
1-34.

Embedded UICC Remote Provisioning Discussion, Source: Rogers
Wireless, Contact: Ed O’Leary (ed_oleary@rcirogers.com), George
Babut (gbabut@rcLrogers_com), 3GPP/SA3-LI#46, Quebec City,
Canada, Jul. 17-19, 2012, pp. 1-39.

ETSI, Machine-to-Machine communications (M2M), mla, dla, and
mid interfaces, TS 102.921 v1.1.1, Feb. 2012, pp. 1-538.

ETSI, Smart Cards; Embedded UICC; Requirements Specification,
TS 103383 v12.1.0, Jun. 2013, pp. 1-20.

ETSI, Smart Cards; UICC-Terminal Interfaces; Physical and Logi-
cal Characteristics, TS 102 221 v11.0.0, Jun. 2012, pp. 1-181.
ETSIL, UMTS;L TE; SIM/USIM Internal and Externallnterworking
Aspects, TR 131 900 v.10.0.0, May 2011, pp. 1-41.

F. Qian et al., TOP: Tail Organization Protocol for Cellular Resource
Allocation, 18th IEEE International Conference on Network Pro-
tocols (ICNP), 2010, pp. 285-298.

Gollmann, “Authentication—Myths and Misconceptions,” Progress
in Computer Science and Applied Logic, vol. 20, 2001, pp. 203-225.
GSMA, Fast Dormancy Best Practices Version 1.0,July 27, TS.18,
pp. 1-23, 2011.

Harney et al., Group Key Management Protocol (GKMP) Archi-
tecture, 1994, pp. 1-19.

US 11,258,595 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Hegland et al., “A Framework for Authentication in NBD Tactical
Ad Hoc Networks,” IEEE Communications Magazine, Oct. 2011,
pp. 64-71.

International Search Report for PCT/US2014/068544 dated Feb. 13,
2015.

J. Huang et al., A Close Examination of Performance and Power
Characteristics of 4G LTE Networks, Mobisys’ 12, Jun. 25-29,
2012, pp. 1-14.

J. Jonsson et al, Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1, Internet Engineering
Task Force RFC 3447, Feb. 2003, pp. 1-72.

J. Nix, A Set of Servers for “Machine-to-Machine” Communica-
tions using Public Key Infrastructure, U.S. Appl. No. 14/064,618,
filed Oct. 28, 2013, (MBHB Docket No. 13-1538).

J. Nix, An Embedded Universal Integrated Circuit Card Supporting
Two-Factor Authentication, U.S. Appl. No. 14/099,329, filed Dec. 6,
2013, (MBHB Docket No. 13-1714).

J. Nix, Key Derivation for a Module using an Embedded Universal
Integrated Circuit Card, U.S. Appl. No. 14/084,141, filed Nov. 19,
2013, (MBHB Docket No. 13-1615).

J. Nix, Power Management and Security for Wireless Modules in
“Machine-to-Machine” Communications, U.S. Appl. No. 14/023,181,
filed Sep. 10, 2013, (MBHB Docket No. 13-1208).

J. Nix, Secure PKI Communications for “Machine-to-Machine”
Modules, including Key Derivation by Modules and Authenticating
Public Keys, U.S. Appl. No. 14/039,401, filed Sep. 27, 2013,
(MBHB Docket No. 13-1259).

J. Nix, Systems and Methods for “Machine-to-Machine” (M2M)
Communications Between Modules, Servers, and an Application
using Public Key Infrastructure (PKI), U.S. Appl. No. 14/055,606,
filed Oct. 16, 2013, (MBHB Docket No. 13-1489).

Kiltz et al., CCA2 Secure IBE: Standard Model Efficiency through
Authenticated Symmetric Encryption, 2008.

Kirk H.M. Wong et al., A Dynamic User Authentication Scheme for
Wireless Sensor Networks, Proceedings of the IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC’06), pp. 1-8, 2006.

Krylov, What is Kerberos Authentication?, 2003, pp. 1-4.

L. Larzon, The Lightweight User Datagram Protocol (UDP-Lite),
Internet Engineering Task Force RFC 3828, Jul. 2004, pp. 1-12.
Martin, Introduction to Identity-Based Encryption, ISBN-13 978-
1-59693-238-8, 2008.

Merriam-Webster, Network, 2014.

N. Chu et al. EXALTED: Expanding LTE for Devices, European
Commission for Information Society and Media, Oct. 31, 2012, pp.
1-141.

Nicholson et al., “Mobile Device Security Using Transient Authen-
tication,” IEEE Transactions on Mobile Computing, vol. 5, No. 11,
Nowv. 2006, pp. 1489-1502.

Park et al., A New Practical Identity-Based Encryption System,
2003, pp. 1-27.

Schwaiger et al., “Smart Card Security for Fieldbus Systems,” 2003,
pp. 398-406.

Search Report and Written Opinion for PCT/US2014/068544 (13-
1714-WO).

Shih, Jie-Ren et al., “Securing M2M with Post-Quantum Public-
Key Cryptography”, IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, Mar. 7, 2013, pp. 106-116.
Sollmann, “Authentication—Myths and Misconceptions,” Progress
in Computer Science and Applied Logic, vol. 20, 2001, pp. 203-225.
Search Report issued in UK Application No. GB2108534.5 dated
Jul. 7, 2021.

U.S. Appl. No. 17/304,922, filed Jun. 28, 2021, Application Under-
going Preexam Processing.

U.S. Appl. No. 17/249,242, filed Feb. 24, 2021, Application Dis-
patched from Preexam.

U.S. Appl. No. 16/879,325, filed May 20, 2020, Application to issue
as U.S. Pat No. 11,082,218 on Aug. 3, 2021.

U.S. Appl. No. 16/843,107, filed Apr. 8, 2020, Non-Final Rejection
dated Jul. 2, 2021.

U.S. Appl. No. 16/721,153, filed Dec. 19, 2019, Final Office Action
dated Apr. 15, 2021.

U.S. Appl. No. 16/593,561, filed Oct. 4, 2019, Non-Final Rejection
dated Jul. 6, 2021.

U.S. Appl. No. 16/453,682, filed Jun. 26, 2019, Notice of Allowance
dated Jun. 29, 2021.

U.S. Appl. No. 16/271,455, filed Feb. 8, 2019, U.S. Pat. No.
10,594,679.

U.S. Appl. No. 16/271,428, filed Feb. 8, 2019, U.S. Pat. No.
10,523,432.

U.S. Appl. No. 16/201,401, filed Nov. 27, 2018, U.S. Pat. No.
10,700,856.

U.S. Appl. No. 16/200,118, filed Nov. 28, 2018, U.S. Pat No.
10,498,530.

U.S. Appl. No. 16/110,804, filed Aug. 23, 2018, U.S. Pat. No.
10,382,422.

U.S. Appl. No. 16/036,506, filed Jul. 16, 2018, U.S. Pat No.
10,530,575.

U.S. Appl. No. 15/983,957, filed May 18, 2018, U.S. Pat. No.
10,177,911.

U.S. Appl. No. 15/973,012, filed May 7, 2018, U.S. Pat. No.
10,250,386.

U.S. Appl. No. 15/972,914, filed May 7, 2018, U.S. Pat. No.
10,652,017.

U.S. Appl. No. 15/928,848, filed Mar. 22, 2018, U.S. Pat. No.
10,084,768.

U.S. Appl. No. 15/010,905, filed Jan. 29, 2016, U.S. Pat. No.
9,641,327.

U.S. Appl. No. 15/680,758, filed Aug. 18, 2017, U.S. Pat. No.
10,187,206.

U.S. Appl. No. 15/162,292, filed May 23, 2016, U.S. Pat. No.
10,362,012.

U.S. Appl. No. 14/751,119, filed Jun. 25, 2015, U.S. Pat. No.
9,961,060.

U.S. Appl. No. 15/457,700, filed Mar. 13, 2017, U.S. Pat. No.
9,998,281.

U.S. Appl. No. 15/583,968, filed May 1, 2017, U.S. Pat. No.
10,057,059.

U.S. Appl. No. 15/043,293, filed Feb. 12, 2016, U.S. Pat. No.
9,998,280.

U.S. Appl. No. 15/642,088, filed Jul. 5, 2017, U.S. Pat. No.
10,003,461.

U.S. Appl. No. 15/130,146, filed Apr. 15, 2016, U.S. Pat. No.
9,742,562.

U.S. Appl. No. 15/162,302, filed May 23, 2016, U.S. Pat. No.
9,698,981.

U.S. Appl. No. 14/789,255, filed Jul. 1, 2015, U.S. Pat. No.
9,596,078.

U.S. Appl. No. 14/139,419, filed Dec. 23, 2013, U.S. Pat. No.
9,351,162.

U.S. Appl. No. 14/136,711, filed Dec. 20, 2013, U.S. Pat. No.
9,300,473.

U.S. Appl. No. 14/099,325, filed Dec. 6, 2013, U.S. Pat. No.
9,100,175.

U.S. Appl. No. 14/064,141, filed Nov. 19, 2013, U.S. Pat. No.
9,319,223.

U.S. Appl. No. 14/064,618, filed Oct. 28, 2013, U.S. Pat. No.
9,118,464.

U.S. Appl. No. 14/055,606, filed Oct. 16, 2013, U.S. Pat. No.
9,276,740.

U.S. Appl. No. 14/039,401, filed Sep. 27, 2013, U.S. Pat. No.
9,288,059.

U.S. Appl. No. 14/023,181, filed Sep. 10, 2013, U.S. Pat. No.
9,350,550.

TLS 1.3 Wish List Presentation, IETF 87 (Eric Rescorla), dated
Aug. 1, 2013.

European Patent Office Communication with Furopean Search
Report and European Search Opinion issued in EP 21182424.8
dated Oct. 12, 2021.

US 11,258,595 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

European Patent Office Communication with Furopean Search
Report and European Search Opinion issued in EP 21182451.1
dated Oct. 12, 2021.

European Patent Office Communication with Furopean Search
Report and European Search Opinion issued in EP 21182432.1
dated Oct. 12, 2021.

U.S. Appl. No. 17/547,990, filed Dec. 10, 2021.

* cited by examiner

Aoy oleALd 1BAIBS
9501

US 11,258,595 B2

Sheet 1 of 17

Feb. 22, 2022

Ay oljgnd jonieg
FIT

gor Jepinoid

s0IMBS NZIN

Aoy} a1BALd JopIACId

A&y} oHand Jepinoid

___ A3 a1eAL
57 M B1BALd VD
A
T ooIand vo
— Aoyiny
8H spoynen

g8ey:ppodiiyed.cael

SS8IpPY dl
901

Sor

18IS

U.S. Patent

00!

Aayl onand ainpopy

18PIAD. 8INPON

) -

WIOMIBN SSORIIM

ZLi ke
SleAlld PO

Ior
SInpoN

0|
|

201

e| ainbi

US 11,258,595 B2

Sheet 2 of 17

Feb. 22, 2022

U.S. Patent

ML Aoy ogngd "ddy
Wi 1| o) sleaud ddy
Elll aoeIalU| [eaishud

abeiolg » NdD
wiij qill
PLLL H
3L Wvd
Yill wsisAg BunesedQ
19 r swuyobly
JiydesboidAin
il » oseqgeleq uoneoyddy
XilL »| J9(|0JIUOY) BOIMBS
hu > feriod oM
1Ll uoneoy|ddy
7T #OMBS uoled)day

p1 8inbi4

€50} soepau| [easAud
gbeioig » NdO
weol qsol

Psol G

g0 —1¥ NvY

Bgo4 JBNIIQ 8018

Ys04 we1sAs Buneiadp

¥e0l 8SEGEIE(] 9INPOJY

xooL ——pl 4@llonuoD anpopy
1504 11> weiboid Jonsg

T JETNELS

01 ainbi

EL04 aoepau| [eaIshud
ALop —f¢ Jolenoy et Josusg m
2101 nod > NdDO | 41— G0}
pioL d
9,0} —1 WNvd
bLos JOAIIQ 80IA8Q
qiol welsAg Bunessdo
1oL sdejg
Buniodsy eleq X101

weiboid snpon

oL+ 9oBlSIU J8SN _
3[npojy 101
q} 8inbi4

US 11,258,595 B2

Sheet 3 of 17

Feb. 22, 2022

U.S. Patent

e6ct

2- Aoy) 101008 pareys (did)

2 - foy dland
SINPOJ SSOIRIIM
173

1- o) 184008 pareyg(aid)

| - Aoy ongnd
SINPOIN SSOIRIM

B6ZL 17}
____oSeqeleq o|npon
Y501
Z- swyobly |- swiyioby
aiydesboldAin 2iydeibodiin
171 171

2 - Aay| ateald

| - A9y} 91BALld

____Jamnes Jonieg
3501 3601
eAneS -gns 19AI8S -gNgS
MGoL mgoL
108$920.d31d —
abessap mml
7201 o
OULIBWWAS
3
___JeAaieg
G01
}1 8Inbi4

est
lorenoy
Aot
A
PET opoD fey AT
184003 POIRUS-8id MH BILL
o) :
DUOWWAS ued
Aisneg ALOL Izl b4}
STOT aoeLIBY| TS|
orr
swiyobly £ o1eAL
oydesBboidAip "POIN SSOIBIM
1173 Zir
Aoy 2iqnd
Aoy 101083 ___I9M9S
paseys (aid olpey vil
Bgzr FToT s7p7 MOWSI
AN
6cl € IsT
roos || L]
NdoD Jojeiausy) losusg
qI0t ALoL goT 104
9|NPOIA SSOIRJIM c
_— : 10WS\ yse
T W Yseld
mIDL
9| ainbi

US 11,258,595 B2

Sheet 4 of 17

Feb. 22, 2022

U.S. Patent

Aoy 181088

paseys
paALia(

q6ct

ZEr
sieleweIRy
003

| L1

ger
aang
pIepuElS
003

sloloweIed

EAER A
JojeIBUSY) JequUNN Wopuey

857 HA03 | 39T €96 X-ISNY |
uonouUN 4 UoHBALIBQ AdY

suiyjoBy uoneiaua) lied Aoy

§¢i v¥Saod

swypioBly amnjeubis (enbig

ERRENEEERES

swiyluohly usSeH 8inoeg

—_— ger sav

swyioby Buusydin) oLIsWWAS

S| |%r 003 || T ved

swyiLoBy Buusydin sswwAsy

swyioby oiydesboidiin

¥4}

8zr

It

arrT

Pt

S414)

qIvy

oIy

61 ainbi

U.S. Patent Feb. 22, 2022 Sheet 5 of 17 US 11,258,595 B2

Figure 1h

283 bit Elliptic Curve Key with SHA 256 Signature (“...” is long text removed)

Certificate:
Data:
e Version: 3 (Ox2)
Serial Number: 1234931064 (0x499¢6¢c20)
Signature Algorithm: SHA-256 ECDSA-256. 110
Issuer: OU=JNIX, CN=server01
Validity
Not Before: Feb 01 20:15:24 2009 GMT
126 =2 ot After : Jul 01 20:15:24 2019 GMT
Subject: C=US, ST=lllinois, L=Chicago, O=Module Provider, OU=1122AABBFF00
17118 ————> CN=456
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
EC Public Key:
pub:

a7:a0:8a:0e:27:8f.8f:67:71:05:36:0¢:7e:14:18:
111 {

67:60:2d:57:87:8d:cd:0Ob:e1:f5:3f:ac:aa:81:ea:
126 ————> ASN1 OID: gect283r1
X509v3 extensions:

: X509v3 Subject Key ldentifier:

122

8D:F4:51:AB:B9:41:1F:FC:73:B3:DB:77:45:96:15:54:1A:52:85:25
X509v3 Authority Key ldentifier:
keyid:FC:99:74:45:56:10:F 1:87:AD:EA:56:70:67:A2:26:0E:3D:9E:D6:66
DirName:/OU=JNIX/CN=server41
serial:49:9C:6AED
X509v3 CRL Distribution Points:
Full Name:

URLE:UREhttp//www.inchargesys.com/ca/crl/ics_root_ca.crl
X509v3 Key Usage:

Digital Signature
Signature Algorithm: ECDSA with SHA256
83:08:20:2a:79:€3:¢3:60:b0:2f.c2:89:d4:a2:b7:57:3e:b6:

123 LN]
05:ce:d3:24:34:¢cf:d2:21:3:¢3:60:b0:2f:c2:25

BggagRzXYwzjCCAYKgAWIBAQIESZxsIDKnnjw2CwL8KJ1K

S EBAQUAMCIXDTALMIIBegwggK3Vz62JQ==
----- END CERTIFICATE-----

US 11,258,595 B2

Sheet 6 of 17

Feb. 22, 2022

U.S. Patent

eoe or 101 or coe 10t 101 101
SINPCIN 8|INPOIA 3INPOIA V SINPOIN S|INPON SINPOIN
P e a0
. 8y "
Tt s8h >
Ve~ TSl SV
cor gor
eoe q - 1oM8S vV - 1aAIeg
P8l
XIZI 19]|0)u0D 89IAI9G EE8L| ¢gu
183

661

nZr uoneolddy

2

11 8inbi4

US 11,258,595 B2

Sheet 7 of 17

Feb. 22, 2022

U.S. Patent

860z

ofessalu Uy

:lo
S0z yyyvy -Lod

g8oy:ppadiiyelicael
901 ss8Ippy di

Yrvrv:[ager:ppooiiyenizae]

202 N
AI —

+01oAIBS-I0HUOIN-NZIN A
90¢

gor

JETNELS

FOT 1opIAOId 9IAISS INZIA

.....-----..--....------........-....-----..-----..----1-----

Server Network Firewall

paA®oai Jiod: 4| 90108
0] 40d: d| 18M18S
woi4 Jueg 19%08d ddN/d0l

A

\ 602 asuodsay #

obessop
80z

0ic

OL/E6CEP-BO0LEE LD
$S9IPPY d|

(I £01

£0¢ SvECl Hod
Po/G:GGY 1::80P0:8i0e

202 $S2IPPY d|
-p

&rez 1 [PoLG:65 1:80p0:8102]
v0Z Hod:dl

B0LL
8uzyALO8PYro (Bug Ausp|

0L
004499vvzzL L -Anuspy

ToT 9INPOW

YIOMION SS|aMIM
201

001

2 9inbi

US 11,258,595 B2

Sheet 8 of 17

Feb. 22, 2022

U.S. Patent

b60¢

qLIe

nLTE

9I€¢

SIE

vie

313

cre

423

1i0d: 4} woJy esuodsay pueg _.|

\—/

AsY

8lBAld Janeg Ylim ssuodssey ubig

T

Koy ousWwwAS 10 Ay aland
ainpopy Buisp uoianasuy ydAoug

T

9SEqQRIE(] Ul Bl J0SUSS pIoTeYy

T

Ay} dljand 'POIN SS8IBJIM
Buisn a|npo 4o Auspl Ajuap

T

A8Y| DIIOWIWAS 10 A8Y B1BAld
1oneg Buisn sbesssyy 1dAioeg

T

8{npoyy woly abessa)y aAI8I8Y

T

S3|INPOIA WIOI) SabeSsaln
Bujwosuy 10} 10d: d| uo uslsr]

T

aseqelep
ui sAay aland sinpopy picday

¢ ainbi4

US 11,258,595 B2

Sheet 9 of 17

Feb. 22, 2022

U.S. Patent

"umoﬂ Aoy 8m>_i“ 908

90y oIS /M usis 1
e ——— | S G e
I Supoy " uo1aniIsu) "
I puueys Ei 1 oppopN
e b0§ pmmmmmmmoend
-y ’
sz | L eRa /
asuodsay | € 4 ! pardAsaug "\ W\ juswaspaimouwspyl Log
Y Yy
A s SR N
1 I b
1] N FTmEmmmmmmmmmT
) | A 1
1 , * UNOJ ATNDBS 1
i i . 1
BU1s590014 '™ 90z kuusp) 7 A T chm T
4an 1 JaAaS pusddy 1 1 Ay /midAoug ‘“ 4
b e o e o e - b o e e e e o o o o
107 §0g £0§
q/jg Osuodsey subig Jenteg pue el mcozosbmc_ sidhioug senieg
oLt
Gr i vy 80
H M Aay "and : It __1 l@lchWUI 1
[SRS > e b | ey
M Gop aunieusdis I
tlid riy *POIA] AJIBA " ..m.mmumm d
Buissadold . uoponusyl | eleq P \ e 807
UOHORAISY JELSE]S w N pardAnug ajqon| s A R | 9Bessay
£TT 103501 £ 07T AlauRp] Buyss920.14
Aoyt /m 1dAideq SNPON pedy dan
tr 60p 10
pie §i€

abessopy sidlioa pue Ajusp| seilep Janes

eG aInbi

¥ 8inbi4

US 11,258,595 B2

Sheet 10 of 17

Feb. 22, 2022

U.S. Patent

elR(] losuag /m sebessapy

Buiioouy 104 rep

épaiinbay
LiL o)) ognd meN S|
10 peuidx3 zz4 e1eoIIeD

(¥4 SEH

cle
0cs _ Ly UOIBWIILOD UM 80z 80eSSBIN € BA1808Y _
_/
615 205 UOIONJISU] SINPON /M p0g Ble(paldAIoug Jsnles
sopn|ou| asucdsay a18ym ‘8INPOoy 0} g0g dsuodsay puag
\7
> £op BlRQ paydAious sinpop
81§ ‘o1 Anuep) sinpojy /m goz sbesssiy pug snsoay
\—/
[1s _Em Aoy 11008 paieyg Buisn gz sbessep s} BlEONUBYINY
\—/
01 915 LLE ASY] 2lignd puUe 9z Sisleweied
‘011 Ausp) ainpoy /m 8oz obessapy 1S4 aaisdey
_f
P mL0L AIOWBY 8|ITBJOALION Ul Jied SPi0Jey pue
‘Nled z14 Ay alenid pue L1t Aey oljand seaus s|npoy [€
\—/
vIs aJempleH wolj ot 1 Aluspl 8|Npely spesy ainpojy
T
0L o 20z $BSSOIPPY IBAI9S '9Z1 Sidlowried 0LS Aoy
) 18108 paIBUS MmLgL AIOWSIN SJIIBJOAUON Ul PI0J8Y
M_ﬂ
F459 HUM paloluoiy Uim uoliejelsu pue uoinglasiq siNpow
_/
115 SIBMPIEH O} UBIILIA

014 AWusp| BINPOJA Ylim BuLINOBINUEBY SINPOA

qg a.nbi4

US 11,258,595 B2

Sheet 11 of 17

Feb. 22, 2022

U.S. Patent

01/8:62EP:B00) B2
gy Sy U P 012 SS8IPPY d
“ €jeq Papo) [eUUEyD 9oy \ e .
1 |
=P | i[fexomswwhs /m Bupsydio oumswAS - eleq peidhious Jenies ! ¢ L 0L *
| Lz qips ros " b
V| 11D weem T ‘Tacgzaoes eaino l9gzyHS :siejeweied 9z) ' m m m
' bauy gAITUY 1USYOL &— L0 ! oo
_ _ L
“ 209 ated A9y INJd MeN SATID(:UOCTIONIIASUI STNPOR 708 “ X
1 I H @] ;
| 909 g0z +01OMOS-IONUON-INZIN :AiuBp -
2222z 01 /€:62ePB0AN R 1201 pYiyyageyippadipe0:zae|] woiy Lo
509 0Lz 202 a7pg 208d daN/doL O
P9
60z osuodsay L3
01/€:62EP:B00LER |2 e il eiultediyiniviintriviiaiviniainieeiedeaieieieiiieel it]
015 $5010PY 4| EJeq PAPOY [2UUBYD 90y |
o ! I '
BT “ m -
1202 m m “ £oy oupWWAG /m Bulaydin suswWAS — eleq padAious ainpon i =]
= o= ' 12 qapl €0y ' 2
© ' [! 1 . 1 jo 8
& | oWU "] O seeibo(§7-9INRISCAWSL BIR(TOSUS S GP09 ' g
s - _ SOT:pE:G0ETIET0Z/20/8C 2300 € Bp09 i M 5
5 e “ DAUpGATTUY :USNOL G JOF ' &3
g ¢ S i “ APEEGEEE A4S MRECES P u—) ! G &
& 2 ! T0I8ATSG-TOITUOR-HZA 0L & 907] g%
o L Z “ pup TIVAAN “ =
_.oqlo. ! % " . — - . N voe
5 -8 ! 209 o¢4 [Buing Auap) anpop] :Auuspl £
7] —]
S Po A bt beededab bbbttt elebde bt Rl g eb eyl
o= NSy oo
8 S pog 290VVE83 084D
rrvyiageyppodiyye0:zqe ol Gre2tl:po/SiGGy 1:8ap0:8j0z] :woi
202 0z g3 }oMoed dan/doL
J9MIDS — SINPON
5T 80z obessapy oL
eg aInbi4

US 11,258,595 B2

Sheet 12 of 17

Feb. 22, 2022

U.S. Patent

20¢

Yrryi[agey:ppod:iyen:zae]

31/€:62EPB00LEE|C
0lc SS3Ippy dI

13MI8S
cor

9ig

Eled pepoY [sUUBYD 908
(6L fox 104005 paseys (1) 10 zLL Aoy oleaud snpow Joud (1) Buisn paubig)

#ZI0¥ToMOUBbAIOADHIWAGIZYZIZWA, ©INFRUDTS QI “PON
sor

ZPELOIZOLOPOZFO9RG L qUTIFOGT A oTTAnd Lk
Z00 :dI Ao OTTANdeLL)
TII Ie9A T ‘1I€Q7102S8 2AIND ‘9G7YHS :sIolcweied€— 97}
T0ISATIDS—IOITUON-NZIA :OL < 907

piy XEM DITANd MAN

spee k:[poss:gsy 1::8ap0:8102]

uod:dl

voc

709 o1y [OUMAS Amuapy anpop] -Auap)
rryy[ager:ppodiiye0:zae ol GbegIl:po/G:SSY 1::80P0:8102] (w0l
202 v0z g9 1oMoed dAN/OL
802 obesso|

09 ainbi4

SINPOR
[

US 11,258,595 B2

Sheet 13 of 17

Feb. 22, 2022

U.S. Patent

Hemaldi4
YL yj0mpeN e
I
I 0.
I {uoewyuo))
I - obessapy :o_“mo_aa.q\
i M
> | (uonewyuO)) — abessap Lo
I
YOV , 454 80¢
< "
" 60z dsuodsey J0sUsg) - oz Sjepdn)
I - abesssy :o:mo__%,q\
—— 102
arepdn) - sbessapy
I £0L
| b 80 [eAJSIU|
I
> " 1em
eje(iosusg I >
qr09 I ONIAdL
! (90 Buieg soienioy)
" _2081n48U] "POW
111 A&y oqnd ainNpon b abessaly uoneolddy 0z
€ > 10Z ¥E888:7'2'G2'89
ajeofjusyINy pue saIsoey vod:dj
18 9iq
TIZT uoieoiddy
e losussg nor gor =
e 1ol we.bos JONISS bk
I0JENOY d JanI8S uoneolddy
ALor 7 OInpoly |04 || BINPOIN

\V

002

/. ainbi4

US 11,258,595 B2

Sheet 14 of 17

Feb. 22, 2022

U.S. Patent

g1e

Q aInbi4

« (S7LeA
o . 121 JonIaS uonesiddy
€0g uoHonASul SNPON UO[OBLLOY BS0I) 0 G509 BIB(] JOSUBS
A asuodsoy spueg sot Jones 69)
602 08 bl
arepdn - obessapy %_<w / Jsjsuel]
v0. 10/ BJBQ UOI08UUO0Y) 8IN0ag
) c08
paysiul
Jaydin sbueyn
paysiulg -
Jaydin abueyn i’
fuop algoynion (exeyspue
G > A
08 T Sveuoxg foy o1 uoieonuayiny §71°69)
aoywe) - dmes
U0 OlIoH Jonog Uonosuuo) 8indesg
108
1sonbay a1eoyinien
abueyoxg Aoy leniag
MLLL [(fay) ang m) sreoypien | €t
ar09 0||oH Jones
(eleq J0susg) >
» oo WelD e
~ ofesse gpe ‘/_\.'
£02 HT
LLL A8X 01GNd SINPOW [eAlRlU] IEAA g0/
8]eONUBLINY PUE 8AIBJ6Y
sAay 2ljgng pue 218 91s
BIBALL] SOALIB[SINPOY
_ J8fj04u0D weiboid | 7721 uoyeoyday |
Lol SINPON X7 | |TITor Jenieg 7T /
JaAnag uoneoydd
9INPON SO1

008

US 11,258,595 B2

Sheet 15 of 17

Feb. 22, 2022

U.S. Patent

FOC ele peidhious Jeniag

Bumss J01enioy 9o/
- UOIONIISU| BINPONZ08

eqoMreles usyYoL Jop

£09 992VPEST WNSYOBYD
¥0Z L/8VC-ECL 0L 0L
£0¢ 88..2:01°€91°¢5'9tLe WOl

109 weibereq 4an
50Z 9suodsay

Aoy} aljand teaieg uoedddy Buisn
MEZE Jaisuil] ele(] UOHIBUUOY 8INJ8S
208

Bumag Jo1enjoy80s
- UONONJISU| 8|NPOIN 208

79 ooddgavveeiiL Anuepl ggy

106 S¥€21:01°€91'25°912:01
g0 VEEEE V' ¢G5 89 "UI0I
z06 Wesbereq 4ol

10z obessap uoneonddy .2

gop Breq peidiious sinpopy

4509
Do GZ ~ LGl ¥ I0SUas :eleq

bawpgAITUy USYOL pop
pib dLVadn

[Buing Amuep) 8inPON] po6

£oy] 2Ilqnd 48niag uofeolddy Buisn
MLZL oisuel] BlRQ UOIOBUUOY) 8IN08S

s qr09
Do §7 —~ L€ ¥ JI0SUD5 :eAR(

004499vv2z L1 :Ausp| 0L
poz 2LV¥CAD ucT3eoTTddy

L0J8AIS-JONLIOIN-NZIN Aliusp]
£06 YECES¥'2'G2 890

106 S¥ECI01'€91'25 912 Woi-

zos Weibereq 401

10Z oBesse| uopeoyddy ;|

106

£06

YECEE P 2 6T 89
vod:dj

| 727 voneanddy |

10z 902
Z02 88..2:01°'€91°25'91g 0L ¢
m . poz HLBYZ:ECL L0 sWolS
=3 v_ v erg9 Weibereq 4an .*
g 1
WO J—
M= g0z abessapy
S
poL - jlemaily 882/2:01'€9}'25°9}2 Hod: g G¥EZL:01'€9H25 91z Hod: g
oUOWWAS
202
Ja[j04uon weibold
8INPOY OINPON Xgo7 | |TI0F JoNISS
173
JETVE]
6 94nbi4 - S [

(713

Joneg uopeoyddy

US 11,258,595 B2

Sheet 16 of 17

Feb. 22, 2022

U.S. Patent

N
S0L _ Janieg uoneoljddy 0] uoBWIIUIOY puss
D
7001 _ BINPOIN WG UDIBWILUCY BAIB08Y
D
cor usyol AIN0aS puUB Zes UOHONJIISUL 8INPOIN Sepnjoul ey}
#0¢ eleq paidAious 1eAIeg Ulim g0z esuodssy pusg
T
80z | 0Ff QI SINPON Yl SINPOJN wWoJ; 8oz dBeSSa) 2A1808Y
T
€05 3INPON Ylim £zt A8y ouswwAg .z Buisn
LoF UsX01 Aindeg pue zog uononisul sinpop 1dAious
T
€0L QINPOYY WI0J) abessap J0) HEA
™
— 12} Jeniag uoeolddy yum zz1 Aoy
outlewwAg 1 Buisn Loz sbesseyy uoieolddy 1dAineg
™
ToL 011 Alnusp] 8iNPo pue Zpg UoIONASU| 8INPON

yum Loz obessepy uoneaddy pairdAioug saosy

01 8inbi4

US 11,258,595 B2

Sheet 17 of 17

Feb. 22, 2022

U.S. Patent

L0TT

92011

SOTT

S1S

POTT

€09

€0TT

w1t

T0TT

91§

gp09 Ble(10SUsS 4,2 Ulim Lo/ ebessajy uopeoyddy 2 puss

\—/

LLL Aoy oland ¢ buisn gop eleq
pa1dAiouz BINPO g SePNjoUl 1ey)l 80z 9Bessey i Sn8dsY

\7

L1L K8y} 0liaNd pug SBPNJOU 1ey] 80z BESSS|N 1€ 9AI903Y

_/

gzl sislaweled n:N @c_w:
ZLt koY) 91enld 2 PUe ELE K8Y liaNd b2 SOALS(BINPOYy

_/

10F Us¥0) A11INJ8g pue 9z} SisleWeIRd 2 ‘Z0S UONONsU|
ainpopy pejdAioug sepnjoul eyl 60z esuodsey pusg

\ﬁ

221 A8y dupwwAg
Buisn gz1 sislewle 2 PUB Z0g UORONISUl 8inpojy jdAious

\7

ZLL £o) 81BAld 7 PUB LEL A8 DlIANd pu2 BAB(O} 8INPOY
104921 SIBJBLIBIRY ,,Z PUE 206 UOLONLSU] 8|NPOJ S$8001d

_/

qr09 Bleq 10SUSS | YIM Lo/ 8Bessspy uoijedlddy x| puss

\—/

LiL A8y oland 18114 Buisn gop ele(pajdAious sinpop st
SEPNIoUI Jey} 8INPOY WO} gog 80essayy pucosg aAIed8Y

_/

LEs A8 oliand 18114 pue ‘9z1 SieleweiRy |
‘041 Ajguep| einpopy /m 8oz ebesseyy Isii4 8n80eY

L1 8nbi4

US 11,258,595 B2

1
SYSTEMS AND METHODS FOR
“MACHINE-TO-MACHINE” (M2M)
COMMUNICATIONS BETWEEN MODULES,
SERVERS, AND AN APPLICATION USING
PUBLIC KEY INFRASTRUCTURE (PKI)

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a continuation of U.S. patent application Ser. No.
16/036,506 filed Jul. 16, 2018, which is a continuation of
U.S. patent application Ser. No. 15/583,968 filed May 1,
2017, which is a continuation of U.S. patent application Ser.
No. 15/010,905 filed Jan. 29, 2016, now U.S. Pat. No.
9,641,327, which is a continuation of U.S. patent application
Ser. No. 14/055,606 filed Oct. 16, 2013, now U.S. Pat. No.
9,276,740, each of which is fully incorporated by reference
herein.

The subject matter of this application is related to the
subject matter of U.S. patent application Ser. No. 14/023,
181, filed Sep. 10, 2013, which issued as U.S. Pat. No.
9,350,550, in the name of John Nix, entitled “Power Man-
agement and Security for Wireless Modules in ‘Machine-
to-Machine’ Communications,” which is hereby incorpo-
rated by reference in its entirety.

The subject matter of this application is also related to the
subject matter of U.S. patent application Ser. No. 14/039,
401, filed Sep. 27, 2013, which issued as U.S. Pat. No.
9,288,059 in the name of John Nix, entitled “Secure PKI
Communications for ‘Machine-to-Machine’ Modules,
including Key Derivation by Modules and Authenticating
Public Keys,” which is hereby incorporated by reference in
its entirety.

BACKGROUND

Technical Field

The present methods and systems relate to communica-
tions between wireless modules and a network, and more
particularly, to efficient methods and systems for supporting
secure, efficient, and flexible communications using Internet
Protocol networks, where a server can communicate with
both a “machine-to-machine” modules and an application.

Description of Related Art

The combination of “machine-to-machine” (M2M) com-
munications and using low-cost sensors, Internet connec-
tions, and processors is a promising and growing field.
Among many potential benefits, M2M technologies allow
the remote monitoring of people, assets, or a location where
manual monitoring is not economic, or costs can be signifi-
cantly reduced by using automated monitoring as opposed to
manual techniques. Prominent examples today include
vending machines, automobiles, alarm systems, and remote
sensors. Fast growing markets for M2M applications today
include tracking devices for shipping containers or pallets,
health applications such as the remote monitoring of a
person’s glucose levels or heartbeat, monitoring of industrial
equipment deployed in the field, and security systems. Many
M2M applications leverage either wired Internet connec-
tions or wireless connections, and both types of connections
continue to grow rapidly. M2M applications may also be
referred to as “the Internet of things”.

M2M communications can provide remote control over
actuators that may be connected to a M2M device, such as

10

25

35

40

45

50

65

2

turning on or off a power switch, locking or unlocking a
door, adjusting a speed of a motor, or similar remote control.
A decision to change or adjust an actuator associated with an
M2M device can utilize one or a series of sensor measure-
ments. An M2M device may also be referred to as a
“wireless module” or also simply a module. As one example,
if a building or room is too cold, then temperature can be
reported to a central server by an M2M device and the server
can instruct the M2M device to turn on a switch that
activates heat or adjusts a thermostat. As the costs for
computer and networking hardware continue to decline,
together with the growing ease of obtaining either wired or
wireless Internet access for small form-factor devices, the
number of economically favorable applications for M2M
communications grows.

Many M2M applications can leverage wireless network-
ing technologies. Wireless technologies such as wireless
local area networks and wireless wide area networks have
proliferated around the world over the past 15 years, and
usage of these wireless networks is also expected to continue
to grow. Wireless local area network (LAN) technologies
include WiFi and wireless wide area network (WAN) tech-
nologies include 3’7 Generation Partnership Project’s
(3GPP) 3rd Generation (3G) Universal Mobile Telecommu-
nications System (UMTS) and 4” Generation (4G) Long-
term Evolution (LTE), LTE Advanced, and the Institute of
Electrical and Electronics Engineers’ (IEEE) 802.16 stan-
dard, also known as WiMax. The use of wireless technolo-
gies with “machine-to-machine” communications creates
new opportunities for the deployment of M2M modules in
locations without fixed-wire Internet access, but also creates
a significant new class of problems that need to be solved.
First, many wireless wide-area networking standards were
designed and optimized for mobile phones, which may be
continuously connected to the network during the day (i.e.
non-sleeping hours for most subscribers while they may
charge phones at night), in order to receive inbound phone
calls and messages. In this case, the radio may be in an idle
state but utilizing discontinuous reception, but the radio is
still active and drawing power in order to receive and
process incoming signaling from the network such as a
Public Land Mobile Network (PLMN). A need exists in the
art to make wireless M2M communications efficient in order
to conserve battery life and radio-frequency spectrum
resources.

Since the packets transmitted and received by a wireless
module will likely traverse the public Internet for many
applications, a need exists in the art to (i) prevent eaves-
dropping at intermediate points along the path of packets
transmitted and received, (ii) allow endpoints to verify the
identity of the source of packets received. A need exists in
the art for a wireless module and a monitoring server to
leverage established public key infrastructure (PKI) tech-
niques and algorithms. A need exists in the art for commu-
nication to be secured without requiring the established, but
relatively processing, bandwidth, and energy intensive secu-
rity protocols, such as IPSec, Transport Layer Security
(TLS), and Secure Socket Layer (SSL). The establishment
of theses links requires extra overhead in the form of packet
handshakes and/or key exchanges at levels including the
network and transport layer of the traditional Open Systems
Interconnection (OSI) model. M2M applications frequently
require small, periodic messages sent between a wireless
module and a monitoring server, where the wireless module
sleeps between the messages. M2M applications may lever-
age wired modules as well which also sleep between mes-
sages. During relatively long periods of sleep such as 30

US 11,258,595 B2

3

minutes or more, the a wireless or wired network with
intermediate firewalls will often tear down the network
and/or transport layer connections, which means the wire-
less module would need to re-negotiate or reestablish the
secure tunnels each time the wireless module wakes and
seeks to send a relatively small message to a server. A need
exists in the art for supporting established security protocols
with an external application, without requiring them to be
implemented on a module due to the relatively long periods
of sleep and other complexities from inactivity in the
module.

Next, a need exists in the art for the communication
between a module and a monitoring server to be highly
energy and bandwidth efficient in order to reduce energy
consumption over the operating lifetime of a module. A
limiting factor for a wireless module for M2M applications
deployed or installed into the field is the lifetime of the
battery of the wireless module. If the transmission tech-
niques for the wireless module are not energy efficient, the
system will require more frequent manual intervention for
the replacement or recharging of batteries. If the battery
becomes sufficiently low, then communication with the
wireless module will be lost, or the frequency would have to
be reduced for sensor measurements sent by the wireless
module or actuator commands sent by a monitoring server.
The energy saving techniques for transmitting and receiving
data should leverage established Internet protocols, in order
to utilize the public Internet, in addition to the need for
secure communications noted above. For wired modules
operating for years or decades, a significant cost will be the
power consumed from land-line power.

Further, a need exists in the art for the secure, energy
efficient communications that support Internet protocols to
support intermediate firewalls that may exist along the path
of packets sent and received by both a wireless module and
a monitoring server. Without support for communication
through an intermediate firewall, packets may be blocked by
the firewall and the M2M application would not properly
function in this case. A need exists in the art for techniques
of secure and energy-efficient communications between
modules and monitoring servers to support a wide variety of
manufacturers of modules and M2M applications. Currently,
there are dozens of manufacturers and form-factors of
modules, and this diversity will continue to increase for the
foreseeable future. By leveraging standards such as the
Internet and PKI technologies, an efficient, secure, and
highly scalable system of communicating could support the
wide variety of modules.

In addition, the utilization of PKI technologies in modules
can increase security, but a number of technical challenges
must be addressed. These challenges increase if a deployed
module required updated private/public key pairs after
operation begins. The typical paradigm of “swapping out a
SIM card” (which also depend on a pre-shared secret key Ki
embedded in the card) with mobile phones may not be
applicable or cost effective with modules, where swapping
out the SIM card could be burdensome. A need exists in the
art to allow for a deployed module to securely and auto-
matically begin using new private and public keys (i.e.
without human intervention such as swapping out a SIM
card). Newer PKI technologies may offer a wide variety of
algorithms for ciphering with public keys, and a need exists
in the art for the utilization of new public and private keys
to support the wide variety of algorithms, even after a
module has been installed. In other words, a system should
preferably both be highly secure and also flexible enough to
adopt new security keys and standards. A need exists in the

20

25

30

35

40

45

50

55

60

65

4

art for a scalable and secure method of associating a module
identity with a module public key, when the module begins
utilizing a new public key. A need exists in the art for a
module to efficiently be able to utilize multiple public/
private key pairs at the same time, such as with different
service providers or different applications simultaneously.

Another desirable feature is for an M2M module to
efficiently and securely communicate with applications.
Applications can include a web-based interface for users to
view status or input settings for a plurality of modules, and
the modules may be associated with an M2M service
provider. However, a set of PKI algorithms, keys, and
communication protocols within used by the module for
efficient communications module may not be directly com-
patible with an application. As one example, the application
on a web server may prefer to use a transport layer security
(TLS) protocol with transmission control protocol (TCP)
datagrams, while for energy efficiency and to conserve
battery life, an M2M module may prefer to use user data-
gram protocol (UDP). A need exists in the art for an
intermediate server to securely translate secure communi-
cations to/from a module into secure communication from/to
an application. As another example, it would be desirable for
a module to support elliptic key cryptography (ECC), while
the application may support RSA-based cryptography, and
therefore a need exists in the art for a server to securely
translate between the two cryptographic methods, thereby
allowing the M2M module to communicate with the appli-
cation.

And other needs exist in the art as well, as the list recited
above is not meant to be exhaustive but rather illustrative.

SUMMARY

Methods and systems are provided for secure and efficient
communication using a server to communicate with modules
and an application. The modules and application can support
“Machine to Machine” communications. The methods and
systems contemplated herein can also support other appli-
cations as well, including mobile phone handsets connecting
to a wireless network. An objective of the invention is to
address the challenges noted above for securing the deploy-
ment of modules that utilize PKI algorithms and keys, as
well as increasing efficiency in order to reduce power
consumption, including extending the battery life of a mod-
ule, if present. More efficient communication can also
conserve valuable radio-frequency spectrum, among other
benefits. Using a server for secure and reliable communi-
cation of data between an application and a module can
increase the value and usefulness of modules for a user.

An exemplary embodiment may take the form of methods
and systems for a server to securely receive data from a
module and forward the data to an application server, and an
application may operate on the application server. The
application can include a graphical user interface for a user
to visually see reports and/or control modules. The module,
server, and application can preferably include a set of
cryptographic algorithms for use in sending and receiving
data. The cryptographic algorithms can include asymmetric
ciphering algorithms, symmetric ciphering algorithms,
secure hash algorithms, digital signature algorithms, key
pair generation algorithms, a key derivation function, and/or
a random number generator.

The module can utilize the set of cryptographic algo-
rithms to securely generate or derive a module private key
and a module public key. The module private key and
module public key can be generated either (i) upon initial

US 11,258,595 B2

5

use or installation of the module, or (ii) at a subsequent time
after initial use such as when a new set of key pairs are
required or are useful for continued operation of the module.
After deriving the module public key and module private
key, the module private key is preferably recorded in a
secure or protected location in a nonvolatile memory within
the module. The module may then utilize the recorded
pre-shared secret key to authenticate with a server that also
records or has access to the pre-shared secret key. The
authentication could comprise either using message digest
with the pre-shared secret key, or using the pre-shared secret
key as a symmetric ciphering key, and the authentication
may also utilize a second key derived by both the module
and the server using the pre-shared secret key. After authen-
tication, the server can authoritatively record the derived
module public key with the module identity in a database.
Thus, the use of a pre-shared secret key can ensure the
submitted module public key is validly associated with the
module and module identity. The module can be associated
with a monitored unit and the module can use a sensor to
collect data regarding the monitored unit. The module may
also optionally include an actuator for controlling a state of
the monitored unit, although the actuator may optionally be
omitted.

The server can include a private key associated with the
server and the derived public key associated with the mod-
ule. The server public key can leverage established public
key infrastructure (PKI) standards, such as X.509 v3 cer-
tificates and RSA or elliptic curve cryptography (ECC)
algorithms and include a digital signature from a certificate
authority. The server can use a module controller and an
operating system plus a connection to the Internet to monitor
a socket for incoming messages from a module. After
receiving the module public key, including potentially after
a period of sleep or dormancy by the module, the server can
receive a message, where the message includes a module
identity and a module encrypted data. The module encrypted
data can include a server instruction, a security token, and
additional data such as a sensor measurement. The server
can decrypt the module encrypted data using the received
module public key and extract plaintext data from the
module encrypted data.

The server can establish a secure connection with the
application server using a secure connection setup, which
could comprise the initial handshake messages for a trans-
port-layer security protocol such as transport layer security
(TLS) or IPSec. The secure connection setup can include the
transfer of a server public key and an application server
public key. The server can send an application message to
the application server using a secure connection data trans-
fer, where the application message includes data received
from the module such as a sensor measurement or sensor
data. The server can use (i) an RSA-based asymmetric
ciphering algorithm and first public key with the application
server to securely transfer a first symmetric key to the
application server, and (ii) an ECC-based asymmetric
ciphering algorithm and second public key with the module
to securely transfer a second symmetric key to the module.
The server may also preferably use a transmission control
protocol (TCP) with the application server and a user
datagram protocol (UDP) with the module. The application
message to the application server can include a server
identity, an encrypted update instruction, and the sensor
data. The sensor data may also include a sensor identity. The
server can use a first Internet protocol address and port
(IP:port) number for receiving the message from the module
and a second IP:port number for sending the application

20

30

40

45

55

6

message to the application server. The application server can
record the sensor data in an application database for subse-
quent processing and analysis for a user or other business or
commercial needs.

In another embodiment, the module may be deployed
within a wireless network such as a 4G LTE network or a
WiFi network. The module can change state between a sleep
state and an active state, wherein the sleep state may utilize
a few milliwatts or less and the active state, including
transmission of radio signals, may utilize several hundred
milliwatts of power or more. After being installed next to a
monitored unit, the wireless module can wake from a sleep
or dormant state, utilize a sensor to collect data associated
with the monitored unit, connect to the wireless network and
the Internet, and send the sensor data to a server. During an
active period, the module can use a UDP IP:port number to
both send a message to the server and receive a response to
the server. The message as a UDP datagram can be a UDP
Lite datagram and with a checksum only applied to the
packet header. A UDP Lite datagram with sensor data can
include channel coding for the body of the datagram to
mitigate the effect of bit errors. Or, a regular UDP packet
could be sent in multiple copies in order to provide forward
error correction.

In another embodiment of the present invention, the
application server may send an application message to the
server using a secure connection data transfer. The applica-
tion message could be encrypted using a first server public
key and could include a module identity and a module
instruction. The module instruction can include an actuator
setting, and also optionally an actuator identity (since the
module may include multiple actuators). The server can
decrypt encrypted data within the application message and
record the module identity and module instruction in
memory or a module database. Since the module can tran-
sition between periods of sleep and active states to conserve
power, after receiving the application message the server can
wait until a next message is received from the module with
the module identity before sending the module instruction in
a response. After waiting for the next message, the server
can send the module instruction to the module in a server
encrypted data using a second server public key. The first
and second server public keys can use different crypto-
graphic algorithms that are not directly compatible (i.e. the
first server public key could be RSA-based and the second
server public key could be ECC-based).

In another embodiment, the server can securely send the
module a set of parameters, where the set of parameters
includes values to define an equation for an elliptic curve.
The values could comprise constants and variables such that
the module can calculate a new elliptic curve, and the elliptic
curve can be different than standard, published curves. The
set of parameters could be sent from the server to the module
in a server encrypted data, where the server encrypted data
was processed using any of (i) a first module public key, (ii)
a symmetric key, and (iii) a shared secret key. The module
can use the set of parameters, a random number generator,
and a key generation function within a cryptographic algo-
rithms in order to generate a new key pair, which could
comprise a second module public key and a second module
private key. The module can securely and/or authoritatively
send the second module public key to the server, where the
security includes the use of the first module public key
and/or the shared secret key.

Continuing with this embodiment, after the server con-
firms the proper receipt of the second module public key in
a response message, the server and the module can begin

US 11,258,595 B2

7

secure communications between them using the second
module public key. By using this exemplary embodiment,
security can be further increased with the server and module
using an elliptic curve that can be unique, non-standard, or
defined between them and security therefore increased. In
this exemplary embodiment, the parameters to define the
elliptic curve equation are sent securely to the module, so an
observer along the flow of data could not observe the elliptic
equation being used with a public key.

In yet another embodiment, the server can receive a first
message with a module identity and a module encrypted
data, where the first module encrypted data includes a first
sensor measurement. The server can use a first module
public key associated with a first module public key identity
to decrypt the first module encrypted data. As one example,
(a) the first module encrypted data could be ciphered with a
symmetric key, and (b) the symmetric key could have been
communicated using the first module public key (including
using the first module public key to verify a module digital
signature in a session where the symmetric key was trans-
ferred), and therefore (c) the module encrypted data could be
encrypted using the first module public key. The server can
also use a first server public key to decrypt the first module
encrypted data, such as the symmetric key being derived
using both the first module public key and the first server
public key and a key derivation function within a crypto-
graphic algorithms. The server can extract the first sensor
measurement and send the data to an application server in an
application message. The application message could be
encrypted using a second server public key. The first and
second server public keys can be different because they
could each be associated with a different algorithm or
defining equation.

Continuing with this embodiment, the server can send a
module instruction and a set of parameters to the module,
where the module is instructed to derive a new set of keys,
and the module can subsequently derive a second module
public key and a second module private key after receiving
the module instruction. The module can then send the
second module public key, a second module public key
identity, and the module identity to the server. The server can
receive a second module encrypted data that includes a
second sensor data, where the second sensor data is
encrypted using the second module public key. As one
example, (a) the second module encrypted data could be
ciphered with a symmetric key, and (b) the symmetric key
could have been communicated using the second module
public key (including using the second module public key to
verify a module digital signature in a session where the
symmetric key was transferred), and therefore (c) the mod-
ule encrypted data could be encrypted using the second
module public key. The server can extract the second sensor
data using the second module public key. The server can use
the second server public key to send a second application
message with the second sensor data to the application
server. Note that the module public key can change, but both
(1) the second server public key used with the application
server and also (ii) keys associated with the application
server did not change. In this manner according to this
embodiment, a module can derive a new public and private
key while a server and application server can continue to
communicate using existing public and private keys.

In another embodiment, the application server can use a
module public key and an asymmetric ciphering algorithm
to encrypt a module instruction. The application server can
also include a digital signature of the module instruction
using the application server private key. The encrypted

10

15

20

25

30

35

40

45

50

55

60

65

8

module instruction and digital signature can be sent to a
server in an application message, and the application mes-
sage can also include an identity of the application server.
The server can wait until a message is received from a
module, and then send the encrypted module instruction and
digital signature to the module in a response. The module
can read receive the response, read the identity of the
application server, select a public key of the application
server, verify the digital signature of the module instruction,
and decrypt the module instruction using the module private
key. The module can then apply the module instruction and
send a message with a confirmation. In this manner, the
module may receive instructions from the application that
are not decrypted by the server.

These as well as other aspects and advantages will
become apparent to those of ordinary skill in the art by
reading the following detailed description, with reference
where appropriate to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Various exemplary embodiments are described herein
with reference to the following drawings, wherein like
numerals denote like entities.

FIG. 1a is a graphical illustration of an exemplary system,
where a server and a module connect to the Internet, in
accordance with exemplary embodiments;

FIG. 15 is a graphical illustration of hardware, firmware,
and software components for a module, in accordance with
exemplary embodiments;

FIG. 1c¢ is a graphical illustration of hardware, firmware,
and software components for a server, in accordance with
exemplary embodiments;

FIG. 1d is a graphical illustration of hardware, firmware,
and software components for an application server, in accor-
dance with exemplary embodiments;

FIG. 1e is a graphical illustration of the components
within a module, in accordance with exemplary embodi-
ments;

FIG. 1f is a graphical illustration of the components
within a server, in accordance with exemplary embodiments;

FIG. 1g is a graphical illustration of the components in a
set of cryptographic algorithms, in accordance with exem-
plary embodiments;

FIG. 1% is an illustration of a certificate that includes a
PKI public key, where the key comprises an elliptic curve
cryptography (ECC) key, in accordance with exemplary
embodiments;

FIG. 1i is a graphical illustration of an exemplary system
that includes a user, an application, a set of servers, and a set
of modules, in accordance with exemplary embodiments;

FIG. 2 is a graphical illustration of an exemplary system,
where a module sends a message to a server, and where the
server responds to the message, in accordance with exem-
plary embodiments;

FIG. 3 is a flow chart illustrating exemplary steps for a
server to receive a message from a module, in accordance
with exemplary embodiments;

FIG. 4 a is a flow chart illustrating exemplary steps for a
server to process a message, including verifying a module’s
identity and decrypting data, in accordance with exemplary
embodiments;

FIG. 5a is a flow chart illustrating exemplary steps for a
server to process a response for a module, including sending
and signing an module instruction, in accordance with
exemplary embodiments;

US 11,258,595 B2

9

FIG. 5b is a flow chart illustrating exemplary steps for a
server to communicate with a module that has derived a
public key and private key, in accordance with exemplary
embodiments;

FIG. 6a is a simplified message flow diagram illustrating
an exemplary message received by a server, and an exem-
plary response sent from the server, in accordance with
exemplary embodiments;

FIG. 66 is a simplified message flow diagram illustrating
an exemplary message received by a server, wherein the
message includes a derived module public key, in accor-
dance with exemplary embodiments;

FIG. 7 is a simplified message flow diagram illustrating an
exemplary system with exemplary data transferred between
a module and an application using a server, in accordance
with exemplary embodiments;

FIG. 8 is a simplified message flow diagram illustrating an
exemplary system with exemplary data transferred between
a module and an application using a server, in accordance
with exemplary embodiments;

FIG. 9 is a simplified message flow diagram illustrating
exemplary data transferred between (i) a server and an
application and between (ii) a server and a module, in
accordance with exemplary embodiments;

FIG. 10 is a flow chart illustrating exemplary steps for a
server to receive a module instruction within an application
message, and for the server to send the module instruction
to a module, in accordance with exemplary embodiments;

FIG. 11 is a flow chart illustrating exemplary steps for a
server to communicate with an application and a module, in
accordance with exemplary embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

FIG. 1a

FIG. 1a is a graphical illustration of an exemplary system,
where a server and a module connect to the Internet, in
accordance with exemplary embodiments. The system 100
includes a module 101 operating within a wireless network
102. System 100 can also include a module provider 109, an
Internet 107, and an M2M service provider 108, a certificate
authority 118, and a monitored unit 119. M2M service
provider 108 can include a server 105. System 100 is
illustrated without specific packet transmissions between
module 101 and M2M service provider 108. Examples of the
communications and messages pertaining to the present
invention will be illustrated in later Figures. As contem-
plated herein, machine-to-machine communications may
comprise communication between a module 101 and a
server 105, such that data can be transferred between the two
with minimal manual intervention, although manual inter-
vention can be required to set up system 100 and any
occasional manual maintenance required. As contemplated
herein, machine-to-machine communications may also be
referred to as “the Internet of things™ (IoT). Also note that
module 101 may comprise a wireless module, such that
module 101 can communicate with wireless network 102
using a radio and an antenna. Thus, either a wireless or a
wired configuration for module 101 can be utilized in the
present invention.

If module 101 operates as a wireless module, module 101
and wireless network 102 can communicate using a base
station 103. Module 101 and wireless network 102 can
utilize a variety of wireless technologies to communicate,
including WiFi, WiMax, a 2nd generation wireless wide area
network (WAN) technology such as General Packet Radio

10

15

20

25

30

35

40

45

50

55

60

65

10

Services (GPRS) or Enhanced Data rates for GSM Evolution
(EDGE), 3rd Generation Partnership Project (3GPP) tech-
nology such as 3G, 4G LTE, or 4G LTE Advanced, and other
examples exist as well. A wired module 101 can connect to
the Internet 107 via a wired connection such as an Ethernet,
a fiber optic, or a Universal Serial Bus (USB) connection
(not shown).

Generally, the communication techniques described
herein can be independent of the network technologies
utilized at the physical and data-link layers, so long as the
underlying network provides access to the Internet 107 and
supports Internet Protocols (IP). The Internet 107 can be an
IPv4 or an IPv6 packet-switched based network that utilizes
standards derived from the Internet Engineering Task Force,
such as RFC 786 (User Datagram Protocol), RFC 793
(Transmission Control Protocol), and related protocols. The
Internet 107 can be the public Internet comprising globally
routable IP addresses, or a private network that utilizes
private IP addresses. Although Internet 107 is illustrated as
the globally routable public Internet in FIG. 1, Internet 107
could also be a private Internet that is (i) not globally
routable and (ii) only accessible to authorized modules and
servers. As one example of a private Internet 107, Internet
107 could use private IP addresses for nodes on the network,
and in this case Internet 107 could be referred to as an
intranet or private network. Alternatively, Internet 107 could
be a private network layered on top of the publicly routable
Internet via secured and encrypted connections. The specific
numbers for IP addresses and port numbers shown in FIG.
1 and other figures are illustrative and any valid IP address
or port number can be used, including an IPv4 and an IPv6
address.

When operating in a wireless network configuration,
module 101 can access the Internet 107 via the wireless
network 102. In the wireless network configuration, module
101 can be a wireless handset, a cellular phone, a smart-
phone, a tablet computer, a laptop, a computer with a radio,
a tracking device, or a circuit board with a radio that
accesses wireless network 102. Examples of wireless mod-
ules that utilize a wireless WAN such as 2G and 3G
networking technologies include the Motorola® (G24-1 and
Huawei® MC323. Example manufacturers of wireless mod-
ules in 2012 include Sierra Wireless® and Telit®. In a wired
configuration (not shown), module 101 can be a computer,
security camera, security monitoring device, networked con-
troller, etc. A more detailed depiction of exemplary compo-
nents of a module 101 is included in FIG. 14 and FIG. 1e
below. Module 101 could also comprise a “point of pres-
ence” payment terminal, such that a sensor associated with
module 101 could collect payment information such as an
account number from a credit card or similar payment card.
Module 101 could communicate with the payment card via
a magnetic reader or near-field wireless communications,
and in this case the magnetic reader or antenna for near-field
communications can function as a sensor. Module 101 could
also operate as a “smartcard” such that an end user presents
module 101 to merchants for payments.

Wireless network 102 may comprise either a wireless
local area network (LAN) such as an 802.11 WLAN, Blu-
etooth, or Zigbee among other possibilities, and module 101
operating in wireless mode could communicate with a base
station 103 of a wireless network 102 using a radio and an
antenna. Wireless network 102 could operate as a Mode 11
device according to FCC Memorandum Opinion and Order
(FC-12-36) and related white space regulation documents. If
module 101 supports IEEE 802.15.4, then wireless network
102 could be a Zigbee network, an ISA100.11a standards-

US 11,258,595 B2

11

based network, or a 6LoWPAN network as described by
IETF RFC 4944. Other possibilities exist as well for the
wireless technology utilized by a wireless network 102 and
module 101, operating in a wireless mode, without departing
from the scope of the present invention.

Module 101 can collect data regarding a monitored unit
119 and periodically report status to an M2M service pro-
vider 108 or a server 105. Examples of a monitored unit 119
can include a vending machine, an alarm system, an auto-
mobile or truck, a standard 40-foot or 20-foot shipping
container, or industrial equipment such as a transformer on
an electrical grid or elevator in a building. Additional
examples of a monitored unit 119 include can also include
a pallet for shipping or receiving goods, an individual box of
pharmaceuticals, a health monitoring device attached to a
person such as a pacemaker or glucose monitor, and a gate
or door for opening and closing. Other examples exist as
well without departing from the scope of the present inven-
tion. Module 101 can utilize a sensor to measure and collect
data regarding a parameter of monitored unit 119 such as
temperature, physical location potentially including geo-
graphical coordinates from a Global Positioning System
(GPS) receiver, radiation, humidity, surrounding light levels,
surrounding RF signals, weight, vibration and/or shock,
voltage, current, and/or similar measurements. If monitored
unit 119 is a person or a health monitoring device associated
with a person, then relevant health data could be recorded by
module 101 in order to transmit to a M2M service provider
108, which could be associated with a health service such as
a hospital, doctor’s office, or a similar health service. Mod-
ule 101 could also periodically record a picture, image, or
video of or around monitored unit 119, using either visible
or infrared light.

As illustrated in FIG. la, wireless network 102 may
include a wireless network firewall 104 and M2M service
provider 108 may include a server network firewall 124.
These firewalls may be used to secure communication at the
data link, network, transport, and/or application layers of
communications using the Internet 107. Firewalls 104 and
124 could perform network address translation (NAT) rout-
ing or operate as symmetric firewalls, and selectively filter
packets received through Internet 107 in order to secure
system 100. The firewall functionality of firewalls 104 and
124 could be of many possible types, including a symmetric
firewall, a network-layer firewall that filters inbound packets
according to pre-determined rules, an application-layer fire-
wall, or a NAT router, as examples. Although a single
firewall 104 and 124 is illustrated in wireless network 102
and with M2M service provider 108, respectively, firewall
104 and 124 may each comprise multiple firewalls that
operate in conjunction and the combined operation may be
considered a single firewall 104 and 124, respectively.
Firewall 104 and/or firewall 124 can include a firewall port
binding timeout value 117 (illustrated in FIG. 2), which can
represent the time allowed for an inbound packet from the
Internet 107 to pass through firewall 104 or firewall 124 after
module 101 or server 105, respectively, sends a packet out.
Firewall port binding timeout value 117 may be determined
on a per-protocol basis, such as an exemplary time of 60
seconds for UDP packets and 8 minutes for TCP packets,
although other time values for a firewall port binding
timeout value 117 are possible as well. Inbound packets
from Internet 107 to module 101 may be dropped by firewall
104 after a time exceeding firewall port binding timeout
value 117 has transpired since the last packet transmitted by
module 101.

10

15

20

25

30

35

40

45

50

55

60

65

12

According to a preferred exemplary embodiment, module
101 may preferably record a module private key 112. As
described in additional figures below, module 112 can gen-
erate a key pair comprising a module private key 112 and a
module public key 111, where module private key 112
resides within module 101 and may not be shared or
transmitted to other parties. Alternatively, the present inven-
tion also contemplates that module 101 does not derive its
own module private key 112, and rather module private key
112 is securely loaded or transmitted to module 101. Module
101 may also be associated with a module provider 109.
Module provider 109 could be a manufacturer or distributor
of module 101, or may also be the company that installs and
services module 101 or associates module 101 with moni-
tored unit 119. Although not illustrated in FIG. 1a, module
provider 109 could deliver module 101 to an end-user, where
the end-user associates module 101 with monitored unit 119.
Module provider 109 can record a module public key 111
and a certificate 122 (illustrated below in FIG. 1e and FIG.
1/4) for module 101. Module public key 111 may be asso-
ciated with a module public key identity 111a, which could
be an identifier of module public key 111. Module 101 may
utilize a plurality of module private keys 112 and module
public keys 111 during the operation of a system 100,
although the use of a plurality of keys may not be required
in order to use some embodiments of the invention contem-
plated herein.

As discussed below, a module 101 may utilize multiple
module public keys 111 over the lifetime of module 101
(including multiple corresponding module private keys 112),
and module public key identity 111a can be used to select
and/or identify the correct module public key 111. Module
public key identity 111a could be a string or sequence
number uniquely associated with module public key 111. As
illustrated in FIG. 1a, module public key identity 111a may
preferably not be included in the string or number compris-
ing module public key 111, but rather associated with the
string or number comprising module public key 111, and in
this case the two together (module public key identity 111a
and the string or number for module public key 111) may be
used to refer to module public key 111 as contemplated
herein.

The module public key 111 can optionally be signed by a
certificate authority 118 in order to confirm the identity of
module 101 and/or the identity of module provider 109.
Alternatively, module provider 109 may have its own pro-
vider public key 120 and provider private key 121. Module
provider 109 may have its provider public key 120 signed by
a certificate authority 118 and recorded in a certificate 122
(with an exemplary certificate 122 illustrated in FIG. 124
below), and then module provider 109 could sign module
public key 111. In this manner, module provider 109 can also
function as a certificate authority 118 for module 101. Thus,
the validity of module public key 111 could be checked with
module provider 109, and the wireless module provider’s
109 provider public key 120 could be checked against
certificate authority 118. Other configurations for signing
public keys and using certificates with public keys are
possible as well without departing from the scope of the
present invention.

Public keys and private keys as contemplated in the
present invention, including module public key 111 and
module private key 112 and additional keys described
herein, may leverage established standards for Public Key
Infrastructure (PKI). Public keys may be formatted accord-
ing to the X.509 series of standards, such as X.509 v3
certificates, and subsequent or future versions, and these

US 11,258,595 B2

13

keys may be considered cryptographic keys. The keys can
support standards such as the International Organization for
Standardization (ISO) ISO/IEC 9594 series of standards
(herein incorporated by reference) and the Internet Engi-
neering Task Force (IETF) RFC 5280 titled “Internet X.509
Public Key Infrastructure Certificate and Certificate Revo-
cation List (CRL) Profile” (herein incorporated by refer-
ence), including future updates to these standards.

Module public key 111 and module private key 112, as
well as the other private and public keys described within the
present invention, could be generated using standard soft-
ware tools such as Openssl, and other tools to generate
public and private keys exist as well. Public and private keys
as contemplated herein could be recorded in a file such as a
* pem file (Privacy-enhanced Electronic Mail), a file for-
matted according to Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER), or Distinguished Encoding
Rules (DER), or as text or binary file. Other formats for
public and private keys may be utilized as well, including
proprietary formats, without departing from the scope of the
present invention. As contemplated herein, a key may also
comprise either a public key or a private key. A public key
as contemplated herein may also be considered a certificate
or a public certificate. A private key as contemplated herein
may also be considered a security key or a secret key.

Other configurations besides the one illustrated in FIG. 1a
are possible as well. Server 105 could reside within wireless
network 102 in a data center managed by wireless network
102. Wireless network 102 could also operate as a module
provider 109. Although a single module 101 and server 105
are illustrated in FIG. 1a, system 100 could comprise a
plurality of each of these elements. Module 101 could also
record sensor data pertaining to a plurality of monitored
units 119. Module 101 could be mobile, such as physically
attached to a truck or a pallet, and module 101 could connect
to a series of different wireless networks 102 or base stations
103 as module 101 moves geographically. Other configura-
tions are possible as well without departing from the scope
of the present invention.

FIG. 15

FIG. 15 is a graphical illustration of hardware, firmware,
and software components for a module, in accordance with
exemplary embodiments. FIG. 15 is illustrated to include
many components that can be common within a module 101,
and module 101 may also operate in a wireless configuration
in order to connect with a wireless network 102. Module 101
may consist of multiple components in order to collect
sensor data or control an actuator associated with a moni-
tored unit 119. In a wireless configuration, the physical
interface 101a of module 101 may support radio-frequency
(RF) communications with networks including a wireless
network 102 via standards such as GSM, UMTS, mobile
WiMax, CDMA, LTE, LTE Advanced, and/or other mobile-
network technologies. In a wireless configuration, the physi-
cal interface 101¢ may also provide connectivity to local
networks such as 802.11 WLAN, Bluetooth, or Zigbee
among other possibilities. In a wireless configuration, mod-
ule 101 could use a physical interface 101a be connected
with both a wireless WAN and wireless LAN simultane-
ously. In a wired configuration, the physical interface 101a
can provide connectivity to a wired network such as through
an Ethernet connection or USB connection.

The physical interface 101a can include associated hard-
ware to provide the connections such as radio-frequency
(RF) chipsets, a power amplifier, an antenna, cable connec-
tors, etc., and additional exemplary details regarding these
components are described below in FIG. 1e. Device driver

10

15

20

25

30

35

40

45

50

55

60

65

14

101g can communicate with the physical interfaces 101a,
providing hardware access to higher-level functions on
module 101. Device drivers 101g may also be embedded
into hardware or combined with the physical interfaces.
Module 101 may preferably include an operating system
101/ to manage device drivers 101g and hardware resources
within module 101. The operating systems described herein
can also manage other resources such as memory and may
support multiple software programs operating on module
101 or server 105, respectively, at the same time. The
operating system 101/ can include Internet protocol stacks
such as a User Datagram Protocol (UDP) stack, Transmis-
sion Control Protocol (TCP) stack, a domain name system
(DNS) stack, etc., and the operating system 1012 may
include timers and schedulers for managing the access of
software to hardware resources. The operating system
shown of 101% can be appropriate for a low-power device
with limited memory and CPU resources (compared to a
server 105). An example operating system 101/ for module
101 includes Linux, Android® from Google®, Windows®
Mobile, or Open AT® from Sierra Wireless®. Additional
example operating systems 101/ for module 101 include
eCos, uC/OS, LiteOs, and Contiki, and other possibilities
exist as well without departing from the scope of the present
invention.

A module program 101/ may be an application pro-
grammed in a language such as C, C++, Java, and/or Python,
and could provide functionality to support M2M applica-
tions such as remote monitoring of sensors and remote
activation of actuators. Module program 1017 could also be
a software routine, subroutine, linked library, or software
module, according to one preferred embodiment. As con-
templated herein, a module program 101/ may be an appli-
cation operating within a smartphone, such as an iPhone® or
Android®-based smartphone, and in this case module 101
could comprise the smartphone. The application functioning
as a module program 101; could be downloaded from an
“app store” associated with the smartphone. Module pro-
gram 101/ can include data reporting steps 101x, which can
provide the functionality or CPU 1014 instructions for
collecting sensor data, sending messages to server 105, and
receiving responses from server 105, as described in the
present invention.

Many of the logical steps for operation of module 101 can
be performed in software and hardware by various combi-
nations of sensor 101f, actuator 101y, physical interface
101a, device driver 101g, operating system 1017, module
program 101/, and data reporting steps 101x. When module
101 is described herein as performing various actions such
as acquiring an IP address, connecting to the wireless
network, monitoring a port, transmitting a packet, sending a
message, receiving a response, or encrypting or signing data,
specifying herein that module 101 performs an action can
refer to software, hardware, and/or firmware operating
within module 101 illustrated in FIG. 16 performing the
action. Note that module 101 may also optionally include
user interface 1017 which may include one or more devices
for receiving inputs and/or one or more devices for convey-
ing outputs. User interfaces are known in the art and
generally are simple for modules such as a few LED lights
or LCD display, and thus user interfaces are not described in
detail here. User interface 101 could comprise a touch
screen if module 101 operates as a smartphone or mobile
phone. As illustrated in FIG. 15, module 101 can optionally
omit a user interface 101/, since no user input may be
required for many M2M applications, although a user inter-
face 101/ could be included with module 101.

US 11,258,595 B2

15

Module 101 may be a computing device that includes
computer components for the purposes of collecting data
from a sensor 101f or triggering an action by an actuator
101y. Module 101 may include a central processing unit
(CPU) 1015, a random access memory (RAM) 101e, and a
system bus 1014 that couples various system components
including the random access memory 101e to the processing
unit 1015. The system bus 1014 may be any of several types
of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures including a data bus. Note that
the computer components illustrated for the module 101 in
FIG. 15 may be selected in order to minimize power
consumption and thereby maximize battery life, if module
101 includes a battery and is not attached to external power.
In addition, the computer components illustrated for the
module 101 in FIG. 15 may also be selected in order to
optimize the system for both long periods of sleep relative
to active communications and also may be optimized for
predominantly uplink (i.e. device to network) communica-
tions with small packets or messages. The computer com-
ponents illustrated for the module 101 in FIG. 15 may also
be general-purpose computing components, and specialized
components are not required in order to utilize many of the
embodiments contemplated herein.

Module 101 may include a read-only memory (ROM)
101¢ which can contain a boot loader program. Although
ROM 101c¢ is illustrated as “read-only memory”, ROM 101c¢
could comprise long-term memory storage chipsets or physi-
cal units that are designed for writing once and reading many
times. As contemplated within the present invention, a
read-only address could comprise a ROM 101¢ memory
address or another hardware address for read-only opera-
tions accessible via bus 101d. Changing data recorded in a
ROM 101c¢ can require a technician have physical access to
module 101, such as removing a cover or part of an
enclosure, where the technician can subsequently connect
equipment to a circuit board in module 101, including
replacing ROM 101¢. ROM 101c¢ could also comprise a
nonvolatile memory, such that data is stored within ROM
101c¢ even if no electrical power is provided to ROM 101c.
Although not illustrated in FIG. 15, but illustrated in FIG. 1e
below, module 101 could also include a flash memory 101w.
A primary difference between flash memory 101w and RAM
101e may be that reading and writing operations to flash
memory 101w can be slower whereas reading and writing
operations to RAM 101e may be faster, and faster reading
and writing operations to memory may be required for
processing sensor 101f'signals and securely communicating
with a server 105. For example, module program 101/, data
reporting steps 101x, operating system 101/, or device
driver 101g could be stored in flash memory 101w within
module 101 when the module is powered off. These com-
ponents and/or instructions could be moved from a flash
memory 101w (not shown in FIG. 15 but shown in FIG. 1e)
into RAM 101e when the module is powered on. In addition,
portions of a RAM 101e can function as flash memory 101w,
such that module program 101, power control steps 101x,
operating system 101/%, or device driver 101g remain resi-
dent in random access memory even when the mobile
module 101 is powered off, or powered off for the first time
after module 101 is installed or becomes active in wireless
network 102. Note that ROM 101c¢ could be optionally
omitted or included in a memory unit within CPU 1015 (not
shown).

Although the exemplary environment described herein
employs ROM 101¢ and RAM 101e, it should be appreci-

10

15

20

25

30

35

40

45

50

55

60

65

16

ated by those skilled in the art that other types of computer
readable media which can store data that is accessible by a
module 101, such as memory cards, subscriber identity
module (SIM) cards, local miniaturized hard disks, and the
like, may also be used in the exemplary operating environ-
ment without departing from the scope of the invention. The
memory and associated hardware illustrated in FIG. 15
provide nonvolatile storage of computer-executable instruc-
tions, data structures, program modules, module program
1014, and other data for computer or module 101. Note the
module 101 may include a physical data connection at the
physical interface 101a such as a miniaturized universal
serial bus adapter, firewire, optical, or other another port and
the computer executable instructions such as module pro-
gram 101/, data reporting steps 101lx, operating system
1014, or device driver 101g can be initially loaded into
memory such as ROM 101¢ or RAM 101e through the
physical interface 101a before module 101 is given to an end
user, shipped by a manufacturer to a distribution channel, or
installed by a technician. In addition, the computer execut-
able instructions such as module program 101;, data report-
ing steps 101x, operating system 101/ or device driver 101g
could be transferred wirelessly to module 101. In either case
(wired or wireless transfer of computer executable instruc-
tions), the computer executable instructions such as module
program 101;, data reporting steps 101x, operating system
1014, or device driver 101g could be stored remotely on a
disk drive, solid state drive, or optical disk (external drives
not shown).

A number of program modules may be stored in RAM
101e, ROM 101¢, or possibly within CPU 1015, including
an operating system 101/, device driver 101g, an http client
(not shown), a DNS client, and related software. Program
modules include routines, sub-routines, programs, objects,
components, data structures, etc., which perform particular
tasks or implement particular abstract data types. Aspects of
the present invention may be implemented in the form of a
module program 101/ and/or data reporting steps 101x
which are executed by the module 101 in order to provide
remote monitoring using a sensor 101f'and/or remote control
using an actuator 101y. In addition, the module program
101/ and/or data reporting steps 101x can include routines,
sub-routines, and similar components to support secure and
bandwidth and radio-frequency (RF) efficient communica-
tion with a server 105 utilizing the techniques described in
the present invention. Further, the module program 101
and/or data reporting steps 101x can perform the various
actions described in the present invention for the module
101 through instructions the module program 101/ and/or
data reporting steps 101x provide to the CPU 1015.

A user may enter commands and information into module
101 through an optional user interface 101, such as a
keypad, keyboard (possibly miniaturized for a mobile phone
form-factor), and a pointing device. Pointing devices may
include a trackball, an electronic pen, or a touch screen. A
user interface 101; illustrated in FIG. 15 can also comprise
the description of a user interface 101 within U.S. patent
application Ser. No. 14/039,401, filed Sep. 27, 2013 in the
name of John Nix, which is herein incorporated in its
entirety.

The module 101, comprising a computer, may operate in
a networked environment using logical connections to one
or more remote computers, such as the server 105 illustrated
in FIG. 1a. Server 105 can also function as a general purpose
server to provide files, programs, disk storage, remote
memory, and other resources to module 101 usually through
a networked connection. Additional details regarding server

US 11,258,595 B2

17

105 are provided in FIG. 1¢ below. Additional remote
computers with which module 101 communicates may
include another module 101 or mobile device, an M2M node
within a capillary network, a personal computer, other
servers, a client, a router, a network PC, a peer device, a base
station 103, or other common network node. The server 105
or a remote computer typically includes many of the ele-
ments described above relative to the module 101, including
a CPU, memory, and physical interfaces. It will be appre-
ciated that the network connections shown throughout the
present invention are exemplary and other means of estab-
lishing a wireless or wired communications link may be
used between mobile devices, computers, servers, corre-
sponding nodes, and similar computers.

The module program 1017 and data reporting steps 101x
operating within module 101 illustrated in FIG. 16 can
provide computer executable instructions to hardware such
as CPU 1015 through a system bus 101d in order for a
module 101 to (i) collect data from a sensor, (ii) change the
state of an actuator 101y, and (iii) send or receive packets
with a server 105, thus allowing server 105 to remotely
monitor or control a monitored unit 119. The module pro-
gram 101/ and/or data reporting steps 101x can enable the
module 101 to transmit or send data from sensor 101f or
module 101 by recording data in memory such as RAM
101e, where the data can include sensor data, a destination
IP:port number, a packet or packet header value, an encryp-
tion or ciphering algorithm and key, a digital signature
algorithm and key, etc. The data recorded in RAM 101e can
be subsequently read by the operating system 101/ or the
device driver 101g. The operating system 101/ or the device
driver 101g can write the data to a physical interface 101a
using a system bus 1014 in order to use a physical interface
101a to send data to a server 105 using the Internet 107.
Alternatively, the module program 101/ and/or data report-
ing steps 101x can write the data directly to the physical
interface 101a using the system bus 101d.

The module program 101; and/or data reporting steps
101x, or operating system 101/ can include steps to process
the data recorded in memory such as encrypting data,
selecting a destination address, or encoding sensor data
acquired by (i) a sensor 101f or (ii) through a physical
interface 101a such as a thermocouple, shock or vibration
sensor, light sensor, or global positioning system (GPS)
receiver, etc. The module 101 can use the physical interface
101a such as a radio to transmit or send the data from a
sensor to a base station 103. For those skilled in the art, other
steps are possible as well for a module program 101/ or
operating system 101/ to collect data from a sensor 101fand
send the data in a packet without departing from the scope
of the present invention.

Conversely, in order for module 101 to receive a packet
or response from server 105, the physical interface 101a can
use a radio to receive data from a base station 103. The
received data can include information from a server 105 and
may comprise a datagram, a source [P:port number, a packet
or header value, an instruction for module 101, an acknowl-
edgement to a packet that module 101 sent, a digital signa-
ture, and/or encrypted data. The operating system 101/ or
device driver 101g can use a system bus 1014 and CPU 1015
to record the received data in memory such as RAM 101e,
and the module program 101/ or operating system 101/ may
access the memory in order to process the received data and
determine the next step for the module 101 after receiving
the data. Processing the received data could include deci-
phering or decrypting received data with a key, verifying a
digital signature with a key, reading an instruction from a

5

10

20

25

30

35

40

45

50

55

60

65

18

server 105, or similar transformations of the received data.
The steps within this paragraph may also describe the steps
a module program 101/ or data reporting steps 101x can
perform in order to receive a packet. For those skilled in the
art, other steps are possible as well for a module program
101, data reporting steps 101x, or module 101 to receive a
packet or response from a server 105 without departing from
the scope of the present invention.

Moreover, those skilled in the art will appreciate that the
present invention may be implemented in other computer
system configurations, including hand-held devices, net-
books, portable computers, multiprocessor systems, micro-
processor based or programmable consumer electronics,
network personal computers, minicomputers, mainframe
computers, and the like. The invention may also be practiced
in distributed computing environments, where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules may be located in
both local and remote memory storage devices. In addition,
the terms “mobile node”, “mobile station”, “mobile device”,
“M2M module”, “M2M device”, “networked sensor”, or
“industrial controller” can be used to refer to module 101 or
its functional capabilities of (1) collecting sensor data regard-
ing a monitored unit 119, (ii) changing state of an actuator
101y associated with monitored unit 119, and/or (iii) com-
municating the data associated with a monitored unit 119
with a wireless network 102. The function of module 101
and sensor 101f'could be integrated, and in this case module
101 could also be referred to as a “sensor”, “intelligent
sensor”, or “networked sensor”. Further, the term “module”
or “monitoring device” can be used to refer to the module
program 101/ when module program 101; provides func-
tional capabilities such as reporting data from a sensor 101/
to a server 105 or receiving instructions for an actuator 101y
from a server 105. The device driver 101/, operating system
101/, and/or module program 101/ could optionally be
combined into an integrated system for providing the mod-
ule 101 functionality. Other possibilities exist as well for the
configuration or combination of components illustrated in
FIG. 15 without departing from the scope of the present
invention.

FIG. 1c

FIG. 1c¢ is a graphical illustration of hardware, firmware,
and software components for a server, in accordance with
exemplary embodiments. The illustrated components for the
server 105 in FIG. 1c¢ include a central processing unit
(CPU) 1055, a random access memory (RAM) 105¢, a
system bus 1054, storage 105m, an operating system 1057,
and a module controller 105x. These elements can provide
functions equivalent to the central processing unit (CPU)
1015, RAM 101e, system bus 101d, flash memory 101w,
and an operating system 101/ described above in FIG. 15,
respectively. In general, a server 105 can have higher-end
components such as a larger CPU 1056 and greater RAM
105¢ in order to support communications with a plurality of
modules 101. Server 105 can comprise a general purpose
computer such as a rack mounted server within a data center
or rack, or could also comprise a desktop computer or
laptop. Server 105 could also be a specialized computer,
with hardware and software selected for supporting a plu-
rality of modules 101 connecting and communicating simul-
taneously. Operating system 101/ can comprise an operating
system appropriate for a server such as Linux, Solaris®, or
Windows® Server. Server 105 can preferably have a wired
Ethernet connection with high bandwidth that is persistently
connected to the Internet 107 illustrated in FIG. 1a, while the

US 11,258,595 B2

19

Internet 107 connection for module 101 may be transient as
module 101 changes between sleep and active states. Mod-
ule controller 105x can provide the server-side logic for
managing communications and controlling module 101
using a module database 105%. Server program 105i can
provide functionality for communicating with external serv-
ers or nodes, such as an application server 171 illustrated in
FIG. 14.

A module controller 101x and server program 105/ may
be applications programmed in a language such as C, C++,
Java, or Python and could provide functionality to support
M2M applications such as remote monitoring of sensors and
remote activation of actuators. Module controller 105x and
server program 105; could also be software routines, sub-
routines, linked libraries, or software modules, according to
preferred embodiments. Many of the logical steps for opera-
tion of server 105, module controller 105x, and/or server
program 105/ can be performed in software and hardware by
various combinations of physical interface 105qa, system bus
105d, device driver 105g, and operating system 105/,. When
server 105 is described herein as performing various actions
such as acquiring an IP address, monitoring a port, trans-
mitting or sending a packet, receiving a message, or encrypt-
ing or signing a message, specifying herein that server 105
performs an action can refer to software, hardware, and/or
firmware operating within server 105 performing the action.

The server 105 may also include a user interface 105; such
as a display (not shown) which could also comprise any type
of display devices such as a liquid crystal display (LCD), a
plasma display, and an organic light-emitting diode (OLED)
display, or a cathode ray tube (CRT). A user interface 105;
for the server 105 may optionally be provided remotely such
as (i) via a web browser or a secure terminal such as secure
shell (SSH) with (ii) another computer operated by an
administrator (not shown). A user or administrator may enter
commands and information into server 105 through a user
interface 105j, such as a keypad, keyboard, and a pointing
device. Pointing devices may include a trackball, an elec-
tronic pen, or a touch screen. In addition, the server 105 may
store computer executable instructions such as module con-
troller 105x or server program 1057 on storage 105m. Stor-
age 105m may comprise a disk drive, a solid-state drive, an
optical drive, or a disk array. Module controller 101x can
manage communications with module 101 and may be
downloaded and installed on the server 105. As noted
previously and elsewhere herein, module program 101; and
module controller 105x can preferably interoperate with
each other in order to collect sensor data and control an
actuator associated with a monitored unit 119.

The server program 105; and/or module controller 101x
operating within server 105 illustrated in FIG. 1c¢ can
provide computer executable instructions to hardware such
as CPU 10556 through a system bus 1054 in order to (i)
receive a message from the module 101 and (ii) send a
response, wherein the message can include sensor 101/ data
and the response can include an acknowledgement of the
message and/or an instruction to the module 101. The
module controller 105x can enable the server 105 to send a
response to a message from module 101 by recording data
associated with module 101 in memory such as RAM 105e,
where the data can include an instruction from module 101,
a destination IP:port number, a packet or packet header
value, and the data can be processed using an encryption or
ciphering algorithm or key, a digital signature algorithm or
key, etc.

The server program 105i can enable (a) the server 105 to
send a datagram, packet, or an application message to an

10

15

20

25

30

35

40

45

50

55

60

65

20

application server 171 by (b) recording data associated (i) a
with module 101 or (ii) other M2M service control infor-
mation in memory such as RAM 105e¢, where the data can
include information from module 101, a destination IP:port
number, a packet or packet header value, and the informa-
tion could be processed using an encryption or ciphering
algorithm or key, a digital signature algorithm or key, etc.
The operating system 105/ or the device driver 105g can
write the data from RAM 105e to a physical interface 105a
using a system bus 1054 and an Ethernet connection in order
to send the data via the Internet 107 illustrated in FIG. 1a.
Alternatively, the software program 105/ and/or module
controller 105x can write the data directly to the physical
interface 1054 using the system bus 1054.

The server 105 can utilize the physical interface 1054 to
receive data from a module 101 and/or application 171
using a local area network such as Ethernet, although the
physical interface 1054 of server 105 could also utilize a
wireless connection. The server 105 can listen for data from
the Internet 107 using port number and/or a TCP/UDP
socket. The received data from a module 101 can be a
message formatted according to an Internet packet or data-
gram or series of datagrams inside Ethernet packets and
include information from a module 101 such as a source IP
address and port number, an identity of the module, sensor
data that may be encrypted, and/or a digital signature of the
module. The received data from application 171i can com-
prise a series of datagrams formatted according to Internet
Protocol and/or datagrams inside Ethernet packets. The
received data or message from application 171/ can include
information regarding application 171; and/or server 105,
such as a source [P address and port number associated with
application 171i or application server 171, an identity of the
server, actuator instructions or commands for a module 101
that may be encrypted, and a digital signature associated
with the application 171i.

When server 105 receives messages or data, the operating
system 105/ or device driver 105g can record the received
data from module 101 or application 171 via physical
interface 1054 into memory such as RAM 105e¢. The server
program 105; or operating system 105/ may subsequently
access the memory in order to process the data received. The
server program 105; and/or module controller 105x, or
operating system 105/ can include steps to process the data
recorded in memory and received from the module 101 or
application 171i, such as parsing the received packet,
decrypting data, veritying a digital signature with a key, or
decoding sensor data included in a message from the mod-
ule.

The server 105 and/or server program 105/ may commu-
nicate with application 171/ by sending and receiving pack-
ets over a LAN or the Internet 107, using a physical interface
105a and a wired connection such as Ethernet or possibly a
wireless connection as well. The server 105 can use the
physical interface 105a such as an Ethernet connection to
send and receive the data from the Internet 107. For those
skilled in the art, other steps are possible as well for a server
program 105; or operating system 105/ within a server 105
to (i) send/receive a packet or message to/from a module 101
and (ii) send/receive a packet or message to/from an appli-
cation 1717 without departing from the scope of the present
invention. Server program 105; and module controller 105x
may optionally be combined within a server 105, or alter-
natively distributed across different physical computers and
function in a coordinated manner using a network.

The device drivers 105g, operating systems 105/, and/or
module controller 105x could also optionally be combined

US 11,258,595 B2

21

into an integrated system for providing the server 105
functionality. Although a single physical interface 105a,
device-driver set 105g, operating system 105/, module
controller 105x, server program 105;, and user interface 105;
are illustrated in FIG. 1c for server 105, server 105 may
contain multiple physical interfaces, device drivers, operat-
ing systems, software programs, module programs, and/or
user interfaces. Server 105 may operate in a distributed
environment, such that multiple computers operate in con-
junction through a network to provide the functionality of
server 105. Also, server 105 may operate in a “virtualized”
environment, where server 105 shares physical resources
such as a physical CPU 1055 with other processes operating
on the same computer. And other arrangements could be
used as well, without departing from the invention.

FIG. 1d

FIG. 1d is a graphical illustration of hardware, firmware,
and software components for an application server, in accor-
dance with exemplary embodiments. Application server 171
can include application 171i. Application 171i can comprise
a computer program or collection of computer programs, for
managing a plurality of modules 101 using one or more
servers 105. Application 171 can include a web portal 171/,
service controller 171x, an application database 171%, and
cryptographic algorithms 141. During operation, such as
when application 171/ processes data from/to modules 101
through server 105, application 171/ may reside in RAM
171e within an application server 171. Application 171; and
the associated computer programs may be recorded in
storage 171m so that they may be loaded by operating
system 171/ upon the startup of application server 171. Web
portal 171j can comprise a web server such as Apache and
can provide a user interface for a remote user accessing
application 171/ via an Internet 107. The web portal 1715
could include web pages for viewing reports from modules
101 and/or servers 105, and also inputting settings for
modules 101 by a user. The web pages could include PHP,
active server pages, or Java components, in addition to other
elements. Data input and stored by application 171 can be
recorded in application database 171%. The data could be
inserted or queried using structured query language (SQL)
statements. Cryptographic algorithms 141 which may com-
prise a suite of algorithms or subroutines that can be utilized
for (i) deriving a pair of keys comprising a public key and
a private key, (ii) encrypting data using public keys, (iii)
decrypting data using private keys, (iv) processing secure
hash signatures using private keys, and (v) verifying secure
hash signatures using public keys, and related software,
firmware, or subroutines for implementing a cryptographic
system, and cryptographic algorithms 141 are also depicted
and described in connection with FIG. 1g below.

Application 171i may be processed by an application
server 171 using a CPU 1715. The illustrated components
for the application server 171 in FIG. 14 include a central
processing unit (CPU) 1715, a random access memory
(RAM) 171e, a system bus 1714, storage 171m, an operating
system 1714, and an application 171i. These elements can
provide functions equivalent to the central processing unit
(CPU) 1055, RAM 105¢, system bus 1054, storage 105m,
and an operating system 105/ described above in FIG. 1¢,
respectively. Application server 171 can comprise a general
purpose computer such as a rack mounted server within a
data center or rack, or could also comprise a desktop
computer or laptop. Application server 171 could also be a
specialized computer, with hardware and software selected
for supporting a plurality of servers 105 or modules 101
connecting and communicating simultaneously. Operating

10

15

20

25

30

35

40

45

50

55

60

65

22

system 171/ can comprise an operating system appropriate
for a server such as Linux, Solaris®, or Windows® Server.
Application server 171 can preferably have a wired Ethernet
connection with high bandwidth that is persistently con-
nected to the Internet 107.

An application 171/ and/or service controller 171x may be
an application programmed in a language such as C, C++,
Java, or Python and could provide functionality to support
M2M applications such as remote monitoring of sensors and
remote activation of actuators. Application 171 can include
a service controller 171x. Application 171/ and/or service
controller 171x could also be a software routine, subroutine,
linked library, or software module, according to one pre-
ferred embodiment. Application 171 can include a service
controller 171x, which can provide the functionality or CPU
1715 instructions for the service controller 171x described in
the present invention. Service controller 171x can include (i)
logic for processing alarms from a module 101 (such as
sending out and email or text message to a user), (ii) logic
for adjusting actuator 101y settings based upon data from
sensor 1017, (iii) accepting user input (possibly via web
portal 1715) and then making an associated change in an
actuator 101y setting. Service controller 171x can also
accept input from external applications (not shown) in order
to make decisions regarding module 101, sensor 101/, and/or
actuator 101y.

Service controller 171x could be included within an
enterprise resource planning (ERP) solution such as SAP®
or Oracle® ERP. An external application (not shown) can
communicate with the application server 171. As one
example, a group of modules 101 could be installed within
a manufacturing plant, and when a customer order was
entered into the external application such as ERP, the service
controller 171x could provide instructions for a group of
modules 101 to server 105, such as changing actuators 101y
to operate a production line. Other possibilities for service
controller 171x exist as well without departing from the
scope of the present invention. In general, service controller
171x can manage the overall function of a group of modules
101 through server 105. Service controller 171x may operate
at the “user layer” and/or “application layer” of the tradi-
tional OSI model.

Many of the logical steps for operation of application
server 171 or application 171 can be performed in software
by various combinations of physical interface 171a, device
driver 171g, operating system 171/, and module controller
105i, where application 171/ communicates with module
controller 105: over a network. Application 171/ and module
controller 105/ can communicate using an application mes-
sage 701 (illustrated in FIG. 7 below). When application
171i is described herein as performing various actions such
as acquiring an [P address, monitoring a port, transmitting or
sending a packet or message, or encrypting or signing a
message, receiving a packet or message, specifying herein
that application 1717 and/or application server 171 performs
an action can refer to software, hardware, and/or firmware
operating within application server 171 performing the
action. Application server 171 or application 171/ can send
or transmit a message, packet, or data using the steps
depicted and described in connection with FIG. 1¢ for a
server 105 to send or transmit a message, packet, or data.
Application server 171 or application 171i can receive a
message, packet, or data using the steps depicted and
described in connection with FIG. 1c for a server 105 to
receive a message, packet, or data. Application server 171
can utilize hardware components similar to server 105, such
as storage 171m can be similar to storage 105m, CPU 1715

US 11,258,595 B2

23

can be similar to CPU 1055, and physical interface 171a can
be similar to physical interface 105a. Application server 171
can use a system bus 1714 to connect the hardware com-
ponents shown within application server 171, and system
bus 171d can be similar to system bus 1054 depicted and
described in connection with FIG. 1¢ above.

Application server 171 may also comprise a collection of
individual computers, where the individual computers could
be either centrally located or geographically dispersed, but
the individual computers may function in a coordinated
manner over a network to operate as an application server
171. In a similar manner, application 171/ may be distributed
across a plurality of computers, such as in a cloud computing
configuration. Application server 171 may be a “virtualized”
server, with computing resources shared with other pro-
cesses operating on a computer.

FIG. 1e

FIG. 1e is a graphical illustration of the components
within a module, in accordance with exemplary embodi-
ments. FIG. 1e is illustrated to show a combination of
components useful for leveraging the efficient and secure
communication techniques described in the present inven-
tion. In addition to the components illustrated in FIG. 14
above, module 101 can include a battery 101%, a server
public key 114, a wireless module private key 112, a
connection to an actuator 101y, a USB interface 101v, a CPU
wake controller 101#, a flash memory 101w, a symmetric
key 127, a pre-shared secret key 129a, a random number
generator 128, cryptographic algorithms 141, a radio 101z,
and other components illustrated in FIG. 1e. Not all of the
components illustrated in FIG. 1le are required for many
exemplary embodiments, and some of the components illus-
trated in FIG. 1e may also be optionally omitted in exem-
plary embodiments.

The CPU 1015 can comprise a general purpose processor
appropriate for the low power consumption requirements of
a module 101, and may also function as a microcontroller. In
a preferred exemplary embodiment, the CPU 1015 is
responsible for maintaining a state machine for network and
transport layer commands with an external network such as
the wireless network 102 illustrated in FIG. 1a, where CPU
1015 can manage the overall connection of radio 101z with
a wireless network 102. CPU 1015 can include additional
elements not shown, such as registers, cache memory, an
arithmetic logic unit (ALU), which performs arithmetic and
logical operations, and a control unit (CU), which extracts
instructions from memory and decodes and executes them,
calling on the ALU when necessary.

The CPU 1015 wake and dormant or sleep states may be
controlled by a CPU wake controller 101 to put the module
101 in a dormant state in order to conserve (i) battery life in
battery 1014, or (ii) power consumption if land-line power
is available, when sensor measurements, actuator control, or
radio communications are not needed. The CPU wake
controller 101« could optionally be integrated into CPU
1015. The CPU wake controller 101x can also include a
timer to periodically wake the CPU 1015 in order to perform
sensor measurements or communicate with a wireless net-
work 102 or server 105. The flash memory 101w can be a
non-volatile memory and may contain a bootloader program
125 and a module program 101i. Bootloader program 125
can comprise a software program or application that is
initially read by CPU 1015 upon power up of module 101 in
order to configure interfaces and begin operations including
loading module program 101i. Module program 101/ is
depicted and described in connection with FIG. 15 above. If
module 101 operates as a payment card, then CPU wake

10

15

20

25

30

35

40

45

50

55

60

65

24

controller 101% could wake CPU 1015 when a radio 101z
detects an RF signal from a payment terminal.

Note that CPU wake controller 101x can monitor sensor
101f'in order to determine a wake condition for CPU 1015,
wherein the CPU 1015 remains dormant until sensor 101/
reads a state that requires sending a message to a server 105.
An example could be sensor 101/ comprising a shock and
vibration detector or a temperature measuring device such as
a thermocouple, and other examples exist as well. The CPU
wake controller 101 can leave CPU 1015 in a dormant state
until a certain threshold of shock and vibration or tempera-
ture is recorded by the sensor 101f, and in this manner
battery 1014 can be conserved so that CPU 1015 wakes
when a threshold sensor measurement or an alarm condition
is reported. The exemplary certain threshold of shock and
vibration or temperature recorded by the sensor 101/ can
also comprise an alarm condition. When CPU 1015 is
dormant, CPU wake controller 101« can monitor a voltage
level output by sensor 101/, and once a threshold voltage
level is read by CPU wake controller 101u, CPU wake
controller 101x can change CPU 1016 from the dormant
state to an active state in order to run a module program
101:.

Even without an alarm condition, CPU wake controller
101# can periodically wake CPU 1015 to collect sensor data,
connect to an external network such as a wireless network
102, and send sensor data to server 105. CPU 1015 can
include one or more cores of the processor, where each core
is an independent actual central processing unit, and the
cores can be the units that read and execute program
instructions. The instructions can be ordinary CPU instruc-
tions such as add, move data, and branch. The dormant state
of CPU 1015 can comprise a sleep state where a power level
used by a core in the processor is less than 0.010 milliwatts
during a one second measurement sample, such as when the
power supply is essentially removed from the core but
power is supplied to memory 101e in order to allow a rapid
waking of the CPU 1015 or core.

Sensor 1017 could be a device to collect environmental
data or data regarding a monitored unit 119. Sensor 101/
could collect data such as temperature, humidity, pressure,
visible light levels, radiation, shock and/or vibration, volt-
age, current, weight, pH levels, orientation/motion, or the
presence of specific chemicals. Sensor 101/ could also be a
microphone. Sensor 101/ could be a magnetic strip reader
for credit cards and similar cards, or an antenna for either
near-field RF communications, such as reading an RF iden-
tity tag. An antenna for a sensor 101f could also collect
longer-range RF signals, such as reading long-range radio
frequency identity tags. Sensor 101f could also collect
biometric data such as heart rate, glucose levels, body
temperature, or other health measurements and in this case
monitored unit 119 could be a person. The sensor 101f can
provide data to the CPU 1015 in the form of analog or digital
data, which can be communicated via a system bus 1014 or
physical interface 101a and other electrical interfaces are
possible as well. A sensor measurement can comprise the
analog or digital data collected by CPU 1015 from sensor
101/ A sensor measurement can include processing of the
analog or digital data input CPU 1015 by sensor 101/, such
as averaging over time, using mathematic formulas to con-
vert the raw data from sensor 101f into a usable form.
Module 101 may also collect sensor data or sensor values
using a sensor 101/'and CPU 1015, where the data or values
are derived from electrical signals output by a sensor 101f.
A sensor measurement can comprise the sensor data or
sensor values. If module 101 comprises a “point of pres-

US 11,258,595 B2

25

ence” payment terminal, then a sensor measurement could
comprise data read from a payment card.

As contemplated herein, the terms “sensor measurement™
and “sensor data” can be used interchangeably, and can also
be considered functionally equivalent. Although a single
sensor 101fis shown in FIG. 1e, a module 101 could include
multiple sensors. Each of the multiple sensors 101/ could
include a sensor identity 151, which could comprise a
number or string to identify the sensor 101f. Or, a sensor
identity 151 could also be used with a single sensor 101/ In
addition, although sensor 101f'is shown as integrated into
module 101, sensor 1017 could be external to module 101,
and connected via an external interface such as through a
USB interface 101v or other wired or wireless configuration.

Note that sensor 1017 could also connect to module 101
via a WiFi or similar wireless LAN connection such as
Zigbee. Radio 101z within module 101 can operate as a WiFi
base station (in addition to radio 101z connecting to a
wireless network 102), and sensor 101f could contain its
own radio and WiFi chipset, such that sensor 101/ could
send sensor data to module 101 via the WiFi connection (or
other wireless LAN connection). In this manner, by utilizing
WiFi to connect with sensor 101f, module 101 could connect
with a plurality of sensors 101f located in a vicinity of
module 101, such as within an exemplary 50 meters. In
addition to the WiFi network described, sensor 1017 and/or
actuator 101y could connect with module 101 via any
suitable wireless local area networking technology includ-
ing, IEEE 802.11, IEEE 802.15.4, an ISA100.11a standards-
based network, Bluetooth, and/or a 6LoWPAN.

Actuator 101y could be a device to control a parameter or
state for a monitored unit 119, such as changing a voltage or
current, activating a switch or relay, turning on or off a
microphone or speaker, activating or deactivating a light,
and other examples are well known in the art. Actuator 101y
could also be a speaker. Actuator 101y could be controlled
by module 101 via a digital or analog output from CPU
1015, which could also be transmitted or sent via system bus
101d or a physical interface 101a. Although actuator 101y is
illustrated as external to wireless module 101 in FIG. 1le,
actuator 101y could also be internal to module 101, and
module 101 could include multiple actuators 101y.

Although a single actuator 101y is shown in FIG. 1e, a
module 101 could include multiple actuators 101y. Each of
the multiple actuators 101y could include an actuator iden-
tity 152, which could comprise a number or string to identify
the actuator 101y. Or, an actuator identity 152 could also be
used with a single actuator 101y. If module 101 comprises
a “point of presence” payment terminal, then an actuator
101y could be a printer for printing a receipt. If module 101
comprises a payment card for end users to make payments
to merchants, then actuator 101y could be an LED light that
turns on upon submission of a payment. Sensors and actua-
tors are well known to those of ordinary skill in the art, and
thus are not described in additional detail herein.

Module 101 can include a Universal Serial Bus (USB)
interface 101v, which could provide a general and standards-
based interface for external connection to a wide variety of
sensors 101/, actuators 101y, and external computers such as
laptops or mobile phones. Module 101 could also obtain
power or recharge a battery 1014 through the USB interface
101v. Software programs or instructions to wireless module
101 could be provided locally through USB interface 101v,
including the initial loading of a pre-shared secret key 1294
and/or shared secret key 510 described in FIG. 56 below.
Module program 101, operating system 1012, or module
private key 112 could be loaded into module 101 via USB

10

15

20

25

30

35

40

45

50

55

60

65

26

interface 101v, another physical interface 101a, or radio
101z. In order to support a preferred small form factor of a
module 101, the USB interface 101v could preferably utilize
either a micro-USB or mini-USB physical interface, or
future similar miniature USB interfaces related to these
standard interfaces. Although a USB interface 101v is illus-
trated in FIG. 1e, alternative interfaces for external commu-
nication could be provided, such as a Joint Test Action
Group (JTAG) connection, optical, or a proprietary interface
such as a “Lightning” connection from Apple, Inc. USB
interface 101v and similar hardware interfaces could also be
optionally omitted. According to an exemplary embodiment,
module 101 uses only a radio 101z to transmit and receive
data externally to module 101.

In accordance with an exemplary embodiment, module
101 can comprise a wireless module and include a radio
101z. Note that the use of a radio 101z is not required for
module 101, which could also obtain a connection to the
Internet 107 via a wired line such as Ethernet. Although not
illustrated, radio 101z could include antennas for reception
and transmission of RF signals, and even multiple antennas
could be used. Although a single radio 101z is illustrated in
module 101, module 101 could also contain multiple radios
101z, such that a first radio 101z connects with a WiFi
network or functions as a WiFi base station or WiFi client,
a second radio 101z connects with a PLMN mobile network
such as a wireless network 102, and a third radio 101z
connects with a wireless network 102 operating in white-
space spectrum, etc. Or, a single radio 101z could be utilized
to connect with multiple wireless networks 102 operating in
different frequencies with different RF modulation tech-
niques and/or different RF standards.

Radio 101z could also comprise a software defined radio,
such that radio 101z could be programmed to change RF
protocols and modulation schemes without having to change
hardware within a radio 101z. Thus, according to a preferred
exemplary embodiment, module 101 can utilize a software
defined radio for radio 101z in order allow module 101 to
communicate with different wireless networks 102, includ-
ing new or future standards for a wireless network 102,
where the standard was not defined when module 101 was
installed. In this manner, module 101 can continue to operate
over an extended period such as years by upgrading the
software defined radio in a radio 101z as standards used by
a wireless network 102 changes, thereby reducing costs for
changing a module 101 or a radio 101z within a module in
a system 100.

Radio 101z can support wireless LAN standards such as
WiFi, Bluetooth, and Zigbee, or similar wireless LAN
standards. Radio 101z, if present in a module 101, could also
support communication through “white space” spectrum
white space spectrum recently approved for use by the
Federal Communications Commission (FCC), and in this
case radio 101z in module 101 could operate as a Mode I or
Mode 1I device according to FCC Memorandum Opinion
and Order (FC-12-36) and related white space regulation
documents. Radio 101z illustrated in FIG. le can comprise
aradio 101z depicted and described in connection with FIG.
1d of U.S. patent application Ser. No. 14/039,401, filed Sep.
27, 2013 in the name of John Nix, the contents of which are
herein incorporated in their entirety.

Note that module 101 may also operate as a base station
in a wireless LAN, such as an 802.11 base station. When
module 101 operates a wireless LAN, radio 101z can func-
tion as either a client/node or a base station 103 to support
communication from other wireless nodes in physical prox-
imity, such as other nodes within an exemplary 50 meters.

US 11,258,595 B2

27

The other wireless nodes could comprise a sensor 101/
and/or actuator 101y, and in this case a sensor could be
referred to as a “networked sensor” and an actuator could be
referred to as a “networked actuator”. When radio 101z
functions as a base station 103, module 101 can operate as
a gateway, providing Internet access to these other nodes or
modules 101 within the wireless LAN. Radio 101z can
simultaneously function (i) as a base station in a wireless
LAN, such as WiF1i, and (ii) a client/subscriber on a wireless
WAN such as a PLMN. Radio 101z can be selected to
support multiple different wireless LAN technologies in
addition to WiFi, such as the IEEE 802.15.4 standard or
Bluetooth. If radio 101z supports IEEE 802.15.4, then
wireless network 102 could be a Zigbee network, an
ISA100.11a standards-based network, or a 6LoWPAN net-
work as described by IETF RFC 4944.

In accordance with exemplary embodiments, module 101
can store module private key 112, server public key 114, and
module identity 110, and a symmetric key 127 in memory/
RAM 101e during operation, such as when CPU 10156 is
active and the module 101 is connected to a network such as
a wireless network 102 during data transmissions. Module
private key 112 preferably is recorded in nonvolatile
memory such as flash memory 101w, so that module 101 has
access to its private key 112 after the private key has been
derived or loaded, including times when a battery 1014 has
been fully drained or removed from module 101 (if module
101 does not utilize a persistent power source such as
land-line power). Module private key 112 and module
identity 110 could be written into ROM 101¢ upon manu-
facture or distribution of module 101, although module 101
can also derive module private key 112 in accordance with
exemplary embodiments and store the module private key
112 in a flash memory 101w

The CPU 10156 preferably moves module private key 112
and module identity 110 from nonvolatile memory into
volatile memory, including possibly a cache memory within
CPU 1015, before sending data through an Internet 107
illustrated in FIG. 1a, in order to speed computations. As a
minimum, module private key 112 and module identity 110
will need to be loaded into registers of CPU 1015 during
computations or use of cryptographic algorithms 141 that
require module private key 112 and/or module identity 110,
and this move of the data into registers of CPU 1015
constitutes a move or copy of module private key 112 and
module identity 110 into volatile memory.

Symmetric key 127 can be a secure, shared private key for
use with symmetric encryption or symmetric ciphering
algorithms 1415 (in FIG. 1g below). Symmetric key 127 can
be derived by using module public key 111 and/or server
public key 114, possibly through the use of a key derivation
function 141f (also in FIG. 1g below). Symmetric key 127
can be used for both encryption and decryption with sym-
metric cryptographic algorithms 1415 described in FIG. 1g
below, where a shared secret key can be used to both
encrypt/cipher and decrypt/decipher. Symmetric key 127
may also include an expiration time 133, such that symmet-
ric key 127 may only be used by module 101 during a
limited period of time, such symmetric key 127 remaining
only valid for a day, or a week, or during a session (where
the session comprises multiple messages and/or responses
between a module 101 and a server 105), etc. Module 101
can also derive symmetric key 127 according the Elliptic
Curve Integrated Encryption Scheme (ECIES) and/or
ECDH 159, discussed in FIG. 1g below, using module
public key 111, server public key 114, and a random number
from random number generator 128. ECIES could be

40

45

28

included in cryptographic algorithms 141. A summary of
ECIES shared key derivation is described the Wikipedia
article “Integrated Encryption Scheme” from Sep. 18, 2013
(herein incorporated by reference). Other possibilities for
shared key derivation function using public keys are pos-
sible as well, including a Diffie-Hellman key exchange.
Using a derived symmetric key from the exemplary key
derivation function ECIES, module 101 could derive a
second symmetric key 127 after the expiration time 133 of
the first symmetric key 127 had transpired.

Note that a key derivation function using public keys is
not required to generate a shared symmetric key 127, and
alternatively a shared symmetric key 127 could be generated
by any of module 101, server 105, module provider 109, or
M2M service provider 108. If module 101 generates shared
symmetric key 127 for symmetric ciphering 1416 within a
cryptographic algorithms 141, then module 101 can send
shared symmetric key 127 to server 105 using an asymmet-
ric ciphering depicted and described in connection with FIG.
4 below. In this case, module 101 preferably uses a random
number generator 128 to generate a random number 128«
(illustrated in FIG. 1g) for input into cryptographic algo-
rithms 141, and the seed 129 in random number generator
128 could utilize data from a sensor 101fin order to generate
a random number 1284 with high entropy in the creation of
symmetric key 127. In exemplary embodiments, random
number 128a can also comprise a string output of random
number generator 128, and thus random number 128a may
be recorded in a format other than a number. Thus, the output
of' a random number generator 128 can comprise a string in
addition to numbers, or the output of random number
generator 128 could be a binary number or a series of binary
numbers that could be encoded into a string. If server 105 or
M2M service provider 108 generates the symmetric key
127, server 105 can send module 101 the symmetric key 127
securely using asymmetric ciphering 141a depicted and
described in connection with FIG. 54 and FIG. 1g below.

Module identity 110 is preferably a unique identifier of
module 101, and could comprise a number or string such as
a serial number, an international mobile subscriber identity
number (IMSI), international mobile equipment identity
(IMEI), or an Ethernet media access control (MAC) address.
According to an exemplary embodiment, module identity
110 can also comprise a serial number or string that is
written into hardware of module 101 upon manufacturing or
distribution of module 101. In this case, module identity 110
could be recorded in a read only memory 101¢, where read
only memory 101c¢ could not be easily erased or otherwise
tampered with. Or, module 101 could read module identity
110, which could be written into hardware by a manufac-
turer, distributor, or module provider 109, by using a device
driver 101g that reads a hardware address containing the
module identity 110 using the bus 1014. Module 101 can
read the module identity 110 by accessing a read-only
address using the bus 101d. In either case, module identity
110 may preferably be permanently or persistently associ-
ated with the physical hardware of module 101, which can
be helpful for the security procedures contemplated herein.
Module identity 110 can function as a basic identifier for
services from M2M service provider 108, server 105, and/or
application 171/ in order to properly identify module 101
among a plurality of modules. Module private key 112 and
module public key 111 could be unique to module 101 and
uniquely associated with module identity 110, according to
a preferred embodiment.

As contemplated herein, a module identity 110 can also
have more than one use. A first module identity 110 could

US 11,258,595 B2

29

comprise a serial number for the physical hardware of
module 101, as described in the paragraph above. A second
module identity 110 could also comprise a session identifier,
for data sessions between module 101 and server 105, where
the session identifier can be uniquely associated by a server
105 to module 101. In the case where module identity 110
has more than one use, format, or representation, the module
identity 110 associated with or written into hardware of
module 101 (and potentially read from a read-only address
in module 101) would preferably comprise the module
identity 110 used in a certificate 122. Since a module 101
may utilize multiple module public keys 111 and module
private keys 112 over its lifetime, a certificate 122 for
module 101 can preferably include both (i) the module
identity 110 (such as a serial number for the physical
hardware of module 101) and (ii) a module public key
identity 111a in order to specify the particular module public
key 111 associated with certificate 122. The use of a module
public key identity 111q in a certificate 122 is also described
in FIG. 1/ below. Since a module 101 may also have
multiple public keys 111 for different purposes (such as one
for creating digital signatures, another for asymmetric
ciphering, another for use with a second wireless network
102, etc.), then module 101 may also potentially have
multiple valid certificates 122 concurrently.

Further, as contemplated herein, a module identity 110
could also comprise more than one physical string or num-
ber, such as a first string when module 101 connects with a
first M2M service provider 108 or first wireless network
102, and module identity 110 could comprise a second string
when module 101 connects with a second M2M service
provider 108 or second wireless network 102. The first M2M
service provider 108 or first wireless network 102 may have
a first requirement or specification for the format, length,
structure, etc. of module identity 110, and the second M2M
service provider 108 or second wireless network 102 may
have a second requirement or specification for the format,
length, structure, etc. of module identity 110.

Server public key 114 in module 101 could be obtained
from downloading the key over the Internet 107, or option-
ally also written into nonvolatile memory of module 101
upon manufacture or distribution. Server public key 114
could be obtained using a domain name or Internet address
that is recorded in nonvolatile memory upon the configura-
tion of module 101, such as during installation or distribu-
tion, and module 101 could fetch the server public key 114
upon connecting to a wireless network 102 or other con-
nection to the Internet 107. Server public key 114 can be the
public key associated with server 105 or M2M service
provider 108. Although a single server public key 114 is
illustrated in FIG. 1e, module 101 could record a plurality of
server public keys 114, where each server public key 114 is
associated with a different server 105. Server public key 114
can optionally be signed by a certificate authority 118 in
FIG. 1a, such that when module 101 communicates with
server 105, module 101 can verify a signature 123 (shown
in FIG. 1/) within a certificate 122 associated with server
105. Successful verification of the signature 123 can provide
a high level of certainty that server 105 is properly identified
and belongs to M2M service provider 108, as opposed to
being an imposter or part of a “man in the middle” attack.

Module 101 may also contain cryptographic algorithms
141, which may comprise a suite of algorithms or subrou-
tines that can be utilized for (i) deriving a pair of keys
comprising a public key and a private key, (ii) encrypting
data using public keys, (iii) decrypting data using private
keys, (iv) processing secure hash signatures using private

25

30

35

40

45

55

30

keys, and (v) verifying secure hash signatures using public
keys, and related software, firmware, or subroutines for
implementing a cryptographic system, including symmetric
ciphering algorithms. Cryptographic algorithms 141 (also
described below in FIG. 1g) could utilize publicly available
software libraries within tools such as OpenSSL maintained
by The OpenSSL Project (http://www.openssl.org/),
libgerypt maintained by The Free Software Foundation
(http://www.gnu.org/software/libgerypt/), and similar librar-
ies such as libmerypt and Crypto++. Note that cryptographic
algorithms 141 could also use proprietary cryptographic
libraries as well. In addition to implementing asymmetric
encryption/ciphering, such as used with RSA and ECC
cryptography, cryptographic algorithms 141 can provide
symmetric ciphering where a shared private key is utilized
to both encrypt and decrypt, such as with the Advanced
Encryption Standard (AES) cipher suite.

As illustrated in FIG. 1e, module 101 may also contain a
random number generator 128. Random number generator
128 may contain a seed 129. The creation of random
numbers with a high degree of entropy may be important the
use of cryptographic algorithms 141. However, obtaining
random numbers with high entropy in module 101 with
limited processing resources may be a challenge using
conventional technology. Since much of the operation of
module 101 requires a CPU 1015 following a pre-deter-
mined series of steps, such as the programmatic steps in an
operating system 101%2, module program 101, etc., the
random number generator seed 129 should preferably be
populated with data that is close to random “noise” and not
subject to replay. According to a preferred exemplary
embodiment, module 101 utilizes data input from sensor
101/ and/or radio 101z into a seed 129 within a random
number generator 128. As one example, the sensor data
input into seed 129 could comprise the least significant
digits of a sensor measurement or series of sensor measure-
ments, where the least significant digits would otherwise be
effectively considered “noise”.

In this exemplary embodiment of using a sensor to collect
a “noisy” signal for input into a random number generator
128 or seed 129, if sensor 101/ comprised a temperature
measuring device such as a thermocouple or thermistor with
a stated accuracy of 0.1 degrees, module 101 could take a
series of measurements with 0.0001 degree resolution and
utilize the last two digits appended from a series of mea-
surements for input into a seed 129 in order to generate a
random number 128a. Random number generator 128 could
also utilize data input from the other components illustrated
in FIG. 1e in order to generate a random number 128a,
where the data input from the other components comprise a
signal with a high level of “noise” or high entropy. The seed
129 could comprise multiple seeds 129 or also a random
number generator 128 could derive a random number 128«
using input from other components illustrated in FIG. 1e and
without using a seed 129.

Other possibilities exist as well, such as if sensor 101f'was
a camera, module 101 could take a series of pictures and
process the image to input data from the image into a seed
129. Likewise, module 101 could utilize numerous radio-
frequency (RF) measurements from radio 101z in order to
populate seed 129, including “noise” measurements on
unused frequencies, or other data received by a radio 101z,
including apparently random RF data. Although not illus-
trated in FIG. 1e, module 101 preferably includes a timing
source such as a clock, and the clock could also be utilized
to input data into a seed 129. Data from radio 101z, a clock
(not shown), and/or sensor 101f, and/or radio 101z could be

US 11,258,595 B2

31

combined in order to input data into a seed 129. Additional
input into the seed 129 could include measurements or states
within memory 101e and 101w, operating system 101/
states and files, and reading data from hardware through a
bus 101d. A state can comprise a list or set of constants,
variables, values, and/or data at a point in time or over an
interval of time.

A plurality of the data as a source for a random number
seed 129 could be appended together into a “module random
seed file” 139 (illustrated in FIG. 1g) with a combined series
or list of states (i.e. a plurality of sensor 101/ measurements,
radio 101z measurements, clock times, memory 10le or
memory 101w states, operating system 1017% states, actuator
101y states, and/or hardware 101a or 1014 states). Note that
values or data for each of the elements listed in the previous
sentence could be utilized in a “module random seed file”
139 instead of or in addition to a state. The “module random
seed file” 139 can then be input into the secure hash
algorithm 141¢ described in FIG. 1g below, and the output
of the secure hash algorithm 141¢ could then be used in the
input as a seed 129 within random number generator 128.
Also, this combined data (including in the form of'a “module
random seed file” 139) could be utilized by random number
generator 128 directly in order to process a random number
128a. Other possibilities exist as well without departing
from the scope of the present invention.

Note that the term “public key” as contemplated herein
includes a key that may be shared with other elements,
where the other elements may not be under the direct control
of the same entity that holds the corresponding private key.
However, the term “public key” as used herein does not
require that the public key is made available to the general
public or is publicly disclosed. An additional layer of
security may be maintained in the present invention by
preferably only sharing public keys on a confidential basis
with other entities. For example, module public key 111 may
be created by module 101 when generating module private
key 112, and module 101 may share module public key 111
with M2M service provider 108 in order to record module
public key 111 in server 105, but module 101 could choose
to not share module public key 111 with other entities, such
as wireless network 102 or make a certificate 122 with
module public key 111 available on the Internet 107. The
benefits of confidentially sharing module public key 111
with server 105 are also further described in connection with
FIG. 10 below.

Although a single public key and private key for (i)
module 101 and (ii) server 105 are illustrated in FIG. 1e and
also FIG. 1fbelow, respectively, both module 101 and server
105 may each utilize several different pairs of public keys
and private keys. As one example, module 101 may record
a first private key 112 used for creating a digital signature
and a second private key 112 for decryption using asym-
metric ciphering algorithms 141q. In this example, a server
105 could utilize a first module public key 111 to verify the
digital signature, and a second module public key 111 could
be utilized to encrypt messages sent to module 101. Simi-
larly, either module 101 or server 105 may use private key
112 or 105¢, respectively, to derive secondary shared keys
such as a derived shared key 1295 below. Thus, one key pair
could be used with digital signatures, a second key pair used
for asymmetric ciphering, and a third key pair to derive
shared secret keys. Each of the three illustrated pairs of keys
could comprise a set of keys, and each of the illustrated pairs
of keys could also use a different set of parameters 126,
although the parameters 126 for the various pairs of keys
could also be the same.

10

15

20

25

30

35

40

45

50

55

60

65

32

In addition, module 101 could utilize a first set of keys to
communicate with a first server 105 and a second set of keys
to communicate with a second server 105. The first set of
keys could use or be associated with a first set of parameters
126 and the second set of keys could use or be associated
with a second set of parameters 126. Likewise, M2M service
provider 108 illustrated in FIG. 1a could utilize a first pair
of secondary private and public keys with a first server 105,
and a second pair of secondary private and public keys with
a second server 105. As contemplated herein, the term
“private key” can also refer to secondary non-shared keys
derived from a “parent” private key such as key 112 or key
105¢, and the term “public key” can also refer to (i)
secondary, shared keys derived using a private key such as
key 112, or (ii) secondary, shared keys associated with a
public key such as key 111. Other possibilities exist as well
for a key to represent derived or associated keys without
departing from the scope of the present invention.

According to exemplary embodiments, module 101 may
also include a pre-shared secret key 1294. Pre-shared secret
key 1294 can comprise a secret key that is shared between
module 101 and server 105 before module 101 begins (i)
communicating with server 105 and/or a certificate authority
118, (ii) or utilizing PKI-based encryption and authentica-
tion to communicate with M2M service provider 108. As
illustrated in FIG. 1f'below, server 105 could also record the
pre-shared secret key 1294, and a pre-shared secret key 129a
can be associated with each module 101 using a module
identity 110. A pre-shared secret key 129a could be a secure
key comprising a string or number loaded into a nonvolatile
memory 101w of module 101 by a manufacturer, distributor,
installer, or end user of module 101. Pre-shared secret key
129a can be moved by CPU 1015 from the nonvolatile
memory 101w into a RAM 101e for further processing
during the use of cryptographic algorithms 141.

Note that pre-shared secret key 1294 can be different than
a pre-shared secret key used with conventional technology
such as SIM cards in PLMN networks, such as the key Ki,
where the pre-shared secret key in a SIM card is designed to
not be available for movement or loading into a RAM 101e
for processing by CPU 1015. Alternatively, pre-shared secret
key 129a could be derived using a second pre-shared secret
key Ki within a SIM card, but then server 105 would need
to be able to derive the same pre-shared secret key 129a,
even though server 105 may not have pre-shared secret key
Ki available. Although not shown in FIG. 1e, a module 101
may also include a SIM card that includes a pre-shared
secret key 129a, wherein the pre-shared secret key 1294 in
a SIM card is different than pre-shared secret key Ki, since
the pre-shared secret key in the SIM card cannot be moved
into RAM 101e for processing with a cryptographic algo-
rithms.

Pre-shared secret key 129q as illustrated in FIG. 1e can be
loaded by a manufacturer, distributor, installer, or end user
of module 101 using a physical interface 101a, such as (i) a
USB interface 101v, or (ii) a local WiFi network if module
101 includes a WiFi client. Pre-shared secret key 129a may
optionally be uniquely bound to module identity 110, such
that another module 101 with a different module identity 110
could not utilize pre-shared secret key 129q. Or, pre-shared
secret key 129q could be used by any module 101, but only
used one time and thus a second module 101 could not
utilize the exact same key within a pre-shared secret key
129a for authentication with server 105 at a subsequent time.
Alternatively, pre-shared secret key 129a could be shared by
a plurality of modules 101, and for example compiled into

US 11,258,595 B2

33

a module program 101/, such that multiple modules utilize
the same pre-shared secret key 129a.

Pre-shared secret key 129a could be obtained by a dis-
tributor, installer, or end user of module 101 by (i) using a
local computer to access a web page from a web portal 171,
where the web page can be user password protected, (ii)
entering, submitting, or typing information including a mod-
ule identity 110 into the web page, and subsequently (iii)
downloading pre-shared secret key 1294 from the web portal
1715. A different web server could be utilized besides the
web portal 171/ illustrated in FIG. 1d. The web server could
be operated by an entity such as module provider 109, M2M
service provider 108, or even certificate authority 118 (since
pre-shared secret key 129a could be used to authenticate the
submission of module public key 111). Note that the pre-
shared secret key 1294 could also be presented visually on
a response web page to the submission, and the a manufac-
turer, distributor, installer, or end user could record the
pre-shared secret key 129a visually presented on the
response web page. Pre-shared secret key 1294 could com-
prise a string of an exemplary set of characters or numbers
such as 10-16 digits or characters, although other lengths for
pre-shared secret key 129a could be possible as well.

According to a preferred exemplary embodiment, in order
to obtain the pre-shared secret key 1294 from a web page as
described in the above paragraph, the distributor, installer, or
end user of module 101 could read a pre-shared secret key
code 134. Pre-shared secret key code 134 could be physi-
cally printed on module 101, such as next to a serial number
printed on the enclosure of the device. Pre-shared secret key
code 134 could be a unique and/or randomized string such
as an exemplary 8 byte number or 10 character string (and
other possibilities exist as well), where upon (a) successful
submission to a web page of both the pre-shared secret key
code 134 with a module identity 110, then (b) the release of
pre-shared secret key 129a would be authorized for the
distributor, installer, or end user of module 101. Pre-shared
secret key 1294 could be transmitted through a secure web
session such as SSL. or TLS from a web portal 1715 to a
computer operated by the distributor, installer, or end-user.
The distributor, installer, or end-user could then load the
pre-shared secret key 129q into the nonvolatile memory of
the module using (i) a LAN connection such as WiFi to the
module (and in this case radio 101z in module 101 could
support an 802.11 type connection) or (ii) a USB interface
101v.

Pre-shared secret key 1294 could be utilized by a module
101 () as a shared secret key 510 in FIG. 54, or (ii) to derive
a shared secret key 510 also recorded by a server 105 in FIG.
56 below. Note that module program 101; preferably
includes a verification process for any pre-shared secret key
129a loaded by a distributor, installer, or end user, where a
hash value or combination of the pre-shared secret key 129a
and module identity 110 could be verified. As one example,
the last few digits or characters in a pre-shared secret key
129a could comprise a checksum for a string comprising
both module identity 110 and pre-shared secret key 129a,
such that module 101 could calculate the checksum after
entry of pre-shared secret key 1294, and module 101 can
reject the pre-shared secret key 129a if the checksum failed.
In this manner, or through the use of similar techniques,
system 100 can be designed so that pre-shared secret key
129a can only reasonably be utilized by a correct module
101 with the correct module identity 110 for the pre-shared
secret key 129a.

Since module 101 may have multiple module identities
110, a first module identity 110 could be used with a

20

25

35

40

45

65

34

pre-shared secret key code 134 and printed on an enclosure
of module 101, while a second and more secure (i.e. longer
length or more randomized bits) module identity 110 could
be used as a module identity 110 in a message 208 as
described in FIG. 2 below. Note that when using the exem-
plary embodiment illustrated in FIG. 54 below, (x) the
module identity 110 submitted with a web page and pre-
shared secret key code 134 is preferably different than (y) an
unencrypted module identity 110 within a message 208
illustrated in FIG. 6a and FIG. 65. A module identity 110
submitted by a distributor, installer, or end user in a web
page could preferably be easy to manually type into a web
page, such as 10 or 12 decimal digits or characters, while an
unencrypted module identity 110 within a message 208
could be significantly longer, such as 16 or 24 extended
ASCI characters, and other possibilities exist as well without
departing from the scope of the present invention.

Application server 171 running web portal 171/ could (i)
record a table of triplets including module identities 110,
pre-shared secret key codes 134, and pre-shared secret keys
129a, and (ii) return via a web page the pre-shared secret key
129a upon a successful match and entry of the submitted
pre-shared secret key code 134 and module identity 110.
Once the pre-shared secret key 129a has been utilized to
authenticate or verify a module public key 111 with a server
105 (such as using subsequent steps 517 in FIG. 55 below),
then that particular pre-shared secret key 129a may be
“discarded” and not used again for security purposes con-
templated herein. After module 101 obtains an initial secure
connection to server 105, using the techniques illustrated in
FIG. 3 through FIG. 65, then server 105 can securely send
keys for use with future communication including a sym-
metric key 127 or other shared secret keys for authorizing
any subsequent submission of a new module public key 111
with module identity 110 by module 101 in a step 517
illustrated in FIG. 5b.

Note that the use of a pre-shared secret key 129a and
pre-shared secret key code 134 is also optional, such that a
module program 101; could cipher of obfuscate the initial
submission of a derived module public key 111 and module
identity to a server 105, so that server 105 could be reason-
ably assured only a valid module 101 submitted the module
public key 111. Alternatively, the module manufacturer
could load the pre-shared secret key 129a in non-volatile
memory such as flash 101w upon manufacturing, and in this
case a distributor, installer, or end-user may not need to
access or load the pre-shared secret key 129a4. However, the
steps for a distributor, installer, or end-user to read a
pre-shared secret key code 134 and submit the code to a web
portal 171; to obtain pre-shared secret key 1294 may still be
useful, such as if module 101 needs the equivalent of a
“factory reset” after deployment, reconfiguration such as
loading new firmware, or otherwise reset or returned to a
default state.

Although (A) a pre-shared secret key 1294 may be useful
for sending module public key 111 to server 105 or other
entities connected to the Internet 107, such as a certificate
authority 118, (B) pre-shared secret key 1294 could be used
for other purposes as well, such as input into a key derivation
function 141f shown in FIG. 1g so that module 101 and
server 105 could obtain common derived shared secret keys
12954. In this case, a derived shared secret key 1295 could be
utilized as a shared secret key 510 depicted and described in
connection with FIG. 56 below. In addition, after the first use
of pre-shared secret key 129qa, a manufacturer, distributor,
installer, or end user may also upload a second pre-shared

US 11,258,595 B2

35

key 129q into module 101 at a future date, such as upon
reconfiguration of a module 101.

According to a preferred exemplary embodiment, module
101 can derive its own module private key 112 and module
public key 111, and utilize pre-shared secret key 129a in
order to securely and/or authoritatively communicate the
derived module public key 111 with server 105 and/or a
certificate authority 118. The use of pre-shared secret key
129a can be particularly useful if module 101 has already
been deployed with a monitored unit 119 and connects to
server 105 though the Internet 107 for the very first time.
Server 105 could preferably utilize pre-shared secret key
129a in order to confirm that a received module public key
111 and module identity 110 from module 101 authorita-
tively belong to module 101, as opposed to being an
unauthorized or even fraudulent submission of module pub-
lic key 111 and module identity 110.

Server 105 could utilize a pre-shared secret key 1294 and
the steps depicted and described in connection with FIG. 4
below in order to securely receive module public key 111
and module identity 110 from module 101, including the first
time module 101 sends module public key 111 to server 105.
As one example, pre-shared secret key 129a could be
utilized as a symmetric ciphering 14156 key, described in
FIG. 1g below. After the first submission of module public
key 111 to server 105, any subsequent submissions of new
module public keys 111 derived by module 101 could either
(1) continue to use the pre-shared secret key 1294, or (ii) use
a symmetric key 127 derived after the first module public
key 111 has been received. Securing the submission of
module public key 111 with server 105, including both the
first submission and subsequent submissions, is also
depicted and described in connection with FIG. 56 below.

FIG. 1f

FIG. 1f is a graphical illustration of the components
within a server, in accordance with exemplary embodiments.
Server 105 can include a module database 105k, a sub-server
105w, and a message preprocessor 105y. In an exemplary
embodiment, the elements illustrated within a server 105 in
FIG. 1f may be stored in volatile memory such as RAM
105¢, and/or storage 105m, and may also be accessible to a
processor CPU 10554. In another exemplary embodiment, the
module database 105k, sub-server 105w, and message pro-
cessor 105y can comprise separate computers. Module data-
base 1054, sub-server 105w, and message preprocessor 105y
could represent either different processes or threads operat-
ing on a server 105, or physically separate computers
operating in conjunction over a network to perform the
functions of a server 105. Since server 105 can preferably
support communications with a plurality of modules 101,
server 105 can utilize module database 1054 to store and
query data regarding a plurality of modules 101, monitored
units 119, and the overall M2M service. The server 105 can
store a plurality of module public keys 111 associated with
a plurality of devices in the module database 105%. The
server 105 can use the module identity 110 of device 101,
received in a message such as a UDP packet, to query the
module database 105k and select the public key 111 or
symmetric key 127 associated with the module 101.

Although not illustrated in FIG. 1f, module database 105&
can also record a pre-shared secret key code 134, a set of
parameters 126, and a module identity 110 for each module
101, along with the pre-shared secret key 1294 shown in
FIG. 1f. In addition, although not illustrated in FIG. 1f;
module database 1054 could store a symmetric key 127 for
each module 101, if cryptographic algorithms 141 utilize a
symmetric cipher 1415 such as AES for communication with

10

15

20

25

30

35

40

45

50

55

60

65

36

module 101. Examples of module database 105% could
include MySQL, Oracle®, SQLite, hash tables, distributed
hash tables, text files, etc. Module database 105k could
reside within RAM 105e or storage 105m. Server 105 may
also record a symmetric key 127, where the symmetric key
127 can be associated with an expiration time 133. Sym-
metric key 127 can also be recorded in a module database
105% or a sub-server 105w

Message preprocessor 105y can process incoming packets
and route them to an appropriate sub-server 105w using
information contained in an incoming message, such as a
module identity 110, a server identity 206 illustrated in FIG.
2 below, and/or a destination IP address. Message prepro-
cessor 105y can include rules for processing and routing,
such a dropping malformed incoming messages or incoming
messages without correct cryptographic data. Message pre-
processor 105y could also optionally be combined with a
server firewall 124 in order to provide firewall functionality
and security at the network layer. Message preprocessor
105y may preferably remain “silent” to incoming packets
without proper cryptographic data contained in an incoming
message, such as one example of a properly formatted
message 208 illustrated in FIG. 6a below.

Sub-server 105w can include a server private key 105¢
and cryptographic algorithms 141. A plurality of sub-servers
105w can be utilized by a server 105 in order to support
communication with a plurality of wireless modules 101.
The server private key 105¢ and module public key 111 can
be utilized by server 105 to secure communication with
module 101, including the steps depicted and described in
connection with FIG. 4 and FIG. 5a below. Cryptographic
algorithms 141 may comprise a suite of algorithms or
subroutines and can be utilized for (i) encrypting data using
public keys, (ii) decrypting data using private keys, (iii)
processing secure hash signatures using private keys, and
(iv) veritying secure hash signatures using public keys.

A first sub-server 105w can process messages and
responses with a first module 101 using a first set of security
keys and algorithms, such as using RSA-based security, and
a second sub-server 105w can process messages and
responses with a second module 101 using a second set of
security keys and algorithms, such as using ECC-based
security. Consequently, message pre-processor 105y could
route incoming messages to the appropriate sub-server 105w
depending on the encryption algorithm used in the incoming
message (which could be determined by message pre-
processor 105y by querying the module database 1054 using
a module identity 110 in the incoming message 208). Sub-
servers 105w may utilize separate server private keys 105¢,
or the sub-servers 105w can share a common private key
105¢. Sub-servers 105w may utilize separate cryptographic
algorithms 141, or the sub-servers 105x can share common
cryptographic algorithms 141. Although separate sub-serv-
ers 105w are illustrated in FIG. 1f, the sub-servers may
optionally be combined with a server 105, or omitted, with
the corresponding server private key 105¢ and cryptographic
algorithms 141 stored directly in a server 105.

Server 105 may also comprise a collection of individual
computers, where the individual computers could be either
centrally located or geographically dispersed, but the indi-
vidual computers may function in a coordinated manner
over a network to operate as a server 105. Server 105 may
be a “virtualized” server, with computing resources shared
with other processes operating on a computer.

FIG. 1g

FIG. 1g is a graphical illustration of the components in a
set of cryptographic algorithms, in accordance with exem-

US 11,258,595 B2

37

plary embodiments. As contemplated herein, communica-
tions between (i) a module 101 and a server 105, and (ii)
between application 171 and server 105 can be secured by
using cryptographic algorithms 141. The cryptographic
algorithms 141 used by module 101, server 105, application
server 171, and/or application 171/ can comprise a set of
steps, procedures, or software routines for accomplishing
steps to cipher, decipher, sign, and verify messages, includ-
ing the generation of public keys, private keys, and derived
shared keys. Cryptographic algorithms 141 can be imple-
mented in software operating on (i) module 101 in the form
of' a module program 101:, (ii) server 105 in the form of a
module controller 105x, or (iii) application server 171 in the
form of an application 171i. Example software for a cryp-
tographic algorithms 141 includes the libraries within the
openssl, libmcrypt, and/or and Crypto++ discussed in FIG.
le. Other possibilities for the location of cryptographic
algorithms within a module 101, server 105, or application
171i exist as well, including possibly module operating
system 101/, server operating system 105/, and application
server operating system 171/, respectively.

In addition, cryptographic algorithms 141 may be imple-
mented in hardware or firmware on any of module 101,
server 105, or application 171:. Note that module 101, server
105 and application 171/ could each utilize a different set of
cryptographic algorithms 141, although the sets of algo-
rithms should preferably be fully interoperable (i.e. cipher-
ing with a first symmetric ciphering algorithm 1415 and a
symmetric key 127 on module 101 could be deciphered by
a second symmetric ciphering algorithm 1415 on server 105
using the symmetric key 127, etc.). As illustrated in FIG. 1g,
cryptographic algorithms 141 may comprise an asymmetric
ciphering algorithm 1414, a symmetric ciphering algorithm
1415, a secure hash algorithm 141c, a digital signature
algorithm 1414, a key pair generation algorithm 141e, a key
derivation function 141/, and a random number generator
128.

Asymmetric ciphering algorithms 141a can comprise
algorithms utilizing public key infrastructure (PKI) tech-
niques for both (i) encrypting with a public key and (ii)
decrypting with a private key. Example algorithms within
asymmetric algorithms 141a include the RSA algorithms
153 and the Elliptic Curve Cryptography (ECC) algorithms
154, and other asymmetric algorithms could be utilized as
well. For example, either the ECC algorithms 154 or RSA
algorithms 153 can be used for encryption and decryption,
including (i) encryption element 503 discussed below, as
well as (ii) decryption element 413 discussed below. A set of
parameters 126 can include input into asymmetric ciphering
algorithms 141a, such as specifying key lengths, elliptic
curves to utilize (if ECC), modulus (if RSA) or other
parameters or settings required. As contemplated herein and
described in additional detail below, the algorithms illus-
trated in FIG. 1g can perform both ciphering and decipher-
ing, using the appropriate keys.

The use and application of RSA algorithms and cryptog-
raphy are described within IETF RFC 3447 titled “Public-
Key Cryptography Standards (PKCS) #1: RSA Cryptogra-
phy Specifications Version 2.1”, herein incorporated by
reference, among other published standards for the use of
RSA algorithms 153. The use of an RSA algorithm 153 for
encryption and decryption, including with cryptographic
algorithm and other description of encryption or decryption
algorithms, can also be processed according to the descrip-
tion of the RSA algorithm according to the Wikipedia entry
for “RSA (algorithm)” as of Sep. 9, 2013, which is incor-
porated by reference herein.

30

40

45

50

55

38

The use and application of ECC algorithms 154 for
asymmetric ciphering algorithms 141« within cryptographic
algorithms 141 are described within IETF RFC 6090 titled
“Fundamental Elliptic Curve Cryptography Algorithms”
(herein incorporated by reference), among other published
standards using ECC. ECC algorithms 154 can also utilize
elliptic curve cryptography algorithms to the Wikipedia
entry for “Elliptic curve cryptography” as of Sep. 9, 2013,
which is incorporated by reference herein. ECC algorithms
154 may utilized according to exemplary preferred embodi-
ments in order to maintain high security with smaller key
lengths, compared to RSA, thereby helping to comparably
reduce the message lengths, radio frequency spectrum uti-
lization, and processing power required by module 101.
Thus, the use of ECC algorithms 154 within various steps
requiring ciphering or digital signatures may help conserve
battery life of module 101 while maintaining the objective of
securing system 100. Note that as contemplated herein, other
algorithms besides with ECC algorithms 154 and RSA
algorithms 153 may be also be used in asymmetric algo-
rithms 141a.

Cryptographic algorithms 141 may also include a set of
symmetric ciphering algorithms 1415. Symmetric ciphering
algorithms 1415 can utilize a symmetric key 127 by one
node such as a module 101 to encrypt or cipher data, and the
encrypted data can be decrypted or deciphered by server 105
also using the symmetric key 127. Examples of symmetric
ciphers include Advanced Encryption Standard 155 (AES),
as specified in Federal Information Processing Standards
(FIPS) Publication 197, and Triple Data Encryption Stan-
dard (Triple DES), as described in NIST Special Publication
800-67 Revision 1, “Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher (Revised Janu-
ary 2012)”. Parameters 126 input into symmetric ciphering
algorithms 1415 can include symmetric key 127 length, such
as the selection of 128, 192, or 256 bits with AES 155
symmetric ciphering, and parameters 126 could also select
a symmetric ciphering algorithm in a collections of sym-
metric ciphering algorithms 1415. Other examples of sym-
metric ciphering algorithms 1415 may be utilized as well
within cryptographic algorithms 141. Also note that as
contemplated herein, the term “symmetric ciphering” con-
templates the use of a symmetric ciphering algorithm 1415
in order to encrypt or cipher data with a symmetric ciphering
algorithm 1415, and “asymmetric ciphering” contemplated
the use of an asymmetric ciphering algorithm 141a to
encrypt or cipher data with a public key, such as module
public key 111 or server public key 114.

Cryptographic algorithms 141 may also include a set of
secure hash algorithms 141¢ in order to compute and output
a secure hash value or number based on a string or file input
into the secure hash algorithms 141¢. Example secure hash
algorithms include SHA256 156 (also known as SHA-2) and
SHA-3 157. SHA256 156 is specified in the National
Institute of Standards and Technology (NIST) Federal Infor-
mation Processing Standards Publication (FIPS PUB) 180-2
titled “Secure Hash Standard”. SHA-3 157 is scheduled to
be published in FIPS PUB 180-5. Parameters 126 input into
secure hash algorithms 141¢ can include the selection of the
length of the secure hash, such as using 224, 256, or 512 bits
with either SHA-2 or SHA-3, and other possibilities exist as
well.

Cryptographic algorithms 141 may also include a set of
digital signature algorithms 1414, in order to sign and verify
messages between (i) module 101 and server 105 or (ii)
server 105 and application 171;. Digital signature algorithms
141d can also verify signatures such as comparing that (i) a

US 11,258,595 B2

39

first secure hash value in the form of a digital signature in a
certificate (not shown) using a certificate authority public
key 132 matches (ii) a second secure hash value in the
certificate (not shown). Digital signature algorithms 1414
can utilize algorithms in National Institute of Standards
(NIST) “FIPS 186-4: Digital Signature Standard”, or IETF
RFC 6979 titled “Deterministic Usage of the Digital Signa-
ture Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)”. The use of ECDSA algorithm 158
within a set of digital signature algorithms 1414 may be
preferred if keys such as module public key 111 and server
public key 114 are based on elliptic curve cryptography.
Other PKI standards or proprietary techniques for securely
verifying digital signatures may be utilized as well in digital
signature algorithms 141d. Parameters 126 input into digital
signature algorithms 1414 can include the selection of a
secure hash algorithms 141c¢ to utilize with digital signature
algorithms 1414, or the algorithm to utilize, such as ECDSA
shown or an RSA-based alternative for digital signatures is
possible as well. Parameters input into digital signature
algorithms 1414 can also include a padding scheme for use
with a digital signature algorithms 141d. Digital signature
algorithms 1414 could also include an RSA digital signature
algorithm for use with RSA-based public and private keys.

Cryptographic algorithms 141 may also include key pair
generation algorithms 141e, a key derivation function 141f,
and a random number generator 128. Key pair generation
algorithms 141e can be utilized by module 101, server 105,
or application 171/ to securely generate private and public
keys. The key pair generation algorithms 141e can also use
input from a parameters 126, such as the desired key lengths,
or an ECC curve if the public key will support ECC
algorithms 154. According to an exemplary preferred
embodiment, module 101 can derive a pair of module public
key 111 and module private key 112 using key pair genera-
tion algorithms 141e. Software tools such as openssl and
liberypt include libraries for the generation key pairs, and
these and similar libraries can be used in a key pair genera-
tion algorithm 141e.

Key derivation function 141f'can be used by module 101,
server 105, and/or application 171/ in order to determine a
common derived shared secret key 129, using at least two
respective public keys as input, and may also include the
input of a private key. A key exchange to share a common
symmetric key 127 can be performed using a key derivation
function 141/ and parameters 126. An exemplary algorithm
within a key derivation function 141f can be the Diffie-
Hellman key exchange, which is used by tools such as
secure socket layer (SSL) with RSA algorithms 153. When
using ECC algorithms 154, module 101 and server 105 can
utilize Elliptic Curve Diffie-Hellman (ECDH) algorithms
159, and a summary of ECDH is included in the Wikipedia
article titled “Elliptic Curve Diffie-Hellman” (http://en.wiki-
pedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman”
from Sep. 24, 2013, which is herein incorporated by refer-
ence. Other algorithms to derive a shared secret key 1295
using public keys and a private key may also be utilized in
a key derivation function 141f, such as the American
National Standards Institute (ANSI) standard X-9.63 160.
Parameters 126 used with key derivation function 141f'with
elliptic curve cryptography can include a common base
point G for two node using the key derivation function 141/
and public keys. The base point G in a parameters 126 can
be transmitted or sent from a module 101 to a server 105 in
a message 208, and the base point G can be sent from a
server 105 to a module 101 in a response 209, and other
possibilities exist as well. Parameters 126 can also include

5

10

15

20

25

30

35

40

45

50

55

60

65

40

other or additional information for using a key derivation
function 141fin order to derive a commonly shared sym-
metric key 127.

Parameters 126 input into key pair generation algorithms
141e can include the type of asymmetric ciphering algo-
rithms 141a used with the keys, the key length in bits, an
elliptic curve utilized for ECC, a time-to-live for a public
key that is derived, and similar settings. Additional param-
eters 126 for a public key can include a supported point
formats extension, where the supported point formats exten-
sion could comprise uncompressed, compressed prime, or
“compressed char2” formats, as specified in ANSI X-9.62.
In other words, an ECC public key can have several formats
and a set of parameters 126 can be useful to specify the
format. Although a set of parameters 126 is illustrated in
FIG. 1g as internal to cryptographic algorithms 141, param-
eters 126 could be recorded in other locations in a module
101 or a system 100. As one example, parameters 126 could
be recorded in a server 105 and downloaded by module 101
using the Internet 107. The various algorithms within cryp-
tographic algorithms 141 may utilize a random number
generator 128, which is also depicted and described in
connection with FIG. 1e above.

According to a preferred exemplary embodiment, param-
eters 126 can include values to define an elliptic curve and/or
use ECC algorithms 154. The values could be constants or
variables in a defining equation for an elliptic curve, or the
parameters could simply name an existing, defined curve
such as the standard named curve illustrated in parameters
126 in FIG. 1. Parameters 126 could include a set of ECC
parameters 137 for using elliptic curve cryptography in ECC
algorithms 154, where the ECC parameters 137 can include
the ECC parameters in section 3.3 of IETF RFC 6090,
including: (i) a prime number p that indicates the order of a
field Fp, (ii) a value “a” used in a curve equation, (iii) a value
“b” used in the curve equation, (iii) a generator “g” of the
subgroup, and (iv) an order “n” of the subgroup generated by
“g”. Further, the ECC parameters 137 could include values
used for elliptic curve cryptography as specified in IETF
RFC 5639 titled “Elliptic Curve Cryptography (ECC) Brain-
pool Standard Curves and Curve Generation”, section 3: (i)
a “p” value for the prime specifying the base field, (ii) “A”
and “B” are coefficients for an equation such as y"2=x"3+
A*x+B mod p defining the elliptic curve, (iii) “G”=(x,y) as
the base point, i.e., a point in E of prime order, (iv) “q” as
the prime order of the group generated by G, and (v) “h” as
the cofactor of G in E, i.e., #E(GF(p))/q. Other possibilities
exist as well for an ECC parameters 137 that can be used in
a cryptographic algorithms. Parameters 126 could also
include an ECC standard curve 138, which could comprise
a name and/or values for a standardized curve, such as the
list of named curves included in section 5.1.1 of IETF RFC
4492 titled “Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS).”

As contemplated herein, a set of cryptographic algorithms
141 may operate using either strings or numbers, and
parameters 126 could include either strings or numbers as
well. The processing of cryptographic algorithms within a
module 101 can take place within a CPU 1015, or module
101 could also process cryptographic algorithms in a cryp-
tographic processing unit (not shown) connected to the
system bus 101d. According to an exemplary embodiment,
a module 101 or a server 105 could include a cryptographic
processing unit (not shown) separate from the CPU 1015 in
order to speed cryptographic computations and/or reduce
energy required for supporting the use of cryptography
through a system 100. Alternatively, cryptographic algo-

US 11,258,595 B2

41

rithms can be implemented entirely in software within a
module 101 and/or server 105.

FIG. 1k

FIG. 1/ is an illustration of a certificate that includes a
PKI public key, where the key comprises an elliptic curve
cryptography key, in accordance with exemplary embodi-
ments. Public and private keys in system 100 can utilize PKI
techniques other than RSA, such as the elliptic curve cryp-
tography (ECC) public key 111 illustrated in FIG. 1/4. One
benefit of using ECC is that an equivalent level of security
can be obtained for a much smaller key length. Also, energy
may be conserved using ECC algorithms 154 compared to
RSA algorithms 153. An analysis of the energy conserved
for ciphering, deciphering, signing, and verifying messages
using ECC versus RSA is included in the paper titled
“Energy Analysis of Public-Key Cryptography on Small
Wireless Devices” by Wander et al (herein incorporated by
reference). Smaller key lengths save bandwidth, memory,
processing resources, and power, which are all valuable for
a module 101 to conserve a battery 101% and usage of
radio-frequency spectrum. For example, an ECC key length
of 283 bits provides security similar to an RSA key length
of approximately 2048 bits. Module public key 111 can
comprise an ECC key in an X.509 certificate, as illustrated
in FIG. 1%. Another benefit of using ECC algorithms 154 is
that many different defining equations for elliptic curves
could be utilized, and the defining equations could also be
kept confidential, such that a defining equation for an elliptic
curve used in ECC algorithms may optionally be omitted
from a certificate 122. In this case, if a public key such as
module public key 111 is recorded in a certificate 122, a
name or identifying value for the elliptic curve used with a
public key could be recorded in a certificate 122, but the
underlying defining curve for an elliptic curve could remain
confidential. The values to determine an elliptic curve defin-
ing equation could be stored in a parameters 126, and the
defining equation could also optionally be disclosed.

Certificate 122 could include a signature 123, where
signature 123 can be signed using ECC signature tech-
niques, such as the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) 158 with a secure hash such as SHA256
156. In order to generate signature 123, the private key
associated with either CA 118 or module provider 109 may
also be an ECC-based private key. Note that the public key
111 in a certificate 122 could use a different asymmetric
ciphering algorithm 141« than the algorithm used for sign-
ing, such that the public key 111 can be an ECC key, while
the signature 123 could be generated with RSA algorithm
153 and/or key. Certificate 122 may also include parameters
126, where parameters 126 can specify an elliptic curve
utilized with the module public key 111. Parameters 126
could also include the start and end times for the validity of
either public key 111 or certificate 122. Other parameters
126 can be utilized in a certificate 122 as well, and a
parameters 126 may specify values that are not included or
external to a certificate 122.

Certificate 122 illustrated in FIG. 1% also illustrates an
exemplary embodiment of the present invention. Over the
lifetime of a module 101, which could be a decade or longer,
multiple module public keys 111 may be utilized. The
potential use of multiple different module public keys 111
include (i) the expiration of a certificate 122 (including
expiration of a public key associated with a certificate
authority used in signature 123), (ii) a need to change an
elliptic curve specified in a parameters 126, (iii) adding a
new public/private key pair for connection with a different
wireless network 102, (iv) as increasing a key length utilized

10

15

20

25

30

35

40

45

50

55

60

65

42

in a public/private key pair, (v) the transfer of ownership or
control of module 101, and/or (vi) module 101 connecting to
a new server that utilizes a different asymmetric ciphering
algorithm (i.e. RSA instead of ECC). Other possibilities
exist as well for reasons a module to derive a new module
public key 111. Note that the multiple module public keys
111 may also be utilized concurrently, such that (i) a first
module public key 111 in a first certificate 122 can be
utilized with a first server 105, and (ii) a second module
public key 111 (possibly derived using a different set of
parameters 126 including using a different elliptic curve) can
be utilized with a second server 105 and/or wireless network
102.

In either case of (i) module 101 using multiple module
public keys 111 concurrently, or (ii) module 101 using
different module public keys 111 in sequence, a certificate
122 can preferably include a module public key identity
111a to specify the module public key 111 utilized in a
certificate 122. As illustrated in FIG. 1a, the module public
key identity 111a could be included in the “Common Name”
(CN) field, and the module identity 110 can be included in
the “Organizational Unit” (OU) field. Alternatively, the
module public key identity 111a and module identity 110
can be appended together and used in the CN field. In this
manner and according to preferred exemplary embodiments,
a module public key identity 111a is utilized with both a
module identity 110 and a module public key 111 within a
certificate 122. Also, as noted previously herein, the use of
a certificate 122 may optionally be omitted, such that
module 101 and server 105 share public keys without using
certificates 122. The module identity 110, or a value asso-
ciated with the module identity 110 can also be included in
certificate 122, such as the “Common Name” (CN) field of
a X.509 certificate 122, as illustrated in FIG. 14.

Note that the use of a certificate 122 is not required for the
format of a public or shared key, and the public keys could
optionally omit a signature from a certificate authority 118.
In this case, the public keys such as module public key 111
and/or server public key 114 could be recorded in the format
of a string, without the additional fields illustrated in FIG.
14. Server public key 114 may also be recorded in a
certificate 122 with a signature 123 from a certificate author-
ity 118. Other possibilities exist as well without departing
from the scope of the present invention.

FIG. 1/

FIG. 1i is a graphical illustration of an exemplary system
that includes a user, an application, a set of servers, and a set
of modules, in accordance with exemplary embodiments.
System 199 illustrated in FIG. 1i can include a user 183, an
application 171/, a set of servers 105, and a set of modules
101, which can communicate as illustrated using the Internet
107. Each of a server 105 A and server 105 B and additional
servers can communicate with a plurality of modules. An
application 171/ can communicate with a plurality of servers
105. Although the servers 105 an application 1717 in system
100 in FIG. 1/ are illustrated as being separate, application
171 and server 105 may optionally be combined into a
single node, such that the application 171/ and server 105
operate as separate processes or programs on the same
computer, or on a computer operating in a distributed
environment such as a cloud configuration. In addition, even
though a single application 171/ and a single user 183 are
illustrated in FIG. 1/, a system 199 could include multiple
applications 171; and multiple users 183.

User 183 can comprise an individual, business manager,
network engineer, systems administrator, other employee
with functional responsibilities for a system 199 (or com-

US 11,258,595 B2

43

ponents within a system 199 or system 100) accessing
application 171 using a computer with a user interface such
as a web browser 183a. Application 171 could also send an
email or text message to user 183 if an alarm condition is
detected in system 199, such as if a sensor 101/ measure-
ment exceeds a prescribed threshold value. The web browser
183a could use a connection 184 to access a web portal 171
operating on application 171i. Connection 184 could include
hypertext markup language (HTML) messages, and could be
through a secure connection such as TLS or [Psec, although
other possibilities exist as well to those of ordinary skill in
the art. Any module 101, such as Module 101 A, could use
the Internet 107 and establish a primary connection 181 with
server 105 A, and also module 101 A could establish a
backup connection 182 with server 105 B if the primary
connection 181 is not available. Alternatively, any module
101, such as module 101 A, could communicate with more
than one server 105 concurrently or in sequence, such that
module 101 A communicates with both server 105 A and
server 105 B. According to exemplary embodiments, during
an active state between periods of sleep or being dormant,
module 101 may communicate with more than one server
105, such as a first server 105 A and a second server 105 B.
Other possibilities for a plurality of modules 101 to com-
municate with a plurality of servers 105 exist without
departing from the scope of the present invention.

FIG. 2

FIG. 2 is a graphical illustration of an exemplary system,
where a module sends a message to a server, and where the
server responds to the message, in accordance with exem-
plary embodiments. Module 101 as depicted and described
in FIG. 2 can operate as a wireless module 101, although a
wired connection to the Internet 107 could alternatively be
utilized. System 100 as illustrated in FIG. 2 includes RF
signals 201, module IP address 202, port number 203,
module IP:port 204, server port number 205, server 1D 206,
server IP:port number 207, message 208, response 209,
wireless network firewall address 210, and firewall port
binding packet 211. Many of the elements illustrated within
system 100 in FIG. 2 are also depicted and described in
connection with FIG. 2 of U.S. patent application Ser. No.
14/039,401 (the contents of which are hereby incorporated
by reference in their entirety). As contemplated herein, a
wireless module 101 can comprise a module 101, or in other
words a wireless module 101 may be a module 101 that is
wireless. Functions described as being performed by a
wireless module 101 may also be performed by a wired
module 101 (where connection to a wired network would be
used instead of connection to a wireless network 102). Also
as contemplated herein and illustrated in FIG. 2, the wording
“module 101 sends a message 208 can also be considered
equivalent to “server 105 receives a message 208”. Like-
wise, the wording “server 105 sends a response 209” can be
considered equivalent to “module 101 receives a response
209”.

A wireless module 101 can wake from a dormant state in
order perform (i) remote and automated monitoring and (ii)
control functions such as collecting a sensor 101/ measure-
ment, communicating with server 105, and controlling an
actuator 101y. If module 101 is connected to land-line power
or a long-lasting external power source such solar power,
then module 101 may remain in an active state and bypass
a dormant state, although transmitting RF signals 201 may
preferably only be utilized when communicating with wire-
less network 102 or sending data to and receiving data from
server 105. Upon waking from the dormant state and starting
communication with a server 105, a wireless module 101

10

15

20

25

30

35

40

45

50

55

60

65

44

can begin transmitting RF signals 201 to base station 103.
The wireless module can acquire an IP address 202 from the
wireless network 102. IP address 202 is illustrated as being
an IPv6 address, but IP address 202 could also be an IPv4
address. IP address 202 could also be a subset of IPv6
addresses such as the last 32 or 64 bits in a full 128 bit IPv6
address, and wireless network 102 could append the begin-
ning 96 or 64 bits, respectively, of the IPv6 address when
wireless module 101 sends packets to the Internet 107.

In order to transmit or send data from wireless module
101 to server 105, a wireless module 101 can use module
program 101 to collect data from a sensor 101fin order to
update server 105. Module program 101; can request a port
number 203 from operating system 101/ in order to have a
source IP:port for sending data using IP protocols such as
TCP and UDP. The terminology “IP:port” as described
herein refers to combining an IP address with a port number.
Wireless module IP address 202 and port number 203 can be
combined to form IP:port number 204. IP:port number 204
can be utilized as a source IP:port number for packets
transmitted from wireless module 101, as well as a destina-
tion IP:port number for packets received by wireless module
101, when communicating with server 105.

In order to utilize Internet 107, module 101 may also need
a destination IP address and port number in order to send
packets to server 105. Before sending data to server 105,
wireless module 101 preferably retrieves server IP address
106 and server port number 205 from RAM 101e. Server [P
address 106 could be recorded in RAM 101e via (i) a DNS
query using server name 206 or (ii) queries to M2M service
provider 108 or wireless network 102. CPU 1015 may copy
server [P address 106 and server port number 205 from
nonvolatile memory into volatile memory such as a register
for processing to send a packet to server 105. Server name
206 could also be a server identity. (A) Server IP address 106
or server name 206 and (B) server port number 205 could be
recorded in a nonvolatile memory such as flash memory
101w so that wireless module 101 can store the proper
destination of packets transmitted or sent even when wire-
less module is dormant or shutdown, which avoids the
processing and bandwidth requirements of obtaining server
IP address 106 and server port number 205 every time the
wireless module 101 wakes from the dormant or shutdown
state. Server IP address 106 and server port number 205 can
be combined into a server IP:port number 207.

After collecting data from a sensor, module 101 can send
a packet from IP:port 204 to IP:port 207, and the packet
could comprise a message 208 that may include the data
from a sensor 101f. Note that message 208 does not need to
include sensor data, and message could potentially be a
periodic registration message or keep-alive message. As
contemplated herein, the term “sensor measurement” can
refer to data associated with or derived from a sensor 101f.
A sensor measurement, can comprise a string containing
data regarding a parameter of a monitored unit 119 and
collected by a sensor 101f. The sensor measurement as sent
in a message 208 can also represent a string (alphanumeric,
binary, text, hexadecimal, etc.), where the string comprises
a transformation or processing of sensor data collected by a
CPU 1015, such including formatting, compressing, or
encrypting, encoding, etc. of sensor data.

In order to minimize bandwidth and time required for RF
signals 201 to be active, module 101 can send the message
208 as a single UDP datagram in accordance with a preferred
exemplary embodiment. The single UDP datagram in this
embodiment can preferably be the only packet sent from
module 101 to server 105 or M2M service provider 108

US 11,258,595 B2

45

during a wake state for the module 101 when the radio 101z
is active and transmitting, such as in a radio resource control
(RRC) connected state. In other words, according to this
preferred exemplary embodiment, the message 208 sent by
module 101 can preferably be the only message or packet
sent by the wireless module to the server 105 between
dormant periods of module 101. By sending message 208 as
a single UDP datagram, both a battery 101% is conserved and
utilization of valuable RF spectrum is reduced. Message 208
could also comprise a series of associated UDP messages.

Also, as contemplated herein, message 208 could com-
prise a related series of packets, so that message 208 could
comprise multiple datagrams. As one example, if TCP is
utilized as the transport protocol for message 208, then the
series of TCP messages including the initial handshake, one
or more packets of payload data, and the closing of the
connection could together comprise message 208. As
another example, if UDP or UDP Lite is utilized for the
transport protocol, and payload data exceeds a maximum
transmission unit (MTU) size for the UDP packet and the
payload data is spread across multiple packets, then the
multiple packets would comprise a message 208. Further, a
related series of packets comprising a message 208 could be
identified by using the same source port number for module
101. In addition, a related series of packets comprising a first
message 208 could be identified as a series of packets sent
by module 101 before receiving a response 209 from a
server, and packets sent after receiving a response 209 could
comprise a second message 208. Other possibilities for a
message 208 to comprise multiple packets or datagrams may
exist without departing from the scope of the present inven-
tion.

The UDP datagram for message 208 could also be for-
matted according to the UDP Lite protocol, as specified in
IETF RFC 3828, which is also incorporated by reference
herein. The term “UDP Lite” described in the present
invention may also refer to any connectionless protocol
widely supported on Internet 107 where checksums may be
partially disabled, thereby supporting the transfer of bit
errors within a datagram. The advantages of UDP over TCP
is that UDP can be quickly sent, while TCP requires a
“handshake” with the server which requires more time and
bandwidth, which would utilize more energy from battery
101%. Weak or “noisy” RF signals between wireless module
101 and wireless network 102 may degrade or slow TCP
transmissions, resulting in unwanted and unnecessary
retransmission of individual TCP messages in the standard
TCP “handshake” and connection close procedures. Also,
the sensor data from a sensor 101/ may be relatively small,
such as a dozens of bytes in an exemplary embodiment, and
UDP can provide significantly less signaling overhead than
TCP, especially with small messages for the duration of the
session. However, some M2M applications may prefer or
require TCP and in this case message 208 can be formatted
according to TCP. Thus, according to an exemplary embodi-
ment, both message 208 and response 209 can be TCP
messages. [n this exemplary embodiment, message 208 and
response 209 could each comprise a series of TCP messages
that can include a TCP SYN, SYN ACK, ACK, ACK w/data,
FIN ACK, etc.

According to an exemplary embodiment, module 101
sends the same sensor data in multiple copies of the same
UDP packet. Each of the multiple copies of the same UDP
packet can also optionally be formatted according to the
UDRP Lite protocol. As one example, wireless module sends
three identical copies of the UDP or UDP Lite packet that
include the same sensor data. The benefit of sending three

10

15

20

25

30

35

40

45

50

55

60

65

46

copies of UDP Lite include (i) the RF signals 201 received
by the base station 103 could include bit errors, which could
result in a regular (RFC 768) UDP packet being dropped,
since a bit error could result in a UDP checksum mismatch,
as received and processed by wireless network 102. Note
that the use of checksums is mandatory in IPv6, and thus
checksums cannot be fully disabled in IPv6. With UDP Lite
packets transmitted by wireless module 101, where the
mandatory checksum for IPv6 can cover the packet header,
wireless network 102 can forward all packets received,
potentially including bit errors, to server 105 over the
Internet 107.

Server 105 can receive the multiple copies of the UDP or
UDRP Lite packets, which could include bit errors received,
and server 105 could compare or combine the multiple
copies or each individual UDP Lite packet in order to
remove bit errors. Note that UDP Lite is not required, and
wireless module 101 could send the message 208 using a
single UDP packet, or multiple copies of a regular UDP (i.e.
non UDP Lite) packet. However, using UDP Lite with
multiple packets sent can provide benefits such as if the
sensor data is encrypted in the packet, then a single bit error
would normally break the receiver’s ability to decipher the
data using a cryptographic key, unless the encrypted data
was channel coded and the channel coding could recover
from the bit error in order to present an error-free input of
the encrypted data to a deciphering algorithm.

Further, between periods of sleep when a wireless module
101 becomes active and transmits RF signals 201, module
101, which may also comprise a wireless module 101, could
send the sensor data in a single UDP Lite packet where the
packet includes channel coding, which can also be referred
to forward error correction. Forward error correction could
also be implemented by sending multiple copies of the same
UDBP packet. Note that since large segments of message 208
could include encrypted or hashed data, those segments may
not be appropriate for compression since the data is often
similar to random strings which are not readily compressed.
Channel coding techniques for the data in message 208
could include block codes and convolution codes. Block
codes could include Reed-Solomon, Golay, BCH, Ham-
ming, and turbo codes. According to a preferred exemplary
embodiment, data within message 208 is sent as a UDP Lite
packet using a turbo code to correct multiple bit errors
within a packet or datagram sent by module 101 and
received by server 105.

In system 100 illustrated in FIG. 2, server 105 can use
IP:port 207 to receive the packet from wireless module 101
and sent from source IP:port 204 to IP:port 207, and the
packet could comprise a message 208 that may include the
data from a sensor associated with module 101 or monitored
unit 119. As contemplated herein, a message 208 illustrated
in FIG. 2 does not need to include sensor data and other data
could be transmitted or sent, such as a server instruction 414
(described in FIG. 4 below), or other data pertaining to
module 101 or a monitored unit 119. Note that server 105
can use [P:port 207 to receive a plurality of messages 208
from a plurality of wireless modules 101. Server 105 pref-
erably listens for UDP packets on IP:port 207 or monitors
IP:port 207, although TCP packets could be supported as
well. If server 105 receives multiple copies of the same UDP
packet from module 101, server 105 preferably includes a
timer. The timer can start when the first packet in the series
of packets comprising a message 208 is received, and
packets received outside the expiration of the timer would be
discarded. In this manner, server 105 would be protected
from replay attacks, even though module 101 may send

US 11,258,595 B2

47

multiple copies of the same packet in order to implement
forward error correction. The timer used by a server 105 to
drop duplicate packets received outside the timer window
could be a relatively short value such as less than 5 seconds.

After receiving the message 208 and processing the
message according to the techniques described below such
as in FIG. 4, server 105 can send a response 209. Since
module 101 may belong to a wireless network 102 which
includes a firewall 104, the source IP:port of the message
208 received by server 105 could be different from the
source [P:port 204 utilized by wireless module 101. The
source [P:port in message 208 could be changed if firewall
104 performs network address translation (NAT), as one
example. Server 105 may not readily know if a NAT
translation has been performed on the message 208. Alter-
natively, firewall 104 may not perform NAT, but could still
block data from the Internet 107 which does not properly
match the firewall rules. As one example, firewall 104 could
be a symmetric firewall (but without NAT functionality),
where only packets from IP:port 207 to IP:port 204 are
allowed to pass the firewall after message 208 has been sent
by module 101.

In either case, where firewall 104 may or may not perform
NAT routing, server 105 preferably sends the response 209
from the server IP:port 207 to the source IP:port it receives
in message 208. According to a preferred exemplary
embodiment, response 209 is a UDP packet sent from server
105 with (i) a source IP:port 207 and (ii) a destination
IP:port equal to the source IP:port received in message 208,
as illustrated in packet 2094. The example use of source and
destination IP:ports in message 208 and response 209 are
also illustrated in FIG. 6a below. In this manner, the UDP
packet can traverse a firewall 104, if firewall 104 is present.
If firewall 104 is present and performs NAT routing, then
firewall 104 can receive the response 209 and change the
destination IP address and port within response 209 to equal
IP:port 204.

According to exemplary preferred embodiments, module
101 may also obtain power from a land-line source, such as
a traditional 120 volt wall socket, or possibly power over
Ethernet, and other non-transient power sources could be
utilized as well. In this case, module 101 may remain
persistently connected to the Internet through either a wire-
less network 102 or a wired connection such as Ethernet. In
other words, module 101 may omit entering periods of sleep
or dormancy where inbound packets from the Internet would
not be received due to the sleep state of module 101.
Consequently in an exemplary embodiment, module 101
which does not sleep for periods longer than a minute may
preferably periodically send a firewall port binding packet
211 from IP:port 204 to IP:port 207 in order to keep ports
and addresses within a firewall 104 and/or firewall 124 open
to communications between module 101 and server 105.
Firewall port binding packet 211 can comprise a packet that
is sent periodically using a timer interval that is shorter than
the port-binding timeout period 117 on a firewall 104 and
firewall 124.

Continuing with this exemplary embodiment where mod-
ule 101 does not sleep for periods longer than approximately
one minute, if UDP is utilized for message 208 and response
209, then a small UDP packet comprising firewall port
binding packet 211 can be sent periodically such as every 45
seconds. If TCP is utilized for message 208 and response
209, then a small TCP packet comprising firewall port
binding packet 211 can be sent periodically such as every 4
minutes. Other possibilities for the timing of sending fire-
wall port binding packet 211 are possible as well. By

5

10

15

20

25

30

35

40

45

50

55

60

65

48

sending firewall port binding packet 211 periodically, server
105 (i) can send module 101 a response 209, which could
include a module instruction 502 as explained in FIG. 5aq, at
(i1) time intervals between message 208 and response 209
that are longer than the firewall port binding timeout values
117 of firewall 104 and/or firewall 124. Without firewall port
binding packet 211, if (A) a response 209 sent from server
105 at an exemplary 180 seconds after receiving message
208, such as after a firewall port binding timeout value 117
of firewall 104 of an exemplary 60 seconds, then (B)
response 209 would be dropped by firewall 104 and the
response 209 would not be received by module 101.

FIG. 3

FIG. 3 is a flow chart illustrating exemplary steps for a
server to receive a message from a module, in accordance
with exemplary embodiments. As illustrated in FIG. 3, FIG.
3 can include steps used by a module controller 105x in a
server 105 as illustrated in FIG. 1c. The processes and
operations, including steps for module controller 105x,
described below with respect to all of the logic flow dia-
grams may include the manipulation of signals by a proces-
sor and the maintenance of these signals within data struc-
tures resident in one or more memory storage devices. For
the purposes of this discussion, a process can be generally
conceived to be a sequence of computer-executed steps
leading to a desired result.

These steps usually require physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical, magnetic, or optical
signals capable of being stored, transferred, combined, com-
pared, or otherwise manipulated. It is convention for those
skilled in the art to refer to representations of these signals
as bits, bytes, words, information, elements, symbols, char-
acters, numbers, points, data, entries, objects, images, files,
or the like. It should be kept in mind, however, that these and
similar terms are associated with appropriate physical quan-
tities for computer operations, and that these terms are
merely conventional labels applied to physical quantities
that exist within and during operation of the computer.

It should also be understood that manipulations within the
computer are often referred to in terms such as listing,
creating, adding, calculating, comparing, moving, receiving,
determining, configuring, identifying, populating, loading,
performing, executing, storing etc. that are often associated
with manual operations performed by a human operator. The
operations described herein can be machine operations per-
formed in conjunction with various input provided by a
human operator or user that interacts with the computer.

In addition, it should be understood that the programs,
processes, methods, etc. described herein are not related or
limited to any particular computer or apparatus. Rather,
various types of general purpose machines may be used with
the following process in accordance with the teachings
described herein.

The present invention may comprise a computer program
or hardware or a combination thereof which embodies the
functions described herein and illustrated in the appended
flow charts. However, it should be apparent that there could
be many different ways of implementing the invention in
computer programming or hardware design, and the inven-
tion should not be construed as limited to any one set of
computer program instructions.

Further, a skilled programmer would be able to write such
a computer program or identify the appropriate hardware
circuits to implement the disclosed invention without diffi-
culty based on the flow charts and associated description in
the application text, for example. Therefore, disclosure of a

US 11,258,595 B2

49

particular set of program code instructions or detailed hard-
ware devices is not considered necessary for an adequate
understanding of how to make and use the invention. The
inventive functionality of the claimed computer imple-
mented processes will be explained in more detail in the
following description in conjunction with the remaining
Figures illustrating other process flows.

Further, certain steps in the processes or process flow
described in all of the logic flow diagrams below must
naturally precede others for the present invention to function
as described. However, the present invention is not limited
to the order of the steps described if such order or sequence
does not alter the functionality of the present invention. That
is, it is recognized that some steps may be performed before,
after, or in parallel other steps without departing from the
scope and spirit of the present invention.

The processes, operations, and steps performed by the
hardware and software described in this document usually
include the manipulation of signals by a CPU or remote
server and the maintenance of these signals within data
structures resident in one or more of the local or remote
memory storage devices. Such data structures impose a
physical organization upon the collection of data stored
within a memory storage device and represent specific
electrical or magnetic elements. These symbolic represen-
tations are the means used by those skilled in the art of
computer programming and computer construction to most
effectively convey teachings and discoveries to others
skilled in the art.

Atstep 311, the server 105 can record a module public key
111, or a plurality of module keys 111 in a module database
105k. The module public key 111 could be received in a
message 208 according to steps 516 and 517, including
authenticating the message 208, as depicted and described in
connection with FIG. 56 below. Module public key 111
could also be recorded at step 311 before module 101
connects to the Internet 107 the very first time, and in this
case module public key 111 could be recorded in server 105
by M2M service provider 108 or module provider 109. At
step 312, the server 105 can open a TCP/UDP socket
associated with an IP:port number 207 and listen or monitor
for incoming message from modules. At step 313, server 105
can receive a message 208 sent by module 101, using the
IP:port number 207. Although not illustrated in FIG. 3, upon
the first communication from module 101 by server 105
where the communication could include step 313, according
to an exemplary embodiment, module 101 can also send a
certificate 122 to server 105, where certificate 122 would
normally include module public key 111 and module identity
110. Server 105 could utilize a certificate 122 to verify a
module identity 110, as described in FIG. 4 below at step
412.

An exemplary format of message 208 is depicted and
described in connection with FIG. 6a below, and other
possibilities for a message 208 exist as well. Although not
illustrated in FIG. 3, after receiving message 208, server 105
may also process any channel coding present in message 208
in order to eliminate any bit errors received. The channel
coding could be included in a message 208 that utilizes the
UDP Lite protocol. At step 314, server 105 can decrypt a
message 208 using a cryptographic algorithm 141 and one of
(1) server private key 105¢, or (ii) a symmetric key 127.
Additional details regarding step 314 are depicted and
described in connection with FIG. 4 below. At step 315,
server 105 can verify that message 208 was sent by module
101 using a module identity 110, module public key 111, and
a cryptographic algorithm 141. Additional details regarding

10

15

20

25

30

35

40

45

50

55

60

65

50

step 315 are depicted and described in connection with FIG.
4 below. Note that step 315 can take place before step 314
if the module identity 110 and/or a digital signature is not
encrypted within message 208 (i.e. a sensor measurement in
message 208 could be encrypted but a module identity 110
or digital signature may not be encrypted). Step 315 may
optionally be omitted, if a symmetric key 127 is used to
cipher data within message 208, such that a module digital
signature from module 101 was previously verified when the
symmetric key 127 was implemented.

After verifying the identity of module 101 in step 315, at
step 316 server 105 can record sensor data or sensor mea-
surements within message 208 in a module database 105%,
if message 208 has a sensor measurement. Note that mes-
sage 208 may not have a sensor measurement, and in this
case step 316 can be skipped, or message 208 may also
include other data besides a sensor measurement. Sensor
data recorded in module database 1054 can be made avail-
able for subsequent processing by server 105 or other
servers or applications associated with an M2M service
provider 108 in order to manage the function and operation
of module 101 or monitored unit 119. As illustrated in FIG.
7 through FIG. 9, received sensor data could also be for-
warded by server 105 to an application server 171. Although
not illustrated in FIG. 3, in an exemplary embodiment at step
316 server 105 could alternatively forward the sensor data to
application 171i instead of recording the data in module
database 105%.

After receiving message 208, server 105 can process a
response 209 at step 317a. Step 317a can comprise encrypt-
ing an instruction, where the instruction could include an
acknowledgement of the message received, a command or
setting for an actuator, and/or another control message for
module 101. Server 105 can utilize a module public key 111
and cryptographic algorithms 141 in order to encrypt the
instruction. Step 317b can comprise creating a digital sig-
nature for the response 209 using the server private key 105¢
and cryptographic algorithms 141.

Additional details regarding steps 317a and 3175 are
depicted and described in connection with FIG. 5a below.
Note that step 317a and/or step 3175 may optionally be
omitted, such that response 209 is transmitted without
encryption and/or a signature, and security could be
obtained through other means, such as through firewalls 104
and 124, or using a secured network link between module
101 and server 105, such as setting up a virtual private
network (VPN) or SSH tunnel between the two endpoints.
These alternative means for security at the network layer
would likely require additional bandwidth and power con-
sumption for a module 101 and thus may not be adequately
efficient. As one example, if module 101 is a wireless
module that sleeps for relatively long periods such as every
hour (and obtains a new IP address for every wake period),
setting up a new VPN between module 101 and server 105
in order to receive send a message from module 101 may not
be practical due to the extra drain on a battery 1014 for
re-establishing the VPN. Or, only portions of steps 317a and
3175 could be used, such that a response 209 (or a message
208 received in step 313) is not encrypted but a digital
signature is used in the response 209 (or message 208).

After completing steps 317a and 317b, at step 209aq,
server 105 can send response 209 from (a) the source port
utilized to receive message 208 to (b) a destination IP:port.
The destination IP:port can comprise the source IP:port in
message 208 as received by server 105, and the destination
IP:port can represent the external interface of a firewall 104.
In other words, server 105 may send response 209 from

US 11,258,595 B2

51

server [P:port 207 to the source IP:port received in message
208, which could represent the source IP:port on a wireless
network firewall 104, wherein the source IP:port on the
wireless network firewall 104 contains the firewall IP
address 210. The wireless network firewall 104 could for-
ward the response 209 to module IP:port 204. As contem-
plated herein, server 105 can send response 209 as soon as
practical after receiving message 208, and in any case
response 209 should be sent before the expiration of a
firewall port binding timeout value 117 associated with
firewall 104. According to a preferred exemplary embodi-
ment, response 209 is sent by server 105 within 1 second of
receiving message 208. After completing step 209a as
illustrated in FIG. 3b, server 105 can return to step 312 and
listen for or monitor for additional incoming messages 208
from modules 101.

FIG. 4

FIG. 4 is a flow chart illustrating exemplary steps for a
server to process a message, including verifying a module’s
identity and decrypting data, in accordance with exemplary
embodiments. The steps illustrated in FIG. 4 may comprise
step 315 and step 316 illustrated in FIG. 3 above. Server 105
can receive message 208 using IP:port 207, as illustrated in
FIG. 2. Message 208 can be formatted according to the UDP
protocol or UDP Lite protocol, although other possibilities
exist as well without departing from the scope of the present
invention

At step 407, server 105 can process the packet using the
appropriate transport layer protocol, such as UDP. In this
step 407, the body of the packet comprising message 208
can be extracted, and a checksum, if any, can be calculated
to verify the integrity. Note that if the UDP Lite protocol is
utilized, the checksum may optionally only apply to the
packet header. At step 408, server 105 can remove channel
coding, if present in message 208. Channel coding tech-
niques utilized in step 408 could include block codes and
convolution codes, and can use the same channel coding
algorithms used in channel coding algorithms implemented
by module 101, depicted and described in connection with
FIG. 5a below. By processing channel coding in step 408,
server 105 can correct potential bit errors received in mes-
sage 208, although channel coding 408 may be optionally
omitted. As noted above, the use of channel coding 408 can
be preferred in an embodiment, since any bit errors received
within module encrypted data 403 in message 208 could
break (i) a cryptographic algorithms 141 used by server 105
at subsequent steps 413, and/or (ii) the verification of
module digital signature 405 at step 410 below.

At step 409, the server 105 can read and record the
module identity 110, if module 110 is included in message
208 as external to module encrypted data 403 as illustrated
in an exemplary message 208 in FIG. 6a below. Although
not illustrated in FIG. 4, server 105 can select a module
public key 111 for module 101 by querying a module
database 1054 with module identity 110. Module identity
110 could comprise a string or session identifier, whereby
server 105 could derive or track a module identity 110 from
one message 208 to the next message 208 using the string or
session identifier. By including module identity 110 in a
message 208, but external to module encrypted data 403
such as illustrated in FIG. 6a below, a server 105 can utilize
module identity 110 in order to select a server private key
105¢ or symmetric key 127 for decrypting module encrypted
data 403. According to an exemplary embodiment, a plu-
rality of server private keys 105¢ could be utilized, where a
first private key 105c¢ is used with a first set of modules 101
and a second private key 105¢ is used with a second set of

20

30

40

45

55

52

modules 101. The first and second private keys 105¢ could
use or be associated with different sets of parameters 126.
By reading the module identity 110 outside of module
encrypted data 403, the module identity 110 can be read
before decryption, in order to identify which of the first or
second set server private keys 105¢ that a module 101
sending message 208 is associated with, and thus server 105
can subsequently select the first or second set of server
private keys 105¢ to use when decrypting module encrypted
data 403.

Alternatively according to an exemplary embodiment, if
server 105 operates in a distributed environment (such as
comprising multiple sub-servers 105w as illustrated in FIG.
1f), an unencrypted module identity 110, including a possi-
bly a session identifier for module identity 110 within a
message 208, can be utilized by a message preprocessor
105y to select the appropriate sub-server 105w to process the
message 208. Server 105 using message preprocessor 105y
could forward the message 208 to the correct sub-server
105w. At step 410, server 105 can validate and verify the
module identity 110 using the module digital signature 405
inserted by module 101 in message 208. As described in
FIG. 4a above, module digital signature 405 can comprise a
secure hash signature or tag, where module 101 generated
the hash signature using the module private key 112 and
digital signature algorithms 141d. As one example, server
105 can utilize the module public key 111 recorded in
memory 105¢ to securely validate the module digital signa-
ture 405 receive in a message 208.

The module digital signature 405 can be verified accord-
ing to public key infrastructure (PKI) standards such as the
National Institute of Standards (NIST) “FIPS 186-4: Digital
Signature Standard”, or IETF RFC 6979 titled “Determin-
istic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA)”.
Other PKI standards or proprietary techniques for securely
verifying a module digital signature 405 may be utilized as
well. If message 208 comprises an initial communication
from module 101, at step 412 server 105 can verify that
module public key 111 is associated with module identity
110 using a module certificate 122, where certificate 122
includes a signature 123 from a certificate authority 118, as
illustrated in FIG. 1k. Server 105 could receive certificate
122 before module 101 sends message 208, or server 105
could query module 101 or another server for certificate 122
after receiving message 208. Server 105 could use digital
signature algorithms 1414 to compare a secure hash calcu-
lated using (i) a first certificate 122 and/or public key from
module 101 and (ii) a second certificate and/or public key
from certificate authority 118 or another server, in order to
confirm that module public key 111 is associated with
module identity 110, where module identity 110 was read
from message 208 in step 409. The secure hash could also
be calculated using module public key 111 and a public key
from certificate authority 118, and other possibilities using
PKI exist as well for server 105 to confirm module public
key 111 is associated with module identity 110 at step 412.

Steps 409 and 410 are not required to utilize the efficient
techniques described herein, and may optionally be omitted.
As one example, security could be maintained at the network
layer through the use of wireless network firewall 104 and
server network firewall 124, such that only an inbound
message 208 to server 105 could be received by server 105
after security methods are applied at the network layer or
application layer. Note that if (A) module encrypted data 403
includes module identity 110 and/or module digital signa-
ture 405, then (B) steps 409 and/or 410 may also take place

US 11,258,595 B2

53

after step 413, where server 105 (i) first decrypts module
encrypted data 403 and can then (ii) verify module identity
110 by performing steps 409 and 410 after step 413. If
module encrypted data 403 utilizes a symmetric cipher
14154, then a module identity 110 can preferably be external
to module encrypted data 403 so that server 105 can select
the appropriate symmetric key 127 used by module 101 in
order to decipher module encrypted data 403 (since a
plurality of modules 101 may communicate with server 105
concurrently).

After verifying module digital signature 405 in step 410,
server 105 can record an authenticated module encrypted
data 403 from module 101 received in message 208. At step
413, server 105 can decrypt module encrypted data 403
using cryptographic algorithms 141 and either (i) server
private key 105¢ as a decryption key with asymmetric
ciphering 141a or (ii) symmetric key 127 with symmetric
ciphering 1415. A symmetric key 127 may be stored in a
module database 1054, as noted in FIG. 1f above. If a
symmetric key 127 is used at step 413, the symmetric key
127 could be (i) sent by server 105 in a response 209 or (ii)
received by server 105 in a prior message 208, before the
message 208 illustrated in FIG. 4 was received by server
105.

With an asymmetric ciphering 141a scheme used in a
module encrypted data 403 and by cryptographic algorithms
141 at step 413, server 105 can decrypt module encrypted
data 403 using (i) server private key 105¢ and (ii)) RSA
algorithms 153, elliptic curve cryptography (ECC) algo-
rithms 154, or other algorithms for public key cryptography.
The use and application of RSA algorithms 153 and cryp-
tography are described within IETF RFC 3447, among other
published standards. The use and application of ECC cryp-
tography and algorithms are described within IETF RFC
6637, among other published standards. ECC algorithms
154 may be preferred in order to maintain high security with
small key lengths, compared to RSA, in order to minimize
the message lengths, radio frequency spectrum utilization,
and processing power required by module 101. Thus, the use
of ECC algorithms within a decryption algorithm at step 413
may help conserve the life of a battery 101% of module 101
while maintaining the objective of securing system 100.
Note that module encrypted data 403 may also include a
security token 401 (not shown in FIG. 4, but shown in FIG.
5a), which could comprise a random string, and thus each
module encrypted data 403 received by server 105 in
message 208 may be reasonably considered unique and thus
robust against replay attacks.

With a symmetric ciphering 1415 scheme used in a
module encrypted data 403 and by cryptographic algorithms
141 at step 413, server 105 can decrypt module encrypted
data 403 using (i) symmetric key 127 and (ii) a symmetric
cipher 1415 such as AES 155, Triple DES, or similar secure
symmetric ciphers. As one example, by using ECC cryp-
tography and ECIES, server 105 could decrypt module
encrypted data at step 413 by using the steps outlined in FIG.
3, titled “ECIES Encryption Functional Diagram™ in “A
Survey of the Elliptic Curve Integrated Encryption Scheme”
by Martinez et al in the Journal of Computer Science and
Engineering, Volume 2, August 2010, page 11, (herein
incorporated by reference). Other possibilities exist as well
without departing from the scope of the present invention.
Server 105 can utilize step 413 illustrated in FIG. 4 to extract
the plaintext, or decrypted data within module encrypted
data 403.

After decrypting module encrypted data 403, server 105
can read the resulting data within message 208, which could

10

15

20

25

30

35

40

45

50

55

60

65

54

comprise a server instruction 414. The server instruction 414
can represent the purpose of the message 208 for server 105.
Server instruction 414 could comprise a plurality of different
procedures for server 105, such as an “update” with sensor
data, a “query” for data or instructions from server 105 or
M2M service provide 108, a “notification” of state or
condition at module 101 such as an alarm or error, a
“configuration request” where module 101 seeks configu-
ration parameters, a “software request” where module 101
request updated software or routines, a “registration” mes-
sage where module 101 periodically registers with server
105, etc. Thus, server instruction 414 can comprise the
purpose module 101 sends message 208. In addition, server
instruction 414 could comprise a “confirmation”, where
module 101 sends a “confirmation” in a second message 208
after receipt of a response 209, where response 209 could
include a module instruction 502 (below), and the “confir-
mation” in this second message 208 could signal server 105
that the module instruction 502 had been properly executed.
As contemplated herein, the term “Message (update)” can
comprise a message 208 that includes a server instruction
414 of “update”, and the term “Message (confirmation)” can
comprise a message 208 that includes a server instruction
414 of “confirmation”, etc.

As examples for server instruction 414, an “update” could
be used to periodically notify server 105 of regular, periodic
sensor data 305 acquired by a sensor 101f. An “update” for
server instruction 414 may also comprise a periodic report
regarding monitored unit 119 or information regarding a
state, condition, or level for an actuator 101y. A “query” for
server instruction 414 could comprise module 101 querying
server 105 for data from a module database 105k, where the
data could be associated with monitored unit 119, wireless
network 102, an element within module 101 such as an
actuator setting. A “notification” for server instruction 414
could comprise module 101 notifying server 105 that an
alarm or error condition has occurred, such as a sensor
measurement exceeds a threshold value or another error
condition such as loss of contact with monitored unit 119. A
“configuration request” for server instruction 414 could
comprise module 101 requesting server 105 for configura-
tion parameters or a configuration file. Other possibilities for
server instruction 414 exist without departing from the scope
of the present invention.

At step 415, server 105 can process the server instruction
414. If server instruction 414 comprises an “update”, then
sensor data, or other data in server instruction 414 including
potentially a new symmetric key 127 generated by module
101, could be recorded in module database 105k, Other
applications may subsequently access the sensor data for
generating reports or making decisions regarding monitored
unit 119. If server instruction 414 comprises a “query”, then
server 105 could execute the query at step 415. If server
instruction 414 comprises a “notification” of an alarm, then
step 415 could initiate procedures for alarm notification to
3% parties or alarm resolution. Other possibilities for pro-
cessing a server instruction 414 at step 415 exist without
departing from the scope of the present invention.

FIG. 5a

FIG. 5a is a flow chart illustrating exemplary steps for a
server to process a response for a module, including sending
and signing a module instruction, in accordance with exem-
plary embodiments. The steps illustrated in FIG. 54 may
comprise step 317a and step 31754 illustrated in FIG. 3
above. Since message 208 and response 209 may traverse
the public Internet 107, a module 101 and a server 105 may
prefer to take additional steps to sending plaintext in packets

US 11,258,595 B2

55

in order to maintain security of a system 100. Server 105 can
process a response 209 to a message 208 from module 101
using a module public key 111 and a server private key 105c¢,
according to a preferred exemplary embodiment. If a sym-
metric cipher 1415 is utilized within cryptographic algo-
rithms 141, then server 105 may also utilize a symmetric key
127 to encrypt data within a response 209. Note that the
security methods described herein are optional, and message
208 and response 208 can be sent without any or all of the
additional security steps described herein, but the use of
these security steps may be preferred.

After receiving message 208 as illustrated in FIG. 2,
server 105 can prepare an acknowledgement 501. The
acknowledgement 501 can be a simple text, binary, or
hexadecimal string to confirm that message 208 has been
received and/or processed by server 105. Since message 208
may be transmitted via a UDP or UDP Lite packet, module
101 may preferably utilize a reply message from server 105
containing acknowledgement 501, in order to confirm mes-
sage 208 has been received by server 105. Alternatively, if
TCP is used to transmit message 208, an acknowledgement
501 may be used at the application layer of the Open
Systems Interconnection (OSI) model, wherein a simple
TCP ACK message may operate at the lower transport layer
than the application layer. UDP may be preferred over TCP
in order to reduce processing resources for module 101 and
server 105, especially considering the relatively small and
comparably infrequent messages sent between a module 101
and a server 105 (when compared to web browsing and
considering module 101 may have a battery 101% that may
preferably last for weeks or longer without recharging). In
processing a response 209, server 105 may optionally add a
security token 401, which could be a random number 128a,
or a randomly generated text, binary, or hexadecimal string.
Security token 401 could be a random number 1284 or string
that is included in response 209 in order to make each
response 209 unique and thus avoid any replay attacks when
response 209 traverses Internet 107. Note that a message 208
may also preferably include a security token 401.

In other words, the use of security token 401 can ensure
to a high level of certainty that each response 209 will be
different and thus the data within response 209 would not be
sent more than once. Note that security token 401 may be
generated by module 101 in message 208, and in this case
server 105 can use the same security token received in
message 208. Security token 401 can alternatively be gen-
erated by server 105 and different than any security token
401 received in message 208. As one example, server 105
could use a first security token 401 received in message 208
to process a second security token 401, where the second
security token 401 is generated using (i) a pre-agreed
algorithm between module 101 and server 105 and (ii) the
first security token 401 as input into the pre-agreed algo-
rithm. Security token 401 illustrated in FIG. 5a can be
derived or processed by using message 208 in accordance
with preferred exemplary embodiments.

Server 105 may also optionally add a module instruction
502 when preparing a response 209. The module instruction
502 could be a string that contains instructions or configu-
ration parameters for module 101, such as an order to change
state, parameters regarding the monitoring of monitored unit
119, server names or addresses, radio frequency parameters,
wireless network 102 authentication parameters or keys,
keys for communication with server 105 or M2M service
provider 108, etc. Module instruction 502 may also com-
prise an instruction to change the state of actuator 101y, a
timer value, a sensor threshold value, the threshold for an

10

15

20

25

30

35

40

45

50

55

60

65

56

alarm state, and information for display at a user interface
101/, an instruction to sleep, etc. Module instruction 502
may further comprise an updated module private key 112,
and updated server public key 114, or the address or name
of a new server 105 added to M2M service provider 108.
According to an exemplary preferred embodiment, a module
instruction 502 could comprise a “key generation” instruc-
tion, where module 101 generates a new pair of a module
private key 112 and a module public key 111, utilizing the
exemplary steps and procedures illustrated in FIG. 56 below.
The “key generation” 608 module instruction 502 (illus-
trated in FIG. 6a below) could be used to create new keys
for a new purpose (such as connecting to a new wireless
network 102 or communicating with a new server 105),
while the existing keys used to communicate with server 105
could remain operable or be deprecated at a later time.
Alternatively, an existing module public key 111 could be
deprecated or become invalid once server 105 sends a “key
generation” module instruction 502.

In order to control module 101, server 105 would nor-
mally need to include module instruction 502 in the response
209 only after receiving message 208, since the server 105
would normally not be able to send messages to a module
101 at arbitrary times, such as before a message 208 has
been received by the server 105. The reasons include (i) the
module may normally be in a sleep or dormant state, in order
to conserve battery life or power consumption, where an
unsolicited incoming Internet packet from server 105 would
not be received by module 101, and (ii) a wireless network
102 (or equivalent wired network that a wired module 101
could connect with) may frequently include a firewall 104.
Firewall 104 could prevent packets from the Internet 107
from reaching module 101 unless module 101 had previ-
ously first sent a packet to server 105 within a firewall
port-binding timeout period 117 of firewall 104. The port-
binding timeout period of a firewall 104 may be an exem-
plary period such as 20-60 seconds for UDP packets and
several minutes for TCP packets. Note that module instruc-
tion 502 may optionally be omitted, such that (b) some
response 209 messages may include module instruction 502,
and (b) other response 209 messages may omit module
instruction 502, but include an acknowledgement 501 to
message 208. Also note that according to an exemplary
embodiment described herein, the use of optional strings or
steps can be depicted in FIGS. 4 and 5a through the use of
dashed lines for the various elements illustrated.

Server 105 may then use as input the acknowledgement
501, security token 401, and module instruction 502, includ-
ing optional data and parameters 126, into cryptographic
algorithms 141 at step 503. The cryptographic algorithms
141 at step 503 can utilize either (i) module public key 111
as an encryption key if asymmetric ciphering 141a is
utilized, or (ii) a shared symmetric key 127 if a symmetric
cipher 1415 is utilized, such as AES 155 ciphering. The
output of cryptographic algorithms 141 at step 503, using
acknowledgement 501, security token 401, and module
instruction 502, plus optional data and parameters 126, as
input, can be server encrypted data 504, as illustrated in FIG.
5a. Server encrypted data 504 could be a string or number,
including a text, binary, or hexadecimal string or series of
numbers or bits, and other possibilities for the formal of
server encrypted data 504 exist as well, including a file,
without departing from the scope of the present invention.
By using module public key 111 and/or symmetric key 127
in the cryptographic algorithms 141 at step 503, server
encrypted data 504 may only be reasonably decrypted by
module 101 using module private key 112 and/or symmetric

US 11,258,595 B2

57

key 127. Thus the response 209 transmitted across an
Internet 107 may be reasonably considered secure and only
reasonably decrypted by module 101.

Server 105 can then process server encrypted data 504 by
appending or including server identity 206. Note that server
identity 206 can be appended or included after the operation
of step 503, since the server identity 206 may optionally be
openly readable within a response 209 transmitted or sent to
module 101. As one example, server identity 206 could
comprise [P address 106 as a source IP address in response
209, which would be openly readable on the Internet 107
since a valid packet must have a source and destination IP
address. Additional details on an exemplary structure of
response 209 are illustrated in FIG. 6a below. By including
server identity 206 after encryption at step 503, the module
can read the server identity 206 and verity a digital signature
within response 209 without having to first decrypt data
within response 209 using the module private key 112 or
symmetric key 127. Note that server identity 206 could
alternatively be included within server encrypted data 504,
such that step 505 takes place before step 504. In other
words, including server identity 206 external to a server
encrypted data 504 can be used by module 101 to select the
proper server public key 114 when verifying a digital
signature in response 209.

Server 105 can then process a server digital signature 506
using the server private key 105¢. The server digital signa-
ture 506 can be processed according to public key infra-
structure (PKI) standards such as the National Institute of
Standards (NIST) “FIPS 186-4: Digital Signature Standard”
(which is hereby incorporated herein by reference), or IETF
RFC 6979 titled “Deterministic Usage of the Digital Signa-
ture Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)” (which is hereby incorporated herein
by reference). The use of a server digital signature 506 can
be processed according to the description of a digital sig-
nature according to the Wikipedia entry for “Digital Signa-
ture” as of Sep. 9, 2013, which is incorporated by reference
herein in its entirety. Also note that other uses of a digital
signature as contemplated within the present invention may
refer to the above three references and related standard
techniques for processing and creating digital signatures.
Other PKI standards or proprietary methods for securely
generating a server digital signature 506 may be utilized as
well.

According to a preferred exemplary embodiment, ECC
algorithms for generating server digital signature 506 may
be utilized in order to minimize the key length compared to
RSA algorithms. Server digital signature 506 may comprise
a secure hash signature using a hash algorithm such as
secure hash algorithm 1 (SHA-1), or subsequent standards
such as SHA-2 and SHA-3, and other possibilities exist as
well. Server digital signature 506 is illustrated in FIG. 5a as
being processed after server encrypted data 504, but server
digital signature 506 may also optionally be included in
server encrypted data 504. Step 506 may also take place
before step 505.

Also note that server digital signature 506 may preferably
be included in a response 209 before module 101 begins
either (i) utilizing a symmetric key 127 shown in step 413 to
encrypt a module encrypted data 403, or (ii) accept or
process a module instruction 502. After including server
digital signature 506 in a first response 209 that uses
asymmetric ciphering 141a, server 105 may omit server
digital signature 506 in a second subsequent response. The
second subsequent response could be a case where (i) server
encrypted data 504 utilizes a symmetric key 127 for cipher-

10

15

20

25

30

35

40

45

50

55

60

65

58

ing (where server 105 received the symmetric key 127 in a
message 208 that utilized asymmetric ciphering 141a as
illustrated in FIG. 4 above) and (ii) expiration time 133 of
symmetric key 127 has not transpired.

Although energy may be conserved for a module 101
utilizing the exemplary steps illustrated in FIG. 54 and
elsewhere herein, a high level of security is desirable for
many “machine-to-machine” applications. A module 101
may be utilized for industrial applications or health moni-
toring, where the receipt of unauthorized module instruc-
tions 502 from 3" parties could results in damages or losses.
Without proper security that can include the steps illustrated
in FIG. 5a, response 209 could include a module instruction
502, and module 101 could potentially receive commands or
instructions from sources other than server 105, such as
hackers.

FIG. 55

FIG. 54 is a flow chart illustrating exemplary steps for a
server to communicate with a module that has derived a
public key and private key, in accordance with exemplary
embodiments. In order to utilize communications secured
with PKI techniques such as private keys, public keys,
certificates, and identities, a module 101 may preferably
obtain or generate these keys and utilize a module identity
110 and/or a certificate 122 in a secure manner. Given that
a plurality of modules 101 may be deployed in potentially
remote places, without frequent contact with end users or
technicians, the use of secure PKI techniques for a module
101 can create a significant set of challenges for the gen-
eration of module public key 111 and module private key
112, as well as properly and securely obtaining a certificate
122 with an module identity 110. Using conventional tech-
nology, significant challenges and costs can be incurred
when (i) module 101 has already been deployed, such as
collecting data from a monitored unit 119, and (ii) module
101 needs to utilize a new set of module private key 112 and
module public key 111.

Exemplary embodiments that include derivation or pro-
cessing of a new module private key 112 and module public
key 111 may utilize the particular steps and procedures
contemplated herein, in order to minimize any potential
human intervention (with related costs) while continuing to
maintain or also enhance security, compared either (i) exter-
nally generating module private key 112, and/or (ii) con-
tinuing to use the same module private key 112 for the
lifetime of module 101. Over a long period of operating time
for a module 101, such as several years or longer, there may
be many reasons module 101 may need a new pair of PKI
keys, such as (i) expiration of a certificate 122, or the
certificate 122 of a parent signature authority, (ii) the transfer
of ownership or control of module 101, where the prior
ownership could have direct or indirect access to the module
private key 112, (iii) supporting a new server 105 that has
different security requirements or a different set of param-
eters 126 (longer keys, different ECC curves, different
cryptographic algorithms 141, etc.), and/or (iv) revocation
of a public key in a chain of signatures 123 associated with
a certificate 122. In the case of (ii) above, new ownership of
module 101 may require a module 101 to utilize a new
module private key 112 since the old ownership may have
access to an old module private key 122. In the case of (iii)
above, a new server 105 may require a pair of public/private
keys incompatible with a prior set of public/private keys
utilized by module 101 and/or a certificate 122 for module
101.

Other possibilities exist as well for reasons why a module
101 and/or server 105 may prefer for a module 101 to utilize

US 11,258,595 B2

59

a new module public key 111 and new module private key
112. In an exemplary embodiment, module 101 may gener-
ate a new public/private key periodically in order to enhance
the security of a system 100. A benefit of a system 100
supporting periodic generation of keys by module 101 is that
the key length can be shortened in order to obtain a similar
level of security, and the processing power and energy
consumption, possibly from a battery 105%, can be reduced
through the use of shorter key lengths. In other words, over
time such as several months or years, the use of a plurality
of different pairs of public/private keys for module 101 with
shorter key lengths can be both more secure and energy
efficient than using a single pair of public/private keys with
a longer key length for the lifetime of module 101. Shorter
key lengths may also be more compatible with processing
power constraints of a module 101. Thus, in exemplary
embodiments, module 101 and/or server 105 may prefer for
module 101 to periodically generate new public and private
keys.

The general approach adopted by most mobile phone
networks over the past two decades has been founded upon
the use of a pre-shared secret key recorded in SIM cards,
such as the Ki pre-shared secret key in 2G and 3G networks.
That approach may work for mobile phones, where the SIMs
can often be easily replaced, but the use of a pre-shared
secret key in a SIM may not be suitable for a module 101 and
M2M service provider 108 for many circumstances. As one
example, significant costs may be incurred by swapping out
a SIM card for already deployed modules 101, especially if
they are in remote locations or continually moving such as
a tracking device on a container, pallet, truck, or automobile.
In an exemplary embodiment, a module 101 may preferably
record multiple pairs of public/private keys 111/112 for
various and different functions, such as connecting to dif-
ferent servers 105, connecting to different wireless networks
102, etc. As contemplated herein, recording more than one
public/private key 111/112 can comprise module 101 record-
ing a plurality of pairs of module public keys 111 and
module private keys 112. In exemplary embodiments, one
pair comprising a first module public key 111 and a first
module private key 112 can be identified or selected from a
different pair comprising a second module public key 111
and a second module private key 112 using a module public
key identity 111a.

The number of pairs of public/private keys useful to a
module 101 concurrently could be several, such as an
exemplary three or more actively used public/private keys,
although other possibilities exist as well. Manually trying to
change or add a new SIM card each time a new security key
is required may not be efficient or feasible. Or in another
exemplary embodiment, the multiple pairs of private and
public keys could be used in sequence, such that module 101
with server 105 utilizes a single module public key 111 and
module private key 112 at any given point in time. In the
case where module 101 (¢) uses more than one private key
112 and more than one public key 111 and (ii) derives at least
one module private key 112 and one public key 111 during
the lifetime of module 101, this case may be considered
module 101 using a plurality of module private keys 112 and
using a plurality of module public keys 111. In the case
where module 101 derives or generates more than one
module private key 112 and module public key 111 during
the lifetime of module 101, this case may be considered
module 101 deriving a plurality of module private keys 112
and module public keys 111, or also deriving a plurality of
pairs of module public keys 111 and module private keys
112. The various pairs in the plurality may use different sets

10

15

20

25

30

35

40

45

50

55

60

60

of parameters 126 or the same set of parameters 126. The
plurality of module public keys 111 and module private keys
112 can be processed by a CPU 1015 with key pair genera-
tion algorithms 141e and a random number generator 128.
The random number generator 128 can use input from a
sensor 101/, a radio 101z, and/or temporary random seed
file.

In exemplary embodiments, module 101 can use a module
public key 111 for sending a module encrypted data 403 or
receiving a server encrypted data 504 by either (i) sending
the module public key 111 to a server 105 in order to allow
the module encrypted data 403 to be decrypted (such as
using a step 413) or the server encrypted data 504 to be
encrypted (such as using a step 503), or (ii) inputting the
module public key 111 into a key derivation function 141fin
order to derive or process a derived shared secret key 1295,
which could be used with a symmetric key 127. Other
possibilities exist as well for module 101 to use its own
public key 111 with cryptographic algorithms for commu-
nicating with a server 105.

FIG. 5b illustrates exemplary steps that can be performed
with module 101, including using a module program 101;,
for generating, deriving, and/or updating a module public
key 111 and module private key 112. The steps illustrated in
FIG. 5b include both (i) an “initial” or “startup” case where
module 101 has not previously derived keys (or keys not
internally derived may not have been loaded), and (ii) a
subsequent or “follow on” time where module 101 can
generate or derive keys after keys were initially obtained or
derived. Note that efficient and secure methods and systems
contemplated herein, including in FIG. 5b, may also be
utilized with a regular consumer mobile phone, or smart-
phone, as a module 101. Mobile phones as module 101 can
benefit from (i) deriving a module public key 111 and a
module private key 112, (ii) sending module encrypted data
403 in a message 208 using the derived keys, and (iii)
receiving a server encrypted data 504 in a response 209 also
using the derived keys. In the exemplary embodiment where
module 101 comprises a mobile phone, then sensor 101/
may comprise a microphone and actuator 101y may com-
prise a speaker, and other possibilities exist as well to those
of ordinary skill in the art for module 101 to comprise a
mobile phone.

At step 511, during manufacturing of module 101, includ-
ing manufacturing of subcomponents such as a circuit board,
assembly of hardware components illustrated in FIG. 15,
etc., a module identity 110 could be written into the hard-
ware, and could comprise a serial number, International
Mobile Equipment Identity (IMEI) number, Ethernet MAC
address, or a similar persistent identification for a module
101. An IEMI number may be used with a mobile phone as
module 101, in a preferred embodiment. For security pur-
poses, the module identity 110 may preferably be written
into a read-only location, such as a readable location on a
system bus 1014, which could also comprise a ROM 101c.
Recording and utilizing module identity 110 is also depicted
and described in connection with FIG. 1e, FIG. 2, and
elsewhere herein. Alternatively, module identity 110 could
be recorded in a non-volatile memory such as a flash
memory 101w

At step 512, module 101 can be distributed to end users
and also installed with a monitored unit 119. If module 101
is a mobile phone, then monitored unit 119 could be a person
that carries the mobile phone. Also note that a monitored
unit 119 could be omitted, and a module 101 could use the
techniques contemplated herein. At step 513, a shared secret
key 510, parameters 126, and a server address 207 can be

US 11,258,595 B2

61

recorded in a nonvolatile memory 101w. Parameters 126
may comprise settings for a cryptographic algorithms 141 as
illustrated in FIG. 1g, including (i) key lengths, (ii) algo-
rithms to utilize for key generation or ciphering, such as
selecting RSA algorithms 153 or ECC algorithms 154, (iii)
a specific secure hash algorithm 141c¢ to utilize, such as
SHA-256 or SHA-3, (iv) an expiration date of the module
public key 111, (v) a maximum time value for an expiration
time 133 associated with a symmetric key 127, (vi) a ECC
parameters 137 or an ECC standard curve 138 as parameters
126 in FIG. 14, (vii) the specification of or values for a
padding scheme for use with a digital signature algorithms
141d, and/or similar or related values for using crypto-
graphic algorithms 141d. Although not illustrated in FIG.
5b, at step 512 a configuration file could also be loaded into
non-volatile memory, where the configuration file includes a
plurality of fields specifying the operation of module 101.
The shared secret key 510, parameters 126, and server
address 207 could be included in a configuration file.

Continuing at step 513, server identity 206 could be
utilized in place of or in addition to server address 207, and
in this case module 101 can later perform a DNS or
DNSSEC lookup using server identity 206 in order to obtain
server address 207 for use in a message 208, such as the
destination address. Shared secret key 510 and server
address 207 (or server identity 206) could also be recorded
in a ROM 101c at step 513. Step 513 may also be performed
concurrently with step 511 or step 512. According to an
exemplary embodiment, a manufacturer may perform step
513 and in this case step 513 could take place concurrently
with step 511. In another embodiment, a distributor of
module 101 could perform step 513 and in this case step 513
could take place concurrently with step 512. Alternatively,
step 513 may be performed by a technician or end user after
manufacturing and distribution and before module 101
begins collecting sensor data with a monitored unit. Other
possibilities exist as well for the sequence of steps 511
through 513 illustrated in FIG. 56 without departing from
the scope of the present invention.

Note that step 513 may take place multiple times during
the lifetime of a module 101, and in this case (a) the first time
step 513 is conducted, step 513 could be conducted concur-
rent with steps 511 or 512, and (b) a subsequent time step
513 is conducted, step 513 could be conducted after the
receipt of a response 209, where the response 209 includes
a second shared secret key 510, server address 207, and also
potentially a new module identity 110. In other words,
although not illustrated in FIG. 55, a module 101 could
return to step 513 from later steps upon the equivalent of a
“factory reset”, or similar command where flash memory
101w and other nonvolatile memory would be cleared. In an
exemplary embodiment where step 513 takes place a second
time may potentially be the transfer of ownership or control
of module 101, or a another embodiment where step 513
takes place a second time could be the upload of new
firmware that is incompatible with a previous configuration
file. In any case, shared secret key 510 can preferably be
uniquely associated with module 101 (i.e. any given shared
secret key 510 may belong only to an individual module
101).

Shared secret key 510 may comprise a pre-shared secret
key 129a, as described in FIG. 1e. If module 101 has already
derived a module private key 112 and module public key 111
(such as when step 513 is being conducted at a second or
additional time as contemplated in the previous paragraph),
then shared secret key 510 may comprise (i) a key received
in a server encrypted data 504 including possibly a sym-

25

30

40

45

50

55

60

62

metric key 127, or (ii) a derived shared secret key 1295.
Derived shared secret key 12956 could be obtained from
using a key derivation function 141f'and module public key
111 and server public key 114, using a module public key
111 that has already been derived or used by module 101
(such as if at least one module private key 112 and module
public key 111 had already been used or derived before step
513).

As contemplated herein in an exemplary embodiment, an
first module private key 112 and first module public key 111
could be derived outside module 101 and loaded into a
nonvolatile memory such as flash memory 101w at a prior
time before step 513, and the shared secret key 510 could be
received by module 101 using the first module private key
112 and module public key 111 (such as receiving the shared
secret key 510 in a server encrypted data 504 using the first
module private key 112 which had been loaded). Step 513
could then comprise a later time after the server encrypted
data 504 has been received that includes the shared secret
key 510, where module 101 may (i) prefer to begin utilizing
keys that module 101 internally derives using cryptographic
algorithms 141 instead of (ii) continuing to use the first
module public key 111 and module private key 112 that were
derived outside of the module 101, such as possibly loaded
into a nonvolatile memory from an external source.

In the embodiment where shared secret key 510 has not
been received by module 101 in a server encrypted data 504,
shared secret key 510 could be obtained and loaded by a
distributor, installer, or end user into a nonvolatile memory
such as flash memory 101w in the form of a pre-shared
secret key 129a, where pre-shared secret key 129a was
obtained using a module identity 110 and pre-shared secret
key code 134 as depicted and described in connection with
FIG. 1e above. Module 101 could also utilize a first pre-
shared secret key 1294, including a first pre-shared secret
key 129a entered by potentially a distributor, installer, or
end-user described in FIG. 1e, to derive shared secret key
510. Other possibilities exist as well for shared secret key
510, and shared secret key 510 can be useful for the proper
identification and/or authentication of module 101 upon
module 101°s generation of a private key 112 and public key
111, as described below including step 517. If module 101
is a mobile phone, as contemplated herein, shared secret key
510 could be loaded by a distributor or company selling or
servicing the mobile phone, or shared secret key 510 could
be obtained by the end user or subscriber accessing a web
page associated with a mobile operator for a wireless
network 102 associated with the mobile phone and/or SIM
card.

Also note that as contemplated herein, an initial module
private key 112 and initial module public key 111 could be
recorded into nonvolatile memory at step 513. For example,
a manufacturer, distributor, installer, technician, or end-user
could load the initial module private key and initial module
public key 111, where the initial module public key 111
would be utilized to authenticate at step 517 a subsequent set
of public/private keys derived by module 101 at step 515. In
this case, the initial module public key 111 and/or initial
module private key 112 described in the previous two
sentences could comprise the shared secret key 510. One
reason the initial module private key 112 with the initial
module public key 111 would comprise a shared secret key
510 may be that (i) the initial module private key 112 and
initial module public key 111 together have been “shared” in
the sense that the initial module private key 112 has been
located outside module 101 and in possession of an entity
such as the manufacturer, distributor, installer, technician, or

US 11,258,595 B2

63

end-user in order to load the initial module private key into
a nonvolatile memory such as flash memory 101w (and
initial module public key 111 is subsequently shared with
server 105), (ii) the initial module private key 112 and initial
module public key 111 can be used to authenticate a sub-
sequent message 208 containing a public key internally
derived by the module at step 517 below, and (iii) the initial
module private key 112 would remain “secret” in the sense
that it is not publicly shared (i.e. an initial or “loaded”
module private key 112 could preferably kept confidential
and thus part of a “shared secret key”). Thus, FIG. 54 also
contemplates an embodiment where shared secret key 510 at
step 513 comprises an initial public/private key pair for
module 101 that is not internally derived by module 101,
including keys derived at step 515.

Note that the contemplation of the use of shared secret key
510 as a pre-shared secret key 129a within the present
invention may be different than the use of a pre-shared secret
key within a SIM card as commonly supported by wireless
networks 102 with mobile phones in 2013. Specifically, as
depicted and described in connection with FIG. 1le and
elsewhere herein, the shared secret key 510, either (i)
comprising a pre-shared secret key 129a or (ii) derived from
a pre-shared secret key 1294, may be moved by CPU 1015
into a volatile memory such as RAM 101e, with subsequent
access by cryptographic algorithms 141. In contrast, the
pre-shared secret key within a SIM card for mobile phones
is usually designed to prevent movement of the pre-shared
secret key within a SIM into RAM 101e.

If a SIM card is present within module 101, and the SIM
card contains a pre-shared secret key, such as Ki, then as
contemplated herein, shared secret key 510 may be derived
using the SIM card and Ki. As one example, module 101
could (i) utilize a RAND message, potentially received from
a 3G or 4G mobile network such as wireless network 102,
and (ii) input the RAND into the SIM card and receive a
response RES (or SRES), and utilize the string in RES to
process or derive a shared secret key 510. Response RES
could also comprise a shared secret key 510. Server 105
could also submit the same RAND associated with the SIM
card and Ki to wireless network 102, and receive the same
RES as obtained by module 101. By both module 101 and
server 105 having the same RES value, they can follow a
pre-agreed series of steps to use the same RES in order to
derive a commonly shared secret key 510 (or the shared RES
could comprise a shared secret key 510). In one embodiment
where module 101 includes a SIM card for a wireless
network 102, such as a 4G LTE network, module 101 and
server 105 could both utilize a key derivation function 141/,
using the same RES as input, in order to derive the same
shared secret key 510.

At step 514, module 101 can read module identity 110
using a read-only address. Module 101 can read module
identity 110 directly from read-only hardware address by
using system bus 1014, including from a ROM 101c, or
module 101 can read module identity 110 from a nonvolatile
memory such as a flash memory 101w. Thus, the read-only
address could comprise an address accessible on system bus
101d that is designated read-only for a period of time. The
module identity 110 could be recorded into a flash memory
101w by module 110 after a prior read of module identity
110 from a read-only address. In this case (module 101
taking the step described in the previous sentence), reading
module identity 110 from the nonvolatile memory at step
514 can also comprise module 101 reading module identity
110 using a read-only address. Thus, although module 101
may read module identity 110 from a flash memory 101w, if

10

15

20

25

30

40

45

64

(a) module 101 initially utilized a read-only address to
record the module identity 110 into the flash memory 101w,
then (b) reading module identity 110 from the flash memory
101w could comprise using a read-only address to read
module identity 110. Other possibilities exist as well, such as
the address that includes module identity 110 in either (i) a
nonvolatile memory such as a ROM 101c¢ or (ii) an address
accessible on system bus 1014, could be designated for a
period of time as available for a read-only operation. Step
514 could also take place after step 515 below.

At Step 515, module 101 can derive module private key
112 and a corresponding module public key 111 using (i)
random number generator 128, (ii) parameters 126, (iii)
cryptographic algorithms 141, and/or (iv) a key pair gen-
eration algorithm 141e. Module 101 at step 515 and else-
where in the present invention can be a mobile phone such
as a smartphone. Private key 112 and corresponding module
public key 111 can be derived according to a wide range of
parameters 126, and can utilize different algorithms for
different pairs of keys, such as RSA 153 or ECC 154. Key
derivation at step 515 could generate keys of various
lengths, such as 2048 bits with RSA 153 or 283 bits with
ECC 154, and other possibilities exist as well. If using ECC
154 to derive a pair of keys for module 101, step 515 could
also accommodate the use of different elliptic curves for
compatibility with server 105, such as the use of odd-
characteristic curves, Koblitz curves, and making sure the
derived keys by module 101 use a compatible or identical
elliptic curve or defined elliptic curve equation as server
105, etc. Module 101 can use ECC parameters 137 or an
ECC standard curve 138 in a parameters 126 to derive
module private key 112 and/or module public key 111.

Deriving keys in step 515 could also comprise using
values such as constants or variables in a parameters 126 to
define an elliptic curve equation for use with an ECC
algorithm 154. The values or constants to define an equation
for an elliptic curve could be input into a key pair generation
algorithms 141e in the form of ECC parameters 137 or an
ECC standard curve 138. In an exemplary embodiment,
where a parameters 126 does not include constants and
variables for defining an elliptic curve equation, a key pair
generation algorithms 141e could use pre-defined elliptic
curves with ECC algorithms 154 such as standardized,
named curves in ECC standard curve 138 including exem-
plary values such as sect283kl, sect283rl, sect409kl,
sect409rl, etc. Exemplary, standardized named curves, as
opposed to module 101 and server 105 using an internally
generated elliptic curve equation using parameters 126, are
also identified as example curves in IETF RFC 5480, titled
“Elliptic Curve Cryptography Subject Public Key Informa-
tion”. Thus, module 101 could use either standardized
elliptic curves, or a separate defined elliptic curve equation
as specified in a parameters 126.

The curve for module 101 to utilize in deriving module
public key 111 and module private key 112 at step 515 could
be specified in parameters 126. Consequently, the param-
eters of keys generated by module 101 at step 515 (including
key length or algorithms utilized) may be selected based
upon the requirements of the application and can be included
in a parameters 126. When deriving keys at step 515, module
101 may also preferably utilize data from sensor 101/, radio
101z, a bus 1014, a physical interface 101a, memory 101e,
and/or a clock in order to generate a seed 129 for random
number generator 128, or random number generator 128
could utilize these inputs directly. A random number 1284
can be input into key pair generation algorithm 141e in order
to derive the module public key 111 and module private key

US 11,258,595 B2

65

112. Note that with ECC algorithms 154, a module private
key 112 can be a random number 1284 in one embodiment,
and the module public key 111 can be derived with a key pair
generation algorithms 141e using the module private key
112 comprising the random number 128a.

Upon key derivation at step 515, module private key 112
and module public key 111 can be recorded in a nonvolatile
memory 101w. Module private key 112 is preferably not
transmitted or sent outside module 101. Note that module
101’s internal derivation, or processing or creation, of
module private key 112 and corresponding module public
key 111 can have many benefits. First, module private key
112 does not need to be recorded in any other location than
within module 101, and thus may also be considered not
shared. Recording module private key 112 only within
module 101 avoids potential security risks of (i) storing or
recording module private key 112 in other locations, such as
with module provider 109, M2M service provider 108, or an
installer or end user of module 101, and (ii) transferring
module private key 112 to and/or from these other locations.
One security risk from storage of module private key 112
outside module 101 is that unauthorized 3" parties may gain
access to the module private key 112.

Also note that over a potential lifetime of a decade or
more of operation of module 101, each time a new module
private key 112 may be required (for various potential
reasons outlined above), the external recording and/or trans-
ferring of module private key 112 incurs a potential security
risk. Security risks can be compounded if the external
location records private keys 112 for a plurality of modules
101. Also, by internally generating private key 112 at step
515, module 101 can overcome significant limitations and
costs requiring the distribution of a pre-shared secret key Ki
in the form of a SIM card or similar physical distribution of
a pre-shared secret key, after module 101 begins operations.
In comparison, the use of a shared secret key 510 in the
present invention does not require physical distribution of a
new shared secret key 510 after module 101 begins opera-
tions. Module 101°s key derivation could be triggered by
either (i) a bootloader program 125, where the bootloader
program 125 determines that memory within module 101
does not contain a module private key 112, or (ii) via a
module instruction 502 such as a “key generation” command
in a response 209 from a server, and other possibilities exist
as well.

Note that module 101°s generation of keys after deploy-
ment and installation may create challenges for authentica-
tion of a new module public key 111 with module identity
110, since module 101 may be connecting to server 105 or
M2M service provider 108 via the Internet 107. After
module 101 creates new module public key 111 and module
private key 112 at step 515, at step 516 server 105 can
receive a message 208 with the module identity 110, the new
module public key 111, and parameters 126. Parameters 126
in message 208 at step 516 can represent the parameters 126
used to generate the module public key 111. The sub-steps
for a server 105 to receive a message 208 are also depicted
and described in connection with FIG. 2 above. Parameters
126 within a message 208 can comprise descriptive values
for new module public key 111. Note that at step 516, server
105 does not need to receive new module public key 111 in
the form of a certificate 122 (although it could be in the form
of a certificate 122). New module public key 111 could be
received by server 105 within a string or field within a body
602 of'a TCP/UDP packet 601a, illustrated in FIG. 65 below.
As depicted in step 516 shown in FIG. 65 below, message
208 can also optionally include a module public key identity

25

40

45

55

66

111a, which can be recorded in module database 1054 along
with module identity 110 and module public key 111a.

According to an exemplary embodiment, a first source
(IP:port) number received in a first message 208 at step 516
can be different than a second source IP:port number in a
second message 208 at step 518 below, wherein a response
209 send in step 519 below can preferably be sent to the
second source IP:port number received in the second mes-
sage 208 at step 518 in order to traverse a firewall 104 (as
depicted and described in connection with packet 2094 in
FIG. 2). In other words, the proper destination IP:port for a
response 209 to a module 101 can change over time, such as
the proper destination IP:port changing due to the use of
sleep states by module 101 and/or function of a firewall 104.
Consequently, according to an exemplary embodiment, a
response 209 can utilize a destination [P:port number equal
to the source IP:port number received in the last message
208 from module 101 received by server 105.

At step 517, server 105 can authenticate the message 208
received in step 516 using the shared secret key 510
described in step 513. Server 105 could record the shared
secret key 510. If step 517 occurs for the first time in a
lifetime of module 101, then shared secret key 510 could
comprise a pre-shared secret key 1294 recorded by server
105 in a module database 105% illustrated in FIG. 1f. If step
517 occurs at subsequent time, then server 105 could have
sent shared secret key 510 in a server encrypted data 504 and
recorded shared secret key 510 in a module database 105%
for later use (such as at step 517). Server 105 can authen-
ticate the message 208 according to message digest, or using
the shared secret key 510 as a symmetric key 127 within a
symmetric ciphering algorithm 1415, where the successful
encryption and decryption of data within message 208 using
the shared secret key 510 on both ends could be confirmation
that message 208 is authenticated, since both parties would
only be able to mutually encrypt and decrypt by sharing the
same shared secret key 510.

Other possibilities exist as well for server 105 to use a
shared secret key 510 in order to authenticate a message 208
that contains a new module public key 111 (where module
101 contains a new module private key 112). In one embodi-
ment, message 208 in step 516 could include a module
digital signature 405, where the module 101 used the shared
secret key 510 as a private key to generate the module digital
signature 405. After receiving authenticated new module
public key 111 in steps 516 and 517, according to a preferred
exemplary embodiment, server 105 can preferably only
accept and process (A) either incoming (i) a symmetric keys
127 ciphered with a asymmetric ciphering algorithm 1414,
and/or (ii) incoming server instructions 414, when (B) the
next or a subsequent incoming message 208 from module
101 using module identity 110 also includes a valid module
digital signature 405 verified by using the new module
public key 111, received at step 516.

According to an exemplary embodiment, shared secret
key 510 can be associated with a module public key identity
111a, and shared secret key 510 can be used to authenticate
a particular value for a module public key identity 111a. In
this embodiment, (i) a message 208 with module public key
111 and a first module public key identity 111¢ may be
authenticated using a shared secret key 510, but (ii) a second
message with module public key 111 and a second module
public key identity 111a¢ may not be authenticated using the
same shared secret key 510. Thus, in accordance with an
exemplary embodiment, shared secret key 510 can be used
for both (1) a single time for authenticating a module public
key 111, and (ii) authenticating a module public key 111 with

US 11,258,595 B2

67

a particular value for the module public key identity 111a.
Note that module public key identity 111a can be particu-
larly useful with key revocation, such that a key revocation
could specify a particular module public key identity 111a
(associated with a particular module public key 111) to be
revoked, but other module public keys 111 with different
module public key identities 111a could remain valid and
not revoked.

Although not illustrated in FIG. 54, server 105 could
operate with a certificate authority 118 in order to utilize a
new module public key 111, as described in this paragraph.
At step 516, new module public key 111 could be received
by server 105 in the form of a uniform resource locator
(URL) or domain name for download of a certificate 122
corresponding to the new module public key 111. If new
module public key 111 is included in a certificate 122 in this
embodiment of step 517 (or a URL to the certificate 122),
then module 101 could send server 105 a URL or address on
the Internet 107 where server 105 could download the new
module public key 111, such as if module 101 had a
certificate authority 118 sign the new module public key 111.
In this case, (i) the certificate authority 118 (or a separate
server than server 105) could perform the steps of 516 and
516 before server 105 conducts step 518 below, and (ii)
certificate authority 118 would need some confirmation
module 101 using module identity 110 was the correct
owner of new module public key 111. Certificate authority
118 could authenticate module 101 using the shared secret
key 510 (instead of server 105 authenticating module 101
directly with the shared secret key 510). Other possibilities
exist as well for module 101 to utilize shared secret key 510
to authenticate a module public key 111 that has been
derived by module 101.

After steps 516 and 517, server 105 can update a module
database 105k using the module identity 110 to insert or
update the new module public key 111, and parameters 126
associated with new module public key 111. Server 105 may
communicate with a plurality of modules 101, and thus
could utilize a module database 1054 in order to record the
new module public key 111 and parameters 126 with the
module identity 110. In one embodiment, the module iden-
tity 110 could preferably operate as an index within a table
of module database 105% in order to speed reads and writes
from the table used with module public key 111, parameters
126, and also selecting a symmetric key 127 for a symmetric
ciphering algorithm 14156 in later messages. As described in
FIG. 1g, parameters 126 can include data useful for the
operation of cryptographic algorithms 141 and module pub-
lic key 111. According to a preferred exemplary embodi-
ment, some modules 101 in a system 100 could utilize a first
elliptic curve, such as using a first set of ECC parameters
137 or first ECC standard curve 138 within a parameters
126, and other modules 101 could utilize a second and
different elliptic curve within a parameters 126, such as a
second set of ECC parameters 137 or second ECC standard
curve 138.

After updating the new module public key 111, in step 518
of FIG. 54, server 105 could receive a second message 208,
and the second message 208 can include a module identity
110 and module encrypted data 403. Although not illustrated
in FIG. 55, the second message 208 could also include a
module digital signature 405, wherein the module digital
signature is created with the new module public key 111
received in step 516. Server 105 could then utilize the steps
illustrated in FIG. 4 in order to process the incoming
message 208 with the new module public key 111, including
using the module identity 110 received in the second mes-

10

15

20

25

30

40

45

50

55

60

65

68

sage 208 to select the new module public key 111 and
subsequently verify a module digital signature 405 using the
new module public key 111 and digital signature algorithm
141d. Also as discussed in FIG. 4 in connection with
processing a received message 208, server 105 could decrypt
the module encrypted data 403 in the second message 208 by
using server private key 105¢. In one embodiment, the
second message 208 as illustrated in FIG. 55, which could
be the next message after authenticating module public key
111 in step 517, could include a symmetric key 127.

The module encrypted data 403 in step 518 could include
a symmetric key 127 for utilization with a symmetric cipher
1415. Module 101 could also send sensor data in a module
encrypted data 403 at step 518. Or, at step 518 the second
message 208 could be a signal for server 105 to use a key
derivation function 1417 with the server public key 114 and
the new module public key 111 (received at step 516) to
create a new derived shared key 1295 for use with symmet-
ric ciphering algorithms 1415 in subsequent messages 208.
If the second message 208 in step 518 comprises a signal for
server 105 to derive a new derived shared key 1295, then this
second message 208 could then optionally leave off module
encrypted data 403 and/or a module digital signature 405.
The successtul use of a new derived shared key 1294 (using
the new module public key 111 and existing server public
key 114) with symmetric ciphering algorithms 14156 at
subsequent steps by both module 101 and server 105 can
indicate to each the communications are mutually authenti-
cated. Second message 208 could also include a server
instruction 414, and other possibilities exist as well without
departing from the scope of the present invention.

At step 519, server 105 can send a response 209 to module
101, where the response 209 includes server encrypted data
504 and a module instruction 502. Server 105 could take the
steps to create and send response 209 as depicted and
described in connection with FIG. 5a. Response 209 could
be formatted according to the exemplary response 209
illustrated in FIG. 6a. The module instruction 502 could be
an acknowledgement 501 that the second message 208 sent
in step 518 was received by server 105. At step 520, server
105 can receive a third message 208 with a confirmation 414
to server 105. Confirmation 414 can be used to signal proper
execution of module instruction 502, if module instruction
502 comprised an instruction other than an “ACK” or
acknowledgement 501. If module instruction 502 in step 519
was an acknowledgement 501 from server 105, then the
confirmation 414 may omitted and in this case step 520
could be skipped.

At step 521 server 101 can determine or evaluate if a new
module public key 111 and/or certificate 122 are required for
continued operation. One reason for the need of new keys
could be the expiration of a certificate 122 for module 101,
or the desire to utilize a different set of parameters 126 such
as a longer key length for increase security or the use of a
different ECC parameters 137 or a different ECC standard
curve 138 with cryptographic algorithms 141. As described
elsewhere herein, many other possibilities exist for reasons
why module 101 and/or server 105 can prefer for module
101 to utilize a new module public key 111 and new module
private key 112. Either server 105 or module 101 may
determine that the use of a new module public key 111 and
new module private key 112 may be preferred at step 521.
If module 101 determines that the use of a new module
public key 111 and new module private key 112 is preferred
or desirable, module 101 could send server 105 a signal that
new keys will be generated either before step 521 or at step
521.

US 11,258,595 B2

69

Upon determining new keys are desirable at step 521, then
server 105 could instruct module 101 to derive new private
and public keys by returning to step 515. Although not
illustrated in FIG. 5b, upon determining “yes” at step 521,
server 105 could send a module instruction 502 of “new key
generation” and also a new set of parameters 126 to utilize
with the new module private key 112 and module public key
111. In accordance with exemplary embodiments, module
instruction 502, including the “new key generation” instruc-
tion and set of parameters 126, can be sent in a response 209
both (i) after module 101 wakes from a sleep or dormant
state and sends a message 208 after waking from the sleep
or dormant state, and (ii) before the expiration of a firewall
port binding timeout value 117 after receiving the message
208. If server 105 determines that new keys are not required
or desirable at step 521, server 105 can then proceed to step
312 and wait for additional incoming messages 208 from
module 101 or other modules. Step 312 is also depicted and
described in connection with FIG. 3.

FIG. 6a

FIG. 6a is a simplified message flow diagram illustrating
an exemplary message received by a server, and an exem-
plary response sent from the server, in accordance with
exemplary embodiments. FIG. 6a illustrates exemplary
details within message 208 received by server 105 and also
response 209 sent by server 105. Message 208 may comprise
a TCP/UDP packet 601a sent from module 101 source
IP:port 204 to server 105 destination IP:port 207. According
to an exemplary embodiment, UDP or UDP Lite formatting
for TCP/UDP packet 601a may be preferred. Source IP:port
204 and destination IP:port 207 in message 208 may be
included within a header in TCP/UDP packet 601a.
Although a single message 208, response 209, module 101,
and server 105 are shown in FIG. 6a, system 100 as
illustrated in FIG. 2 may comprise a plurality of each of
these elements. As contemplated herein, the term “data-
gram” may also refer to a “packet”, such that referring to an
element as datagram 601a can be equivalent to referring to
packet 601a.

TCP/UDP packet 601a may include a body 602, which
can represent the data payload of TCP/UDP packet 601a.
The data payload of message 208 can optionally include
channel coding 406 as described in FIG. 4 above, if the
transport protocol for TCP/UDP packet 601a supports the
transmission of bit errors in the body 602 (as opposed to
entirely dropping the packet), such as with the UDP Lite
protocol. Support for the transmission of bit errors in body
602 by wireless network 102 would be preferred over
entirely discarding a packet, since the programs such as
module controller 105x could include support for and utili-
zation of channel coding 406. Without UDP Lite formatting,
message 208 can alternatively sent by module 101 as a UDP
datagram, such as if wireless network 102 (or a wired
connection) does not support the UDP Lite protocol. Note
that in this case (no support for the transmission of bit errors
in a body 602), wireless network 102 and nodes within
Internet 107 would preferably include channel coding on the
data link layers of the OSI stack in order to maintain
robustness to bit errors at the physical layers of various hops
along the path between module 101 and server 105.

Note that if (A) message 208 comprises (i) regular UDP
or TCP formatting (i.e. not UDP Lite or similar variations)
within an IPv6 network, or (ii) a UDP or TCP format within
an IPv4 network with a 603 enabled, then (B) channel
coding 406 may optionally be omitted. Checksum 603 can
comprise a value to for an integrity check of a packet 601a,
and the calculation and use of checksum 603 is defined in

20

25

30

40

45

60

70

IETF standards for TCP and UDP packets. In accordance
with a preferred exemplary embodiment, including the use
of IPv6 for Internet 107 and a UDP datagram for message
208 and response 209, a checksum 603 sent by module 101
in a message 208 does not equal a checksum 603 in the
message 208 received by server 105.

The body 602 can include a module identity 110, module
encrypted data 403, and channel coding 406. Although not
illustrated in FIG. 6a, body 602 could also include a module
digital signature 405, as illustrated in FIG. 6 of U.S. patent
application Ser. No. 14/039,401. Module identity 110 is
illustrated in FIG. 6a as external to module encrypted data
403, although module identity 110 may optionally only be
included in module encrypted data 403, and in this case
module identity 110 would not be external to module
encrypted data 403 in a body 602. By including module
identity 110 as external to module encrypted data 403, server
105 can use the unencrypted module identity 110 in order to
select either (i) the appropriate module public key 111 to
verify module digital signature 405 if an asymmetric cipher
141a is used within cryptographic algorithms 141, or (ii) the
appropriate symmetric key 127 within cryptographic algo-
rithms 141 to decrypt the module encrypted data 403.
Module public key 111 and symmetric key 127 may pref-
erably be recorded in a database 1054, such that server 105
can access a plurality of public keys using module identity
110 in body 602 for a plurality of modules 101.

Thus, by including module identity 110 external to mod-
ule encrypted data 403, server 105 can utilize the module
identity 110 to query a database 1054 and select the appro-
priate module public key 111 or symmetric key 127. As
noted previously, module identity 110 could comprise a
string or number that is uniquely associated with module
identity 110, such as a session identity, as opposed to being
a module identity 110 that is read from hardware in module
101 such as an IMEI number, Ethernet MAC address, etc.
Module identity 110 is illustrated in FIG. 6a as a session
identity that is a different representation of module identity
110 of a serial number such as in FIG. 2, but in both cases
the values can comprise a module identity 110 since the
values can be uniquely associated with module 101 at any
point in time.

According to an exemplary embodiment where asymmet-
ric ciphering 141a of module encrypted data 403 is utilized,
such as (i) the first message 208 sent by module 101 and (ii)
where a symmetric key 127 had not been previously
exchanged, module identity 110 can be (a) within module
encrypted data and (b) not external to module encrypted data
403. In this case, server 105 can utilize server private key
105¢ to, in sequence, decrypt module encrypted data 403,
extract module identity 110 from the decrypted module
encrypted data 403, and then used the module identity 110
to select module public key 111 from module database 105%
in order to verify a module digital signature 405. Note that
if a module identity 110 is in body 602 and external to
module encrypted data 403, then module identity 110 could
be obfuscated or otherwise ciphered according to a pre-
agreed algorithm with server 105, such that server 105 can
utilize the obfuscated or ciphered module identity 110 to
select a module public key 111 from module database 105%.
The value of “[Module Identity String]” shown in FIG. 6a
could comprise an obfuscated module identity 110. Accord-
ing to an exemplary embodiment where (i) symmetric
ciphering of module encrypted data 403 is utilized, such as
after a first message 208 had already been sent by module
101 and a symmetric key 127 had previously been
exchanged, then (ii) module identity 110 can be external to

US 11,258,595 B2

71

module encrypted data 403 and in body 602 in order for
server 105 to utilize module identity 110 and select sym-
metric key 127 from a module database 105k, thereby
enabling server 105 to decrypt the module encrypted data
403 using the selected symmetric key 127.

The module digital signature 405 can be calculated using
the steps and algorithms described in FIG. 4 above. Module
digital signature 405 can be a secure hash string or number,
and can be calculated using module private key 112 and
digital signature algorithms 141d. Server 105 can verify
module digital signature 405 using module public key 111
according to the standard techniques for verifying digital
signatures using PKI as described at step 410 in FIG. 4. Note
that module digital signature 405 can be useful for server
105 to maintain security, since server public key 114 may be
shared and potentially other nodes besides module 101 could
attempt to send in encrypted data using server public key
114.

In addition, the module digital signature 405 may option-
ally be omitted from body 602 after module 101 has previ-
ously sent symmetric key 127 in a previous message 208 to
the message 208 illustrated in FIG. 6a. In other words, in a
series of messages 208, module 101 can preferably change
from (i) using asymmetric ciphering 141a with an initial
message 208 that includes symmetric key 127 in a module
encrypted data 403 (where the initial message 208 also
includes module digital signature 405 and module identity
110) to (ii) using symmetric ciphering 1415 with subsequent
messages 208 without module digital signature 405 in the
series (where the subsequent messages 208 can include an
obfuscated module identity 110 external to module
encrypted data 403 for server 105 to select the appropriate
symmetric key 127). The series of messages 208 could begin
when the initial message 208 is sent by module 101 and end
when expiration time 133 of symmetric key 127 has trans-
pired, and subsequently a new series of messages 208 could
begin where the first message 208 in the new series of
messages changes back to asymmetric ciphering 141a with
initial message 208 that includes symmetric key 127 in a
module encrypted data 403 (where the initial message 208
also includes a new module digital signature 405). Other
possibilities exist as well without departing from the scope
of the present invention.

Using a message 208 with a module digital signature 405
can be both more efficient and overall more secure than
digest authentication (such as the digest authentication
described in IETF RFC 2069), although using digest-based
authentication may be alternatively used. First, the use of a
module digital signature 405 requires only a single packet
for message 208 and a single packet for response 209 for
secure communication between module 101 and server 105.
The alternative digest-based authentication would normally
require at least 4 packets comprising: (i) message 208, (ii) a
challenge to message 208 from server 105 with a security
token 401, (iii) a second message from module 101 with a
hashed string generated using (i) the challenge, (ii) crypto-
graphic algorithms 141, and (iii) the module private key 112,
and then (iv) an acknowledgement from server 105. The
additional messages with digest-based authentication would
thereby drain battery life faster or utilize more energy
compared to using module digital signature 405.

Second, the use of module digital signature 405 allows a
system 100 to be more highly secured since (i) server 105
may need to be connected to the Public Internet 107 and
receive packets from a wide range of IP addresses that are
not known before messages 208 arrive, and (ii) by using
module digital signature 405, server 105 can then preferably

10

15

20

25

30

35

40

45

50

55

60

65

72

not respond to incoming packets and messages without first
receiving a properly signed module digital signature 405
(where the module identity 110 associated with module
digital signature 405 could also be verified using a certificate
122 and a certificate authority public key 131). By server
105 remaining silent to all packets except packets with a
properly signed module digital signature 405, system 100
can thereby remain more secure. In other words, according
to preferred exemplary embodiments, server 105 does not
send a response 209 to a first message 208 in a series of
messages 208 that does not include a validated module
digital signature 405 (where the validated module digital
signature 405 includes a verified module identity 110),
thereby increasing security. Once at least one module digital
signature 405 has been received by server 105, then server
105 could use a symmetric key 127 to verify a module
identity until a timer expiration 133 for the symmetric key
127. Server 105 could receive a symmetric key using the
message 208 illustrated in FIG. 6 of U.S. patent application
Ser. No. 14/039,401, and other possibilities exist as well for
securely sending and receiving a symmetric key 127.

Module encrypted data 403 can be processed using the
steps and algorithms described in FIG. 4. Note that module
encrypted data 403 as illustrated in FIG. 6a is shown in a
plaintext form for ease of illustration, but actual module
encrypted data 403 within body 602 of a packet 601a could
be transmitted as binary, hexadecimal, Base64 binary-to-text
encoding, or other encoding rules. Note that encryption by
module 101 may optionally be omitted, and the server
instruction 414 with corresponding data could be included
within a message 208 without encryption, such as if security
could be maintained at the network level. As one example in
this case without encryption, server instruction 414 could be
included in body 602 as plaintext. The encryption and/or
security could be applied through other means, such as a
secure tunnel between module 101 and server 105, although
setting up and maintaining a secure tunnel and similar or
other means of security may require more processing and
bandwidth resources than the efficient techniques described
herein.

Module encrypted data 403 can include a server instruc-
tion 414, a server identity 206, a module identity 110, a
security token 401, a timestamp 604a, and a sensor mea-
surement 6045. The server instruction 414 can represent the
purpose of the message 208 for server 105, and FIG. 6a
illustrates an “update” for server instruction 414. An update
for server instruction 414 could be used to periodically
notify server 105 of regular, periodic sensor measurements
6045 acquired by a sensor 101f. An update for server
instruction 414 may also comprise a periodic report regard-
ing monitored unit 119, and a server instruction 414 is
described in FIG. 4. Other server instructions 414 besides an
“update” may be included in a module encrypted data 403
within a body 602. The “update” illustrated in message 208
in FIG. 64 can also include a new symmetric key 127, and
the module encrypted data 403 illustrated in FIG. 6a may
comprise the use of either an asymmetric ciphering 141a
with public/private keys, or (ii) symmetric ciphering 1415
with a symmetric key 127.

An initial transmission or negotiation of a symmetric key
127 may preferably utilize asymmetric ciphering 141a and
the use of a public key as an encryption key and a private key
as a decryption key. Subsequent transmission of a new
symmetric key 127 may utilize either (i) a symmetric cipher
1415 with a previously negotiated but still valid symmetric
key 127 (i.e. expiration time 133 has not transpired), or (ii)
asymmetric ciphering 141qa. If the data within instruction

US 11,258,595 B2

73

414 is longer than the maximum data length supported by a
selected asymmetric ciphering algorithm 141« and the pub-
lic/private key pair, then module encrypted data 403 within
message 208 can be broken up into several sections, such
that the data within each section is less than the maximum
data length supported by the asymmetric ciphering algo-
rithm 141a and key length.

Server identity 206 within module encrypted data 403 can
be useful for properly identifying that server 105 is the
proper recipient and final destination of message 208. Server
identity 206 can be useful if a plurality of servers 105 is
utilized by an M2M service provider 108 with potentially
hundreds of thousands or millions of modules 101. In this
case, with a plurality of servers 105, server private key 105¢
may represent a private key that is shared among a plurality
of servers 105, since otherwise server 105 may not be able
to decrypt module encrypted data 403 if each server 105 in
the plurality of servers 105 did not share the common server
private key 105¢. Continuing in this example of a plurality
of servers 105, a server identity 206 may represent a server
that associated with M2M service provider 108 but not the
recipient of message 208. In this case, (i) a first server 105
could receive message 208 and decrypt message 208 using
a common server private key 105¢ or symmetric key 127,
and (ii) the first server 105 can forward message 208 to the
second server 105 (not shown) with server identity 206. In
this case, the first server 105 can forward message 208 to the
second server (not shown) without the encryption applied to
module encrypted data 403, since (i) the second server 105
may not have access to the server private key 105¢ and/or
symmetric key 127, or (ii) the first server 105 could have
already decrypted the module encrypted data 403 in order to
read server identity 206 within module encrypted data 403.

Module identity 110 within module encrypted data 403
can represent the identity of module 110, and could represent
a serial number read by module 101 from a read-only
hardware address. Module identity 110 is described in FIG.
1c and can represent a unique identifier of module 101.
Module identity 110 outside module encrypted data 403 can
represent a string or number that is different than a serial
number that can be used by module 101 within a module
encrypted data 403. Security token 401 within module
encrypted data 403 can represent a random string in order to
make message 208 reasonably unique and thus system 100
in FIG. 2 robust against replay attacks. If module encrypted
data 403 includes symmetric key 127, then security token
401 could optionally be omitted since symmetric key 127
can also function as a security token 401. Security token 401
is described in FIG. 5a. Timestamp 604a can represent a
time value that module 101 sends message 208 or a time
value that module 101 acquired sensor data 6045. Sensor
data 60456 is described with the description of a sensor 101/
in FIG. 1e, and sensor data 6045 can represents data module
101 acquires using sensor 101f. Sensor data 6045 within
message 208 may be stored by server 105 in a module
database 105%, or potentially forwarded to another server
(not shown) for additional processing. Sensor data 6045 can
comprise a wide range of values for a sensor 101/ besides the
exemplary value of a temperature reading shown in FIG. 6a,
including raw sensor data, compressed sensor data, and
processed or averaged sensor data. The specific sensor data
6045 shown in FIG. 6a is illustrated to be exemplary and not
limiting for sending and receiving sensor data. Sensor data
6045 may also be referred to as a sensor measurement 6045.

Although not illustrated in FIG. 6a, body 602 or module
encrypted data 403 may also include an (i) identity of
monitored unit 119, which may be associated with sensor

10

15

20

25

30

35

40

45

50

55

60

65

74

data 6045, and/or (ii) a sensor identity 151 associated with
sensor data 6045, such that data from potentially multiple
sensors 101/ could be properly identified and recorded. As
one example, module 101 could collect sensor data for a
plurality of monitored units 119, and in this case message
208 would preferably include an identity of monitored unit
119 associated with the sensor data 6045b. Or, a sensor 101/
could have a sensor identity 151, and message 208 could
include the sensor identity 151 with the corresponding
sensor data 6045 (also illustrated in FIG. 7 of U.S. patent
application Ser. No. 14/039,401). As described above, mes-
sage 208 could also include a symmetric key 127, as
illustrated in FIG. 6 of U.S. patent application Ser. No.
14/039,401.

Note that if (A) module encrypted data 403 exceeds an
acceptable length for input or output into asymmetric cipher-
ing algorithms 141a, such as data within a module encrypted
data 403 comprising an exemplary 3000 bits but only a 2048
bit key length is utilized in an exemplary module private key
112 processed with an RSA algorithm 153, then (B) module
encrypted data 403 within body 602 could comprise multiple
separate sub-sections for module encrypted data 403. In this
case, each sub-section could comprise data less than the
maximum acceptable length for encryption, and the sub-
sections could be combined in order to form a module
encrypted data 403 within body 602.

FIG. 6a also illustrates exemplary details within response
209 sent by server 105. Response 209 may comprise a
TCP/UDP packet 6015 sent from server 105 IP:port 207 the
IP address 210 and port number 605, where 1P address 210
represents the external IP address of wireless network fire-
wall 104 and port number 605 is the source port in message
208 as received by server 105 (i.e. the source port in
message 208 after traversing the firewall 104 illustrated in
FIG. 6a). Thus, IP:port with IP address 210 and port number
605 may be different than IP:port 204 in response 209, since
the presence of a wireless network firewall 104 may perform
NAT routing, which could change the source IP address and
source port number from IP:port 204 to IP address 210 and
port number 605 in message 208, as received by server 105.
The use of wireless network firewall 104 in wireless network
102 may require that response 209 be sent from IP:port 207
to IP address 210 and port number 605 in order to be
properly processed by firewall 104 and forwarded to module
101 at IP:port 204. Source IP:port 207 and destination 1P
address 210 and port number 605 in response 209 may be
included within a header in TCP/UDP packet 6015. TCP/
UDP packet 6015 could comprise a regular UDP packet, a
UDP Lite packet, or a TCP datagram, or similar protocols
supported by an Internet 107. TCP/UDP packet 601a and
TCP/UDP packet 6015 can preferably utilize the same
protocol.

As noted previously, the use of checksums may be man-
datory in IPv6 networks, and thus a response 209 comprising
a packet 6015 can include a checksum value 603 (illustrated
in message 208 but not response 209) for the header. The use
of firewalls such as firewall 104 can change the header
values in a packet 6015. In accordance with a preferred
exemplary embodiment, a first checksum value 603 within
a response 209 sent by server 105 can be different and/or not
equal to a second checksum value 603 within the response
209 received by module 101. Likewise, in an exemplary
embodiment, a first checksum value 603 within a message
208 sent by a module 101 can be different and/or not equal
to a second checksum value 603 within the message 208
received by server 105.

US 11,258,595 B2

75

AUDP, TCP, or UDP Lite datagram as a TCP/UDP packet
6015 within response 209 may include a body 606. Body
606 may comprise the payload or data within a UDP, TCP,
or UDP Lite packet. Body 606 can include a server identity
206, a server digital signature 506, server encrypted data
504, and channel coding 406. Server identity 206 is illus-
trated in FIG. 6a as external to server encrypted data 504
within body 606, but server identity 206 may optionally be
included in server encrypted data 504 instead. Module 101
may communicate with a plurality of servers 105, and server
identity 206 as external to server encrypted data 504 can
allow module 101 to select the appropriate symmetric key
127 to utilize for decrypting server encrypted data 504 (since
each of the multiple servers 105 that module 101 commu-
nicates with may utilize a different symmetric key 127).

Also note that the server identity 206 can be similar to
module identity 110, such that multiple different values for
server identity 206 could be utilized in a system 100, but
each of the different values could preferably be uniquely
associated with server 105. As one example, server identity
206, outside server encrypted data 504 as illustrated in FIG.
6a, may comprise a session identity or session identifier, as
opposed to a different server identity 206 that could com-
prise a hardware serial number or domain name for server
105. Thus, server identity 206 outside a server encrypted
data 504 may be a different string or representation than
server identity 206 within server encrypted data 504, but
both strings/numbers used for server identity 206 in
response 209 could be associated with server 105.

Server digital signature 506 in body 606 can comprise a
secure hash signature of a subset of body 606, where the
subset of body 606 can comprise server encrypted data 504,
and/or server identity 206 as illustrated in FIG. 6a. In other
words, processing the secure hash signature can omit (i)
server digital signature 506 itself and (ii) channel coding 406
as input into the cryptographic algorithms 141 used to
process or verify server digital signature 506. In this manner,
module 101 can utilize server digital signature 506 to
authenticate that response 209 was sent by server 105.
Channel coding 406 in body 606 is also depicted and
described in connection with FIG. 5a above.

Body 606 may include server encrypted data 504. Server
encrypted data 504 is depicted and described in connection
with FIG. 5a above. Server encrypted data 504 may include
an acknowledgement 501, wherein acknowledgement 501
can notify module 101 that message 208 has been received
by server 105. As illustrated in FIG. 6a, server encrypted
data 504 may optionally also include a module instruction
502 for module 101. The module instruction 502 could be a
string that contains instructions or configuration parameters
for module 101, such as an order to change state, parameters
regarding the monitoring of monitored unit 119, server
names or addresses, radio frequency parameters, timer val-
ues, settings for actuator 101y, etc. A module instruction 502
is depicted and described in connection with FIG. 5a above.
The exemplary module instruction 502 illustrated in FIG. 6a
comprises a “key generation” 608 instruction for module
101 derive a new set of keys. The use of a “key generation”
608 instruction was also depicted and described in connec-
tion with FIG. 56 above. Other possibilities for a module
instruction 502 within a response 209 are possible as well
without departing from the scope of the present invention.
Although not depicted in FIG. 6a or FIG. 2, if response 209
includes a module instruction 502, according to an exem-
plary embodiment, module 101 can preferably send a second
message 208 to server 105, where the second message 208
includes a confirmation that module instruction 502 was

10

15

20

25

30

35

40

45

50

55

60

76

successfully executed or implemented by module 101. This
confirmation could be included in a server instruction 414
for server 105 within a second message 208.

Also, although a server encrypted data 504 may prefer-
ably be included within a body 606, body 606 may option-
ally omit server encrypted data 504 and include data from
server 105 that is not encrypted, such as plaintext. As one
example in this case, acknowledgement 501 could be
included in body 606 as plaintext. In addition, although a
server digital signature 506 is not illustrated in FIG. 6a, a
server digital signature 506 could be included in body 606
and external to server encrypted data 504. In an exemplary
embodiment, the inclusion of a server digital signature 506
in a response 209 is illustrated in FIG. 6 of U.S. patent
application Ser. No. 14/039,401. The server digital signature
506 may (i) optionally be omitted as well, or (ii) included
within server encrypted data 504.

Also, although not illustrated in FIG. 64, server encrypted
data 504 could include a symmetric key 127 for module 101
to utilize with symmetric ciphering 1415 in cryptographic
algorithms 141 for processing a module encrypted data 403
in subsequent messages 208 and/or responses 209. If server
encrypted data 504 includes a symmetric key 127, then
server 105 preferably can utilize an asymmetric ciphering
141a with cryptographic algorithms 141 to process the
server encrypted data 504 containing the symmetric key
127. An example for the previous sentence could be if
message 208 was received without a symmetric key 127 and
server 105 can issue the symmetric key 127. As contem-
plated herein, more than one symmetric key 127 may be
used concurrently in a system 100, such as a first symmetric
key 127 utilized in symmetric ciphering 1415 for a message
208, and a second symmetric key 127 utilized in symmetric
ciphering 14154 for a response 209. Other possibilities exist
as well without departing from the scope of the present
invention.

Server encrypted data 504 in a response 209 may include
a security token 401. Security token 401 may be a random
string and may also be generated by either server 105 or
module 101. If security token 401 is generated by module
101, then security token 401 may be included in message
208 and also utilized by server 105 in response 209, as
illustrated in FIG. 6. By including security token 401 in
acknowledgement 501, system 100 can be made robust to
replay attacks since each response 209 can be reasonably
unique for each response 209 sent by server 105.

FIG. 65

FIG. 6b is a simplified message flow diagram illustrating
an exemplary message received by a server, wherein the
message includes a derived module public key, in accor-
dance with exemplary embodiments. As discussed in FIG.
5b, there can be cases where module 101 derives a new
module public key 111 and new module private key 112. On
example would be the initial creation of the key pairs by
module 101, and many other examples could exist as well.
FIG. 64 can illustrate an exemplary format and contents of
a message 208 for steps 516 and 517 of FIG. 54. This
exemplary message 208 can also help to illustrate the
significant differences from conventional technology and
improvements for efficient and secure communications by
utilizing embodiments contemplated herein.

A message 208 illustrated in FIG. 65 using steps 516 and
517 can include (i) sending new module public key 111, a
module public key identity 111a, a module identity 110, a
server instruction 414, and a set of parameters 126 associ-
ated with the new module public key 111 and/or crypto-
graphic algorithms 141 for using the new module public key

US 11,258,595 B2

77

111. Exemplary parameters 126 illustrated in FIG. 11
include (i) a secure hash algorithm 141c¢ to utilize in signa-
tures, which could comprise the SHA 256 algorithm as
shown (which may also be known as the SHA-2 algorithm),
(i1) a selected elliptic curve for use with ECC algorithms 154
or a modulus to use with RSA algorithms 153, and (iii) a
time-to-live value for the public key, such as the illustrated
“time to live” value of 1 year shown in FIG. 65. The time
value for the validity of new module public key 111 could
alternatively be specified in a set expiration date. Other
values associated with cryptographic algorithms 141 could
be included in parameters 126 as well, and the illustrated
values are intended to be exemplary instead of limiting.
Other possibilities for data with a message 208 illustrated in
FIG. 6b include a parameters 126 including a set of ECC
parameters 126, or a specified secure hash algorithm 141c¢
comprising SHA-3 or SHA-512.

Additional values or fields within a message 208 associ-
ated with communicating a new module public key 111 with
server 105 could include a server instruction 414 of “new
public key”. This server instruction 414 could inform server
105 to utilize the new module public key 111 within the
message 208. Module public key identity 111a can include
a sequence number or identity for the new module public
key 111, such that module 101 or server 105 can properly
reference and/or select the key from a plurality of module
public keys 111 that could be associated with module
identity 110. Although module public key identity 111a is
illustrated as a separate field in server instruction 414,
module public key sequence number 111a could optionally
be included in parameters 126, such that the value within
parameters 126 specifies the current sequence number or
module public key identity 111a for the new module public
key 111 included in a message 208.

Other fields and features within a message 208 as illus-
trated in a FIG. 11 can be similar to the fields presented in
FIG. 6a. Since (a) FIG. 6a can also illustrate a first message
208 sent by a module 101 to a server 105, such as after keys
are derived in a step 515, then (b) module 101 can read
multiple values from RAM 101e or a nonvolatile memory
101w or 101c¢ in order properly construct or format message
208. Each of (i) destination IP:port number 207, (ii) param-
eters 126, and (iii) shared secret key 510 can preferably be
written into nonvolatile memory at step 512 of FIG. 55, if
message 208 in FIG. 65 represents the first message 208 sent
by module 101. The source IP:port number 204 can repre-
sent a number assigned by an operating system 101/.

If message 208 in FIG. 65 comprises a subsequent time
message 208 is received by server 105 (i.e. not a first time
module 101 sends a module public key 111), such as after
step 521 illustrated in FIG. 54, then each of (i) destination
IP:port number, (ii) parameters 126, and (iii) shared secret
key 510 could be updated by server 105 using a module
instruction 502 within a server encrypted data 504 before
message 208 illustrated in FIG. 6a is received by server 105.
In this manner, shared secret key 510 could change from (i)
comprising a pre-shared secret key 129« (for a first message
208 after module key derivation) to (ii) comprising a shared
secret key that is sent by server 105 within a server
encrypted data 504 (for a subsequent message 208 after
module key derivation).

After receiving message 208, server 105 can use the
unencrypted module identity 110 illustrated in a body 602 of
FIG. 65 to select the shared secret key 510 in order authen-
ticate message 208. As described in step 517 of FIG. 54,
server 105 may preferably authenticate message 208 that
includes module public key 111 in order to confirm that

10

15

20

25

30

35

40

45

50

55

60

65

78

module public key 111 originated from physical module 101
with a hardware module identity 110 (as opposed to being an
imposter submitting the module public key 111). The use of
a channel coding 406 is described in connection with FIGS.
4 and 54, and channel coding may optionally be omitted. If
message 208 comprises a UDP Lite packet, then channel
coding may optionally be applied within the body 602. If
message 208 comprises a UDP packet, then channel coding
may comprise sending the exact same UDP packet 601a
multiple times, such as an exemplary 3 packets 601a sent at
the same time.

Although not illustrated in FIG. 65, in an exemplary
embodiment module public key 111 could also be received
in a message 208, where the module public key 111 and
parameters 126 can be included in an encrypted format
within a module encrypted data 403. As depicted and
described in connection with steps 1001 and 1002 of FIG.
10, and also FIG. 11 of U.S. patent application Ser. No.
14/039,401, the security of a system 100 can be further
increased by both (i) ciphering module public key 111 and
parameters 126, and (ii) only sharing the module public key
111 in a confidential manner with server 105. If module 101
needed a module public key 111 for other purposes, such as
obtaining a certificate, then a second, publicly disclosed
module public key 111 could be utilized, where the second
module public key 111 is different than a module public key
111 using parameters 126 that is sent to a server 105 in a
module encrypted data 403.

FIG. 65 also illustrates an exemplary embodiment, where
module public key 111 can be authenticated with server 105
using a module digital signature 405. If message 208 com-
prises a first time module 101 utilizes a step 516 and step
517, such that a module public key 111 has not previously
been sent to server 105, then message 208 could include a
module digital signature 405 using the shared secret key
510, which could comprise the pre-shared secret key 129a.
If message 208 comprises a subsequent time module 101
utilizes a step 516 and step 517, such that a module public
key 111 has previously been sent to server 105, then message
208 could include a module digital signature 405 using the
previous module private key 112 (i.e. not the new module
private key associated with the new module public key 111
in the message 208 shown in FIG. 65). As noted in FIG. 55,
module digital signature 405 could be omitted, and message
208 with module public key 111 could be authenticated
using a message digest algorithm and the shared secret key
129a.

FIG. 7

FIG. 7 is a simplified message flow diagram illustrating
exemplary data transferred between a module and an appli-
cation using a server, in accordance with exemplary embodi-
ments. FIG. 7 includes a system 700 and illustrates an
exemplary message 208 from a module 101 to a server 105
and also an exemplary application message 701 between an
application 171/ and server 105. Note that application mes-
sage 701 could also be considered as transferred between,
sent to, or received from server 105 and application server
171. System 700 can comprise a module 101, a server 105,
and an application 171i operating on an application server
171, and these elements may communicate over a network
such as the Internet 107. For example, application server 171
may utilize an IP:port number 702 for sending and receiving
messages with server 105. The IP address within IP:port
number 702 is illustrated as an IPv4 address, but an IPv6
address could be utilized as well, or other addressing
schemes are possible. Message flows within a module 101
from a sensor 101f'and to an actuator 101y are also included

US 11,258,595 B2

79

in a system 700 as illustrated in FIG. 7. Message flows
within a module 101 could utilize a system bus 1014.

Although not illustrated in FIG. 7, before module 101
sends a module public key 111 to server 105, possibly by
using step 516 as illustrated in FIG. 7, module 101 can
derive the public and private keys using step 515 and a set
of parameters 126. Alternatively, module 101 may have the
module public key 111 and module private key 112 gener-
ated outside module 101 and loaded into a non-volatile
memory 101w. Server 105 can utilize step 516 to receive a
module public key 111 from module 101. Server 105 can
utilize a step 517 and a shared secret key 510 to authenticate
a message 208 that contains the module public key 111 from
step 516. Authentication of module public key 111 may be
preferred in order to ensure that the module public key 111
is properly associated with the correct physical module 101,
and prevent an imposter, hacker, etc. from sending in a fake
module public key 111 for module 101. After using step 517
to authenticate module public key 111, server 105 can record
module public key 111 and associated module identity 110
(plus optionally a module public key identity 110a) in a
module database 105%. Although not illustrated in FIG. 7,
server 105 can also send an application message 701 to
application 171i after successtully recording module public
key 111.

Application 171/ operating within an application server
171 can send an application message 701 to server 105, and
server 105 can receive the application message 701. Appli-
cation message 701 could include a module instruction 502,
where the module instruction 502 could comprise an actua-
tor setting 706. Although not illustrated in FIG. 7, module
instruction 502 as transmitted or sent by application 1717 or
application server 171 could include a module identity 110
and/or an actuator identity 152. Actuator setting 706 could
include a setting value and an actuator identity 152. As one
exemplary embodiment, module 101 may have a plurality of
actuators 101y that comprise thermostats. Actuator setting
706, where one actuator 101y had an actuator identity 152 of
“Left”, could comprise an exemplary string like “Left,
25.5”, where module 101 would set the “left” thermostat/
actuator 101y to 25.5 degrees C. The value “left” could also
comprise the actuator identity 152. Other possibilities exist
as well without departing from the scope of the present
invention, and a thermostat, temperature settings, or actuator
identities are not required to use the methods and systems
contemplated herein. As discussed below in connection with
FIG. 8, actuator setting 706 within an application message
701 could be received within a secure connection data
transfer 802 from application server 171. Thus, in an exem-
plary embodiment, the actuator setting 706 may preferably
not be plaintext as transmitted across a network such as the
Internet 107 between server 105 and application server 171
in an application message 701.

A module instruction 502 (i) from an application 171 or
application server 171, and (ii) within an application mes-
sage 701 could include other exemplary values or instruc-
tions for a module 101, besides the exemplary actuator
setting. According to exemplary embodiments, a module
instruction 502 could comprise information for module 101
such as (i) sleep timers or instructions or values for a CPU
wake controller 101w, (ii) server address 106 or server
identity 206 for communicating with a server 105 (such as
sending a different server address 106 for module 101 to
utilize in future communications), (iii) a new or updated
values for set of data reporting steps 101x, (iv) a new or
updated module program 101i, (v) software or firmware for
operating system 101/ and device driver 101g, (vi) a cali-

20

25

30

40

45

55

80

bration value for sensor 101/ or actuator 101y, (vii) values
for a set of parameters 126, (viii) software or settings for
radio 101z, (ix) updated cryptographic algorithms 141, (x) a
new module private key 112, (xi) a symmetric key 127, (xii)
apre-shared secret key value 129 for use in communicating
with a wireless network 102 (where the pre-shared secret
key value 129a can be the equivalent of a Ki value in a
network supporting ETSI/3GPP standards), (xii) a value for
a module identity 101, (xiii) a value to use in a channel
coding 406, or (xiv) a security token 401 or settings for using
security tokens. Other possibilities exist as well for a module
instruction 502 without departing from the scope of the
present invention. After receiving module instruction 502 in
a response 209 from server 105, module 101 could record
the data in module instruction 502 within a nonvolatile
memory 101w or RAM 101e.

After receiving application message 701, server 105 can
wait for wait interval 703. As depicted and described in
connection with FIGS. 2 and 64, firewall 104 may be present
in a system 700 and/or system 100, which could block the
transmission or sending of packets from server 105 to
module 101 at arbitrary times. In addition, according to
exemplary preferred embodiments, module 101 can enter
periods of sleep or dormancy using a CPU wake controller
101« in order to conserve energy or the life of a battery 101%,
if present. During periods of sleep or dormancy, module 101
may not be able to receive packets from server 105. Con-
sequently, server 105 can preferably wait for the wait
interval 703 as illustrated in FIG. 7, before sending response
209 which could include the module instruction 502. As
illustrated in FIG. 7, the module instruction 502 could
include an actuator setting 706, but module instruction 502
could include other data as well such as the exemplary
module instructions 502 described in the previous para-
graph.

According to exemplary embodiments, wait interval 703
can vary depending upon module 101 and monitored unit
119, and wait interval 703 could comprise a wide range of
values. Module 101 could send a sensor data 6045 or a report
or a message 208 at exemplary reporting intervals such as
every minute, 10 minutes, hour, 6 hours, daily, or longer.
Wait interval 703 could be associated with the reporting
interval, and the wait interval 703 would end when the next
message 208 from module 101 is received. If server 105
supports a plurality of modules 101, wait interval 703 can be
associated with the specific module 101 associated with the
module instruction 502, possibly by using a module identity
110 in both a message 208 and an application message 701.
In other words, server 105 can preferably wait for a message
208 from the specific module 101 associated with the
module instruction 502 before sending the response 209
which could include the module instruction 502. Response
209 could be sent using the source and destination IP:port
numbers depicted and described in connection with FIG. 2.

Upon the receipt of message 208 from module 101 with
module identity 110, the wait interval 703 can end. As
illustrated in FIG. 7, message 208 could include a server
instruction 414. The server instruction 414 in the exemplary
embodiment illustrated in FIG. 7 comprises an “update”
server instruction 414, and could include a sensor measure-
ment 6045. Sensor measurement 6045 could be obtained by
module 101 from sensor 101/ before sending message 208,
and possibly after module 101 wakes from a dormant state
using a CPU wake controller 101u. Sensor measurement
6045 could be collected by a module program 101/ using a
system bus 101d. As illustrated in FIG. 6a, a server instruc-
tion 414 with sensor data 6045 could be within a module

US 11,258,595 B2

81

encrypted data 403 and received by server 105. Server 105
could utilize the steps illustrated in FIG. 4 to process the
received message 208 at the end of wait interval 703. Sensor
measurement 6045 as used by module program 1014, server
105, application 171i, and/or application server 171 could
represent a different string or number at each element,
depending upon encoding rules or encoding schemes uti-
lized by each element, but sensor measurement 6045 at each
location can represent data or a value collected by a sensor
101/

After processing the received message 208 that could
include sensor data 6045, server 105 can send application
171 operating on application server 171 an application
message 701 that includes an update instruction 704, where
update instruction 704 could include sensor data 6044,
module identity 110, and sensor identity 151, if present.
Update instruction 704 could include data other than sensor
data 604, such as data pertaining to the state of module 101,
including subcomponents illustrated in FIGS. 15 and 1le.
Using update instruction 704 or a plurality of update instruc-
tions 704, application 171/ can aggregate data to generate
reports for presentation to user 183 or make decisions using
service controller 171x. Based on data input in update
instruction 704, application 171; could output module
instruction 502 in an application message 701. Application
171i could record data received in update instruction 704
within an application database 171%.

After receiving message 208 with server instruction 414,
server 105 can send a response 209 to module 101. Note that
response 209 is illustrated in FIG. 7 as being sent after
sending update instruction 704 to application server 171, but
response 209 could also be sent to module 101 before
sending update instruction 704 to application server 171.
Response 209 can include module instruction 502, where
module instruction 502 could comprise actuator setting 706,
according to an exemplary embodiment. Module instruction
502 could also comprise other data for module 101 in other
exemplary embodiments, as outlined above. Although not
illustrated in FIG. 7, response 209 could include module
instruction 502 within a server encrypted data 503 using the
steps depicted and described in connection with FIG. 5a.
Module instruction 502 could also include actuator identity
152 associated with actuator setting 706. Response 209 can
be formatted as depicted and described in FIGS. 2 and 6a,
such that response 209 can traverse a firewall 104 and be
received by module 101 using IP address 204. Network
firewall 104 is illustrated as a dashed line in FIG. 7, and may
be optionally not be present. But, the use of network firewall
104 may be included in a system 100 and/or system 700 and
network firewall 104 may be beyond the control of a module
101, server 105, module provider 109, M2M service pro-
vider 108, etc.

After receiving response 209 with the module instruction
502 and actuator setting 706, module 101 can process the
response 209, which could also include server encrypted
data 503. Module 101 could extract actuator setting 706
from the module instruction 502. Module instruction 502
could include an actuator identity 152. Module 101 can use
a module program 101: to send the actuator setting 706 to
the actuator 101y with actuator identity 152. Actuator setting
706 as sent by module program 101; may be in a different
format or data structure than actuator setting 706 as sent by
application 171, but both sets of data can achieve the same
objective of having an actuator 101y apply a setting. Accord-
ing to one exemplary embodiment, actuator setting 706 as
sent by module program 101 could be an analog voltage
along a system bus 1014, while actuator setting 706 as sent

10

15

20

25

30

35

40

45

50

55

60

65

82

by application 171i could be a string or number. Or, actuator
setting 706 as sent by module program 101; to actuator 101y
could be a number in a different format than a number in
actuator setting 706 sent by application 1714, application
server 171, and/or server 105. Note that as contemplated
herein, the term “actuator data” can include or comprise
“actuator setting”.

After applying actuator setting 706, actuator 101y can
send an acknowledgement to module program 101;. Module
program 101 can then send a second message 208 to server
105, where message 208 includes a server instruction 414 of
“confirmation”. The server instruction 414 of “confirma-
tion” could be included in a module encrypted data 403
according to a preferred exemplary embodiment. Server 105
can receive the second message 208 with the module
encrypted data 403 and decrypt the module encrypted data
403 using a step 413 to extract the server instruction 414 of
“confirmation”. The second message 208 may include the
actuator identity 152 and/or also the module identity 110.
Server 105 can send an application message 701 that
includes a confirmation 705, where the confirmation can (i)
inform application 171/ that the actuator setting 706 sent to
server 105 has been properly and/or successfully applied by
module 101 and/or actuator 101y. Confirmation 705 could
also include module identity 110 and/or actuator identity
152. Application 171i could then send an acknowledgement
back to server 105 after receiving the confirmation 705.

According to preferred exemplary embodiments, actuator
identity 152 is preferably globally unique, such that that
including an actuator identity 152 in any packet would allow
a server 105 or application 171/ to lookup a module identity
110 and/or module 101 using the actuator identity 152 and
a database such as module database 105%. Similarly, a sensor
identity 151 may be globally unique, according to preferred
exemplary embodiments such that a sensor identity 151 in
any packet would allow a server 105 or application 171i to
lookup a module identity 110 and/or module 101 using the
sensor identity 151 and a database such as application
database 171%.

FIG. 8

FIG. 8 is a simplified message flow diagram illustrating
exemplary data transferred between a module and an appli-
cation using a server, in accordance with exemplary embodi-
ments. System 800 can include an application server 171, a
server 105, and a module 101 in connected via a network.
The network could comprise the Internet 107. Application
server 171 could include an application 171i, where appli-
cation 171/ can include logic, algorithms, databases, user
interfaces, and programs for managing a plurality of mod-
ules 101 with a plurality of users 183. Application server 171
and application 171; may be associated with an M2M
service provider 108, and M2M service provider 108 could
use application 171i to provide and manage a service with
distributed modules 101 associated with a plurality of moni-
tored units 119.

Module 101 can derive a public key 111 and a private key
112 using step 515. Module 101 can derive the public and
private keys using step 515 and a set of parameters 126.
Alternatively, module 101 may have the module public key
111 and module private key 112 generated outside module
101 and loaded into a non-volatile memory 101w. Server
105 can utilize step 516 to receive a module public key 111
from module 101. Server 105 can utilize a step 517 to
authenticate a message 208 that contains the module public
key 111 in step 516. Authentication of module public key
111 may be preferred in order to ensure that the module
public key 111 is properly associated with the correct

US 11,258,595 B2

83

physical module 101 with a module identity 110, and
prevent an imposter, hacker, etc. from sending in a fake
module public key 111 for module 101. After using step 517
to authenticate module public key 111, server 105 can record
module public key 111 in a module database 105%. Although
not illustrated in FIG. 8, server 105 can also send an
application message 701 to application 171/ after success-
fully recording an authenticated module public key 111.
Although not illustrated in FIG. 8, a module public key 111
received in step 516 may also include a module public key
identity 111a in order to track which of a plurality of
potential module public keys 111 for a module 101 may be
used.

Also, server 105 is not required to receive module public
key 111 from module 101 in order to utilize the methods and
systems contemplated herein. Instead of receiving module
public key 111 in a message 208 from module 101, server
105 could alternatively query another server such as appli-
cation server 171 or a server associated with certificate
authority 118 for either module public key 112 or a certifi-
cate 122 associated with module 101 using a module identity
110. In addition, server 105 could have a list or database
table of module identities 110 and module public keys 111
loaded into a module database 105%.

After recording module public key 111 and module iden-
tity 110, possibly including a module public key identity
111a, server 105 can wait for wait interval 703. Wait interval
703 could represent the time between reports or messages
208 submitted by module 101, and wait interval 703 for an
individual module 101 could comprise a wide range of
values from several times a second to several days or longer,
depending upon the application and/or monitored unit 119.
The wait interval 703 can end when server 105 receives a
message 208 from module 101 with a module identity 110.

Module controller 105x within server 105 can receive a
message 208 that includes a server instruction 414 with
sensor data 604b. The sensor data 6045 and/or server
instruction 414 could be included in a module encrypted
data 403, where the module encrypted data 403 can use the
module public key 111 submitted in step 516 above and
derived by module 101 in step 515. According to one
exemplary embodiment, module encrypted data 403 could
be ciphered with a symmetric key 127 that is derived shared
key 1295 from a key derivation function 141f and module
public key 111 received in step 516 (and also server public
key 114). Module controller 105x can process message 208
using the steps depicted and described in connection with
FIG. 4 in order to decrypt the module encrypted data 403 and
obtain the plaintext server instruction 414 and plaintext
sensor data 6045. Although sensor data 60454 is illustrated as
the server instruction 414 in FIG. 8, server instruction 414
could have other values such data associated with any of the
components for module 101 illustrated in FIG. 16 and FIG.
le. Server instruction 414 could be a “query” where module
101 queries for information from server 105 or application
171i, or server instruction 414 could be an alarm or error
notification outside a regular reporting interval. Other pos-
sibilities for server instruction 414 exist without departing
from the scope of the present invention. Server instruction
414 could also be a periodic “registration” message with no
subsystem data for module 101, and a “registration” could
be a message for server 105 indicating module 101 is awake
and online with Internet 107.

Server 105 can establish a secure connection with appli-
cation server 171 and application 171 using a secure
connection setup 801 and a secure connection data transfer
802. Server 105 can utilize a server program 101/ to manage

20

30

40

45

50

55

84

the communication with application 171/ and/or application
server 171, while a module controller 105x can manage
communication with a module 101. Alternatively, server
program 101; and module controller 105x can be optionally
combined or omitted, such that server 105 performs the
actions illustrated in FIG. 8 for server programs 101; and
module controller 105x. Likewise, server 105 and applica-
tion 171 could be combined or operate on the same local
area network (LAN) and thus not be connected via the
Internet 107. If server 105 and application 171 are nodes
within the same LLAN or virtual private network (VPN), then
the network connection can also be considered a secure
connection (without using encryption between the nodes),
since packets routed between the nodes may not need to
traverse the Internet 107 and thus the network layer could
provide security. Although secure connection setup 801 is
illustrated in FIG. 8 as occurring after message 208 is
received by server 105, secure connection setup 801 could
take place before message 208 is received by server 105.
Secure connection setup 801 could utilize a secure protocol
such as TLS, IPSec, or VPN to establish a secure connection
between server 105 and application 171/ and/or application
server 171, such that data transferred between the two nodes
is encrypted and also not subject to replay attacks. As
contemplated herein, a secure connection can comprise any
of a TLS connection, an IPSec connection, a VPN connec-
tion, or a LAN connection between server 105 and appli-
cation server 171 and/or application 171i, and other possi-
bilities exist as well without departing from the scope of the
present invention.

Other secure connections may be utilized as well, includ-
ing a secure shell (SSH) tunnel, future versions of standard
secure connections, or also a proprietary protocol for a
secure connection. Secure connection setup 801 as illus-
trated in FIG. 8 may utilize a TLS protocol, such as TLS
version 1.2. Secure connection setup 801 can include the
transfer of a certificate 122 for application server 171, and
also the transfer of an application public key 171w. Server
105 can utilize application public key 171w to encrypt data
received from module 101 in a message 208, such as sensor
data 6045. According to one exemplary embodiment, appli-
cation message 701 could be ciphered with a symmetric key
127 that comprises a derived shared key 1295 from (i) a key
derivation function 141f(ii) application public key 171w and
server public key 114.

The message flow in a secure connection setup 801 also
illustrates one benefit of the present invention, where a
message 208 can be securely transferred between module
101 and server 105 using a single UDP datagram, while
secure connection setup 801 may require a plurality of TCP
messages in both directions. In other words, using a secure
connection setup 801 between module 101 and server 105
may not be energy efficient for module 101, while using
secure connection setup 801 between server 105 and appli-
cation server 171 can be efficient, since the data from a
plurality of modules 101 can be shared over the secure
connection setup 801. Also note that since module 101 may
sleep for relatively long periods such as 30 minutes or
longer, a new secure connection setup 801 would likely be
required to support a firewall 104 after each period of sleep,
and completing the process of a secure connection setup 801
each time module 101 wakes may not be energy or band-
width efficient for a module 101.

After completing server connection setup 801, server 105
can use a secure connection data transfer 802 to send a first
application message 701, where the first application mes-
sage 701 could include update instruction 704 that includes

US 11,258,595 B2

85

sensor data 6045 that server 105 received in a message 208.
Data within the first application message 701 containing
update instruction 704 could be ciphered according to the
specifications of the secure connection, such as TLS or
IPSec, and other possibilities exist as well. Note that server
105 can decrypt a module encrypted data 403 that includes
sensor data 6045 and subsequently encrypt the sensor data
6045 according to the format required by secure connection
setup 801 for transfer to application 171; using secure
connection data transfer 802. Server 105 can use two dif-
ferent server public keys 114, recorded in the form of a
certificate 122 in one embodiment, to with a first server
public key 114 used decrypt module encrypted data 403 and
a second server public key 114 used encrypt update instruc-
tion 704. Server public keys 114 can be used by server 105
in a key derivation function 141/ to derive a shared public
keys 1295 used in a symmetric ciphering algorithm 1415 for
both secure connection data transfer 802 and module
encrypted data 403 (with a different derived shared public
key 1295 with module 101 and application server 171,
respectively).

In another embodiment, server 105 can use the same
server public key 114 to both decrypt module encrypted data
403 and encrypt update instruction 704. Other possibilities
exist as well for server 105 to use a server public key 114 to
(1) encrypt update instruction 704, such as using an asym-
metric ciphering algorithm 141a, and (ii) decrypt module
encrypted data 403 without departing from the scope of the
present invention. As illustrated in FIG. 8, server 105 can
receive an acknowledgement 804 after sending the first
application message 701, with update instruction 704 that
includes sensor data 6045, where acknowledgement 804 can
signal that application message 701 with update instruction
704 has been received by application 171i and/or application
server 171. Although not illustrated in FIG. 8, the acknowl-
edgement 804 could optionally include a module instruction
502 for module 101.

After receiving message 208, server 105 can then send a
response 209. Response 209 could be sent before or after
server 105 sends update instruction 704 to application 171/
using secure connection data transfer 802. Response 209 can
include a server encrypted data 504 that includes a module
instruction 502. Module instruction 502 could be processed
by server 105, or could be obtained by server 105 from
application 171i in an application instruction 701. In other
words, a secure connection data transfer 802 may be utilized
by a server 105 and an application server 171 to send a
second application message 701 to server 105, and be
received by server 105, in addition to the sending the first
application message 701 from server 105 to application
server 171 that is illustrated in FIG. 8.

According to an exemplary preferred embodiment, server
105 waits for a response or acknowledgement 804 from
application 171/ to application message 701 before sending
response 209 to module 101. One reason for waiting for a
response or acknowledgement 804 from application 171/ is
that response or acknowledgement 804 from application
171 could include a module instruction 502, and the module
instruction 502 may preferably be included in a response
209. Other possibilities exist as well without departing from
the scope of the present invention.

FIG. 8 can also illustrate a benefit of an exemplary
embodiment contemplated herein. According to an exem-
plary embodiment, (i) server 105 and application server 171
can utilize a first set of cryptographic algorithms 141 for
sending and receiving data between server 105 and appli-
cation server 171, such as with a secure connection data

10

15

20

25

30

35

40

45

50

55

60

65

86

transfer 802, and (ii) server 105 and module 101 can utilize
a second set of cryptographic algorithms 141 for sending
and receiving data between server 105 and module 101, such
as using the second set of cryptographic algorithms 141 for
a module encrypted data 403 and/or server encrypted data
504. In an exemplary embodiment, server 105 and applica-
tion server 171 can use RSA algorithms 153 in the first set
of cryptographic algorithms 141, while server 105 and
module 101 can use ECC algorithms 154 in the second set
of cryptographic algorithms 141. As one example, server
105 can use an (i) RSA-based asymmetric ciphering algo-
rithm 1415 and first server public key 114 with the appli-
cation server 171 to securely transfer a first symmetric key
127 with application server 171, and (ii) an ECC-based
asymmetric ciphering algorithm 1415 and second server
public key 114 with the module 101 to securely transfer a
second symmetric key 127 with a module 101.

Other possibilities exist as well for a server 105 to use a
different cryptographic algorithms 141 or parameters 126 for
each of application server 171 and module 101. (A) Server
105 and application server 171 could use a first set of
parameters 126 for use with cryptographic algorithms 141
for an application message 701 with related server digital
signatures, while (B) server 105 and module 101 could use
a second set of parameters 126 for use with cryptographic
algorithms 141 for a module encrypted data 403 and/or
server encrypted data 504 and related digital signatures. In
order to maximize security between servers such as server
105 and application server 171, the first set of parameters
126 could specify (i) a longer public and private key length,
(i1) a shorter key expiration time 133, (iii) a longer secure
hash algorithm (such as an exemplary 512 bits), (iv) a longer
symmetric ciphering key 127 length (such as an exemplary
192 or 256 bits), (v) the use of or values for RSA algorithm
153 and a modulus, (vi) the use of Diffie Hellman key
exchange or a first key exchange algorithm for a key
derivation function 141/ and key exchange, (vii) the use of
or values for a second symmetric ciphering algorithm 1415
for symmetric ciphering, (viii) the use of or values for an
RSA digital signature algorithm or a second digital signature
algorithm, and similar settings.

In accordance with a preferred exemplary embodiment, in
order to minimize processing power and/or energy usage
required for a module 101, the second set of parameters 126
could specify (i) a shorter public and private key length, (ii)
a longer key expiration time 133, (iii) a shorter secure hash
algorithm (such as an exemplary 256 bits), (iv) a shorter
symmetric ciphering key 127 length (such as an exemplary
128 bits), and (v) the use of an ECC algorithm 154, (vi) the
use of or values for an ECC standard curve 138 and/or ECC
parameters 137, (vii) the use of or values for ECDH 159 or
a second key exchange algorithm for key derivation and
exchange, (vii) the use of or values for of a second sym-
metric ciphering algorithm 1415 for symmetric ciphering,
(viii) the use of or values for of ECDSA 158 or a second
digital signature algorithm for digital signatures, and similar
settings. In an embodiment, the first set of parameters 126
(which can be used by server 105 and application server
171) and the second set of parameters 126 (which can be
used by server 105 and module 101) can both specify the use
of elliptic curve cryptographic algorithms 141, but with
different sets of parameters 126 such that the first set of
parameters 126 is selected for server to server communica-
tions, and the second set of parameters 126 is selected for
communications between a server 105 and a module 101. In
another embodiment, the first set of parameters 126 and the
second set of parameters 126 can both specify the use of

US 11,258,595 B2

87

RSA based cryptographic algorithms 141, but with different
sets of parameters 126 such that the first set of parameters
126 is selected for server to server communications, and the
second set of parameters 126 is selected for communications
between a server 105 and a module 101.

In this manner, the use of cryptographic algorithms 141
between (i) server 105 and application server 171 and (ii)
server 105 and module 101 can be optimized given different
constraints for processing power and energy consumption
for server 105, application server 171, and a module 101. In
addition, an application server 171 may use cryptographic
algorithms 141 and parameters 126 that may not be com-
patible with cryptographic algorithms 141 and parameters
126 used by a module 101, and server 105 can use crypto-
graphic algorithms 141 and parameters 126 to enable a
translation or conversion of encrypted data and digital
signatures between a module 101 and an application server
171, thereby establishing connectivity between a module
101 and an application server 171 through a server 105.
According to an exemplary embodiment, server 105 can
function as a gateway between application server 171 and/or
application 171/ and a plurality of modules 101.

FIG. 9

FIG. 9 is a simplified message flow diagram illustrating
exemplary data transferred between (i) a server and an
application and between (ii) a server and a module, in
accordance with exemplary embodiments. An application
server 171, a server 105, and a module 101 can send and
receive data illustrated in FIG. 9. Application server 171 can
include application 171/ and use an Internet Protocol address
and port (IP:port) number 903 for sending and receiving data
with server 105. Server 105 can include a server program
101/ and a module controller 105x, where server program
101/ can access a first server IP:port number 901 for
communicating with application server 171, and module
controller 105x can access a second server IP:port number
207 for communication with module 101. In accordance
with a preferred exemplary embodiment, multiple modules
101 can send data to server IP:port number 207, and thus
server 105 and/or a module controller 105x can use a single
IP:port number 207 to communicate with a plurality of
modules 101. In addition, server 105 could specify that one
subset of modules 101 communicate with a first IP:port
number 207, and a second subset of modules 101 commu-
nicate with a second IP:port number 207, etc. In another
embodiment, server 105 could use multiple Internet Protocol
addresses for sending and receiving data with a module 101,
although a given module 101 can preferably send a message
208 to IP:port number 207 and receive a response 209 from
the IP:port number 207, and a different module 101 could
use a different value for IP:port number 207, including
potentially a different IP address 106. Module 101 can utilize
an IP:port number 204 for sending and receiving data with
server 105.

As illustrated in FIG. 9, a symmetric firewall 104 could be
included between module 101 and server 105, and the of IP
addresses and port numbers in packets between server 105
and module 101 illustrated in FIG. 9 could also represent
routing if a firewall 104 is present and functions as a
symmetric firewall without NAT routing. In this case, fire-
wall 104 may not perform network address translation on
source and destination IP addresses, but rather filter packets
based on pre-determined rules. For example, a firewall 104
that is a symmetric firewall could drop inbound packets from
IP:port number 207 to module 101 unless module 101 had
previously sent a packet to IP:port number 207 within a
firewall port binding timeout value 117. Alternatively, a

10

15

20

25

30

35

40

45

50

55

60

65

88

firewall 104 may be optionally omitted, and in this case the
destination address in packets sent from server 105 to
module 101 could include the IP address 202 of module 101,
which is also the case illustrated in FIG. 9. In other words,
FIG. 9 illustrates an exemplary routing of packets in the
cases that (i) firewall 104 is a symmetric firewall, and (ii)
firewall 104 is optionally not present.

Server 105 can receive a message 208 from a module 101.
Server 105 can use a module controller 105x to receive the
message, and module controller 105x could also be identi-
fied as a process operating on server 105 that binds to the
port number in IP:port 207, which could include a port
number 205. Message 208 could include module identity
string 904, which could represent a temporary or transient
string or number used by module 101 and server 105 to
associate and identify message 208 with module identity
110. Module identity string 904 could also comprise a
module identity 110. Server 105 can use module identity
string 904 to select a symmetric key 127 in order to decrypt
module encrypted data 403, since module identity string 904
may preferably be not encrypted. Server 105 and module
101 could use an algorithm within cryptographic algorithms
141 in order to process a module identity string 904,
whereby the module identity string 904 can be converted
between (i) a module identity 110 in a form such as a serial
number or IMEI within module 101 and/or server 102, and
(i1) a module identity string 904 in a message 208 that can
traverse the Internet 107.

Message 208 as received by server 105 can also include
a server instruction 414 within a module encrypted data 403,
where the module encrypted data 403 could be ciphered
using a symmetric key 127. The server instruction 414
illustrated in FIG. 9 can be an exemplary “update” instruc-
tion, where the “update” instruction can include a security
token 401 and sensor data 6045. Sensor data 6045 can
include a sensor identity 151 and a sensor measurement.
Server instruction 414 within a message 208 could include
many other values besides an update, including a registra-
tion, a query, an alarm or error notification, configuration
request, software request, confirmation, or other values also
depicted and described in connection with a server instruc-
tion 414 in FIG. 4. Although message 208 is illustrated as a
UDP datagram 601« in FIG. 9, message 208 could also be
transmitted as a TCP datagram or other Internet transport
protocols including Datagram Congestion Control Protocol
(DCCP) and Stream Control Transmission Protocol (SCTP).
A security token 401 can comprise a random number 128«
processed by a random number generator 128 and can be
preferably not reused and therefore can keep message 208
unique and not subject to replay attacks. Since a UDP
protocol may be implemented for message 208, and the
connectionless UDP protocol may require a module 101 to
send retransmissions of a UDP datagram 601a for message
208, if module 101 does not receive a response 209 within
a specified timer period.

According to an exemplary preferred embodiment, server
105 can include a timer 905, such that multiple UDP
datagrams 601a received within the timer 905 period may be
processed, but datagrams received outside the expiration of
the timer 905 would be dropped. Note timer 905 can be
particularly useful for security of a system 100 when module
101 may transmit multiple copies of UDP datagram 601a.
Module 101 may transmit multiple copies of a UDP data-
gram 601a in order to implement forward error correction
and compensate for any packet loss on the Internet 107 or
possibly with wireless network 102. The UDP datagram
601a may also be sent as a UDP Lite datagram with channel

US 11,258,595 B2

89

coding 406. Server 105 can start timer 905 when the first
UDP datagram 601« in message 208 is received, and discard
UDP datagrams 601a for message 208 after the timer 905
expires, such as after an exemplary 2 seconds although other
possibilities exist as well. In this manner (i) module 101 can
securely send multiple copies of the same UDP datagram
601a in message 208, and (ii) server 105 can remain robust
against replay attacks. Server 105 can also reset the timer
905 to a zero value upon sending response 209, and the timer
value 905 could start again upon the receipt of a first UPD
datagram 601qa in the next message 208.

If the UDP Lite protocol is utilized for message 208 with
multiple copies of UDP Lite datagram 601a received, then
each UDP Lite datagram 601« could be different, depending
on the presence of bit errors in the datagram, and thus server
105 can use timer 905 to collect the multiple copies of UDP
Lite datagram 601a within the timer 905 period and process
the multiple packets received, including combining the data
across multiple packets, in order to eliminate bit errors
within the datagrams and collect an error-free message 208.

After receiving message 208, server 105 use the steps
outlined in FIG. 5a to process message 208 and read the
plaintext server instruction 414, such as the sensor data 6045
illustrated in FIG. 9. Other possibilities exist as well for
sensor data 60456 or values or information inside a server
instruction 414. Server 105 can then send or transmit a first
application message 701 to application server 171 that
includes data received from the server instruction 414 from
module 101 in message 208. The data received in the server
instruction 414 from module 101 could be included by
server 105 in an update instruction 704. An application 171/
operating within application server 171 or associated with
application server 171 could receive the first application
message 701. The first application message 701 could be
formatted according to a TCP datagram 902, although other
possibilities exist as well including UDP.

In accordance with an exemplary preferred embodiment,
the first application message 701 may include an update
instruction 704 with sensor data 6045, although update
instruction 704 could also contain or include other data
pertaining to module 101 besides sensor data 6045, such as
a state of a component with module 101, a state of a software
routine, variable, or parameter associated with module 101.
The first application message 701 sent from server 105 to
application server 171 could be a datagram within a secure
connection data transfer 802 as illustrated in FIG. 8. Sensor
data 6045 could be sent by server 105 using application
server public key 171w, such as either (i) mutually deriving
a common shared key 1295 between server 105 and appli-
cation 171/ using a key derivation function 141/, where the
shared key 1294 could function as a symmetric key 127 with
a symmetric ciphering algorithm 1415, or (ii) server 105
sending a symmetric key 127 to application server 171 using
an asymmetric ciphering algorithm 141« and the application
server public key 171w. Message 805 in FIG. 8 with the
label of “Client Key Exchange” can comprise server 105
sending a symmetric key 127 (or value or parameter 126 for
deriving symmetric key 127) to application server 171,
where the symmetric key 127 can be used by server 105 to
encrypt update instruction 704 illustrated in FIG. 9.

In accordance with an exemplary preferred embodiment,
application message 701 may include (i) module identity
110 encrypted within secure connection data transfer 802
and also a server identity 206 that is not encrypted. In this
manner, application server 171 can use server identity 206 to
select a symmetric key 127 (possibly sent in message 805 as
described in the paragraph above) in order to decrypt the

10

15

20

25

30

35

40

45

50

55

60

65

90

encrypted data in update instruction 704. Although not
illustrated in FIG. 9, in accordance with another exemplary
embodiment, both a message 208 and the first application
message 701 may also include a module digital signature
405. Server 105 can forward the module digital signature
405 received in a message 208 with sensor data 6045 to the
application server 171 in the first application message 701
illustrated in FIG. 9. The module digital signature 405 in a
first application message 701 does not need to be encrypted.
The application server 171 can verify the module digital
signature 405 using step 411 of FIG. 4 (using a module
public key 111). In this manner, application 171 can verify
that module 101 originated the sensor data 6045, even
though application server 171 received the application mes-
sage 701 from server 105.

Application server 171 can receive the first application
message 701 sent by server 105 and process the message.
The message processing by application server 171 could use
steps similar or equivalent to the steps utilized by server 105
illustrated in FIG. 4, in order to extract a plaintext applica-
tion instruction 704. Although not illustrated in FIG. 9,
application 171/ could record data received within applica-
tion instruction 704 and record the data in an application
database 171%. Application 171i could use the data received
in application instruction 704 or a plurality of application
instructions 704 to generate reports, graphs, emails, or other
user information for a user 183.

Upon processing the information within application
instruction 704, application 171i or application server 171
could send a second application message 701 to server 105,
as illustrated in FIG. 9. The second application message 701
could be sent using a secure connection data transfer 802,
and could include a module instruction 502 and a module
identity 110. The second application message 701 can use
the IP:port number 903 as a source IP:port number for the
second application message 701, where [P:port number 903
also represented a destination IP:port number for the first
application message 701. The second application message
701 can use the IP:port number 901 as the destination IP:port
number, where IP:port number 901 was the source port
number in the first application message 701. The module
instruction 502 within the second application message 701
can comprise could include an actuator setting 706. The
module instruction 502 within the second application mes-
sage 701 can comprise other data or module instructions 502
for a module 101 that do not include an actuator setting 706,
such as the exemplary data depicted and described in
connection with FIG. 5a.

Either server 105 or application server 171 could use the
application server public key 171w to process the second
application message 701. As one example, server 105 and/or
application server 171 could use a key derivation function
141f to derive a key, where key derivation function 141f
used application server public key 171w. The derived key
could be used to encrypt and/or decrypt the module instruc-
tion 502 in the second application message 701. Other
possibilities exists as well for the second application mes-
sage 701 to use the application server public key 171w, such
as server 105 sending a symmetric key 127 (used to encrypt
and/or decrypt module instruction 502 in the second appli-
cation message 701), where they symmetric key 127 was
ciphered using the application server public key 171w

Server 105 can received the second application message
701, and the message could be received using an IP:port
number 901. Although an IPv4 address is shown in FIG. 9,
and IPv6 address could be utilized as well. Server 105 could
decrypt a body 602, that contains module identity 110 and a

US 11,258,595 B2

91

module instruction 502, using algorithms specified accord-
ing to a secure connection data transfer 802. According to an
exemplary embodiment, a secure connection data transfer
802 between a server 105 and an application server 171
could also comprise the steps for encrypting/decrypting and
signing/verifying that are depicted and described in connec-
tion with FIG. 4 and FIG. 5a, and thus secure connection
data transfer 802 could also optionally use the same steps
and procedures between server 105 and application server
171 that are contemplated between server 105 and module
101. As one example, the application message 701 packets
illustrated in FIG. 9 sent between server 105 and application
171 could be formatted to UDP and include a server
encrypted data 504. As depicted and described in FIG. 8, a
first set of parameters with cryptographic algorithms 141
could be used with an application message 701 and a second
set of parameters 126 with cryptographic algorithms 141
could be used with server encrypted data 504 and/or module
encrypted data 403.

After extracting a plaintext module instruction 502 and
module identity 110 from a body 602 in the the second
application message 701, server 105 can take steps to
process the data within a response 209 for module 101.
Server 105 can record or query for information pertaining to
module 101 using module identity 110 in a module database
105%. In accordance with exemplary embodiments, server
105 can use module identity 110 received in the second
application message 701 to select (i) a symmetric key 127
used by module 101 for encrypting and/or decrypting a
server encrypted data 504 that can include the module
instruction 502, (ii) a destination IP:port number 204 for
sending a response 209, (iii) a source IP:port number 207 for
sending a response 209, (iv) a determination if a wait
interval 703 is required before sending response 209, (v) a
security token 401, and (vi) a set of parameters 126 for use
with a cryptographic algorithms 141 in communications
with module 101. In one embodiment, different modules 101
connected to server 105 may use different parameters 126,
and server 105 can select the parameters 126 using (i) the
module identity 110 received in the second application
message and (ii) a module database 105%. Server 105 can
also use module identity 110 received in the second appli-
cation message 701 to select (vii) a transport protocol for a
response 209, such as TCP, UDP, or UDP Light, and (viii) a
channel coding 406 parameter such as a block code, turbo
code, or forward error correction coding scheme. Server 105
can use module identity 110 received in application message
701 to format and/or send a response 209 to module 101.

According to a preferred exemplary embodiment, server
105 may receive an application message 701 with data for a
module 101 at arbitrary times. Server 105 could also receive
an application message 701 at a time when a first application
message 701 with module identity 110 has not (i) previously
been sent by server 105, (ii) or sent in a comparably long
time such as a day or a week. As noted previously, server 105
may not be able to send a module instruction 502 to module
101 at arbitrary times, because of either (i) a sleep or
dormant period for module 101, and/or (ii) the presence of
a firewall 104. Thus, server 105 may need to (i) receive a
message 208 from module 101 (such as upon waking after
a sleep period after a firewall port binding timeout value 117
period since the last message 208) before (ii) sending a
module instruction 502. Consequently, according to a pre-
ferred exemplary embodiment, server 105 can use module
identity 110 received within an application message 701 to
determine (i) if server 105 should wait until a wait interval
703 expires before sending response 209 (where the wait

10

15

20

25

30

35

40

45

50

55

60

65

92

interval 703 can end upon receipt of a message 208 from a
module 101 with the module identity 110 received in the
application message 701) or (ii) if server 105 can send
response 209 right away (such as a firewall port binding
timeout period 117 has not expired), where response 209
includes the module instruction 502 received in the appli-
cation message 701.

After (A) using module identity 110 received within
application message 701 to select values within a response
209 and timing for sending a response 209, then (B) server
105 can send response 209 as illustrated in FIG. 9, where the
specific response 209 in FIG. 9 is exemplary. Response 209
can include a server encrypted data 504. Server encrypted
data 504 can include module instruction 502. The exemplary
response 209 illustrated in FIG. 9 includes an actuator
setting 706 within module instruction 502, but other possi-
bilities exist as well. Note that the use of server encrypted
data 504 is optional within a response 209, and server 105
could send module instruction 502 as plaintext. However, in
this case of module instruction 502 being sent as plaintext,
server 105 can preferably include a server digital signature
506 such that module 101 can verify the server digital
signature 506 using the server public key 114 and confirm
the module instruction 502 was transmitted by server 105. In
accordance with exemplary preferred embodiments, (i) a
message from module 101 to server 105 that does not
include a module encrypted data 403 preferably includes a
module digital signature 405, and (ii) a response 209,
message sent back, datagram, or packet from server 105 to
module 101 that does not include a server encrypted data
504 preferably includes a server digital signature 506. If data
is not encrypted within a packet and the packet includes
plaintext instructions such as a module instruction 502 or a
server instruction 414, then, in accordance with preferred
exemplary embodiments, the receiving node can preferably
verify the identity of a sender using a digital signature
included in the packet.

Response 209 sent from server 105 to module 101 could
include a checksum 603. Since firewall 104 may comprise a
symmetric firewall 104 (that may not perform network
address translation routing), the destination address within
IP:port 204 in response 209 illustrated in FIG. 9 may match
the IP address 202 used by module 101. In this case, where
the destination IP:port in response 209 includes IP address
202, a checksum 603 sent by server 105 can be equal to a
checksum 603 received by module 101. In accordance with
exemplary embodiments, response 209 is transmitted or sent
by server 105 within a firewall port binding timeout value
117 after message 208 was received by server 105. In other
words, if a firewall port binding timeout value 117 was equal
to an exemplary 20 seconds for UDP packets, the response
209 illustrated in FIG. 9 would preferably be sent in less than
20 seconds after receiving the last message 208.

FIG. 10

FIG. 10 is a flow chart illustrating exemplary steps for a
server to receive a module instruction within an application
message, and for the server to send the module instruction
to a module, in accordance with exemplary embodiments.
Since an application 171/ operating with an application
server 171 may utilize a different set of protocols for
communications than a module 101, server 105 can provide
connectivity between module 101 and application 171i. As
illustrated in FIG. 8 and FIG. 9 above, a server 105 can
receive an application message 701 from an application
server 171. The application server 171 and/or application
171i could be identified by the source IP address in an
application message 701 received by server 105. Application

US 11,258,595 B2

93

message 701 could include encrypted data using a secure
connection data transfer 802, where a body 602 within a
packet could include a module instruction 502 and a module
identity 110. As illustrated in system 199 in FIG. 1/, server
105 can support a network with a plurality of modules 101,
and thus a module identity 110 within an application mes-
sage 701 can be useful to (i) select the proper destination of
module instruction 502, and (ii) other values for sending a
response 209 to module 101 as depicted and described in
connection with FIG. 9 above.

At step 1001, server 105 can preferably utilize the pro-
tocol for the secure connection data transfer 802 (such as
TLS illustrated in FIG. 8) to extract the plaintext module
instruction 502 and module identity 110. Server 105 could
use a first symmetric key 127 with application server 171,
such as (i) a first symmetric key 127 derived or transmitted
with message 805 and (ii) a symmetric ciphering algorithm
1415. After extracting plaintext from application message
701, server 105 can record the data in a module database
105k, or simply store the data for further processing in a
memory 101e. Although not depicted in FIG. 10, server 105
could use a message pre-processor 105y to send and receive
data with application server 171, where the message pre-
processor could comprise a program or library such as a TLS
library, and IPSec library, an SSH library, etc.

Server 105 can then wait for a wait interval 703, where
server 105 waits for an incoming message from module 101.
Server 105 may need to wait for the wait interval 703
because the module may sleep or be dormant, and also a
firewall 104 may block inbound packets or datagrams from
server 105 to module 101 if module 101 had not previously
sent a packet within a firewall port binding timeout value
117. After the wait interval 703, server 105 can use step 503
to encrypt module instruction 502 using a second symmetric
key 127 and a security token 401, where the second sym-
metric key 127 is different than the first symmetric key 127.
As illustrated in FIG. 5a, the output of step 503 can be a
server encrypted data 504. Although step 503 is illustrated as
after wait interval 703 in FIG. 10, step 503 could also take
place either (i) before wait interval 503 or (ii) concurrently
with wait interval 703.

According to exemplary embodiments, a first symmetric
key 127 used by server 105 and application server 171 is
different than a second symmetric key 127 used by module
101 and server 105. In addition, according to an exemplary
embodiment, server 105 may use an RSA algorithm 153 for
asymmetric ciphering 141a in packets with application
server 171 and an ECC algorithm 154 for asymmetric
ciphering 1414 in packets with a module 101. Thus, accord-
ing to an exemplary preferred embodiment, server 105 can
utilize (i) a first certificate 122 with an RSA-based server
public key 114 for use in communication with application
server 171i and (ii) a second certificate 122 with an ECC-
based server public key 114 for use in communication with
a module 101. In an exemplary embodiment, the first
symmetric key 127 is associated with a first symmetric
ciphering algorithm 1415 between server 105 and applica-
tion server 171, and the second symmetric key 127 is
associated with a second symmetric ciphering algorithm
1415 between server 105 and module 101, and the first and
second symmetric ciphering algorithms 1415 are different.
As depicted and described in connection with FIG. 8, the
first and second symmetric ciphering algorithms 1415 may
use different parameters 126, such as a first set of parameters
126 with the first symmetric ciphering algorithms 1415 and
a second set of parameters 126 with the second symmetric
ciphering algorithms 1415.

10

15

20

25

30

35

40

45

50

55

60

65

94

Server 105 can receive a message 208 from module 101,
where the module identity 110 or module identity string 904
in message 208 could represent a number or string associ-
ated with the module identity 110 in application message
701. Note that the exact string, number, or digits in module
identity 110 or module identity string 904 in message 208
does not need to match the exact string, number, or digits for
module identity 110 in application message 701, and the two
messages could use different encoding schemes or values for
module identity 110. As one example, module identity 110
in application message 701 could represent a serial number
for module 101, while module identity 110 in message 208
could represent a session identity. Other possibilities exist as
well for a string or number within a module identity 110.
Server 105 can preferably uniquely associate module iden-
tity 110 in an application message 701 with module identity
110 in a message 208.

After receiving message 208, server 105 can send the
server encrypted data 504 processed in step 503 above
within a response 209. A server encrypted data 504 within
response 209 could include the module instruction 502,
where module instruction 502 was received in the applica-
tion message 701. Note that module instruction 502 within
response 209 does not need to be the exact same string,
number, or binary digits as module instruction 502 received
by server 105 in application message 701. As one example,
application message 701 and response 209 could use differ-
ent coding schemes (such as ASN.1 for response 209, and
plaintext for application message 701, although other pos-
sibilities exist as well). As illustrated in FIG. 10, module
instruction 502 within an application message 701 can
preferably represent an equivalent action for module 101 as
a module instruction 502 within response 209. For example,
module instruction 502 in both application message 701 and
response 209 could instruct module 101 to (i) throw a
switch, (i) sleep for an interval, (iii) adjust a power level,
and other possibilities exist as well. As described above in
FIG. 9, the use of encryption within response 209 could
optionally be omitted, but in this case response 209 may
include a server digital signature 506 with module instruc-
tion 502.

After sending response 209, at step 1002 the server 105
may preferably receive a confirmation from module 101 that
the module instruction 502 had been successfully received
and/or successfully applied. The confirmation could be
received in the format of a second message 208 from module
101 with a server instruction 414, where the server instruc-
tion 414 is a “confirmation”. Other data regarding the
execution of module instruction 502 by module 101 could be
included in the confirmation at step 1002, such as a time-
stamp 604a when the module instruction 502 was executed.
After receiving the confirmation from the module 101,
server 105 can preferably send a second application message
701 to an application server 171 and/or application 171; with
a confirmation 705. The confirmation 705 could be sent
using a secure connection data transfer 802. In accordance
with exemplary embodiments, the application message 701
sent from server 105 to application server 171 in the form of
a confirmation 705 can include the timestamp 604a.

In an exemplary embodiment, the reliable and secure
transmission of timestamp 604a from module 101 to appli-
cation server 171 through server 105 may be useful for
proper management of a monitored unit 119. Due to any
sleep or dormant states of module 101, plus periodic outages
and recovery of wireless network 102, a first time value that
module 101 executes module instruction 502 may be sig-
nificantly different than a second time value that application

US 11,258,595 B2

95

server 171 sent the module instruction 502. Consequently,
application server 171 may preferably receive a timestamp
604a sent by module 101 in an application message 701
from server 105, and the application message 701 could
comprise a confirmation 705.

Although not illustrated in FIG. 10, server 105 could then
continue listening on or monitoring (i) IP:port 901 for
additional incoming application messages 901 from appli-
cation server 171, and (ii) IP:port 207 for additional incom-
ing messages 208 from a module 101. Although not illus-
trated in FIG. 10, module instruction 502 may optionally be
encrypted such that server 105 may not be able to read
plaintext within module instruction 502, and in this case step
1001 illustrated in FIG. 10 would be bypassed. For example,
module instruction 502 may be encrypted with the module
public key 111, and thus module instruction 502 may only
reasonably be read by module 101. Even if module instruc-
tion 502 cannot be read in plaintext form by server 105 upon
receiving application message 701, module identity 110
within application message 701 would preferably be in a
form where server 105 can (i) process the module identity
110 into plaintext (as a minimum in order to route the
message to module 101 among a plurality of modules 101),
or (ii) simply read the module identity 110 from a body 602
in the application message 701.

In this embodiment where step 1001 is omitted in FIG. 10,
the application server 171 can use a module public key 111
and an asymmetric ciphering algorithm 141a to encrypt the
module instruction 502 shown in the body 602 of the
application message 701 illustrated in FIG. 9. The applica-
tion server 171 can also include a digital signature of the
module instruction 502 using the application server private
key 171¢ and a digital signature algorithms 141d. The
encrypted module instruction 502, module identity 110, and
digital signature can be sent to the server 105 in an appli-
cation message 701 using the first step shown in FIG. 10.
The application message 701 can also include an identity of
the application server.

Continuing in this embodiment where step 1001 is omit-
ted in FIG. 10, the server 105 can then use the waiting
interval 703 until a message 208 is received from a module
101. In this case where step 1001 is omitted in FIG. 10, then
step 503 can also be omitted since the module instruction
502 is already encrypted with the module public key 111 (by
the application server 171). After skipping step 503 and
receiving the message 208, the server 105 can then send the
encrypted module instruction 502 and digital signature
(signed by the application server 171) to the module 101 in
a response 209, as shown in FIG. 10. The module 101 can
read receive the response 209, read the identity of the
application server, select a public key 171w of the applica-
tion server 171, verify the digital signature of the module
instruction 502, and decrypt the module instruction 502
using the module private key 112 and an asymmetric cipher-
ing algorithms 141a. The module 101 can then apply the
module instruction 502 and send a message 208 with a
confirmation at step 1002. The confirmation at step 1002 can
include a timestamp 6045, which the server 105 can send to
the application server 171. In this manner, the module 101
may receive instructions from the application server 1717
that are not encrypted by the server 105.

FIG. 11

FIG. 11 is a flow chart illustrating exemplary steps for a
server to communicate with an application and a module, in
accordance with exemplary embodiments. FIG. 11 includes
a combination of different exemplary embodiments contem-
plated in the present invention, including (i) receiving a first

10

15

20

25

30

35

40

45

50

55

60

65

96

module encrypted data 403 with a first sensor data 6045
from a module 101 using a first public key 111, (ii) sending
the first sensor data 6045 in a first application message 701,
(iii) sending a module instruction 502 for a module 101 to
derive a new public and private key pair using a set of
parameters 126, (iv) receiving a second module encrypted
data 403 with a second sensor data 6045 from module 101
using the second public key, and (iv) sending the second
sensor data 6045 in a second application message 701.

Server 105 can receive a first module public key 111 at
step 516. The first module public key 111 can be in a
message 208 that includes a module identity 110 and first
parameters 126, where the parameters can provide values
associated with the first module public key 111 such as an
elliptic curve name or defining equation, a modulus for an
RSA key, a time-to-live value, a certificate authority 118
name, etc. According to an exemplary embodiment, a set of
parameters 126 can include a module public key identity
111a, in addition to other values. Server 105 can receive the
first module public key 111 at step 516 in the form of a
certificate 122, although a certificate 122 is not required.
Although not illustrated in FIG. 11, module public key 111
could optionally be encrypted in a module encrypted data
403, as depicted and described in connection with Step 1001
of FIG. 10 in U.S. patent application Ser. No. 14/039,401. In
addition, the submission of the first module public key 111
at step 516 could be authenticated using step 517 of FIG. 55
of the present invention. In this manner, server 105 can
ensure that the first module public key 111 is properly
associated with module identity 110 and/or module 101 (i.e.
prevent an incorrect submission of the first module public
key 111 or even the potential malicious submission of the
first module public key 111). In accordance with a preferred
exemplary embodiment, the first message 208 received at
step 516 can also include a module public key identity 111a,
so that server 105 can properly keep track of multiple
different module public keys 111 used by a module 101 over
time, such as module 101 periodically rotating public/
private key pairs in order to enhance security.

At step 1101, server 105 can receive a second message
208 that includes a first module encrypted data 403, where
the first module encrypted data 403 was processed by server
105 using the first module public key 111 and first set of
parameters 126 received in step 516. In accordance with an
exemplary preferred embodiment, server 105 can use the
first module public key 111 to process the first module
encrypted data 403 by (i) mutually deriving a common
shared secret key 1296 as a symmetric key 127 for use
between server 105 and module 101 using a key derivation
function 141f with the first module public key 111 as an
input into the key derivation function 141f, and (ii) server
105 sending a symmetric key 127 to module 101 where (ii.a)
the symmetric key 127 was ciphered using an asymmetric
ciphering algorithm 141a and the first module public key
111 and (ii.b) the first module encrypted data 403 was
ciphered using the symmetric key 127. Note that the second
message 208 could be optionally sent without ciphering or
encryption, and in this case the second message 208 could
use the first module public key 111 to include a module
digital signature 405 in the second message 208. The second
message 208 can include a sensor data 6045 or other server
instruction 414. According to an exemplary embodiment, the
second message 208 may also preferably include a module
identity 110 or a module identity string 904 outside of the
module encrypted data 403, so that server 105 can select the
proper key in order to decrypt the module encrypted data
403.

US 11,258,595 B2

97

At step 1102, server 105 can use an application message
701 to send the sensor data 6045 from a sensor 101/ with
module 101 to an application server 171 and/or an applica-
tion 171i. As illustrated in FIG. 8 and FIG. 9, the application
message 701 can use a secure connection data transter 802,
and could comprise an update instruction 704. The applica-
tion message 701 can include both a module identity 101 and
a server identity 206, and the server identity 206 can be
useful for application server 171 since the application server
171 could receive a plurality of application messages 701
from a plurality of servers 105, each using a different key for
ciphering. Although not illustrated in FIG. 11, steps 1101
and 1102 could be completed in series multiple times before
proceeding to step 1103, such as module 101 sending
multiple messages 208 with sensor data 6045 over several
days or longer, and server 105 can correspondingly send the
data to an application server 171.

At step 1103, server 105 can process a module instruction
502 for module 101 to derive a second module public key
111 and a second private key 112. Potential reasons for the
use of a new public and private key by module 101 are
described in connection with FIG. 56 and elsewhere herein,
and could include the expiration the validity of a certificate
122 with the first module public key 111 among many
possible reasons. Although server 105 is illustrated as pro-
cessing the module instruction 502 at steps 1103, an appli-
cation server 171 or another server associated with M2M
service provider 108 or module provider 109 could send a
signal to server 105 for module 101 to derive new keys, and
server 105 could then send module 101 a module instruction
502 to derive new keys at step 1103. In an exemplary
embodiment, any module instructions 502 originated outside
server 105 in a system 100 illustrated in FIG. 1 may
preferably be sent to server 105 before sending to module
101, since other servers besides server 105 in a system 100
illustrated in FIG. 1 would not normally be able to send a
packet to module 101 due to the presence of firewall 104. In
accordance with an exemplary preferred embodiment, (i)
module 101 may only receive a module instruction 502 from
a server 105, where server 105 had previously received a
message 208, (ii) before module 101 receives the module
instruction 502. Further, module 101 may only receive a
module instruction 502 both (i) after sending a message 208
and (ii) before the expiration of a firewall port binding
timeout value 117 after sending the message 208.

Server 105 can then use step 503 illustrated in FIG. 5a to
encrypt (i) the module instruction 502 and (ii) the second
parameters 126 in a server encrypted data 504, where the
module instruction 502 comprises an instruction for module
101 to derive a new pair of keys. Server 105 can use a
symmetric key 127 and a symmetric ciphering algorithm
14156 to encrypt the module instruction 502 and second
parameters 126. The symmetric key 127 used in step 503
illustrated in FIG. 11 could be processed using the first
module public key 111, where server 105 had (i) verified the
identity of module 101 using a module digital signature 405
using the first module public key 111, and then (ii) subse-
quently sent or received the symmetric key 127 with module
101 after the module digital signature 405 was verified using
the first module public key 111. Alternatively, server 105
could have sent the symmetric key 127 to module 101 in a
response 209 using an asymmetric ciphering algorithm 141a
and the first module public key 111. Although not illustrated
in FIG. 11, in a different but related embodiment to FIG. 11,
step 506 can be substituted for step 503, such that module
instruction 502 and/or second parameters 126 are not

10

15

20

25

30

35

40

45

50

55

60

65

98

encrypted but rather a server digital signature 506 processed
for inclusion in a response at step 1104 below.

At step 1104, server 105 can then send a response 209 that
includes the module instruction 502 and second parameters
126, where the module instruction 502 could be included in
a server encrypted data 504. The response 209 could be
formatted according to the exemplary response 209 illus-
trated in FIG. 64, where the response 209 can include a
module instruction 502 for the module 101 to derive a new
key pair. The response 209 could be to (i) the second
message 208 received at step 1101, or (ii) a subsequent
message 208 received by server 105 after the second mes-
sage 208 received in step 1101 and not shown in FIG. 11.
The response 209 at step 1104 can also include a second set
of parameters 126 and a security token 401. As contemplated
herein, the terms “parameters™ and “set of parameters” may
be considered equivalent. If response 209 at step 1104 does
not include a server encrypted data 504, then response 209
at step 1104 may preferably include a server digital signature
506.

The second set of parameters 126 at step 1104 could be
related to the first set of parameters 126 at step 516 illus-
trated in FIG. 11, or may be different. As one example, a
second set of parameters 126 could include a different
expiration date or time-to-live value for a new module
public key 111. The second set of parameters 126 could
include a new elliptic curve name or values for a defining
equation, including a new elliptic curve for a cryptographic
algorithms 141 to be utilized by module 101. Thus, accord-
ing to a preferred exemplary embodiment, a set of param-
eters 126 sent to a module in a response 209 can include
values for an elliptic curve defining equation. In this manner,
module 101 and server 105 can utilize an elliptic curve for
an ECC algorithms 154 that is different than an ECC
standard curve 138. For example, module 101 and server
105 may prefer to use an elliptic curve for ECC algorithms
154 that is different than defined curves in standards such the
list of curve names in section 5.1.1 of IETF RFC 4492
entitled “Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)”, and other related
curves such as defined curves published by NIST.

One benefit of utilizing a non-standard elliptic curve
(where the curve can be defined using a ECC parameters 137
in a parameters 126) is that security can be increased, since
attempts to break encryption with standard elliptic curves
could not be readily applied to non-standard elliptic curves
used in an ECC algorithm 154 (i.e. rainbow tables and the
like generated for one elliptic curve would not normally be
applicable for a sufficiently different elliptic curve). In
accordance with a preferred exemplary embodiment, at step
1104 the second set of parameters 126, which can include
values for a defining equation and/or ECC parameters 137,
can be sent to a module 101 in a response 209, where the
parameters 126 are within a server encrypted data 504. The
security of a system 100 can be increased by keeping
confidential the elliptic curve used in an ECC algorithm 154.
By sending ECC parameters 137 (possibly within the second
set of parameters 126) in a server encrypted data 504 in a
response 209, where ECC parameters 137 include values for
a different elliptic curve for module 101 to utilize in a
cryptographic algorithms, the security of a system 100 can
be further increased since the underlying elliptic curves used
with public and private keys can change over time.

Module 101 can receive the response 209 sent in step
1104 with the module instruction 502 instructing module
101 to derive a new key pair using the second set of
parameters 126. Note the second set of parameters 126 could

US 11,258,595 B2

99

be omitted in the response 209 sent in step 1104 and in this
case module 101 can use the first set of parameters from step
516 illustrated in FIG. 11. Module 101 can decrypt the server
encrypted data 504 in a response 209 using a symmetric key
127 and/or the first module public key 111 sent in the first
message at step 516 shown in FIG. 11. At step 515, module
101 can derive the new key pair using the second set of
parameters 126. As depicted and described in connection
with FIG. 5b, module 101 can use the second set of
parameters 126, cryptographic algorithms 141, a key pair
generation algorithms 141e, and a random number generator
128 to derive a second module public key 111 and a second
module private key 112. The random number generator 128
could use input from a sensor 101/, radio 101z, and other
hardware in order to input “noisy” data into a seed 129 used
by random number generator 128, including using a module
random seed file 139.

At step 1105, server 105 can receive the second module
public key 111 from module 101 in a third message 208. The
third message 208 could include a module identity 110, and
the second module public key 112 could be authenticated by
server 105 using step 517 depicted and described in con-
nection with FIG. 56 above. Note that the third message 208
may also preferably include a module public key identity
111a, so that server 105 can properly track and identify
which of a plurality of module public keys 111 may be used.
Module public key identity 111a and module public key 111
could be received by server 105 in the form of a certificate
122, although the use of a certificate 122 is not required.
Server 105 can authenticate the second module public key
111 at step 1105 using the first module public key 111
received in step 516 in FIG. 11. In one embodiment, the
second module public key 111 could be authenticated by
server 105, where the third message included a module
digital signature 405 that module 101 processed using the
first module private key 112. Server 105 could use the first
module public key 111 and the first set of parameters 126
received in (or used with) step 516 of FIG. 11 to verify the
module digital signature 405. In this manner, the second
module public key 111 could be authenticated with or after
step 1105 by server 105.

Upon receiving and authenticating the second module
public key 111, server 105 can record the second module
public key 111 in a module database 105% or store the key
in other memory. After recording the second module public
key 111, at step 1106 server 105 can receive a fourth
message 208 that includes (i) a module identity, and (ii) a
second module encrypted data 403, where the second mod-
ule encrypted data 403 may be encrypted using the second
module public key 111 received at step 1105. The second
module encrypted data 403 could include second sensor data
6045 or other data as well. Server 105 can decrypt the
second module encrypted data 403 in order to extract the
plaintext sensor data 6045, or other data for a server 105 or
application 171i, including a server instruction 414 different
than an “update” message.

At step 1107, server 105 can then send a second appli-
cation message 701 to an application server 171 and/or
application 1714, were the second application message could
include the sensor data 604 received in step 1105 and the
module identity 110. Server 105 can utilize a secure con-
nection data transfer 802 to send the sensor data 6045 and
the module identity 110 received in step 1106. In an exem-
plary embodiment, the keys used for a secure connection
data transfer 802 at step 1107 could be the same as used in
the secure connection data transfer 802 at step 1102. In this
manner, server 105 can support a change in public and

10

15

20

25

30

35

40

45

50

55

60

65

100

private keys for module 101, while no change in public and
private keys are required for application server 171 and/or
application 171i. Further, application 171/ may require a
valid certificate 122 for server 105, while server 105 may not
require a certificate 122 for each module 101. Although not
illustrated in FIG. 11, steps 1106 and 1107 could repeat in
sequence as server 105 continues to receive additional
messages 208 from module 101 over time, and server 105
could continue to update application server 171 and/or
application 171i by sending additional application messages
701. Application 171/ can use the plurality of sensor data
6045 received in FIG. 11 to update an application database
171k and information presented to a user 183 though a web
portal 171;.

CONCLUSION

Various exemplary embodiments have been described
above. Those skilled in the art will understand, however, that
changes and modifications may be made to those examples
without departing from the scope of the claims.

What is claimed is:

1. A method to support secure machine to machine
communications comprising:

(a) storing, in memory operatively connected to at least
one server, a server private key, module identity infor-
mation associated with at least one module, and a
pre-shared secret key associated with the at least one
module, wherein the module identity information com-
prises a permanent identifier for the at least one mod-
ule;

(b) receiving, by the at least one server from a first
module, a first module public key derived by the first
module, parameters associated with the first module
public key, and first module encrypted data, wherein
the first module encrypted data comprises data
encrypted at the first module;

(c) deriving, by the at least one server, a shared secret key
using an Elliptic Curve Diffie-Hellman algorithm based
at least on the first module public key and the server
private key,
wherein the derived shared secret key is derived by the

first module using the Elliptic Curve Diffie-Hellman
algorithm based at least on a server public key
corresponding to the server private key and a first
module private key corresponding to the first module
public key;

(d) decrypting, by the at least one server, the first module
encrypted data based at least on the derived shared
secret key,
wherein the decrypted first module encrypted data

includes a first module identity; and

(e) authenticating the first module with the first module
identity using the pre-shared secret key and a digest
algorithm,
wherein the digest algorithm uses a challenge from the

at least one server and a hash value from the first
module.

2. The method of claim 1, wherein the first module
encrypted data includes a module identity string.

3. The method of claim 2, wherein the module identity
string comprises a temporary identification associated with
the first module.

4. The method of claim 1, wherein the first module and the
at least one server store the pre-shared secret key before the
first module public key is received by the at least one server.

US 11,258,595 B2

101

5. The method of claim 1, wherein the parameters specify
an elliptic curve cryptography standard curve.

6. The method of claim 1, wherein the pre-shared secret
key is uniquely associated with the first module.

7. The method of claim 1, wherein the first module
receives the pre-shared secret key through a secure session.

8. The method of claim 1, wherein the pre-shared secret
key is stored in a SIM card at the first module.

9. The method of claim 1, wherein the at least one server
receives the first module public key within a body of a TCP
packet.

10. The method of claim 1, wherein the first module
comprises a wireless handset.

11. The method of claim 1, wherein the first module
comprises a smartphone.

12. The method of claim 1, wherein the first module
comprises a tablet computer.

13. The method of claim 1, wherein the first module
comprises a laptop.

14. The method of claim 1, wherein the first module
comprises a tracking device.

15. The method of claim 1, wherein the first module
private key is derived using a random number generator and
the parameters.

16. The method of claim 1, wherein the server public key
is stored in a nonvolatile memory during distribution of the
first module.

17. The method of claim 1, wherein the Elliptic Curve
Diffie Hellman algorithm comprises an Elliptic Curve Inte-
grated Encryption Scheme (ECIES).

18. The method of claim 1, wherein the module identity
information includes the first module identity.

#* #* #* #* #*

10

15

20

25

30

102

